Assessing the dynamics of the upper soil layer relative to soil management practices
USDA-ARS?s Scientific Manuscript database
The upper layer of the soil is the critical interface between the soil and the atmosphere and is the most dynamic in response to management practices. One of the soil properties is the stability of the aggregates because this property controls infiltration of water and exchange of gases. An aggregat...
Use of flue gas desulfurization gypsum for leaching Cd and Pb in reclaimed tidal flat soil.
Yang, Ping; Li, Xian; Tong, Ze-Jun; Li, Qu-Sheng; He, Bao-Yan; Wang, Li-Li; Guo, Shi-Hong; Xu, Zhi-Min
2016-04-01
A soil column leaching experiment was conducted to eliminate heavy metals from reclaimed tidal flat soil. Flue gas desulfurization (FGD) gypsum was used for leaching. The highest removal rates of Cd and Pb in the upper soil layers (0-30 cm) were 52.7 and 30.5 %, respectively. Most of the exchangeable and carbonate-bound Cd and Pb were removed. The optimum FGD gypsum application rate was 7.05 kg·m(-2), and the optimum leaching water amount for the application was 217.74 L·m(-2). The application of FGD gypsum (two times) and the extension of the leaching interval time to 20 days increased the heavy metal removal rate in the upper soil layers. The heavy metals desorbed from the upper soil layers were re-adsorbed and fixed in the 30-70 cm soil layers.
Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu
2016-01-01
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions. PMID:27600710
Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu
2016-09-29
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.
Time domain reflectometry measurements of solute transport across a soil layer boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nissen, H.H.; Moldrup, P.; Kachanoski, R.G.
2000-02-01
The mechanisms governing solute transport through layered soil are not fully understood. Solute transport at, above, and beyond the interface between two soil layers during quasi-steady-state soil water movement was investigated using time domain reflectometry (TDR). A 0.26-m sandy loam layer was packed on top of a 1.35-m fine sand layer in a soil column. Soil water content ({theta}) and bulk soil electrical conductivity (EC{sub b}) were measured by 50 horizontal and 2 vertical TDR probes. A new TDR calibration method that gives a detailed relationship between apparent relative dielectric permittivity (K{sub s}) and {theta} was applied. Two replicate solutemore » transport experiments were conducted adding a conservative tracer (CCl) to the surface as a short pulse. The convective lognormal transfer function model (CLT) was fitted to the TDR-measured time integral-normalized resident concentration breakthrough curves (BTCs). The BTCs and the average solute-transport velocities showed preferential flow occurred across the layer boundary. A nonlinear decrease in TDR-measured {theta} in the upper soil toward the soil layer boundary suggests the existence of a 0.10-m zone where water is confined towards fingered flow, creating lateral variations in the area-averaged water flux above the layer boundary. A comparison of the time integral-normalized flux concentration measured by vertical and horizontal TDR probes at the layer boundary also indicates a nonuniform solute transport. The solute dispersivity remained constant in the upper soil layer, but increased nonlinearly (and further down, linearly) with depth in the lower layer, implying convective-dispersive solute transport in the upper soil, a transition zone just below the boundary, and stochastic-convective solute transport in the remaining part of the lower soil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivas-Ubach, Albert; Barbeta, Adrià; Sardans, Jordi
Soils provide physical support, water, and nutrients to terrestrial plants. Upper soil layers are crucial for forest dynamics, especially under drought conditions, because many biological processes occur there and provide support, water and nutrients to terrestrial plants. We postulated that tree size and overall plant function manifested in the metabolome composition, the total set of metabolites, were dependent on the depth of upper soil layers and on water availability. We sampled leaves for stoichiometric and metabolomic analyses once per season from differently sized Quercus ilex trees under natural and experimental drought conditions as projected for the coming decades. Different sizedmore » trees had different metabolomes and plots with shallower soils had smaller trees. Soil moisture of the upper soil did not explain the tree size and smaller trees did not show higher concentrations of biomarker metabolites related to drought stress. However, the impact of drought treatment on metabolomes was higher in smaller trees in shallower soils. Our results suggested that tree size was more dependent on the depth of the upper soil layers, which indirectly affect the metabolomes of the trees, than on the moisture content of the upper soil layers. Metabolomic profiling of Q. ilex supported the premise that water availability in the upper soil layers was not necessarily correlated with tree size. The higher impact of drought on trees growing in shallower soils nevertheless indicates a higher vulnerability of small trees to the future increase in frequency, intensity, and duration of drought projected for the Mediterranean Basin and other areas. Metabolomics has proven to be an excellent tool detecting significant metabolic changes among differently sized individuals of the same species and it improves our understanding of the connection between plant metabolomes and environmental variables such as soil depth and moisture content.« less
Huang, Chun-mei; Cui, Xiu-ming; Lan, Lei; Chen, Wei-dong; Wang, Cheng-xiao; Yang, Xiao-yan; Lu, Da-hui; Yang, Ye
2015-08-01
The output and agronomic characters of 3-year-old Panax notoginseng cultured under stereo structure (upper, middle and down layers) were investigated, and the annual change of N, P and K of its planting soil were also studied. Results showed that, compared with field cultured Panax notoginseng, growth vigour and output of stereo-cultivation were significantly lower. But the total production of the 3 layers was 1.6 times of field. The growth vigor and production of P. notoginseng was in the order of upper layer > middle layer > down layer. The content of ginsenoside in rhizome, root tuber and hair root of P. notoginseng was in the order of upper layer > field > middle layer > down layer. Organic matter content and pH of stereo-cultivation soil decreased with the prolonging of planting time, which with the same trend of yield. Organic matter content of stereo-cultivation soil was significantly higher than field, but the pH was significantly lower. Contents of total and available N, P and K in stereo-cultivation soil and field decreased with the prolonging of planting time. The content of N and P were in the order of upper layer > middle layer > yield > down layer, the content of K was in the order of upper layer > middle layer > down layer > yield. Compared with field, the proportion of N and P in the organ of underground (rhizome, root tuber and hair root) of upper layer were increased, while decreased in middle and down layers. Proportion of K in underground decreased significantly of the 3 layers. In conclusion, the agronomic characters and production of stereo-cultivation were significantly lower than that of yield. But the total production of the 3 layers were significantly higher than field of unit area. And the aim of improving land utilization efficiency was achieved. Nutritions in the soil of stereo-cultivation were enough to support the development of P. notoginseng, which was not the cause of weak growth and low production. The absorbing ability of P. notoginseng to N, P and K nutrients was decreased by stereo-cultivation mode. So, improve the growth vigour of P. notoginseng from the perspective of adjusting the stereo-cultivation mode so as to improve the nutrient absorption capacity is the future direction.
Alicja Breymeyer; Marek Degorski; David Reed
1998-01-01
The relationship between litter decomposition rate, some chemical properties of upper soil layers (iron, manganese, zinc, copper, lead, mercury, nickel, chrome in humus-mineral horizon-A), and litter (the same eight elements in needle litter fraction) in pine forests of Poland was studied. Heavy metal content in organic-mineral horizon of soils was highly correlated...
Niu, Fujun; He, Junxia; Zhang, Gaosen; Liu, Xiaomei; Liu, Wei; Dong, Maoxing; Wu, Fasi; Liu, Yongjun; Ma, Xiaojun; An, Lizhe; Feng, Huyuan
2014-12-01
The effects of enhanced UV-B radiation on abundance, community composition and the total microbial activity of soil bacteria in alpine meadow ecosystem of Qinghai-Tibet Plateau were investigated. Traditional counting and 16S rRNA gene sequencing were used to investigate the culturable bacteria and their composition in soil, meanwhile the total microbial activity was measured by microcalorimetry. The population of soil culturable bacteria was slightly reduced with the enhanced UV-B radiation in both of the two depths, 2.46 × 10(6) CFU/g in upper layer (0-10 cm), 1.44 × 10(6) CFU/g in under layer (10-20 cm), comparing with the control (2.94 × 10(6) CFU/g in upper layer, 1.65 × 10(6) CFU/g in under layer), although the difference was not statistically significant (P > 0.05). However, the bacteria diversity decreased obviously due to enhanced UV-B, the number of species for upper layer was decreased from 20 to 13, and from 16 to 13 for the lower layer. The distribution of species was also quite different between the two layers. Another obvious decrease induced by enhanced UV-B radiation was in the total soil microbial activities, which was represented by the microbial growth rate constant (k) in this study. The results indicated that the culturable bacteria community composition and the total activity of soil microbes have been considerably changed by the enhanced UV-B radiation.
Kim, Hye Min; Lee, Min Jin; Jung, Ji Young; Hwang, Chung Yeon; Kim, Mincheol; Ro, Hee-Myong; Chun, Jongsik; Lee, Yoo Kyung
2016-11-01
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.
Assessing the dynamics of the upper soil layer relative to soil management practices
NASA Astrophysics Data System (ADS)
Hatfield, J.; Wacha, K.; Dold, C.
2017-12-01
The upper layer of the soil is the critical interface between the soil and the atmosphere and is the most dynamic in response to management practices. One of the soil properties most reflective to changes in management is the stability of the aggregates because this property controls infiltration of water and exchange of gases. An aggregation model has been developed based on the factors that control how aggregates form and the forces which degrade aggregates. One of the major factors for this model is the storage of carbon into the soil and the interaction with the soil biological component. To increase soil biology requires a stable microclimate that provides food, water, shelter, and oxygen which in turn facilitates the incorporation of organic material into forms that can be combined with soil particles to create stable aggregates. The processes that increase aggregate size and stability are directly linked the continual functioning of the biological component which in turn changes the physical and chemical properties of the soil. Soil aggregates begin to degrade as soon as there is no longer a supply of organic material into the soil. These processes can range from removal of organic material and excessive tillage. To increase aggregation of the upper soil layer requires a continual supply of organic material and the biological activity that incorporates organic material into substances that create a stable aggregate. Soils that exhibit stable soil aggregates at the surface have a prolonged infiltration rate with less runoff and a gas exchange that ensures adequate oxygen for maximum biological activity. Quantifying the dynamics of the soil surface layer provides a quantitative understanding of how management practices affect aggregate stability.
Water-retaining barrier and method of construction
Adams, Melvin R.; Field, Jim G.
1996-01-01
An agricultural barrier providing a medium for supporting plant life in an arid or semi-arid land region having a ground surface, the barrier being disposed on native soil of the region, the barrier including: a first layer composed of pieces of basalt, the first layer being porous and being in contact with the native soil; a porous second layer of at least one material selected from at least one of sand and gravel, the second layer being less porous than, and overlying, the first layer; and a porous third layer containing soil which favors plant growth, the third layer being less porous than, and overlying, the second layer and having an exposed upper surface, wherein the porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer.
Water-retaining barrier and method of construction
Adams, M.R.; Field, J.G.
1996-02-20
An agricultural barrier is disclosed which provides a medium for supporting plant life in an arid or semi-arid land region having a ground surface. The barrier is disposed on native soil of the region. The barrier includes a first porous layer composed of pieces of basalt, and is in contact with the native soil. There is a less porous second layer of at least one material selected from at least one of sand and gravel. The second layer overlies the first layer. A third layer, less porous than the second layer, contains soil which favors plant growth. The third layer overlies the second layer and has an exposed upper surface. The porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer. 2 figs.
NASA Astrophysics Data System (ADS)
Zaidelman, F. R.; Nikiforova, A. S.; Stepantsova, L. V.; Volokhina, V. P.
2012-05-01
Dark gray soils in the Tambov Plain are developed from the light-textured glaciofluvial deposits underlain by the calcareous loam. Their morphology, water regime, and productivity are determined by the depth of the slightly permeable calcareous loamy layer, relief, and the degree of gleyzation. The light texture of the upper layer is responsible for its weak structure, high density, the low content of productive moisture, and the low water-holding capacity. If the calcareous loam is at a depth of 100-130 cm, dark gray soils are formed; if it lies at a depth of 40-70 cm, temporary perched water appears in the profile, and dark gray contact-gleyed soils are formed. Their characteristic pedofeatures are skeletans in the upper layers, calcareous nodules in the loamy clay layer, and iron nodules in the podzolized humus and podzolic horizons. The appearance of Fe-Mn concretions is related to gleyzation. The high yield of winter cereals is shown to be produced on the dark gray soils; the yields of spring crops are less stable. Spring cereals should not be grown on the contact-gleyed dark gray soils.
NASA Astrophysics Data System (ADS)
Baeva, Yu. I.; Kurganova, I. N.; Lopes de Gerenyu, V. O.; Pochikalov, A. V.; Kudeyarov, V. N.
2017-03-01
Changes in carbon stocks and physical properties of gray forest soils during their postagrogenic evolution have been studied in the succession chronosequence comprising an arable, lands abandoned 6, 15, and 30 years ago; and a secondary deciduous forest (Experimental Field Station of the Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Pushchino, Moscow region). It is found that carbon stocks in the upper 60-cm soil layer gain with increasing period of abandonment, from 6.17 kg C/m2 on the arable land to 8.81 kg C/m2 in the forest soil, which represents the final stage of postagrogenic succession. The most intensive carbon accumulation occurs in the upper layer of the former plow (0- to 10-cm) horizon. It is shown that the self-restoration of gray forest soils is accompanied by a reliable decrease of bulk density in the upper 10-cm layer from 1.31 ± 0.01 g/cm3 on the arable to 0.97 ± 0.02 g/cm3 in the forest. In the former plow horizon of the arable-abandoned land-forest succession series, the portion of macroaggregates increases from 73.6 to 88.5%; the mean weighted diameter of aggregates, by 1.6 times; and the coefficient of aggregation, by 3.8 times. Thus, the removal of lands from agricultural use results in a gradual restoration of their natural structure, improvement of soil agronomical properties, and carbon sequestration in the upper part of the soil profile.
NASA Astrophysics Data System (ADS)
Matamala, R.; Fan, Z.; Jastrow, J. D.; Liang, C.; Calderon, F.; Michaelson, G.; Ping, C. L.; Mishra, U.; Hofmann, S. M.
2016-12-01
The large amounts of organic matter stored in permafrost-region soils are preserved in a relatively undecomposed state by the cold and wet environmental conditions limiting decomposer activity. With pending climate changes and the potential for warming of Arctic soils, there is a need to better understand the amount and potential susceptibility to mineralization of the carbon stored in the soils of this region. Studies have suggested that soil C:N ratio or other indicators based on the molecular composition of soil organic matter could be good predictors of potential decomposability. In this study, we investigated the capability of Fourier-transform mid infrared spectroscopy (MidIR) spectroscopy to predict the evolution of carbon dioxide (CO2) produced by Arctic tundra soils during a 60-day laboratory incubation. Soils collected from four tundra sites on the Coastal Plain, and Arctic Foothills of the North Slope of Alaska were separated into active-layer organic, active-layer mineral, and upper permafrost and incubated at 1, 4, 8 and 16 °C. Carbon dioxide production was measured throughout the incubations. Total soil organic carbon (SOC) and total nitrogen (TN) concentrations, salt (0.5 M K2SO4) extractable organic matter (SEOM), and MidIR spectra of the soils were measured before and after incubation. Multivariate partial least squares (PLS) modeling was used to predict cumulative CO2 production, decay rates, and the other measurements. MidIR reliably estimated SOC and TN and SEOM concentrations. The MidIR prediction models of CO2 production were very good for active-layer mineral and upper permafrost soils and good for the active-layer organic soils. SEOM was also a very good predictor of CO2 produced during the incubations. Analysis of the standardized beta coefficients from the PLS models of CO2 production for the three soil layers indicated a small number (9) of influential spectral bands. Of these, bands associated with O-H and N-H stretch, carbonates, and ester C-O appeared to be most important for predicting CO2 production for both active-layer mineral and upper permafrost soils. Further analysis of these influential bands and their relationships to SEOM in soil will be explored. Our results show that the MidIR spectra contains valuable information that can be related to decomposability of soils.
NASA Astrophysics Data System (ADS)
Anissimova, Marina; Heinze, Stefanie; Chen, Yona; Tarchitzky, Jorge; Marschner, Bernd
2014-05-01
Irrigation of soils with treated wastewater (TWW) directly influences microbial processes of soil. TWW contains easily decomposable organic material, which can stimulate the activity of soil microorganisms and, as a result, lead to the excessive consumption of soil organic carbon pool. We investigated the effects of irrigation with TWW relative to those of irrigation with freshwater (FW) on the microbial parameters in soils with low (7%) and medium (13%) clay content in a lysimeter experiment. The objectives of our study were to (i) determine the impact of water quality on soil respiration and enzymatic activity influenced by clay content and depth, and (ii) work out the changes in the turnover of soil organic matter (PE, priming effects). Samples were taken from three soil depths (0-10, 10-20, and 40-60 cm). Soil respiration and PE were determined in a 21-days incubation experiment after addition of uniformly 14C-labeled fructose. Activity of 10 extracellular enzymes (EEA, from C-, N-, P-, and S-cycle), phenol oxidase and peroxidase activity (PO+PE), and dehydrogenase activity (DHA) were assayed. Microbial Community-Level Physiological Profiles (CLPP) using four substrates, and microbial biomass were determined. The results showed that the clay content acted as the main determinative factor. In the soil with low clay content the water quality had a greater impact: the highest PE (56%) was observed in the upper layer (0-10cm) under FW irrigation; EEA of C-, P-, and S-cycles was significantly higher in the upper soil layer under TWW irrigation. Microbial biomass was higher in the soil under TWW irrigation and decreased with increasing of depth (50 μg/g soil in the upper layer, 15 μg/g soil in the lowest layer). This tendency was also observed for DHA. Contrary to the low clay content, in the soil with medium clay content both irrigation types caused the highest PE in the lowest layer (65% under FW irrigation, 48% under TWW irrigation); the higher substrate mineralization (10%) and the highest phosphatase activity (in the case of FW irrigation) was observed. The PO+PE activity was two to three times higher than in the soil with low clay content and increased clearly with increasing of soil depth. The last tendency was also valid generally for the enzymes of C-, N-, and P-cycles under both types of irrigation. The upper layer in the soil under TWW irrigation was characterized by the highest microbial biomass value (74 μg/g soil). DHA in all soil depths under both types of irrigation was significantly higher than in the corresponding depths of soil with low clay content. CLPP data showed the highest consumption of ascorbic acid and D-glucosamine hydrochloride in comparison to consumption of D-glucose and L-glutamine in both irrigation types.
NASA Astrophysics Data System (ADS)
Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Smoak, Joseph M.; Li, Wangping; Shi, Wei; Sheng, Yu; Zhao, Lin; Ding, Yongjian
2017-07-01
Many investigations of the preservation of soil organic carbon (SOC) in permafrost regions have examined roles of geomorphology, pedogenesis, vegetation cover, and permafrost within particular regions. However, it is difficult to disentangle the effects of multiple factors on the SOC in permafrost regions due to the heterogeneity in environmental conditions. Based on data from 73 soil study sites in permafrost regions of the eastern Qinghai-Tibetan Plateau, we developed a simple conceptual model, which relates SOC to topography, vegetation, and pedogenesis. We summarized the dominant factors and their controls on SOC using 31 measured soil physiochemical variables. Soil texture explains approximately 60% of the variations in the SOC stocks for the upper 0-2 m soil. Soil particle size closely correlates to soil moisture, which is an important determinant of SOC. Soil salinity and cations are important factors as well and can explain about 10% of the variations in SOC. The SOC and total nitrogen (TN) stocks for the 1-2 m depths have larger uncertainties than those of upper 1 m soil layer. The vegetation, pH, and bulk density mainly affects SOC and TN stocks for the upper 1 m soil layers, while the active layer thickness and soil particle size have greater influence on SOC and TN stocks for the 1-2 m soils. Our results suggest that the soil particle size is the most important controller of SOC pools, and the stocks of SOC and TN are strongly effected by soil development processes in the permafrost regions of the eastern Qinghai-Tibetan Plateau.
Prediction of unsaturated flow and water backfill during infiltration in layered soils
NASA Astrophysics Data System (ADS)
Cui, Guotao; Zhu, Jianting
2018-02-01
We develop a new analytical infiltration model to determine water flow dynamics around layer interfaces during infiltration process in layered soils. The model mainly involves the analytical solutions to quadratic equations to determine the flux rates around the interfaces. Active water content profile behind the wetting front is developed based on the solution of steady state flow to dynamically update active parameters in sharp wetting front infiltration equations and to predict unsaturated flow in coarse layers before the front reaches an impeding fine layer. The effect of water backfill to saturate the coarse layers after the wetting front encounters the impeding fine layer is analytically expressed based on the active water content profiles. Comparison to the numerical solutions of the Richards equation shows that the new model can well capture water dynamics in relation to the arrangement of soil layers. The steady state active water content profile can be used to predict the saturation state of all layers when the wetting front first passes through these layers during the unsteady infiltration process. Water backfill effect may occur when the unsaturated wetting front encounters a fine layer underlying a coarse layer. Sensitivity analysis shows that saturated hydraulic conductivity is the parameter dictating the occurrence of unsaturated flow and water backfill and can be used to represent the coarseness of soil layers. Water backfill effect occurs in coarse layers between upper and lower fine layers when the lower layer is not significantly coarser than the upper layer.
Thermomagnetic properties of peat-soil layers from Sag pond near Lembang Fault, West Java, Indonesia
NASA Astrophysics Data System (ADS)
Iryanti, Mimin; Wibowo, Dimas Maulana; Bijaksana, Satria
2015-09-01
Sag pond is a body of water near fault system as water flows blocked by the fault. Sag pond is a special type of environment for peat formation as peat layers in were deposited as the fault moves in episodic fashion. Depending on the history of the fault, peat layers are often interrupted by soil layers. In this study, core of peat-soil layers from a Sag pond in Karyawangi Village near Lembang Fault was obtained and analyzed for its magnetic properties. The 5 m core was obtained using a hand auger. Individual samples were obtained every cm and measured for their magnetic susceptibility. In general, there are three distinct magnetic susceptibility layers that were associated with peat and soil layers. The upper first 1 m is unconsolidated mud layer with its relatively high magnetic susceptibility. Between 1-2.81 m, there is consolidated mud layer and the lowest part (2.82-5) m is basically peat layer. Six samples were then measured for their thermomagnetic properties by measuring their susceptibility during heating and cooling from room temperature to 700°C. The thermomagnetic profiles provide Curie temperatures for various magnetic minerals in the cores. It was found that the upper part (unconsolidated mud) contains predominantly iron-oxides, such as magnetite while the lowest part (peat layer) contains significant amount of iron-sulphides, presumably greigite.
Alfalfa stand length and subsequent crop patterns in the upper Midwestern United States
USDA-ARS?s Scientific Manuscript database
To gain perspective on alfalfa (Medicago sativa L.), annual crop rotations in the upper midwestern United States, USDA-National Agricultural Statistics Service (NASS) cropland data layers (CDLs) and USDA-NRCS soil survey layers were combined for six states (North Dakota, South Dakota, Nebraska, Minn...
Fate and transport of carbamazepine in soil aquifer treatment (SAT) infiltration basin soils.
Arye, Gilboa; Dror, Ishai; Berkowitz, Brian
2011-01-01
The transport and fate of the pharmaceutical carbamazepine (CBZ) were investigated in the Dan Region Reclamation Project (SHAFDAN), Tel-Aviv, Israel. Soil samples were taken from seven subsections of soil profiles (150 cm) in infiltration basins of a soil aquifer treatment (SAT) system. The transport characteristics were studied from the release dynamics of soil-resident CBZ and, subsequently, from applying a pulse input of wastewater containing CBZ. In addition, a monitoring study was performed to evaluate the fate of CBZ after the SAT. Results of this study indicate adsorption, and consequently retardation, in CBZ transport through the top soil layer (0-5 cm) and to a lesser extent in the second layer (5-25 cm), but not in deeper soil layers (25-150 cm). The soluble and adsorbed fractions of CBZ obtained from the two upper soil layers comprised 45% of the total CBZ content in the entire soil profile. This behavior correlated to the higher organic matter content observed in the upper soil layers (0-25 cm). It is therefore deduced that when accounting for the full flow path of CBZ through the vadose zone to the groundwater region, the overall transport of CBZ in the SAT system is essentially conservative. The monitoring study revealed that the average concentration of CBZ decreased from 1094 ± 166 ng L⁻¹ in the recharged wastewater to 560 ± 175 ng L⁻¹ after the SAT. This reduction is explained by dilution of the recharged wastewater with resident groundwater, which may occur as it flows to active reclamation wells. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chizhikova, N. P.; Gamzikov, G. P.; Chechetko, E. S.
2018-01-01
The mineralogical composition of agrogray, dark gray, and agro-dark gray soils (Luvic Greyzemic Retic Phaeozems); agro-dark gray residual-calcareous soils (Calcaric Cambic Phaeozems); clay-illuvial agrochernozems (Luvic Chernic Phaeozems); and agrochernozems with migrational-mycelial carbonates (Haplic Chernozems) developed in the forest-steppe of Central Siberia within the Irkutsk Depression has been studied. The clay (<1 μm) fraction separated from these soils consists of mixed-layer minerals with alternating layers of hydromica, smectite, vermiculite, and chlorite; the proportions between them change within the soil profiles. The clay fraction also contains hydromicas, kaolinite, chlorite, and some admixture of the fine-dispersed quartz. Each type of the soils is characterized by its own distribution pattern of clay material with specific alternation of layers in the mixed-layer formations. Mixed-layer minerals of the chlorite-vermiculite type predominate in the upper horizons of texture-differentiated soils. Down the soil profile, the content of mixed-layer mica-smectitic minerals increases. In the clay fraction of arable dark gray-humus soils with residual carbonates, the distribution of the clay fraction and major mineral phases in the soil profile is relatively even. An increased content of well-crystallized kaolinite is typical of these soils. The parent material of agrochernozems has a layered character: the upper horizons are generally depleted of clay, and the middle-profile and lower horizons are characterized by the considerable kaolinite content. In general, the clay material of soils of the Tulun-Irkutsk forest-steppe differs considerably from the clay material of foreststeppe soils developed from loesslike and mantle loams in the European part of Russia. In particular, this difference is seen in the proportions between major mineral phases and between biotitic and muscovitic components, as well as in the degree of crystallinity and behavior of kaolinite and chlorite.
Vertical profile of 137Cs in soil.
Krstić, D; Nikezić, D; Stevanović, N; Jelić, M
2004-12-01
In this paper, a vertical distribution of 137Cs in undisturbed soil was investigated experimentally and theoretically. Soil samples were taken from the surroundings of the city of Kragujevac in central Serbia during spring-summer of 2001. The sampling locations were chosen in such a way that the influence of soil characteristics on depth distribution of 137Cs in soil could be investigated. Activity of 137Cs in soil samples was measured using a HpGe detector and multi-channel analyzer. Based on vertical distribution of 137Cs in soil which was measured for each of 10 locations, the diffusion coefficient of 137Cs in soil was determined. In the next half-century, 137Cs will remain as the source of the exposure. Fifteen years after the Chernobyl accident, and more than 30 years after nuclear probes, the largest activity of 137Cs is still within 10 cm of the upper layer of the soil. This result confirms that the penetration of 137Cs in soil is a very slow process. Experimental results were compared with two different Green functions and no major differences were found between them. While both functions fit experimental data well in the upper layer of soil, the fitting is not so good in deeper layers. Although the curves obtained by these two functions are very close to each other, there are some differences in the values of parameters acquired by them.
Yang, Li; Luo, Chunling; Liu, Yue; Quan, Lingtong; Chen, Yahua; Shen, Zhenguo
2013-02-01
In this study, a novel experimental setup (one pot placed above another) was used to investigate the residual effects of EDDS application on plant growth and metal uptake. Two plant species, garland chrysanthemum and ryegrass, were grown in the upper pots (mimicking the upper soil layers) and were harvested 7 days after EDDS application. During this period the upper pots were watered twice. The lower pots (mimicking the subsoil under the upper soil layers) served as leachate collectors. Thereafter, the two pots were separated, and the same plants were grown in the upper and lower pots in two continuous croppings. Results showed that EDDS application restrained the growth of the first crop and resulted in a dramatic enhancement of Cu accumulation in plants grown in the upper pots. However, no negative growth effects were identified for the second and third crops, which were harvested 81 and 204 days after the EDDS application, respectively. In the lower pots, the leachate from the upper pots after EDDS application exhibited the increased total and CaCl(2)-extractable Cu concentrations in the soil. However, the growth of garland chrysanthemum and ryegrass, and their shoot Cu concentrations were unaffected. These data suggest that the residual risk associated with EDDS application was limited, and that subsoil to which EDDS leachate was applied may exhibit reduced Cu bioavailability for plants due to the biodegradation of EDDS. Copyright © 2012 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-01-01
... destination of regulated articles for scientific purposes. Soil. That part of the upper layer of earth in... equipment used for soil tillage, including tillage attachments for farm tractors, e.g., tractors, disks...., combines, potato conveyors, and harvesters and hay balers. Mechanized soil-moving equipment. Equipment used...
Code of Federal Regulations, 2013 CFR
2013-01-01
... destination of regulated articles for scientific purposes. Soil. That part of the upper layer of earth in... equipment used for soil tillage, including tillage attachments for farm tractors, e.g., tractors, disks...., combines, potato conveyors, and harvesters and hay balers. Mechanized soil-moving equipment. Equipment used...
Code of Federal Regulations, 2011 CFR
2011-01-01
... destination of regulated articles for scientific purposes. Soil. That part of the upper layer of earth in... equipment used for soil tillage, including tillage attachments for farm tractors, e.g., tractors, disks...., combines, potato conveyors, and harvesters and hay balers. Mechanized soil-moving equipment. Equipment used...
Code of Federal Regulations, 2010 CFR
2010-01-01
... destination of regulated articles for scientific purposes. Soil. That part of the upper layer of earth in... equipment used for soil tillage, including tillage attachments for farm tractors, e.g., tractors, disks...., combines, potato conveyors, and harvesters and hay balers. Mechanized soil-moving equipment. Equipment used...
Code of Federal Regulations, 2012 CFR
2012-01-01
... destination of regulated articles for scientific purposes. Soil. That part of the upper layer of earth in... equipment used for soil tillage, including tillage attachments for farm tractors, e.g., tractors, disks...., combines, potato conveyors, and harvesters and hay balers. Mechanized soil-moving equipment. Equipment used...
Qin, Hua-Jun; He, Bing-Hui; Zhao, Xuan-chi; Li, Yuan; Mao, Wen-tao; Zeng, Qing-ping
2014-09-01
Soil microbial biomass and enzyme activity are important parameters to evaluate the quality of the soil environment. The goal of this study was to determine the influence of different slope position and section in Disporopsis pernyi forest land on the soil microbial biomass and enzyme activity in southwest Karst Mountain. In this study, we chose the Dip forest land at Yunfo village Chengdong town Liangping country Chongqing Province as the study object, to analyze the influence of three different slope positions [Up Slope(US), Middle Slope(MS), Below Slope(BS)] and two different sections-upper layer(0-15 cm) and bottom layer(15-30 cm) on the soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), microbial carbon entropy (qMBC), microbial nitrogen entropy (qMBN) , catalase(CAT), alkaline phosphatase (ALK), urease(URE), and invertase(INV). The results showed that the same trend (BS > MS > US) was found for SMBC, SMBN, qMBC, qMBN, CAT and INV of upper soil layer, while a different trend (BS > US > MS) was observed for ALK. In addition, another trend (MS > US > BS) was observed for URE. The same trend (BS > MS >US) was observed for SMBN, qMBN, CAT, ALK, URE and INV in bottom layer, but a different trend (MS > BS > US) was observed for SMBC and qMBC. The SMBC, SMBN, CAT, ALK, URE and INV manifested as upper > bottom with reduction of the section, while qMBC and qMBN showed the opposite trend. Correlation analysis indicated that there were significant (P <0.05) or highly significant (P < 0.01) positive correlations among SMBC in different slope position and section, soil enzyme activity and moisture. According to the two equations of regression analysis, SMBC tended to increase with the increasing CAT and ALK, while decreased with the increasing pH. Then SMBN tended to increase with the increasing URE and INV.
NASA Astrophysics Data System (ADS)
Abakumov, Evgeny
2016-04-01
Physical properties of the soils of the cold environments are underestimated. Soil and permafrost border and active layer thickness are the key classification indicators for the polar soils. That is why electrophysical research has been conducted with aim to determine the soil-permafrost layer heterogeneity and the depth of the uppermost permafrost layer on examples of selected plots in Antarctic region and Russian Arctic. The electric resistivity (ER) was measured directly in the soil profiles using the vertical electrical sounding (VERS) method, which provides data on the changes in the electrical resistivity throughout the profile from the soil surface without digging pits or drilling. This method allows dividing the soil layer vertically into genetic layers, which are different on main key properties and characteristics Different soil layers have different ER values, that is why the sharp changes in ER values in soil profile can be interpreted as results of transition of one horizon to another. In our study, the resistivity measurements were performed using four-electrode (AB + MN) arrays of the AMNB configuration with use of the Schlumberger geometry. A Landmapper ERM-03 instrument (Landviser, USA) was used for the VES measurements in this study. Electrodes were situated on the soil surface, distance between M and N was fixes, while distance from A to B were changed during the sounding. Vertical Electrical Resistivity Soundings (VERS) using Schlumberger array were carried out at stations, situated on the different plots of terrestrial ecosystems of Arctic and Antarctic. The resistance readings at every VERS point were automatically displayed on the digital readout screen and then written down on the field note book. The soils had been 'sounded' thoroughly and found to vary between 5 cm and 3-5 m in A-B distances. It was shown that use of VES methodology in soil survey is quite useful for identification of the permafrost depth without digging of soil pit. This method allow identify soil heterogeneity, because the ER values are strongly affected by soil properties and intensively changes on the border of different geochemical regimes, i.e. on the border of active layer and permafrost. VES data obtained show that the upper border of the permafrost layer coincides with that border, which were identified in field on the base of soil profile morphology. The VERS method also can used for identification of Gleyic, Histic and Podzolic layers. It has been also shown that permafrost layer is less homogenous in upper part of permafrost, than in lower one. It is caused by number of cracks, channels and other paths of dissolved organic matter and iron containing compounds migration. VES methodology is useful for preliminary soil survey in the regions with permafrost affected soil cover. It is also can be applied for detalization of soil-permafrost layer stratification in field soil pits.
Benchmarking the inelastic neutron scattering soil carbon method
USDA-ARS?s Scientific Manuscript database
The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...
Long-Term Soil Chemistry Changes in Aggrading Forest Ecosystems
Jennifer D. Knoepp; Wayne T. Swank
1994-01-01
Assessing potential long-term forest productivity requires identification of the processes regulating chemical changes in forest soils. We resampled the litter layer and upper two mineral soil horizons, A and AB/BA, in two aggrading southern Appalachian watersheds 20 yr after an earlier sampling. Soils from a mixed-hardwood watershed exhibited a small but significant...
2016-07-01
and gap propagation engineering methodology implemented within the software (CI-Wall) makes use of a hydraulic fracturing criterion, as discussed in...moist unit weight). Soil unit weights: Because of the presence of the upper moist (i.e, non - saturated) region R01 clay layer that is immediately...from two series of complete soil-structure interaction (SSI) non - linear finite element studies for I-Walls at New Orleans and other locations
[Characteristics of soil moisture in artificial impermeable layers].
Suo, Gai-Di; Xie, Yong-Sheng; Tian, Fei; Chuai, Jun-Feng; Jing, Min-Xiao
2014-09-01
For the problem of low water and fertilizer use efficiency caused by nitrate nitrogen lea- ching into deep soil layer and soil desiccation in dryland apple orchard, characteristics of soil moisture were investigated by means of hand tamping in order to find a new approach in improving the water and fertilizer use efficiency in the apple orchard. Two artificial impermeable layers of red clay and dark loessial soil were built in soil, with a thickness of 3 or 5 cm. Results showed that artificial impermeable layers with the two different thicknesses were effective in reducing or blocking water infiltration into soil and had higher seepage controlling efficiency. Seepage controlling efficiency for the red clay impermeable layer was better than that for the dark loessial soil impermeable layer. Among all the treatments, the red clay impermeable layer of 5 cm thickness had the highest bulk density, the lowest initial infiltration rate (0.033 mm · min(-1)) and stable infiltration rate (0.018 mm · min(-1)) among all treatments. After dry-wet alternation in summer and freezing-thawing cycle in winter, its physiochemical properties changed little. Increase in years did not affect stable infiltration rate of soil water. The red clay impermeable layer of 5 cm thickness could effectively increase soil moisture content in upper soil layer which was conducive to raise the water and nutrient use efficiency. The approach could be applied to the apple production of dryland orchard.
NASA Astrophysics Data System (ADS)
van Gestel, N.; Shi, Z.; van Groenigen, K. J.; Osenberg, C. W.; Andresen, L. C.; Dukes, J. S.; Hovenden, M. J.; Michelsen, A.; Pendall, E.; Reich, P.; Schuur, E.; Hungate, B. A.
2017-12-01
Minor changes in soil C dynamics in response to warming can strongly modulate climate change. Approaches to estimate long-term changes in soil carbon stocks from shorter-term warming experiments should consider temporal trends in soil carbon dynamics. Here we used data assimilation to take into account the soil carbon time series data collected from the upper soil layer (<15 cm) in 70 field warming experiments located worldwide. We used a soil carbon model with two pools, representing fast- and slow-decaying materials. We show that on average experimental warming enhanced fluxes of incoming and outgoing carbon with no change in predicted equilibrium stocks of carbon. Experimental warming increased the decomposition rates of the fast soil carbon pools by 10.7% on average, but also increased soil carbon input by 8.1%. When projecting the carbon pools to equilibrium stocks we found that warming decreased the size of the fast pool (-3.7%), but did not affect the slow or total carbon pools. We demonstrate that warming increases carbon throughput without an overall effect on total equilibrium carbon stocks. Hence, our findings do not support a generalizable soil carbon-climate feedback for soil carbon in the upper soil layer.
When interflow also percolates: downslope travel distances and hillslope process zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, C. Rhett; Bitew, Menberu; Du, Enhao
2014-02-17
In hillslopes with soils characterized by deep regoliths, such as Ultisols,Oxisols, and Alfisols, interflow occurs episodically over impeding layers near and parallel to the soil surface such as low-conductivity B horizons (e.g.Newman et al., 1998; Buttle andMcDonald, 2002; Du et al., In Review), till layers (McGlynn et al., 1999; Bishop et al., 2004), hardpans (McDaniel et al., 2008), C horizons (Detty and McGuire, 2010), and permeable bedrock (Tromp van Meerveld et al., 2007). As perched saturation develops within and above these impeding but permeable horizons, flow moves laterally downslope, but the perched water also continues to percolate through the impedingmore » horizon to the unsaturated soils and saprolite below. Perched water and solutes will eventually traverse the zone of perched saturation above the impeding horizon and then enter and percolate through the impeding horizon. In such flow situations, only lower hillslope segments with sufficient downslope travel distance will deliver water to the riparian zone within the time scale of a storm.farther up the slope, lateral flow within the zone of perched saturation. will act mainly to shift the point of percolation (location where a water packet leaves the downslope flow zone in the upper soil layer and enters the impeding layer) down the hillslope from the point of infiltration. In flatter parts of the hillslope or in areas with little contrast between the conductivities of the upper and impeding soil layers, lateral flow distances will be negligible.« less
SMOS brightness temperature assimilation into the Community Land Model
NASA Astrophysics Data System (ADS)
Rains, Dominik; Han, Xujun; Lievens, Hans; Montzka, Carsten; Verhoest, Niko E. C.
2017-11-01
SMOS (Soil Moisture and Ocean Salinity mission) brightness temperatures at a single incident angle are assimilated into the Community Land Model (CLM) across Australia to improve soil moisture simulations. Therefore, the data assimilation system DasPy is coupled to the local ensemble transform Kalman filter (LETKF) as well as to the Community Microwave Emission Model (CMEM). Brightness temperature climatologies are precomputed to enable the assimilation of brightness temperature anomalies, making use of 6 years of SMOS data (2010-2015). Mean correlation R with in situ measurements increases moderately from 0.61 to 0.68 (11 %) for upper soil layers if the root zone is included in the updates. A reduced improvement of 5 % is achieved if the assimilation is restricted to the upper soil layers. Root-zone simulations improve by 7 % when updating both the top layers and root zone, and by 4 % when only updating the top layers. Mean increments and increment standard deviations are compared for the experiments. The long-term assimilation impact is analysed by looking at a set of quantiles computed for soil moisture at each grid cell. Within hydrological monitoring systems, extreme dry or wet conditions are often defined via their relative occurrence, adding great importance to assimilation-induced quantile changes. Although still being limited now, longer L-band radiometer time series will become available and make model output improved by assimilating such data that are more usable for extreme event statistics.
NASA Astrophysics Data System (ADS)
Bagrova, Svetlana; Makeev, Alexander; Rusakov, Alexey; Yanina, Tatiana; Kurbanov, Redzhep
2017-04-01
Caspian Sea reflects in its development global climate changes, glacial-interglacial rhythms in Russian plains and mountain areas. It is stratigraphic region for drawing up a single stratigraphic and paleogeographic plan of the Upper Pleistocene of Northern Eurasia. To date, accumulated a considerable amount of material on the Quaternary history of Ponto-Caspian, based on stratigraphic, paleogeographic and geomorphological studies. However, paleopedological work in the region have been starting for the first time. Studying paleopedology in soil-sediment thickness have paramount importance, as they can reliably break down the steps of the surface on which stabilization was carried out paedogenesis with further sedimentation, and allow us to trace the stages of evolution of the environment of the region. The site (Srednyaya Akhtuba) located on the left bank of the Akhtuba River, 20 km from the Volzhsky city, the upper part of Lower Volga region. This marine terrace represented by 6 paedogenetic levels, including 7 soils (MIS1-MIS5) (Yanina, 2014) separated by sediments (precipitation) of different structure and genesis. The upper part of the section (0-150 cm) presented by a typical for the dry steppe area soil Kastanzem (WRB, 2014) (MIS1). Parent rock material is a great pack (>1m) of the Caspian marine sediments, represented by a series of layers of chocolate clays (MIS2) with interbedding of sands. Lower, is a pack (520-670 cm), formed during Atelian regression of the Caspian Sea (MIS3-MIS4), presented by one well-developed soil with truncated humus horizon and two loessic layers with signs of soil formation (rhizolithes, manganese nodule, cryogenesis structure and etc) MIS3 stage. The lower part of Atel-Ahtuba strata (910-1530 cm) is presented by carbonate loess without noticeable pedogenetic transformation. From a depth of 1530 cm begins thick layer of loess-soil series, presented by MIS5a-e Mezin pedocomplex, dedicated to the Late Khazar-Girkan transgression, with three well-preserved soils. The upper soil, Gleyic Phaeozem, has accretionary humus horizon (about 1 m), many krotovinas, and network of frost wedges 40-50 cm. Wedges start in the overlying Atel-Akhtuba loess layer indicating the beginning of the last glacial cycle (MIS4). The middle soil, Gleyic Chernozem, has first 5 cm humus horizon intermixed with Bg horizon of the upper soil (welded paleosol). Until the middle of the profile (1740 cm) are the end of the loess permafrost wedges. Gleyic features are due to seasonal overflooding. The lower soil of Mezin pedocomplex (MIS5e), Mollic Calcic Gleysol, formed in loess sediments accumulated during penultimate glaciation (MIS6) and has reworked upper boundary (10-13 cm), well-defined humus horizon with gley process. Three soils of Mezin pedocomplex have common features: semi terrestrial genesis with gleyic features due to long-term seasonal overflooding; well developed humus horizons and complex assemblage of carbonate neoformations, formed under steppe environment. Pedogenetic horizons serve as good stratigraphic markers that will help to correlate late Pleistocene soil-sedimentary sequences of the whole Caspian-Azov-Black sea region, East European Plain and link it with global stratigraphic schemes. Detailed analytical and further field studies are required to reveal further pedogenetic response to environmental changes in the area. Research was supported by Russian Science Foundation, project 14-17-00705
NASA Astrophysics Data System (ADS)
Gorbacheva, M.
2012-04-01
M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for understanding natural mechanisms in soil and will be useful for the development of new soil models in laboratory. Thus, by means of «cascade filtration» method there've been made some results on true size, quantity and biomass of bacteria. Development of a bacteria in various soil horizons and their layers in aerobic and anaerobic conditions and calculations of biomass of bacteria in upper layer horizon A and lower layer horizon B have also become the subjects of the studies. It was identified that the quantity of bacteria in aerobic conditions increase during the microbial succession while bacteria sized 230 and 380 nm were dominating. In anaerobic conditions the process of connecting cells sized 170 nm and bacteria is observed. Biomass of bacteria is higher in anaerobic conditions in upper layer horizon A because of elevated variety of bacteria. In horizon B in anaerobic conditions it is of maximum because of anaerobic situation in situ. Thus, distribution of bacteria's size depends on aeration of soil. That helps to acknowledge the receipt of theory of a great number of researchers about that fact that the size of bacteria in the soil in anaerobic conditions decrease under stress-factors. This work touches upon such a poorly investigated subject as nanobacteria in the soil. But this knowledge plays a significant role in land reclamation oil-cut and prognostication pollution of the soil by pathogenic bacteria.
Armas, Cristina; Kim, John H; Bleby, Timothy M; Jackson, Robert B
2012-01-01
Hydraulic lift (HL) is the passive movement of water through plant roots, driven by gradients in water potential. The greater soil-water availability resulting from HL may in principle lead to higher plant nutrient uptake, but the evidence for this hypothesis is not universally supported by current experiments. We grew a grass species common in North America in two-layer pots with three treatments: (1) the lower layer watered, the upper one unwatered (HL), (2) both layers watered (W), and (3) the lower layer watered, the upper one unwatered, but with continuous light 24 h a day to limit HL (no-HL). We inserted ingrowth cores filled with enriched-nitrogen organic matter ((15)N-OM) in the upper layer and tested whether decomposition, mineralization and uptake of (15)N were higher in plants performing HL than in plants without HL. Soils in the upper layer were significantly wetter in the HL treatment than in the no-HL treatment. Decomposition rates were similar in the W and HL treatments and lower in no-HL. On average, the concentration of NH(4)(+)-N in ingrowth cores was highest in the W treatment, and NO(3)(-)-N concentrations were highest in the no-HL treatment, with HL having intermediate values for both, suggesting differential mineralization of organic N among treatments. Aboveground biomass, leaf (15)N contents and the (15)N uptake in aboveground tissues were higher in W and HL than in no-HL, indicating higher nutrient uptake and improved N status of plants performing HL. However, there were no differences in total root nitrogen content or (15)N uptake by roots, indicating that HL affected plant allocation of acquired N to photosynthetic tissues. Our evidence for the role of HL in organic matter decomposition and nutrient cycling suggests that HL could have positive effects on plant nutrient dynamics and nutrient turnover.
Experimental system to displace radioisotopes from upper to deeper soil layers: chemical research
Cazzola, Pietro; Cena, Agostino; Ghignone, Stefano; Abete, Maria C; Andruetto, Sergio
2004-01-01
Background Radioisotopes are introduced into the environment following nuclear power plant accidents or nuclear weapons tests. The immobility of these radioactive elements in uppermost soil layers represents a problem for human health, since they can easily be incorporated in the food chain. Preventing their assimilation by plants may be a first step towards the total recovery of contaminated areas. Methods The possibility of displacing radionuclides from the most superficial soil layers and their subsequent stabilisation at lower levels were investigated in laboratory trials. An experimental system reproducing the environmental conditions of contaminated areas was designed in plastic columns. A radiopolluted soil sample was treated with solutions containing ions normally used in fertilisation (NO3-, NH4+, PO4--- and K+). Results Contaminated soils treated with an acid solution of ions NO3-, PO4--- and K+, undergo a reduction of radioactivity up to 35%, after a series of washes which simulate one year's rainfall. The capacity of the deepest soil layers to immobilize the radionuclides percolated from the superficial layers was also confirmed. Conclusion The migration of radionuclides towards deeper soil layers, following chemical treatments, and their subsequent stabilization reduces bioavailability in the uppermost soil horizon, preventing at the same time their transfer into the water-bearing stratum. PMID:15132749
Enhancing the soil organic matter pool through biomass incorporation
Felipe G. Sanchez; Emily A. Carter; John F. Klepac
2003-01-01
A study was installed in the Upper Coastal Plain of South Carolina, USA that sought to examine the impact of incorporating downed slash materials into subsoil layers on soil chemical and physical properties as compared with the effect of slash materials left on the soil surface. Baseline levels of slash were estimated by establishing transects within harvested stands...
Microwave remote sensing of soil water content
NASA Technical Reports Server (NTRS)
Cihlar, J.; Ulaby, F. T.
1975-01-01
Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.
Mironov, Vladislav P; Matusevich, Janna L; Kudrjashov, Vladimir P; Boulyga, Sergei F; Becker, J Sabine
2002-12-01
This work presents experimental results on the distribution of irradiated reactor uranium from fallout after the accident at Chernobyl Nuclear Power Plant (NPP) in comparison to natural uranium distribution in different soil types. Oxidation processes and vertical migration of irradiated uranium in soils typical of the 30 km relocation area around Chernobyl NPP were studied using 236U as the tracer for irradiated reactor uranium and inductively coupled plasma mass spectrometry as the analytical method for uranium isotope ratio measurements. Measurements of natural uranium yielded significant variations of its concentration in upper soil layers from 2 x 10(-7) g g(-1) to 3.4 x 10(-6) g g(-1). Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 5 x 10(-12) g g(-1) to 2 x 10(-6) g g(-1) depending on the distance from Chernobyl NPP. In the majority of investigated soil profiles 78% to 97% of irradiated "Chernobyl" uranium is still contained in the upper 0-10 cm soil layers. The physical and chemical characteristics of the soil do not have any significant influence on processes of fuel particle destruction. Results obtained using carbonate leaching of 236U confirmed that more than 60% of irradiated "Chernobyl" uranium is still in a tetravalent form, ie. it is included in the fuel matrix (non-oxidized fuel UO2). The average value of the destruction rate of fuel particles determined for the Western radioactive trace (k = 0.030 +/- 0.005 yr(-1)) and for the Northern radioactive trace (k = 0.035 + 0.009 yr(-1)) coincide within experimental errors. Use of leaching of fission products in comparison to leaching of uranium for study of the destruction rate of fuel particles yielded poor coincidence due to the fact that use of fission products does not take into account differences in the chemical properties of fission products and fuel matrix (uranium).
Iodine Systematics in the Ground Water of a Natural Setting
NASA Astrophysics Data System (ADS)
Renaud, R.; Clark, I. D.; Kotzer, T.; Bottomley, D.
2001-12-01
The transport and partitioning of 129I has been examined for a shallowly circulating ground water system at Sturgeon Falls in eastern Ontario. Vertical recharge occurs in a sandy aquifer with a seasonally inundated boreal forest. Concentrations of stable iodine, 129I, and tritium were measured on samples of ground water, precipitation, and soil litter. The present-day tritium profile delineates the position of the early 1960's thermonuclear bomb-pulse at a depth approximately 12 m. The concentrations of stable iodine for ground waters above, near and below the present-day bomb pulse were largely invariant, at approximately 0.5 ppb, whereas 129I concentrations decreased from 1.9 x 106 atoms/L at 9 m, to approximately 1.9 x 105 atoms/L on tritium-depleted waters occurring below the present-day location of the recharging thermonuclear bomb-test peak at 35 m. No substantial increases in the levels of 129I were evident in waters sampled near the present-day location of the thermonuclear bomb peak. Along a 30 cm soil profile, the concentrations of 129I ranged from approximately 4.3 x 108 atoms/g in the uppermost soil litter layer to 5.6 x 107 atoms/g in the siltier bottom soil horizons. Over that same profile, stable iodine varied from 4.7 ppm in the upper layers to 3.9 ppm in the lower layers. Rao and Fehn, 1999, measured iodine and 129I levels in surface waters and soils in western New York. They found 129I concentrations ranging from 3.5 x 108 atoms/g to 7.1 x 1010 atoms/g in the upper most layers of their soil cores, depending on the site's proximity to a former nuclear fuel reprocessing plant. Similarly, they noticed that the lower layers of their soil cores had 129I concentrations of at least an order of magnitude lower than the upper layers. It is proposed here that the levels of 129I in the deepest, tritium-depleted ground waters reflect the concentrations of 129I during the pre-thermonuclear testing period. However, the lower concentrations of 129I at Sturgeon Falls, compared with those from other studies in central Canada, suggest that the levels of 129I in these ground waters may have been attenuated by ion-exchange with organic materials in the near-surface soil horizons. Such processes have been documented during a previous study on the behavior of 129I in a shallow aquifer near a low-level, radioactive waste management area.
Evaluation of the Leaching Potential of Anthranilamide Insecticides Through the Soil.
Vela, Nuria; Pérez-Lucas, Gabriel; Navarro, María J; Garrido, Isabel; Fenoll, José; Navarro, Simón
2017-10-01
The mobility of two relatively new antranilic diamide insecticides, cyanantraniliprole (CY) and cholantraniliprole (CH) in soil was examined, by means of disturbed columns loaded with a typical semiarid Mediterranean soil (Calcaric fluvisol) under laboratory conditions. Both insecticides appeared in leachates, with 52% of CY and 41% of CH of the initial mass added (1 µg g -1 ) present. For CY, 21% and 19% were recovered from the upper and bottom layers of the soil, respectively, while for CH, 33% and 22% were recovered from the upper and bottom layers respectively. Based on the calculated half-lives (29 and 27 days for CY and CH, respectively) and their log K OC (about 2.5 for both), the calculated Groundwater Ubiquity Score (GUS) index was higher than 5 for both, indicating they have the potential to leach. Two transformation products, C 13 H 9 Cl 2 N 2 O (IN-ECD73) and C 19 H 12 BrClN 6 O (IN-J9Z38) corresponding to the degradation of CH and CY, respectively were also identified and detected in leachates and soil.
Soil Charcoal to Assess the Impacts of Past Human Disturbances on Tropical Forests
Vleminckx, Jason; Morin-Rivat, Julie; Biwolé, Achille B.; Daïnou, Kasso; Gillet, Jean-François; Doucet, Jean-Louis; Drouet, Thomas; Hardy, Olivier J.
2014-01-01
The canopy of many central African forests is dominated by light-demanding tree species that do not regenerate well under themselves. The prevalence of these species might result from ancient slash-and-burn agricultural activities that created large openings, while a decline of these activities since the colonial period could explain their deficit of regeneration. To verify this hypothesis, we compared soil charcoal abundance, used as a proxy for past slash-and-burn agriculture, and tree species composition assessed on 208 rainforest 0.2 ha plots located in three areas from Southern Cameroon. Species were classified in regeneration guilds (pioneer, non-pioneer light-demanding, shade-bearer) and characterized by their wood-specific gravity, assumed to reflect light requirement. We tested the correlation between soil charcoal abundance and: (i) the relative abundance of each guild, (ii) each species and family abundance and (iii) mean wood-specific gravity. Charcoal was found in 83% of the plots, indicating frequent past forest fires. Radiocarbon dating revealed two periods of fires: “recent” charcoal were on average 300 years old (up to 860 BP, n = 16) and occurred in the uppermost 20 cm soil layer, while “ancient” charcoal were on average 1900 years old (range: 1500 to 2800 BP, n = 43, excluding one sample dated 9400 BP), and found in all soil layers. While we expected a positive correlation between the relative abundance of light-demanding species and charcoal abundance in the upper soil layer, overall there was no evidence that the current heterogeneity in tree species composition can be explained by charcoal abundance in any soil layer. The absence of signal supporting our hypothesis might result from (i) a relatively uniform impact of past slash-and-burn activities, (ii) pedoturbation processes bringing ancient charcoal to the upper soil layer, blurring the signal of centuries-old Human disturbances, or (iii) the prevalence of other environmental factors on species composition. PMID:25391134
Soil charcoal to assess the impacts of past human disturbances on tropical forests.
Vleminckx, Jason; Morin-Rivat, Julie; Biwolé, Achille B; Daïnou, Kasso; Gillet, Jean-François; Doucet, Jean-Louis; Drouet, Thomas; Hardy, Olivier J
2014-01-01
The canopy of many central African forests is dominated by light-demanding tree species that do not regenerate well under themselves. The prevalence of these species might result from ancient slash-and-burn agricultural activities that created large openings, while a decline of these activities since the colonial period could explain their deficit of regeneration. To verify this hypothesis, we compared soil charcoal abundance, used as a proxy for past slash-and-burn agriculture, and tree species composition assessed on 208 rainforest 0.2 ha plots located in three areas from Southern Cameroon. Species were classified in regeneration guilds (pioneer, non-pioneer light-demanding, shade-bearer) and characterized by their wood-specific gravity, assumed to reflect light requirement. We tested the correlation between soil charcoal abundance and: (i) the relative abundance of each guild, (ii) each species and family abundance and (iii) mean wood-specific gravity. Charcoal was found in 83% of the plots, indicating frequent past forest fires. Radiocarbon dating revealed two periods of fires: "recent" charcoal were on average 300 years old (up to 860 BP, n = 16) and occurred in the uppermost 20 cm soil layer, while "ancient" charcoal were on average 1900 years old (range: 1500 to 2800 BP, n = 43, excluding one sample dated 9400 BP), and found in all soil layers. While we expected a positive correlation between the relative abundance of light-demanding species and charcoal abundance in the upper soil layer, overall there was no evidence that the current heterogeneity in tree species composition can be explained by charcoal abundance in any soil layer. The absence of signal supporting our hypothesis might result from (i) a relatively uniform impact of past slash-and-burn activities, (ii) pedoturbation processes bringing ancient charcoal to the upper soil layer, blurring the signal of centuries-old Human disturbances, or (iii) the prevalence of other environmental factors on species composition.
Han, Ziming; Deng, Mingwen; Yuan, Anqi; Wang, Jiahui; Li, Hao; Ma, Jincai
2018-06-01
Soil freeze-thaw cycles (FTCs) change soil physical, chemical, and biological properties, however information regarding their vertical variations in response to FTCs is limited. In this work, black soil (silty loam) packed soil columns were exposed to 8 FTCs, and soil properties were determined for each of vertical layer of soil columns. The results revealed that after FTCs treatment, moisture and electrical conductivity (EC) salinity tended to increase in upper soil layers. Increments of ammonium nitrogen (NH 4 + -N) and nitrate nitrogen (NO 3 - -N) in top layers (0-10cm) were greater than those in other layers, and increments of water soluble organic carbon (WSOC) and decrease of microbial biomass carbon (MBC) in middle layers (10-20cm) were greater than those in both ends. Overall, microbial community structure was mainly influenced by soil physical properties (moisture and EC) and chemical properties (pH and WSOC). For bacterial (archaeal) and fungal communities, soil physical properties, chemical properties and their interaction explained 79.73% and 82.66% of total variation, respectively. Our results provided insights into the vertical variation of soil properties caused by FTCs, and such variation had a major impact on the change of structure and composition of soil bacterial and fungal communities. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Shan-Shan; Zhang, Xing-Hua; Gong, Yuan-Bo; Li, Yuan; Wang, Yan; Yin, Yan-Jie; Ma, Jin-Song; Guo, Ting
2014-02-01
Effects of grazing disturbance on the soil carbon contents and active components in the four vegetations, i.e., artificial Robinia pseudoacacia plantation, artificial poplar plantation, Berberis aggregate shrubland and grassland, were studied in the mountain forest-arid valley ecotone in the upper Minjiang River. Soil organic carbon and active component contents in 0-10 cm soil layer were greater than in 10-20 cm soil layer at each level of grazing disturbance. With increasing the grazing intensity, the total organic carbon (TOC), light fraction organic carbon (LFOC), particulate organic carbon (POC) and easily oxidized carbon (LOC) contents in 0-10 cm soil layer decreased gradually in the artificial R. pseudoacacia plantation. The LFOC content decreased, the POC content increased, and the TOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the artificial poplar plantation. The POC content decreased, and the TOC, LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the B. aggregate shrubland. The POC and TOC contents decreased, and the LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the grassland. The decreasing ranges of LOC, LFOC and POC contents were 0.1-7.9 times more than that of TOC content. There were significant positive relationships between TOC and LOC, LFOC and POC, suggesting that the active organic carbon components could reflect the change of soil total carbon content.
Distribution of global fallouts cesium-137 in taiga and tundra catenae at the Ob River basin
NASA Astrophysics Data System (ADS)
Semenkov, I. N.; Usacheva, A. A.; Miroshnikov, A. Yu.
2015-03-01
The classification of soil catenae at the Ob River basin is developed and applied. This classification reflects the diverse geochemical conditions that led to the formation of certain soil bodies, their combinations and the migration fields of chemical elements. The soil and geochemical diversity of the Ob River basin catenae was analyzed. The vertical and lateral distribution of global fallouts cesium-137 was studied using the example of the four most common catenae types in Western Siberia tundra and taiga. In landscapes of dwarf birches and dark coniferous forests on gleysols, cryosols, podzols, and cryic-stagnosols, the highest 137Cs activity density and specific activity are characteristic of the upper soil layer of over 30% ash, while the moss-grass-shrub cover is characterized by low 137Cs activity density and specific activity. In landscapes of dwarf birches and pine woods on podzols, the maximum specific activity of cesium-137 is typical for moss-grass-shrub cover, while the maximum reserves are concentrated in the upper soil layer of over 30% ash. Bog landscapes and moss-grass-shrub cover are characterized by a minimum activity of 137Cs, and its reserves in soil generally decrease exponentially with depth. The cesium-137 penetration depth increases in oligotrophic histosols from northern to middle taiga landscapes from 10-15 to 40 cm. 137Cs is accumulated in oligotrophic histosols for increases in pH from 3.3 to 4.0 and in concretionary interlayers of pisoplinthic-cryic-histic-stagnosols. Cryogenic movement, on the one hand, leads to burying organic layers enriched in 137Cs and, on the other hand, to deducing specific activity when mixed with low-active material from lower soil layers.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... worms live near the ground's surface and consume organic litter on and near the surface. Endogeic worms... upper layers of mineral soil, (2) consume organic material in the mineral soil or at the soil-litter... consisting of organic matter in varying stages of decomposition.'' He also states that deep burrow depths...
In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport
Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer
2011-01-01
Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...
Microbiological transformation of carbon and nitrogen compounds in forest soils of Central Evenkia
NASA Astrophysics Data System (ADS)
Sorokin, N. D.; Aleksandrov, D. E.; Grodnitskaya, I. D.; Evgrafova, S. Yu.
2017-04-01
It has been found that the total productivity of bacteria and micromycetes in the 0- to 50-cm layer of homogeneous cryozems (Cryosols) on slopes of northern and southern exposures varies from 1.2 to 1.4 t/ha, respectively, and the calculated content of microbial carbon varies in the range 0.7-0.9 t/ha. The respiratory activity of the upper soil layer is 2.5-2.6 μg C-CO2/(g h); the potential methane formation capacity reaches 0.13 nmol CH4/(m2 day) for soils on slopes of northern exposure and 0.16 nmol CH4/(m2 day) for slopes of southern exposure. Accumulation of sorbed ammonium is recorded in the range 15-17 mg NH4/100 g soil in summer. The increase of temperature in the upper horizons of soils on slopes of southern exposure by 5°C compared to the northern slopes results in only an insignificant increase in the emission of CO2 and CH4. The accumulation of sorbed ammonium and nitrate nitrogen in homogeneous cryozems during the vegetation period is comparable to that in gray forest soils of the southern taiga subzone of the Middle Siberia.
Phylogenetic changes in soil microbial and diazotrophic diversity with application of butachlor.
Yen, Jui-Hung; Wang, Yei-Shung; Hsu, Wey-Shin; Chen, Wen-Ching
2013-01-01
We investigated changes in population and taxonomic distribution of cultivable bacteria and diazotrophs with butachlor application in rice paddy soils. Population changes were measured by the traditional plate-count method, and taxonomic distribution was studied by 16S rDNA sequencing, then maximum parsimony phylogenic analysis with bootstrapping (1,000 replications). The bacterial population was higher after 39 than 7 days of rice cultivation, which indicated the augmentation of soil microbes by rice root exudates. The application of butachlor increased the diazotrophic population in both upper (0-3 cm) and lower (3-15 cm) layers of soils. Especially at day 39, the population of diazotrophs was 1.8 and 1.6 times that of the control in upper and lower layer soils, respectively. We found several bacterial strains only with butachlor application; examples are strains closest to Bacillus arsenicus, B. marisflavi, B. luciferensis, B. pumilus, and Pseudomonas alvei. Among diazotrophs, three strains closely related to Streptomyces sp. or Rhrizobium sp. were found only with butachlor application. The population of cultivable bacteria and the species composition were both changed with butachlor application, which explains in part the contribution of butachlor to augmenting soil nitrogen-fixing ability.
Sever, Hakan; Makineci, Ender
2009-08-01
Mining operations on open coal mines in Agacli-Istanbul have resulted in the destruction of vast amounts of land. To rehabilitate these degraded lands, plantations on this area began in 1988. Twelve tree species were planted, however, the most planted tree species was maritime pine (Pinus pinaster Aiton). This study performed on 14 sample plots randomly selected in maritime pine plantations on coal mine soil/spoils in 2005. Soil samples were taken from eight different soil layers (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40 and 40-50 cm) into the soil profile. On soil samples; fine soil fraction (<2 mm), soil acidity (pH), organic carbon (C(org)) and total nitrogen (N(t)) contents were investigated, and results were compared statistically among soil layers. As a result, 17 years after plantations, total forest floor accumulation determined as 17,973.20 kg ha(-1). Total nitrogen and organic matter amounts of forest floor were 113.90 and 14,640.92 kg ha(-1) respectively. Among soil layers, the highest levels of organic carbon (1.77%) and total nitrogen (0.096%) and the lowest pH value (pH 5.38) were found in 0-1 cm soil layer, and the variation differs significantly among soil layers. Both organic carbon and total nitrogen content decreased, pH values increased from 0-1 to 5-10 cm layer. In conclusion, according to results obtained maritime pine plantations on coal mine spoils; slow accumulation and decomposition of forest floor undergo simultaneously. Depending on these changes organic carbon and total nitrogen contents increased in upper layer of soil/spoil.
[Effects of simulated nitrogen deposition on organic matter leaching in forest soil].
Duan, Lei; ma, Xiao-Xiao; Yu, De-Xiang; Tan, Bing-Quan
2013-06-01
The impact of nitrogen deposition on the dynamics of carbon pool in forest soil was studied through a field experiment at Tieshanping, Chongqing in Southwest China. The changes of dissolved organic matter (DOM) concentration in soil water in different soil layers were monitored for five years after addition of ammonium nitrate (NH4NO3) or sodium nitrate (NaNO3) at the same dose as the current nitrogen deposition to the forest floor. The results indicated that the concentration and flux of dissolved organic carbon (DOC) were increased in the first two years and then decreased by fertilizing. Fertilizing also reduced the DOC/DON (dissolved organic nitrogen) ratio of soil water in the litter layer and the DOC concentration of soil water in the upper mineral layer, but had no significant effect on DOC flux in the lower soil layer. Although there was generally no effect of increasing nitrogen deposition on the forest carbon pool during the experimental period, the shift from C-rich to N-rich DOM might occur. In addition, the species of nitrogen deposition, i. e., NH4(+) and NO3(-), did not show difference in their effect on soil DOM with the same equivalence.
Felix, Jr. Ponder; Mahasin Tadros; Edward F. Loewenstein
2009-01-01
On some landscapes periodic fire may be necessary to develop and maintain oak-dominated savannas. We studied the effects of two annual prescribed burns to determine their effect on microbial activity and soil and litter nutrients 1 year after the last burn. Surface litter and soil from the upper 0?5 cm soil layer in three developing savannas (oak-hickory, ...
Soil Water Adsorption and Evaporation During the Dry Season in an Arid Zone
NASA Astrophysics Data System (ADS)
Agam, N.; Berliner, P. R.
2004-12-01
The purpose of this study was to describe the daily pattern of changes in water content in the upper soil layers of a bare loess soil in the Negev desert throughout the dry season and to assess the corresponding relative magnitude of latent heat flux density. The measurements were carried out in the Northern Negev, Israel, over a bare loess soil, during nine 24-h field campaigns throughout the dry season of 2002. In addition to a micrometeorological station that was set up in the research site, an improved micro-lysimeter was installed. During each campaign, the 100-mm topsoil was sampled hourly, and water content at ten mm increments was obtained. A clear discernible daily cycle of water content in the upper soil layers was observed due to direct adsorption of water vapor by the soil and consequent evaporation. Although the water content of the uppermost soil is significantly lower than the wilting point, for which most of the commonly used meteorological models would assume no latent heat flux, the latter was ˜20% of the net-radiation during the night and 10-15% during the day. It is, therefore, concluded that latent heat flux plays a major role in the dissipation of the net radiation during the dry season in the Negev desert.
Migration of trace elements from pyrite tailings in carbonate soils.
Dorronsoro, C; Martin, F; Ortiz, I; García, I; Simón, M; Fernández, E; Aguilar, J; Fernández, J
2002-01-01
In the carbonate soils contaminated by a toxic spill from a pyrite mine (Aznalcóllar, southern Spain), a study was made of a thin layer (thickness = 4 mm) of polluted soil located between the pyrite tailings and the underlying soil. This layer, reddish-yellow in color due to a high Fe content, formed when sulfates (from the oxidation of sulfides) infiltrated the soil, causing acidification (to pH 5.6 as opposed to 8.0 of unaffected soil) and pollution (in Zn, Cu, As, Pb, Co, Cd, Sb, Bi, Tl, and In). The less mobile elements (As, Bi, In, Pb, Sb, and Tl) concentrated in the uppermost part of the reddish-yellow layer, with concentration decreasing downward. The more mobile elements (Co, Cd, Zn, and Cu) tended to precipitate where the pH was basic, toward the bottom of the layer or in the upper part of the underlying soil. The greatest accumulations occurred within the first 6 mm in overall soil depth, and were negligible below 15 mm. In addition, the acidity of the solution from the tailings degraded the minerals of the clay fraction of the soils, both the phyllosilicates as well as the carbonates. Also, within the reddish-yellow layer, gypsum formed autigenically, together with complex salts of sulfates of Fe, Al, Zn, Ca, and Mn, jarosite, and oxihydroxides of Fe.
Guoxiao, Wei; Yibo, Wang; Yan Lin, Wang
2008-12-01
Characteristics of soil organic carbon (SOC) and total nitrogen (total N) are important for determining the overall quality of soils. Studies on spatial and temporal variation in SOC and total N are of great importance because of global environmental concerns. Soil erosion is one of the major processes affecting the redistribution of SOC and total N in the test fields. To characterize the distribution and dynamics of SOC and N in the intensively eroded soil of the headwaters of the Yangtze River, China, we measured profiles of soil organic C, total N stocks, and (137)Cs in a control plot and a treatment plot. The amounts of SOC, (137)Cs of sampling soil profiles increased in the following order, lower>middle>upper portions on the control plot, and the amounts of total N of sampling soil profile increase in the following order: upper>middle>lower on the control plot. Intensive soil erosion resulted in a significant decrease of SOC amounts by 34.9%, 28.3% and 52.6% for 0-30cm soil layer at upper, middle and lower portions and (137)Cs inventory decreased by 68%, 11% and 85% at upper, middle and lower portions, respectively. On the treatment plot total N decreased by 50.2% and 14.6% at the upper and middle portions and increased by 48.9% at the lower portion. Coefficients of variation (CVs) of SOC decreased by 31%, 37% and 30% in the upper, middle and lower slope portions, respectively. Similar to the variational trend of SOC, CVs of (137)Cs decreased by 19.2%, 0.5% and 36.5%; and total N decreased by 45.7%, 65.1% and 19% in the upper, middle and lower slope portions, respectively. The results showed that (137)Cs, SOC and total N moved on the sloping land almost in the same physical mechanism during the soil erosion procedure, indicating that fallout of (137)Cs could be used directly for quantifying dynamic SOC and total N redistribution as the soil was affected by intensive soil erosion.
NASA Technical Reports Server (NTRS)
Liang, XU; Lettenmaier, Dennis P.; Wood, Eric F.; Burges, Stephen J.
1994-01-01
A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.
[On the effect of partial flooding on 137Cs and 90Sr in forest biogeocenosis].
Perevolotskaia, T V; Bulavik, I M; Perevolotskiĭ, A N
2009-01-01
The analysis was made on 137Cs and 90Sr distribution oak, pine and hornbeam plantations depending on different under soil water levels. Intensity of 137Cs and of 90Sr migration along the vertical layers of soils is determined by under soil water level at a specific sampling site. The closer under soil water to the surface of the soil, the lowest radionuclide contamination is in the upper soil levels and the highest radionuclide contamination is in the deeper layers. The "fast" and "slow" quasi diffusion coefficients for 137Cs and for 90Sr and their contribution to the total migration of radionuclide through vertical soil levels were determined. A decrease in 137Cs and increase in 90Sr transfer factors to the elements of overground phytomass as a result of under soil water level lowering was established.
NASA Astrophysics Data System (ADS)
Wang, S.; Zhan, H.; Chen, X.; Hu, Y.
2017-12-01
There were a great many projects of reconstruction soil profile filled with gangue to restore ecological environment and land resources in coal mining areas. A simulation experimental system in laboratory was designed for studying water transport and gas-heat diffusion of the reconstruction soil as to help the process of engineering and soil-ripening technology application. The system could be used for constantly measuring soil content, temperature and soil CO2 concentration by laid sensors and detectors in different depth of soil column. The results showed that soil water infiltration process was slowed down and the water-holding capacity of the upper soil was increased because of good water resistance from coal gangue layer. However, the water content of coal gangue layer, 10% approximately, was significantly lower than that of topsoil for the poor water-holding capacity of gangue. The temperature of coal gangue layer was also greater than that of soil layer and became easily sustainable temperature gradient under the condition with heating in reconstruction soil due to the higher thermal diffusivity from gangue, especially being plenty of temperature difference between gangue and soil layers. The effects of heated from below on topsoil was small, which it was mainly influenced from indoor temperature in the short run. In addition, the temperature changing curve of topsoil is similar with the temperature of laboratory and its biggest fluctuation range was for 2.89°. The effects of aerating CO2 from column bottom on CO2 concentration of topsoil soil was also very small, because gas transport from coal gangue layers to soil ones would easily be cut off as so to gas accumulated below the soil layer. The coal gangue could have a negative impact on microbial living environment to adjacent topsoil layers and declined microorganism activities. The effects of coal gangue on topsoil layer were brought down when the cove soil thickness was at 60 cm. And the influences gradually would be weakened with the thickness increasing.
NASA Astrophysics Data System (ADS)
Suo, Lizhu; Huang, Mingbin; Zhang, Yongkun; Duan, Liangxia; Shan, Yan
2018-07-01
Soil moisture dynamics plays an active role in ecological and hydrological processes, and it depends on a large number of environmental factors, such as topographic attributes, soil properties, land use types, and precipitation. However, studies must still clarify the relative significance of these environmental factors at different soil depths and at different spatial scales. This study aimed: (1) to characterize temporal and spatial variations in soil moisture content (SMC) at four soil layers (0-40, 40-100, 100-200, and 200-500 cm) and three spatial scales (plot, hillslope, and region); and (2) to determine their dominant controls in diverse soil layers at different spatial scales over semiarid and semi-humid areas of the Loess Plateau, China. Given the high co-dependence of environmental factors, partial least squares regression (PLSR) was used to detect relative significance among 15 selected environmental factors that affect SMC. Temporal variation in SMC decreased with increasing soil depth, and vertical changes in the 0-500 cm soil profile were divided into a fast-changing layer (0-40 cm), an active layer (40-100 cm), a sub-active layer (100-200 cm), and a relatively stable layer (200-500 cm). PLSR models simulated SMC accurately in diverse soil layers at different scales; almost all values for variation in response (R2) and goodness of prediction (Q2) were >0.5 and >0.0975, respectively. Upper and lower layer SMCs were the two most important factors that influenced diverse soil layers at three scales, and these SMC variables exhibited the highest importance in projection (VIP) values. The 7-day antecedent precipitation and 7-day antecedent potential evapotranspiration contributed significantly to SMC only at the 0-40 cm soil layer. VIP of soil properties, especially sand and silt content, which influenced SMC strongly, increased significantly after increasing the measured scale. Mean annual precipitation and potential evapotranspiration also influenced SMC at the regional scale significantly. Overall, this study indicated that dominant controls of SMC varied among three spatial scales on the Loess Plateau, and VIP was a function of spatial scale and soil depth.
2013-12-31
absorbing efficiency for photosynthet- ically active and near-infrared radiation is prescribed. In addition, soil moisture and temperature profiles and...their scattering/absorbing efficiency for photosynthetically active and near-infrared radiation is prescribed. In addition, soil moisture and...vertical mixing driven by the contrast between the relatively warm soil and the leaf -induced cool air in the upper canopy. Essentially, the plume mimics
Recent studies highlight the important role that the upper litter layer in forest soils (biomat) plays in hillslope and catchment runoff generation. This biomat layer is a very loose material with high porosity and organic content. Direct sampling is usually problematic due to li...
Time series study of concentrations of SO4(2-) and H+ in precipitation and soil waters in Norway.
Kvaalen, H; Solberg, S; Clarke, N; Torp, T; Aamlid, D
2002-01-01
Along with a steady reduction of acid inputs during 14 years of intensive forest monitoring in Norway, the influence of acid deposition upon soil water acidity is gradually reduced in favour of other and internal sources of H+ and sulphate, in particular from processes in the upper soil layer. We used statistical analyses in two steps for precipitation, throughfall and soil water at 5, 15 and 40 cm depths. Firstly, we employed time series analyses to model the temporal variation as a long-term linear trend and a monthly variation, and by this filtered out residual, weekly variation. Secondly, we used the parameter estimates and the residuals from this to show that the long term, the monthly and the weekly variation in one layer were correlated to similar temporal variation in the above, adjacent layer. This was strongly evident for throughfall correlated to precipitation, but much weaker for soil water. Continued acidification in soil water on many plots suggests that the combined effects of anthropogenic and natural acid inputs exceed in places the buffering capacity of the soil.
Herbicide and nitrate variation in alluvium underlying a cornfield at a site in Iowa County, Iowa
Kalkhoff, S.J.; Detroy, M.G.; Cherryholmes, K.; Kuzniar, R.L.
1992-01-01
A hydrologic investigation to determine vertical and seasonal variation of atrazine, alachlor, cyanazine, and nitrate at one location and to relate the variation to ground-water movement in the Iowa River alluvium was conducted in Iowa County, Iowa, from March 1986 to December 1987. Water samples were collected at discrete intervals through the alluvial sequence from the soil zone to the base of the aquifer. Alachlor, atrazine, and cyanazine were detected most frequently in the soil zone but also were present in the upper part of the alluvial aquifer. Alachlor was detected sporadically, whereas, atrazine, cyanazine, and nitrate were present throughout the year. In the alluvial aquifer, the herbicides generally were not detected during 1986 and were present in detectable concentrations for only a short period of time in the upper 1.6 meters of the aquifer during 1987. Nitrate was present throughout the alluvium and was stratified in the alluvial aquifer. The largest nitrate concentrations were detected in the middle part of the aquifer. Nitrate concentrations were variable only in the upper 2 meters of the aquifer. Vertical movement of herbicides and nitrate in the soil correlated with precipitation and degree of saturation. A clay layer retarded vertical movement of atrazine but not nitrate from the soil layer to the aquifer. Vertical movement could not account for the chemical variation in the alluvial aquifer.
1982-09-01
Engineering News-Record 1977). The concept is that of a composite soil-membrane system with tensile and flexural strengths greater than soil alone can...uniformity 2 Mean diameter 0.5 mm Sandbags 31. Sandbags used in this project were 14 x 26 in. in size and were made of jute or kenaf burlap...support 4. Converted airfield index penetrometer readings for the upper 6 in. of foundation soil indicated similar relative strengths at the base of
Wang, Shuang; Ni, Hong-Gang; Sun, Jian-Lin; Jing, Xin; He, Jin-Sheng; Zeng, Hui
2013-03-01
Thirty four sampling sites along an elevation transect in the Tibetan Plateau region were chosen. Soil cores were divided into several layers and a total of 175 horizon soil samples were collected from July to September 2011, for determination of polycyclic aromatic hydrocarbons (PAHs). The measured PAHs concentration in surface soils was 56.26 ± 45.84 ng g(-1), and the low molecular weight PAHs (2-3 rings) predominated, accounting for 48% and 35%. We analyzed the spatial (altitudinal and vertical) distribution of PAHs in soil, and explored the influence of related environmental factors. Total organic carbon (TOC) showed a controlling influence on the distribution of PAHs. PAH concentrations declined with soil depth, and the composition patterns of PAHs along soil depth indicated that the heavy PAHs tended to remain in the upper layers (0-10 cm), while the light fractions were transported downward more easily. PAHs inventories (8.77-57.92 mg m(-2)) for soil cores increased with mean annual precipitation, while the topsoil concentrations decreased with it. This implies that an increase in precipitation could transfer more PAHs from the atmosphere to the soil and further transport PAHs from the topsoil to deeper layers.
Siles, José A; Öhlinger, Birgit; Cajthaml, Tomas; Kistler, Erich; Margesin, Rosa
2018-01-30
Microbial communities in human-impacted soils of ancient settlements have been proposed to be used as ecofacts (bioindicators) of different ancient anthropogenic activities. In this study, bacterial, archaeal and fungal communities inhabiting soil of three archaic layers, excavated at the archaeological site on Monte Iato (Sicily, Italy) and believed to have been created in a chronological order in archaic times in the context of periodic cultic feasts, were investigated in terms of (i) abundance (phospholipid fatty acid (PLFA) analysis and quantitative PCR)), (ii) carbon(C)-source consumption patterns (Biolog-Ecoplates) and (iii) diversity and community composition (Illumina amplicon sequencing). PLFA analyses demonstrated the existence of living bacteria and fungi in the soil samples of all three layers. The upper layer showed increased levels of organic C, which were not concomitant with an increment in the microbial abundance. In taxonomic terms, the results indicated that bacterial, archaeal and fungal communities were highly diverse, although differences in richness or diversity among the three layers were not detected for any of the communities. However, significantly different microbial C-source utilization patterns and structures of bacterial, archaeal and fungal communities in the three layers confirmed that changing features of soil microbial communities reflect different past human activities.
Quesada, Carlos Alberto; Hodnett, Martin G; Breyer, Lacê M; Santos, Alexandre J B; Andrade, Sérgio; Miranda, Heloisa S; Miranda, Antonio Carlos; Lloyd, Jon
2008-03-01
Changes in soil water content were determined in two cerrado (sensu stricto) areas with contrasting fire history and woody vegetation density. The study was undertaken near Brasília, Brazil, from 1999 to 2001. Soil water content was measured with a neutron probe in three access tubes per site to a depth of 4.7 m. One site has been protected from fire for more than 30 years and, as a consequence, has a high density of woody plants. The other site had been frequently burned, and has a high herbaceous vegetation density and less woody vegetation. Soil water uptake patterns were strongly seasonal, and despite similarities in hydrological processes, the protected area systematically used more water than the burned area. Three temporarily contiguous patterns of water absorption were differentiated, characterized by variation in the soil depth from which water was extracted. In the early dry season, vegetation used water from throughout the soil profile but with a slight preference for water in the upper soil layers. Toward the peak of the dry season, vegetation had used most or all available water from the surface to a depth of 1.7 m, but continued to extract water from greater depths. Following the first rains, all water used was from the recently wetted upper soil layers only. Evaporation rates were a linear function of soil water availability, indicating a strong coupling of atmospheric water demand and the physiological response of the vegetation.
NASA Astrophysics Data System (ADS)
Burns, Nancy; Cloy, Joanna; Garnett, Mark; Reay, David; Smith, Keith; Otten, Wilfred
2010-05-01
The effect of temperature on rates of soil respiration is critical to our understanding of the terrestrial carbon cycle and potential feedbacks to climate change. The relative temperature sensitivity of labile and recalcitrant soil organic matter (SOM) is still controversial; different studies have produced contrasting results, indicating limited understanding of the underlying relationships between stabilisation processes and temperature. Current global carbon cycle models still rely on the assumption that SOM pools with different decay rates have the same temperature response, yet small differences in temperature response between pools could lead to very different climate feedbacks. This study examined the temperature response of soil respiration and the age of soil carbon respired from radiocarbon dated fractions of SOM (free, intra-aggregate and mineral-bound) and whole soils (organic and mineral layers). Samples were collected from a peaty gley soil from Harwood Forest, Northumberland, UK. SOM fractions were isolated from organic layer (5 - 17 cm) material using high density flotation and ultrasonic disaggregation - designated as free (< 1.8 g cm-3), intra-aggregate (< 1.8 g cm-3 within aggregates > 1.8 g cm-3) and mineral-bound (> 1.8 g cm-3) SOM. Fractions were analysed for chemical composition (FTIR, CHN analysis, ICP-OES), 14C (AMS), δ13C and δ15N (MS) and thermal properties (DSC). SOM fractions and bulk soil from the organic layer and the mineral layer (20 - 30 cm) were incubated in sealed vessels at 30 ° C and 10 ° C for 3 or 9 months to allow accumulation of CO2 sufficient for sampling. Accumulated respired CO2 samples were collected on zeolite molecular sieve cartridges and used for AMS radiocarbon dating. In parallel, material from the same fractions and layers were incubated at 10 ° C, 15 ° C, 25 ° C and 30 ° C for 6 months and sampled weekly for CO2 flux measurements using GC chromatography. Initial data have shown radiocarbon ages ranging from modern to 219 y BP in bulk soil from the organic layer (5 - 17 cm depth), while free OM ranged from modern to 74 y BP, intra-aggregate OM 413 - 657 y BP and mineral-bound material 562 - 646 y BP. Bulk soil from the mineral layer (20 - 30 cm) was considerably older, at 2142 - 2216 y BP. These results indicate that within the upper layer of soil, mineral-bound OM represents a slow-cycling or recalcitrant pool of SOM; intra-aggregate OM is slightly less recalcitrant than mineral-bound OM, while free OM represents a fast-cycling, labile pool of SOM. Bulk soil from the mineral layer (20 - 30 cm) is much older than mineral-bound OM in the upper layers, suggesting the involvement of other stabilising factors associated with depth besides mineral interactions. The link between age and recalcitrance is corroborated by measured CO2 flux rates, which increase with decreasing age of fractions. Results for the 14C contents and calculated ages of isolated SOM fractions, bulk organic and mineral soils and their respired CO2 at different temperatures will be discussed and compared with long term trends in soil/SOM fraction CO2 fluxes and their temperature sensitivity. Data on soil chemical characteristics and δ13C values will also be presented.
Chatzistathis, T; Papaioannou, A; Gasparatos, D; Molassiotis, A
2017-12-01
Organic farming has been proposed as an alternative agricultural system to help solve environmental problems, like the sustainable management of soil micronutrients, without inputs of chemical fertilizers. The purposes of this study were: i) to assess Fe, Mn, Zn and Cu bioavailability through the determination of sequentially extracted chemical forms (fractions) and their correlation with foliar micronutrient concentrations in mature organic olive (cv. 'Chondrolia Chalkidikis') groves; ii) to determine the soil depth and the available forms (fractions) by which the 4 metals are taken up by olive trees. DTPA extractable (from the soil layers 0-20, 20-40 and 40-60 cm) and foliar micronutrient concentrations were determined in two organic olive groves. Using the Tessier fractionation, five fractions, for all the metals, were found: exchangeable, bound to carbonates (acid-soluble), bound to Fe-Mn oxides (reducible), organic (oxidizable), as well as residual form. Our results indicated that Fe was taken up by the olive trees as organic complex, mainly from the soil layer 40-60 cm. Manganese was taken up from the exchangeable fraction (0-20 cm); Zinc was taken up as organic complex from the layers 0-20 and 40-60 cm, as well as in the exchangeable form from the upper 20 cm. Copper was taken up from the soil layers 0-20 and 40-60 cm as soluble organic complex, and as exchangeable ion from the upper 20 cm. Our data reveal the crucial role of organic matter to sustain metal (Fe, Zn and Cu) uptake -as soluble complexes-by olive trees, in mature organic groves grown on calcareous soils; it is also expected that these data will constitute a thorough insight and useful tool towards a successful nutrient and organic C management for organic olive groves, since no serious nutritional deficiencies were found. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Effects of mulching management on biomass of Phyllostachys praecox and soil fertility].
Zhai, Wan Lu; Yang, Chuan Bao; Zhang, Xiao Ping; Gao, Gui Bin; Zhong, Zhe Ke
2018-04-01
We analyzed the dynamics of stand growth and soil nutrient availability during the degradation processes of Phyllostachys praecox plantation, taking the advantage of bamboo forest stands with different mulching ages (0, 3, 6, 9 and 12 a). The results showed the aboveground and belowground biomass of bamboo forest reached the maximum value when they were covered by three years, which was significantly increased by 14.6% and 146.6% compared with the control. The soil nutrient content was affected by the mulching age and soil layer. Soil nutrients gradually accumulated in upper layer. Soil organic carbon and total nitrogen content were increased with the increases of coverage years. The soil total phosphorus content at different soil layers showed a trend of decreasing first and then increasing. It was the lowest level in the surface layer (0-20 cm) and the bottom (40-60 cm) in 6 years, and the subsurface (20-40 cm) soil reached the lowest level in three years. The total potassium content kept increasing in 0-20 cm soil layer, but decreased during the first three years of mulching and then increased in 20-60 cm soil layer. The comprehensive index of soil fertility quality was greatly improved after nine years mulching, with fertility of subsurface soil being better than that of surface and bottom soils. There was no relationship between the soil fertility index and biomass of different organs in bamboo in the different mulching ages. In the subsurface, however, nitrogen content was negatively related to leaf biomass and potassium was negatively correlated with the biomass of leaves and whip roots. Our results indicated that excessive accumulation of soil nutrients seriously inhibited the propagation and biomass accumulation of P. praecox after long-term mulching management and a large amount of fertilizer, which further aggravated the degradation of bamboo plantation.
NASA Astrophysics Data System (ADS)
Darnault, C. J. G.; Daniel, T. J.; Billy, G.; Hopkins, I.; Guo, L.; Jin, Z.; Gall, H. E.; Lin, H.
2017-12-01
The permeability of the upper meter of soils in frozen conditions, commonly referred to as the active layer, can vary exponentially given the time of year. Variable moisture contents along with temperature, radiation, and slope angle of the soil surface can result in variable depths of frozen soils, which can cause the formation of low permeability ice lenses well into the spring thaw period. The wastewater irrigation site known as the "Living Filter" located in State College, PA has been in continuous operation since 1962. On average 5500 m3/day of wastewater is applied to the site annually, even in the winter months when average temperatures can dip as low as -7 °C during the month of January. The Living Filter is not permitted to discharge to surface water and is intended to recharge the Spring Creek basin that directly underlies the site, therefore runoff from the site is not permitted. We hypothesize that water infiltrates the upper meter of the subsurface during the winter in several different ways such as preferential pathways in the ice layer created by plant stems and weak patches of ice thawed by the warm wastewater. 2D conceptual models of the phase change between ice and water in the soil were created in order to predict soil permeability and its change in temperature. The 2D conceptual models can be correlated between observed soil moisture content and soil temperature data in order to validate the model given spray irrigation and weather patterns. By determining the permeability of the frozen soils, irrigation practices can be adjusted for the winter months so as to reduce the risk of any accidental wastewater runoff. The impact of this study will result in a better understanding of the multiphase dynamics of the active layer and their implication on soil hydrology at the Living Filter and other seasonally frozen sites.
Compost quality and its function as a soil conditioner of recultivation layers - a critical review
NASA Astrophysics Data System (ADS)
Beck-Broichsitter, Steffen; Fleige, Heiner; Horn, Rainer
2018-01-01
During a period of 4 years, soil chemical and physical properties of the temporary capping system in Rastorf (Northern Germany) were estimated, whereby compost was partly used as soil improver in the upper recultivation layer. The air capacity and the available water capacity of soil samples were first determined in 2013 (without compost), and then in 2015 (with compost) under laboratory conditions. Herein, the addition of compost had a positive effect on: the air capacity up to 13.4 cm3 cm-3; and the available water capacity up to 20.1 cm3 cm-3 in 2015, in the recultivation layer (0-20 cm). However, taking into account the in situ results of the tensiometer and frequency domain reflectometry measurements, the addition of compost had a negative effect. The soil-compost mixture led to restricted remoistening even after a normal summer drying period in autumn and induced more negative matric potentials in the recultivation layer. In summary, the soil-improving effect of the compost addition, in conjunction with an increased water storage capacity, is undeniable and was demonstrated in a combined field and laboratory study. Therefore, intensive hydrophobicity can inhibit the homogeneous remoistening of the soil, resulting in a decreased hydraulic effectiveness of the sealing system.
Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?
NASA Astrophysics Data System (ADS)
Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea
2017-04-01
In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (<20 cm depth); after the soil reached water potentials below -100 kPa, root water uptake moved to deeper soil layers (<40 cm). Because of the higher wind and solar radiation exposure the reference soil profile was severely dried out. Also in the crop strips of the agroforestry system, crops took up water in the upper soil. However, the lower soil layers remained wet for an extended period of time. The tree strips reduced the wind speed, hence lowering evapotranspiration in the crop strip. The plot was not aligned directly to North and we observed steeper soil water potential gradients in the part of the crop strip more exposed to sunlight. The two tree species behaved differently. The poplar strips showed more marked diurnal changes in soil water potential, with fast drying during daytime and rewetting during nighttime. We suppose that the rewetting during nighttime was caused by hydraulic lift, which supports passively the drier upper soil with water from the wetter, lower soil layers. This experimental study shows the importance of above- and belowground tree-crop interactions and demonstrate the positive effect of tree strips in reducing drought stress in crops.
NASA Astrophysics Data System (ADS)
Wang, Qingfeng; Yang, Qianqian; Guo, Hong; Xiao, Xiongxin; Jin, Huijun; Li, Lili; Zhang, Tingjun; Wu, Qingbai
2018-06-01
Soil hydrothermal dynamics, resulting from the freezing and thawing processes in the active layer and their influencing factors, were studied in the upper Heihe River Basin (UHRB) in the Qilian Mountains, northeastern Tibetan Plateau. Soil temperature and water content measurements were taken in the active layer of the UHRB in alpine grassland from 2013 to 2014. The results showed that the thaw rate of the active layer was significantly smaller in alpine paludal meadows than the thaw rate in alpine meadows and alpine steppes. This was mainly related to the hydrothermal properties of soils in the active layer, such as moisture content, thermal conductivity, and specific heat. During the thawing process, the active layer soil water content was higher and fluctuated less in alpine paludal meadows. Conversely, the soil water content was lower and fluctuated more significantly in alpine meadows and alpine steppes. These findings could be explained by the prevalence of peat soils, with a low bulk density, and high clay and organic matter content. By contrast, the soil particles in the active layer of alpine meadows and alpine steppes were significantly coarser, with higher bulk density and lower organic matter content. During the freezing process, gravel content and soil texture had a great impact on the unfrozen water content in the frozen soils. However, the factors influencing the soil water retention in frozen soils are complex, and further study is needed. These results provide theoretical support for the evaluation of the hydrological characteristics of the alpine permafrost zone in the Qilian Mountains. Furthermore, the effect of frozen ground on hydrological changes due to climate change in the Heihe River Basin can be simulated and predicted, providing a scientific basis for the ecological conservation of the Qilian Mountains National Park.
NASA Astrophysics Data System (ADS)
Telesnina, V. M.; Vaganov, I. E.; Karlsen, A. A.; Ivanova, A. E.; Zhukov, M. A.; Lebedev, S. M.
2016-01-01
The properties of loamy sandy postagrogenic soils in the course of their natural overgrowing were studied in the southeastern part of Kostroma oblast. Micromorphological indications of tillage were preserved in these soils at least 35-40 years after the cessation of their agricultural use. In the course of the soil overgrowing with forest vegetation, the bulk density of the upper part of the former plow horizon decreased, the pH and the ash content of the litter horizon somewhat lowered with a simultaneous increase in the acidity of the upper mineral horizon, especially at the beginning of the formation of the tree stand. In 5-7 years after the cessation of tillage, the former plow horizon was differentiated with respect to the organic carbon content. The total pool of organic carbon in the upper 30 cm increased. In the course of the further development, in the postagrogenic soil under the 90to 100-year-old forest, the organic carbon pool in this layer became lower. The soil of the young fallow (5-7 years) was characterized by the higher values of the microbial biomass in the upper mineral horizon in comparison with that in the plowed soil. In general, the microbial biomass in the studied postagrogenic ecosystems (the soils of the fields abandoned in 2005 and 2000 and the soil under the secondary 40-year-old forest) was lower than that in the soil of the subclimax 90to 100-year-old forest. The enzymatic activity of the soils tends to increase during the succession. The restoration of the invertase and, partly, catalase activities to the values typical of the soils under mature forests takes place in about 40 years.
Numerical results on the contribution of an earthworm hole to infiltration
NASA Astrophysics Data System (ADS)
Pezzotti, Dario; Barontini, Stefano; Casali, Federico; Comincini, Mattia; Peli, Marco; Ranzi, Roberto; Rizzo, Gabriele; Tomirotti, Massimo; Vitale, Paolo
2017-04-01
On 9 March 2016 the WormEx I experiment was launched at the experimental site of Cividate Camuno (274ma.s.l., Oglio river basin, Central Italian Alps), aiming at contributing to understand how the soil-fauna digging activity affects soil-water flow. Particularly the experiment investigates the effects of earthworms holes on the soil-water constitutive laws, in the uppermost layers of a shallow anthropized soil. In this framework a set of simulations of the water flow in presence of an earthworm hole was preliminarily performed. The FV-FD numerical code AdHydra was used to solve the Richards equation in an axis-symmetric 2D domain around a vertical earthworm hole. The hole was represented both as a void cylinder and as a virtual porous domain with typical constitutive laws of a Δ-soil. The hypothesis of Poiseuille flow and the Jourin-Borelli law applied to determine its conductivity and soil-water retention relationship. Different scenarios of hole depth and infiltration rate were explored. As a result a meaningful change in the downflow condition was observed when burrows intersect a layered soil, both in saturated and partially unsaturated soils, in case a perched water table onsets at the interface between an upper and more conductive soil layer and a lower and less conductive one. These results may contribute to a better understanding of the streamflow generation processes and soil-water movement in shallow layered soils.
Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun
2014-01-01
The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.
Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun
2014-01-01
The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils. PMID:24794099
Hydraulic lift in a neotropical savanna: experimental manipulation and model simulations
Fabian G. Scholz; Sandra J. Bucci; William A. Hoffmann; Frederick C. Meinzer; Guillermo Goldstein
2010-01-01
The objective of this study was to assess the magnitude of hydraulic lift in Brazilian savannas (Cerrado) and to test the hypothesis that hydraulic lift by herbaceous plants contributes substantially to slowing the decline of water potential and water storage in the upper soil layers during the dry season. To this effect, field observations of soil water content and...
Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems.
Mahía, Jorge; Martín, Angela; Carballas, Tarsy; Díaz-Raviña, Montserrat
2007-05-25
The content of atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) as well as the activities of two soil enzymes (urease and beta-glucosidase) were evaluated in an acid agricultural soil, located in a temperate humid zone (Galicia, NW Spain), with an annual ryegrass-maize rotation under conventional tillage (CT) and no tillage (NT). Samples were collected during two consecutive years from the arable layer at two depths (0-5 cm and 5-20 cm) and different times after atrazine application. Hydroxyatrazine and deisopropylatrazine were the main metabolites resulting from atrazine degradation in the acid soil studied, the highest levels being detected in the surface layer of the NT treatment. A residual effect of atrazine was observed since hydroxyatrazine was detected in the arable layer (0-5 cm, 5-20 cm) even one year after the herbicide application. Soil enzyme activities in the upper 5 cm layer under NT were consistently higher than those in the same layer under CT. Urease and beta-glucosidase activities decreased with depth in the profile under NT but they did not show any differences between the two depths for the plots under CT. For both tillage systems enzyme activities also reflected temporal changes during the maize cultivation; however, no consistent effect of the herbicide application was observed.
Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA.
Juillerat, Juliette I; Ross, Donald S; Bank, Michael S
2012-08-01
Mercury (Hg) is an atmospheric pollutant that, in forest ecosystems, accumulates in foliage and upper soil horizons. The authors measured soil and litterfall Hg at 15 forest sites (northern hardwood to mixed hardwood/conifer) throughout Vermont, USA, to examine variation among tree species, forest type, and soils. Differences were found among the 12 tree species sampled from at least two sites, with Acer pensylvanicum having significantly greater litterfall total Hg concentration. Senescent leaves had greater Hg concentrations if they originated lower in the canopy or had higher surface:weight ratios. Annual litterfall Hg flux had a wide range, 12.6 to 28.5 µg/m(2) (mean, 17.9 µg/m(2) ), not related to forest type. Soil and Hg pools in the Oi horizon (litter layer) were not related to the measured Hg deposition flux in litterfall or to total modeled Hg deposition. Despite having lower Hg concentrations, upper mineral soil (A horizons) had greater Hg pools than organic soil horizons (forest floor) due to greater bulk density. Significant differences were found in Hg concentration and Hg/C ratio among soil horizons but not among forest types. Overall, our findings highlight the importance of site history and the benefits of collecting litterfall and soils simultaneously. Observed differences in forest floor Hg pools were strongly correlated with carbon pools, which appeared to be a function of historic land-use patterns. Copyright © 2012 SETAC.
Biavati, G.; Godt, J.W.; McKenna, J.P.
2006-01-01
Shallow landslides on steep (>25??) hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope-parallel flow conditions, pressure head is significantly reduced near the drain; however, for transient, vertical infiltration in a partially saturated soil, conditions consistent with those observed during monitoring at the Edmonds site, the drain decreases the thickness of a perched water table by a small amount.
Green, Timothy R.; Freyberg, David L.
1995-01-01
Anisotropy in large-scale unsaturated hydraulic conductivity of layered soils changes with the moisture state. Here, state-dependent anisotropy is computed under conditions of large-scale gravity drainage. Soils represented by Gardner's exponential function are perfectly stratified, periodic, and inclined. Analytical integration of Darcy’s law across each layer results in a system of nonlinear equations that is solved iteratively for capillary suction at layer interfaces and for the Darcy flux normal to layering. Computed fluxes and suction profiles are used to determine both upscaled hydraulic conductivity in the principal directions and the corresponding “state-dependent” anisotropy ratio as functions of the mean suction. Three groups of layered soils are analyzed and compared with independent predictions from the stochastic results of Yeh et al. (1985b). The small-perturbation approach predicts appropriate behaviors for anisotropy under nonarid conditions. However, the stochastic results are limited to moderate values of mean suction; this limitation is linked to a Taylor series approximation in terms of a group of statistical and geometric parameters. Two alternative forms of the Taylor series provide upper and lower bounds for the state-dependent anisotropy of relatively dry soils.
Assimilation of SMOS Retrievals in the Land Information System
NASA Technical Reports Server (NTRS)
Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.; Crosson, William L.
2016-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite provides retrievals of soil moisture in the upper 5 cm with a 30-50 km resolution and a mission accuracy requirement of 0.04 cm(sub 3 cm(sub -3). These observations can be used to improve land surface model soil moisture states through data assimilation. In this paper, SMOS soil moisture retrievals are assimilated into the Noah land surface model via an Ensemble Kalman Filter within the NASA Land Information System. Bias correction is implemented using Cumulative Distribution Function (CDF) matching, with points aggregated by either land cover or soil type to reduce sampling error in generating the CDFs. An experiment was run for the warm season of 2011 to test SMOS data assimilation and to compare assimilation methods. Verification of soil moisture analyses in the 0-10 cm upper layer and root zone (0-1 m) was conducted using in situ measurements from several observing networks in the central and southeastern United States. This experiment showed that SMOS data assimilation significantly increased the anomaly correlation of Noah soil moisture with station measurements from 0.45 to 0.57 in the 0-10 cm layer. Time series at specific stations demonstrate the ability of SMOS DA to increase the dynamic range of soil moisture in a manner consistent with station measurements. Among the bias correction methods, the correction based on soil type performed best at bias reduction but also reduced correlations. The vegetation-based correction did not produce any significant differences compared to using a simple uniform correction curve.
Assimilation of SMOS Retrievals in the Land Information System
Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.; Crosson, William L.
2018-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite provides retrievals of soil moisture in the upper 5 cm with a 30-50 km resolution and a mission accuracy requirement of 0.04 cm3 cm−3. These observations can be used to improve land surface model soil moisture states through data assimilation. In this paper, SMOS soil moisture retrievals are assimilated into the Noah land surface model via an Ensemble Kalman Filter within the NASA Land Information System. Bias correction is implemented using Cumulative Distribution Function (CDF) matching, with points aggregated by either land cover or soil type to reduce sampling error in generating the CDFs. An experiment was run for the warm season of 2011 to test SMOS data assimilation and to compare assimilation methods. Verification of soil moisture analyses in the 0-10 cm upper layer and root zone (0-1 m) was conducted using in situ measurements from several observing networks in the central and southeastern United States. This experiment showed that SMOS data assimilation significantly increased the anomaly correlation of Noah soil moisture with station measurements from 0.45 to 0.57 in the 0-10 cm layer. Time series at specific stations demonstrate the ability of SMOS DA to increase the dynamic range of soil moisture in a manner consistent with station measurements. Among the bias correction methods, the correction based on soil type performed best at bias reduction but also reduced correlations. The vegetation-based correction did not produce any significant differences compared to using a simple uniform correction curve. PMID:29367795
Global soil-climate-biome diagram: linking soil properties to climate and biota
NASA Astrophysics Data System (ADS)
Zhao, X.; Yang, Y.; Fang, J.
2017-12-01
As a critical component of the Earth system, soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. Despite significant progress in digital soil mapping techniques and the rapidly growing quantity of observed soil information, quantitative linkages between soil properties, climate and biota at the global scale remain unclear. By compiling a large global soil database, we mapped seven major soil properties (bulk density [BD]; sand, silt and clay fractions; soil pH; soil organic carbon [SOC] density [SOCD]; and soil total nitrogen [STN] density [STND]) based on machine learning algorithms (regional random forest [RF] model) and quantitatively assessed the linkage between soil properties, climate and biota at the global scale. Our results demonstrated a global soil-climate-biome diagram, which improves our understanding of the strong correspondence between soils, climate and biomes. Soil pH decreased with greater mean annual precipitation (MAP) and lower mean annual temperature (MAT), and the critical MAP for the transition from alkaline to acidic soil pH decreased with decreasing MAT. Specifically, the critical MAP ranged from 400-500 mm when the MAT exceeded 10 °C but could decrease to 50-100 mm when the MAT was approximately 0 °C. SOCD and STND were tightly linked; both increased in accordance with lower MAT and higher MAP across terrestrial biomes. Global stocks of SOC and STN were estimated to be 788 ± 39.4 Pg (1015 g, or billion tons) and 63 ± 3.3 Pg in the upper 30-cm soil layer, respectively, but these values increased to 1654 ± 94.5 Pg and 133 ± 7.8 Pg in the upper 100-cm soil layer, respectively. These results reveal quantitative linkages between soil properties, climate and biota at the global scale, suggesting co-evolution of the soil, climate and biota under conditions of global environmental change.
NASA Astrophysics Data System (ADS)
Zhan, Yongxiang; Yao, Hailin; Lu, Zheng; Yu, Dongming
2014-12-01
The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE < 1 and RG < 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.
Nagel, Kerstin A.; Bonnett, David; Furbank, Robert; Walter, Achim; Schurr, Ulrich; Watt, Michelle
2015-01-01
Plants in the field are exposed to varying light and moisture. Agronomic improvement requires knowledge of whole-plant phenotypes expressed in response to simultaneous variation in these essential resources. Most phenotypes, however, have been described from experiments where resources are varied singularly. To test the importance of varying shoot and root resources for phenotyping studies, sister pre-breeding lines of wheat were phenotyped in response to independent or simultaneous exposure to two light levels and soil moisture profiles. The distribution and architecture of the root systems depended strongly on the moisture of the deeper soil layer. For one genotype, roots, specifically lateral roots, were stimulated to grow into moist soil when the upper zone was well-watered and were inhibited by drier deep zones. In contrast, the other genotype showed much less plasticity and responsiveness to upper moist soil, but maintained deeper penetration of roots into the dry layer. The sum of shoot and root responses was greater when treated simultaneously to low light and low soil water, compared to each treatment alone, suggesting the value of whole plant phenotyping in response to multiple conditions for agronomic improvement. The results suggest that canopy management for increased irradiation of leaves would encourage root growth into deeper drier soil, and that genetic variation within closely related breeding lines may exist to favour surface root growth in response to irrigation or in-season rainfall. PMID:26089535
Soil organic matter in the Moscow State University botanical garden on the Vorob'evy Hills
NASA Astrophysics Data System (ADS)
Rozanova, M. S.; Prokof'eva, T. V.; Lysak, L. V.; Rakhleeva, A. A.
2016-09-01
Humification conditions and humus status parameters in arboretum soils of the Moscow State University botanical garden on the Vorob'evy Hills have been studied. Although microbiological activity is reduced, the warm and mild climate in the city, the eutrophication of soils (due to atmospheric fallouts and dissolution of construction waste inclusions), the retention of plant waste on the soil surface, and the presence of abundant primary destructors (mesofauna) have resulted in the formation of organic matter with specific characteristics. During the 60 years that have elapsed since the arboretum establishment, soils with a high content (up to 10-14%) of humate humus (CHA/CFA > 1) characterized by a higher degree of humification than in the control soils under herbaceous vegetation have been developed in the area. Large reserves of organic carbon have been noted not only in the upper 30-cm-thick soil layer, but also in the 1-m-thick layer due to organic matter of buried and technogenic horizons.
Response of soil microorganisms to radioactive oil waste: results from a leaching experiment
NASA Astrophysics Data System (ADS)
Galitskaya, P.; Biktasheva, L.; Saveliev, A.; Ratering, S.; Schnell, S.; Selivanovskaya, S.
2015-01-01
Oil wastes produced in large amounts in the processes of oil extraction, refining, and transportation are of great environmental concern because of their mutagenicity, toxicity, high fire hazardousness, and other properties. About 40% of these wastes contain radionuclides; however, the effects of oil products and radionuclides on soil microorganisms are frequently studied separately. The toxicity and effects on various microbial parameters of raw waste (H) containing 575 g of total petroleum hydrocarbons (TPH) kg-1 waste, 4.4 kBq kg-1 of 226Ra, 2.8 kBq kg-1 of 232Th, and 1.3 kBq kg-1 of 40K and its treated variant (R) (1.6 g kg-1 of TPH, 7.9 kBq kg-1 of 226Ra, 3.9 kBq kg-1 of 232Th, and 183 kBq kg-1 of 40K) were estimated in a leaching column experiment to separate the effects of hydrocarbons from those of radioactive elements. The disposal of H waste samples on the soil surface led to an increase of the TPH content in soil: it became 3.5, 2.8, and 2.2 times higher in the upper (0-20 cm), middle (20-40 cm), and lower (40-60 cm) layers respectively. Activity concentrations of 226Ra and 232Th increased in soil sampled from both H- and R-columns in comparison to their concentrations in control soil. The activity concentrations of these two elements in samples taken from the upper and middle layers were much higher for the R-column compared to the H-column, despite the fact that the amount of waste added to the columns was equalized with respect to the activity concentrations of radionuclides. The H waste containing both TPH and radionuclides affected the functioning of the soil microbial community, and the effect was more pronounced in the upper layer of the column. Metabolic quotient and cellulase activity were the most sensitive microbial parameters as their levels were changed 5-1.4 times in comparison to control ones. Changes of soil functional characteristics caused by the treated waste containing mainly radionuclides were not observed. PCR-SSCP (polymerase chain reaction - single strand conformation polymorphism) analysis followed by MDS (metric multidimensional scaling) and clustering analysis revealed that the shifts in microbial community structure were affected by both hydrocarbons and radioactivity.
Bautista, Gabriela; Mátyás, Bence; Carpio, Isabel; Vilches, Richard; Pazmino, Karina
2017-01-01
The number of studies investigating the effect of bio-fertilizers is increasing because of their importance in sustainable agriculture and environmental quality. In our experiments, we measured the effect of different fertilizers on soil respiration. In the present study, we were looking for the cause of unexpected changes in CO2 values while examining Chernozem soil samples. We concluded that CO2 oxidizing microbes or methanotrophs may be present in the soil that periodically consume CO2 . This is unusual for a sample taken from the upper layer of well-ventilated Chernozem soil with optimal moisture content.
Bautista, Gabriela; Mátyás, Bence; Carpio, Isabel; Vilches, Richard; Pazmino, Karina
2017-01-01
The number of studies investigating the effect of bio-fertilizers is increasing because of their importance in sustainable agriculture and environmental quality. In our experiments, we measured the effect of different fertilizers on soil respiration. In the present study, we were looking for the cause of unexpected changes in CO2 values while examining Chernozem soil samples. We concluded that CO2 oxidizing microbes or methanotrophs may be present in the soil that periodically consume CO2 . This is unusual for a sample taken from the upper layer of well-ventilated Chernozem soil with optimal moisture content. PMID:29333243
How does tillage intensity affect soil organic carbon? A systematic review
NASA Astrophysics Data System (ADS)
Haddaway, Neal Robert; Hedlund, Katarina; E Jackson, Louise; Kätterer, Thomas; Lugato, Emanuele; Thomsen, Ingrid; Bracht Jørgensen, Helene; Isberg, Per-Erik
2017-04-01
Background: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common agricultural practice that provides a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review of the topic. Methods: We systematically review relevant research in warm temperate and boreal regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original systematic map searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were coded and subject to meta-data extraction. Quantitative study findings were then extracted and meta-analyses performed to investigate the impact of reducing tillage (from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT) for SOC concentration and SOC stock in the upper soil and at lower depths. Results: A total of 351 studies were included in the systematic review: some 18% coming from an update of research published in the 2 years following searches performed for the systematic map. SOC concentration was found to be significantly higher in NT relative to both IT (1.18 g/kg ± 0.34 (SE)) and HT (2.09 g/kg ± 0.34 (SE)) in the upper soil layer (0-15 cm). IT was also found to be significant higher (1.30 g/kg ± 0.22 (SE)) in SOC concentration than HT for the upper soil layer (0-15 cm). At lower depths, only IT SOC compared with HT at 15-30 cm showed a significant difference; being 0.89 g/kg (± 0.20 (SE)) lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT (4.61 Mg/ha ±1.95 (SE)) or IT (3.85 Mg/ha ±1.64 (SE)). No other comparisons were significant. Conclusion: The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Changes in C stock due to management via reduced tillage has been estimated to be around 0.4 Mg/ha per year in the US. However, based on our results, the level of C stock increase under NT compared to HT was in the upper soil around 4.6 Mg/ha (0.78-8.43 Mg/ha, 95% CI) during a minimum of 10 years, while no effect was detected in the full horizon. Our results could provide evidence that NT and IT are potential means to promote SOC in the top soil. However, higher SOC stocks or concentrations in the upper soil layers not only promote a more productive soil but also provide resilience to extreme weather conditions. Our findings can hopefully be used to support further work to find solutions to increase and maintain C stocks in agricultural soils.
NASA Astrophysics Data System (ADS)
Zhang, Xiaowen; Hutchings, Jack A.; Bianchi, Thomas S.; Liu, Yina; Arellano, Ana R.; Schuur, Edward A. G.
2017-04-01
Temperature rise in the Arctic is causing deepening of active layers and resulting in the mobilization of deep permafrost dissolved organic matter (DOM). However, the mechanisms of DOM mobilization from Arctic soils, especially upper soil horizons which are drained most frequently through a year, are poorly understood. Here we conducted a short-term leaching experiment on surface and deep organic active layer soils, from the Yukon River basin, to examine the effects of DOM transport on bulk and molecular characteristics. Our data showed a net release of DOM from surface soils equal to an average of 5% of soil carbon. Conversely, deep soils percolated with surface leachates retained up to 27% of bulk DOM while releasing fluorescent components (up to 107%), indicating selective release of aromatic components (e.g., lignin and tannin), while retaining nonchromophoric components, as supported by spectrofluorometric and ultrahigh-resolution mass spectroscopic techniques. Our findings highlight the importance of the lateral flux of DOM on ecosystem carbon balance as well as processing of DOM transport through organic active layer soils en route to rivers and streams. This work also suggests the potential role of leachate export as an important mechanism of C losses from Arctic soils, in comparison with the more traditional pathway from soil to atmosphere in a warming Arctic.
Reducing Methyl Halide Emissions from Soils
NASA Astrophysics Data System (ADS)
Yates, S. R.; Xuan, R.; Ashworth, D.; Luo, L.
2011-12-01
Volatilization and soil transformation are major pathways by which pesticides dissipate from treated agricultural soil. Methyl bromide (MeBr) emissions from agricultural fumigation can lead to depletion of the stratospheric ozone layer. This has led to a gradual phase-out of MeBr and replacement by other halogenated chemicals. However, MeBr continues to be widely used under Critical Use Exemptions and development of emission-reduction strategies remains important. Several methods to reduce emissions of MeBr, and other halogenated soil fumigants, have been developed and are currently being tested under field conditions. In this paper, several approaches for reducing fumigant emissions to the atmosphere are described and include the use of virtually impermeable films, the creation of reactive soil barriers and a recently developed reactive film which was designed to limit loss of MeBr from soil without adding any material to the soil surface. Ammonium thiosulfate (ATS) was used to create a reactive layer. For a reactive soil layer, ATS was sprayed on the soil surface or incorporated to a depth of 1-2 cm. For the reactive film, ATS was placed between two layers of plastic film. The lower plastic layer was a high-density polyethylene film (HDPE), which is readily permeable to MeBr. The upper layer was a virtually impermeable film (VIF) and limits MeBr diffusion. MeBr diffusion and transformation through VIFs and reactive layers were tested in laboratory and field experiments. Although ineffective when dry, when sufficient water was present, reactive barriers substantially depleted halogenated fumigants, including MeBr. When ATS was activated in laboratory experiments, MeBr half-life was about 9.0 h (20C) in a reactive film barrier, and half life decreased with increasing temperature. When the soil was covered with VIF, less than 10% of the added MeBr diffused through the film and the remainder was transformed within the soil. This compares with 60 to 90% emission losses, respectively, for a soil covered with HDPE or for a bare soil surface. These findings demonstrate that several methods are available to reduce atmospheric emissions of MeBr and other halogenated fumigants.
Osland, Michael J.; Spivak, Amanda C.; Nestlerode, Janet A.; Lessmann, Jeannine M.; Almario, Alejandro E.; Heitmuller, Paul T.; Russell, Marc J.; Krauss, Ken W.; Alvarez, Federico; Dantin, Darrin D.; Harvey, James E.; From, Andrew S.; Cormier, Nicole; Stagg, Camille L.
2012-01-01
Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10-30 cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0-10 cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses.
Relationship between the parent material and the soil, in plain and mountainous areas
NASA Astrophysics Data System (ADS)
Kerek, Barbara; Kuti, Laszlo; Dobos, Timea; Vatai, Jozsef; Szentpetery, Ildiko
2013-04-01
One of the most important tasks of the soil is the nutrition of plants. This function is determinated by those parts of the geological media on what is the soil situated and from what the soil was formed (those two can be different). Soil can be formed definitely just from sediment, so it is more proper to speak about parent material than parent rock. Soil forming sediment is defined as the loose sediment on the surface, which is the upper layer of near-surface rocks in flat and hilly regions, and it is the upper layer of the sediment-ensemble situated on the undisturbed bedrock in mountainous areas. Considering its origin, these sediments could be autochthon or allochton. Soil forming is determinated, besides other factors (climate, elevation, vegetation, etc.), by the parent material, which has a crucial influence on the type, quality and fertility of soils through its mineral composition, physical and chemical characteristics. Agrogeological processes happen in the superficial loose sediments in mountainous areas, but the underlying solid rock (where on the surface or close to it, there is solid rock), has an effect on them. The plain and hilly regions covered by thick loose sediment and the areas build up by solid rock and covered with thinner loose sediment in mountainous areas should be searched separately. In plain areas the near-surface formations have to be studied as a whole down to the saturated zone, but at least to 10 m. In regions of mountain and mountain fronts, the thickness, the composition and genetics of the young unconsolidated sediments situated above the older solid rocks have a vital importance, and also the relations among the soils, soil forming sediments and the base rocks have to be understood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokisch, J.; Gyori, Z.; Kovacs, B.
The chromium cycle in soil was studied with speciation of chromium. The aim was to look for the possibilities the mobilization of chromium(III) and to measure the rate of chromate reduction in nature and pot and field experiments in Hungarian soils. The authors developed a sensitive and simple method for chromium speciation with a microcolumn connected an inductively coupled plasma atomic emission spectrometer. Detection limits are convenient to measure chromium forms in a 0.01 M CaCl{sub 2} extract of a contaminated soil, but it is not enough to measure that of the uncontaminated soils. CR(VI) as chromate anion is notmore » adsorbed on pH dependent temporary charges of clays but in strongly acidic soil. Therefore CR(VI) can be leached out easily from the top layer of soil and can be transported into the ground water. Chromate ion can be reduced to CR(III) by organic matter of soil in acidic medium. CR(VI) is more stable at higher pH and lower humus content. Thus the reduction much quicker in the upper, weakly acidic top layer. CR(VI) oxidizes the organic matter of soil. The rate of this reaction depends on pH values, the humus content of the soil and temperature. CR(III) leaching in different uncontaminated soils was studied too. There are 3 pathways of mobilization of Cr(III). When pH decreases in soil the CR(III) becomes more soluble, similarly to the aluminium(III) ion. When the soil contains large quantity of water soluble organic ligands, Cr makes complexes with them and complexes formed can be leached out from the top layer. The third possibility is the oxidation of CR(III) to Cr(VI). It could happen on surface of manganese dioxide in the well-aired top layer.« less
Margesin, Rosa; Siles, José A; Cajthaml, Tomas; Öhlinger, Birgit; Kistler, Erich
2017-05-01
Microbial ecology has been recognized as useful in archaeological studies. At Archaic Monte Iato in Western Sicily, a native (indigenous) building was discovered. The objective of this study was the first examination of soil microbial communities related to this building. Soil samples were collected from archaeological layers at a ritual deposit (food waste disposal) in the main room and above the fireplace in the annex. Microbial soil characterization included abundance (cellular phospholipid fatty acids (PLFA), viable bacterial counts), activity (physiological profiles, enzyme activities of viable bacteria), diversity, and community structure (bacterial and fungal Illumina amplicon sequencing, identification of viable bacteria). PLFA-derived microbial abundance was lower in soils from the fireplace than in soils from the deposit; the opposite was observed with culturable bacteria. Microbial communities in soils from the fireplace had a higher ability to metabolize carboxylic and acetic acids, while those in soils from the deposit metabolized preferentially carbohydrates. The lower deposit layer was characterized by higher total microbial and bacterial abundance and bacterial richness and by a different carbohydrate metabolization profile compared to the upper deposit layer. Microbial community structures in the fireplace were similar and could be distinguished from those in the two deposit layers, which had different microbial communities. Our data confirmed our hypothesis that human consumption habits left traces on microbiota in the archaeological evidence; therefore, microbiological residues as part of the so-called ecofacts are, like artifacts, key indicators of consumer behavior in the past.
NASA Astrophysics Data System (ADS)
Saadi, Sara Kalifah Al; Kindi, Samaya Salim Al; Pracejus, Bernhard; Moraetis, Daniel
2016-04-01
Soil abandonment is taking place in marginal land areas in Sultanate of Oman. Artificial soil terraces in high elevation rocky mountainous areas left without agricultural activities due to water shortage. Soil terraces have been established approximately 700 years ago and constitute a significant part of the Oman cultural and natural heritage. The present study investigates the soil state in those areas and seeks the possible reasons for the land abandonment. Questionnaires were prepared to interview the opinion of the local people. In addition, meteorological data were gathered to analyze the rain patterns in the area and most importantly, six soil profiles in two different areas in marginal rocky areas of Oman were sampled. The soils are in artificial terraces in Wijma and Hadash villages with elevation of 1247 and 1469 m respectively at mountainous slopes of 20 to 45 degrees. Most of the land was abandoned the last 20 years, while one terrace had agriculture activity 3 years ago. The questioners and interviews showed that water shortage was the reason of land abandonment. The rain patterns show a reduction of annual precipitation at least the last 10 years of available metrological data in the area. The total soil depth in the six soil profiles was between 33 to 70 cm. The main horizons include AC and C and there was a characteristic hard soil horizon in most of the soil profiles with accumulation of carbonate minerals (caliche). The soil pH was mainly alkaline between 7.5 to 8.1 and the electrical conductivity range between 42 to 859 μS/cm. A horizonization in electrical conductivity showed more dissolved solids in lower horizons compare to the upper 10 cm of the soil and this was coinciding with the hard layers in lower soil profiles. It appeared that several hundred years (or maximum 1000 years) old soils showed the development of hard soil layers which are characteristic in arid areas. The upper soil layers showed low conductivity probably due to surface deflation and desert pavement development after the terraces abandonment. The water shortage has probably affected severely the soil characteristics (pavement development and strong wind erosion) and it has enforced the locals to search for alternative domestic income towards lower land areas. Hard soil horizons on those areas showed to have developed in relatively short time after soil terraces construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaowen; Hutchings, Jack A.; Bianchi, Thomas S.
Temperature rise in the Arctic is causing deepening of active layers and resulting in the mobilization of deep permafrost dissolved organic matter (DOM). However, the mechanisms of DOM mobilization from Arctic soils, especially upper soil horizons which are drained most frequently through a year, are poorly understood. Here, we conducted a short-term leaching experiment on surface and deep organic active layer soils, from the Yukon River basin, to examine the effects of DOM transport on bulk and molecular characteristics. Our data showed a net release of DOM from surface soils equal to an average of 5% of soil carbon. Conversely,more » deep soils percolated with surface leachates retained up to 27% of bulk DOM-while releasing fluorescent components (up to 107%), indicating selective release of aromatic components (e.g. lignin, tannin), while retaining non-chromophoric components, as supported by spectrofluorometric and ultra high resolution mass spectroscopic techniques. Our findings highlight the importance of the lateral flux of DOM on ecosystem carbon balance as well as processing of DOM transport through organic active layer soils en route to rivers and streams. This work also suggests the potential role of leachate export as an important mechanism of C losses from Arctic soils, in comparison with the more traditional pathway from soil to atmosphere in a warming Arctic.« less
Nagel, Kerstin A; Bonnett, David; Furbank, Robert; Walter, Achim; Schurr, Ulrich; Watt, Michelle
2015-09-01
Plants in the field are exposed to varying light and moisture. Agronomic improvement requires knowledge of whole-plant phenotypes expressed in response to simultaneous variation in these essential resources. Most phenotypes, however, have been described from experiments where resources are varied singularly. To test the importance of varying shoot and root resources for phenotyping studies, sister pre-breeding lines of wheat were phenotyped in response to independent or simultaneous exposure to two light levels and soil moisture profiles. The distribution and architecture of the root systems depended strongly on the moisture of the deeper soil layer. For one genotype, roots, specifically lateral roots, were stimulated to grow into moist soil when the upper zone was well-watered and were inhibited by drier deep zones. In contrast, the other genotype showed much less plasticity and responsiveness to upper moist soil, but maintained deeper penetration of roots into the dry layer. The sum of shoot and root responses was greater when treated simultaneously to low light and low soil water, compared to each treatment alone, suggesting the value of whole plant phenotyping in response to multiple conditions for agronomic improvement. The results suggest that canopy management for increased irradiation of leaves would encourage root growth into deeper drier soil, and that genetic variation within closely related breeding lines may exist to favour surface root growth in response to irrigation or in-season rainfall. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Malý, J; Klem, K; Lukavská, A; Masojídek, J
2005-01-01
We have examined the persistence and movement of a urea-type herbicide, isoproturon [IPU; 3-(4-isopropylphenyl)-1,1'-dimethylurea], in soil using a novel herbicide-detection device, the prototype of a portable electrochemical biosensor based on Photosystem II particles immobilized on printed electrodes, and evaluated its results against two other methods: (i) chlorophyll-fluorescence bioassay based on polyphasic induction curves, and (ii) standard analysis represented by liquid chromatography. The data of the herbicide's content determined in soil extracts from field experiments correlated in all three methods. The biosensor assay was effective in determining the herbicide's concentration to as low as 10(-7) M. The results of our experiments also showed the kinetics of movement, degradation, and persistence of isoproturon in various depths of soil. After 6 to 9 wk, almost half of the isoproturon was still actively present in the upper soil layers (0-10 and 10-20 cm) and only 5 to 10% of biological activity was inhibited in the deeper soil layer tested (20-30 cm). Thus, inhibition within the limit of detection of both bioassays could be observed up to 9 wk after application in all profiles (0-30 cm), whereas inhibition persisted for up to 11 wk in the upper soil profile (0-10 cm). The use of the biosensor demonstrated its possibility for making rapid and cheap phytotoxicity tests. Our biosensor can give preliminary information about the biological activity of isoproturon in hours--much faster than growth biotests that may take several days or more.
Nitrogen acquisition by plants and microorganisms in a temperate grassland
Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov
2016-01-01
Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term 15N experiments with NH4+, NO3−, and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4+ and NO3−, while plants preferred NO3−. Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0–5 cm soil layer and 33% from the 5–15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands. PMID:26961252
Nitrogen acquisition by plants and microorganisms in a temperate grassland.
Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov
2016-03-10
Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term (15)N experiments with NH4(+), NO3(-), and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4(+) and NO3(-), while plants preferred NO3(-). Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0-5 cm soil layer and 33% from the 5-15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands.
[Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].
Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong
2014-07-01
The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.
Tucker, Colin; McHugh, Theresa A.; Howell, Armin; Gill, Richard; Weber, Bettina; Belnap, Jayne; Grote, Ed; Reed, Sasha C.
2017-01-01
Carbon cycling associated with biological soil crusts, which occupy interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the ‘mantle of fertility’), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report a multi-sensor approach to simultaneously measuring temperature and moisture of this biocrust surface layer (0–2 mm), and the deeper soil profile, concurrent with automated measurement of surface soil CO2effluxes. Our results illuminate robust relationships between biocrust water content and field CO2 pulses that have previously been difficult to detect and explain. All observed CO2 pulses over the measurement period corresponded to surface wetting events, including when the wetting events did not penetrate into the soil below the biocrust layer (0–2 mm). The variability of temperature and moisture of the biocrust surface layer was much greater than even in the 0–5 cm layer of the soil beneath the biocrust, or deeper in the soil profile. We therefore suggest that coupling surface measurements of biocrust moisture and temperature to automated CO2flux measurements may greatly improve our understanding of the climatic sensitivity of carbon cycling in biocrusted interspaces in our study region, and that this method may be globally relevant and applicable.
Koebernick, Nicolai; Huber, Katrin; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry; Vetterlein, Doris
2015-01-01
Split root experiments have the potential to disentangle water transport in roots and soil, enabling the investigation of the water uptake pattern of a root system. Interpretation of the experimental data assumes that water flow between the split soil compartments does not occur. Another approach to investigate root water uptake is by numerical simulations combining soil and root water flow depending on the parameterization and description of the root system. Our aim is to demonstrate the synergisms that emerge from combining split root experiments with simulations. We show how growing root architectures derived from temporally repeated X-ray CT scanning can be implemented in numerical soil-plant models. Faba beans were grown with and without split layers and exposed to a single drought period during which plant and soil water status were measured. Root architectures were reconstructed from CT scans and used in the model R-SWMS (root-soil water movement and solute transport) to simulate water potentials in soil and roots in 3D as well as water uptake by growing roots in different depths. CT scans revealed that root development was considerably lower with split layers compared to without. This coincided with a reduction of transpiration, stomatal conductance and shoot growth. Simulated predawn water potentials were lower in the presence of split layers. Simulations showed that this was related to an increased resistance to vertical water flow in the soil by the split layers. Comparison between measured and simulated soil water potentials proved that the split layers were not perfectly isolating and that redistribution of water from the lower, wetter compartments to the drier upper compartments took place, thus water losses were not equal to the root water uptake from those compartments. Still, the layers increased the resistance to vertical flow which resulted in lower simulated collar water potentials that led to reduced stomatal conductance and growth. PMID:26074935
Enhanced Cover Assessment Project:Soil Manipulation and Revegetation Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waugh, W. Joseph; Albright, Dr. Bill; Benson, Dr. Craig
2014-02-01
The U.S. Department of Energy Office of Legacy Management is evaluating methods to enhance natural changes that are essentially converting conventional disposal cell covers for uranium mill tailings into water balance covers. Conventional covers rely on a layer of compacted clayey soil to limit exhalation of radon gas and percolation of rainwater. Water balance covers rely on a less compacted soil “sponge” to store rainwater, and on soil evaporation and plant transpiration (evapotranspiration) to remove stored water and thereby limit percolation. Over time, natural soil-forming and ecological processes are changing conventional covers by increasing hydraulic conductivity, loosening compaction, and increasingmore » evapotranspiration. The rock armor on conventional covers creates a favorable habitat for vegetation by slowing soil evaporation, increasing soil water storage, and trapping dust and organic matter, thereby providing the water and nutrients needed for plant germination, survival, and sustainable transpiration. Goals and Objectives Our overall goal is to determine if allowing or enhancing these natural changes could improve cover performance and reduce maintenance costs over the long term. This test pad study focuses on cover soil hydrology and ecology. Companion studies are evaluating effects of natural and enhanced changes in covers on radon attenuation, erosion, and biointrusion. We constructed a test cover at the Grand Junction disposal site to evaluate soil manipulation and revegetation methods. The engineering design, construction, and properties of the test cover match the upper three layers of the nearby disposal cell cover: a 1-foot armoring of rock riprap, a 6-inch bedding layer of coarse sand and gravel, and a 2-foot protection layer of compacted fine soil. The test cover does not have a radon barrier—cover enhancement tests leave the radon barrier intact. We tested furrowing and ripping as means for creating depressions parallel to the slope contour, bringing soil up into the rock riprap layer, and loosening and blending compacted fine soil with coarse sand and gravel layers. Objectives of these manipulations include (1) enhancing root growth, (2) increasing seed-soil contact, (3) catching runoff water for plant germination and growth, (4) increasing soil water storage capacity, and (5) enhancing deep drying by disrupting the capillary barrier at the interface of the bedding and protection layers.« less
NASA Astrophysics Data System (ADS)
Fischer, T.; Veste, M.; Wiehe, W.; Lange, P.
2009-04-01
First colonizers of new land surfaces are cryptogames which often form biological soil crusts (BSC) covering the first millimetre of the top soil in many ecosystems from polar to desert ecosystems. These BSC are assemblages of cyanobacteria, green algae, mosses, liverworts, fungi and/or lichens. The development of soil surface crusts plays a major role for the further vegetation pattern through changes to the physico-chemical conditions and influencing various ecosystem processes. We studied the development of BSC on quaternary substrate of an initial artificial water catchment in Lusatia, Germany. Due to lack of organic matter in the geological substrate, photoautotrophic organisms like green algae and cyanobacteria dominated the initial phases of ecosystem development and, hence, of organo-mineral ineractions. We combined SEM/EDX and FTIR microscopy to study the contact zone of extracellular polymeric substances (EPS) of green algae and cyanobacteria with quartz, spars and mica on a >40 µm scale in undisturbed biological soil crusts, which had a maximum thickness of approx. 2 mm. SEM/EDX microscopy was used to determine the spatial distribution of S, Ca, Fe, Al, Si and K in the profiles, organic compounds were identified using FTIR microscopy. Exudates of crust organisms served as cementing material between sand particles. The crust could be subdivided into two horizontal layers. The upper layer, which had a thickness of approx. 200 µm, is characterized by accumulation of Al and K, but absence of Fe in microbial derived organic matter, indicating capture of weathering products of feldspars and mica by microbial exudates. The pore space between mineral particles was entirely filled with organic matter here. The underlying layer can be characterized by empty pores and organo-mineral bridges between the sand particles. Contrarily to the upper layer of the crust, Fe, Al and Si were associated with organic matter here but K was absent. Highest similarity of the FTIR spectra of EPS was observed with carbohydrates, using cellulose, dextran and humic acid Na salt as controls. Obviously, humification does not play a key role during this initial phase of soil formation. It was hypothesized that biological soil crusts facilitate the weathering of mineral substrate by (I) circumventing loss of fine particles with erosion, (II) by chemical treatment of minerals and (III) by catching small mineral-particles by glutinous EPS on the soil surface from the surrounding area.
Ci, Zhijia; Peng, Fei; Xue, Xian; Zhang, Xiaoshan
2018-07-01
Soils represent the single largest mercury (Hg) reservoir in the global environment, indicating that a tiny change of Hg behavior in soil ecosystem could greatly affect the global Hg cycle. Climate warming is strongly altering the structure and functions of permafrost and then would influence the Hg cycle in permafrost soils. However, Hg biogeochemistry in climate-sensitive permafrost is poorly investigated. Here we report a data set of soil Hg (0) concentrations in four different depths of the active layer in the Qinghai-Tibet Plateau permafrost. We find that soil Hg (0) concentrations exhibited a strongly positive and exponential relationship with temperature and showed different temperature sensitivity under the frozen and unfrozen condition. We conservatively estimate that temperature increases following latest temperature scenarios of the IPCC could result in up to a 54.9% increase in Hg (0) concentrations in surface permafrost soils by 2100. Combining the simultaneous measurement of air-soil Hg (0) exchange, we find that enhanced Hg (0) concentrations in upper soils could favor Hg (0) emissions from surface soil. Our findings indicate that Hg (0) emission could be stimulated by permafrost thawing in a warmer world. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modification of Soil Temperature and Moisture Budgets by Snow Processes
NASA Astrophysics Data System (ADS)
Feng, X.; Houser, P.
2006-12-01
Snow cover significantly influences the land surface energy and surface moisture budgets. Snow thermally insulates the soil column from large and rapid temperature fluctuations, and snow melting provides an important source for surface runoff and soil moisture. Therefore, it is important to accurately understand and predict the energy and moisture exchange between surface and subsurface associated with snow accumulation and ablation. The objective of this study is to understand the impact of land surface model soil layering treatment on the realistic simulation of soil temperature and soil moisture. We seek to understand how many soil layers are required to fully take into account soil thermodynamic properties and hydrological process while also honoring efficient calculation and inexpensive computation? This work attempts to address this question using field measurements from the Cold Land Processes Field Experiment (CLPX). In addition, to gain a better understanding of surface heat and surface moisture transfer process between land surface and deep soil involved in snow processes, numerical simulations were performed at several Meso-Cell Study Areas (MSAs) of CLPX using the Center for Ocean-Land-Atmosphere (COLA) Simplified Version of the Simple Biosphere Model (SSiB). Measurements of soil temperature and soil moisture were analyzed at several CLPX sites with different vegetation and soil features. The monthly mean vertical profile of soil temperature during October 2002 to July 2003 at North Park Illinois River exhibits a large near surface variation (<5 cm), reveals a significant transition zone from 5 cm to 25 cm, and becomes uniform beyond 25cm. This result shows us that three soil layers are reasonable in solving the vertical variation of soil temperature at these study sites. With 6 soil layers, SSiB also captures the vertical variation of soil temperature during entire winter season, featuring with six soil layers, but the bare soil temperature is underestimated and root-zone soil temperature is overestimated during snow melting; which leads to overestimated temperature variations down to 20 cm. This is caused by extra heat loss from upper soil level and insufficient heat transport from the deep soil. Further work will need to verify if soil temperature displays similar vertical thermal structure for different vegetation and soil types during snow season. This study provides insight to the surface and subsurface thermodynamic and hydrological processes involved in snow modeling which is important for accurate snow simulation.
Li, Dong; Sun, Delin; Hu, Siyang; Hu, Jing; Yuan, Xingzhong
2016-02-01
A conceptual design and experiments, electrochemistry-flushing (E-flushing), using electrochemistry to enhance flushing efficiency for the remediation of Cr(Ⅵ)-contaminated soil is presented. The rector contained three compartments vertically superposed. The upper was airtight cathode compartment containing an iron-cathode. The middle was soil layer. The bottom was anode compartment containing an iron-anode and connected to a container by circulation pumps. H2 and OH(-) ions were produced at cathode. H2 increased the gas pressure in cathode compartment and drove flushing solution into soil layer forming flushing process. OH(-) ions entered into soil layer by eletromigration and hydraulic flow to enhance the desorption of Cr(Ⅵ). High potential gradient was applied to accelerate the electromigration of desorbed Cr(Ⅵ) ions and produced joule heat to increase soil temperature to enhance Cr(Ⅵ) desorption. In anode compartment, Fe(2+) ions produced at iron-anode reduced the desorbed Cr(Ⅵ) into Cr(3+) ions, which reacted with OH(-) ions forming Cr(OH)3. Experimental results show that Cr(Ⅵ) removal efficiency of E-flushing experiments was more than double of flushing experiments and reached the maximum of removal efficiency determined by desorption kinetics. All electrochemistry processes were positively used in E-flushing technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Scale-free distribution of Dead Sea sinkholes: Observations and modeling
NASA Astrophysics Data System (ADS)
Yizhaq, H.; Ish-Shalom, C.; Raz, E.; Ashkenazy, Y.
2017-05-01
There are currently more than 5500 sinkholes along the Dead Sea in Israel. These were formed due to the dissolution of subsurface salt layers as a result of the replacement of hypersaline groundwater by fresh brackish groundwater. This process has been associated with a sharp decline in the Dead Sea water level, currently more than 1 m/yr, resulting in a lower water table that has allowed the intrusion of fresher brackish water. We studied the distribution of the sinkhole sizes and found that it is scale free with a power law exponent close to 2. We constructed a stochastic cellular automata model to understand the observed scale-free behavior and the growth of the sinkhole area in time. The model consists of a lower salt layer and an upper soil layer in which cavities that develop in the lower layer lead to collapses in the upper layer. The model reproduces the observed power law distribution without involving the threshold behavior commonly associated with criticality.
Braaten, Hans Fredrik Veiteberg; de Wit, Heleen A
2016-11-01
Mercury (Hg) concentrations in freshwater fish relates to aquatic Hg concentrations, which largely derives from soil stores of accumulated atmospheric deposition. Hg in catchment soils as a source for aquatic Hg is poorly studied. Here we test if i) peatland soils produce more methylmercury (MeHg) than forest soils; ii) total Hg (THg) concentrations in top soils are determined by atmospheric inputs, while MeHg is produced in the soils; and iii) soil disturbance promotes MeHg production. In two small boreal catchments, previously used in a paired-catchment forest harvest manipulation study, forest soils and peatlands were sampled and analysed for Hg species and additional soil chemistry. In the undisturbed reference catchment, soils were sampled in different vegetation types, of varying productivity as reflected in tree density, where historical data on precipitation and throughfall Hg and MeHg fluxes were available. Upper soil THg contents were significantly correlated to throughfall inputs of Hg, i.e. lowest in the tree-less peatland and highest in the dense spruce forest. For MeHg, top layer concentrations were similar in forest soils and peatlands, likely related to atmospheric input and local production, respectively. The local peatland MeHg production was documented through significantly higher MeHg-to-THg ratios in the deeper soil layer samples. In the disturbed catchment, soils were sampled in and just outside wheeltracks in an area impacted by forest machinery. Here, MeHg concentrations and the MeHg-to-THg ratios in the upper 5 cm were weakly significantly (p = 0.07) and significantly (p = 0.04) different in and outside of the wheeltracks, respectively, suggesting that soil disturbance promotes methylation. Differences in catchment Hg and MeHg streamwater concentrations were not explained by soil Hg and MeHg information, perhaps because hydrological pathways are a stronger determinant of streamwater chemistry than small variations in soil chemistry driven by disturbance and atmospheric inputs of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.
Response of soil microorganisms to radioactive oil waste: results from a leaching experiment
NASA Astrophysics Data System (ADS)
Galitskaya, P.; Biktasheva, L.; Saveliev, A.; Ratering, S.; Schnell, S.; Selivanovskaya, S.
2015-06-01
Oil wastes produced in large amounts in the processes of oil extraction, refining, and transportation are of great environmental concern because of their mutagenicity, toxicity, high fire hazardousness, and hydrophobicity. About 40% of these wastes contain radionuclides; however, the effects of oil products and radionuclides on soil microorganisms are frequently studied separately. The effects on various microbial parameters of raw waste containing 575 g of total petroleum hydrocarbons (TPH) kg-1 waste, 4.4 of 226Ra, 2.8 of 232Th, and 1.3 kBq kg-1 of 40K and its treated variant (1.6 g kg-1 of TPH, 7.9 of 226Ra, 3.9 of 232Th, and 183 kBq kg-1 of 40K) were examined in a leaching column experiment to separate the effects of hydrocarbons from those of radioactive elements. The raw waste sample (H) was collected from tanks during cleaning and maintenance, and a treated waste sample (R) was obtained from equipment for oil waste treatment. Thermal steam treatment is used in the production yard to reduce the oil content. The disposal of H waste samples on the soil surface led to an increase in the TPH content in soil: it became 3.5, 2.8, and 2.2 times higher in the upper (0-20 cm), middle (20-40 cm), and lower (40-60cm) layers, respectively. Activity concentrations of 226Ra and 232Th increased in soil sampled from both H- and R- columns in comparison to their concentrations in control soil. The activity concentrations of these two elements in samples taken from the upper and middle layers were much higher for the R-column compared to the H-column, despite the fact that the amount of waste added to the columns was equalized with respect to the activity concentrations of radionuclides. The H waste containing both TPH and radionuclides affected the functioning of the soil microbial community, and the effect was more pronounced in the upper layer of the column. Metabolic quotient and cellulase activity were the most sensitive microbial parameters as their levels were changed 5-1.4 times in comparison to control ones. Changes in soil functional characteristics caused by the treated waste containing mainly radionuclides were not observed. PCR-SSCP (polymerase chain reaction - single strand conformation polymorphism) analysis followed by MDS (metric multidimensional scaling) and clustering analysis revealed that the shifts in microbial community structure were affected by both hydrocarbons and radioactivity. Thus, molecular methods permitted to reveal the effects on soil microbial community not only from hydrocarbons, which significantly altered functional characteristics of soil microbiome, but also from radioactive elements.
NASA Technical Reports Server (NTRS)
Lee, Young-Hee; Mahrt, L.
2005-01-01
This study evaluates the prediction of heat and moisture fluxes from a new land surface scheme with eddy correlation data collected at the old aspen site during the Boreal Ecosystem-Atmosphere Study (BOREAS) in 1994. The model used in this study couples a multilayer vegetation model with a soil model. Inclusion of organic material in the upper soil layer is required to adequately simulate exchange between the soil and subcanopy air. Comparisons between the model and observations are discussed to reveal model misrepresentation of some aspects of the diurnal variation of subcanopy processes. Evapotranspiration
Salt and N leaching and soil accumulation due to cover cropping practices
NASA Astrophysics Data System (ADS)
Gabriel, J. L.; Quemada, M.
2012-04-01
Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth, using daily soil water content measurements, based on calibrated capacitance probes. Our results showed that drainage during the irrigated period was minimized, because irrigation water was adjusted to crop needs, leading to soil salt and nitrate accumulation on the upper layers after maize harvest. Then, during the intercrop period, most of salt and nitrate leaching occurred. Cover crops use led to shorter drainage period, lower drainage water amount and lower nitrate and salt leaching than treatment with fallow. These effects were related with a larger nitrate accumulation in the upper layers of the soil after cover crop treatments. But there was not soil salt accumulation increase in treatments with cover crops, and even decreased after years with a large cover crop biomass production. Then, adoption of cover crops in this kind of irrigated cropping system reduced water drainage beyond the root zone, salt and nitrate leaching diminished as a consequence but did not lead to salt accumulation in the upper soil layers. Acknowledgements: Financial support by CICYT, Spain (ref. AGL2005-00163 and AGL 2011-24732) and Comunidad de Madrid (project AGRISOST, S2009/AGR-1630).
Chaves, D A; Lyra, G B; Francelino, M R; Silva, Ldb; Thomazini, A; Schaefer, Cegr
2017-04-15
Permafrost and active layer studies are important to understand and predict regional climate changes. The objectives of this work were: i) to characterize the soil thermal regime (active layer thickness and permafrost formation) and its interannual variability and ii) to evaluate the influence of different climate variability modes to the observed soil thermal regime in a patterned ground soil in Maritime Antarctica. The study was carried out at Keller Peninsula, King George Island, Maritime Antarctica. Six soil temperatures probes were installed at different depths (10, 30 and 80cm) in the polygon center (Tc) and border (Tb) of a patterned ground soil. We applied cross-correlation analysis and standardized series were related to the Antarctic Oscillation Index (AAO). The estimated active layer thickness was approximately 0.75cm in the polygon border and 0.64cm in the center, indicating the presence of permafrost (within 80cm). Results indicate that summer and winter temperatures are becoming colder and warmer, respectively. Considering similar active layer thickness, the polygon border presented greater thawing days, resulting in greater vulnerability to warming, cooling faster than the center, due to its lower volumetric heat capacity (Cs). Cross-correlation analysis indicated statistically significant delay of 1day (at 10cm depth) in the polygon center, and 5days (at 80cm depth) for the thermal response between atmosphere and soil. Air temperature showed a delay of 5months with the climate variability models. The influence of southern winds from high latitudes, in the south facing slopes, favored freeze in the upper soil layers, and also contributed to keep permafrost closer to the surface. The observed cooling trend is linked to the regional climate variability modes influenced by atmospheric circulation, although longer monitoring period is required to reach a more precise scenario. Copyright © 2017 Elsevier B.V. All rights reserved.
Dissolved organic carbon and nitrogen release from Holocene permafrost and seasonally frozen soils
NASA Astrophysics Data System (ADS)
Wickland, K.; Waldrop, M. P.; Koch, J. C.; Jorgenson, T.; Striegl, R. G.
2017-12-01
Permafrost (perennially frozen) soils store vast amounts of carbon (C) and nitrogen (N) that are vulnerable to mobilization to the atmosphere as greenhouse gases and to terrestrial and aquatic ecosystems as dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) upon thaw. Such releases will affect the biogeochemistry of arctic and boreal regions, yet little is known about active layer (seasonally frozen) and permafrost source variability that determines DOC and TDN mobilization. We quantified DOC and TDN leachate yields from a range of active layer and permafrost soils in Alaska varying in age and C and N content to determine potential release upon thaw. Soil cores from the upper 1 meter were collected in late winter, when soils were frozen, from three locations representing a range in geographic position, landscape setting, permafrost depth, and soil types across interior Alaska. Two 15 cm-thick segments were extracted from each core: a deep active-layer horizon and a shallow permafrost horizon. Soils were thawed and leached for DOC and TDN yields, dissolved organic matter optical properties, and DOC biodegradability; soils were analyzed for C and N content, and radiocarbon content. Soils had wide-ranging C and N content (<1-44% C, <0.1-2.3% N), and varied in radiocarbon age from 450-9200 years before present - thus capturing typical ranges of boreal and arctic soils. Soil DOC and TDN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. However, across all sites DOC and TDN yields were significantly greater from permafrost soils (0.387 ± 0.324 mg DOC g-1 soil; 0.271 ± 0.0271 mg N g-1 soil) than from active layer soils (0.210 ± 0.192 mg DOC g-1 soil; 0.00716 ± 0.00569 mg N g-1 soil). DOC biodegradability increased with increasing radiocarbon age, and was statistically similar for active layer and permafrost soils. Our findings suggest that the continuously frozen state of permafrost soils has preserved higher relative potential DOC and TDN yields compared to seasonally thawed soils exposed to annual leaching and decomposition, and that frozen soils undergo microbial processes that produce labile DOC over time.
Biologically Active Organic Matter in Soils of European Russia
NASA Astrophysics Data System (ADS)
Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; Masyutenko, N. P.; Malyukova, L. S.; Lebedeva, T. N.; Tulina, A. S.
2018-04-01
Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus-peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300-600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75-150 mg C/100 g) to the high (150-300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35-75 mg C/100 g) and very low (<35 mg C/100 g) levels is observed. Acid brown forest soil in the subtropical zone is characterized by a medium supply with active organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2-11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0-20 cm and from 1.0 to 12.4/ha in the layer of 0-50 cm of different soil types.
NASA Astrophysics Data System (ADS)
Haria, A. H.; Johnson, A. C.; Bell, J. P.; Batchelor, C. H.
1994-12-01
The processes and mechanisms that control pesticide transport from drained heavy clay catchments are being studied at Wytham Farm (Oxford University) in southern England. In the first field season field-drain water contained high concentrations of pesticide. Soil studies demonstrated that the main mechanism for pesticide translocation was by preferential flow processes, both over the soil surface and through the soil profile via a macropore system that effectively by-passed the soil matrix. This macropore system included worm holes, shrinkage cracks and cracks resulting from ploughing. Rainfall events in early winter rapidly created a layer of saturation in the A horizon perched above a B horizon of very low hydraulic conductivity. Drain flow was initiated when the saturated layer in the A horizon extended into the upper 0.06m of the soil profile; thereafter water moved down slope via horizontal macropores possibly through a band of incorporated straw residues. These horizontal pathways for water movement connected with the fracture system of the mole drains, thus feeding the drains. Overland flow occurred infrequently during the season.
A new approach to treat discontinuities in multi-layered soils
NASA Astrophysics Data System (ADS)
Berardi, Marco; Difonzo, Fabio; Caputo, Maria; Vurro, Michele; Lopez, Luciano
2017-04-01
The water infiltration into two (or more) layered soils can give rise to preferential flow paths at the interface between different soils. The deep understanding of this phenomenon can be of great interest in modeling different environmental problems in geosciences and hydrology. Flow through layered soils arises naturally in agriculture, and layered soils are also engineered as cover liners for landfills. In particular, the treatment of the soil discontinuity is of great interest from the modeling and the numerical point of view, and is still an open problem.% (see, for example, te{Matthews_et_al,Zha_vzj_2013,DeLuca_Cepeda_ASCE_2016}). Assuming to approximate the soils with different porous media, the governing equation for this phenomenon is Richards' equation, in the following form: {eq:different_Richards_1} C_1(ψ) partial ψ/partial t = partial /partial z [ K_1(ψ) ( partial ψ/partial z - 1 ) ], \\quad if \\quad z < \\overline{z}, C_2(ψ) partial ψ/partial t = partial /partial z [ K_2(ψ) ( partial ψ/partial z - 1 ) ], \\quad if \\quad z > \\overline{z}, where \\overline{z} is the spatial threshold that identifies the change in soil structure, and C1 C_2, K_1, K_2, the hydraulic functions that describe the upper and the lower soil, respectively. The ψ-based form is used, in this work. Here we have used the Filippov's theory in order to deal with discontinuous differential systems, and we handled opportunely the numerical discretization in order to treat the abovementioned system by means of this theory, letting the discontinuity depend on the state variable. The advantage of this technique is a better insight on the solution behavior on the discontinuity surface, and the no-need to average the hydraulic conductivity field on the threshold itself, as in the existing literature.
NASA Astrophysics Data System (ADS)
Dube, Timothy; Muchena, Richard; Masocha, Mhosisi; Shoko, Cletah
2018-06-01
Accurate and reliable soil organic carbon stock estimation is critical in understanding forest role to regional carbon cycles. So far, the total carbon pool in dry Miombo ecosystems is often under-estimated. In that regard this study sought to model the relationship between the aboveground woody carbon pool and the soil carbon pool, using both ground-based and remote sensing methods. To achieve this objective, the Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), and the Soil Adjusted Vegetation Index (SAVI) computed from the newly launched Landsat 8 OLI satellite data were used. Correlation and regression analysis were used to relate Soil Organic Carbon (S.O.C), aboveground woody carbon and remotely sensed vegetation indices. Results showed a soil organic carbon in the upper soil layer (0-15 cm) was positively correlated with aboveground woody carbon and this relationship was significant (r = 0.678; P < 0.05) aboveground carbon. However, there were no significant correlations (r = -0.11, P > 0.05) between SOC in the deeper soil layer (15-30 cm) and aboveground woody carbon. These findings imply that (relationship between aboveground woody carbon and S.O.C) aboveground woody carbon stocks can be used as a proxy to estimate S.O.C in the top soil layer (0-15 cm) in dry Miombo ecosystems. Overall, these findings underscore the potential and significance of remote sensing data in understanding savanna ecosystems contribution to the global carbon cycle.
Delgado-Baquerizo, Manuel; Powell, Jeff R; Hamonts, Kelly; Reith, Frank; Mele, Pauline; Brown, Mark V; Dennis, Paul G; Ferrari, Belinda C; Fitzgerald, Anna; Young, Andrew; Singh, Brajesh K; Bissett, Andrew
2017-08-01
The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental-scale relationships between the diversity of microbial and invertebrate-based soil food webs, fertility and above-ground plant productivity at 289 sites and two soil depths, that is 0-10 and 20-30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity-fertility and fertility-plant productivity are limited to the upper soil layer (0-10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity-fertility and/or fertility-plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Lack of bedrock grain size influence on the soil production rate
NASA Astrophysics Data System (ADS)
Gontier, Adrien; Rihs, Sophie; Chabaux, Francois; Lemarchand, Damien; Pelt, Eric; Turpault, Marie-Pierre
2015-10-01
Our study deals with the part played by bedrock grain size on soil formation rates. U- and Th-series disequilibria were measured in two soil profiles developed from two different facies of the same bedrock, i.e., fine and coarse grain size granites, in the geomorphically flat landscape of the experimental Breuil-Chenue forest site, Morvan, France. The U- and Th-series disequilibria of soil layers and the inferred soil formation rate (1-2 mm ky-1) are nearly identical along the two profiles despite differences in bedrock grain size, variable weathering states and a significant redistribution of U and Th from the uppermost soil layers. This indicates that the soil production rate is more affected by regional geomorphology than by the underlying bedrock texture. Such a production rate inferred from residual soil minerals integrated over the age of the soil is consistent with the flat and slowly eroding geomorphic landscape of the study site. It also compares well to the rate inferred from dissolved solutes integrated over the shorter time scale of solute transport from granitic and basaltic watersheds under similar climates. However, it is significantly lower than the denudation or soil formation rates previously reported from either cosmogenic isotope or U-series measurements from similar climates and lithologies. Our results highlight the particularly low soil production rates of flat terrains in temperate climates. Moreover, they provide evidence that the reactions of mineral weathering actually take place in horizons deeper than 1 m, while a chemical steady state of both concentrations and U-series disequilibria is established in the upper most soil layers, i.e., above ∼70 cm depth. In such cases, the use of soil surface horizons for determining weathering rates is precluded and illustrates the need to focus instead on the deepest soil horizons.
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers secure the Phoenix Mars Lander spacecraft onto the upper stage booster. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers prepare the upper stage booster to be mated to the Phoenix Mars Lander spacecraft. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers rotate the Phoenix Mars Lander spacecraft to move it for mating to the upper stage booster. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers attach the Phoenix Mars Lander spacecraft onto the upper stage booster. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
Liu, Chen; Wang, Honglan; Tang, Xiangyu; Guan, Zhuo; Reid, Brian J; Rajapaksha, Anushka Upamali; Ok, Yong Sik; Sun, Hui
2016-01-01
A hydrologically contained field study, to assess biochar (produced from mixed crop straws) influence upon soil hydraulic properties and dissolved organic carbon (DOC) leaching, was conducted on a loamy soil (entisol). The soil, noted for its low plant-available water and low soil organic matter, is the most important arable soil type in the upper reaches of the Yangtze River catchment, China. Pore size distribution characterization (by N2 adsorption, mercury intrusion, and water retention) showed that the biochar had a tri-modal pore size distribution. This included pores with diameters in the range of 0.1-10 μm that can retain plant-available water. Comparison of soil water retention curves between the control (0) and the biochar plots (16 t ha(-1) on dry weight basis) demonstrated biochar amendment to increase soil water holding capacity. However, significant increases in DOC concentration of soil pore water in both the plough layer and the undisturbed subsoil layer were observed in the biochar-amended plots. An increased loss of DOC relative to the control was observed upon rainfall events. Measurements of excitation-emission matrix (EEM) fluorescence indicated the DOC increment originated primarily from the organic carbon pool in the soil that became more soluble following biochar incorporation.
NASA Astrophysics Data System (ADS)
Tucker, C.; Reed, S.; Howell, A.
2017-12-01
Carbon cycling associated with biological soil crusts, which occur in interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the `mantle of fertility'), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report data collected in a cool desert ecosystem over one year using a multi-sensor approach to simultaneously measuring temperature and moisture of the biocrust surface layer (0-2 mm), and the deeper soil profile (5-20 cm), concurrent with automated measurement of surface soil CO2 effluxes. Our results illuminate robust relationships between microclimate and field CO2 pulses that have previously been difficult to detect and explain. The temperature of the biocrust surface layer was highly variable, ranging from minimum of -9 °C in winter to maximum of 77 °C in summer with a maximum diurnal range of 61 °C. Temperature cycles were muted deeper in the soil profile. During summer, biocrust and soils were usually hot and dry and CO2 fluxes were tightly coupled to pulse wetting events experienced at the biocrust surface, which consistently resulted in net CO2 efflux (i.e., respiration). In contrast, during the winter, biocrust and soils were usually cold and moist, and there was sustained net CO2 uptake via photosynthesis by biocrust organisms, although during cold dry periods CO2 fluxes were minimal. During the milder spring and fall seasons, short wetting events drove CO2 loss, while sustained wetting events resulted in net CO2 uptake. Thus, the upper and lower bounds of net CO2 exchange at a point in time were functions of the seasonal temperature regime, while the actual flux within those bounds was determined by the magnitude and duration of biocrust and soil wetting events. These patterns reflect both the low temperature sensitivity and slow initiation in response to wetting of photosynthesis compared to respiration by biocrust organisms. Our study highlights the importance of cool and cold periods for C uptake in biocrusted soils of the Colorado Plateau.
Pandelova, Marchela; Henkelmann, Bernhard; Bussian, Bernd M; Schramm, Karl-Werner
2018-01-01
Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) were detected in 86 humic topsoil layers and in a subset of 11 randomly selected top mineral forest soils at the depths of 0-5cm and 5-10cm collected from different federal states of Germany. The distribution of these persistent organic pollutants (POPs) in humic topsoils with respect to vegetation cover (coniferous vs. deciduous vs. mixed), total organic carbon (TOC), altitude and latitude data was investigated. There is cross correlation between the contents and TOC while the correlation with latitude indicates higher abundances of POPs in central Germany where there is high population density accompanied with industrial activities. The calculated stocks suggest that humus type (mor, mull, or moder) in conjunction with forest type can explain the relative POPs abundances in different soil layers. Generally, humic topsoils show highest contents of POPs compare to the two mineral soils with a ratio of 100:10:1. However, the stock humic layers of coniferous stands contribute about 50% to the total stock, whereas at deciduous stands the stock is mainly located in the upper mineral soil layer (0-5cm). The soil-water distribution coefficients (Kd) were calculated to estimate the potential translocation in the different soil types. The Kd values vary among the PCBs and PCDD/Fs congeners and are most variable for humic topsoils. There is pronounced chemical abundance in the top mineral soils with increasing Kd and this points to non-water bound transport processes for superlipophilic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Choi, Kwanghun; Spohn, Marie; Park, Soo Jin; Huwe, Bernd; Ließ, Mareike
2017-01-01
Nitrogen (N) and phosphorus (P) in topsoils are critical for plant nutrition. Relatively little is known about the spatial patterns of N and P in the organic layer of mountainous landscapes. Therefore, the spatial distributions of N and P in both the organic layer and the A horizon were analyzed using a light detection and ranging (LiDAR) digital elevation model and vegetation metrics. The objective of the study was to analyze the effect of vegetation and topography on the spatial patterns of N and P in a small watershed covered by forest in South Korea. Soil samples were collected using the conditioned latin hypercube method. LiDAR vegetation metrics, the normalized difference vegetation index (NDVI), and terrain parameters were derived as predictors. Spatial explicit predictions of N/P ratios were obtained using a random forest with uncertainty analysis. We tested different strategies of model validation (repeated 2-fold to 20-fold and leave-one-out cross validation). Repeated 10-fold cross validation was selected for model validation due to the comparatively high accuracy and low variance of prediction. Surface curvature was the best predictor of P contents in the organic layer and in the A horizon, while LiDAR vegetation metrics and NDVI were important predictors of N in the organic layer. N/P ratios increased with surface curvature and were higher on the convex upper slope than on the concave lower slope. This was due to P enrichment of the soil on the lower slope and a more even spatial distribution of N. Our digital soil maps showed that the topsoils on the upper slopes contained relatively little P. These findings are critical for understanding N and P dynamics in mountainous ecosystems. PMID:28837590
Shi, Chong; Xu, Fu-gang
2013-01-01
Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope. PMID:24082854
Zhou, Jia-wen; Shi, Chong; Xu, Fu-gang
2013-01-01
Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope.
NASA Astrophysics Data System (ADS)
Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie
2016-04-01
The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients over the soil will play an important role in vegetation succession as permafrost thaw progresses.
Oaks belowground: mycorrhizas, truffles, and small mammals
Jonathan Frank; Seth Barry; Joseph Madden; Darlene Southworth
2008-01-01
Oaks depend on hidden diversity belowground. Oregon white oaks (Quercus garryana) form ectomycorrhizas with more than 40 species of fungi at a 25-ha site. Several of the most common oak mycorrhizal fungi form hypogeous fruiting bodies or truffles in the upper layer of mineral soil. We collected 18 species of truffles associated with Oregon white...
The influence of cryogenic mass exchange on the distribution of viable microfauna in cryozems
NASA Astrophysics Data System (ADS)
Gubin, S. V.; Lupachev, A. V.; Shatilovich, A. V.; Myl'nikov, A. P.; Ryss, A. Yu.; Veremeeva, A. A.
2016-12-01
The role of cryogenic mass exchange in the distribution of the viable microfauna (ciliates, heterotrophic flagellates, and nematodes) in the profiles of cryoturbated cryogenic soils and in the upper layers of permafrost was revealed. The material for microbiological investigations was collected from the main horizons of cryozem profiles, including the zones with morphologically manifested processes of cryogenic mass exchange (the development of barren spots, cryoturbation, and suprapermafrost accumulation) and the zones affected by solifluction. The radiocarbon dating of the soil samples showed that the age of the organic cryogenic material and material buried in the course of solifluction varied from 2100 to 4500 years. Some zones with specific ecological conditions promoting the preservation of species diversity of the microfauna were found to develop in the cryozem profiles. A considerable part of the community (38% of ciliates, 58% of flagellates, and 50% of nematodes) maintained its viability in the dormant state, and in some cases, it could pass to the state of long-term cryobiosis in the upper layer of permafrost.
NASA Astrophysics Data System (ADS)
Pellegrini, A.; Hoffmann, W. A.; Franco, A. C.
2014-12-01
The expansion of tropical forest into savanna may potentially be a large carbon sink, but little is known about the patterns of carbon sequestration during transitional forest formation. Moreover, it is unclear how nutrient limitation, due to extended exposure to firedriven nutrient losses, may constrain carbon accumulation. Here, we sampled plots that spanned a woody biomass gradient from savanna to transitional forest in response to differential fire protection in central Brazil. These plots were used to investigate how the process of transitional forest formation affects the size and distribution of carbon (C) and nitrogen (N) pools. This was paired with a detailed analysis of the nitrogen cycle to explore possible connections between carbon accumulation and nitrogen limitation. An analysis of carbon pools in the vegetation, upper soil, and litter shows that the transition from savanna to transitional forest can result in a fourfold increase in total carbon (from 43 to 179 Mg C/ha) with a doubling of carbon stocks in the litter and soil layers. Total nitrogen in the litter and soil layers increased with forest development in both the bulk (+68%) and plant-available (+150%) pools, with the most pronounced changes occurring in the upper layers. However, the analyses of nitrate concentrations, nitrate : ammonium ratios, plant stoichiometry of carbon and nitrogen, and soil and foliar nitrogen isotope ratios suggest that a conservative nitrogen cycle persists throughout forest development, indicating that nitrogen remains in low supply relative to demand. Furthermore, the lack of variation in underlying soil type (>20 cm depth) suggests that the biogeochemical trends across the gradient are driven by vegetation. Our results provide evidence for high carbon sequestration potential with forest encroachment on savanna, but nitrogen limitation may play a large and persistent role in governing carbon sequestration in savannas or other equally fire-disturbed tropical landscapes. In turn, the link between forest development and nitrogen pool recovery creates a framework for evaluating potential positive feedbacks on savanna-forest boundaries.
Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.
Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung
2014-08-01
The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.
A brief description of the simple biosphere model (SiB)
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Mintz, Y.; Sud, Y. C.
1986-01-01
A biosphere model for calculating the transfer of energy, mass, and momentum between the atmosphere and the vegetated surface of the Earth was designed for atmospheric general circulation models. An upper vegetation layer represents the perennial canopy of trees or shrubs, a lower layer represents the annual ground cover of grasses and other herbacious species. The local coverage of each vegetation layer may be fractional or complete but as the individual vegetation elements are considered to be evenly spaced, their root systems are assumed to extend uniformly throughout the entire grid-area. The biosphere has seven prognostic physical-state variables: two temperatures (one for the canopy and one for the ground cover and soil surface); two interception water stores (one for the canopy and one for the ground cover); and three soil moisture stores (two of which can be reached by the vegetation root systems and one underlying recharge layer into and out of which moisture is transferred only by hydraulic diffusion).
Humus and nitrogen in soddy-podzolic soils of different agricultural lands in Perm region
NASA Astrophysics Data System (ADS)
Zav'yalova, N. E.
2016-11-01
Heavy loamy soddy-podzolic soils (Eutric Albic Retisols (Abruptic, Loamic, Cutanic)) under a mixed forest, a grass-herb meadow, a perennial legume crop (fodder galega, Galéga orientalis), and an eightcourse crop rotation (treatment without fertilization) have been characterized by the main fertility parameters. Differences have been revealed in the contents of humus and essential nutrients in the 0- to 20- and 20- to 40-cm layers of soils of the studied agricultural lands. The medium acid reaction and the high content of ash elements and nitrogen in stubble-root residues of legume grasses favor the accumulation of humic acids in the humus of soil under fodder galega; the CHA/CFA ratio is 0.95 in the 0- to 20-cm layer and 0.81 in the 20- to 40-cm layer (under forest, 0.61 and 0.41, respectively). The nitrogen pool in the upper horizon of the studied soddy-podzolic soil includes 61-76% nonhydrolyzable nitrogen and 17-25% difficultly hydrolyzable nitrogen. The content of easily hydrolyzable nitrogen varies depending on the type of agricultural land from 6% in the soil under mixed forest to 10% under crop rotation; the content of mineral nitrogen varies from 0.9 to 1.9%, respectively. The long-term use of plowland in crop rotation and the cultivation of perennial legume crop have increased the content of hydrolyzable nitrogen forms but have not changed the proportions of nitrogen fractions characteristic of this soil type.
Lu, Juanjuan; Tan, Dunyan; Baskin, Jerry M; Baskin, Carol C
2010-06-01
Diptychocarpus strictus is an annual ephemeral in the cold desert of northwest China that produces heteromorphic fruits and seeds. The primary aims of this study were to characterize the morphology and anatomy of fruits and seeds of this species and compare the role of fruit and seed heteromorphism in dispersal and germination. Shape, size, mass and dispersal of siliques and seeds and the thickness of the mucilage layer on seeds were measured, and the anatomy of siliques and seeds, the role of seed mucilage in water absorption/dehydration, germination and adherence of seeds to soil particles, the role of pericarp of lower siliques in seed dormancy and seed after-ripening and germination phenology were studied using standard procedures. Plants produce dehiscent upper siliques with a thin pericarp containing seeds with large wings and a thick mucilage layer and indehiscent lower siliques with a thick pericarp containing nearly wingless seeds with a thin mucilage layer. The dispersal ability of seeds from the upper siliques was much greater than that of intact lower siliques. Mucilage increased the amount of water absorbed by seeds and decreased the rate of dehydration. Seeds with a thick mucilage layer adhered to soil particles much better than those with a thin mucilage layer or those from which mucilage had been removed. Fresh seeds were physiologically dormant and after-ripened during summer. Non-dormant seeds germinated to high percentages in light and in darkness. Germination of seeds from upper siliques is delayed until spring primarily by drought in summer and autumn, whereas the thick, indehiscent pericarp prevents germination for >1 year of seeds retained in lower siliques. The life cycle of D. strictus is morphologically and physiologically adapted to the cold desert environment in time and space via a combination of characters associated with fruit and seed heteromorphism.
Wei, Wei; Yu, Yun; Chen, Liding
2015-01-01
The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes. PMID:26207757
Wei, Wei; Yu, Yun; Chen, Liding
2015-01-01
The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.
Long-term experiments to better understand soil-human interactions
NASA Astrophysics Data System (ADS)
Bormann, B. T.; Homann, P. S.
2011-12-01
Interactions between soils and people may be transforming global conditions, but the interactions are poorly understood. Changes in soils have proven difficult to quantify, especially in complex ecosystems manifesting large spatiotemporal variability. Long-term ecosystem experiments that evaluate soil change and demonstrate alternative choices are important to understanding changes, discovering new controls and drivers, and influencing decisions. Inspired by agriculture studies, like Rothamsted, the US Forest Service established in 1990 a network of operational-scale experiments across the Pacific Northwest to evaluate long-term effects of different forest management and disturbance regimes. With a strong experimental design, these experiments are now helping to better understand the long-term effects of managing tree harvesting (clearcutting and thinning), woody debris, and tree and understory species composition, and-serendipitously-the effects of fire. Initial results from the Southern Oregon experimental site indicate surprisingly rapid soil changes in some regimes but not others. We've also learned that rapid change presents challenges to repeat sampling. We present our sample-archive and comparable-layer approaches that seek to accommodate changes in surface elevation, aggregation and disaggregation, and mineral-soil exports. Thinning mature forest stands (80-100 yrs old) did not significantly change soil C in 11-yrs. A small upper-layer C increase was observed after thinning, but it was similar to the control. Significant increases in upper-layer soil N were observed with most treatments, but all increases were similar to the control. Leaving woody debris had little effect. The most remarkable change occurred when mature stands were clearcut and Douglas-firs were planted and tended. Associated with rapid growth of Douglas-fir, an average of 8 Mg C ha-1 was lost from weathered soil 4-18 cm deep. This contrasts with clearcuts where early-seral hardwoods and knobcone pines were established, that trended positively with 2 Mg C ha-1. Soil changes resulting from wild and prescribed fire were substantial. About 50% of the soil C (3-21 Mg ha-1) and 36% of soil N (41-650 kg ha-1) were lost from the upper profile (0-6.2 cm) compared to pre-fire conditions. Intense wildfire that killed most forest trees had about double the losses of C and N than forests burned at lower temperature with fewer trees killed. Average wildfire C losses were more than twice prescribed-fire losses. A long-term perspective is needed to compare episodic influences on soils, like harvesting and wildfire, to day-in, day-out effects of different species mixtures. Especially important is the effect of shrubs, that can rapidly achieve full leaf area but that lack the woody stem structure to store captured C as well as conifers. In theory, therefore, extending shrub cover will increase soil C. The annual profile soil C loss in Douglas-fir (-0.8 Mg ha-1yr-1), if continued beyond 11 yrs, would be similar to the effects of a fire-return interval of less than a third of the historical interval of about 100 years. National and regional soil-C monitoring would benefit from being grounded in existing experimental studies to help integrate large-scale changes with an unfolding understanding of processes in ways useful to decisionmakers.
NASA Astrophysics Data System (ADS)
Lepage, H.; Evrard, O.; Onda, Y.; Lefèvre, I.; Laceby, J. P.; Ayrault, S.
2014-09-01
Large quantities of radiocesium were deposited across a 3000 km2 area northwest of the Fukushima Dai-ichi nuclear power plant after the March 2011 accident. Although many studies have investigated the fate of radiocesium in soil in the months following the accident, the potential migration of this radioactive contaminant in rice paddy fields requires further examination after the typhoons that occurred in this region. Such investigations will help minimize potential human exposure in rice paddy fields or transfer of radioactive contaminants from soils to rice. Radionuclide activity concentrations and organic content were analysed in 10 soil cores sampled from paddy fields in November 2013, 20 km north of the Fukushima power plant. Our results demonstrate limited depth migration of radiocesium with the majority concentrated in the uppermost layers of soils (< 5 cm). More than 30 months after the accident, 81.5 to 99.7% of the total 137Cs inventories was still found within the < 5 cm of the soil surface, despite cumulative rainfall totalling 3300 mm. Furthermore, there were no significant correlations between radiocesium migration depth and total organic carbon content. We attributed the maximum depth penetration of 137Cs to maintenance (grass cutting - 97% of 137Cs in the upper 5 cm) and farming operations (tilling - 83% of 137Cs in the upper 5 cm). As this area is exposed to erosive events, ongoing decontamination works may increase soil erodibility. We therefore recommend the rapid removal of the uppermost - contaminated - layer of the soil after removing the vegetation to avoid erosion of contaminated material during the subsequent rainfall events. Remediation efforts should be concentrated on soils characterised by radiocesium activities > 10 000 Bq kg-1 to prevent the contamination of rice. Further analysis is required to clarify the redistribution of radiocesium eroded on river channels.
NASA Astrophysics Data System (ADS)
Domine, Florent; Barrere, Mathieu; Sarrazin, Denis
2016-11-01
The values of the snow and soil thermal conductivity, ksnow and ksoil, strongly impact the thermal regime of the ground in the Arctic, but very few data are available to test model predictions for these variables. We have monitored ksnow and ksoil using heated needle probes at Bylot Island in the Canadian High Arctic (73° N, 80° W) between July 2013 and July 2015. Few ksnow data were obtained during the 2013-2014 winter, because little snow was present. During the 2014-2015 winter ksnow monitoring at 2, 12 and 22 cm heights and field observations show that a depth hoar layer with ksnow around 0.02 W m-1 K-1 rapidly formed. At 12 and 22 cm, wind slabs with ksnow around 0.2 to 0.3 W m-1 K-1 formed. The monitoring of ksoil at 10 cm depth shows that in thawed soil ksoil was around 0.7 W m-1 K-1, while in frozen soil it was around 1.9 W m-1 K-1. The transition between both values took place within a few days, with faster thawing than freezing and a hysteresis effect evidenced in the thermal conductivity-liquid water content relationship. The fast transitions suggest that the use of a bimodal distribution of ksoil for modelling may be an interesting option that deserves further testing. Simulations of ksnow using the snow physics model Crocus were performed. Contrary to observations, Crocus predicts high ksnow values at the base of the snowpack (0.12-0.27 W m-1 K-1) and low ones in its upper parts (0.02-0.12 W m-1 K-1). We diagnose that this is because Crocus does not describe the large upward water vapour fluxes caused by the temperature gradient in the snow and soil. These fluxes produce mass transfer between the soil and lower snow layers to the upper snow layers and the atmosphere. Finally, we discuss the importance of the structure and properties of the Arctic snowpack on subnivean life, as species such as lemmings live under the snow most of the year and must travel in the lower snow layer in search of food.
Pan, Ping; Han, Tian Yi; OuYang, Xun Zhi; Liu, Yuan Qiu; Zang, Hao; Ning, Jin Kui; Yang, Yang
2017-12-01
The distribution characteristics of carbon density under aerially seeded Pinus massoniana plantations in Ganzhou City of Jiangxi Province were studied. Total 15 factors, including site, stand, understory vegetation, litter and so on were selected to establish a relationship model between stand carbon density and influencing factors, and the main influencing factors were also screened. The results showed that the average carbon density was 98.29 t·hm -2 at stand level with soil layer (49.58 t·hm -2 ) > tree layer (45.25 t·hm -2 ) > understory vegetation layer (2.23 t·hm -2 ) > litter layer (1.23 t·hm -2 ). Significantly positive correlations were found among the tree, litter and soil layers, but not among the other layers. The main factors were tree density, avera-ge diameter at breast height (DBH), soil thickness, slope position, stand age and canopy density to affect carbon density in aerially seeded P. massoniana plantations. The partial correlation coefficients of the six main factors ranged from 0.331 to 0.434 with significance by t test. The multiple correlation coefficient of quantitative model I reached 0.796 with significance by F test (F=9.28). For stand density, the best tree density and canopy density were 1500-2100 plants·hm -2 and 0.4-0.7, respectively. The moderate density was helpful to improve ecosystem carbon sequestration. The carbon density increased with increasing stand age, DBH and soil thickness, and was higher in lower than middle and upper slope positions.
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft is lifted from its stand. The Phoenix will be moved to the upper stage booster for mating. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Dimitri Gerondidakis
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers guide the Phoenix Mars Lander spacecraft onto the upper stage booster. The spacecraft and booster will be mated for launch. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers attach an overhead crane to the Phoenix Mars Lander spacecraft. The Phoenix will be lifted and moved to the upper stage booster for mating. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers prepare the Phoenix Mars Lander spacecraft for rotation. After rotation, the Phoenix will be mated with the upper stage booster. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape
Rapalee, G.; Trumbore, S.E.; Davidson, E.A.; Harden, J.W.; Veldhuis, H.
1998-01-01
Boreal forests and wetlands are thought to be significant carbon sinks, and they could become net C sources as the Earth warms. Most of the C of boreal forest ecosystems is stored in the moss layer and in the soil. The objective of this study was to estimate soil C stocks (including moss layers) and rates of accumulation and loss for a 733 km2 area of the BOReal Ecosystem-Atmosphere Study site in northern Manitoba, using data from smaller-scale intensive field studies. A simple process-based model developed from measurements of soil C inventories and radiocarbon was used to relate soil C storage and dynamics to soil drainage and forest stand age. Soil C stocks covary with soil drainage class, with the largest C stocks occurring in poorly drained sites. Estimated rates of soil C accumulation or loss are sensitive to the estimated decomposition constants for the large pool of deep soil C, and improved understanding of deep soil C decomposition is needed. While the upper moss layers regrow and accumulate C after fires, the deep C dynamics vary across the landscape, from a small net sink to a significant source. Estimated net soil C accumulation, averaged for the entire 733 km2 area, was 20 g C m-2 yr-1 (28 g C m-2 yr-1 accumulation in surface mosses offset by 8 g C m-2 yr-1 lost from deep C pools) in a year with no fire. Most of the C accumulated in poorly and very poorly drained soils (peatlands and wetlands). Burning of the moss layer in only 1% of uplands would offset the C stored in the remaining 99% of the area. Significant interannual variability in C storage is expected because of the irregular occurrence of fire in space and time. The effects of climate change and management on fire frequency and on decomposition of immense deep soil C stocks are key to understanding future C budgets in boreal forests.
Laclau, Jean-Paul; da Silva, Eder A.; Rodrigues Lambais, George; Bernoux, Martial; le Maire, Guerric; Stape, José L.; Bouillet, Jean-Pierre; Gonçalves, José L. de Moraes; Jourdan, Christophe; Nouvellon, Yann
2013-01-01
Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1–3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5–3.0 m deep. The root intersects were counted on 224 m2 of trench walls in 15 pits. Monitoring the soil water content showed that, after clear-cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses. PMID:23847645
Assessing Impacts of 20 yr Old Miscanthus on Soil Organic Carbon Quality
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Schäfer, Gerhard; Kuhn, Nikolaus
2015-04-01
The use of biomass as a renewable energy source has become increasingly popular in Upper Rhine Region to meet the demand for renewable energy. Miscanthus is one of the most favorite biofuel crops, due to its long life and large yields, as well as low energy and fertilizer inputs. However, current research on Miscanthus is mostly focused on the techniques and economics to produce biofuel or the impacts of side products such as ash and sulfur emissions to human health. Research on the potential impacts of Miscanthus onto soil quality, especially carbon quality after long-term adoption, is very limited. Some positive benefits, such as sequestrating organic carbon, have been repeatedly reported in previous research. Yet the quality of newly sequestrated organic carbon and its potential impacts onto global carbon cycling remain unclear. To fully account for the risks and benefits of Miscanthus, it is required to investigate the quality as well as the potential CO2 emissions of soil organic carbon on Miscanthus fields. As a part of the Interreg Project to assess the environmental impacts of biomass production in the Upper Rhine Region, this study aims to evaluate the carbon quality and the potential CO2 emissions after long-term Miscanthus adoption. Soils were sampled at 0-10, 10-40, 40-70, and 70-100 cm depths on three Miscanthus fields with up to 20 years of cultivation in Ammerzwiller France, Münchenstein Switzerland, and Farnsburg Switzerland. Soil texture, pH, organic carbon and nitrogen content were measured for each sampled layer. Topsoils of 0-10 cm and subsoils of 10-40 cm were also incubated for 40 days to determine the mineralization potential of the soil organic matter. Our results show that: 1) only in top soils of 0-10 cm, the 20 year old Miscanthus field has significantly higher soil organic carbon concentrations, than the control site. No significant differences were observed in deeper soil layers. Similar tendencies were also observed for organic nitrogen content as well C/N ratios. This indicates that the positive benefits of Miscanthus in sequestrating organic carbon and improving soil quality are probably only effective in top soils. 2) Soils from the 20 years old Miscanthus fields produced significantly more CO2 than the control site, suggesting the great susceptibility of organic carbon on Miscanthus fields to mineralization. Overall, our results indicate a potentially additional contribution of Miscanthus fields to atmospheric CO2 compared to reference soils, cautioning the widespread adoption of Miscanthus. Consequently, further studies aiming at a full emission balance are required to assess the overall environmental impacts of biomass production in the Upper Rhine Region.
Availability of hydrogen for lunar base activities
NASA Technical Reports Server (NTRS)
Bustin, Roberta
1990-01-01
Hydrogen will be needed on a lunar base to make water for consumables, to provide fuel, and to serve as reducing agent in the extraction of oxygen from lunar minerals. The abundance and distribution of solar wind implanted hydrogen were studied. Hydrogen was found in all samples studied with concentrations varying widely depending on soil maturity, grain size, and mineral composition. Seven cores returned from the moon were studied. Although hydrogen was implanted in the upper surface layer of the regolith, it was found throughout the cores due to micrometeorite reworking of the soil.
Sonication standard laboratory module
Beugelsdijk, Tony; Hollen, Robert M.; Erkkila, Tracy H.; Bronisz, Lawrence E.; Roybal, Jeffrey E.; Clark, Michael Leon
1999-01-01
A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.
NASA Astrophysics Data System (ADS)
Liu, S.; Wei, Y.; Post, W. M.; Cook, R. B.; Schaefer, K.; Thornton, M. M.
2012-10-01
The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively, of the spatial resolution of 0.25° in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and Central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.
Salinas Villafane, Omar R; Igarashi, Toshifumi; Harada, Shusaku; Kurosawa, Mitsuru; Takase, Toshio
2012-12-01
This paper describes the chemistry of porewater when constructing different soil layers on acidic weathered rock of a closed mine to remediate the surface environment. Three cases were set on a flat surface of the site, all under different layer systems. Case 1 was only composed of weathered rocks. A top neutralization layer was constructed on the weathered rocks in case 2, whereas both an upper low-permeable and middle neutralization layers were constructed on the weathered rocks in case 3. The low-permeable layer of 30 cm thick consists of clay, and the neutralization layer of 30 cm thick consists of the mixture of the weathered rock and calcium carbonate as a neutralizer. Porewater sampling systems and soil sensors to measure temperature, water content, and electrical conductivity were set at different depths. In case 1, steadily high concentrations of heavy metals were observed regardless of the depth, and the pH ranged from 2 to 4. In cases 2 and 3, a dramatic decrease in concentrations of heavy metals was observed, even below the neutralization layer. For both cases, pH values were circumneutral. There were no significant seasonable changes in heavy metals concentrations and pH of porewater by considering the temperature and precipitation. In addition, the water content of the layers in case 3 fluctuated more mildly than that in cases 1 and 2, indicating that the low-permeable layer reduced the rate of infiltration. Therefore, a significant reduction in the load of heavy metals released from the site can be achieved by both implementing neutralization and low-permeable layers.
Contamination of food crops grown on soils with elevated heavy metals content.
Dziubanek, Grzegorz; Piekut, Agata; Rusin, Monika; Baranowska, Renata; Hajok, Ilona
2015-08-01
The exposure of inhabitants from 13 cities of The Upper Silesia Industrial Region to cadmium and lead has been estimated on the basis of heavy metals content in commonly consumed vegetables. The samples were collected from agricultural fields, allotments and home gardens in these cities. Cadmium and lead concentrations in samples of soil and vegetables - cabbage, carrots and potatoes were determined. High content of heavy metals in the arable layer of soil in Upper Silesia (max. 48.8 and 2470mgkg(-1) d.w. for Cd and Pb, respectively) explained high Cd and Pb concentrations in locally cultivated vegetables which are well above the permissible level. Three exposure scenarios with different concentrations of Pb and Cd in vegetables were taken into consideration. In the Scenario I where the content of heavy metals was equal to maximum permissible level, the value of hazard quotient (HQ) for Pb and Cd was 0.530 and 0.704, respectively. In the scenarios where were assumed consumption of contaminated vegetables from Upper Silesia the value of hazard quotient (HQ) for Pb and Cd was 0.755 and 1.337 for Scenario II and 1.806 and 4.542 for Scenario III. The study showed that consumption of vegetables cultivated in Upper Silesia Region on the agricultural fields, allotments and in home gardens may pose a significant health risk. Copyright © 2015 Elsevier Inc. All rights reserved.
Vertical characterization of soil contamination using multi-way modeling--a case study.
Singh, Kunwar P; Malik, Amrita; Basant, Ankita; Ojha, Priyanka
2008-11-01
This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.
Kang, Yijun; Gu, Xian; Hao, Yangyang; Hu, Jian
2016-03-01
The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge.
NASA Astrophysics Data System (ADS)
Abakumov, E.; Mukhametova, N.
2014-03-01
Antarctica is the unique place for pedological investigations. Soils of Antarctica have been studied intensively during the last century. Antarctic logistic provides the possibility to scientists access the terrestrial landscapes mainly in the places of polar stations. That is why the main and most detailed pedological investigations were conducted in Mc Murdo Valleys, Transantarctic Mountains, South Shetland Islands, Larsemann hills and Schirmacher Oasis. Investigations were conducted during the 53rd and 55th Russian Antarctic expeditions on the base of soil pits and samples collected in Sub-Antarctic and Antarctic regions. Soils of diverse Antarctic landscapes were studied with aim to assess the microbial biomass level, basal respiration rates and metabolic activity of microbial communities. The investigation conducted shows that soils of Antarctic are quite different in profile organization and carbon content. In general, Sub-Antarctic soils are characterized by more developed humus (sod) organo-mineral horizons as well as the upper organic layer. The most developed organic layers were revealed in peat soils of King-George Island, where its thickness reach even 80 cm. These soils as well as soils under guano are characterized by the highest amount of total organic carbon (TOC) 7.22-33.70%. Coastal and continental soils of Antarctic are presented by less developed Leptosols, Gleysols, Regolith and rare Ornhitosol with TOC levels about 0.37-4.67%. The metabolic ratios and basal respiration were higher in Sub-Antarctic soils than in Antarctic ones which can be interpreted as result of higher amounts of fresh organic remnants in organic and organo-mineral horizons. Also the soils of King-George island have higher portion of microbial biomass (max 1.54 mg g-1) than coastal (max 0.26 mg g-1) and continental (max 0.22 mg g-1) Antarctic soils. Sub-Antarctic soils mainly differ from Antarctic ones in increased organic layers thickness and total organic carbon content, higher microbial biomass carbon content, basal respiration and metabolic activity levels.
NASA Astrophysics Data System (ADS)
Kiikkilä, O.; Nieminen, T.; Starr, M.; Ukonmaanaho, L.
2012-04-01
Boreal peatlands form an important terrestrial carbon reserve and are a major source of dissolved organic matter (DOM) to surface waters, particularly when disturbed through forestry practices such as draining or timber harvesting. Heavy metals show a strong affinity to organic matter and so, along with DOM, heavy metals can be mobilized and transported from the soil to surface waters and sediments where they may become toxic to aquatic organisms and pass up the food chain. The complexation of heavy metals with DOM can be expected to be related and determined by the chemical characteristics of DOM and oxidation/reducing conditions in the peat. We extracted interstitial water from peat samples and determined the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and Al, Cu, Zn and Fe in various fractions of DOM isolated by adsorption properties (XAD-8 fractionation) and molecular-weight (ultrafiltration). The peat samples were taken from 0-30 and 30-50 cm depth in drained peatland catchments two years after whole-tree or stem-only clear-cut harvesting (Scots pine or Norway spruce) had been carried out. The samples from the upper layer had been subject to alternating saturation/aeration conditions while the deeper layer had been continuously under the water table. The fractionation of DOC and DON according to both adsorption properties and molecular-weight fractions clearly differed between the upper and lower peat layers. While the hydrophobic acid fraction contained proportionally more DOC and DON than the hydrophilic acid fraction in the upper peat layer the results were vice versa in the lower peat layer. High-molecular-weight compounds (> 100 kDa) were proportionally more abundant in the upper and low-molecular-weight compounds (< 1 kDa) in the lower peat layer. These differences are assumed to reflect differences in the aerobic/ anaerobic conditions and degree of decomposition between the two layers. The concentrations of Zn, Al, Fe and DON correlated positively with DOC concentrations whereas the concentration Cu did not correlate with DOC concentrations. Heavy metal concentrations in different molecular-weight fractions indicated that Al, Cu, Zn and Fe were mostly associated with high-molecular-weight compounds and only a small fraction existed as free metal ions in solution. There were no clear differences in the chemical characteristics of DOC or DON or heavy metal concentrations between the two harvesting treatments.
[Effects of bio-crust on soil microbial biomass and enzyme activities in copper mine tailings].
Chen, Zheng; Yang, Gui-de; Sun, Qing-ye
2009-09-01
Bio-crust is the initial stage of natural primary succession in copper mine tailings. With the Yangshanchong and Tongguanshan copper mine tailings in Tongling City of Anhui Province as test objects, this paper studied the soil microbial biomass C and N and the activities of dehydrogenase, catalase, alkaline phosphatase, and urease under different types of bio-crust. The bio-crusts improved the soil microbial biomass and enzyme activities in the upper layer of the tailings markedly. Algal crust had the best effect in improving soil microbial biomass C and N, followed by moss-algal crust, and moss crust. Soil microflora also varied with the type of bio-crust. No'significant difference was observed in the soil enzyme activities under the three types of bio-crust. Soil alkaline phosphatase activity was significantly positively correlated with soil microbial biomass and dehydrogenase and urease activities, but negatively correlated with soil pH. In addition, moss rhizoid could markedly enhance the soil microbial biomass and enzyme activities in moss crust rhizoid.
The impact of periglacial cover beds on runoff generation in a small spring catchment, Ore Mountains
NASA Astrophysics Data System (ADS)
Heller, Katja; Hübner, Rico; Kleber, Arno
2010-05-01
The knowledge of hillslope processes is essential to improve pollutant research and flood prediction. Relic periglacial covers are widespread on slopes of the central European low mountain ranges. Cover beds are assumed to be an important control factor for subcutaneous water flow paths. Periglacial cover beds originated by solifluction, kryoturbation and accumulation of loess during Pleistocene times. Differences in bulk density, sediment type, as well as structure and rate of coarse clasts in the layers result in vertical disparity in hydraulic conductivity (anisotropy), leading to interflow. This hypothesis has been testing in an ongoing study in a small spring catchment (6 ha) in the eastern Ore Mountains, south-eastern Germany, since November 2007. The study area is underlain by gneiss and is formed as a slope hollow. The cover beds consist of a 3-layer complex with upper layer, intermediate layer and basal layer. Soil water tension within the layers is measured with 76 recording tensiometers. Electrical resistivity tomography was used to monitor the spatial dispersal of soil moisture. Results of hydrometrical measurements and of electrical resistivity surveys will be described and new findings on slope water dynamics will be presented.
NASA Astrophysics Data System (ADS)
Köchy, M.; Hiederer, R.; Freibauer, A.
2014-09-01
The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget. We review current estimates of soil organic carbon stocks (mass/area) and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg. Correcting the HWSD's bulk density of organic soils, especially Histosols, results in a mass of 1062 Pg. The uncertainty of bulk density of Histosols alone introduces a range of -56 to +180 Pg for the estimate of global SOC in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arc minutes, the areal masses of SOC and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. Incorporating more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Data Base (496 Pg SOC) and tropical peatland carbon, global soils contain 1324 Pg SOC in the upper 1 m including 421 Pg in tropical soils, whereof 40 Pg occur in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".
NASA Technical Reports Server (NTRS)
Treiman, Allan H.
1997-01-01
A sequence of layers, bright and dark, is exposed on the walls of canyons, impact craters and mesas throughout the Ares Vallis region, Chryse Planitia, and Xanthe Terra, Mars. Four layers can be seen: two pairs of alternating dark and bright albedo. The upper dark layer forms the top surface of many walls and mesas. The upper dark-bright pair was stripped as a unit from many streamlined mesas and from the walls of Ares Valles, leaving a bench at the top of the lower dark layer, approximately 250 m below the highland surface on streamlined islands and on the walls of Ares Vallis itself. Along Ares Vallis, the scarp between the highlands surface and this bench is commonly angular in plan view (not smoothly curving), suggesting that erosion of the upper dark-bright pair of layers controlled by planes of weakness, like fractures or joints. These near-surface layers in the Ares Vallis area have similar thicknesses, colors, and resistances to erosion to layers exposed near the tops of walls in Valles Marineris (Treiman et al.) and may represent the same pedogenic hardpan units. From this correlation, and from analogies with hardpans on Earth, the light-color layers may be cemented by calcite or gypsum. The dark layers are likely cemented by an iron-bearing mineral. Mars Pathfinder instruments should permit recognition and useful analyses of hardpan fragments, provided that clean uncoated surfaces are accessible. Even in hardpan-cemented materials, it should be possible to determine the broad types of lithologies in the Martian highlands. However, detailed geochemical modeling of highland rocks and soils may be compromised by the presence of hardpan cement minerals.
NASA Astrophysics Data System (ADS)
Li, Haixiao; Mollier, Alain; Ziadi, Noura; Messiga, Aimé Jean; Parent, Leon-Étienne; Morel, Christian
2017-04-01
Plant-available soil phosphorus (P) accumulates primarily in the topsoil due to P fertilization and P released from crop residues. In contrast with conventional tillage (moldboard plough, MP), conservation tillage [e.g. no-till, (NT)] often leads to higher P concentrations in the topsoil mainly due to the absence of mixing between soil, fertilizer, and crop residues. Our objective was to estimate the proportion of P uptake from a given soil mass across the soil profile under maize and soybean as the product of root surface density proportions and local plant-available soil P. This study was conducted on a long-term field experiment initiated in 1992 in southern Quebec, Canada, and established on a clay-loam soil under MP and NT systems. The experiment was factorially treated with three P doses (0, 17.5 and 35 kg P ha-1 applied as triple superphosphate on maize at 5 cm depth and at 5 cm on one side of the crop row). Soil was sampled at flowering stage at five depths (0-5, 5-10, 10-20, 20-30 and 30-40 cm) and three horizontal distances perpendicular to the crop row (5, 15 and 25 cm) in 2014 and 2015 to map a grid soil P availability to plants, e.g. phosphate ion concentrations in solution and the time-dependent amount of phosphate ions that can equilibrate- solution by diffusion, root distribution, and consequently crop P uptake, which was calculated as the fraction of plant-available soil P intercepted by surface roots. In general, NT tended to have higher soil P status in the upper soil layer and lower soil P status in the deeper soil layer compared to MP ; confirming previous results obtained from the same experimental site. This variation along the soil profile was significantly affected by sampling distance to crop row with higher concentration observed at 5-cm distance mainly because of the placement of P fertilizers. The 2D distribution of P uptake depended on tillage practice and P fertilization. There was higher proportions of P uptake from the 0-10 and 0-20 cm layers in NT (46% and 79%, respectively) compared to MP (25% and 68%, respectively). On average 8% of P uptake originated from the 30-40 cm layer irrespective of tillage, indicating that plant P uptake from deeper soil layers also influenced the P cycling in agroecosystems.
Shirima, Deo D; Totland, Ørjan; Moe, Stein R
2016-11-01
The relative importance of resource heterogeneity and quantity on plant diversity is an ongoing debate among ecologists, but we have limited knowledge on relationships between tree diversity and heterogeneity in soil nutrient availability in tropical forests. We expected tree species richness to be: (1) positively related to vertical soil nutrient heterogeneity; (2) negatively related to mean soil nutrient availability; and (3) more influenced by nutrient availability in the upper than lower soil horizons. Using a data set from 60, 20 × 40-m plots in a moist forest, and 126 plots in miombo woodlands in Tanzania, we regressed tree species richness against vertical soil nutrient heterogeneity, both depth-specific (0-15, 15-30, and 30-60 cm) and mean soil nutrient availability, and soil physical properties, with elevation and measures of anthropogenic disturbance as co-variables. Overall, vertical soil nutrient heterogeneity was the best predictor of tree species richness in miombo but, contrary to our prediction, the relationships between tree species richness and soil nutrient heterogeneity were negative. In the moist forest, mean soil nutrient availability explained considerable variations in tree species richness, and in line with our expectations, these relationships were mainly negative. Soil nutrient availability in the top soil layer explained more of the variation in tree species richness than that in the middle and lower layers in both vegetation types. Our study shows that vertical soil nutrient heterogeneity and mean availability can influence tree species richness at different magnitudes in intensively utilized tropical vegetation types.
NASA Astrophysics Data System (ADS)
Liu, S.; Wei, Y.; Post, W. M.; Cook, R. B.; Schaefer, K.; Thornton, M. M.
2013-05-01
The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data will provide a resource for use in terrestrial ecosystem modeling both for input of soil characteristics and for benchmarking model output.
Zheng, Xue Jiao; Yu, Zhen Wen; Zhang, Yong Li; Shi, Yu
2018-02-01
With the large-spike wheat cultivar Shannong 23 as test material,a field experiment was conducted by increasing the relative soil moisture content to 70% and 65% at jointing and anthesis stages. Four nitrogen levels,0 (N 0 ), 180 (N 1 ), 240 (N 2 ) and 300 kg·hm -2 (N 3 ), were designed to examine the effects of nitrogen application rates on the interception of photosynthetic active radiation (PAR) and dry matter distribution of wheat at different canopy layers. The results showed that the total stem number of wheat population at anthesis stage, the leaf area index at 10, 20 and 30 days after anthesis, PAR capture ratio at upper and middle layers and total PAR capture ratio in wheat canopy on day 20 after anthesis of treatment N 2 were significantly higher than those in the treatments of both N 0 and N 1 . Those indexes showed no significant increase when the application rate increased to 300 kg·hm -2 (N 3 ). The vegetative organ dry matter accumulation of all layers at maturity stage of treatment N 2 were significantly higher than N 0 and N 1 . Compared with treatment N 0 and N 1 , N 2 increased the grain and total dry matter accumulation by 36.7% and 35.4%, 9.5% and 10.2%, respectively, but had no significant difference with treatment N 3 . The vegetative organ dry matter accumulation at all layers, grain and total dry matter accumulation were significantly and positively correlated with PAR capture ratio at upper and middle layers, and had no significant correlation with that at lower layer. The vegetative organ dry matter accumulation at all layers was significantly and positively correlated with grain dry matter accumulation. The application rate at 240 kg·hm -2 (N 2 ) would be the optimum treatment under the present experimental condition.
Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth
Becerra, Alejandra; Bartoloni, Norberto; Cofré, Noelia; Soteras, Florencia; Cabello, Marta
2014-01-01
Arbuscular mycorrhizal fungi (AMF) colonize land plants in every ecosystem, even extreme conditions such as saline soils. In the present work we report for the first time the mycorrhizal status and the vertical fungal distribution of AMF spores present in the rhizospheric soil samples of four species of Chenopodiaceae (Allenrolfea patagonica, Atriplex argentina, Heterostachys ritteriana and Suaeda divaricata) at five different depths in two saline of central Argentina. Roots showed medium, low or no colonization (0–50%). Nineteen morphologically distinctive AMF species were recovered. The number of AMF spores ranged between 3 and 1162 per 100 g dry soil, and AMF spore number decreased as depth increased at both sites. The highest spore number was recorded in the upper soil depth (0–10 cm) and in S. divaricata. Depending of the host plant, some AMF species sporulated mainly in the deep soil layers (Glomus magnicaule in Allenrolfea patagonica, Septoglomus aff. constrictum in Atriplex argentina), others mainly in the top layers (G. brohultti in Atriplex argentina and Septoglomus aff. constrictum in Allenrolfea patagonica). Although the low percentages of colonization or lack of it, our results show a moderate diversity of AMF associated to the species of Chenopodiaceae investigated in this study. The taxonomical diversity reveals that AMF are adapted to extreme environmental conditions from saline soils of central Argentina. PMID:25242945
The influence of anisotropy on preferential flow in landslides
NASA Astrophysics Data System (ADS)
Cristiano, Elena; Barontini, Stefano; Bogaard, Thom A.; Shao, Wei
2015-04-01
Infiltration is one of the most important landslides triggering mechanisms and it is controlled by the hydraulic characteristics of the soil, which depends on the degree of saturation, the existence of preferential flow paths and by anisotropy. Many soils, indeed, exhibit a certain degree of anisotropy due to the stratification associated with soil forming process. Recently, various authors investigated the effect of rainfall in layered soils and its effect on rainfall triggered landslides by means of experimental, conceptual, numerical and theoretical approaches. However, the combined effect of anisotropy and preferential flow on infiltration process and related to rainfall induced landslides has, according to the authors best knowledge, not been studied yet. Aiming at better understanding the soil hydrological processes which take place during an infiltration process, the stability of a synthetic hill slope is numerically investigated. The geometry we considered for the model is a slope with two different layers: the upper soil layer consists of sandy loam, while the lower soil layer is made out of clay. The geometry was studied using both a single permeability and a dual permeability model. In the first case the hydraulic conductivity at saturation was considered isotropic, equal in all directions. Then the vertical component of the hydraulic conductivity tensor at saturation was reduced, while in the third scenario the horizontal component was reduced. In this way the anisotropy effects on both the principal directions were studied. In the dual permeability model, the influence of the anisotropy was considered only in the preferential flow domain, and the hydraulic conductivity at saturation of the soil matrix domain was defined as being isotropic. In order to evaluate also the effects of rainfall intensity on the slope, two different rainfall events were studied: a low intensity rainfall with a long time duration (2 mmh-1,150 h) and an high intensity rainfall with a short duration (20 mmh-1,15 h). The results show that the anisotropy facilitates the saturation process in the slope and that the vertical component of the soil water flow is set especially in the soil matrix domain, while the lateral component dominates in the preferential flow domain. In some scenarios the patterns of the water content in the unsaturated soil layers suggest the possibility of the onset of a perched water table.
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft is moved across the area toward the upper stage booster at right. The spacecraft and booster will be mated for launch. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers help guide the suspended Phoenix Mars Lander spacecraft toward the upper stage booster in the center. The spacecraft and booster will be mated for launch. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-07-20
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers secure the upper canister to the lower segments surrounding the Phoenix Mars Lander. After the canning, the Phoenix will be transferred to Launch Pad 17-A on Cape Canaveral Air Force Station in Florida for launch on Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
Viability of litter-stored Quercus falcata Michx. acorns after simulated prescribed winter burns
Michael D. Cain; Michael G. Shelton
1998-01-01
Partially stratified (11 days) southern red oak (Quercus falcata Michx.) acorns were placed at three depths in a reconstructed forest floor and subjected to simulated prescribed winter burns. Within the forest floor, acorns were placed within the L layer, at the upper-F/ lower-F interface, and at the lower-F/mineral-soil interface. Winds for a...
Bacteria-to-Archaea ratio depending on soil depth and agrogenic impact
NASA Astrophysics Data System (ADS)
Semenov, Mikhail; Manucharova, Natalia; Kuzyakov, Yakov
2014-05-01
Archaeal communities and their potential roles in the soil ecosystem are affected by a number of soil proprerties and environmental factors. Competitive interactions between Archaea and Bacteria play a particular role in spread and abundance of these two domains. Therefore, the goal of the study was to evaluate the Bacteria-to-Archaea ratio in different soils. The research was carried out at field and natural ecosystems of European part of Russia. Samples were collected within the soil profiles (3-6 horizons) of chernozem and kastanozem with distinctly different agrogenic impact. In situ hybridization with fluorescently labeled rRNA-targeted oligonucleotide probes (FISH) was used to determine the abundance of metabolically active cells of Archaea and Bacteria. The Cmic, Corg, C/N, DNA content and growth characteristics have been analyzed as well. Determination of number of metabolically active cells in chernozem under arable land and forest revealed that abundance of Archaea in topsoil under forest was higher more than 2 times comparing with arable land, but leveled off in the deeper horizons. Plowing of Chernozem decreased amount of archaeal and bacterial active cells simultaneously, however, Bacteria were more resistant to agrogenic impact than Archaea. Determination of the taxonomic composition within Bacteria domain showed a significant decrease in the abundance of phylogenetic groups Firmicutes and Actinobacteria in the topsoil under arable land comparing to the forest, which is the main reason for the declining of the total amount of prokaryotic cells. In kastanozem significant change in the number of metabolically active cells due to plowing was detected only within 40 cm soil layer, and this effect disappeared in lower horizons. The number of Archaea was higher in the upper horizons of arable as compared to virgin soil. Conversely, the number of Bacteria in the upper layers of the soil after plowing kastanozem decreased. Relationship between soil organic carbon content and the amount of soil metabolically active Bacteria and Archaea cells revealed that distribution of both Bacteria and Archaea throughout the soil profile was governed by organic matter content. Thus, the organic matter content seemed to be the main factor of declining Bacteria-to- Archaea ratio down the profile (from 7.1 to 4.2 for virgin soil and from 5 to 3.9 for arable soil). In conclusion, Archaea out-compete Bacteria under conditions of reduced energy supply.
Interflow dynamics on a low relief forested hillslope: Lots of fill, little spill
Du, Enhao; Rhett Jackson, C.; Klaus, Julian; ...
2016-01-27
In this paper, we evaluated the occurrence of perching and interflow over and within a sandy clay loam argillic horizon within first-order, low-relief, forested catchments at the Savannah River Site (SRS) in the Upper Coastal Plain of South Carolina. We measured soil hydraulic properties, depths to the argillic layer, soil moisture, shallow groundwater behavior, interflow interception trench flows, and streamflow over a 4-year period to explore the nature and variability of soil hydraulic characteristics, the argillic “topography”, and their influence on interflow generation. Perching occurred frequently within and above the restricting argillic horizons during our monitoring period, but interflow wasmore » infrequent due to microtopographic relief and associated depression storage on the argillic layer surface. High percolation rates through the argillic horizon, particularly through soil anomalies, also reduced the importance of interflow. Interflow generation was highly variable across eleven segments of a 121 m interception trench. Hillslopes were largely disconnected from stream behavior during storms. Hillslope processes were consistent with the fill-and-spill hypothesis and featured a sequence of distinct thresholds: vertical wetting front propagation to the argillic layer; saturation of the argillic followed by local perching; filling of argillic layer depressions; and finally connectivity of depressions leading to interflow generation. Lastly, analysis of trench flow data indicated a cumulative rainfall threshold of 60 mm to generate interflow, a value at the high end of the range of thresholds reported elsewhere.« less
Interflow dynamics on a low relief forested hillslope: Lots of fill, little spill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Enhao; Rhett Jackson, C.; Klaus, Julian
In this paper, we evaluated the occurrence of perching and interflow over and within a sandy clay loam argillic horizon within first-order, low-relief, forested catchments at the Savannah River Site (SRS) in the Upper Coastal Plain of South Carolina. We measured soil hydraulic properties, depths to the argillic layer, soil moisture, shallow groundwater behavior, interflow interception trench flows, and streamflow over a 4-year period to explore the nature and variability of soil hydraulic characteristics, the argillic “topography”, and their influence on interflow generation. Perching occurred frequently within and above the restricting argillic horizons during our monitoring period, but interflow wasmore » infrequent due to microtopographic relief and associated depression storage on the argillic layer surface. High percolation rates through the argillic horizon, particularly through soil anomalies, also reduced the importance of interflow. Interflow generation was highly variable across eleven segments of a 121 m interception trench. Hillslopes were largely disconnected from stream behavior during storms. Hillslope processes were consistent with the fill-and-spill hypothesis and featured a sequence of distinct thresholds: vertical wetting front propagation to the argillic layer; saturation of the argillic followed by local perching; filling of argillic layer depressions; and finally connectivity of depressions leading to interflow generation. Lastly, analysis of trench flow data indicated a cumulative rainfall threshold of 60 mm to generate interflow, a value at the high end of the range of thresholds reported elsewhere.« less
NASA Astrophysics Data System (ADS)
Otero, X. L.; Lucheta, A. R.; Ferreira, T. O.; Huerta-Díaz, M. A.; Lambais, M. R.
2014-06-01
Even though several studies on the geochemical processes occurring in mangrove soils and sediments have been performed, information on the diversity of Archaea and their functional roles in these ecosystems, especially in subsurface environments, is scarce. In this study, we have analyzed the depth distribution of Archaea and their possible relationships with the geochemical transformations of Fe and Mn in a sediment core from a tropical mangrove creek, using 16S rRNA gene profiling and sequential extraction of different forms of Fe and Mn. A significant shift in the archaeal community structure was observed in the lower layers (90-100 cm), coinciding with a clear decrease in total organic carbon (TOC) content and an increase in the percentage of sand. The comparison of the archaeal communities showed a dominance of methanogenic Euryarchaeota in the upper layers (0-20 cm), whereas Crenarchaeota was the most abundant taxon in the lower layers. The dominance of methanogenic Euryarchaeota in the upper layer of the sediment suggests the occurrence of methanogenesis in anoxic microenvironments. The concentrations of Fe-oxyhydroxides in the profile were very low, and showed positive correlation with the concentrations of pyrite and degrees of Fe and Mn pyritization. Additionally, a partial decoupling of pyrite formation from organic matter concentration was observed, suggesting excessive Fe pyritization. This overpyritization of Fe can be explained either by the anoxic oxidation of methane by sulfate and/or by detrital pyrite tidal transportation from the surrounding mangrove soils. The higher pyritization levels observed in deeper layers of the creek sediment were also in agreement with its Pleistocenic origin.
The temperature characteristics of biological active period of the peat soils of Bakchar swamp
NASA Astrophysics Data System (ADS)
Kiselev, M. V.; Dyukarev, E. A.; Voropay, N. N.
2018-01-01
The results of the study of the peculiarities of the temperature regime in the five basic ecosystems of oligotrophic bogs in the south taiga zone of Western Siberia in 2011-2016 are presented. The soil temperature regime was studied using the atmospheric-soil measuring complex at different depths from surface to 240 cm. All sites were divided into two groups according the bog water level: flooded sites (hollow and open fen) and drained sites (ridge, tall and low ryam). Waterlogged sites are better warmed in the summer period, and slowly freeze in the winter period. The analysis of the annual cycle of temperature showed that the maximum surface temperature is observed in July. The minimum temperature on the surface observed in February or January. The greatest temperature gradient was recorded in the upper 2 cm layer. The gradient at the open fen was -2 °C·cm-1 in February and 1.1 °C·cm-1 in October. The peak of formation of the seasonally frozen layer occurs at the end of autumn, beginning of winter. The degradation of the seasonally frozen layer was observed both from top and bottom, but degradation from the top is faster.
NASA Astrophysics Data System (ADS)
Jastrow, J. D.; Matamala, R.; Ping, C. L.; Vugteveen, T. W.; Lederhouse, J. S.; Michaelson, G. J.; Mishra, U.
2017-12-01
Ice-wedge polygons are ubiquitous, patterned ground features throughout Arctic coastal plains and river deltas. The progressive expansion of ice wedges influences polygon development and strongly affects cryoturbation and soil formation. Thus, we hypothesized that polygon type impacts the distribution and composition of soil organic carbon (C) stocks across the landscape and that such information can improve estimates of permafrost C stocks vulnerable to active layer thickening and increased decomposition due to climatic change. We quantified the distribution of soil C across entire polygon profiles (2-m depth) for three developmental types - flat-centered (FCP), low-centered (LCP), and high-centered (HCP) polygons (3 replicates of each) - formed on glaciomarine sediments within and near the Barrow Environmental Observatory at the northern tip of Alaska. Active layer thickness averaged 45 cm and did not vary among polygon types. Similarly, active layer C stocks were unaffected by polygon type, but permafrost C stocks increased from FCPs to LCPs to HCPs despite greater ice volumes in HCPs. These differences were due to a greater presence of organic horizons in the upper permafrost of LCPs and, especially, HCPs. On average, C stocks in polygon interiors were double those of troughs, on a square meter basis. However, HCPs were physically smaller than LCPs and FCPs, which affected estimates of C stocks at the landscape scale. Accounting for the number of polygons per unit area and the proportional distribution of troughs versus interiors, we estimated permafrost C stocks (2-m depth) increased from 259 Mg C ha-1 in FCPs to 366 Mg C ha-1 in HCPs. Active layer C stocks did not differ among polygon types and averaged 328 Mg C ha-1. We used our detailed polygon profiles to investigate the impact of active layer deepening as projected by Earth system models under future climate scenarios. Because HCPs have a greater proportion of upper permafrost C stocks in organic horizons, permafrost C in areas dominated by this polygon type may be at greater risk for destabilization. Thus, accounting for geospatial distributions of ice-wedge polygon types and associated variations in C stocks and composition could improve observational estimates of regional C stocks and their vulnerability to changing climatic conditions.
Impact of irrigations on simulated convective activity over Central Greece: A high resolution study
NASA Astrophysics Data System (ADS)
Kotsopoulos, S.; Tegoulias, I.; Pytharoulis, I.; Kartsios, S.; Bampzelis, D.; Karacostas, T.
2014-12-01
The aim of this research is to investigate the impact of irrigations in the characteristics of convective activity simulated by the non-hydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW, version 3.5.1), under different upper air synoptic conditions in central Greece. To this end, 42 cases equally distributed under the six most frequent upper air synoptic conditions, which are associated with convective activity in the region of interest, were utilized considering two different soil moisture scenarios. In the first scenario, the model was initialized with the surface soil moisture of the ECMWF analysis data that usually does not take into account the modification of soil moisture due to agricultural activity in the area of interest. In the second scenario, the soil moisture in the upper soil layers of the study area was modified to the field capacity for the irrigated cropland. Three model domains, covering Europe, the Mediterranean Sea and northern Africa (d01), the wider area of Greece (d02) and central Greece - Thessaly region (d03) are used at horizontal grid-spacings of 15km, 5km and 1km respectively. The model numerical results indicate a strong dependence of convective spatiotemporal characteristics from the soil moisture difference between the two scenarios. Acknowledgements: This research is co-financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-2013).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shishi; Wei, Yaxing; Post, Wilfred M
2013-01-01
The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art U.S. STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively,more » of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.« less
Migration of 137Cs in the soil of sloping semi-natural ecosystems in Northern Greece.
Arapis, G D; Karandinos, M G
2004-01-01
In the present study, the 137Cs concentration in the soil of sloping semi-natural ecosystems at four different regions of Western Macedonia in Greece was measured 10 years after the Chernobyl accident. These regions were highly polluted due to the deposition of radionuclides escaped during the accident. The concentrations of 137Cs measured were found to differ significantly among the four regions. The rates of both horizontal and vertical migration in the soil were also evaluated. The vertical migration velocity of 137Cs was found to range from 0.1 to 0.3 cm per year, in the most contaminated areas. Consequently, 10 years following the Chernobyl accident, the bulk of 137Cs deposited over the surface of the studied areas in Greece was found to be restricted in the upper 5 cm layer of soil. Regarding the horizontal migration, in most of the sampling sites, we did not detect any displacement or trend to movement of radiocaesium on the surface from the upper to the lower levels of the slopes. Instead, we recorded decreased concentrations of 137Cs with the decrease of altitude.
Radiative transfer theory for active remote sensing of a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A canopy is modeled as a two-layer medium above a rough interface. The upper layer stands for the forest crown, with the leaves modeled as randomly oriented and distributed disks and needles and the branches modeled as randomly oriented finite dielectric cylinders. The lower layer contains the tree trunks, modeled as randomly positioned vertical cylinders above the rough soil. Radiative-transfer theory is applied to calculate EM scattering from such a canopy, is expressed in terms of the scattering-amplitude tensors (SATs). For leaves, the generalized Rayleigh-Gans approximation is applied, whereas the branch and trunk SATs are obtained by estimating the inner field by fields inside a similar cylinder of infinite length. The Kirchhoff method is used to calculate the soil SAT. For a plane wave exciting the canopy, the radiative-transfer equations are solved by iteration to the first order in albedo of the leaves and the branches. Numerical results are illustrated as a function of the incidence angle.
Depth distribution of cesium-137 in paddy fields across the Fukushima pollution plume in 2013.
Lepage, Hugo; Evrard, Olivier; Onda, Yuichi; Lefèvre, Irène; Laceby, J Patrick; Ayrault, Sophie
2015-09-01
Large quantities of radiocesium were deposited across a 3000 km(2) area northwest of the Fukushima Dai-ichi nuclear power plant after the March 2011 accident. Although many studies have investigated the fate of (137)Cs in soil in the months following the accident, the depth distribution of this radioactive contaminant in rice paddy fields requires further examination after the typhoons that occurred in this region. Such investigations will help minimize potential human exposure in rice paddy fields. Radionuclide activity concentrations, organic content and particle size were analysed in 10 soil cores sampled from paddy fields in November 2013, 20 km north of the Fukushima power plant. Our results demonstrate limited depth migration of (137)Cs with the majority concentrated in the uppermost layers of soils (<5 cm). More than 30 months after the accident, between 46.8 and 98.7% of the total (137)Cs inventories was found within the top 5 cm of the soil surface, despite cumulative rainfall totalling 3300 mm. Furthermore, there were no significant correlations between (137)Cs depth distribution and the other parameters. We attributed the maximum depth penetration of (137)Cs to grass cutting (73.6-98.5% of (137)Cs in the upper 5 cm) and farming operations (tillage - 46.8-51.6% of (137)Cs in the upper 5 cm). As this area is exposed to erosive events, ongoing decontamination works may increase soil erodibility. We therefore recommend the rapid removal of the uppermost - contaminated - layer of the soil after removing the vegetation to avoid erosion of contaminated material during the subsequent rainfall events. Further analysis is required to thoroughly understand the impacts of erosion on the redistribution of radiocesium throughout the Fukushima Prefecture. Copyright © 2015 Elsevier Ltd. All rights reserved.
Availability of hydrogen for lunar base activities
NASA Technical Reports Server (NTRS)
Bustin, Roberta; Gibson, Everett K., Jr.
1992-01-01
Hydrogen will be needed on a lunar base to make water for consumables, to provide fuel, and to serve as a reducing agent in the extraction of oxygen from lunar minerals. This study was undertaken in order to learn more about the abundance and distribution of solar-wind-implanted hydrogen. Hydrogen was found in all samples studied, with concentrations, varying widely depending on soil maturity, grain size, and mineral composition. Seven cores returned from the Moon were studied. Although hydrogen was implanted in the upper surface layer of the regolith, it was found throughout the cores due to micrometeorite reworking of the soil.
NASA Astrophysics Data System (ADS)
Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team
2003-04-01
Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T&P-model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the inter-site variability, regardless whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly time scale we developed a simple T&P&LAI-model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time-step model and explained 50 % of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index.
NASA Astrophysics Data System (ADS)
Wang, Qiufeng; Tian, Jing; Yu, Guirui
2014-05-01
Patterns in the spatial distribution of organisms provide important information about mechanisms that regulate the diversity and complexity of soil ecosystems. Therefore, information on spatial distribution of microbial community composition and functional diversity is urgently necessary. The spatial variability on a 26×36 m plot and vertical distribution (0-10 cm and 10-20 cm) of soil microbial community composition and functional diversity were studied in a natural broad-leaved Korean pine (Pinus koraiensis) mixed forest soil in Changbai Mountain. The phospholipid fatty acid (PLFA) pattern was used to characterize the soil microbial community composition and was compared with the community substrate utilization pattern using Biolog. Bacterial biomass dominated and showed higher variability than fungal biomass at all scales examined. The microbial biomass decreased with soil depths increased and showed less variability in lower 10-20 cm soil layer. The Shannon-Weaver index value for microbial functional diversity showed higher variability in upper 0-10 cm than lower 10-20 cm soil layer. Carbohydrates, carboxylic acids, polymers and amino acids are the main carbon sources possessing higher utilization efficiency or utilization intensity. At the same time, the four carbon source types contributed to the differentiation of soil microbial communities. This study suggests the higher diversity and complexity for this mix forest ecosystem. To determine the driving factors that affect this spatial variability of microorganism is the next step for our study.
Wolters, André; Kromer, Thomas; Linnemann, Volker; Schäffer, Andreas; Vereecken, Harry
2003-04-01
Volatilization from soil and plant surfaces after application is an important source of pesticide residues to the atmosphere. The laboratory photovolatility chamber allows the simultaneous measurement of volatilization and photodegradation of 14C-labeled pesticides under controlled climatic conditions. Both continuous air sampling, which quantifies volatile organic compounds and 14CO2 separately, and the detection of surface-located residues allow for a mass balance of radioactivity. The setup of the photovolatility chamber was optimized, and additional sensors were installed to characterize the influence of soil moisture, soil temperature, and evaporation on volatilization. The modified flow profile in the glass dome of the chamber arising from the use of a high-performance metal bellows pump was measured. Diminished air velocity near the soil surface and a wind velocity of 0.2 m/s in 3 cm height allowed the requirements of the German guideline on assessing pesticide volatilization for registration purposes to be fulfilled. Determination of soil moisture profiles of the upper soil layer illustrated that defined water content in the soil up to a depth of 4 cm could be achieved by water saturation of air. Cumulative volatilization of [phenyl-UL-14C]parathion-methyl ranged from 2.4% under dry conditions to 32.9% under moist conditions and revealed the clear dependence of volatilization on the water content in the top layer.
Ma, Shang-Yu; Yu, Zhen-Wen; Wang, Dong; Zhang, Yong-Li; Shi, Yu
2012-09-01
In the wheat growth seasons of 2009 -2010 and 2010-2011, six border lengths of 10, 20, 40, 60, 80 and 100 m were installed in a wheat field to study the effects of different border lengths for irrigation on the water consumption characteristics and grain yield of wheat. The results showed that with the increasing border length from 10 to 80 m, the irrigation amount and the proportion of irrigation amount to total water consumption amount, the water content in 0-200 cm soil layers and the soil water supply capacity at anthesis stage, as well as the wheat grain yield and water use efficiency increased, while the soil water consumption amount and the water consumption amount of wheat from jointing to anthesis stages as well as the total water consumption amount decreased. At the border length of <80 m, the irrigation amount was smaller, and the water content in upper soil layers was lower, as compared with those at the border length of 80 m, which led to the wheat to absorb more water from deeper soil layers, and thus, the total water consumption increased. At the border length of 100 m, the irrigation amount, soil water consumption amount, and total water consumption amount all increased, and, due to the excessive irrigation amount and the uneven distribution of irrigation water when irrigated once, the 1000-grain mass, grain yield, and water use efficiency decreased significantly, which was not conductive to the water-saving and high-yield cultivation.
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Jerzy; Lipiec, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan
2014-05-01
Due to the large variation of soil moisture in space and in time, obtaining soil water balance with an aid of data acquired from the surface is still a challenge. Microwave remote sensing is widely used to determine the water content in soil. It is based on the fact that the dielectric constant of the soil is strongly dependent on its water content. This method provides the data in both local and global scales. Very important issue that is still not solved, is the soil depth at which radiometer "sees" the incoming radiation and how this "depth of view" depends on water content and physical properties of soil. The microwave emission comes from its entire profile, but much of this energy is absorbed by the upper layers of soil. As a result, the contribution of each layer to radiation visible for radiometer decreases with depth. The thickness of the surface layer, which significantly contributes to the energy measured by the radiometer is defined as the "penetration depth". In order to improve the physical base of the methodology of soil moisture measurements using microwave remote sensing and to determine the effective emission depth seen by the radiometer, a new algorithm was developed. This algorithm determines the reflectance coefficient from Fresnel equations, and, what is new, the complex dielectric constant of the soil, calculated from the Usowicz's statistical-physical model (S-PM) of dielectric permittivity and conductivity of soil. The model is expressed in terms of electrical resistance and capacity. The unit volume of soil in the model consists of solid, water and air, and is treated as a system made up of spheres, filling volume by overlapping layers. It was assumed that connections between layers and spheres in the layer are represented by serial and parallel connections of "resistors" and "capacitors". The emissivity of the soil surface is calculated from the ratio between the brightness temperature measured by the ELBARA radiometer (GAMMA Remote Sensing AG) and the physical temperature of the soil surface measured by infrared sensor. As the input data for S-PM: volumes of soil components, mineralogical composition, organic matter content, specific surface area and bulk density of the soil were used. Water contents in the model are iteratively changed, until emissivities calculated from the S-PM reach the best agreement with emissivities measured by the radiometer. Final water content will correspond to the soil moisture measured by the radiometer. Then, the examined soil profile will be virtually divided into thin slices where moisture, temperature and thermal properties will be measured and simultaneously modelled via S-PM. In the next step, the slices will be "added" starting from top (soil surface), until the effective soil moisture will be equal to the soil moisture measured by ELBARA. The thickness of obtained stack will be equal to desired "penetration depth". Moreover, it will be verified further by measuring the moisture content using thermal inertia. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.
NASA Astrophysics Data System (ADS)
Wei, Y.; Liu, S.; Huntzinger, D. N.; Michalak, A. M.; Post, W. M.; Cook, R. B.; Schaefer, K. M.; Thornton, M.
2014-12-01
The Unified North American Soil Map (UNASM) was developed by Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data has been provided as a resource for use in terrestrial ecosystem modeling of MsTMIP both for input of soil characteristics and for benchmarking model output.
Fire Ecology of Seeds from Rubus Spp.: A Competitor During Natural Pine Regeneration
Michael D. Cain; Michael G. Shelton
1999-01-01
Air-dried blackbeny (Rubus spp.) fruits were placed at three depths in a reconstructed forest floor and subjected to a simulated prescribed summer bum. Within the forest floor, fruits were placed on the L layer, at the upper-F/lower-F interface, and at the lower-F/mineral-soil interface. Wind for a headfire was generated by electric boxfans....
A Drought Index for Forest Fire Control
John J. Keetch; George M. Byram
1968-01-01
The moisture content of the upper soil, as well as that of the covering layer of duff, has an important effect on the fire suppression effort in forest and wildland areas. In certain forested areas of the United States, fires in deep duff fuels are of particular concern to the fire control manager. When these fuels are dry, fires burn deeply, dam-age is excessive, and...
Pleistocene ice-rich yedoma in Interior Alaska
NASA Astrophysics Data System (ADS)
Kanevskiy, M. Z.; Shur, Y.; Jorgenson, T. T.; Sturm, M.; Bjella, K.; Bray, M.; Harden, J. W.; Dillon, M.; Fortier, D.; O'Donnell, J.
2011-12-01
Yedoma, or the ice-rich syngenetic permafrost with large ice wedges, widely occurs in parts of Alaska that were unglaciated during the last glaciation including Interior Alaska, Foothills of Brooks Range and Seward Peninsula. A thick layer of syngenetic permafrost was formed by simultaneous accumulation of silt and upward permafrost aggradation. Until recently, yedoma has been studied mainly in Russia. In Interior Alaska, we have studied yedoma at several field sites (Erickson Creek area, Boot Lake area, and several sites around Fairbanks, including well-known CRREL Permafrost tunnel). All these locations are characterized by thick sequences of ice-rich silt with large ice wedges up to 30 m deep. Our study in the CRREL Permafrost tunnel and surrounding area revealed a yedoma section up to 18 m thick, whose formation began about 40,000 yr BP. The volume of wedge-ice (about 10-15%) is not very big in comparison with other yedoma sites (typically more than 30%), but soils between ice wedges are extremely ice-rich - an average value of gravimetric moisture content of undisturbed yedoma silt with micro-cryostructures is about 130%. Numerous bodies of thermokarst-cave ice were detected in the tunnel. Geotechnical investigations along the Dalton Highway near Livengood (Erickson Creek area) provided opportunities for studies of yedoma cores from deep boreholes. The radiocarbon age of sediments varies from 20,000 to 45,000 yr BP. Most of soils in the area are extremely ice-rich. Thickness of ice-rich silt varies from 10 m to more than 26 m, and volume of wedge-ice reaches 35-45%. Soil between ice wedges has mainly micro-cryostructures and average gravimetric moisture content from 80% to 100%. Our studies have shown that the top part of yedoma in many locations was affected by deep thawing during the Holocene, which resulted in formation of the layer of thawed and refrozen soils up to 6 m thick on top of yedoma deposits. Thawing of the upper permafrost could be related to climate changes during Holocene or to wildfires, or both. The ice-poor layer of thawed and refrozen sediments (gravimetric moisture content usually does not exceed 40%) was encountered in many boreholes below the thin ice-rich intermediate layer (gravimetric moisture content usually exceeds 100%). These two layers separate ice wedges from the active layer and protect them from further thawing. Such structure of the upper permafrost at different yedoma sites of Interior Alaska can explain a relatively rare occurrence of surface features related to yedoma degradation such as thermokarst mounds and erosional gullies developed along ice wedges.
NASA Astrophysics Data System (ADS)
Lehtinen, Taru; Mikkonen, Anu; Zavattaro, Laura; Grignani, Carlo; Baumgarten, Andreas; Spiegel, Heide
2016-04-01
Soil characteristics, nutrients and microbial activity in the deeper soil layers are topics not of-ten covered in agricultural studies since the main interest lies within the most active topsoils and deep soils are more time-consuming to sample. Studies have shown that deep soil does matter, although biogeochemical cycles are not fully understood yet. The main aim of this study is to investigate the soil organic matter dynamics, nutrients and microbial community composition in the first meter of the soil profiles in the long-term maize cropping system ex-periment Tetto Frati, in the vicinity of the Po River in Northern Italy. The trial site lies on a deep, calcareous, free-draining soil with a loamy texture. The following treatments have been applied since 1992: 1) maize for silage with 250 kg mineral N ha-1 (crop residue removal, CRR), 2) maize for grain with 250 kg mineral N ha-1 (crop residue incorporation, CRI), 3) maize for silage with 250 kg bovine slurry N ha-1 (SLU), 4) maize for silage with 250 kg farm yard manure N ha-1 (FYM). Soil characteristics (pH, carbonate content, soil organic carbon (SOC), aggregate stability (WSA)), and nutrients (total nitrogen (Nt), CAL-extractable phos-phorous (P) and potassium (K), potential N mineralisation) were investigated. Bacteri-al community composition was investigated with Ion PGM high-throughput sequencing at the depth of 8000 sequences per sample. Soil pH was moderately alkaline in all soil samples, in-creasing with increasing soil depth, as the carbonate content increased. SOC was significantly higher in the treatments with organic amendments (CRI, SLU and FYM) compared to CRR in 0-25 cm (11.1, 11.6, 14.7 vs. 9.8 g kg-1, respectively), but not in the deeper soil. At 50-75 cm soil depth FYM treatment revealed higher WSA compared to CRR, as well as higher CAL-extractable K (25 and 15 mg kg-1, respectively) and potential N mineralisation (11.30 and 8.78 mg N kg-1 7d-1, respectively). At 75-100 cm soil depth, SLU and FYM had the highest poten-tial N mineralisation. Microbial biomass and bacterial diversity decreased downwards the soil profile. Incorporation of crop residues alone showed no positive impacts on either biomass or diversity, whereas fertilization by FYM instead of mineral fertilizer did. Microbial community composition showed depth-related shifts: Proteobacteria and Actinobacteria dominated the upper layer, whereas Gemmatimonadetes showed the highest relative abundance in the mid-layers and Chloroflexi deeper in the soil profile. The main factor determining soil bacterial community composition in the entire dataset was not the treatments but the layers. Interesting-ly, the surface layers that we expected to be most impacted by the treatments were much more similar to each other, regardless of treatment or block, than samples from the deeper layers were to each other. This means that agricultural practices strongly influence the soil bacterial composition and reduce its wide natural heterogeneity. This calls for continuous efforts to study the deeper soil layers in the numerous long-term field experiments, where mostly the topsoils are currently studied in detail.
Wei, Liangliang; Li, Siliang; Noguera, Daniel R; Qin, Kena; Jiang, Junqiu; Zhao, Qingliang; Kong, Xiangjuan; Cui, Fuyi
2015-06-01
Recycling wastewater treatment plant (WWTP) effluent at low cost via the soil aquifer treatment (SAT), which has been considered as a renewable approach in regenerating potable and non-potable water, is welcome in arid and semi-arid regions throughout the world. In this study, the effect of a coal slag additive on the bulk removal of the dissolved organic matter (DOM) in WWTP effluent during SAT operation was explored via the matrix configurations of both coal slag layer and natural soil layer. Azide inhibition and XAD-resins fractionation experiments indicated that the appropriate configuration designing of an upper soil layer (25 cm) and a mixture of soil/coal slag underneath would enhance the removal efficiency of adsorption and anaerobic biodegradation to the same level as that of aerobic biodegradation (31.7% vs 32.2%), while it was only 29.4% compared with the aerobic biodegradation during traditional 50 cm soil column operation. The added coal slag would preferentially adsorb the hydrophobic DOM, and those adsorbed organics could be partially biodegraded by the biomass within the SAT systems. Compared with the relatively lower dissolved organic carbon (DOC), ultraviolet light adsorption at 254 nm (UV-254) and trihalomethane formation potential (THMFP) removal rate of the original soil column (42.0%, 32.9%, and 28.0%, respectively), SSL2 and SSL4 columns would enhance the bulk removal efficiency to more than 60%. Moreover, a coal slag additive in the SAT columns could decline the aromatic components (fulvic-like organics and tryptophan-like proteins) significantly. Copyright © 2015 Elsevier Ltd. All rights reserved.
Atrazine distribution measured in soil and leachate following infiltration conditions.
Neurath, Susan K; Sadeghi, Ali M; Shirmohammadi, Adel; Isensee, Allan R; Torrents, Alba
2004-01-01
Atrazine transport through packed 10 cm soil columns representative of the 0-10 cm soil horizon was observed by measuring the atrazine recovery in the total leachate volume, and upper and lower soil layers following infiltration of 7.5 cm water using a mechanical vacuum extractor (MVE). Measured recoveries were analyzed to understand the influence of infiltration rate and delay time on atrazine transport and distribution in the column. Four time periods (0.28, 0.8, 1.8, and 5.5 h) representing very high to moderate infiltration rates (26.8, 9.4, 4.2, and 1.4 cm/h) were used. Replicate soil columns were tested immediately and following a 2-d delay after atrazine application. Results indicate atrazine recovery in leachate was independent of infiltration rate, but significantly lower for infiltration following a 2-d delay. Atrazine distribution in the 0-1 and 9-10 cm soil layers was affected by both infiltration rate and delay. These results are in contrast with previous field and laboratory studies that suggest that atrazine recovery in the leachate increases with increasing infiltration rate. It appears that the difference in atrazine recovery measured using the MVE and other leaching experiments using intact soil cores from this field site and the rain simulation equipment probably illustrates the effect of infiltrating water interacting with the atrazine present on the soil surface. This work suggests that atrazine mobilization from the soil surface is also dependent on interactions of the infiltrating water with the soil surface, in addition to the rate of infiltration through the surface soil.
Microbial activity in the profiles of gray forest soil and chernozems
NASA Astrophysics Data System (ADS)
Susyan, E. A.; Rybyanets, D. S.; Ananyeva, N. D.
2006-08-01
Soil samples were taken from the profiles of a gray forest soil (under a forest) and southern chernozems of different textures under meadow vegetation. The microbial biomass (MB) was determined by the method of substrate-induced respiration; the basal respiration (BR) and the population density of microorganisms on nutrient media of different composition were also determined in the samples. The microbial metabolic quotient ( qCO2 = BR/MB) and the portion of microbial carbon (C mic) in C org were calculated. The MB and BR values were shown to decrease down the soil profiles. About 57% of the total MB in the entire soil profile was concentrated in the layer of 0-24 cm of the gray forest soil. The MB in the C horizon of chernozems was approximately two times lower than the MB in the A horizon of these soils. The correlation was found between the MB and the C org ( r = 0.99) and between the MB and the clay content ( r = 0.89) in the profile of the gray forest soil. The C mic/C org ratio in the gray forest soil and in the chernozems comprised 2.3-6.6 and 1.2-9.6%, respectively. The qCO2 value increased with the depth. The microbial community in the lower layers of the gray forest soil was dominated (88-96%) by oligotrophic microorganisms (grown on soil agar); in the upper 5 cm, these microorganisms comprised only 50% of the total amount of microorganisms grown on three media.
Vertical migration of some herbicides through undisturbed and homogenized soil columns
Aktar, Md. Wasim; Sengupta, Dwaipayan; Purkait, Swarnali; Chowdhury, Ashim
2008-01-01
A laboratory experiment was conducted by using three herbicides, two from dinitroaniline group and one from thiocarbamate group to know their degree of downward movement (leachability) through soil columns and their contribution in ground water contamination. Soil columns were loaded with Pendimethalin, Benthiocarb and Oryzalin at doses of 10.0, 10.0 and 7.7 kg/ha, respectively. After 30 days soil samples were analyzed from each segments (i.e. 0–6, 6–12, 12–18, 18–24 and 24–30 cm) for Benthiocarb and Pendimethalin by GLC equipped with Ni63 electron capture detector (ECD) and for Oryzalin by HPLC coupled with UV-VIS detector. The results obtained in the present study reveal that the residues of the three herbicides under investigation were predominantly confined to the upper soil layer (0–6 cm). Comparatively, low mobility of these herbicides in soils could be due to strong adsorption of these chemical to soil colloids. PMID:21218121
Crop effect to soil moisture retrieval at different microwave frequencies
NASA Astrophysics Data System (ADS)
Zhang, Zhongjun; Luan, Jinzhe
2006-12-01
In soil moisture retrieval by microwave remote sensing technology, vegetation effect is important, due to its emission upward as well as masking the soil surface contribution. Because of good penetration characteristics through crop at low frequencies, L-band is often used, where crop is treated as a uniform layer, and 0 th-order Brightness Temperature model is used. Higher frequencies upper than L-band, the frequencies both on NASA AQUA AMSR-E and FY-3 to be launched next year in CHINA, may be more informative in SM retrieval. The multiple-scattering effects inside crop and that between crop layer and soil surface will be increasing when frequencies go higher from L-band. In this paper, a Matrix-Doubling model that account for multiple-scattering based on ray tracing technique is used to simulate the microwave emission of vegetated-surface at C- and X-band. The orientation and size of crop element such as leaves and cylinders are accounted for in crop layer, and AIEM is used for calculation of ground surface scattering. Simulation results from this model for corn and SGP99 experiment data are in good agreement. Since complicated theoretical model as used in this paper involves too many parameters, to make SM retrieval more directly, corresponding terms from the developed model are matched with 0 th-order,so as to derive effective single scattering albedo and vegetation opacity at C- and X-band.
Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher
2014-02-18
Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from undisturbed, background soils emphasizing the important role of soils in sequestering past and current Hg pollution loads.
Yang, Shao-yuan; Huang, Wen-jiang; Liang, Dong; Uang, Lin-sheng; Yang, Gui-jun; Zhang, Gui-jan; Cai, Shu-Hong
2015-07-01
The vertical distribution of crop nitrogen is increased with plant height, timely and non-damaging measurement of crop nitrogen vertical distribution is critical for the crop production and quality, improving fertilizer utilization and reducing environmental impact. The objective of this study was to discuss the method of estimating winter wheat nitrogen vertical distribution by exploring bidirectional reflectance distribution function (BRDF) data using partial least square (PLS) algorithm. The canopy reflectance at nadir, +/-50 degrees and +/- 60 degrees; at nadir, +/- 30 degrees and +/- 40 degrees; and at nadir, +/- 20 degrees and +/- 30 degrees were selected to estimate foliage nitrogen density (FND) at upper layer, middle layer and bottom layer, respectively. Three PLS analysis models with FND as the dependent variable and vegetation indices at corresponding angles as the explicative variables were. established. The impact of soil reflectance and the canopy non-photosynthetic materials, was minimized by seven kinds of modifying vegetation indices with the ratio R700/R670. The estimated accuracy is significant raised at upper layer, middle layer and bottom layer in modeling experiment. Independent model verification selected the best three vegetation indices for further research. The research result showed that the modified Green normalized difference vegetation index (GNDVI) shows better performance than other vegetation indices at each layer, which means modified GNDVI could be used in estimating winter wheat nitrogen vertical distribution
The Trench Throws a Dirt Clod at Scientists
NASA Technical Reports Server (NTRS)
2004-01-01
This picture, obtained by the microscopic imager on NASA's Opportunity rover during sol 24, February 17 PST, shows soil clods exposed in the upper wall of the trench dug by Opportunity's right front wheel on sol 23. The clods were not exposed until the trench was made. The presence of soil clods implies weak bonding between individual soil grains. The chemical agent or mineral that causes the dirt to bind together into a clod, which scientists call the 'bonding agent,' is currently unknown. Moessbauer and alpha particle X-ray spectrometer measurements of this spot, planned for sol 25, might help explain the bonding, which would ultimately help the rover team understand how geological processes vary across the red planet. In any case, the bonds between soil grains here cannot be very strong because the wheel dug down through this layer with little trouble.
Humus in some soils from Western Antarctica
NASA Astrophysics Data System (ADS)
Abakumov, E.
2009-04-01
Soils of Antarctica are well known as a thick profile soils with low amounts of humus concentrated in the upper layers - O or A horizons. Also there are specific soils of seashore landscapes which affected by penguins guano accumulation and, therefore characterized by high stocks of organic matter in solum. These two types of soils were studied during the Western Antarctica part of 53th Russian Antarctic Expedition in 2008 International Polar Year. These rote of expedition was on Polar stations "Russkaya", "Leningradskaya" and "Bellinsgausen" and also two places, not affected by polar men's - Lindsey Island and Hudson mountains (Ross Sea). Typical soils of "Russkaya" and "Leningradskaya" stations was a Cryosoils with low humus content (0,02 - 0,20 %) which was a product of lichens decaying and further humification. The humus profile was not deep and humic substances migration stopped on the 30 cm deeps maximally. Soils of Sub-Antarctica (Bellinsgausen station, King-George Island) show higher portions of humus which maximum was 3,00 % under the mosses. Humus distribution was more gradual through profile due to the higher thickness of active layer and longer period of biological activity. Soils under the penguin's beaches shows big portions of organic matter, in some cases more than 50 % to total soil mass. Humification starts in first years in cases of Sub-Antarctic guano soils and only after 3-7 years of leaching in seashore Antarctic guano-soils. Soils under the guano layers were extremely reached by nitrogen, and in some cases there were not any plants there due to toxicity of guano. This event was more typical for cold seashore soils of Antarctica. In all cases humus consists mostly of fulvic acids and low molecular non-specific organic acids. The CHA/CFA ratio in all cases were lesser than 1,0 and in more that 50 % of cases it was lesser than 0,5. The investigations conducted shows that the stocks of humus in soil of Antarctica are not estimated and till now we didn't know the total stocks of organic matter in automorphous dry plains and valleys and seashore landscapes of this continent.
Loess in Armenia - Stratigraphic findings and palaeoenvironmental indications
NASA Astrophysics Data System (ADS)
Faust, Dominik; Baumgart, Philipp; Meszner, Sascha; Fülling, Alexander; Haubold, Fritz; Sahakyan, Lilit; Meliksetian, Khachatur; Wolf, Daniel
2016-04-01
Current loess research enables us to better understand factors that determine the ways that loess (dust) accumulation and soil formation has responded to the rapid and variable Late Quaternary climatic changes. With the recent discovery of loess-palaeosol sequences in Armenia by our research group we may close a gap between loess records of the Russian Plain and the Caspian Lowlands in northern Iran. Preliminary investigations present encouraging results. Loess-palaeosol sequences of Armenia proved to be especially rewarding due to their thickness (up to 45 m) and the presence of diagnostic tephra layers. The current composite profile is based on 2 individual profile sections and can be considered representative for north-eastern Armenia. Different kinds of pedogenesis have been identified that led to the formation of black chernozemic soils and brownish soils, respectively. Furthermore, polygenetic soil formations as well as characteristic layers of relocated soil material appear. Three well-developed pedocomplexes can be distinguished. First results of environmental magnetic analyses show that an individual magnetic fingerprint could be traced for each sedimentological unit. Considering magnetic properties of the loess, mainly regional Caucasian components could be identified. Furthermore, we realized first luminescence dating pointing to a sedimentation of the upper part of the sequences between 39 ka and 150 ka.
NASA Astrophysics Data System (ADS)
Baughman, C. A.; Mann, D. H.; Verbyla, D.; Valentine, D.; Kunz, M. L.; Heiser, P. A.
2013-12-01
Accumulated organic matter at the ground surface plays an important role in arctic ecosystems. These soil surface organic layers (SSOLs) influence temperature, moisture, and chemistry in the underlying mineral soil and, on a global basis, comprise enormous stores of labile carbon. Understanding the dynamics of SSOLs is prerequisite to modeling the responses of arctic ecosystem processes to climate changes. Here, we ask three questions regarding SSOLs in the Arctic Foothills in northern Alaska: 1) What environmental factors control their spatial distribution? 2) How long do they take to form? 3) What is the relationship between SSOL thickness and mineral soil temperature through the growing season? The best topographically-controlled predictors of SSOL thickness and spatial distribution are duration of sunlight during the growing-season, upslope drainage area, slope gradient, and elevation. SSOLs begin to form within several decades following disturbance but require 500-700 years to reach equilibrium states. Once formed, mature SSOLs lower peak growing-season temperature and mean annual temperature in the underlying mineral horizon by 8° and 3° C respectively, which reduces available growing degree days within the upper mineral soil by nearly 80%. How ongoing climate change in northern Alaska will affect the region's SSOLs is an open and potentially crucial question.
VERTICAL MIGRATION OF RADIONUCLIDES IN THE VICINITY OF THE CHERNOBYL CONFINEMENT SHELTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.; Marra, J.
2011-10-01
Studies on vertical migration of Chernobyl-origin radionuclides in the 5-km zone of the Chernobyl Nuclear Power Plant (ChNPP) in the area of the Red Forest experimental site were completed. Measurements were made by gamma spectrometric methods using high purity germanium (HPGe) detectors with beryllium windows. Alpha-emitting isotopes of plutonium were determined by the measurement of the x-rays from their uranium progeny. The presence of {sup 60}Co, {sup 134,137}Cs, {sup 154,155}Eu, and {sup 241}Am in all soil layers down to a depth of 30 cm was observed. The presence of {sup 137}Cs and {sup 241}Am were noted in the area containingmore » automorphous soils to a depth of 60 cm. In addition, the upper soil layers at the test site were found to contain {sup 243}Am and {sup 243}Cm. Over the past ten years, the {sup 241}Am/{sup 137}Cs ratio in soil at the experimental site has increased by a factor of 3.4, nearly twice as much as would be predicted based solely on radioactive decay. This may be due to 'fresh' fallout emanating from the ChNPP Confinement Shelter.« less
NASA Astrophysics Data System (ADS)
Giniyatullin, K. G.; Valeeva, A. A.; Smirnova, E. V.
2017-08-01
Particle-size distribution in soddy-podzolic and light gray forest soils of the Botanical Garden of Kazan Federal University has been studied. The cluster analysis of data on the samples from genetic soil horizons attests to the lithological heterogeneity of the profiles of all the studied soils. It is probable that they are developed from the two-layered sediments with the upper colluvial layer underlain by the alluvial layer. According to the discriminant analysis, the major contribution to the discrimination of colluvial and alluvial layers is that of the fraction >0.25 mm. The results of canonical analysis show that there is only one significant discriminant function that separates alluvial and colluvial sediments on the investigated territory. The discriminant function correlates with the contents of fractions 0.05-0.01, 0.25-0.05, and >0.25 mm. Classification functions making it possible to distinguish between alluvial and colluvial sediments have been calculated. Statistical assessment of particle-size distribution data obtained for the plow horizons on ten plowed fields within the garden indicates that this horizon is formed from colluvial sediments. We conclude that the contents of separate fractions and their ratios cannot be used as a universal criterion of the lithological heterogeneity. However, adequate combination of the cluster and discriminant analyses makes it possible to give a comprehensive assessment of the lithology of soil samples from data on the contents of sand and silt fractions, which considerably increases the information value and reliability of the results.
Elmi, Abdirashid A; Astatkie, Tess; Madramootoo, Chandra; Gordon, Robert; Burton, David
2005-01-01
The denitrification process and nitrous oxide (N2O) production in the soil profile are poorly documented because most research into denitrification has concentrated on the upper soil layer (0-0.15 m). This study, undertaken during the 1999 and 2000 growing seasons, was designed to examine the effects of water table management (WTM), nitrogen (N) application rate, and depth (0.15, 0.30, and 0.45 m) on soil denitrification end-products (N2O and N2) from a corn (Zea mays L.) field. Water table management treatments were free drainage (FD) with open drains and subirrigation (SI) with a target water table depth of 0.6 m. Fertility treatments (ammonium nitrate) were 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). During both growing seasons greater denitrification rates were measured in SI than in FD, particularly in the surface soil (0-0.15 m) and at the intermediate (0.15-0.30 m) soil depths under N200 treatment. Greater denitrification rates under the SI treatment, however, were not accompanied with greater N2O production. The decrease in N2O production under SI was probably caused by a more complete reduction of N2O to N2, which resulted in lower N2O to (N2O + N2) ratios. Denitrification rate, N2O production and N2O to (N2O + N2) ratios were only minimally affected by N treatments, irrespective of sampling date and soil depth. Overall, half of the denitrification occurred at the 0.15- to 0.30- and 0.30- to 0.45-m soil layers, and under SI, regardless of fertility treatment level. Consequently, sampling of the 0- to 0.15-m soil layer alone may not give an accurate estimation of denitrification losses under SI practice.
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. PMID:28611747
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
NASA Astrophysics Data System (ADS)
Wackett, Adrian; Yoo, Kyungsoo; Cameron, Erin; Klaminder, Jonatan
2017-04-01
Boreal and sub-arctic environments sustain some of the most pristine and fragile ecosystems in the world and house a disproportionate amount of the global soil carbon pool. Although the historical view of soil carbon turnover has focused on the intrinsic molecular structure of organic matter, recent work has highlighted the importance of stabilizing soil carbon on reactive mineral surfaces. However, the rates and mechanisms controlling these processes at high latitudes are poorly understood. Here we explored the biogeochemical impacts of deep-burrowing earthworm species on a range of Fennoscandian forest soils to investigate how earthworms impact soil carbon inventories and organo-mineral associations across boreal and sub-arctic landscapes. We sampled soils and earthworms at six sites spanning almost ten degrees latitude and encompassing a wide range of soil types and textures, permitting simultaneous consideration of how climate and mineralogy affect earthworm-mediated shifts in soil carbon dynamics. Across all sites, earthworms significantly decreased the carbon and nitrogen contents of the upper 10 cm, presumably through consumption of the humus layer and subsequent incorporation of the underlying mineral soil into upper organic horizons. Their mixing of humus and underlying soil also generally increased the proportion of mineral surface area occluded by organic matter, although the extent to which earthworms facilitate such organo-mineral interactions appears to be controlled by soil texture and mineralogy. This work indicates that quantitative measurements of mineral surface area and its extent of coverage by soil organic matter facilitate scaling up of molecular interactions between organic matter and minerals to the level of soil profiles and landscapes. Our preliminary data also strongly suggests that earthworms have profound effects on the fate of soil carbon and nitrogen in boreal and sub-arctic environments, highlighting the need for a better understanding of the joint ecological impacts of warming and indirect disturbances like earthworm introduction by humans to make sound predictions of future ecosystem change and carbon-climate feedbacks.
NASA Astrophysics Data System (ADS)
Köchy, M.; Hiederer, R.; Freibauer, A.
2015-04-01
The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD's bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm-3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of -56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".
An inversion method for retrieving soil moisture information from satellite altimetry observations
NASA Astrophysics Data System (ADS)
Uebbing, Bernd; Forootan, Ehsan; Kusche, Jürgen; Braakmann-Folgmann, Anne
2016-04-01
Soil moisture represents an important component of the terrestrial water cycle that controls., evapotranspiration and vegetation growth. Consequently, knowledge on soil moisture variability is essential to understand the interactions between land and atmosphere. Yet, terrestrial measurements are sparse and their information content is limited due to the large spatial variability of soil moisture. Therefore, over the last two decades, several active and passive radar and satellite missions such as ERS/SCAT, AMSR, SMOS or SMAP have been providing backscatter information that can be used to estimate surface conditions including soil moisture which is proportional to the dielectric constant of the upper (few cm) soil layers . Another source of soil moisture information are satellite radar altimeters, originally designed to measure sea surface height over the oceans. Measurements of Jason-1/2 (Ku- and C-Band) or Envisat (Ku- and S-Band) nadir radar backscatter provide high-resolution along-track information (~ 300m along-track resolution) on backscatter every ~10 days (Jason-1/2) or ~35 days (Envisat). Recent studies found good correlation between backscatter and soil moisture in upper layers, especially in arid and semi-arid regions, indicating the potential of satellite altimetry both to reconstruct and to monitor soil moisture variability. However, measuring soil moisture using altimetry has some drawbacks that include: (1) the noisy behavior of the altimetry-derived backscatter (due to e.g., existence of surface water in the radar foot-print), (2) the strong assumptions for converting altimetry backscatters to the soil moisture storage changes, and (3) the need for interpolating between the tracks. In this study, we suggest a new inversion framework that allows to retrieve soil moisture information from along-track Jason-2 and Envisat satellite altimetry data, and we test this scheme over the Australian arid and semi-arid regions. Our method consists of: (i) deriving time-invariant spatial patterns (base-functions) by applying principal component analysis (PCA) to simulated soil moisture from a large-scale land surface model. (ii) Estimating time-variable soil moisture evolution by fitting these base functions of (i) to the along-track retracked backscatter coefficients in a least squares sense. (iii) Combining the estimated time-variable amplitudes and the pre-computed base-functions, which results in reconstructed (spatio-temporal) soil moisture information. We will show preliminary results that are compared to available high-resolution soil moisture model data over the region (the Australian Water Resource Assessment, AWRA model). We discuss the possibility of using altimetry-derived soil moisture estimations to improve the simulation skill of soil moisture in the Global Land Data Assimilation System (GLDAS) over Australia.
NASA Astrophysics Data System (ADS)
Kiselev, M. V.; Dyukarev, E. A.; Voropay, N. N.
2018-03-01
The work presents the results of the study of the peculiarities of the temperature regime in the five basic ecosystems of oligotrophic bogs in the south taiga zone of Western Siberia in 2011-2016. The soil temperature regime was studied using the atmospheric-soil measuring complex at different depths from surface down to 240 cm. All sites were divided into two groups according to the bog water level: flooded sites (hollow and open fen) and drained sites (ridge, tall and low ryam). The waterlogged sites are better warmed in the summer period and slowly freeze in the winter period. The analysis of the annual cycle of temperature showed that the maximum surface temperature is in July. The minimum temperature on the surface is observed in February or January. The greatest temperature gradient was recorded in the upper 2 cm layer. The gradient at the open fen was -2 °C/cm in February and 1.1 °C/cm in October. The peak of formation of the seasonally frozen layer occurs at the end of autumn or in the beginning of winter. The degradation of the seasonally frozen layer was observed both from top and bottom, but the degradation rate from the top is faster.
NASA Astrophysics Data System (ADS)
Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik
2015-04-01
Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or tannic acid led to a considerable underestimation (up to 90%) of polyphenolic concentrations in peat soils. As hypothesised we found that highly degraded peat contains far lower levels of total polyphenolics (factor 8) and condensed tannins (factor 50) than less decomposed peat. In addition we detected large differences between different plant species with highest polyphenolic contents for the roots of Carex appropinquata that were more than 10-fold higher than Sphagnum spp. (450 mg/g dry mass vs. 39 mg/g dry mass). Despite these differences, we did not find a significant correlation between enzyme activities and peat degradation state, indicating that there is no simple linear relationship between polyphenolic contents and microbial activity.
[Aluminum mobilization models of forest yellow earth in South China].
Xin, Yan; Zhao, Yu; Duan, Lei
2009-07-15
For the application of acidification models in predicting effects of acid deposition and formulating control strategy in China, it is important selecting regionally applicable models of soil aluminum mobilization and determining their parameters. Based on the long-term monitoring results of soil water chemistry from four forested watersheds in South China, the applicability of a range of equilibriums describing aluminum mobilization was evaluated. The tested equilibriums included those for gibbsite, jurbanite, kaolinite, imogolite, and SOM-Al: Results show that the gibbsite equilibrium commonly used in several acidification models is not suitable for the typical forest soil in South China, while the modified empirical gibbsite equation is applicable with pK = - 2.40, a = 1.65 (for upper layer) and pK = - 2.82, a = 1.66 (for lower layers) at only pH > or = 4. Comparing with the empirical gibbsite equation, the other equilibriums do not perform better. It can also be seen that pAl varies slightly with pH decreases at pH < 4, which is unexplainable by any of these suggested equilibriums.
NASA Astrophysics Data System (ADS)
Gao, Bing; Yang, Dawen; Qin, Yue; Wang, Yuhan; Li, Hongyi; Zhang, Yanlin; Zhang, Tingjun
2018-02-01
Frozen ground has an important role in regional hydrological cycles and ecosystems, particularly on the Qinghai-Tibetan Plateau (QTP), which is characterized by high elevations and a dry climate. This study modified a distributed, physically based hydrological model and applied it to simulate long-term (1971-2013) changes in frozen ground its the effects on hydrology in the upper Heihe basin, northeastern QTP. The model was validated against data obtained from multiple ground-based observations. Based on model simulations, we analyzed spatio-temporal changes in frozen soils and their effects on hydrology. Our results show that the area with permafrost shrank by 8.8 % (approximately 500 km2), predominantly in areas with elevations between 3500 and 3900 m. The maximum depth of seasonally frozen ground decreased at a rate of approximately 0.032 m decade-1, and the active layer thickness over the permafrost increased by approximately 0.043 m decade-1. Runoff increased significantly during the cold season (November-March) due to an increase in liquid soil moisture caused by rising soil temperatures. Areas in which permafrost changed into seasonally frozen ground at high elevations showed especially large increases in runoff. Annual runoff increased due to increased precipitation, the base flow increased due to changes in frozen soils, and the actual evapotranspiration increased significantly due to increased precipitation and soil warming. The groundwater storage showed an increasing trend, indicating that a reduction in permafrost extent enhanced the groundwater recharge.
Parameters of microbial respiration in soils of the impact zone of a mineral fertilizer factory
NASA Astrophysics Data System (ADS)
Zhukova, A. D.; Khomyakov, D. M.
2015-08-01
The carbon content in the microbial biomass and the microbial production of CO2 (the biological component of soil respiration) were determined in the upper layer (0-10 cm) of soils in the impact zone of the OJSC Voskresensk Mineral Fertilizers, one of the largest factories manufacturing mineral fertilizers in Russia. Statistical characteristics and schematic distribution of the biological parameters in the soil cover of the impact zone were analyzed. The degree of disturbance of microbial communities in the studied objects varied from weak to medium. The maximum value (0.44) was observed on the sampling plot 4 km away from the factory and 0.5 km away from the place of waste (phosphogypsum) storage. Significantly lower carbon content in the microbial biomass and its specific respiration were recorded in the agrosoddy-podzolic soil as compared with the alluvial soil sampled at the same distance from the plant. The effects of potential soil pollutants (fluorine, sulfur, cadmium, and stable strontium) on the characteristics of soil microbial communities were described with reliable regression equations.
Bhat, Nagesh; Jain, Sandeep; Asawa, Kailash; Tak, Mridula; Shinde, Kushal; Singh, Anukriti; Gandhi, Neha; Gupta, Vivek Vardhan
2015-10-01
As of late, natural contamination has stimulated as a reaction of mechanical and other human exercises. In India, with the expanding industrialization, numerous unsafe substances are utilized or are discharged amid generation as cleans, exhaust, vapours and gasses. These substances at last are blended in the earth and causes health hazards. To determine concentration of fluoride in soils and vegetables grown in the vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan. Samples of vegetables and soil were collected from areas situated at 0, 1, 2, 5, and 10 km distance from the zinc smelter, Debari. Three samples of vegetables (i.e. Cabbage, Onion and Tomato) and 3 samples of soil {one sample from the upper layer of soil (i.e. 0 to 20 cm) and one from the deep layer (i.e. 20 - 40 cm)} at each distance were collected. The soil and vegetable samples were sealed in clean polythene bags and transported to the laboratory for analysis. One sample each of water and fertilizer from each distance were also collected. The mean fluoride concentration in the vegetables grown varied between 0.36 ± 0.69 to 0.71 ± 0.90 ppm. The fluoride concentration in fertilizer and water sample from various distances was found to be in the range of 1.4 - 1.5 ppm and 1.8 - 1.9 ppm respectively. The fluoride content of soil and vegetables was found to be higher in places near to the zinc smelter.
Predatory beetles facilitate plant growth by driving earthworms to lower soil layers.
Zhao, Chuan; Griffin, John N; Wu, Xinwei; Sun, Shucun
2013-07-01
Theory suggests that predators of soil-improving, plant-facilitating detritivores (e.g. earthworms) should suppress plant growth via a negative tri-trophic cascade, but the empirical evidence is still largely lacking. We tested this prediction in an alpine meadow on the Tibetan Plateau by manipulating predatory beetles (presence/absence) and quantifying (i) direct effects on the density and behaviour of earthworms; and (ii) indirect effects on soil properties and above-ground plant biomass. In the absence of predators, earthworms improved soil properties, but did not significantly affect plant biomass. Surprisingly, the presence of predators strengthened the positive effect of earthworms on soil properties leading to the emergence of a positive indirect effect of predators on plant biomass. We attribute this counterintuitive result to: (i) the inability of predators to suppress overall earthworm density; and (ii) the predator-induced earthworm habitat shift from the upper to lower soil layer that enhanced their soil-modifying, plant-facilitating, effects. Our results reveal that plant-level consequences of predators as transmitted through detritivores can hinge on behaviour-mediated indirect interactions that have the potential to overturn predictions based solely on trophic interactions. This work calls for a closer examination of the effects of predators in detritus food webs and the development of spatially explicit theory capable of predicting the occurrence and consequences of predator-induced detritivore behavioural shifts. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
NASA Astrophysics Data System (ADS)
Reichstein, Markus; Rey, Ana; Freibauer, Annette; Tenhunen, John; Valentini, Riccardo; Banza, Joao; Casals, Pere; Cheng, Yufu; Grünzweig, Jose M.; Irvine, James; Joffre, Richard; Law, Beverly E.; Loustau, Denis; Miglietta, Franco; Oechel, Walter; Ourcival, Jean-Marc; Pereira, Joao S.; Peressotti, Alessandro; Ponti, Francesca; Qi, Ye; Rambal, Serge; Rayment, Mark; Romanya, Joan; Rossi, Federica; Tedeschi, Vanessa; Tirone, Giampiero; Xu, Ming; Yakir, Dan
2003-12-01
Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g., leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical nonlinear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content, and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and intersite variability of soil respiration with a mean absolute error of 0.82 μmol m-2 s-1. The parameterized model exhibits the following principal properties: (1) At a relative amount of upper-layer soil water of 16% of field capacity, half-maximal soil respiration rates are reached. (2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. (3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly timescale, we employed the approach by [2002] that used monthly precipitation and air temperature to globally predict soil respiration (T&P model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the intersite variability, regardless of whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly timescale, we developed a simple T&P&LAI model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time step model and explained 50% of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index. Before application at the continental or global scale, this approach should be further tested in boreal, cold-temperate, and tropical biomes as well as for non-woody vegetation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, W.; Edelman, T.; van Beersum, I.
Soil samples were taken from 31 sites near Eindhoven, The Netherlands, mainly along transects of 1 to 15 km from the nearest zinc smelter. Earthworms (Lumbricus rubellus) were taken from the upper 20 cm soil layer and analyzed from accumulation of Cd, Zn, Pb and Cu by atomic absorption spectrophotometry. Cd, Zn, and Pb appeared to be more strongly accumulated by L. rubellus when present in soil with a low pH value. Cu was the only exception in this regard; its uptake by L. rubellus was not significantly influenced by soil pH. The organic matter content of the soil playedmore » a significant role only in the worm uptake of Pb. Soil Pb content, soil pH, and soil organic matter content together accounted for almost 70% of the variance in worm Pb content. The results indicate that L. rubellus accumulates Pb more strongly in soil with a low pH and low organic matter content than in soil with higher values of these parameters. The demonstrated influence of pH and organic matter content on element concentration in earthworms emphasizes the importance of soil factors in governing the entrance of toxic metal elements into the food web. (JMT)« less
Hansen, Aviaja A; Jensen, Lars L; Kristoffersen, Tommy; Mikkelsen, Karina; Merrison, Jonathan; Finster, Kai W; Lomstein, Bente Aa
2009-03-01
Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core, while the number of viable cells was reduced in the upper 15 mm. The number of cultured aerobic bacteria was reduced in the upper 6 mm of the soil core, whereas the community structure of cultured anaerobic bacteria was relatively unaffected by the exposure conditions. As explanations for the observed changes, we propose three causes that might have been working on the biological material either individually or synergistically: (i) UV radiation, (ii) UV-generated reactive oxygen species, and (iii) freeze-thaw cycles. Currently, the production and action of reactive gases is only hypothetical and will be a central subject in future investigations. Overall, we conclude that in a stable environment (no wind-/pressure-induced mixing) biological material is efficiently shielded by a 2 cm thick layer of dust, while it is relatively rapidly destroyed in the surface layer, and that biomolecules like proteins and polynucleotides are more resistant to destruction than living biota.
NASA Astrophysics Data System (ADS)
Hansen, Aviaja A.; Jenson, Lars L.; Kristoffersen, Tommy; Mikkelsen, Karina; Merrison, Jonathan; Finster, Kai W.; Lomstein, Bente Aa.
2009-03-01
Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core, while the number of viable cells was reduced in the upper 15 mm. The number of cultured aerobic bacteria was reduced in the upper 6 mm of the soil core, whereas the community structure of cultured anaerobic bacteria was relatively unaffected by the exposure conditions. As explanations for the observed changes, we propose three causes that might have been working on the biological material either individually or synergistically: (i) UV radiation, (ii) UV-generated reactive oxygen species, and (iii) freeze-thaw cycles. Currently, the production and action of reactive gases is only hypothetical and will be a central subject in future investigations. Overall, we conclude that in a stable environment (no wind-/pressure-induced mixing) biological material is efficiently shielded by a 2 cm thick layer of dust, while it is relatively rapidly destroyed in the surface layer, and that biomolecules like proteins and polynucleotides are more resistant to destruction than living biota.
Lukšienė, Benedikta; Marčiulionienė, Danutė; Rožkov, Andrej; Gudelis, Arūnas; Holm, Elis; Galvonaitė, Audronė
2012-11-15
The impact of the operating Ignalina Nuclear Power Plant (INPP) on the contamination of top soil layer with artificial radionuclides has been studied. Results of the investigation of artificial gamma-ray emitting radionuclide distribution in soil in the vicinity of the INPP and distant regions in Lithuania in 1996-2008 (INPP operational period) show that nowadays (137)Cs remains the most important artificial gamma-ray emitting radionuclide in the upper soil layer. Mean (137)Cs activity concentrations in the top soil layer in the vicinity of the INPP were found to be significantly lower compared to those in remote regions of Varėna and Plungė (~300 km from INPP). In 1996 and 1998 mean (137)Cs activity concentrations were in the range of 28-45 Bq/kg in the nearest vicinity to the INPP, 103 Bq/kg in Varėna and 340 Bq/kg in Plungė region. (137)Cs activity concentrations were 5-20 times lower in meadow soil (4-14 Bq/kg) compared to swamp and forest soil. (60)Co, the INPP origin radionuclide, was detected in samples only in 1996 and 2000, and the activity concentration of (60)Co was found to be in the range from 0.4 to 7.0 Bq/kg at the sampling ground nearest to the INPP. Average annual activity concentrations of the INPP origin (137)Cs and (60)Co in the air and depositions in the INPP region were modeled using Pasquill-Gifford equations. The modeling results of (137)Cs and (60)Co depositional load in the INPP vicinity agree with the experimentally obtained values. Our results provide the evidence that the operation of INPP did not cause any significant contamination in soil surface. Copyright © 2012 Elsevier B.V. All rights reserved.
Wittig, Rüdiger
2008-09-01
High SO(2) concentrations as have been observed over decades in the Ruhr district lead to a remarkable reduction of leaf area in the majority of the characteristic broad-leafed herbs of the Central European beech forests even after only a few months of experimental fumigation. Thus, it is no wonder in the time of high SO(2) pollution, e.g., in the town of Herne (centre of the Ruhr district), that there was not a single beech forest hosting, for instance, Viola reichenbachiana or Anemone nemorosa. As air quality has improved very much over some decades in the Ruhr district, one can expect a recolonisation of the beech forests by the species of former time characteristic for the herb layer. However, one has to consider that only the air pollution was reduced, while soil acidification and contamination with heavy metals and PAH are, on the short run, irreversible. That is why experiments were carried out, considering the question as to whether recolonisation of the forests of the Ruhr district by the aforementioned species is possible and why such a recolonisation up to now has not occurred. The experiments were carried out in a beech forest situated in the centre of the Ruhr district in the City of Herne. The wood anemone (A. nemorosa) was chosen as test plant because of its high frequency in beech forests on loess soils outside the Ruhr district, and its absence in beech forests in the Ruhr district. The experiments with A. nemorosa were carried out in three variants with different soils: (a): soil of the local forests (R); (b): soil of the local forests whose soot layer was removed (r); (c): imported soil from a clean air region far away from the Ruhr district (Odenwald). Survival of rhizomes of A. nemorosa is possible for some years in the soils of the Ruhr district; however, the establishment of a population could not be achieved. The results obtained by the imported soil show that it is no longer air pollution, but the soil which prevents the establishment of a population. Sexual reproduction is rather impossible because of the thick litter layer with which all of the Ruhr district's beech forests are covered. With respect to the unfavourable chemistry of the soil of the Ruhr district and in consideration of the unfavourable attributes of the soot layer, the author expected the following order of the development of shoot numbers: O > r > R. However, the result is: O > R > r. In contrast to the expected result, the soot layer has no negative but slightly positive effects on the implanted rhizomes. A possible explanation is that the soot layer, which is situated immediately below the top soil, prevents the top soil from drying up and thus even protects the rhizomes from desiccation. Also, the possibility has to be considered that the soot layer functions as a nutrient storage area. At present, a survival of the rhizomes of A. nemorosa in the soils of the Ruhr district is temporarily possible but does not lead to the establishment of a permanent population. This only can be achieved by additional sexual reproduction. However, the thick litter layer present in all beech forests of the Ruhr district prevents the establishment of seedlings, i.e., it does not allow sexual reproduction to contribute to the population. The soot layer situated below the litter layer represents a second hindrance for germination. Other than seedlings, rhizomes are not negatively affected by the soot layer but even a slight stabilisation has to be stated. As a reason for this slightly positive effect, a protection of the upper mineral soil from desiccation by the hydrophob soot layer has to be considered. Secondly, the soot layer may serve as a nutrient storage which is of particular importance in acid soils, because acidification generally leads to a leeching of nutrients. To answer these questions, detailed further research is necessary. In order to restore the formerly rich herbaceous layer of the forests of the Ruhr district, experiments (removal of the litter layer; liming; ploughing) should be carried out at broad-scale to solve the question of how the strong negative effects of the established thick raw humus layer can be reduced or even be avoided. When the problem of the humus layer is solved, the beech forests of the Ruhr district today highly impoverished in species will become a vivid ecosystem, rich in flowering herbaceous species and thus much more attractive for the people of the Ruhr district than at present.
PALADYN v1.0, a comprehensive land surface-vegetation-carbon cycle model of intermediate complexity
NASA Astrophysics Data System (ADS)
Willeit, Matteo; Ganopolski, Andrey
2016-10-01
PALADYN is presented; it is a new comprehensive and computationally efficient land surface-vegetation-carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies. The model treats in a consistent manner the interaction between atmosphere, terrestrial vegetation and soil through the fluxes of energy, water and carbon. Energy, water and carbon are conserved. PALADYN explicitly treats permafrost, both in physical processes and as an important carbon pool. It distinguishes nine surface types: five different vegetation types, bare soil, land ice, lake and ocean shelf. Including the ocean shelf allows the treatment of continuous changes in sea level and shelf area associated with glacial cycles. Over each surface type, the model solves the surface energy balance and computes the fluxes of sensible, latent and ground heat and upward shortwave and longwave radiation. The model includes a single snow layer. Vegetation and bare soil share a single soil column. The soil is vertically discretized into five layers where prognostic equations for temperature, water and carbon are consistently solved. Phase changes of water in the soil are explicitly considered. A surface hydrology module computes precipitation interception by vegetation, surface runoff and soil infiltration. The soil water equation is based on Darcy's law. Given soil water content, the wetland fraction is computed based on a topographic index. The temperature profile is also computed in the upper part of ice sheets and in the ocean shelf soil. Photosynthesis is computed using a light use efficiency model. Carbon assimilation by vegetation is coupled to the transpiration of water through stomatal conductance. PALADYN includes a dynamic vegetation module with five plant functional types competing for the grid cell share with their respective net primary productivity. PALADYN distinguishes between mineral soil carbon, peat carbon, buried carbon and shelf carbon. Each soil carbon type has its own soil carbon pools generally represented by a litter, a fast and a slow carbon pool in each soil layer. Carbon can be redistributed between the layers by vertical diffusion and advection. For the vegetated macro surface type, decomposition is a function of soil temperature and soil moisture. Carbon in permanently frozen layers is assigned a long turnover time which effectively locks carbon in permafrost. Carbon buried below ice sheets and on flooded ocean shelves is treated differently. The model also includes a dynamic peat module. PALADYN includes carbon isotopes 13C and 14C, which are tracked through all carbon pools. Isotopic discrimination is modelled only during photosynthesis. A simple methane module is implemented to represent methane emissions from anaerobic carbon decomposition in wetlands (including peatlands) and flooded ocean shelf. The model description is accompanied by a thorough model evaluation in offline mode for the present day and the historical period.
Thermoelectric energy harvesting from diurnal heat flow in the upper soil layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, Scott A.; Dykhuizen, Ronald C.
2012-09-26
We built and tested a subterranean thermoelectric power source that converts diurnal heat flow through the upper soil layer into electricity. This paper describes the operation, design, and performance of the device. Key features of the power source include the use of bismuth-telluride thermopiles optimized for small ΔT and aerogel insulation to minimize thermal losses. The device weighs 0.24 kg and was designed with a flat form factor measuring 12 × 12 × 1.7 cm to facilitate modularity, packing, and assembly into larger arrays. One full year of field testing was performed between June 2009 and May 2010 in Albuquerque,more » New Mexico where the device generated an average power output of 1.1 mW. The season with the highest performance was spring (March–May) while the season of lowest performance was winter (November–January). During May 2010, the device generated an average power of 1.5 mW and a peak power of 9.8 mW at 9.3 V. Ten years of continuous operation at 1.1 mW would yield an energy density and specific energy of 1384 W h/L and 1430 W h/kg respectively, which is competitive with chemical batteries and is orders of magnitude greater than published subterranean and ambient thermoelectric harvesters. Numerical simulations show that performance is sensitive to the thermal properties of the soil and environmental conditions. This class of energy harvester may provide an option for supplemental power, or possibly primary power, for low power remote sensing applications.« less
NASA Astrophysics Data System (ADS)
Abakumov, E.; Mukhametova, N.
2014-07-01
Antarctica is a unique place for soil, biological, and ecological investigations. Soils of Antarctica have been studied intensively during the last century, when different national Antarctic expeditions visited the sixth continent with the aim of investigating nature and the environment. Antarctic investigations are comprised of field surveys mainly in the terrestrial landscapes, where the polar stations of different countries are situated. That is why the main and most detailed soil surveys were conducted in the McMurdo Valleys, Transantarctic Mountains, South Shetland Islands, Larsemann Hills and the Schirmacher Oasis. Our investigations were conducted during the 53rd and 55th Russian Antarctic expeditions in the base of soil pits, and samples were collected in Sub-Antarctic and Antarctic regions. Sub-Antarctic or maritime landscapes are considered to be very different from Antarctic landscapes due to differing climatic and geogenic conditions. Soils of diverse zonal landscapes were studied with the aim of assessing the microbial biomass level, basal respiration rates and metabolic activity of microbial communities. This investigation shows that Antarctic soils are quite diverse in profile organization and carbon content. In general, Sub-Antarctic soils are characterized by more developed humus (sod) organo-mineral horizons as well as by an upper organic layer. The most developed organic layers were revealed in peat soils of King George Island, where its thickness reach, in some cases, was 80 cm. These soils as well as soils formed under guano are characterized by the highest amount of total organic carbon (TOC), between 7.22 and 33.70%. Coastal and continental Antarctic soils exhibit less developed Leptosols, Gleysols, Regolith and rare Ornhitosol, with TOC levels between 0.37 and 4.67%. The metabolic ratios and basal respiration were higher in Sub-Antarctic soils than in Antarctic ones, which can be interpreted as a result of higher amounts of fresh organic remnants in organic and organo-mineral horizons. The soils of King George Island also have higher portions of microbial biomass (max 1.54 mg g-1) compared to coastal (max 0.26 mg g-1) and continental (max 0.22 mg g-1) Antarctic soils. Sub-Antarctic soils differ from Antarctic ones mainly by having increased organic layer thickness and total organic carbon content, higher microbial biomass carbon content, basal respiration, and metabolic activity levels.
Contamination of agricultural lands by polycyclic aromatic hydrocarbons (Tver region, Russia)
NASA Astrophysics Data System (ADS)
Zhidkin, Andrey; Koshovskii, Timur; Gennadiev, Alexander
2016-04-01
It is important to study sources and concentrations of polycyclic aromatic hydrocarbons (PAHs) in the agriculture soils within areas without intensive contaminations. Our studied object was soil and snow cover in the taiga zone (Tver region, Russia). A total of 52 surface (0-30 cm) and 31 subsurface (30-50 cm) soil samples, and 13 snow samples were collected in 35 soil pits, located in forest, crop and layland soils. Studied concentrations of the following 11 individual compounds: two-ring compounds (diphenyl and naphthalene homologues); three-ring compounds (fluorene, phenanthrene, anthracene); four-ring compounds (chrysene, pyrene, tetraphene); five-ring compounds (perylene, benzo[a]pyrene); and six-ring compounds (benzo[ghi]perylene). Analyses made by specrtofluorometry method at the temperature of liquid nitrogen. The total concentrations of all PAHs in soil samples ranged from 9 to 770 ng*g-1 with a median of 96 ng*g-1. The sum of high molecular weight PAHs was significantly lower than the sum of low molecular weight PAHs in the studied soils. The phenanthrene concentration was highest and ranged from 1.2 to 720 ng*g-1 (medium 72 ng*g-1). Compared PAHs reserves in snow cover (μg*m-2) with the reserves in topsoil layer (μg*m-2 in the upper 30 cm). Low molecular weight PAHs (fluorene, phenanthrene, diphenyl, naphthalene) reserves in snow was less than 20% from the reserves in the soil surface layer. High molecular weight PAHs (benzo[a]pyrene, chrysene, perylene, pyrene and tetraphene) reserves in snow was about 50-70% from the reserves in soil surface layer. High molecular weight PAHs (benzo[ghi]perylene and anthracene) reserves in snow was more than in topsoil. PAHs vertical distribution in soil profiles was statistically examined. The total concentration of all PAHs decreased with depth in all studied forest soils. In the arable soils was no significant trend in domination of PAHs total concentrations in the plowing and subsoil layers. The ratio of topsoil to subsoil concentrations of PAHs is different for differ congeners. Contents of phenanthrene and fluorene predominantly increase with the depth. Content of high molecular weight PAHs (benzo[a]pyrene, anthracene, tetraphene, perylene and pyrene) predominantly decreased with the depth. Other PAHs congeners have indistinct profile distributions in studied pits. Based on studied results PAHs divided to associations with different concentrations, sources and vertical distribution in soils: a) phenanthrene and fluorine; b) naphthalene, diphenyl; c) pyrene, benzo(a)pyrene, tetraphene, perylene, chrysene; d) anthracene and benzo(ghi)perylene. Research is funded by Russian Science Foundation (Project 14-27-00083).
Boulyga, Sergei F; Zoriy, Myroslav; Ketterer, Michael E; Becker, J Sabine
2003-08-01
The depth distribution of plutonium, americium, and 137Cs originating from the 1986 accident at the Chernobyl Nuclear Power Plant (NPP) was investigated in several soil profiles in the vicinity from Belarus. The vertical migration of transuranic elements in soils typical of the 30 km relocation area around Chernobyl NPP was studied using inductively coupled plasma mass spectrometry (ICP-MS), alpha spectrometry, and gamma spectrometry. Transuranic concentrations in upper soil layers ranged from 6 x 10(-12) g g(-1) to 6 x 10(-10) g g(-1) for plutonium and from 1.8 x 10(-13) g g(-1) to 1.6 x 10(-11) g g(-1) for americium. These concentrations correspond to specific activities of (239+240)Pu of 24-2400 Bq kg(-1) and specific activity of 241Am of 23-2000 Bq kg(-1), respectively. Transuranics in turf-podzol soil migrate slowly to the deeper soil layers, thus, 80-95%, of radionuclide inventories were present in the 0-3 cm intervals of turf-podzol soils collected in 1994. In peat-marsh soil migration processes occur more rapidly than in turf-podzol and the maximum concentrations are found beneath the soil surface (down to 3-6 cm). The depth distributions of Pu and Am are essentially identical for a given soil profile. (239+240)Pu/137Cs and 241Am/137Cs activity ratios vary by up to a factor of 5 at some sites while smaller variations in these ratios were observed at a site close to Chernobyl, suggesting that 137Cs is dominantly particle associated close to Chernobyl but volatile species of 137Cs are of relatively greater importance at the distant sites.
NASA Astrophysics Data System (ADS)
Tregubova, Valentina; Semal, Victoria; Nesterova, Olga; Yaroslavtsev, Alexis
2017-04-01
The most common soils of the southern Far East are Brownzems under Russian classification (Cambisols), which are the zonal ones, emerging on the steep slopes and tops of hills, on high river terraces under broad-leaved and cedar-broad-leaved forests. Those soils formed due to two processes: organic matter metamorphism and clayization by siallite, leading to the formation of clay-metamorphic horizon Bw. The main morphological features of Cambisols are not deep soil profile (50 - 70 cm), weak horizons differentiation, with lots of cobble. Chemically those soils are low saturated, even in the humus horizon. Distribution of total absorbed bases is mostly accumulative, which is related to the distribution of humus in these soils, and the predominant type of clay fraction distribution of. The only exception are Humic Cambisols and Humic Cambisols Calcic which were formed on redeposited products of limestone rock weathering. Fine-grained deposits are mainly loams with a low content of silt. Silt distribution has an accumulative character with a gradual decrease in the content of silt down from the top of the profile. Layer of fresh leaf fall is very common for the Humic Cambisols surfaces, and under it there is the litter of plant residues with different degrees of decomposition. Accumulative humus horizon is dark gray with brownish tint, thin, from 10 to 15 cm in depth, loose, crumbly, highly penetrated by roots, with a strong granular structure, with aggregates tightly attached to the root hairs, sandy loam or sandy clay loam. The middle horizon is brown, yellowish-brown, divided into sub-horizons, with different color intensity, density, soil texture and amount of cobble. Dystric Cambisols are acidic or strongly acidic with low saturation of soil absorbing complex. Due to amount and distribution of organic matter these soils can be divided into two groups. The first group is soils with accumulative humus distribution: with a low depth humus-accumulative horizon (11 - 12 cm) and high content of organic matter (23 - 26 %); humus in the upper horizons mainly consists of humic acids, while in lower horizons it is with higher ratio of fulvic acids. The second group is soils with a gradual humus distribution along the profile and with a smaller amount of organic matter in the upper horizon (9 - 13 %) and with no differentiation in humus composition. Folic Cambisols are formed on the watershed surfaces, on the steep slopes under pine and oak trees. Under thin litter horizon these soils have organic-accumulative horizon of well decomposed organic matter, but in contrast with Dystric Cambisols it doesn't have strong granular structure. At the bottom the organic horizon is humic-impregnated or has clear streaks of humus. Humic Cambisols are formed in the lower parts of slopes, on steep slopes and high river terraces under pine and deciduous forests. All this soils have humified litter horizon, which is up to 7 cm in depth, weak differentiation of the soil profile, deep humus-accumulative horizon (18 - 31 cm) with dark gray, almost black color, with strong granular structure and loam or clay loam texture. Soil acidity is determined by the lithogenic basis. Base saturation is quite high (77 - 90%) in mineral horizons and is up to 70 % in organic and accumulative ones. There is a high amount of humus on the entire profile (5 - 16 %), which consists of humic acids in the upper half of the profile and of fulvates at the bottom. Humic Cambisols Gleyic are located in the lower parts of gentle slopes under mixed forest. Due to higher moisture at the lower parts of slopes this soils have signs of weak gley process in dense subsoil horizons in the form of small light grey spots. Humic Leptosols are weakly developed soils formed on rocky hills, boulders, rocky outcrops, under thick moss layer, under which is a layer of weathered gravel rock. Humic Cambisols (Calcic) are formed on the surface sediments of limestone. They have a deep soil profile, up to 40 cm and it's humus-accumulative horizon is dark gray or black, gradually passing into soil-forming rock. Bw horizon, typical for Cambisols, is weak.
Zhu, Juntao; Zhang, Yangjian; Liu, Yaojie
2016-06-15
Grazing exclusion (GE) has been widely considered as an effective avenue for restoring degraded grasslands throughout the world. GE, via modifying abiotic and biotic environments, inevitably affects phenological development. A five-year manipulative experiment was conducted in a Tibetan alpine meadow to examine the effects of GE on phenological processes and reproductive success. The study indicated that GE strongly affected phenological development of alpine plant species. Specifically, the low-growing, shallow-rooted species (LSS), such as Kobresia pygmaea, are more sensitive to GE-caused changes on upper-soil moisture and light. GE advanced each phonological process of K. pygmaea, except in the case of the treatment of fencing for 5 years (F5), which postponed the reproductive stage and lowered the reproductive success of K. pygmaea. Increased soil moisture triggered by GE, especially in the upper soil, may stimulate growth of LSS. However, the thick litter layer under the F5 treatment can influence the photoperiod of LSS, resulting in suppression of its reproductive development. These findings indicate that plant traits associated with resource acquisition, such as rooting depth and plant height, mediate plant phenology and reproductive responses to grazing exclusion treatments.
Investigations on soil organic carbon stocks and active layer thickness in West Greenland
NASA Astrophysics Data System (ADS)
Gries, Philipp; Wagner, Julia; Kandolf, Lorenz; Henkner, Jessica; Kühn, Peter; Scholten, Thomas; Schmidt, Karsten
2017-04-01
The soil organic carbon (SOC) pool in the first 300 cm of arctic soils includes about 50 % of the estimated global terrestrial belowground organic carbon, which makes about 1024 Pg C and up to 496 Pg within the upper permafrost one meter. Being a sensible ecosystem, the Arctic is sensitive to climate change. Hence, thawing of permafrost-affected soils to greater depth and for longer periods increases the release of CO2 and CH4 to the atmosphere, which queries soils as an important carbon pool. Especially in arctic environments, sparse soil data and limited knowledge of soil processes cause underestimation of SOC stocks. Due to different regional climatic conditions, changing soil-environmental conditions result in varying soil organic carbon contents in Greenland. In West Greenland, coastal oceanic conditions turn into continental climate at the ice margin showing less precipitation, higher insolation and increasing permafrost thickness. The objectives of this study are (i) to determine SOC stocks and active layer thickness (ALT), (ii) to identify main environmental factors influencing SOC stocks and ALT, and (iii) to specify differences of SOC stocks, ALT and influencing factors induced by a climatic trend in West Greenland. Respecting different climatic conditions, one study area is situated next to the ice margin in the Kangerlussuaq area and the second one is located near Sisimiut at the coast. Both study areas (2 km2) are representative for each region and have similar environmental settings. Soil samples were taken from depth increments (0-25, 25-50, 50-100, and 100-200 cm) at 80 sampling locations in each study area. Additionally, we addressed soil moisture content (TDR-measurements), ALT, and soil horizons, vegetation (types, coverage), and terrain characteristics (aspect, geomorphology) at each sampling point. As a preliminary result, at the coast the average SOC stock is 13.1 kg/m2 in the upper 25 cm and about 35.9 kg/m2 in the first 200 cm. The amount of SOC stocks is slightly connected to terrain with higher values at depressions and decreasing values upslope. We assume for the Sisimiut area that south (SE, S, SW) facing areas have high SOC stocks due to higher biomass production because of higher insolation. In both study areas, plant growth, aspect, and soil moisture affect the amount of ALT, which is low beneath dense and tall dwarf shrub vegetation on flat plains and depressions having high soil moisture contents. At north facing slopes, absence of direct insolation results in low ALT less than 14 cm at the Kangerlussuaq study area. Soil moisture content, ALT and occurrence of permafrost as well as vegetation type and coverage reflect the climatic trend from the coast to the ice margin in West Greenland.
Nóvoa-Muñoz, J C; Pontevedra-Pombal, X; Martínez-Cortizas, A; García-Rodeja Gayoso, E
2008-05-15
This study was carried out to determine total Hg concentrations (HgT) in acid soils and main plant species in forest ecosystems located in the river Sor catchment, which is located 20 km to the NE of the biggest coal-fired power-plant in southwestern Europe (Galicia, NW Spain). Mercury enrichment factors and Hg inventories were also determined in the soils, which were regularly sampled between 1992 and 2001. The presence of elemental Hg was estimated by simple thermal desorption at 105 degrees C. The highest HgT concentrations occurred in upper soil layers (O and A horizons) with values up to 300 ng g(-1). HgT decreased with depth, achieving the lowest values in the bottommost horizons (i.e. the soil parent material, <6 ng g(-1)), except in podzolic soils. A similar trend occurred for Hg enrichment factors (HgEF) which showed values from 40 to 76 in topsoils. Upper soil mineral horizons (A or AB) made the largest contribution (>50%) to the HgT inventory despite showing lower concentrations than the organic horizons. The role of vegetation in capturing atmospheric Hg and subsequent deposition to soil agrees with the sequence of HgT in plant material: wood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulson, S.; Hodkinson, I.D.; Stathdee, A.
1993-01-01
Small polythene tents were used to simulate the effects of climate warming on two contrasting vegetation types (polar semi-desert and tundra heath) at Ny Alesund, Spitzbergen, Svalbard. Temperature microclimates are compared within and without tents and between sites with contrasting vegetation types. Summer temperatures were increased by about 5[degrees]C in the vegetation mat and by about 2[degrees]C in the soil at 3 cm depth. Cumulative day degrees above zero were enhanced by around 35% in the vegetation and by around 9% in the soil. Soil temperatures were greatly influenced by the nature of the overlying vegetation, which at one ofmore » the sites appeared to act as an efficient thermal insulator, preventing heat conductance into the soil from above and enhancing thermal contact between the upper soil layer and the cooling permafrost below. The significance of the observed temperature differences for the ecology of the plants and invertebrates is discussed. 21 refs., 3 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Wang, Qingfeng; Jin, Huijun; Zhang, Tingjun; Cao, Bin; Peng, Xiaoqing; Wang, Kang; Xiao, Xiongxin; Guo, Hong; Mu, Cuicui; Li, Lili
2017-09-01
Observation data of the hydrothermal processes in the active layer are vital for the verification of permafrost formation and evolution, eco-hydrology, ground-atmosphere interactions, and climate models at various time and spatial scales. Based on measurements of ground temperatures in boreholes, of temperatures and moisture contents of soils in the active layer, and of the mean annual air temperatures at the Qilian, Yeniugou and Tuole meteorological stations in the upper Heihe River Basin (UHRB) and the adjacent areas, a series of observations were made concerning changes in the lower limit of permafrost (LLP) and the related hydrothermal dynamics of soils in the active layer. Because of the thermal diode effect of peat soils, the LLP (at 3600 m) was lower on the northern slope of the Eboling Mountains at the eastern branch of the UHRB than that (at 3650-3700 m) on the alluvial plain at the western branch of the UHRB. The mean temperature of soils at depths of 5 to 77 cm in the active layer on peatlands was higher during periods with subzero temperatures and lower during periods with above-zero temperatures in the vicinity of the LLP on the northern slope of the Eboling Mountains than those at the LLP at the western branch of the UHRB. The thawing and downward freezing rates of soils in the active layer near the LLP on the northern slope of the Eboling Mountains were 0.2 and 1.6 times those found at the LLP at the western branch of the UHRB. From early May to late August, the soil water contents at the depths of 20 to 60 cm in the active layer near the LLP on the northern slope of the Eboling Mountains were significantly lower than those found at the LLP at the western branch of the UHRB. The annual ranges of soil temperatures (ARSTs), mean annual soil temperatures (MASTs) in the active layer on peatlands, and the mean annual ground temperature (MAGT) at a depth of 14 m of the underlying permafrost were all significantly lower near the LLP on the northern slope of the Eboling Mountains. Moreover, the thermophysical properties of peat soils and high moisture contents in the active layer on peatlands resulted in the lower soil temperatures in the active layer close to the LLP on the northern slope of the Eboling Mountains than those found at the LLP at the western branch of the UHRB in the warm season, especially at the deeper depths (20-77 cm). They also resulted in the smaller freezing index (FI) and thawing index (TI) and larger FI/TI ratios of soils at the depths of 5 to 77 cm in the active layer near the LLP on the northern slope of the Eboling Mountains. In short, peatlands have unique thermophysical properties for reducing heat absorption in the warm season and for limiting heat release in the cold season as well. However, the permafrost zone has shrunk by 10-20 km along the major highways at the western branch of the UHRB since 1985, and a medium-scale retrogressive slump has occurred on the peatlands on the northern slope of the Eboling Mountains in recent decades. The results can provide basic data for further studies of the hydrological functions of different landscapes in alpine permafrost regions. Such studies can also enable evaluations and forecasts the hydrological impacts of changing frozen ground in the UHRB and of other alpine mountain regions in West China.
NASA Astrophysics Data System (ADS)
Mozharova, Nadezhda; Lebed-Sharlevich, Iana; Kulachkova, Svetlana
2014-05-01
Rapid urbanization and expansion of city borders lead to development of new areas, often following with relief changes, covering of gully-ravine systems and river beds with technogenic grounds containing construction and municipal waste. Decomposition of organic matter in these grounds is a source of methane and carbon dioxide. Intensive generation and accumulation of CO2 and CH4 into grounds may cause a fire and explosion risk for constructed objects. Gases emission to the atmosphere changes the global balance of GHGs and negatively influences on human health. The aim of this investigation is to study gas-geochemical condition and ecological functions of urban soils in areas with gas generating grounds. Studied areas are the gully-ravine systems or river beds, covered with technogenic grounds during land development. Stratigraphic columns of these grounds are 5-17 meters of man-made loamy material with inclusion of construction waste. Gas generating layer with increased content of organic matter, reductive conditions and high methanogenic activity (up to 1.0 ng*g-1*h-1) is situated at the certain depth. Maximum CH4 and CO2 concentrations in this layer reach dangerous values (2-10% and 11%, respectively) in the current standards. In case of disturbance of ground layer (e.g. well-drilling) methane is rapidly transferred by convective flux to atmosphere. The rate of CH4 emission reaches 100 mg*m-2*h-1 resulting in its atmospheric concentration growth by an order of magnitude compared with background. In normal occurrence of grounds methane gradually diffuses into the upper layers by pore space, consuming on different processes (e.g. formation of organic matter, nitrogen compounds or specific particles of magnetite), and emits to atmosphere. CH4 emission rate varies from 1 to 40 mg*m-2*h-1 increasing with depth of grounds. Carbon dioxide emission is about 100 mg*m-2*h-1. During soil formation on gas generating grounds bacterial oxidation of methane, one of the most important ecological functions of such soils, is initiated. Due to high rate of this process (25-30 ng*g-1*h-1) accumulation of methane in the profile does not observed, its content in soil averages 2-5 ppm. Methane emission from soils is low (0.01-0.03 mg*m-2*h-1) or there is a weak consumption of atmospheric CH4, whereby its concentration in the air corresponds to the average content of this gas. Active methane oxidation and decomposition of organic matter under aerobic conditions result to intensive formation of carbon dioxide and, thus, increase its emission (600 mg*m-2*h-1), concentration in soils (0.2-0.9%) and in atmosphere (up to 0.5%). Fixed concentration of CO2 in the air is dangerous for human health. Thus, presence of gas generating grounds with high content of organic matter leads to methane formation, causing its intensive emission to atmosphere. At upper layers of soils and grounds bacterial oxidation of methane occurs and results in complete CH4 utilization. During this process significant amounts of carbon dioxide are released and accumulated in the atmosphere up to concentration dangerous for people. Carbon dioxide emission increases current level of this gas in the urban atmosphere.
The effect of Bahiagrass roots on soil erosion resistance of Aquults in subtropical China
NASA Astrophysics Data System (ADS)
Ye, Chao; Guo, Zhonglu; Li, Zhaoxia; Cai, Chongfa
2017-05-01
Herbaceous species, especially their roots, are believed to have an important role in enhancing soil strength and protecting soil against erosion. This study evaluated the effects of root distribution characteristics on soil shear resistance and soil detachment rates, correlations among root mechanical properties, root chemical composition and root parameters, and whether the Wu-Waldron model can accurately estimate soil reinforcement by roots. Bahiagrass (Paspalum notatum) was planted in planter boxes by overlapping four rectangle frames (0.4 × 0.1 × 0.1 m). A series of laboratory tests of direct shear strength and soil detachment were conducted on two soils that were derived from granite and shale with different soil depths and sowing densities. The results indicated that soil aggregate stability was positively correlated with root characteristics. Over 70% of the total measured root parameters were distributed in the upper 20 cm of the soil, and they decreased with increasing soil depth and decreasing sowing density. The tensile properties (root tensile strength and root tensile force) were significantly correlated with root diameter. The contents of root main chemical compositions were significantly correlated with root diameter while hemicellulose showed no obvious trend with root diameter (P = 0.12). Root tensile strength and root tensile force were also significantly correlated with the contents of these four compositions, except hemicellulose. The relative soil detachment demonstrated a significant negative correlation with root parameters with sowing densities from 5 to 30 g m- 2, and it remained at a relatively low value when the sowing density was > 20 g m- 2. The soil detachment rate, erodibility factor and critical flow shear stress were well correlated with the root area ratio, sowing density, and soil depth. The Wu-Waldron model was found to be inappropriate for these soils, as it overestimated additional soil shear strength due to roots by 152-366% in the upper 20 cm, and 11-48% in deeper soil layers. This study demonstrated that the root area ratio was a more suitable root characteristic parameter that contributes to soil reinforcement.
Microbiomes structure and diversity in different horizons of full soil profiles
NASA Astrophysics Data System (ADS)
Chernov, Timofey; Tkhakakhova, Azida; Zhelezova, Alena; Semenov, Mikhail; Kutovaya, Olga
2017-04-01
Topsoil is a most common object for soil metagenomic studies; sometimes soil profile is being formally split in layers by depth. However, Russian Soil Science School formulated the idea of soil profile as a complex of soil horizons, which can differ in their properties and genesis. In this research we analyzed 57 genetic soil horizons of 8 different soils from European part of Russia: Albeluvisol, Greyzemic Phaeozem, three Chermozems (different land use - till, fallow, wind-protecting tree line), Rhodic Cambisol, Haplic Kastanozem and Salic Solonetz (WRB classification). Sampling was performed from all genetic horizons in each soil profile starting from topsoil until subsoil. Total DNA was extracted and 16S rRNA sequencing was provided together with chemical analysis of soil (pH measurement, C and N contents, etc.). Structure and diversity of prokaryotic community are significantly different in those soil horizons, which chemical properties and processes of origin are contrasting with nearest horizons: Na-enriched horizon of Solonetz, eluvial horizon of Albeluvisol, plough pan of Agrochernozem. Actinobacteria were abundant in top horizons of soils in warm and dry climate, while Acidobacteria had the highest frequency in soils of moist and cold regions. Concerning Archaea, Thaumarchaeota prevailed in all studied soils. Their rate was higher in microbiomes of upper horizons of steppe soils and it was reducing with depth down the profile. Prokaryotic communities in Chernozems were clustered by soil horizons types: microbiomes of A (organic topsoil) and B (mineral) horizons formed non-overlapping clusters by principal component analysis, cluster formed by prokaryotic communities of transitional soil horizons (AB) take place between clusters of A and B horizons. Moreover, prokaryotic communities of A horizons differ from each other strongly, while microbiomes of B horizons formed a narrow small cluster. It must be explaned by more diverse conditions in upper A horizons. Thus, ecological differences between soil horizons are important factor of differentiation of prokaryotic communities in soil profile; their structure can be specific for horizon type. This study was supported by Russian Science Foundation, project no. 14-26-00079
Stahl, Clément; Hérault, Bruno; Rossi, Vivien; Burban, Benoit; Bréchet, Claude; Bonal, Damien
2013-12-01
Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.
Wei, Jianbing; Feng, Hao; Cheng, Quanguo; Gao, Shiqian; Liu, Haiyan
2017-02-01
The objective of this study was to test the hypothesis that environmental regulators of riparian zone soil denitrification potential differ according to spatial scale within a watershed; consequently, a second objective was to provide spatial strategies for conserving and restoring the purification function of runoff in riparian ecosystems. The results show that soil denitrification in riparian zones was more heterogeneous at the profile scale than at the cross-section and landscape scales. At the profile scale, biogeochemical factors (including soil total organic carbon, total nitrogen, and nitrate-nitrogen) were the major direct regulators of the spatial distribution of soil denitrification enzyme activity (DEA). At the cross-section scale, factors included distance from river bank and vegetation density, while landscape-scale factors, including topographic index, elevation, and land use types, indirectly regulated the spatial distribution of DEA. At the profile scale, soil DEA was greatest in the upper soil layers. At the cross-section scale, maximum soil DEA occurred in the mid-part of the riparian zone. At the landscape scale, soil DEA showed an increasing trend towards downstream sites, except for those in urbanized areas.
Effect of long-term irrigation patterns on phosphorus forms and distribution in the brown soil zone.
Liu, Chang; Dang, Xiuli; Mayes, Melanie A; Chen, Leilei; Zhang, Yulong
2017-01-01
Continuous application of P fertilizers under different irrigation patterns can change soil phosphorus (P) chemical behavior and increase soil P levels that are of environmental concern. To assess the effect of long-term different irrigation patterns on soil P fractions and availability, this study examined sequential changes in soil organic P and inorganic P from furrow irrigation (FI), surface drip irrigation (SUR), and subsurface drip irrigation (SDI) in the brown soil zone (0-60 cm) during 1998 to 2011. Analyses of soil P behavior showed that the levels of total P are frequently high on top soil layers. The total P (TP) contents of the entire soil profiles under three irrigation treatments were 830.2-3180.1 mg/kg. The contents of available P (AP) were 72.6-319.3 mg P/kg soil through soil profiles. The greatest TP and AP contents were obtained within the upper soil layers in FI. Results of Hedley's P fractionation indicate that HCl-P is a dominant form and the proportion to TP ranges from 29% to 43% in all three methods. The contents of various fractions of P were positively correlated with the levels of total carbon (TC), total inorganic carbon (TIC), and calcium (Ca), whereas the P fractions had negative correlation with pH in all soil samples. Regression models proved that NaHCO3-Po was an important factor in determining the amount of AP in FI. H2O-Po, NaHCO3-Po, and NaOH-Pi were related to available P values in SUR. NaHCO3-Po and NaOH-Po played important roles in SDI. The tomato yield under SUR was higher than SDI and FI. The difference of P availability was also controlled by the physicochemical soil properties under different irrigation schedule. SUR was a reasonable irrigation pattern to improve the utilization efficiency of water and fertilizer.
Plamboeck, A H; Grip, H; Nygren, U
1999-05-01
Little is known about the vertical distribution of water uptake by trees under different water supply regimes, the subject of this study, conducted in a Scots pine stand on sandy loam in northern Sweden. The objective was to determine the water uptake distribution in pines under two different water regimes, desiccation (no precipitation) and irrigation (2 mm day -1 in July and 1 mm day -1 in August), and to relate the uptake to water content, root and soil texture distributions. The natural 18 O gradient in soil water was exploited, in combination with two added tracers, 2 H at 10 cm and 3 H at 20 cm depth. Extraction of xylem sap and water from the soil profile then enabled evaluation of relative water uptake from four different soil depths (humus layer, 0-10, 10-25 and 25-55 cm) in each of two 50-m 2 plots per treatment. In addition, water content, root biomass and soil texture were determined. There were differences in vertical water uptake distribution between treatments. In July, the pines at the irrigated and desiccated plots took up 50% and 30%, respectively, of their water from the upper layers, down to 25 cm depth. In August, the pines on the irrigated plots took up a greater proportion of their water from layers below 25 cm deep than they did in July. In a linear regression, the mean hydraulic conductivity for each mineral soil horizon explained a large part of the variation in relative water uptake. No systematic variation in the residual water uptake correlated to the root distribution. It was therefore concluded that the distribution of water uptake by the pines at Åheden was not a function of root density in the mineral soil, but was largely determined by the unsaturated hydraulic conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Kaye S.; Zhu, Wenyi; Barnett, Mark O.
2013-05-13
Experimental approach Column experiments were devised to investigate the role of changing fluid composition on mobility of uranium through a sequence of geologic media. Fluids and media were chosen to be relevant to the ground water plume emanating from the former S-3 ponds at the Oak Ridge Integrated Field Research Challenge (ORIFC) site. Synthetic ground waters were pumped upwards at 0.05 mL/minute for 21 days through layers of quartz sand alternating with layers of uncontaminated soil, quartz sand mixed with illite, quartz sand coated with iron oxides, and another soil layer. Increases in pH or concentration of phosphate, bicarbonate, ormore » acetate were imposed on the influent solutions after each 7 pore volumes while uranium (as uranyl) remained constant at 0.1mM. A control column maintained the original synthetic groundwater composition with 0.1mM U. Pore water solutions were extracted to assess U retention and release in relation to the advective ligand or pH gradients. Following the column experiments, subsamples from each layer were characterized using microbeam X-ray absorption spectroscopy (XANES) in conjunction with X-ray fluorescence mapping and compared to sediment core samples from the ORIFC, at SSRL Beam Line 2-3. Results U retention of 55-67mg occurred in phosphate >pH >control >acetate >carbonate columns. The mass of U retained in the first-encountered quartz layer in all columns was highest and increased throughout the experiment. The rate of increase in acetate- and bicarbonate-bearing columns declined after ligand concentrations were raised. U also accumulated in the first soil layer; the pH-varied column retained most, followed by the increasing-bicarbonate column. The mass of U retained in the upper layers was far lower. Speciation of U, interpreted from microbeam XANES spectra and XRF maps, varied within and among the columns. Evidence of minor reduction to U(IV) was observed in the first-encountered quartz layer in the phosphate, bicarbonate, and pH columns while only U(VI) was observed in the control and acetate columns. In the soil layer, the acetate and bicarbonate columns both indicate minor reduction to U(IV), but U(VI) predominated in all columns. In the ORIFC soils, U was consistently present as U(VI); sorption appears to be the main mechanism of association for U present with Fe and/or Mn, while U occurring with P appears in discrete particles consistent with a U mineral phase. U in soil locations with no other elemental associations shown by XRF are likely uranium oxide phases.« less
Baidoo, Richard; Mengistu, Tesfamariam Mekete; Brito, Janete A; McSorley, Robert; Stamps, Robert H; Crow, William T
2017-09-01
Pasteuria penetrans is considered as the primary agent responsible for soil suppressiveness to root-knot nematodes widely distributed in many agricultural fields. A preliminary survey on a Pittosporum tobira field where the grower had experienced a continuous decline in productivity caused by Meloidogyne incognita showed that the nematode was infected with Pasteuria penetrans . For effective control of the nematode, the bacterium and the host must coexist in the same root zone. The vertical distribution of Pasteuria penetrans and its relationship with the nematode host in the soil was investigated to identify (i) the vertical distribution of P. penetrans endospores in an irrigated P. tobira field and (ii) the relationship among P. penetrans endospore density, M. incognita J2 population density, and host plant root distribution over time. Soil bioassays revealed that endospore density was greater in the upper 18 cm of the top soil compared with the underlying depths. A correlation analysis showed that the endospore density was positively related to the J2 population density and host plant root distribution. Thus, the vertical distribution of P. penetrans was largely dependent on its nematode host which in turn was determined by the distribution of the host plant roots. The Pasteuria was predominant mostly in the upper layers of the soil where their nematode host and the plant host roots are abundant, a factor which may be a critical consideration when using P. penetrans as a nematode biological control agent.
Baidoo, Richard; Mengistu, Tesfamariam Mekete; Brito, Janete A.; McSorley, Robert; Stamps, Robert H.; Crow, William T.
2017-01-01
Pasteuria penetrans is considered as the primary agent responsible for soil suppressiveness to root-knot nematodes widely distributed in many agricultural fields. A preliminary survey on a Pittosporum tobira field where the grower had experienced a continuous decline in productivity caused by Meloidogyne incognita showed that the nematode was infected with Pasteuria penetrans. For effective control of the nematode, the bacterium and the host must coexist in the same root zone. The vertical distribution of Pasteuria penetrans and its relationship with the nematode host in the soil was investigated to identify (i) the vertical distribution of P. penetrans endospores in an irrigated P. tobira field and (ii) the relationship among P. penetrans endospore density, M. incognita J2 population density, and host plant root distribution over time. Soil bioassays revealed that endospore density was greater in the upper 18 cm of the top soil compared with the underlying depths. A correlation analysis showed that the endospore density was positively related to the J2 population density and host plant root distribution. Thus, the vertical distribution of P. penetrans was largely dependent on its nematode host which in turn was determined by the distribution of the host plant roots. The Pasteuria was predominant mostly in the upper layers of the soil where their nematode host and the plant host roots are abundant, a factor which may be a critical consideration when using P. penetrans as a nematode biological control agent. PMID:29062154
Study Of Functioning of Bacterial Complexes in East Antarctic Soils
NASA Astrophysics Data System (ADS)
Yakushev, A. V.; Churilin, N. A.
2014-11-01
Studies of bacterial communities in the samples of Antarctic soils by different methods showed that, both in liquid soil suspensions and in situ, microbial complexes are functioning presumably by forming biofilms - the phenomenon that is more expressed in such habitat than in soils of temperate zones. Functional (trophic) diversity and physiological state of hydrolytic bacteria was studied in the samples at the upper layer (0-2 cm) of gravel pavement with algae, in the underlying peat horizon (2-4 cm) with inclusions of dead biomass and its underlying mineral horizon (4-10 cm) with signs of fungal mycelium. The investigated samples of Antarctic soils revealed different trophic diversity and the maximum specific growth rate on mineral medium with different biopolymers as the sole carbon source (starch, chitin, pectin, xylan, dextran-500, tween-20, casein); this can testify to differences in the physiological state of hydrolytic bacteria in various soil horizons and their readiness for growth. The most remarkable characteristics of the studied Antarctic soil as compared to the soils of temperate zone, was the unusual ability of hydrolytic community to consume chitin in the mineral horizon; this can be explained by the presence of fungal mycelium. Also, an almost complete lack in consumption of tween-20 (a water-soluble analogue of fat) by bacterial community of Arctic soil horizons are not explained and needs further verification. The higher functional diversity was detected in the upper horizon of the gravel pavement, which "protects" microorganisms from exposure to extreme temperatures, UV radiation, and desiccation, but the maximum specific growth rate was higher in the lower mineral horizon; this can be explained by the specificity of bacterial colonizing processes and unique formation of Antarctic soil microprofiles in the Larsemann oasis. The obtained data indicate a specific environmental strategy in the samples of Antarctic soils: development in lower mineral horizons of microorganisms with a high metabolic readiness to life revival and high maximum growth rate.
NASA Astrophysics Data System (ADS)
Usai, Maria-Raimonda; Brothwell, Don; Buckley, Stephen; Ai-Thour, Kalid; Canti, Matthew
2010-05-01
Introduction In the central area of Yemen, two burial sites placed high in the crevices of vertical cliff face of Cretaceous sandstone (Tawilah Group) provided evidence of human remains and yielded burial soils. Radiocarbon dating indicated c.2500-2900 years BP for the burials. In other local comparable sites the deep horizontal crevices yielded Bronze Age human remains, in exceptional state of preservation Questions: What was the nature of the burial matrix? Are other human influences superimposed on the soils derived from it? Is it simply decomposed crevice rock, scraped together at the time of burial, or the result of a more complex burial practice? Such questions are also relevant to a variety of other burials of different periods and world regions. Methods Seven matrix samples from Cliff Burials (A) Talan (Layers 4,10,12,14,18,20 and 22, from top to bottom) and (B) Shiban Kawkaban (Layer 1 and 9) were analysed with micromorphology, supplemented by SEM microprobe, X-ray diffraction, gas chromatography/mass spectrometry. Results Cliff Burial Site Talan. The presence of cholesterol was confirmed in the lower sample. The second layer contained darker earth with fibrous plant material. A hard calcareous upper capping contrasted with the other levels of matrix, and it displayed a highly birefingent material with a significant component of uric acid. The other levels had variable organic content and plant inclusions, and possibly pollen. In Layer 10, aromatic acids indicative of balsam and sugar markers suggested plant gum. Cholesterol was the major sterol in Layers 10 and 22, but whilst in Layer 10 its oxidation products were present and cholestanol was abundant as normally in soils, it was only a minor component of Layer 22 where, rather, a significant amount of coprostanol indicated faecal input, and cholesterol oxidation products were absent. Cliff Burial Site Shiban Kawkaban. Although no stratification was visible to the naked eye, variation was observed at a micromorphological level. Layer 1 included mineral, bone, plant and soil-like fragments, with leaf and woody tissue, including vascular parts and seeds. Layer 9 included plant tissue, hair, seeds and some fly puparia. Comments Layering of the burial matrix in the Yemeni burials was unexpected and the burial matrix in one case was very clearly not the result of natural soil forming processes within the rock crevice. In Burial Site A the hard upper capping contained uric acid-rich deposits embedding organic tissue. This sample could possibly represent an intentional ‘plaster layer' including plant, hair and seed fragments. The abundant cholesterol confirms an animal/human origin within the matrix of Layers 10 and 22, and the stanol and bile acid distributions unequivocally confirm a human origin, despite the lack of any physical human remains. Microprobe analysis indicated that the hard cup of Burial 1 contained K, Si, Al, Cu, Mg, S, Fe and Na with amounts fluctuating relatively to depth. No special significance can be placed on the differences. This study calls attention to a neglected aspect of burial archaeology: grave infillings can no longer be assumed to be simply the return of material removed for the burial, but may be influenced by other factors. Through micromorphology, decomposed wood, shroud or other textiles or skins and hair can be detected and, if local rituals influenced the way materials were returned into the grave, then this also deserves investigation. A new ERC-funded project (Title: "Interred with their bones", acronym: "InterArChive") tackles these issues (please see separate poster). Acknowledgments We thank Allan Hall, Brendan Keely, Trevor Dransfield, Andrea Vacca and Cagliari University
Bhat, Nagesh; Asawa, Kailash; Tak, Mridula; Shinde, Kushal; Singh, Anukriti; Gandhi, Neha; Gupta, Vivek Vardhan
2015-01-01
Background As of late, natural contamination has stimulated as a reaction of mechanical and other human exercises. In India, with the expanding industrialization, numerous unsafe substances are utilized or are discharged amid generation as cleans, exhaust, vapours and gasses. These substances at last are blended in the earth and causes health hazards. Objective To determine concentration of fluoride in soils and vegetables grown in the vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan. Materials and Methods Samples of vegetables and soil were collected from areas situated at 0, 1, 2, 5, and 10 km distance from the zinc smelter, Debari. Three samples of vegetables (i.e. Cabbage, Onion and Tomato) and 3 samples of soil {one sample from the upper layer of soil (i.e. 0 to 20 cm) and one from the deep layer (i.e. 20 – 40 cm)} at each distance were collected. The soil and vegetable samples were sealed in clean polythene bags and transported to the laboratory for analysis. One sample each of water and fertilizer from each distance were also collected. Results The mean fluoride concentration in the vegetables grown varied between 0.36 ± 0.69 to 0.71 ± 0.90 ppm. The fluoride concentration in fertilizer and water sample from various distances was found to be in the range of 1.4 – 1.5 ppm and 1.8 – 1.9 ppm respectively. Conclusion The fluoride content of soil and vegetables was found to be higher in places near to the zinc smelter. PMID:26557620
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the first half of the fairing is moved toward the Phoenix Mars Lander for installation. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the second half of the fairing (in the foreground) moves toward the Phoenix Mars Lander for installation. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the first half of the fairing is moved into place around the Phoenix Mars Lander for installation. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
Nielsen, Martha G.
2006-01-01
The U.S. Geological Survey, in cooperation with the National Park Service, developed a hydrogeomorphic (HGM) classification system for wetlands greater than 0.4 hectares (ha) on Mt. Desert Island, Maine, and applied this classification using map-scale data to more than 1,200 mapped wetland units on the island. In addition, two hydrologic susceptibility factors were defined for a subset of these wetlands, using 11 variables derived from landscape-scale characteristics of the catchment areas of these wetlands. The hydrologic susceptibility factors, one related to the potential hydrologic pathways for contaminants and the other to the susceptibility of wetlands to disruptions in water supply from projected future changes in climate, were used to indicate which wetlands (greater than 1 ha) in Acadia National Park (ANP) may warrant further investigation or monitoring. The HGM classification system consists of 13 categories: Riverine-Upper Perennial, Riverine-Nonperennial, Riverine- Tidal, Depressional-Closed, Depressional-Semiclosed, Depressional-Open, Depressional-No Ground-Water Input, Mineral Soil Flat, Organic Soil Flat, Tidal Fringe, Lacustrine Fringe, Slope, and Hilltop/Upper Hillslope. A dichotomous key was developed to aid in the classification of wetlands. The National Wetland Inventory maps produced by the U.S. Fish and Wildlife Service provided the wetland mapping units used for this classification. On the basis of topographic map information and geographic information system (GIS) layers at a scale of 1:24,000 or larger, 1,202 wetland units were assigned a preliminary HGM classification. Two of the 13 HGM classes (Riverine-Tidal and Depressional-No Ground-Water Input) were not assigned to any wetlands because criteria for determining those classes are not available at that map scale, and must be determined by more site-specific information. Of the 1,202 wetland polygons classified, which cover 1,830 ha in ANP, 327 were classified as Slope, 258 were Depressional (Open, Semiclosed, and Closed), 231 were Riverine (Upper Perennial and Nonperennial), 210 were Soil Flat (Mineral and Organic), 68 were Lacustrine Fringe, 51 were Tidal Fringe, 22 were Hilltop/Upper Hillslope, and another 35 were small open water bodies. Most small, isolated wetlands classified on the island are Slope wetlands. The least common, Hilltop/Upper Hillslope wetlands, only occur on a few hilltops and shoulders of hills and mountains. Large wetland complexes generally consist of groups of Depressional wetlands and Mineral Soil Flat or Organic Soil Flat wetlands, often with fringing Slope wetlands at their edges and Riverine wetlands near streams flowing through them. The two analyses of wetland hydrologic susceptibility on Mt. Desert Island were applied to 186 wetlands located partially or entirely within ANP. These analyses were conducted using individually mapped catchments for each wetland. The 186 wetlands were aggregated from the original 1,202 mapped wetland polygons on the basis of their HGM classes. Landscape-level hydrologic, geomorphic, and soil variables were defined for the catchments of the wetlands, and transformed into scaled scores from 0 to 10 for each variable. The variables included area of the wetland, area of the catchment, area of the wetland divided by the area of the catchment, the average topographic slope of the catchment, the amount of the catchment where bedrock crops out with no soil cover or excessively thin soil cover, the amount of storage (in lakes and wetlands) in the catchment, the topographic relief of the catchment, the amount of clay-rich soil in the catchment, the amount of manmade impervious surface, whether the wetland had a stream inflow, and whether the wetland had a hydraulic connection to a lake or estuary. These data were determined using a GIS and data layers mapped at a scale of 1:24,000 or larger. These landscape variables were combined in different ways for the two hydrologic susceptibility fact
NASA Astrophysics Data System (ADS)
Matamala, R.; Jastrow, J. D.; Fan, Z.; Liang, C.; Calderon, F.; Michaelson, G.; Mishra, U.; Ping, C. L.
2017-12-01
With the increase in high latitude warming, there is a need to better understand the potential vulnerability of soil organic matter (SOM) stored in Arctic regions. In this study, we used mid infrared spectroscopy (MidIR) to determine the influence of soil chemistry and site properties in the short-term mineralization potential of SOM stored in tundra soils. Soils from the active and permafrost layers were collected from four tundra sites on the Coastal Plain, and Arctic Foothills of the North Slope of Alaska and were incubated for 60 days at a range of temperatures. Site and soil properties including acidic versus non-acidic tundra, lowland versus upland areas, total soil organic carbon (TOC) and total nitrogen (TN) concentrations, 60-day carbon mineralization potential (CMP), MidIR spectra and the chemical composition of the SOM stored in these soils were determined. Partial least squares (PLS) models for CMP versus MidIR spectra were produced upon splitting the dataset into site and soil properties categories. We found that SOM composition determined by MidIR spectroscopy was most effective in predicting CMP for tundra soils and it was most relevant for the active-layer mineral and upper permafrost soil horizons and/or soils with C concentrations of 10% or lower. Analysis of the factor loadings and standardized beta coefficients from the CMP PLS models indicated that spectral bands associated with clay contents, phenolic OH, aliphatic, silicates, carboxylic acids, and polysaccharides were influential for lower TOC soils, but these bands were less important for higher TOC soils. High TOC soils were influenced by a combination of other factors. Our results suggest that different factors affect the short-term CMP of SOM in tundra soils depending on the amount of TOC present. We show MidIR as a powerful tool for quickly and reasonably estimating the short-term CMP of tundra soils. Widespread application of MidIR measurements to already collected and archived tundra region soils could provide a quick and reliable assessment of the CMP of these soils, reduce the need for incubation studies, and contribute to upscaling and model benchmarking of SOM mineralization of tundra soils.
NASA Astrophysics Data System (ADS)
Christina, M.; Laclau, J.; Nouvellon, Y.; Duursma, R. A.; Stape, J. L.; Lambais, G. R.; Le Maire, G.
2013-12-01
Little is known about the role of very deep roots to supply the water requirements of tropical forests. Clonal Eucalyptus plantations managed in short rotation on very deep Ferralsols are simple forest ecosystems (only 1 plant genotype growing on a relatively homogeneous soil) likely to provide an insight into tree water use strategies in tropical forests. Fine roots have been observed down to a depth of 6 m at age 1 year in Brazilian eucalypt plantations. However, the contribution of water stored in very deep soil layers to stand evapotranspiration over tree growth has been poorly quantified. An eco-physiological model, MAESPA, has been used to simulate half-hourly stand water balance over the first three years of growth in a clonal Eucalyptus grandis plantation in southern Brazil (Eucflux project, State of São Paulo). The water balance model in MAESPA is an equilibrium-type model between soil and leaf water potentials for individual trees aboveground, and at the stand scale belowground. The dynamics of the vertical fine root distribution have been taken into account empirically from linear interpolations between successive measurements. The simulations were compared to time series of soil water contents measured every meter down to 10m deep and to daily latent heat fluxes measured by eddy covariance. Simulations of volumetric soil water contents matched satisfactorily with measurements (RMSE = 0.01) over the three-year period. Good agreement was also observed between simulated and measured latent heat fluxes. In the rainy season, more than 75 % of tree transpiration was supplied by water withdrawn in the upper 1 m of soil, but water uptake progressed to deeper soil layers during dry periods, down to a depth of 6 m, 12 m and 15 m the first, second and third year after planting, respectively. During the second growing season, 15% of water was withdrawn below a depth of 6 m, and 5% below 10m. Most of the soil down to 12m deep was dried out the second year after planting and deep drainage was negligible after 2 years. As a consequence, during the third year after planting only 4% of water was taken up below 6m. However, during the dry season, this deep water still supplied 50% of water requirements. Our results show that deep fine roots of E. grandis play a major role in supplying tree water requirements during extended dry periods. Large amounts of water are stored in the whole soil profile after clear cutting and the fast exploration of deep soil layers by roots make it available for tree growth. After canopy closure, precipitation becomes the key limitation for the productivity of these plantations grown in deep sandy soils. Our results suggest that a territorial strategy leading to a fast exploration of very deep soil layers might provide a strong competitive advantage in regions prone to drought.
Baker, David B; Johnson, Laura T; Confesor, Remegio B; Crumrine, John P
2017-11-01
During the re-eutrophication of Lake Erie, dissolved reactive phosphorus (DRP) loading and concentrations to the lake have nearly doubled, while particulate phosphorus (PP) has remained relatively constant. One potential cause of increased DRP concentrations is P stratification, or the buildup of soil-test P (STP) in the upper soil layer (<5 cm). Stratification often accompanies no-till and mulch-till practices that reduce erosion and PP loading, practices that have been widely implemented throughout the Lake Erie Basin. To evaluate the extent of P stratification in the Sandusky Watershed, certified crop advisors were enlisted to collect stratified soil samples (0-5 or 0-2.5 cm) alongside their normal agronomic samples (0-20 cm) ( = 1758 fields). The mean STP level in the upper 2.5 cm was 55% higher than the mean of agronomic samples used for fertilizer recommendations. The amounts of stratification were highly variable and did not correlate with agronomic STPs (Spearman's = 0.039, = 0.178). Agronomic STP in 70% of the fields was within the buildup or maintenance ranges for corn ( L.) and soybeans [ (L.) Merr.] (0-46 mg kg Mehlich-3 P). The cumulative risks for DRP runoff from the large number of fields in the buildup and maintenance ranges exceeded the risks from fields above those ranges. Reducing stratification by a one-time soil inversion has the potential for larger and quicker reductions in DRP runoff risk than practices related to drawing down agronomic STP levels. Periodic soil inversion and mixing, targeted by stratified STP data, should be considered a viable practice to reduce DRP loading to Lake Erie. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Is there a climatological signature to deep root functioning?
NASA Astrophysics Data System (ADS)
Bamzai, A.; de Beurs, K.
2014-12-01
Vegetation has the ability to influence local water, carbon and energy fluxes in complex ways. In many climate models, dynamic vegetation is closely linked to soil moisture since 95% of all roots are located in the upper 2m of soil. However, in some ecosystems this bottom 5% of roots contributes an important percentage of net transpiration through the processes of hydraulic lift and redistribution. Hydraulic lift and redistribution is the movement of water by vegetation through the use of a passive water potential gradient. During periods where water is readily available, vegetation is able to store excess water in deeper soils. When conditions become more arid, the vegetation is able to bring this water back up to the near surface in order to re-hydrate the soil. This water is then used in transpiration and also aids in soil decomposition and nutrient breakdown in the upper soil layers. While hydraulic lift and redistribution has been identified in individual plant species, there has been limited work to understand the contribution of deep root functioning on broader spatial scales. Here we propose to use satellite data products in conjunction with ground-based observations in order to better determine the atmospheric link to deep moisture across land cover types within the state of Oklahoma. For this preliminary assessment, we will utilize the 8-day MOD 16 evapotranspiration product along with soil moisture observations from the Oklahoma Mesonet to compare and contrast a paired dry and wet case study period. We hypothesize that the presence of deep root functioning in certain land cover types increases resiliency to drought and will be observable between the case studies as reduced suppression of evapotranspiration and enhanced latent cooling of the surface.
Xiao, Yihua; Tong, Fuchun; Kuang, Yuanwen; Chen, Bufeng
2014-01-01
The upper layer of forest soils (0–20 cm depth) were collected from urban, suburban, and rural areas in the Pearl River Delta of Southern China to estimate the distribution and the possible sources of polycyclic aromatic hydrocarbons (PAHs). Total concentrations of PAHs in the forest soils decreased significantly along the urban–suburban–rural gradient, indicating the influence of anthropogenic emissions on the PAH distribution in forest soils. High and low molecular weight PAHs dominated in the urban and rural forest soils, respectively, implying the difference in emission sources between the areas. The values of PAH isomeric diagnostic ratios indicated that forest soil PAHs were mainly originated from traffic emissions, mixed sources and coal/wood combustion in the urban, suburban and rural areas, respectively. Principal component analysis revealed that traffic emissions, coal burning and residential biomass combustion were the three primary contributors to forest soil PAHs in the Pearl River Delta. Long range transportation of PAHs via atmosphere from urban area might also impact the PAHs distribution in the forest soils of rural area. PMID:24599040
In-Situ Hydraulic Conductivities of Soils and Anomalies at a Future Biofuel Production Site
NASA Astrophysics Data System (ADS)
Williamson, M. F.; Jackson, C. R.; Hale, J. C.; Sletten, H. R.
2010-12-01
Forested hillslopes of the Upper Coastal Plain at the Savannah River Site, SC, feature a shallow clay loam argillic layer with low median saturated hydraulic conductivity. Observations from a grid of shallow, maximum-rise piezometers indicate that perching on this clay layer is common. However, flow measurements from an interflow-interception trench indicate that lateral flow is rare and most soil water percolates through the clay layer. We hypothesize that the lack of frequent lateral flow is due to penetration of the clay layer by roots of pine trees. We used ground penetrating radar (GPR) to map the soil structure and potential anomalies, such as root holes, down to two meters depth at three 10×10-m plots. At each plot, a 1×10-m trench was later back-hoe excavated along a transect that showed the most anomalies on the GPR maps. Each trench was excavated at 0.5-m intervals until the clay layer was reached (two plots were excavated to a final depth of 0.875 m and the third plot was excavated to a final depth of 1.0 m). At each interval, compact constant-head permeameters (CCHPs) were used to measure in-situ hydraulic conductivities in the clay-loam matrix and in any visually apparent anomalies. Conductivity was also estimated using a second 1×10-m transect of CCHP measurements taken within randomly placed augur holes. Additional holes targeted GPR anomalies. The second transect was created in case the back-hoe impacted conductivity readings. High-conductivity anomalies were also visually investigated by excavating with a shovel. Photographs of soil wetness were taken at visually apparent anomalies with a multispectral camera. We discovered that all visually apparent anomalies found are represented on the GPR maps, but that not all of the predicted anomalies on the GPR maps are visually apparent. We discovered that tree root holes create anomalies, but that there were also many conductivity anomalies that could not be visually distinguished from low-conductivity soil.
Stable annual pattern of water use by Acacia tortilis in Sahelian Africa.
Do, Frederic C; Rocheteau, Alain; Diagne, Amadou L; Goudiaby, Venceslas; Granier, André; Lhomme, Jean-Paul
2008-01-01
Water use by mature trees of Acacia tortilis (Forsk.) Hayne ssp. raddiana (Savi) Brenan var. raddiana growing in the northern Sahel was continuously recorded over 4 years. Water use was estimated from xylem sap flow measured by transient heat dissipation. Concurrently, cambial growth, canopy phenology, leaf water potential, climatic conditions and soil water availability (SWA) were monitored. In addition to the variation attributable to interannual variation in rainfall, SWA was increased by irrigation during one wet season. The wet season lasted from July to September, and annual rainfall ranged between 146 and 367 mm. The annual amount and pattern of tree water use were stable from year-to-year despite interannual and seasonal variations in SWA in the upper soil layers. Acacia tortilis transpired readily throughout the year, except for one month during the dry season when defoliation was at a maximum. Maximum water use of about 23 l (dm sapwood area)(-2) day(-1) was recorded at the end of the wet season. While trees retained foliage in the dry season, the decline in water use was modest at around 30%. Variation in predawn leaf water potential indicated that the trees were subject to soil water constraint. The rapid depletion of water in the uppermost soil layers after the wet season implies that there was extensive use of water from deep soil layers. The deep soil profile revealed (1) the existence of living roots at 25 m and (2) that the availability of soil water was low (-1.6 MPa) down to the water table at a depth of 31 m. However, transpiration was recorded at a predawn leaf water potential of -2.0 MPa, indicating that the trees used water from both intermediary soil layers and the water table. During the full canopy stage, mean values of whole-tree hydraulic conductance were similar in the wet and dry seasons. We propose that the stability of water use at the seasonal and annual scales resulted from a combination of features, including an extensive rooting habit related to deep water availability and an effective regulation of canopy conductance. Despite a limited effect on tree water use, irrigation during the wet season sharply increased predawn leaf water potential and cambial growth of trunks and branches.
Koarashi, Jun; Nishimura, Syusaku; Nakanishi, Takahiro; Atarashi-Andoh, Mariko; Takeuchi, Erina; Muto, Kotomi
2016-12-01
The fate of radiocesium ( 137 Cs) derived from the Fukushima nuclear accident and associated radiation risks are largely dependent on its migration and retention behavior in the litter-soil system of Japanese forest ecosystems. However, this behavior has not been well quantified. We established field lysimeters in a Japanese deciduous broad-leaved forest soon after the Fukushima nuclear accident to continuously monitor the downward transfer of 137 Cs at three depths: the litter-mineral soil boundary and depths of 5 cm and 10 cm in the mineral soil. Observations were conducted at two sites within the forest from May 2011 to May 2015. Results revealed similar temporal and depth-wise variations in 137 Cs downward fluxes for both sites. The 137 Cs downward fluxes generally decreased year by year at all depths, indicating that 137 Cs was rapidly leached from the forest-floor litter layer and was then immobilized in the upper (0-5 cm) mineral soil layer through its interaction with clay minerals. The 137 Cs fluxes also showed seasonal variation, which was in accordance with variations in the throughfall and soil temperature at the sites. There was no detectable 137 Cs flux at a depth of 10 cm in the mineral soil in the third and fourth years after the accident. The decreased inventory of mobile (or bioavailable) 137 Cs observed during early stages after deposition indicates that the litter-soil system in the Japanese deciduous forest provides only a temporary source for 137 Cs recycling in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
The temporal changes in saturated hydraulic conductivity of forest soils
NASA Astrophysics Data System (ADS)
Kornél Szegedi, Balázs
2015-04-01
I investigated the temporal variability of forest soils infiltration capacity through compaction. I performed the measurements of mine in The Botanical Garden of Sopron between 15.09.2014 - 15.10.2014. I performed the measurements in 50-50 cm areas those have been cleaned of vegetation, where I measured the bulk density and volume of soil hydraulic conductivity with Tension Disk Infiltrometer (TDI) in 3-3 repetitions. I took undisturbed 160 cm3 from the upper 5 cm layer of the cleaned soil surface for the bulk density measurements. Then I loosened the top 10-15 cm layer of the soil surface with spade. After the cultivation of the soil I measured the bulk density and volume of water conductivity also 3-3 repetitions. Later I performed the hydraulic conductivity (Ksat) using the TDI and bulk density measurements on undisturbed samples on a weekly basis in the study area. I illustrated the measured hydraulic conductivity and bulk density values as a function of cumulative rainfall by using simple graphical and statistical methods. The rate of the soil compaction pace was fast and smooth based on the change of the measured bulk density values. There was a steady downward trend in hydraulic conductivity parallel the compaction. The cultivation increased the hydraulic conductivity nearly fourfold compared to original, than decreased to half by 1 week. In the following the redeposition rate declined, but based on the literature data, almost 3-4 months enough to return the original state before cultivation of the soil hydraulic conductivity and bulk density values. This publication has been supported by AGRARKLIMA.2 VKSZ_12-1-2013-0034 project.
Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.
Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas
2013-01-01
The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm(-3)) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm(-3)) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1). Higher SOC contents (320 g kg(-1)) were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1)). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth) account for 10.4 kg m(-2), compared to 3.4 kg m(-2) in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.
Hyperarid Soils in the Atacama Desert: A Terrestrial Guide to Mars Soil Formation
NASA Astrophysics Data System (ADS)
Amundson, R.; Stephanie, E.; Justine, O.; Brad, S.; Nishiizumi, K.; William, D.; Chris, M.
2005-12-01
Hyperarid soils on Earth provide a framework for interpreting the growing Mars regolith database and for developing testable hypotheses for the origin of Mars soils. On Earth, dust and aerosol deposition are strongly coupled with soil formation. Long term atmospheric deposition in the Atacama Desert, coupled with small and highly stochastic rain and fog events, produce a set of soil features diagnostic of pedogenic processes and indicative of the direction of liquid water flow: (1) Extreme hyperaridity results in the retention of nearly all atmospheric inputs within the upper 3 m of the soil profile, but the infrequent rainfall events vertically separate salts by solubility, forming polygonally cracked, sulfate-cemented near-surface crusts which overlie variably concentrated layers of the more soluble chloride, nitrate, and Na-sulfate salts. (2) Pedogenic sulfates in the Atacama desert exhibit unique depth-dependent S, O and Ca isotope trends caused by isotopic fractionation during downward aqueous migration and chemical reaction. (3) Pedogenic sulfates and nitrates contain a distinctive mass independent O isotope signal indicative of a tropospheric origin, and in the case of nitrate, the retention of this signal persists only under near-abiotic conditions. Taken together, the morphology and the depth-dependent chemical and isotopic composition of hyperarid soils provides quantitative information on the origin of solutes, direction of water flow, and degree of biological activity. Depth-dependent measures of these parameters on Mars can therefore be used to test a pedogenic hypothesis for the origin of the widely distributed sulfate layers and can be used to design experiments for future missions that may more fully illuminate the history of Mars surface processes.
Features of the Functioning Bacterial Ecosystems in the Antarctic
NASA Astrophysics Data System (ADS)
Yakushev, A. V.; Churilin, N.; Soina, V. S.; Vorobyova, E. A.; Mergelov, N. S.
2014-10-01
Studies of bacterial communities in the samples of Antarctic soils by different methods showed that, both in liquid soil suspensions and in situ, microbial complexes are functioning presumably by forming biofilms -- the phenomenon that is more expressed in such habitat than in soils of temperate zones. Functional (trophic) diversity and physiological state of hydrolytic bacteria was studied in the samples at the upper layer (0-2 cm) of gravel pavement with algae, in the underlying peat horizon (2-4 cm) with inclusions of dead biomass and its underlying mineral horizon (4-10 cm) with signs of fungal mycelium. The investigated samples of Antarctic soils revealed different trophic diversity and the maximum specific growth rate on mineral medium with different biopolymers as the sole carbon source (starch, chitin, pectin, xylan, dextran-500, tween-20, casein); this can testify to differences in the physiological state of hydrolytic bacteria in various soil horizons and their readiness for growth. The most remarkable characteristics of the studied Antarctic soil as compared to the soils of temperate zone, was the unusual ability of hydrolytic community to consume chitin in the mineral horizon; this can be explained by the presence of fungal mycelium. Also, an almost complete lack in consumption of tween-20 (a water-soluble analogue of fat) by bacterial community of Arctic soil horizons are not explained and needs further verification. The higher functional diversity was detected in the upper horizon of the gravel pavement, which "protects" microorganisms from exposure to extreme temperatures, UV radiation, and desiccation, but the maximum specific growth rate was higher in the lower mineral horizon; this can be explained by the specificity of bacterial colonizing processes and unique formation of Antarctic soil microprofiles in the Larsemann oasis. The obtained data indicate a specific environmental strategy in the samples of Antarctic soils: development in lower mineral horizons of microorganisms with a high metabolic readiness to life revival and high maximum growth rate.
NASA Astrophysics Data System (ADS)
Jannik, G. T.; Ivanov, Y. A.; Kashparov, V. A.; Levchuk, S. E.; Bondarkov, M. D.; Maksymenko, A. M.; Farfan, E. B.; Marra, J. C.
2009-12-01
In 1986-1987, a set of experimental sites for studies of vertical migration of radionuclides released from the ChNPP was established in the ChNPP Exclusion Zone for various fallout plumes. The sites were selected considering local terrain and geo-chemical conditions, as well as physical and chemical characteristics of the fallout. The experimental sites included grasslands, and pre-Chernobyl cultivated meadows and croplands. Vertical migration of radionuclides in the ChNPP Exclusion Zone grasslands was evaluated. Parameters of 137Cs, 90Sr, and 239,240Pu transfer were calculated and the periods during which these radionuclides reach their ecological half-life in the upper 5 cm soil layer were estimated. Migration capabilities of these radionuclides in the grassland soils tend to decrease as follows: 90Sr >137Cs ≥ 239,240Pu. A significant retardation of the 137Cs vertical migration was shown in the grasslands long after the Chernobyl accident. During the 21st year after the fallout, average Tecol values for 137Cs (the period of time it takes in the environment for 137Cs to reach half the value of its original concentration in the upper 5 cm soil layer, regardless of physical decay) are as follows: 180 - 320 years for grassland containing automorphous mineral soils of a light granulometric composition; and 90 - 100 years for grassland containing hydromorphous organogenic soils. These values are significantly higher than those estimated for the period of 6-9 years after the fallout: 60 - 150 years and 11 - 20 years, respectively. The absolute 137Cs Tecol values are by factors of 3-7 higher than 137Cs radiological decay values long after the accident. Changes in the exposure dose resulting from the soil deposited 137Cs only depend on its radiological decay. This factor should necessarily be considered for development of predictive assessments, including dose exposures for the hypothetical population in case of their re-evacuation to the exclusion areas. The obtained results have to be considered for predictive assessments, including those for dose exposures for the hypothetical population in case of their re-evacuation to the exclusion areas if implementation and/or planning of remediation activities at the ChNPP Exclusion Zone are considered reasonable and appropriate.
Peat fires as source of polycyclic aromatic hydrocarbons in soils
NASA Astrophysics Data System (ADS)
Tsibart, Anna
2013-04-01
Polycyclic aromatic hydrocarbons (PAHs) arrive from pyrogenic sources including volcanism and the combustion of oil products and plant materials. The production of PAHs during the combustion of plant materials was considered in a number of publications, but their results were mainly obtained in laboratory experiments. Insufficient data are available on the hightemperature production of PAHs in environmental objects. For example, natural fires are frequently related to the PAH sources in landscapes, but very little factual data are available on this topic. On Polistovskii reserve (Russia, Pskov region) the soil series were separated depending on the damage to the plants; these series included soils of plots subjected to fires of different intensities, as well as soils of the background plots. The series of organic and organomineral soils significantly differed in their PAH distributions. In this series, the concentration of PAHs in the upper horizons of the peat soils little varied or slightly decreased, but their accumulation occurred at a depth of 5-10 or 10-20 cm in the soils after the fires. For example, in the series of high moor soils, the content of PAHs in the upper horizons remained almost constant; significant differences were observed in the subsurface horizons: from 2 ng/g in the background soil to 70 ng/g after the fire. In the upper horizons of the oligotrophic peat soils under pine forests, the total PAH content also varied only slightly. At the same time, the content of PAHs in the soil series increased from 15 to 90 ng/g with the increasing pyrogenic damage to the plot. No clear trends of the PAH accumulation were recorded in the organomineral soils. The content of PAHs in the soddy-podzolic soil subjected to fire slightly decreased (from 20 to 10 ng/g) compared to the less damaged soil. In peat fires, the access of oxygen to the fire zone is lower than in forest fires. The oxygen deficit acts as a factor of the organic fragments recombination and PAH production; therefore, larger amounts of PAHs are formed in peat fires. In addition, the peat fires occur directly in the soil layer; therefore, larger amounts of the resulting polyarenes remain in the soils of the fire sites. PAHs also can be formed at the heating of organic matter on the areas adjacent to the fire sites. After the combustion of peat in fires, phenanthrene, chrysene, benz[a]pyrene, and tetraphene accumulate in soils. This is mainly the group of 4-nuclear compounds with the participation of 3-nuclear phenanthrene and 5-nuclear benz[a]pyrene. The formation of high-molecular weight compounds like benz[a]pyrene and, in some places, benzo[ghi]perylene is possible during smoldering under a low oxygen supply.
NASA Astrophysics Data System (ADS)
Mereu, S.; Salvatori, E.; Fusaro, L.; Gerosa, G.; Muys, B.; Manes, F.
2009-11-01
An integrated approach has been used to analyse the dependence of three Mediterranean species, A. unedo L., Q. ilex L., and P. latifolia L. co-occurring in a coastal dune ecosystem on two different water resources: groundwater and rainfed upper soil layers. The approach included leaf level gas exchanges, sap flow measurements and structural adaptations between 15 May and 31 July 2007. During this period it was possible to capture different species-specific response patterns to an environment characterized by a sandy soil, with a low water retention capacity, and the presence of a water table. The latter did not completely prevent the development of a drought response and, combined with previous studies in the same area, response differences between species have been partially attributed to different root distributions. Sap flow of A. unedo decreased rapidly with the decline of soil water content, while that of Q. ilex decreased only moderately. Midday leaf water potential of P. latifolia and A. unedo ranged between -2.2 and -2.7 MPa throughout the measuring period, while in Q. ilex it decreased down to -3.4 MPa at the end of the season. A. unedo was the only species that responded to drought with a decrease of its leaf area to sapwood area ratio from 23.9±1.2 (May) to 15.2±1.5 (July). While A. unedo also underwent an almost stepwise loss on hydraulic conductivity, such a loss did not occur for Q. ilex, whereas P. latifolia was able to slightly increase its hydraulic conducitivity. These differences show how different plant compartments coordinate differently between species in their responses to drought. The different responses appear to be mediated by different root distributions of the species and their relative resistances to drought are likely to depend on the duration of the periods in which water remains extractable in the upper soil layers.
Asadishad, Bahareh; Olsson, Adam L J; Dusane, Devendra H; Ghoshal, Subhasis; Tufenkji, Nathalie
2014-07-01
In cold climate regions, microorganisms in upper layers of soil are subject to low temperatures and repeated freeze-thaw (FT) conditions during the winter. We studied the effects of cold temperature and FT cycles on the viability and survival strategies (namely motility and biofilm formation) of the common soil bacterium and model pathogen Bacillus subtilis. We also examined the effect of FT on the transport behavior of B. subtilis at two solution ionic strengths (IS: 10 and 100 mM) in quartz sand packed columns. Finally, to study the mechanical properties of the bacteria-surface bond, a quartz crystal microbalance with dissipation monitoring (QCM-D) was used to monitor changes in bond stiffness when B. subtilis attached to a quartz substrate (model sand surface) under different environmental conditions. We observed that increasing the number of FT cycles decreased bacterial viability and that B. subtilis survived for longer time periods in higher IS solution. FT treatment decreased bacterial swimming motility and the transcription of flagellin encoding genes. Although FT exposure had no significant effect on the bacterial growth rate, it substantially decreased B. subtilis biofilm formation and correspondingly decreased the transcription of matrix production genes in higher IS solution. As demonstrated with QCM-D, the bond stiffness between B. subtilis and the quartz surface decreased after FT. Moreover, column transport studies showed higher bacterial retention onto sand grains after exposure to FT. This investigation demonstrates how temperature variations around the freezing point in upper layers of soil can influence key bacterial properties and behavior, including survival and subsequent transport. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stolarczyk, Mateusz
2016-04-01
Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works, increased pH values, changes in the morphology of the peat, high nitrogen contents and lower values of C/N ratios are noticed. The increased contents of calcium, occurred in soil layers comprised of moorsh forming process are probably the effect of peat mineralization process or changes in the chemistry and fluctuations of groundwater levels. As a result of above factors, increased calcium and magnesium concentrations in surface waters in the immediate vicinity of investigated bogs are observed.
NASA Astrophysics Data System (ADS)
Alexander, H. D.; Loranty, M. M.; Natali, S.; Pena, H., III; Ludwig, S.; Spektor, V.; Davydov, S. P.; Zimov, N.; Mack, M. C.
2017-12-01
Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that (1) larch forest regrowth post-fire is largely determined by residual soil organic layer (SOL) depth because of the SOL's role as a seedbed and thermal regulator, and (2) changes in post-fire larch recruitment impact C accumulation through stand density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by (1) experimentally creating a soil burn severity gradient in a Cajander larch (Larix cajanderi Mayr.) forest near Cherskiy, Russia and (2) quantifying C pools across a stand density gradient within a 75-year old fire scar. From 2012-2015, we added larch seeds to plots burned at different severities and monitored recruitment along with permafrost and active layer (i.e., subject to annual freeze-thaw) conditions (SOL depth, temperature, moisture, and thaw depth). Across the density gradient, we inventoried larch trees and harvested ground-layer vegetation to estimate aboveground contribution to C pools. We quantified woody debris C pools and sampled belowground C pools (soil, fine roots, and coarse roots) in the organic + upper (0-10 cm) mineral soil. Larch recruits were rare in unburned and low severity plots, but a total of 6 new germinants m-2 were tallied in moderate and high severity plots during the study. Seedling survival for > 1 year was only 40 and 25% on moderate and high severity treatments, respectively, but yielded net larch recruitment of 2 seedlings m-2, compared to 0.3 seedlings m-2 on low severity plots. Density of both total and established recruits increased with decreasing residual SOL depth, which correlated with increased soil temperature, moisture, and thaw depth. At 75-year post-fire, total C pools increased with increased larch density, largely due to increased tree aboveground C pools and decreased ground-layer vegetation C pools, which corresponded to higher canopy cover, cooler soils, and shallower active layer depths. Our findings highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests.
A microwave scattering model for layered vegetation
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Fung, Adrian K.; Lang, Roger H.; Chauhan, Narinder S.
1992-01-01
A microwave scattering model was developed for layered vegetation based on an iterative solution of the radiative transfer equation up to the second order to account for multiple scattering within the canopy and between the ground and the canopy. The model is designed to operate over a wide frequency range for both deciduous and coniferous forest and to account for the branch size distribution, leaf orientation distribution, and branch orientation distribution for each size. The canopy is modeled as a two-layered medium above a rough interface. The upper layer is the crown containing leaves, stems, and branches. The lower layer is the trunk region modeled as randomly positioned cylinders with a preferred orientation distribution above an irregular soil surface. Comparisons of this model with measurements from deciduous and coniferous forests show good agreements at several frequencies for both like and cross polarizations. Major features of the model needed to realize the agreement include allowance for: (1) branch size distribution, (2) second-order effects, and (3) tree component models valid over a wide range of frequencies.
[Effect of long-term fertilization on microbial community functional diversity in black soil].
Liu, Jing-xin; Chi, Feng-qin; Xu, Xiu-hong; Kuang, En-jun; Zhang, Jiu-ming; Su, Qing-rui; Zhou, Bao-ku
2015-10-01
In order to study the effects of long-term different fertilization on microbial community functional diversity in arable black. soil, we examined microbial metabolic activities in two soil la- yers (0-20 cm, 20-40 cm) under four treatments (CK, NPK, M, MNPK) from a 35-year continuous fertilization field at the Ministry of Agriculture Key Field Observation Station of Harbin Black Soil Ecology Environment using Biolog-ECO method. The results showed that: in the 0-20 cm soil layer, combined application of organic and inorganic fertilizer(MNPK) increased the rate of soil microbial carbon source utilization and community metabolism richness, diversity and dominance; In the 20-40 cm layer, these indices of the MNPK treatment was lower than that of the NPK treat- ment; while NPK treatment decreased soil microbial community metabolism evenness in both layers. Six groups of carbon sources used by soil microbes of all the treatments were different between the two soil layers, and the difference was significant among all treatments in each soil layer (P < 0.05) , while the variations among treatments were different in the two soil layers. Canonical correspondence analysis (CCA) showed that soil microbial community metabolic function of all the treatments was different between the two soil layers, and there was difference among all treatments in each soil layer, while the influences of soil nutrients on soil microbial community metabolic function of all treatments were similar in each soil layer. It was concluded that long-term different fertilization affected soil microbial community functional diversity in both tillage soil layer and down soil layers, and chemical fertilization alone had a larger influence on the microbial community functional diversity in the 20-40 cm layer.
Modeling subsurface stormflow initiation in low-relief landscapes
NASA Astrophysics Data System (ADS)
Hopp, Luisa; Vaché, Kellie B.; Rhett Jackson, C.; McDonnell, Jeffrey J.
2015-04-01
Shallow lateral subsurface flow as a runoff generating mechanism at the hillslope scale has mostly been studied in steeper terrain with typical hillside angles of 10 - 45 degrees. These studies have shown that subsurface stormflow is often initiated at the interface between a permeable upper soil layer and a lower conductivity impeding layer, e.g. a B horizon or bedrock. Many studies have identified thresholds of event size and soil moisture states that need to be exceeded before subsurface stormflow is initiated. However, subsurface stormflow generation on low-relief hillslopes has been much less studied. Here we present a modeling study that investigates the initiation of subsurface stormflow on low-relief hillslopes in the Upper Coastal Plain of South Carolina, USA. Hillslopes in this region typically have slope angles of 2-5 degrees. Topsoils are sandy, underlain by a low-conductivity sandy clay loam Bt horizon. Subsurface stormflow has only been intercepted occasionally in a 120 m long trench, and often subsurface flow was not well correlated with stream signals, suggesting a disconnect between subsurface flow on the hillslopes and stream flow. We therefore used a hydrologic model to better understand which conditions promote the initiation of subsurface flow in this landscape, addressing following questions: Is there a threshold event size and soil moisture state for producing lateral subsurface flow? What role does the spatial pattern of depth to the impeding clay layer play for subsurface stormflow dynamics? We reproduced a section of a hillslope, for which high-resolution topographic data and depth to clay measurements were available, in the hydrologic model HYDRUS-3D. Soil hydraulic parameters were based on experimentally-derived data. The threshold analysis was first performed using hourly climate data records for 2009-2010 from the study site to drive the simulation. For this period also trench measurements of subsurface flow were available. In addition, we also ran a longer-term simulation, using daily climate data for a nine year period to include more variable climate conditions in the threshold analysis. The model captured the observed subsurface flow instances very well. The threshold analysis indicated that the occurrence of subsurface stormflow uncommon, with a large proportion of the water perching above the clay layer percolating vertically into the clay layer. Event sizes of approximately 70-80 mm were required for initiating subsurface stormflow. The hourly data from 2009-2010 was subsequently used to test if the actual spatial distribution of depth to clay is a major control for the occurrence and magnitude of lateral subsurface flow. Results suggest that in this low-relief landscape also a spatially uniform mean depth to clay reproduces well the hydrologic behavior.
NASA Astrophysics Data System (ADS)
Peña, Luis E.; Barrios, Miguel; Francés, Félix
2016-10-01
Changes in land use within a catchment are among the causes of non-stationarity in the flood regime, as they modify the upper soil physical structure and its runoff production capacity. This paper analyzes the relation between the variation of the upper soil hydraulic properties due to changes in land use and its effect on the magnitude of peak flows: (1) incorporating fractal scaling properties to relate the effect of the static storage capacity (the sum of capillary water storage capacity in the root zone, canopy interception and surface puddles) and the upper soil vertical saturated hydraulic conductivity on the flood regime; (2) describing the effect of the spatial organization of the upper soil hydraulic properties at catchment scale; (3) examining the scale properties in the parameters of the Generalized Extreme Value (GEV) probability distribution function, in relation to the upper soil hydraulic properties. This study considered the historical changes of land use in the Combeima River catchment in South America, between 1991 and 2007, using distributed hydrological modeling of daily discharges to describe the hydrological response. Through simulation of land cover scenarios, it was demonstrated that it is possible to quantify the magnitude of peak flows in scenarios of land cover changes through its Wide-Sense Simple Scaling with the upper soil hydraulic properties.
NASA Astrophysics Data System (ADS)
Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi
2018-03-01
The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.
Kang, Seongjoo; Yoneda, Minoru; Shimada, Yoko; Satta, Naoya; Fujita, Yasutaka; Shin, In Hwan
2017-08-01
We investigated the deposition and depth distributions of radiocesium in the Takizawa Research Forest, Iwate Prefecture, in order to understand the behavior of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant. The deposition distribution and vertical depth distribution of radiocesium in the soil were compared between topographically distinct parts of the forest where two different tree species grow. The results for all investigated locations show that almost 85% of the radiocesium has accumulated in the region of soil from the topmost organic layer to a soil depth of 0-4 cm. However, no activity was detected at depths greater than 20 cm. Analysis of the radiocesium deposition patterns in forest locations dominated by either coniferous or deciduous tree species suggests that radiocesium was sequestered and retained in higher concentrations in coniferous areas. The deposition data showed large spatial variability, reflecting the differences in tree species and topography. The variations in the measured 137 Cs concentrations reflected the variability in the characteristics of the forest floor environment and the heterogeneity of the initial ground-deposition of the Fukushima fallout. Sequential extraction experiments showed that most of the 137 Cs was present in an un-exchangeable form with weak mobility. Nevertheless, the post-vertical distribution of 137 Cs is expected to be governed by the percentage of exchangeable 137 Cs in the organic layer and the organic-rich upper soil horizons.
Schimmack, W; Schultz, W
2006-09-15
The temporal changes of the vertical distribution of (134)Cs (deposited by the Chernobyl fallout in 1986) and (137)Cs (deposited by the Chernobyl and the global fallout) in the soil were investigated at an undisturbed Bavarian grassland site in Germany. At ten sampling dates between 1986 and 2001, the activity density of (134)Cs and (137)Cs was determined in various soil layers down to 80 cm depth. In 2001, the small-scale spatial variability of the radiocaesium activity was determined by sampling five plots within 10 m(2) (coefficient of variation about 20% for the upper soil layers). Between 1987 and 1990, substantial changes of the activity-depth profiles were observed. The percentage depth distributions of (134)Cs and (137)Cs were rather similar. The 50%-depth of the accumulated activity increased from 2.4 cm in 1988 to 5.3 cm in 2001 for (134)Cs and from 2.7 to 5.8 cm for (137)Cs. This indicates that at the study site the migration data of Chernobyl-derived (137)Cs can be estimated by those of total (137)Cs. In the second part of this study, the activity-depth profiles will be evaluated by the convection-dispersion model [Schimmack, W, Feria Márquez, F. Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part II: Evaluation of the activity-depth profiles by transport models. Sci Total Environ 2006-this issue].
Teramage, Mengistu T; Onda, Yuichi; Patin, Jeremy; Kato, Hiroaki; Gomi, Takashi; Nam, Sooyoun
2014-11-01
This study deals with the description of the vertical distribution of radiocaesium ((137)Cs and (134)Cs) in a representative coniferous forest soil, investigated 10 months after the Fukushima radioactive fallout. During soil sampling, the forest floor components (understory plants, litter (Ol-) and fermented layers (Of)) were collected and treated separately. The results indicate that radiocesium is concentrated in the forest floor, and high radiocesium transfer factor observed in the undergrowth plants (3.3). This made the forest floor an active exchanging interphase for radiocesium. The raw organic layer (Ol + Of) holds 52% (5.3 kBq m(-2)) of the Fukushima-derived and 25% (0.7 kBq m(-2)) of the pre-Fukushima (137)Cs at the time of the soil sampling. Including the pre-Fukushima (137)Cs, 99% of the total soil inventory was in the upper 10 cm, in which the organic matter (OM) content was greater than 10%, suggesting the subsequent distribution most likely depends on the OM turnover. However, the small fraction of the Fukushima-derived (137)Cs at a depth of 16 cm is most likely due to the infiltration of radiocesium-circumscribed rainwater during the fallout before that selective adsorption prevails and reduces the migration of soluble (137)Cs. The values of the depth distribution parameters revealed that the distribution of the Fukushima-derived (137)Cs was somewhat rapid. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, Ying-Fei; Cheng, Yi-Hsien; Liao, Chung-Min
2016-11-05
There is considerable concern over the potential ecotoxicity to soil ecosystems posed by zero-valent iron nanoparticles (Fe(0) NPs) released from in situ environmental remediation. However, a lack of quantitative risk assessment has hampered the development of appropriate testing methods used in environmental applications. Here we present a novel, empirical approach to assess Fe(0) NPs-associated soil ecosystems health risk using the nematode Caenorhabditis elegans as a model organism. A Hill-based dose-response model describing the concentration-fertility inhibition relationships was constructed. A Weibull model was used to estimate thresholds as a guideline to protect C. elegans from infertility when exposed to waterborne or foodborne Fe(0) NPs. Finally, the risk metrics, exceedance risk (ER) and risk quotient (RQ) of Fe(0) NPs in various depths and distances from remediation sites can then be predicted. We showed that under 50% risk probability (ER=0.5), upper soil layer had the highest infertility risk (95% confidence interval: 13.18-57.40%). The margins of safety and acceptable criteria for soil ecosystems health for using Fe(0) NPs in field scale applications were also recommended. Results showed that RQs are larger than 1 in all soil layers when setting a stricter threshold of ∼1.02mgL(-1) of Fe(0) NPs. This C. elegans biomarker-based risk model affords new insights into the links between widespread use of Fe(0) NPs and environmental risk assessment and offers potential environmental implications of metal-based NPs for in situ remediation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.; Noble, S. K.
2010-01-01
The physical properties of the lunar regolith were originally inferred from remotely sensed data, first from the Earth and later from orbiting spacecraft. The Surveyor landings and the Apollo surface explorations produced a more concrete characterization of the macroscopic properties. In general, the upper regolith consists of a loosely consolidated layer centimeters thick underlain by a particulate but extremely compacted layer to depths of meters or tens of meters. The median particle size as determined by mechanical sieving in terrestrial laboratories is several tens of micrometers. However, the comminuting processes that form the layer produce particles in all sizes down to manometers. The smallest particles, having a high surface to volume ratio, tend to be electrostatically bound to larger particles and are quite difficult to separate mechanically in the laboratory. Particle size distributions determined from lunar soil samples often group particles smaller than 10 micrometers.
Impact of Native and Invasive Earthworm Activity on Forest Soil Organic Matter Dynamics
NASA Astrophysics Data System (ADS)
Top, Sara; Filley, Timothy
2010-05-01
Many northern North American forests are experiencing the introduction of exotic European lumbricid species earthworms with documented losses in litter layers, expansion of A-horizons, loss of the organic horizon, changes in fine root density, and shifts in microbial populations as a result. Some of these forests were previously devoid of these ecosystem engineers. We compare the soil isotope and molecular chemistry from two free air CO2 enrichment (FACE) forest experiments (aspen FACE at Rhinelander, Wisconsin and sweet gum FACE at Oak Ridge National Lab, Tennessee) that lie within the zones of earthworm invasion. These sites exhibit differences in amounts of exotic and native species as well as endogeic (predominantly mineral soil dwelling) and epigeic (litter and organic matter horizon dwelling) types. We investigated the impact of earthworm activity by tracking the relative abundance and stable carbon isotope compositions of lignin and substituted fatty acids extracted from isolated earthworms and their fecal pellets and from host soils. Additionally, 15N-labeled additions to the soil provide additional methods for tracking earthworm impacts. Indications of root vs leaf input to earthworm casts and fecal matter were derived from differences in the chemical composition of cutin, suberin, and lignin. The isotopically depleted CO2 used in FACE and the resulting isotopically depleted plant organic matter afford an excellent opportunity to assess biopolymer-specific turnover dynamics. We find that endogeic species are proportionately more responsible for fine root cycling while some epigeic species are responsible for microaggregation of foliar cutin. CSIA of fecal pellet lignin and SFA indicate how these biopolymer pools can be derived from variable sources, roots, background soil, foliar tissue within one earthworm. Additionally, CSIA indicates the distinct roles that different earthworm types have in "aging" surface soil biopolymer pools through encapsulation and upward transport of deeper soil carbon, and "freshening" deeper soil biopolymer pools through downward transport of surface carbon to deeper layers. Although, endogeic species burrow down below 30 cm in these systems, comparison of 13C and 15N in soil layers and fecal matter indicate their greatest impact is restricted to the upper 5 cm. As earthworm species abundance and activity are not is steady state in these forests, the role of these important invertebrates should be more considered when assessing the ability of forest soils to accumulate new plant input.
NASA Astrophysics Data System (ADS)
Zieger, Antonia; Kaiser, Klaus; Ríos Guayasamín, Pedro; Kaupenjohann, Martin
2018-05-01
Andosols are among the most carbon-rich soils, with an average of 254 Mg ha-1 organic carbon (OC) in the upper 100 cm. A current theory proposes an upper limit for OC stocks independent of increasing carbon input, because of finite binding capacities of the soil mineral phase. We tested the possible limits in OC stocks for Andosols with already large OC concentrations and stocks (212 g kg-1 in the first horizon, 301 Mg ha-1 in the upper 100 cm). The soils received large inputs of 1800 Mg OC ha-1 as sawdust within a time period of 20 years. Adjacent soils without sawdust application served as controls. We determined total OC stocks as well as the storage forms of organic matter (OM) of five horizons down to 100 cm depth. Storage forms considered were pyrogenic carbon, OM of < 1.6 g cm-3 density and with little to no interaction with the mineral phase, and strongly mineral-bonded OM forming particles of densities between 1.6 and 2.0 g cm-3 or > 2.0 g cm-3. The two fractions > 1.6 g cm-3 were also analysed for aluminium-organic matter complexes (Al-OM complexes) and imogolite-type phases using ammonium-oxalate-oxalic-acid extraction and X-ray diffraction (XRD). Pyrogenic organic carbon represented only up to 5 wt % of OC, and thus contributed little to soil OM. In the two topsoil horizons, the fraction between 1.6 and 2.0 g cm-3 had 65-86 wt % of bulk soil OC and was dominated by Al-OM complexes. In deeper horizons, the fraction > 2.0 g cm-3 contained 80-97 wt % of the bulk soil's total OC and was characterized by a mixture of Al-OM complexes and imogolite-type phases, with proportions of imogolite-type phases increasing with depth. In response to the sawdust application, only the OC stock at 25-50 cm depth increased significantly (α = 0.05, 1 - β = 0.8). The increase was entirely due to increased OC in the two fractions > 1.6 g cm-3. However, there was no significant increase in the total OC stocks within the upper 100 cm. The results suggest that long-term large OC inputs cannot be taken up by the obviously OC-saturated topsoil but induce downward migration and gradually increasing storage of OC in subsurface soil layers. The small additional OC accumulation despite the extremely large OC input over 20 years, however, shows that long time periods of high input are needed to promote the downward movement and deep soil storage of OC.
Ma, Xin-Xin; Xu, Ming-Xiang; Yang, Kai
2012-11-01
The deep soil layer (below 100 cm) stores considerable soil organic carbon (SOC). We can reveal its stability and provide the basis for certification of the deep soil carbon sinks by studying the SOC mineralization in the deep soil layer. With the shallow soil layer (0-100 cm) as control, the SOC mineralization under the condition (temperature 15 degrees C, the soil water content 8%) of Black Locust forest in the deep soil layer (100-400 cm) of the hilly region of the Loess Plateau was studied. The results showed that: (1) There was a downward trend in the total SOC mineralization with the increase of soil depth. The total SOC mineralization in the sub-deep soil (100-200 cm) and deep soil (200-400 cm) were equivalent to approximately 88.1% and 67.8% of that in the shallow layer (0-100 cm). (2) Throughout the carbon mineralization process, the same as the shallow soil, the sub-deep and deep soil can be divided into 3 stages. In the rapid decomposition phase, the ratio of the mineralization or organic carbon to the total mineralization in the sub-deep and deep layer (0-10 d) was approximately 50% of that in the shallow layer (0-17 d). In the slow decomposition phase, the ratio of organic carbon mineralization to total mineralization in the sub-deep, deep layer (11-45 d) was 150% of that in the shallow layer (18-45 d). There was no significant difference in this ratio among these three layers (46-62 d) in the relatively stable stage. (3) There was no significant difference (P > 0.05) in the mineralization rate of SOC among the shallow, sub-deep, deep layers. The stability of SOC in the deep soil layer (100-400 cm) was similar to that in the shallow soil layer and the SOC in the deep soil layer was also involved in the global carbon cycle. The change of SOC in the deep soil layer should be taken into account when estimating the effects of soil carbon sequestration in the Hilly Region of the Loess Plateau, China.
A simple biosphere model (SiB) for use within general circulation models
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Mintz, Y.; Sud, Y. C.; Dalcher, A.
1986-01-01
A simple realistic biosphere model for calculating the transfer of energy, mass and momentum between the atmosphere and the vegetated surface of the earth has been developed for use in atmospheric general circulation models. The vegetation in each terrestrial model grid is represented by an upper level, representing the perennial canopy of trees and shrubs, and a lower level, representing the annual cover of grasses and other heraceous species. The vegetation morphology and the physical and physiological properties of the vegetation layers determine such properties as: the reflection, transmission, absorption and emission of direct and diffuse radiation; the infiltration, drainage, and storage of the residual rainfall in the soil; and the control over the stomatal functioning. The model, with prescribed vegetation parameters and soil interactive soil moisture, can be used for prediction of the atmospheric circulation and precipitaion fields for short periods of up to a few weeks.
Leaf growth dynamics in four plant species of the Patagonian Monte, Argentina.
Campanella, M Victoria; Bertiller, Mónica B
2013-07-01
Studying plant responses to environmental variables is an elemental key to understand the functioning of arid ecosystems. We selected four dominant species of the two main life forms. The species selected were two evergreen shrubs: Larrea divaricata and Chuquiraga avellanedae and two perennial grasses: Nassella tenuis and Pappostipa speciosa. We registered leaf/shoot growth, leaf production and environmental variables (precipitation, air temperature, and volumetric soil water content at two depths) during summer-autumn and winter-spring periods. Multiple regressions were used to test the predictive power of the environmental variables. During the summer-autumn period, the strongest predictors of leaf/shoot growth and leaf production were the soil water content of the upper layer and air temperature while during the winter-spring period, the strongest predictor was air temperature. In conclusion, we found that the leaf/shoot growth and leaf production were associated with current environmental conditions, specially to soil water content and air temperature.
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the second half of the fairing (in the foreground) moves closer to the Phoenix Mars Lander for installation toward the first half. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
Changes in litter near an aluminum reduction plant
Beyer, W.N.; Fleming, W.J.; Swineford, D.
1987-01-01
Litter was collected from eight sites at distances as far as 33 km from an AI reduction plant in western Tennessee. As a result of an accumulation of fine litter (< 4.75 mm) the weight of the litter per unit area was abnormally high at the two sites within 2 km of the plant. Compared to litter collected far from the plant, it had a lower fiber content, was more sapric, and was less acid. Fluoride emissions from the plant were suggested as the probable cause of litter changes. Concentrations of water-extractable and acid-extractable F- in the litter, the 0- to 5-cm soil layer, and the 5- to 15-cm soil layer were strongly correlated with distance from the plant. Total acid-extractable F- in the litter and upper 15 cm of soil was about 41 times as much at the closest site (700 mg/kg) as at the most distant sites (12 and 16 mg/kg). In a bioassay of litter from our study sites, woodlice (Porcellio scaber Latr.) had an abnormally high mortality in litter that contained 440 mg/kg or more of acid-extractable F-. However, when F- was added as NaF to litter, a significant increase in mortality was observed only in treatments exceeding 800 mg/kg. The decrease in the rate of decomposition of the litter might eventually induce a deficiency of soil macronutrients, but none was detected.
NASA Astrophysics Data System (ADS)
Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovol'skaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Kobylchenko Kuksina, L. V.; Litvin, L. F.; Sudnitsyn, I. I.
2018-02-01
It has been shown in experiments in a hydraulic flume with a knee-shaped bend that the rate of soil erosion more than doubles at the flow impact angles to the channel side from 0° to 50°. At higher channel bends, the experiment could not be performed because of backwater. Results of erosion by water stream approaching the sample surface at angles between 2° and 90° are reported. It has been found that the maximum erosion rate is observed at flow impact angles of about 45°, and the minimum rate at 90°. The minimum soil erosion rate is five times lower than the maximum erosion rate. This is due to the difference in the rate of free water penetration into the upper soil layer, and the impact of the hydrodynamic pressure, which is maximum at the impact angle of 90°. The penetration of water into the interaggregate space results in the breaking of bonds between aggregates, which is the main condition for the capture of particles by the flow.
Runoff processes in catchments with a small scale topography
NASA Astrophysics Data System (ADS)
Feyen, H.; Leuenberger, J.; Papritz, A.; Gysi, M.; Flühler, H.; Schleppi, P.
1996-05-01
How do runoff processes influence nitrogen export from forested catchments? To support nitrogen balance studies for three experimental catchments (1500m 2) in the Northern Swiss prealps water flow processes in the two dominating soil types are monitored. Here we present the results for an experimental wetland catchment (1500m 2) and for a delineated sloped soil plot (10m 2), both with a muck humus topsoil. Runoff measurements on both the catchment and the soil plot showed fast reactions of surface and subsurface runoff to rainfall inputs, indicating the dominance of fast-flow paths such as cracks and fissures. Three quarters of the runoff from the soil plot can be attributed to water flow in the gleyic, clayey subsoil, 20% to flow in the humic A horizon and only 5% to surface runoff. The water balance for the wetland catchment was closed. The water balance of the soil plot did not close. Due to vertical upward flow from the saturated subsoil into the upper layers, the surface runoff plus subsurface runoff exceeded the input (precipitation) to the plot.
NASA Astrophysics Data System (ADS)
Curreli, Matteo; Montaldo, Nicola; Oren, Ram
2017-04-01
In water-limited environments, such as certain Mediterranean ecosystems, trees may survive prolonged droughts by uptake of water by dimorphic root system: deep roots, growing vertically, and shallower lateral roots, extending beyond the crown projection of tree clumps into zones of seasonal vegetative cover. In such ecosystems, therefore, the balance between soil water under tree canopy versus that in treeless patches plays a crucial role on sustaining tree physiological performance and surface water fluxes during drought periods. The study has been performed at the Orroli site, Sardinia (Italy). The landscape is covered by patchy vegetation: wild olives trees in clumps, herbaceous species, drying to bare soil in late spring. The climate is Mediterranean maritime with long droughts from May to October, and an historical mean yearly rain of about 670 mm concentrated in the autumn and winter months. Soil depth varies from 10 to 50 cm, with underlying fractured rocky layer of basalt. From 2003, a 10 meters micrometeorological tower equipped with eddy-covariance system has been used for measuring water and energy surface fluxes, as well as key state variables (e.g. leaf and soil skin temperature, radiations, air humidity and wind velocity). Soil moisture was measured with five soil water reflectometers (two below the olive canopy and three in patches with pasture vegetation alternating with bare soil in the dry season). Early analyses show that wild olive continue to transpire even as the soil dries and the pasture desiccates. In 2015, to estimate plant water use and in the context of soil water dynamic, 33 Granier-type thermal dissipation probes were installed for estimating sap flow in stems of wild olives trees, 40 cm aboveground, in representative trees over the eddy-covariance foot-print. The combined data of sap flow, soil water content, and eddy covariance, revealed hydraulic redistribution system through the plant and the soil at different layers, allowing to quantify the reliance of the system on different horizontally and vertically differentiated soil compartments. Results shows that during light hours, until transpiration decreases in midday, shallow roots uptake deplete the water content in the upper layer. As transpiration decreases, hydraulically redistributed water provides for both transpiration of wild olives and recharge of shallow soil layers. This buffering, attained by long recharge time of shallow soil, allow woody vegetation to remain physiologically active during very dry conditions. The hydraulically redistributed water is the main source of water for evapotranspiration in the dry summer, and its relevance increases with decreasing water availability. Thus, the spatial coverage and distribution of tree clumps is regulated by the soil water available in the inter-tree clump areas, suggesting that, if Mediterranean areas dry as predicted by IPCC, the proportion of an area occupied by tree clumps will shrink in the future, with predictable consequences to ecosystem services.
2016-01-01
Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK), plastic film mulching with no basal fertilizer and no top dressing (MN0), basal fertilizer with no top dressing and no mulching (BN1), plastic film mulching and basal fertilizer with no top dressing (MN1), basal fertilizer and top dressing with no mulching (BN2) and plastic film mulching with basal fertilizer and top dressing (MN2). In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0–40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0–20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0–40-cm), and the mean soil nitrate-N content was increased nearly 50 mg kg−1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and the grain yield increase ranged from 31.41% to 83.61% in two consecutive years. The MN1 and MN2 treatment is recommended because it increased the grain yield and improved the fertilizer use efficiency, compared with the no-mulching treatment. PMID:27560826
Wang, Xiukang; Xing, Yingying
2016-01-01
Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK), plastic film mulching with no basal fertilizer and no top dressing (MN0), basal fertilizer with no top dressing and no mulching (BN1), plastic film mulching and basal fertilizer with no top dressing (MN1), basal fertilizer and top dressing with no mulching (BN2) and plastic film mulching with basal fertilizer and top dressing (MN2). In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0-40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0-20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0-40-cm), and the mean soil nitrate-N content was increased nearly 50 mg kg-1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and the grain yield increase ranged from 31.41% to 83.61% in two consecutive years. The MN1 and MN2 treatment is recommended because it increased the grain yield and improved the fertilizer use efficiency, compared with the no-mulching treatment.
NASA Astrophysics Data System (ADS)
Woods, S. W.; Balfour, V.
2007-12-01
Consumption of the litter and duff layers in forest wildfires can lead to substantial increases in the frequency and magnitude of overland flow. These increases result from the loss of storage in the organic surface layer, reduced surface roughness, and from sealing of the exposed mineral soil surface. The presence of an ash layer may accentuate surface sealing by providing an additional source of fine material, or it may reduce runoff by storing rainfall and by protecting the soil surface from raindrop impacts. We used simulated rainfall experiments to assess the effects of litter and duff consumption and the presence of ash layers of varying thickness on post fire runoff at two forested sites in western Montana, one with sandy loam soils formed out of granodiorite and the other with gravelly silt loam soils formed out of argillite. At each site we measured the runoff from simulated rainfall in replicated 0.5 m2 plots before and after application of the following treatments: 1) burning with a fuel load of 90 Mg ha-1, 2) manual removal of the litter and duff layers, 3) addition of 0.5, 2.5 and 5 cm of ash to plots from which the litter and duff had previously been removed, and 4) addition of the same depths of ash to burned plots at the sandy loam site. In the burned plots the surface litter and duff layers were completely consumed and a <1cm layer of black and gray ash and char was formed, indicating a moderate severity burn. The mean soil temperature in the upper 1 cm of the mineral soil was 70° C, and there was no detectable increase in water repellency. The mean final infiltration capacity of the burned sandy loam plots was 35 mm hr-1 compared to a pre-fire mean of 87 mm hr-1, while in the gravelly silt loam plots the pre- and post burn infiltration capacities (27 and 31 mm hr- 1) were not significantly different. Manual removal of the litter and duff layers reduced the mean final infiltration capacity in the sandy loam plots from 64 mm hr-1 to 40 mm hr-1 and in the gravelly silt loam plots from 23 mm hr-1 to 16 mm hr-1. We attribute decreases in infiltration due to the burning and duff removal treatments primarily to surface sealing. In the sandy loam plots, burning may have had a greater effect on infiltration than duff removal because the thin ash layer in the burned plots provided an additional source of fine material. In the gravelly silt loam plots, macropores located around rock fragments helped to minimize sealing effects. The addition of 0.5 cm of ash to the burned granitic plots resulted in a 20 mm hr-1 decrease in the final infiltration rate, and this was also probably due to surface sealing. However, the overall effect of ash addition was to increase the cumulative infiltration in proportion to the ash thickness and to maintain a higher average infiltration rate, indicating that while thin (<1 cm) ash layers may promote sealing, thicker ash layers help to reduce the runoff rate by providing additional storage for rainfall and by protecting the soil surface from raindrop impacts.
[Changes of soil physical properties during the conversion of cropland to agroforestry system].
Wang, Lai; Gao, Peng Xiang; Liu, Bin; Zhong, Chong Gao; Hou, Lin; Zhang, Shuo Xin
2017-01-01
To provide theoretical basis for modeling and managing agroforestry systems, the influence of conversion of cropland to agroforestry system on soil physical properties was investigated via a walnut (Juglans regia)-wheat (Triticum aestivum) intercropping system, a wide spreading local agroforestry model in northern Weihe River of loess area, with the walnut and wheat monoculture systems as the control. The results showed that the improvement of the intercropping system on soil physical properties mainly appeared in the 0-40 cm soil layer. The intercropping system could prevent soil bulk density rising in the surface soil (0-20 cm), and the plow pan in the 20-40 cm soil layer could be significantly alleviated. The intercropping system had conti-nuous improvement on soil field capacity in each soil layer with the planting age increase, and the soil field capacity was higher than that of each monoculture system in each soil layer (except 20-40 cm soil layer) since the 5th year after planting. The intercropping system had continuous improvement on soil porosity in each soil layer, but mainly in the 0-20 and 20-40 cm soil layer, and the ratio of capillary porosity was also improved. The soil bulk density, field capacity and soil porosity obtained continuous improvement during the conversion of cropland to agroforestry system, and the improvement on soil physical properties was stronger in shallow soil layer than in deep soil.
Investigation of features in radon soil dynamics and search for influencing factors
NASA Astrophysics Data System (ADS)
Yakovlev, Grigorii; Cherepnev, Maxim; Nagorskiy, Petr; Yakovleva, Valentina
2018-03-01
The features in radon soil dynamics at two depths were investigated and the main influencing factors were revealed. The monitoring of radon volumetric activity in soil air was performed at experimental site of Tomsk Observatory of Radioactivity and Ionizing Radiation with using radon radiometers and scintillation detectors of alpha-radiation with 10 min sampling frequency. The detectors were installed into boreholes of 0.5 and 1 m depths. The analysis of the soil radon monitoring data has allowed revealing some dependencies at daily and annual scales and main influencing factors. In periods with clearly defined daily radon variations in the soil were revealed the next: 1) amplitude of the daily variations of the soil radon volumetric activity damps with the depth, that is related with the influence of convective fluxes in the soil; 2) temporal shift between times of occurrence of radon volumetric activity maximum (or minimum) values at 0.5 m and 1 m depths can reach 3 hours. In seasonal dynamics of the soil radon the following dependences were found: 1) maximal values are observed in winter, but minimal - in summer; 2) spring periods of snow melting are accompanied by anomaly increasing of radon volumetric activity in the soil up to about 3 times. The main influencing factors are atmospheric precipitations, temperature gradient in the soil and the state of upper soil layer.
Calcic soils and calcretes in the southwestern United States
Bachman, George Odell; Machette, Michael N.
1977-01-01
Secondary calcium carbonate of diverse origins, 'caliche' of many authors, is widespread in the southwestern United States. 'Caliche' includes various carbonates such as calcic soils and products of groundwater cementation. The term 'caliche' is generally avoided in this report in favor of such terms as calcrete, calcic soils, and pervasively cemented deposits. Criteria for the recognition of various types of calcrete of diverse origins include field relations and laboratory data. Calcic soils provide a comprehensive set of characteristics that aid in their recognition in the field. These characteristics include a distinctive morphology that is zoned horizontally and can frequently be traced over tens to hundreds of square kilometers. The major process in the formation of pedogenic calcrete and calic soils is the leaching of calcium carbonate from upper soil horizons by downward percolating soil solutions and reprecipitation of the carbonate in alluvial horizons near the base of the soil profile. The formation of pedogenic calcrete involves many factors including climate, source of carbonate, and tectonic stability of the geomorphic surface on which the calcrete is deposited. Most of the carbonate in pedogenic calcrete is probably derived from windblown sand, dust, and rain. Calcic soils and pedogenic calcretes follow a six-stage sequence morphologic development and is based on a classification devised by Gile, Peterson and Grossman in 1966. The .six morphologic stages of carbonate deposition in soils are related to the relative age of the soil and are as follows: I. The first or youngest stage includes filamentous or faint coatings of carbonate on detrital grains. II. The second stage includes pebble coatings which are continuous; firm carbonate nodules are few to common. III. The third stage includes coalesced nodules which occur in a friable or disseminated carbonate matrix. IV. The fourth stage includes platy, firmly cemented matrix which engulfs nodules; horizon is plugged to downward moving solutions. V. The fifth stage includes soils which are platy to tabular, dense, strongly cemented. A well-developed laminar layer occurs on the upper surface. VI. The sixth and most advanced stage is massive, multilaminar, and strongly cemented calcrete with abundant pisoliths, the upper surface of which may be brecciated. Pisoliths may indicate many generations of brecciation and reformation. In general calcic soils include stages I through III and are friable to moderately indurated; whereas pedogenic calcretes include stages IV through VI and are dense and strongly indurated. In a single pedon the morphologic stage of carbonate deposition decreases downward in the profile. The stage of development may be used in local regions for correlation and determination of relative ages of soils and geomorphic surfaces. Some structures observed in pedogenic calcretes may be present in other types of calcrete but the horizontal zonation typical of deposits of soil processes is absent. Laminar structure in particular is not restricted to pedogenic deposits and is common in many varieties of calcrete. Very little chemical change occurs in the noncalcareous nonclayey fractions of calcretes with age; but clay minerals within calcretes undergo a complex history of authigenesis. There is a depletion of magnesium in the calcareous portion and an enrichment of magnesium in the clayey portion of a calcrete with age. In keeping with this relationship, montmorillonite, or mixed layer montmorillonite-illite, is common in younger calcretes; whereas the high magnesium-silicate clays, sepiolite and palygorskite, are common in older calcretes. This indicates that the magnesium depleted from the carbonate is redistributed authigenically in clay minerals. The mobility of carbonate introduces many problems in attempts to date calcretes directly. Although the relative ages of soils within a province may be determined by quant
NASA Astrophysics Data System (ADS)
Golovanov, A. I.; Sotneva, N. I.
2009-03-01
The Dzhanybek two-dimensional radial-axial mathematical model was developed for water and salt transfer in geosystems of solonetzic complexes of the Northern Caspian region; the model is capable of considering the geochemical links and revealing the features of migration processes between the conjugated elements of the microcatena. The simulation results suggested that the stabilization of salinization-desalinization processes occurs under stable weather conditions within approximately 100 years. When the weather conditions changed (the total moisture pool of the area increased from 1978), the simulation results indicated a tendency toward salinization of dark-colored soils in microdepressions and removal of salts in the upper 1-m thick soil layer on microhighs and microslopes. Predictions for 2040 showed that a deep accumulation of salts in microdepressions and desalinization of soils of microhighs and microslopes will occur under the current weather conditions. Thus, the changes in the halogeochemical capacity of geosystems of solonetzic complexes primarily depend on the climatic conditions, although the capacity value remains almost constant with increasing total water reserves; the changes occur only between the conjugated soils of solonetzic complexes, which is of great importance for predicting the soil-geochemical status of the entire landscape.
Measurements of Soil Carbon by Neutron-Gamma Analysis in Static and Scanning Modes.
Yakubova, Galina; Kavetskiy, Aleksandr; Prior, Stephen A; Torbert, H Allen
2017-08-24
The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detectors, split electronics to separate gamma spectra due to INS and thermo-neutron capture (TNC) processes, and software for gamma spectra acquisition and data processing. This method has several advantages over other methods in that it is a non-destructive in situ method that measures the average carbon content in large soil volumes, is negligibly impacted by local sharp changes in soil carbon, and can be used in stationary or scanning modes. The result of the INS method is the carbon content from a site with a footprint of ~2.5 - 3 m 2 in the stationary regime, or the average carbon content of the traversed area in the scanning regime. The measurement range of the current INS system is >1.5 carbon weight % (standard deviation ± 0.3 w%) in the upper 10 cm soil layer for a 1 hmeasurement.
NASA Astrophysics Data System (ADS)
Rejman, Jerzy; Rafalska-Przysucha, Anna; Paluszek, Jan
2014-05-01
Soil erosion processes lead to redistribution of soils and soil organic carbon (SOC) in the landscape. In this study, we aimed to evaluate the effect of runoff connectivity on horizontal and vertical SOC concentration in the catchment. SOC concentration was examined in a small agricultural catchment located in deep loess area of the Lublin Upland, Poland (51019'55"N, 22023'16"E). The catchment area of 5.6 ha is divided into 11 parcels. Conventional tillage is performed on each of the parcel and plow includes of 1-2 moldboard and 1 cultivator operations per year. Tillage is performed along the longest side of parcels. Crop rotation includes wheat, barley, sugar beets, potatoes and maize. Connectivity of temporal overland flow in the catchment is disturbed by grassed borders of the parcels. SOC concentration was studied in 151 sampling points in a grid 20 by 20 m. Structure of soil profile was studied in each of the sampling points, and soil cores were taken from two soil layers of 0-25 and 25-50 cm, and from 7 profiles located within the closed depression and the areas where line of temporary overland flow cross the grassed parcel borders. SOC concentration in soil samples was determined by wet combustion with dichromate solution. Depositional soils represented 57 profiles in the catchment. The thickness of accumulated soil layer varied from 20 to 151 cm with a mean of 55 cm. SOC concentration ranged from 8.4 to 15.0 g kg-1 (with a mean of 11.0 g kg-1) in the upper and from 2.9 to 14.5 g kg-1 (7.5) in the deeper soil layer. Coefficient of variation was 12.9% in the layer 0-25 cm, and 44.5% in the layer 25-50 cm. To find the reasons of high variability of SOC concentration in deeper soil layer, the location of depositional soils in the catchment was analyzed. The analysis enabled to distinguish two groups of depositional soils of different SOC concentration at the depth of 25-50 cm. Depositional soils located in the zones of temporal stagnation of overland flow (i.e. closed depressions and the areas where the lines of concentrated flow cross the parcel borders) characterized higher SOC concentration with a mean of 10.10 g kg-1, and depositional soils located on slopes - lower (4.10 g kg-1). The first group represented 33 profiles, the second 24. Coefficient of variation in each group of soil was 19%. Vertical SOC concentration showed a large variation in profiles of depositional soils, with layers of higher and smaller SOC concentration at different depth. Soils located in the zones where lines of concentrated temporary flow cross the field borders showed a high SOC enrichment in buried Ab horizons (at the depth >80 cm) in comparison to soils located in closed depressions. The difference could be a result of larger area that contributes to overland flow in the case of sites located at lines of flow in comparison to the contribution area of closed depressions. The exception is a profile SP6, where the SOC concentration in Ab is similar to the Ab horizon in depressions. The SP6 profile is located in the lower part of the catchment at the end of a parcel of the length of 110 m. The other profiles (SP2, and SP5) are in the areas were distance between the parcel borders is 40-60 m, and SP7 is at the catchment outlet. It seems that the difference in SOC concentration in Ab between SP6 and SP2-SP5 is a result of more effective decrease of velocity of overland flow by closely located grassed borders of the parcels. The studies showed that grassed parcel borders fill an effective role in an increase of soil carbon stock in the areas where lines of temporary overland flow cross the parcel border. The effectiveness of SOC accumulation was larger in the past, as it is proved by high SOC concentration in buried Ab horizon, and was dependent on the distance between the grassed borders.
Long-Life Self-Renewing Solar Reflector Stack
Butler, Barry Lynn
1997-07-08
A long-life solar reflector includes a solar collector substrate and a base layer bonded to a solar collector substrate. The first layer includes a first reflective layer and a first acrylic or transparent polymer layer covering the first reflective layer to prevent exposure of the first reflective layer. The reflector also includes at least one upper layer removably bonded to the first acrylic or transparent polymer layer of the base layer. The upper layer includes a second reflective layer and a second acrylic or transparent polymer layer covering the second reflective layer to prevent exposure of the second reflective layer. The upper layer may be removed from the base reflective layer to expose the base layer, thereby lengthening the useful life of the solar reflector. A method of manufacturing a solar reflector includes the steps of bonding a base layer to a solar collector substrate, wherein the base reflective layer includes a first reflective layer and a first transparent polymer or acrylic layer covering the first reflective layer; and removably bonding a first upper layer to the first transparent polymer or acrylic layer of the base layer. The first upper layer includes a second reflective layer and a second transparent polymer or acrylic layer covering the second reflective layer to prevent exposure of the second reflective layer.
NASA Astrophysics Data System (ADS)
Altdorff, Daniel; van der Kruk, Jan; Bechtold, Michel; Tiemeyer, Bärbel; Huismann, Sander
2013-04-01
Intact peatlands are natural sinks of climate-relevant atmospheric CO2 and they are able to store high amounts of organic carbon (C). In addition, intact peatlands are increasingly important given positive effects on biodiversity, hydrological processes and corresponding management issues. Nevertheless, large parts of peatlands in populated areas were modified by human activity during the last centuries. In Germany, more than 90% of the peatlands are drained, mainly for agricultural use. Due to the recent recognition of the positive effects of intact peatlands, there are presently several initiatives for re-wetting parts of these peatlands. However, a restoration to nearly natural conditions needs an evaluation of the current situation as well as an assessment of the restoration potential. Therefore, soil properties like peat layer thickness, bulk density and moisture content need to be known. Non-invasive hydrogeophysical methods offer the possibility for a time and cost-effective characterization of peatlands. In this study, we investigated a medium-scale peatland area (approximately 35 ha) of the 3000 ha large 'Großes Moor' peatland. We present apparent conductivity (ECa) values obtained from Electromagnetic Induction (EMI) measurements representative for three investigation depths (approximately 0.25, 0.5, and 1m). We selected zones with dissimilar ECa to identify areas where strong changes in the subsoil properties with depth are expected (i.e. shallow peat soil on top of sand). Within these areas, additional measurements were made using Ground Penetration Radar (GPR) and soil sampling was performed. In total, six 30 m long GPR profiles and corresponding common midpoint (CMP) measurements were recorded. Additionally, 15 soil cores were taken down to a depth of 0.9 m in order to obtain peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content. Each core was divided into several 5 to 20 cm thick layers to obtain information on the vertical variation of these soil properties with depth. Our results indicate that the peat layer is generally characterized by lower BD, higher pore water EC, higher C content, and higher water contents compared to the underlying sand layer. Preliminary EMI results indicate a ECa - C content correlation that decreases with EMI investigation depth from 0.25 to 1 m. Regarding all soil core properties, the strongest contrast occurs at the peat-sand interface. This contrast also clearly appears in some of the GPR results. The EMI apparent conductivities are positively correlated with soil water content and peat thickness obtained from the soil cores. Preliminary GPR results confirm an increased thickness of the upper layer in areas with increased ECa values. The EMI results also reveal clear patterns linked over several fields with different land use history that represent natural structures in the subsurface.
NASA Astrophysics Data System (ADS)
Jastrow, J. D.; Ping, C. L.; Deck, C. B.; Matamala, R.; Vugteveen, T. W.; Lederhouse, J. S.; Michaelson, G. J.
2016-12-01
Estimates of the amount of organic carbon (C) stored in permafrost-region soils and its susceptibility to mobilization with changing climate are improving but remain high, affecting the ability to reliably predict regional C-climate feedbacks. In lowland permafrost soils, much of the organic matter exists in a poorly degraded state and is often weakly associated with soil minerals due to the cold, wet environment and cryoturbation. Thus, the impacts of warming and permafrost thaw likely will depend, at least initially, on the past history of soil organic matter (SOM) degradation. Ice wedge polygons are ubiquitous, patterned ground features throughout Arctic coastal plain regions and are large enough (5-30 m across) that a better three-dimensional understanding of their C stocks and relative degradation state could improve geospatial upscaling of observational data and contribute benchmarks for constraining model parameters. We investigated the distribution and existing degradation state of SOM to a depth of 2 meters across three polygon types on the Arctic Coastal Plain of Alaska: flat-centered (FCP), low-centered (LCP), and high-centered (HCP) polygons, with each type replicated 3 times. To assess the relative degradation state of SOM, we used particle size fractionation to isolate fibric (coarse) from more degraded (fine) particulate organic matter and separated mineral-associated organic matter into silt- and clay-sized fractions. We found variations in the thickness and quality of surface organic layers for different polygon types. Below the active layer, organic-rich cryoturbated layers were located in the transition zone and fingered down into the upper permafrost. Soil organic C stocks varied across individual polygons and differed among polygon types, with HCPs generally having the largest C stocks. The relative degradation state of SOM also varied spatially and vertically within polygons and differed among polygon types. Our findings suggest that accounting for polygon-scale (wedge to center to wedge) and landscape-scale (polygon type) variations could help reduce the uncertainties in observational estimates of soil C stocks and their degradation state for areas dominated by ice wedge polygons.
Cao, Chong; Huang, Juan; Yan, Chunni; Liu, Jialiang; Hu, Qian; Guan, Wenzhu
2018-05-01
The increasing utilization of silver nanoparticles (Ag NPs) in industry and commerce inevitably raises its release into wastewater. In this work, effects of Ag NPs on system performance and microbial community along the way of a vertical flow constructed wetland (VFCW) were investigated, along with the removal and fate of Ag NPs within the system. Results showed that the performance of control wetland kept stable during the experimental period, and the top substrate layer (soil layer) of wetland could remove most of pollutants in the influent. The study also suggested that addition of Ag NPs did not significantly affect organic matters removal. However, adverse effects were observed on the nitrogen and phosphorus removal. Removal efficiencies of TN, NH 4 + -N and TP approximately obviously reduced by approximately 10.10%, 8.42% and 28.35% respectively in contrast to before dosing after exposing 100 μg/L Ag NPs for 94 d, while the no dosing wetland with the stable performance. It was found that Ag NPs accumulated in the upper soil layer more than in the lower soil layer, and Ag NPs could enter into the plant tissues. After continuous input of Ag NPs, removal efficiency of Ag NPs was measured as 95.72%, which showed that the CW could effectively remove Ag NPs from the wastewater. The high-throughput sequencing results revealed that Ag NPs caused the shifts in microbial community structures and changed the relative abundances of key functional bacteria, which finally resulted in a lower efficiency of biological nitrogen and phosphorus removal. Copyright © 2018 Elsevier Ltd. All rights reserved.
Guo, Yong; Fujimura, Reiko; Sato, Yoshinori; Suda, Wataru; Kim, Seok-won; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Narisawa, Kazuhiko; Ohta, Hiroyuki
2014-01-01
The 2000 eruption of Mount Oyama on the island of Miyake (Miyake-jima) created a unique opportunity to study the early ecosystem development on newly exposed terrestrial substrates. In this study, bacterial and fungal communities on 9- and 11-year-old volcanic deposits at poorly to fully vegetation-recovered sites in Miyake-jima, Japan, were characterized by conventional culture-based methods and pyrosequencing of 16S rRNA and 18S rRNA genes. Despite the differences in the vegetation cover, the upper volcanic deposit layer samples displayed low among-site variation for chemical properties (pH, total organic carbon, and total nitrogen) and microbial population densities (total direct count and culturable count). Statistical analyses of pyrosequencing data revealed that the microbial communities of volcanic deposit samples were phylogenetically diverse, in spite of very low-carbon environmental conditions, and their diversity was comparable to that in the lower soil layer (buried soil) samples. Comparing with the microbial communities in buried soil, the volcanic deposit communities were characterized by the presence of Betaproteobacteria and Gammaproteobacteria as the main bacterial class, Deinococcus- Thermus as the minor bacterial phyla, and Ascomycota as the major fungal phyla. Multivariate analysis revealed that several bacterial families and fungal classes correlated positively or negatively with plant species. PMID:24463576
Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei
2015-11-01
In this study, a semi-open-top artificial climate chamber was used to study the effect of CO2 enrichment (360 and 540 µmol · mol(-1)) and nitrogen addition (0, 150, 300 and 450 kg · hm(-2)) on cotton dry matter accumulation and distribution, nitrogen absorption and soil urease activity. The results showed that the dry matter accumulation of bud, stem, leaf and the whole plant increased significantly in the higher CO2 concentration treatment irrespective of nitrogen level. The dry matter of all the detected parts of plant with 300 kg · hm(-2) nitrogen addition was significantly higher than those with the other nitrogen levels irrespective of CO2 concentration, indicating reasonable nitrogen fertilization could significantly improve cotton dry matter accumulation. Elevated CO2 concentration had significant impact on the nitrogen absorption contents of cotton bud and stem. Compared to those under CO2 concentration of 360 µmol · mol(-1), the nitrogen contents of bud and stem both increased significantly under CO2 concentration of 540 µmol · mol(-1). The nitrogen content of cotton bud in the treatment of 300 kg · hm(-2) nitrogen was the highest among the four nitrogen fertilizer treatments. While the nitrogen contents of cotton stem in the treatments of 150 kg · hm(-2) and 300 kg · hm(-2) nitrogen levels were higher than those in the treatment of 0 kg · hm(-2) and 450 kg · hm(-2) nitrogen levels. The nitrogen content of cotton leaf was significantly influenced by the in- teraction of CO2 elevation and N addition as the nitrogen content of leaf increased in the treatments of 0, 150 and 300 kg · hm(-2) nitrogen levels under the CO2 concentration of 540 µmol · mol(-1). The nitrogen content in cotton root was significantly increased with the increase of nitrogen fertilizer level under elevated CO2 (540 µmol · mol(-1)) treatment. Overall, the cotton nitrogen absorption content under the elevated CO2 (540 µmol · mol(-1)) treatment was higher than that under the ambient CO2- (360 µmol · mol(-1)) treatment. The order of nitrogen accumulation content in organs was bud > leaf > stem > root. Soil urease activity of both layers increased significantly with the elevation of CO2 concentration in all the nitrogen treatments. Under each CO2 concentration treatment, the soil urease activity in the upper layer (0-20 cm) increased significantly with nitrogen application, while the urease activity under the application of 300 kg · hm(-2) nitrogen was highest in the lower layer (20- 40 cm). The average soil urease activity in the upper layer (0-20 cm) was significantly higher than that in the lower layer (20-40 cm). This study suggested that the cotton dry matter accumulation and nitrogen absorption content were significantly increased in response to the elevated CO2 concentration (540 µmol · mol(-1)) and higher nitrogen addition (300 kg · hm(-2)).
Tsunami Evidence in South Coast Java, Case Study: Tsunami Deposit along South Coast of Cilacap
NASA Astrophysics Data System (ADS)
Rizal, Yan; Aswan; Zaim, Yahdi; Dwijo Santoso, Wahyu; Rochim, Nur; Daryono; Dewi Anugrah, Suci; Wijayanto; Gunawan, Indra; Yatimantoro, Tatok; Hidayanti; Herdiyani Rahayu, Resti; Priyobudi
2017-06-01
Cilacap Area is situated in coastal area of Southern Java and directly affected by tsunami hazard in 2006. This event was triggered by active subduction in Java Trench which active since long time ago. To detect tsunami and active tectonic in Southern Java, paleo-tsunami study is performed which is targeted paleo-tsunami deposit older than fifty years ago. During 2011 - 2016, 16 locations which suspected as paleo-tsunami location were visited and the test-pits were performed to obtain characteristic and stratigraphy of paleo-tsunami layers. Paleo-tsunami layer was identified by the presence of light-sand in the upper part of paleo-soil, liquefaction fine grain sandstone, and many rip-up clast of mudstone. The systematic samples were taken and analysis (micro-fauna, grainsize and dating analysis). Micro-fauna result shows that paleo-tsunami layer consist of benthonic foraminifera assemblages from different bathymetry and mixing in one layer. Moreover, grainsize shows random grain distribution which characterized as turbulence and strong wave deposit. Paleo-tsunami layers in Cilacap area are correlated using paleo-soil as marker. There are three paleo-tsunami layers and the distribution can be identified as PS-A, PS-B and PS-C. The samples which were taken in Glempang Pasir layer are being dated using Pb - Zn (Lead-Zinc) method. The result of Pb - Zn (Lead-Zinc) dating shows that PS-A was deposited in 139 years ago, PS-B in 21 years ago, and PS C in 10 years ago. This result indicates that PS -1 occurred in 1883 earthquake activity while PS B formed in 1982 earthquake and PS-C was formed by 2006 earthquake. For ongoing research, the older paleo-tsunami layers were determined in the Gua Nagaraja, close to Selok location and 6 layers of Paleo-tsunami suspect found which shown a similar characteristic with the layers from another location. The three layers deeper approximately have an older age than another location in Cilacap.
NASA Astrophysics Data System (ADS)
Masaoka, Naoya; Kosugi, Ken'ichirou; Yamakawa, Yosuke; Mizuyama, Takahisa; Tsutsumi, Daizo
2013-04-01
Heterogeneous hydrological properties in a foot slope area of mountainous hillslopes should be assessed to understand hydrological phenomena and their effects on discharge and sediment transport. In this study, we analyzed the high-resolution and three-dimensional water movement data to clarify the hydrological process, including heterogeneous phenomena, in detail. We continuously monitored the soil matric pressure head, psi, using 111 tensiometers installed at grid intervals of approximately 1 meter within the soil mantle at the study hillslope. Under a no-rainfall condition, the existence of perennial groundwater seepage flow was detected by exfiltration flux and temporal psi waveforms, which showed delayed responses, only to heavy storm events, and gradual recession limbs. The seepage water spread in the downslope direction and supplied water constantly to the lower section of the slope. At some points in the center of the slope, a perched saturated area was detected in the middle of soil layer, while psi exhibited negative values above the bedrock surface. These phenomena could be inferred partly from the bedrock topography and the distribution of soil hydraulic conductivity assumed from the result of penetration test. At the peak of a rainfall event, on the other hand, continuous high pressure zones (i.e., psi > 50 cmH2O) were generated in the right and left sections of the slope. Both of these high pressure zones converged at the lower region, showing a sharp psi spike up to 100 cmH2O. Along the high pressure zones, flux vectors showed large values and water exfiltration, indicating the occurrence of preferential flow. Moreover, the preferential flow occurred within the area beneath the perched water, indicating the existence of a weathered bedrock layer. This layer had low permeability, which prevented the vertical infiltration of water in the upper part of the layer, but had high permeability as a result of the fractures distributed heterogeneously inside the layer. These fractures acted as a preferential flow channel and flushed the water derived from lateral flow accumulated from the upslope area during the rainfall event. These phenomena occurring at the peak of rainfall event could not be inferred from the parameters derived from the penetration test.
Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf
2013-01-01
Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters.
Root distribution of Nitraria sibirica with seasonally varying water sources in a desert habitat.
Zhou, Hai; Zhao, Wenzhi; Zheng, Xinjun; Li, Shoujuan
2015-07-01
In water-limited environments, the water sources used by desert shrubs are critical to understanding hydrological processes. Here we studied the oxygen stable isotope ratios (δ (18)O) of stem water of Nitraria sibirica as well as those of precipitation, groundwater and soil water from different layers to identify the possible water sources for the shrub. The results showed that the shrub used a mixture of soil water, recent precipitation and groundwater, with shallow lateral roots and deeply penetrating tap (sinker) roots, in different seasons. During the wet period (in spring), a large proportion of stem water in N. sibirica was from snow melt and recent precipitation, but use of these sources declined sharply with the decreasing summer rain at the site. At the height of summer, N. sibirica mainly utilized deep soil water from its tap roots, not only supporting the growth of shoots but also keeping the shallow lateral roots well-hydrated. This flexibility allowed the plants to maintain normal metabolic processes during prolonged periods when little precipitation occurs and upper soil layers become extremely dry. With the increase in precipitation that occurs as winter approaches, the percentage of water in the stem base of a plant derived from the tap roots (deep soil water or ground water) decreased again. These results suggested that the shrub's root distribution and morphology were the most important determinants of its ability to utilize different water sources, and that its adjustment to water availability was significant for acclimation to the desert habitat.
30 CFR 715.16 - Topsoil handling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... as the surface soil layers. Where the A horizon is less than 6 inches, a 6-inch layer that includes... replaced as the surface soil layer. (3) Where necessary to obtain soil productivity consistent with... amounts and analyses as determined by soil tests shall be applied to the surface soil layer so that it...
30 CFR 715.16 - Topsoil handling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... as the surface soil layers. Where the A horizon is less than 6 inches, a 6-inch layer that includes... replaced as the surface soil layer. (3) Where necessary to obtain soil productivity consistent with... amounts and analyses as determined by soil tests shall be applied to the surface soil layer so that it...
30 CFR 715.16 - Topsoil handling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... as the surface soil layers. Where the A horizon is less than 6 inches, a 6-inch layer that includes... replaced as the surface soil layer. (3) Where necessary to obtain soil productivity consistent with... amounts and analyses as determined by soil tests shall be applied to the surface soil layer so that it...
30 CFR 715.16 - Topsoil handling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... as the surface soil layers. Where the A horizon is less than 6 inches, a 6-inch layer that includes... replaced as the surface soil layer. (3) Where necessary to obtain soil productivity consistent with... amounts and analyses as determined by soil tests shall be applied to the surface soil layer so that it...
30 CFR 715.16 - Topsoil handling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... as the surface soil layers. Where the A horizon is less than 6 inches, a 6-inch layer that includes... replaced as the surface soil layer. (3) Where necessary to obtain soil productivity consistent with... amounts and analyses as determined by soil tests shall be applied to the surface soil layer so that it...
[Simulation of CO2 exchange between forest canopy and atmosphere].
Diao, Yiwei; Wang, Anzhi; Jin, Changjie; Guan, Dexin; Pei, Tiefan
2006-12-01
Estimating the scalar source/sink distribution of CO2 and its vertical fluxes within and above forest canopy continues to be a critical research problem in biosphere-atmosphere exchange processes and plant ecology. With broad-leaved Korean pine forest in Changbai Mountains as test object, and based on Raupach's localized near field theory, the source/sink and vertical flux distribution of CO2 within and above forest canopy were modeled through an inverse Lagrangian dispersion analysis. This model correctly predicted a strong positive CO2 source strength in the deeper layers of the canopy due to soil-plant respiration, and a strong CO2 sink in the upper layers of the canopy due to the assimilation by sunlit foliage. The foliage in the top layer of canopy changed from a CO2 source in the morning to a CO2 sink in the afternoon, while the soil constituted a strong CO2 source all the day. The simulation results accorded well with the eddy covariance CO2 flux measurements within and above the canopy, and the average precision was 89%. The CO2 exchange predicted by the analysis was averagely 15% higher than that of the eddy correlation, but exhibited identical temporal trend. Atmospheric stability remarkably affected the CO2 exchange between forest canopy and atmosphere.
Delgado-Moreno, L; Nogales, R; Romero, E
2017-12-15
Biobeds systems containing soil, peat and straw (SPS) are used worldwide to eliminate pesticide point-source contamination, but implantation is difficult when peat and/or straw are not available. Novel biobeds composed of soil, olive pruning and wet olive mill cake (SCPr) or its vermicompost (SVPr) were assayed at pilot scale for its use in olive grove areas. Their removal efficiency for five pesticides applied at high concentration was compared with the biobed with SPS. The effect of a grass layer on the efficiency of these biobeds was also evaluated. Pesticides were retained mainly in the upper layer. In non-planted biobeds with SCPr and SVPr, pesticides dissipation was higher than in SPS, except for diuron. In the biobed with SVPr, with the highest pesticide dissipation capacity, the removed amount of dimethoate, imidacloprid, tebuconazole, diuron and oxyfluorfen was 100, 80, 73, 75 and 50%, respectively. The grass layer enhanced dehydrogenase and diphenol-oxidase activities, modified the pesticides dissipation kinetics and favored the pesticide downward movement. One metabolite of imidacloprid, 3 of oxyfluorfen and 4 of diuron were identified by GC-MS. These novel biobeds represent an alternative to the traditional one and a contribution to promote a circular economy for the olive-oil production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biochar increases plant available water in a sandy soil under an aerobic rice cropping system
NASA Astrophysics Data System (ADS)
de Melo Carvalho, M. T.; de Holanda Nunes Maia, A.; Madari, B. E.; Bastiaans, L.; van Oort, P. A. J.; Heinemann, A. B.; Soler da Silva, M. A.; Petter, F. A.; Meinke, H.
2014-03-01
The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 t ha-1) on the water retention capacity (WRC) of a sandy Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g-1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields at 2 and 3 years after application. Undisturbed soil samples were collected from 16 plots in two soil layers (5-10 and 15-20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each t ha-1 of biochar amendment at 2 and 3 years after application. The impact of biochar on soil WRC was most likely related to an increase in overall porosity of the sandy soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5% and 1.6% for each t ha-1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under water limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.
Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system
NASA Astrophysics Data System (ADS)
de Melo Carvalho, M. T.; de Holanda Nunes Maia, A.; Madari, B. E.; Bastiaans, L.; van Oort, P. A. J.; Heinemann, A. B.; Soler da Silva, M. A.; Petter, F. A.; Marimon, B. H., Jr.; Meinke, H.
2014-09-01
The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 Mg ha-1) on the water retention capacity (WRC) of a sandy loam Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g-1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields 2 and 3 years after its application. Undisturbed soil samples were collected from 16 plots in two soil layers (5-10 and 15-20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant-available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each Mg ha-1 biochar amendment 2 and 3 years after its application. The impact of biochar on soil WRC was most likely related to an effect in overall porosity of the sandy loam soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5 and 1.6% for each Mg ha-1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during the critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under short-term water-limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.
Soil Compaction Assessment Using Spectral Analysis of Surface Waves (SASW)
NASA Astrophysics Data System (ADS)
Afiq Roslan, Muhammad; Madun, Aziman; Hazreek Zainalabidin, Mohd; Dan@Azlan, Mohd Firdaus Md; Khaidir Abu Talib, Mohd; Nur Hidayat Zahari, Muhammad; Ambak, Kamaruddin; Ashraf Mohamad Ismail, Mohd
2018-04-01
Compaction is a process of soil densification in earthworks via by pressing the soil particles with air being expelled from the soil mass, thereby increasing its unit weight. Thus, it is important to evaluate the quality of soil compaction as prescribed in the technical requirement. SASW method is widely used for estimating material properties in layered structures based on the dispersion characteristics of Rayleigh Waves. The small scale at dimension area of 1.0 m width x 1.0 m length x 0.9 m depth was excavated and back filled with laterite soil. The soil was compacted for every layer at 0.3 m thickness. Each layer of soil compaction was conducted compaction test using core cutter methods and SASW test to determine the density and shear wave velocity. The phase velocity for layer 1 was between 112 m/s and 114 m/s, layer 2 was between 67 m/s and 74 m/s and layer 3 was between 74 m/s and 97 m/s. The result shows that the compacted soil layers are not fulfilled the quality of compacted soil layers where supposedly the expected shear wave velocity for the compacted layers should be higher than 180 m/s which is classified as stiff soil.
NASA Astrophysics Data System (ADS)
Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda
2016-04-01
Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.
Milan, Marco; Ferrero, Aldo; Letey, Marilisa; De Palo, Fernando; Vidotto, Francesco
2013-01-01
The influence of buffer strips and soil texture on runoff of flufenacet and isoxaflutole was studied for two years in Northern Italy. The efficacy of buffer strips was evaluated on six plots characterized by different soil textures; two plots had Riva soil (18.6% sand, 63.1% silt, 18.3% clay) while the remaining four plots had Tetto Frati (TF) soil (37.1% sand, 57% silt, 5.9% clay). Additionally, the width of the buffer strips, constituted of spontaneous vegetation grown after crop sowing, was also compared for their ability to abate runoff waters. Chemical residues in water following runoff events were investigated, as well as their dissipation in the soil. After the first runoff events, concentrations of herbicides in water samples collected from Riva plots were as much as four times lower in waters from TF plots. On average of two growing seasons, the field half-life of flufenacet in the upper soil layer (5 cm) ranged between 8.1 and 12.8 days in Riva soil, 8.5 and 9.3 days in TF soil. Isoxaflutole field half-life was less than 1 day. The buffer strip was very affective by the uniformity of the vegetative cover, particularly, at the beginning of the season. In TF plots, concentration differences were generally due to the presence or absence of the buffer strip, regardless of its width.
Jia, Zhen Yu; Zhang, Jun Hua; Ding, Sheng Yan; Feng, Shu; Xiong, Xiao Bo; Liang, Guo Fu
2016-04-22
Soil phosphorus is an important indicator to measure the soil fertility, because the content of soil phosphorus has an important effect on physical and chemical properties of soil, plant growth, and microbial activity in soil. In this study, the soil samples collecting and indoor analysis were conducted in Zhoukou City located in the flooded area of the Yellow River. By using GIS combined with geo-statistics, we tried to analyze the spatial variability and content distribution of soil total phosphorus (TP) and soil available phosphorus (AP) in the study area. Results showed that TP and AP of both soil layers (0-20 cm and 20-40 cm) were rich, and the contents of TP and AP in surface layer (0-20 cm) were higher than in the second layer (20-40 cm). TP and AP of both soil layers exhibited variation at medium level, and AP had varied much higher than TP. TP of both layers showed medium degree of anisotropy which could be well modeled by the Gaussian model. TP in the surface layer showed strong spatial correlation, but that of the second layer had medium spatial correlation. AP of both layers had a weaker scope in anisotropy which could be simulated by linear model, and both soil layers showed weaker spatial correlations. TP of both soil layers showed a slowly rising change from southwest to northeast of the study area, while it gradually declined from northwest to southeast. AP in soil surface layer exhibited an increase tendency firstly and then decrease from southwest to the northeast, while it decreased firstly and then increased from southeast to the northwest. AP in the second soil layer had an opposite change in the southwest to the northeast, while it showed continuously increasing tendency from northwest to the southeast. The contents of TP and AP in the surface layer presented high grades and the second layer of TP belonged to medium grade, but the second layer of AP was in a lower grade. The artificial factors such as land use type, cropping system, irrigation and fertilization were the main factors influencing the distribution and spatial variation of soil phosphorus in this area.
A Study of the Physical Processes of an Advection Fog BoundaryLayer
NASA Astrophysics Data System (ADS)
Liu, D.; Yan, W.; Kang, Z.; Dai, Z.; Liu, D.; Liu, M.; Cao, L.; Chen, H.
2016-12-01
Using the fog boundary layer observation collected by a moored balloon between December 1 and 2, 2009, the processes of advection fog formation and dissipation under cold and warm double-advection conditions was studied. the conclusions are as follows: 1. The advection fog process was generated by the interaction between the near-surface northeast cold advection and the upper layer's southeast warm, humid advection. The ground fog formed in an advection cooling process, and the thick fog disappeared in two hours when the wind shifted from the northeast to the northwest. The top of the fog layer remained over 600 m for most of the time. 2. This advection fog featured a double-inversion structure. The interaction between the southeast warm, humid advection of the upper layer and the descending current generated the upper inversion layer. The northeast cold advection near the ground and the warm, humid advection in the high-altitude layer formed the lower layer clouds and lower inversion layer. The upper inversion layer was composed of southeast warm, humid advection and a descending current with increasing temperature. The double inversion provided good thermal conditions for maintaining the thick fog layer. 3. The southeast wind of the upper layer not only created the upper inversion layer but also brought vapour-rich air to the fog region. The steady southeast vapour transportation by the southeast wind was the main condition that maintained the fog thickness, homogeneous density, and long duration. The low-altitude low-level jet beneath the lower inversion layer helped maintain the thickness and uniform density of the fog layer by enhancing the exchange of heat, momentum and vapour within the lower inversion layer. 4. There were three transportation mechanisms associated with this advection fog: 1) The surface layer vapour was delivered to the lower fog layer. 2) The low-altitude southeast low-level jet transported the vapour to the upper layer. 3) The vapour was exchanged between the upper and lower layers via the turbulent exchange and vertical air motion, which mixed the fog density and maintained the thickness of the fog. These mechanisms explain why the fog top was higher than the lower inversion layer and reached the upper inversion layer, as well as why this advection fog was so thick.
Soil Organic Carbon Pools and Stocks in Permafrost-Affected Soils on the Tibetan Plateau
Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas
2013-01-01
The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm−3) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm−3) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg−1. Higher SOC contents (320 g kg−1) were found in OPOM while MOM had the lowest SOC contents (29 g kg−1). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0–30 cm depth) account for 10.4 kg m−2, compared to 3.4 kg m−2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation. PMID:23468904
NASA Astrophysics Data System (ADS)
Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; Barus, H.
2010-11-01
In a throughfall displacement experiment on Sulawesi, Indonesia, three 0.16 ha stands of a premontane perhumid rainforest were exposed to a two-year soil desiccation period that reduced the soil moisture in the upper soil layers beyond the conventional wilting point. About 25 variables, including leaf morphological and chemical traits, stem diameter growth and hydraulic properties of the xylem in the trunk and terminal twigs, were investigated in trees of the tall-growing tree species Castanopsis acuminatissima (Fagaceae) by comparing desiccated roof plots with nearby control plots. We tested the hypotheses that this tall and productive species is particularly sensitive to drought, and the exposed upper sun canopy is more affected than the shade canopy. Hydraulic conductivity in the xylem of terminal twigs normalised to vessel lumen area was reduced by 25%, leaf area-specific conductivity by 10-33% during the desiccation treatment. Surprisingly, the leaves present at the end of the drought treatment were significantly larger, but not smaller in the roof plots, though reduced in number (about 30% less leaves per unit of twig sapwood area), which points to a drought effect on the leaf bud formation while the remaining leaves may have profited from a surplus of water. Mean vessel diameter and axial conductivity in the outermost xylem of the trunk were significantly reduced and wood density increased, while annual stem diameter increment decreased by 26%. In contradiction to our hypotheses, (i) we found no signs of major damage to the C. acuminatissima trees nor to any other drought sensitivity of tall trees, and (ii) the exposed upper canopy was not more drought susceptible than the shade canopy.
The contribution of wetlands to stream nitrogen load in the Loch Vale Watershed, Colorado, USA
Jian-hui, Huang; Baron, Jill S.; Binkley, Dan
1996-01-01
We explored the difference between the concentrations of different N forms and other chemical properties between stream water and riparian zone wetland soil water in the Loch Vale Watershed which is located on the eastern slope of the Continental Divide in Rocky Mountain National Park, Colorado, USA. The nitrate N concentration in stream water were significantly higher than in soil water of the three wetlands, while no significant difference appeared in ammonium N. The pH values were higher and conductivity values were lower in stream water than in wetland soil water. However, significant difference also appeared between nitrate N concentrations, pH and conductivity values in the water sampled from different positions of streams. The stream tributary water had higher nitrate N concentrations, higher pH and higher conducitity values. We also conducted experiments to compare the difference between the productivity, total N concentrations in biomass and soil of upper layers. At the end, we concluded that the wetlands distributed along the streams in Loch Vale Watershed had little effect on the nitrogen load of the stream water there.
NASA Astrophysics Data System (ADS)
Herman, J.; den Ouden, J.; Mohren, G. M. J.; Retana, J.; Serrasolses, I.
2009-04-01
Changes in fire regime due to intensification of human influence during the last decades led to changes in vegetation structure and composition, productivity and carbon sink strength of Mediterranean shrublands and forests. It is anticipated that further climate warming and lower precipitation will enhance fire frequency, having consequences for the carbon budget and carbon storage in Mediterranean ecosystems. The purpose of this study was to determine whether fire recurrence modifies aboveground plant and soil carbon stocks, soil organic carbon content and total soil nitrogen content in shrublands with Aleppo pine on the Garraf Massif in Catalonia (Spain). Stands differing in fire frequency (1, 2 and 3 fires since 1957) were examined 13 years after the stand-replacing fire of 1994 and compared with control stands which were free of fire since 1957. Recurrent fires led to a decrease in total ecosystem carbon stocks. Control sites stored 12203 g m-2C which was 3.5, 5.0 and 5.5 times more than sites that burned 1, 2 and 3 times respectively. Carbon stored in the aboveground biomass exceeded soil carbon stocks in control plots, while soils were the dominant carbon pool in burned plots. An increasing fire frequency from 1 to 2 fires decreased total soil carbon stock. Control soils stored 3551 g m-2C, of which 70 % was recovered over 13 years in once burned soils and approximately 50 % in soils that had 2 or 3 fires. The soil litter (LF) layer carbon stock decreased with increasing fire frequency from 1 to 2 fires, whereas humus (H) layer and upper mineral soil carbon stocks did not change consistently with fire frequency. Fire decreased the organic carbon content in LF and H horizons, however no significant effect of fire frequency was found. Increasing fire frequency from 1 to 2 fires caused a decrease in the organic carbon content in the upper mineral soil. Total soil N content and C/N ratios were not significantly impacted by fire frequency. Recurrent fires had the greatest impact on aboveground plant carbon stocks. Aboveground plants in control plots amounted to 8652 g m-2C, of which 93 % was stored in trees, while carbon storage in the most frequently burned sites was only 509 g m-2C. Shrub carbon varied barely between fire frequencies, corroborating the high resilience of resprouting shrub species to fire recurrence. The most striking result was the immense decrease in Aleppo pine carbon stock which varied between 7770 g m-2in control plots and 25.6 g m-2in 3-fires plots. Differences between control and burned plots are principally explained by the age of the plots. The decrease in Aleppo pine carbon stock within burned plots was not associated with a growth reduction, but was due to a decrease in stem density. The results indeed indicate that the recruitment of Aleppo pine on more frequently burned plots is obstructed due to cumulative effects of short fire return-intervals (
Fomsgaard, Inge S; Spliid, Niels Henrik; Felding, Gitte
2003-01-01
Isoproturon is a herbicide, which was used in Denmark against grass weeds and broad-leaved weeds until 1998. Isoproturon has frequently been detected in ground water monitoring studies. Leaching of isoproturon (N,N-dimethyl-N'-(4-(1-methylethyl)-phenyl)urea) and its metabolites, N'-(4-isopropylphenyl)-N-methylurea and N'-(4-isopropylphenyl)urea was studied in four lysimetres, two of them being replicates from a low-tillage field (lysimeter 3 and 4), the other two being replicates from a normal tillage field (lysimeter 5 and 6). In both cases the soil was a sandy loam soil with 13-14% clay. The lysimetres had a surface area of 0.5 m2 and a depth of 110 cm. Lysimeter 3 and 4 were sprayed with unlabelled isoproturon while lysimeter 5 and 6 was sprayed with a mixture of 14C-labelled and unlabelled isoproturon. The total amount of isoproturon sprayed onto each lysimeter was 63 mg, corresponding to 1.25 kg active ingredient per ha. The lysimeters were sprayed with isoproturon on October 26, 1997. The lysimetres were installed in an outdoor system in Research Centre Flakkebjerg and were thus exposed to normal climatic conditions of the area. A mean of 360 l drainage water were collected from lysimeter 3 and 4 and a mean of 375 litres from lysimeter 5 and 6. Only negligible amounts of isoproturon and its primary metabolites were found in the drainage water samples, and thus no significant difference between the two lysimeter sets was shown. In a total of 82 drainage water samples, evenly distributed between the four lysimetres isoproturon was found in detectable amounts in two samples and N'-(4-isopropylphenyl)urea was found in detectable amounts in two other samples. The detection limit for all the compounds was 0.02 microg/l. 48% and 54% of the added radioactivity were recovered from the upper 10 cm soil layer in lysimeter 5 and 6, respectively, and 17 and 14% from 10-20 cm's depth. By extraction first with an aquatic CaCl2 solution 0.49% of the added radioactivity was extracted from the upper 10 cm layer in lysimeter 5. In the subsequent extraction with acetonitril, 1.19% of the added radioactivity was extracted. In lysimeter 6, upper 10 cm, 0.2% were extracted with water and 0.56% were extracted with acetonitril. Below 10 cm's depth no measurable amounts could be extracted.
Luo, Hong-Hai; Zhang, Hong-Zhi; Zhang, Ya-Li; Zhang, Wang-Feng
2012-02-01
Taking cotton cultivar Xinluzao 13 as test material, a soil column culture expenment was conducted to study the effects of water storage in deeper (> 60 cm) soil layer on the root growth and its relations with the aboveground growth of the cultivar in arid area with drip irrigation under mulch. Two levels of water storage in 60-120 cm soil layer were installed, i. e., well-watered and no watering, and for each, the moisture content in 0-40 cm soil layer during growth period was controlled at two levels, i.e., 70% and 55% of field capacity. It was observed that the total root mass density of the cultivar and its root length density and root activity in 40-120 cm soil layer had significant positive correlations with the aboveground dry mass. When the moisture content in 0-40 cm soil layer during growth season was controlled at 70% of field capacity, the total root mass density under well-watered and no watering had less difference, but the root length density and root activity in 40-120 cm soil layer under well-watered condition increased, which enhanced the water consumption in deeper soil layer, increased the aboveground dry mass, and finally, led to an increased economic yield and higher water use efficiency. When the moisture content in 0-40 cm soil layer during growth season was controlled at 55% of field capacity and the deeper soil layer was well-watered, the root/shoot ratio and root length density in 40-120 cm soil layer and the root activity in 80-120 cm soil layer were higher, the water consumption in deeper soil layer increased, but it was still failed to adequately compensate for the negative effects of water deficit during growth season on the impaired growth of roots and aboveground parts, leading to a significant decrease in the economic yield, as compared with that at 70% of field capacity. Overall, sufficient water storage in deeper soil layer and a sustained soil moisture level of 65% -75% of field capacity during growth period could promote the downward growth of cotton roots, which was essential for achieving water-saving and high-yielding cultivation of cotton with drip irrigation under mulch.
NASA Astrophysics Data System (ADS)
Pandey, V.; Srivastava, P. K.
2018-04-01
Change in soil moisture regime is highly relevant for agricultural drought, which can be best analyzed in terms of Soil Moisture Deficit Index (SMDI). A macroscale hydrological model Variable Infiltration Capacity (VIC) was used to simulate the hydro-climatological fluxes including evapotranspiration, runoff, and soil moisture storage to reconstruct the severity and duration of agricultural drought over semi-arid region of India. The simulations in VIC were performed at 0.25° spatial resolution by using a set of meteorological forcing data, soil parameters and Land Use Land Cover (LULC) and vegetation parameters. For calibration and validation, soil parameters obtained from National Bureau of Soil Survey and Land Use Planning (NBSSLUP) and ESA's Climate Change Initiative soil moisture (CCI-SM) data respectively. The analysis of results demonstrates that most of the study regions (> 80 %) especially for central northern part are affected by drought condition. The year 2001, 2002, 2007, 2008 and 2009 was highly affected by agricultural drought. Due to high average and maximum temperature, we observed higher soil evaporation that reduces the surface soil moisture significantly as well as the high topographic variations; coarse soil texture and moderate to high wind speed enhanced the drying upper soil moisture layer that incorporate higher negative SMDI over the study area. These findings can also facilitate the archetype in terms of daily time step data, lengths of the simulation period, various hydro-climatological outputs and use of reasonable hydrological model.
The variation of methane flux rates from boreal tree species at the beginning of the growing season
NASA Astrophysics Data System (ADS)
Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari
2016-04-01
Boreal forests are considered as net sink for atmospheric methane (CH4) because of the CH4 oxidizing bacteria in the aerobic soil layer. However, within the last decades it has become more evident that trees play an important role in the global CH4 budget by offering pathways for anaerobically produced CH4 from deeper soil layers to the atmosphere. Furthermore, trees may also act as independent sources of CH4. To confirm magnitude, variability and the origin of the tree mediated CH4 emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured tree stem and shoot CH4 exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in southern Finland (61° 51'N, 24° 17'E, 181 asl). The fluxes were measured from silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation and forest structure by using the static chamber technique. Scaffold towers were used for measurements at multiple stem heights and shoots. The aim was to study the vertical profile of CH4 fluxes at stem and shoot level and compare these fluxes among the studied species, and to observe temporal changes in CH4 flux over the beginning of the growing season. We found that all the trees emitted CH4 from their stems and shoots. Overall, the birches showed higher emissions compared to the spruces. The emission rates were considerably larger in the lower parts of the birch stems than upper parts, and these emissions increased during the growing season. The spruces had more variation in the stem CH4 flux, but the emission rates of the upper parts of the stem exceeded the birch emissions at the same height. The shoot fluxes of all the studied trees indicated variable CH4 emissions without a clear pattern regarding the vertical profile and progress of the growing season.
NASA Astrophysics Data System (ADS)
Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Karpukhin, M. M.; Zavgorodnyaya, Yu. A.; Tsvetnova, O. B.
2018-05-01
The contents and profile distributions of Cr, Ni, Cu, Zn, Cd, Hg, Pb, and benzo[a]pyrene in oligotrophic peat soils, oligotrophic peat gley soils (Dystric Fibric Histosols), humus-impregnated peat gleyzems (Dystric Histic Gleysols), and mucky gleyzems (Dystric Gleysols) have been analyzed with consideration for their degree of oligotrophicity and anthropogenic loads. Horizons with the accumulation (O, Tpyr, TT) and removal (Ghi,e) of heavy metals have been revealed. The increase in the content of heavy metals and benzo[ a]pyrene in the upper layer of oligotrophic peat soils under technogenic fallouts in the impact zone of flare and motor transport has been considered. Statistical parameters of the spatial variation of parameters in organic and gley horizons have been calculated. The variation coefficients of pollutant elements (Pb and Zn) in the surface horizons of soils increase to 100-125%. Positive correlations revealed between the content of some heavy metals in litter indicate their bioaccumulation and possible joint input with aerotechnogenic fallouts. No correlations are found between the contents of benzo[ a]pyrene and heavy metals, but a reliable negative correlation with the ash content is noted in the peat horizon.
Cai, Wen Tao; Li, He Yi; Lai, Li Ming; Zhang, Xiao Long; Guan, Tian Yu; Zhou, Ji Hua; Jiang, Lian He; Zheng, Yuan Run
2017-03-18
A series of typical abandoned croplands in the regions of Ruanliang and Yingliang in the Ordos Plateau, China, were selected, and dynamics of the surface litter, biological soil crust and soil bulk density, soil texture, and soil moisture in different soil layers were investigated. The results showed that in the abandoned cropland in Ruanliang, the clay particle content and surface litter of the surface soil layer (0-10 cm) increased during the restoration process, while that of soil bulk density substantially decreased and soil water content slightly increased in the surface soil. In the medium soil layer (10-30 cm), the clay particle content increased and the soil water content slightly decreased. In the deep soil layer (30-50 cm), there was a relatively large variation in the physical properties. In the abandoned cropland in Yingliang, the coverage of litter and the coverage and thickness of the biological soil crust increased during the abandonment process. The surface soil bulk density, soil clay particle content and soil water content remained constant in 0-10 cm soil layer, while the physical properties varied substantially in 10-40 cm soil layer. The shallow distribution of the soil water content caused by the accumulation of the litter and clay particles on the soil surface might be the key reason of the replacement of the semi-shrub Artemisia ordosica community with a perennial grass community over the last 20 years of the abandoned cropland in Ruanliang. The relatively high soil water content in the shallow layer and the development of the biological soil crust might explain why the abandoned cropland in Yingliang was not invaded by the semi-shrub A. ordosica during the restoration process.
Estimation of Vs30 Soil Profile Structure of Singapore from Microtremor Records
NASA Astrophysics Data System (ADS)
Walling, M. Y.; Megawati, K.; Zhu, C.
2012-04-01
Singapore lies at the southern tip of the Malay Peninsula, covering a land area of 600 km2 and with a population exceeding 5 million. Array microtremor recording were carried out in Singapore for 40 sites that encompasses the sites of all the major geological formations. The Spatial Autocorrelation (SPAC) method is employed to determine the phase velocity dispersion curves and subsequently inverted to determine the shallow shear-wave velocity (V s) and soil stratigraphy. The depth of penetration is generally about 30 m - 40 m for most of the sites. For the present study, the V s estimation is restricted to the upper 30 m of the soil (V s30), confirming with the IBC (2006). The Reclaimed Land and the young Quaternary soft soil deposit of Kallang Formation show low V s30 values ranging from 207 m/s - 247 m/s, belonging to site E and at the boundary of site E and D. The Old Alluvium formation shows higher V s30 values ranging from 362 m/s - 563 m/s and can be classified under site C. The estimated V s30 for the sedimentary sequence of Jurong Formation reveal site C classification, with the V s30 range from 317 m/s - 712 m/s. On the other hand, the Bukit Timah Granite body shows low V s30 ranging from 225 m/s - 387 m/s, with most of the sites concentrated under site D classification and few sites at the boundary of sites D and C, for the upper 30 m. This low V s30 value of the granitic body can be explained in the light of intense weathering that the granite body has undergone for the upper layer, which is also supported from borehole records. The SPAC results are compared with nearby borehole data and they show a good correlation for sites that have soft soil formation and for the weathered granite body. The correlation confirms the reliability of SPAC method that can be applied for highly populated urbanized places like Singapore. The present research finding will be useful for further studies of site response analysis, site characterization and ground motion simulation.
Analysis of flowpath dynamics in a steep unchannelled hollow in the Tanakami Mountains of Japan
NASA Astrophysics Data System (ADS)
Uchida, Taro; Asano, Yuko; Ohte, Nobuhito; Mizuyama, Takahisa
2003-02-01
Simultaneous measurements of runoff, soil pore water pressure, soil temperature, and water chemistry were taken to evaluate the spatial and temporal nature of flowpaths in a steep 0·1 ha unchannelled hollow in the Tanakami Mountains of central Japan. Tensiometers showed that a saturated area formed and a downward hydraulic gradient existed continuously in the area near a spring. The amplitude of the soil-bedrock interface temperature difference near the spring was smaller than that in the upper hollow, although soil depth near the spring was smaller than in the upper hollow. This suggests that, in the small perennially saturated area near the spring, water percolates through the vadose zone mixed with water emerging from the bedrock. During summer rainstorms, the soil-bedrock interface temperature increased as the ground became saturated. Silica and sodium concentrations in the transient saturated groundwater during these episodes were significantly lower than those in the perennial groundwater, suggesting that both rainwater and shallow soil water had important effects on the formation of transient saturated groundwater on the upper slope. In this case, the streamflow varied with the soil pore water pressure on the upper slope; the soil pore water pressure in the area near the spring remained nearly constant. Moreover, the spring water temperature was almost the same as the transient groundwater temperature on the upper slope. This indicates that the transient groundwater in the upper slope flowed to the spring via lateral preferential paths. The relative inflow of bedrock groundwater to the spring decreased as rainfall increased.
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li; Xu, Zhenfeng
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.
Properties and variability of soil and trench fill at an arid waste-burial site
Andraski, Brian J.
1996-01-01
Arid sites commonly are assumed to be ideal for long-term isolation of wastes. Information on properties and variability of desert soils is limited, however, and little is known about how the natural site environment is altered by installation of a waste facility. During fall construction of two test trenches next to the waste facility on the Amargosa Desert near Beatty, NV, samples were collected to: (i) characterize physical and hydraulic properties of native soil (upper 5 m) and trench fill, (ii) determine effects of trench construction on selected properties and vertical variability of these properties, and (iii) develop conceptual models of vertical variation within the soil profile and trench fill. Water retention was measured to air dryness (ψ = 2 × 106 cm water suction). The 15 300-cm pressure-plate data were omitted from the analysis because water-activity measurements showed the actual suction values were significantly less than the expected 15 300-cm value (avg. difference = 8550 ± 2460 cm water). Trench construction significantly altered properties and variability of the natural site environment. For example, water content ranged from 0.029 to 0.041 m3 m-3 for fill vs. 0.030 to 0.095 m3 m-3 for soil; saturated hydraulic conductivity was ≈ 10-4 cm s-1 for fill vs. 10-2 to ≈ 10-4 cm s-1 for soil. Statistical analyses showed that the native soil may be represented by three major horizontal components and the fill by a single component. Under initial conditions, calculated liquid conductivity (Kl) plus isothermal vapor conductivity (Kv) for the upper two soil layers and the trench fill was ≈ 10-13 cm s-1, and Kl was ≤ Kv. For the deeper (2–5 m) soil, total conductivity was ≈ 10-10 cm s-1, and Kl was >Kv. This study quantitatively describes hydraulic characteristics of a site using data measured across a water-content range that is representative of arid conditions, but is seldom studied.
NASA Astrophysics Data System (ADS)
Guan, X.-K.; Turner, N. C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M.
2015-07-01
Soil organic carbon (SOC) plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L.) and two locally adapted forage legumes, bush clover (Lespedeza davurica S.) and milk vetch (Astragalus adsurgens Pall.) on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile, and to estimate the long-term potential for SOC sequestration in the soil under the three forage legumes. The results showed that the concentration of SOC of the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0-2.0 m soil depth measured. Over the 7 year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha-1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha-1 under bare soil. The sequestration of SOC in the 1-2 m depth of soil accounted for 79, 68 and 74 % of SOC sequestered through the upper 2 m of soil under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.
NASA Astrophysics Data System (ADS)
Bauer, Thomas; Strauss, Peter; Stiper, Katrin; Klipa, Vladimir; Popescu, Daniela; Winter, Silvia; Zaller, Johann G.
2016-04-01
Successful viticulture is mainly influenced by soil and climate. The availability of water during the growing season highly influences wine quality and quantity. To protect soil from being eroded most of the winegrowers keep the inter row zones of the vineyards green. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, these greening strategies concerning the intensity of inter row management differ from farm to farm and are mainly based on personal experience of the winegrowers. However to what extent different inter row management practices affect soil physical properties are not clearly understood yet. To measure possible effects of inter row management in vineyards on soil physical parameters we selected paired vineyards with different inter row management in Austria and Romania. In total more than 7000 soil analysis were conducted for saturated and unsaturated hydraulic conductivity, soil water retention, water stable aggregates, total organic carbon, cation exchange capacity, potassium, phosphorous, soil texture, bulk density and water infiltration. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with one soil disturbance every second inter row per year and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not improve for the upper soil layer (3-8cm). This is in contrast to general perceptions of improved soil physical properties due to low intensity of inter row management, i.e. permanent vegetated inter rows. This may be attributed to long term and high frequency mechanical stress by agricultural machinery in inter rows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebauer, R.L.E.; Ehleringer, J.R.
Variation in the ability to utilize pulses of both water and nitrogen (N) is one possible mechanism allowing the coexistence of species in the cold desert community on the Colorado Plateau. The authors simulated 25-mm precipitation events and used stable isotope tracers ({sup 2}H and {sup 15}N) to follow water and N uptake patterns in six dominant perennials (Artemisia filifolia, Coleogyne ramosissima, Cryptantha flava, Ephedra viridis, Quercus havardii, and Vanclevea stylosa) at different times of the growing season. Water pulse utilization varied on a seasonal basis and was to some extent different among species during the summer. Carbon isotope discriminationmore » was negatively related to both plant use of moisture in upper soil layers and foliar N concentration. Species that were similar in water pulse utilization patterns differed in the natural abundance of {sup 15}N, suggesting partitioning in N sources. All species were able to utilize N pulses after rain events, but there were temporal differences in the response among species. The authors also found that water and N uptake in shallow roots do not necessarily occur simultaneously. Artemisia, Cryptantha, and Quercus showed significant uptake of both water and N from the upper soil layers. In contrast, Coleogyne and Ephedra showed the capacity to utilize the water pulse, but not the N pulse. Vanclevea only took up N. The results indicate that different parts of the root system may be responsible for the acquisition of water and N. Their results also suggest that N and water partitioning could contribute to the coexistence of species in highly variable environments such as the Colorado Plateau desert system.« less
Application of the Nimbus 5 ESMR to rainfall detection over land surfaces
NASA Technical Reports Server (NTRS)
Meneely, J. M.
1975-01-01
The ability of the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) to detect rainfall over land surfaces was evaluated. The ESMR brightness temperatures (Tb sub B) were compared with rainfall reports from climatological stations for a limited number of rain events over portions of the U.S. The greatly varying emissivity of land surfaces precludes detection of actively raining areas. Theoretical calculations using a ten-layer atmospheric model showed this to be an expected result. Detection of rain which had fallen was deemed feasible over certain types of land surfaces by comparing the Tb sub B fields before and after the rain fell. This procedure is reliable only over relatively smooth terrain having a substantial fraction of bare soil, such as exists in major agricultural regions during the dormant or early growing seasons. Soil moisture budgets were computed at selected sites to show how the observed emissivity responded to changes in the moisture content of the upper soil zone.
Relationship between elemental distribution in soil and human impact in Majuro Atoll
NASA Astrophysics Data System (ADS)
Ito, L.; Takahashi, Y.; Yoneda, M.; Omori, T.; Yamazaki, K.; Yoshida, H.; Tamenori, Y.; Suga, H.; Yamaguchi, T.
2015-12-01
Majuro Atoll is one of islands of the Marshall Islands, located in the central Pacific Ocean. Reef-building corals and biological remains such as foraminifera have formed the islands under the influence of sea-level changes in the Holocene. Since the altitude of the general coral reef island tends to be very low, it is believed that the islands are vulnerable to natural disasters and climate change. However, people have lived in the Majuro Atoll in Marshall Islands for more than 2000 years. Reef islands in the same atoll are often considered to have same tendencies in the developing process; however, (i) there are possibilities that each geography produces different condition in habitat and (ii) human activities have changed the original nature in the island. In this study, we focus on the changes of physico-chemical conditions of soil depending on the depth according to time series variation in three islands in Majuro Atoll. Dating of each depth was conducted by radiocarbon (14C) measurement for foraminifera using accelerator mass spectrometry (AMS) and Bayesian age-depth Models. X-ray fluorescence (XRF) and ICP-MS analyses were employed to measure major and trace elements at different depth, respectively. Among them, phosphorus (P) is considered to play an important role in soil development; therefore X-ray absorption fine structure (XAFS) analysis was also conducted to examine the chemical form of P. Scanning electron microscope (SEM) was used to examine the elemental distribution in the soil particles, while X-ray computed tomography (CT) was used to calculate the rate of porosity of foraminifera at each depth. Concentrations of Fe, Mn, and P decrease with depth and vice versa for Mg. As a result of the μ-XAFS analysis, P in the soil exists as organic phosphorus and apatite. Phosphorous detected from the upper layer was found to distribute heterogeneously in the particles, which was observed as punctate pattern by the SEM observation. The ICP-MS results showed that Zn concentration was high in the upper layers which are likely affected by human activities. In this presentation, we discuss (i) the relationship between the pedological development and human impact and (ii) the elements that can be used as an indicator of human activities.
Phoenix Deepens Trenches on Mars
NASA Technical Reports Server (NTRS)
2008-01-01
The Surface Stereo Imager on NASA's Phoenix Mars Lander took this false color image on Oct. 21, 2008, during the 145th Martian day, or sol, since landing. The bluish-white areas seen in these trenches are part of an ice layer beneath the soil. The trench on the upper left, called 'Dodo-Goldilocks,' is about 38 centimeters (15 inches) long and 4 centimeters (1.5 inches) deep. The trench on the right, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the lower middle is called 'Stone Soup.' The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Soil gas radon concentrations measurements in terms of great soil groups.
Içhedef, Mutlu; Saç, Müslim Murat; Camgöz, Berkay; Bolca, Mustafa; Harmanşah, Çoşkun
2013-12-01
In this study, soil gas radon concentrations were investigated according to locations, horizontal soil layers and great soil groups around Tuzla Fault, Seferihisar-İzmir. Great soil groups are a category that described the horizontal soil layers under soil classification system and distributions of radon concentration in the great soil groups are firstly determined by the present study. According to the obtained results, it has been showed that the radon concentrations in the Koluvial soil group are higher than the other soil groups in the region. Also significant differences on location in same great soil group were determined. The radon concentrations in the Koluvial soil groups were measured with respect to soil layers structures (A, B, C1, and C2). It has been observed that the values increase with depth of soil (C2>C1>B>A). The main reason may be due to the meteorological factors that have limited effect on radon escape from deep layers. Although fault lines pass thought the study area radon concentrations were varied location to location, layer to layer and great group to great group. The study shows that a detailed location description should be performed before soil radon measurements for earthquake predictions. Copyright © 2013 Elsevier Ltd. All rights reserved.
BOREAS TF-4 CO2 and CH4 Soil Profile Data from the SSA
NASA Technical Reports Server (NTRS)
Striegl, Robert; Wickland, Kimberly; Hall, Forrest G. (Editor); Conrad, Sara (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-4) team measured distributions of carbon dioxide (CO2) and methane (CH4) concentrations for the upper 5 m of soil and unsaturated zone at the mature stand, upper 6 m at the 20-year-old stand, and the upper 1 m at the 8-year-old stand and clear cut area at the BOREAS Southern Study Area (SSA) during August 1993 to March 1995. Particle size and carbon content of the unsaturated deposits, precipitation, soil temperature and moisture, carbon and oxygen isotopes of soil CO2, and soil water chemistry are also presented. The data are stored in tabular ASCII files.
NASA Astrophysics Data System (ADS)
Tsibart, Anna; Gennadiev, Alexander; Koshovskii, Timur; Kovach, Roman
2014-05-01
Polycyclic aromatic compounds (PAHs) are formed in different natural and anthropogenic processes and could be found in many landscape components. These compounds are carcinogenic and belong to the group of persistent organic pollutants. The anthropogenic sources of PAHs are well-studied, but insufficient data are available on the hightemperature production of PAHs in natural processes. For example, natural fires are frequently related to the PAHs sources in landscapes, but very little factual data are on this topic. The soils of drained peatlands affected by catastrophic wildfires of 2010 and 2002 were studied in the Eastern part of Moscow Region (Russia). A total of 14 profiles of histosols and histic podsols were investigated. These series included soils of plots subjected to fires of different intensities and age, as well as soils of the background plots. Soil samples were taken from genetic horizons and from every 10 cm. The samples were analyzed for the contents of 14 prevailing individual compounds: fluorene, naphthalene, phenanthrene, chrysene, pyrene, anthracene, tetraphene, benz[a]pyrene, benzo[ghi]perylene, benzo[e]pyrene, coronene, dibenztiophene, triphenilene, benz(k)fluorantene. Morfological properties of soils after wildfires on drained peatlands were changed dramatically, the horizons of ash and char instead of organic layers were formed. These new horizons differ in the capability of PAHs accumulation. The char horizons have the highest concentrations of PAHs - up to 300 ng/g because of incomplete burning of organic matter in this sites, and the ash horizons, where the complete burning occured, contain only 10 ng/g PAHs. The highest concentrations of PAHs in soil profiles were detected after recent fires, and in cases of thick peat layers. After the combustion of peat chrysene, benz[a]pyrene, benz[e]pyrene, benzo[ghi]perylene, benz(k)fluorantene and tetraphene accumulated in soils. This is mainly the group of 4-6-nuclear compounds. The formation of high-molecular weight compounds is possible during smoldering process under a low oxygen supply. The oxygen deficit acts as a factor of the organic fragments recombination and PAHs production; therefore, relatively large amounts of PAHs are formed in peat fires. Moreover the peat fires occur directly in the soil layer; therefore, larger amounts of the resulting PAHs remain in the soils of the fire sites. The migration of low-molecular weight compounds occures in histic podsols, in histosols PAHs accumalate only in upper organic horizons. The research was conducted with the support of Russian Geographical Society.
Pleistocene permafrost features in soils in the South-western Italian Alps
NASA Astrophysics Data System (ADS)
D'Amico, Michele; Catoni, Marcella; Bonifacio, Eleonora; Zanini, Ermanno
2015-04-01
Because of extensive Pleistocenic glaciations which erased most of the previously existing soils, slope steepness and climatic conditions favoring soil erosion, most soils observed on the Alps (and in other mid-latitude mountain ranges) developed only during the Holocene. However, in few sites, particularly in the outermost sections of the Alpine range, Pleistocene glaciers covered only small and scattered surfaces because of the low altitude reached in the basins, and ancient soils could be preserved for long periods of time on particularly stable surfaces. In some cases, these soils retain good memories of past periglacial activity. We described and sampled soils on stable surfaces in the Upper Tanaro valley, Ligurian Alps (Southwestern Piemonte, Italy). The sampling sites were between 600 to 1600 m of altitude, under present day lower montane Castanea sativa/Ostrya carpinifolia forests, montane Fagus sylvatica and Pinus uncinata forests or montane heath/grazed grassland, on different quartzitic substrata. The surface morphology often showed strongly developed, fossil periglacial patterned ground forms, such as coarse stone circles on flat surfaces, or stone stripes on steeper slopes. The stone circles could be up to 5 m wide, while the sorted stripes could be as wide as 12-15 m. A strong lateral cryogenic textural sorting characterized the fine fraction too, with sand dominating close to the stone rims of the patterned ground features and silt and clay the central parts. The surface 60-120 cm of the soils were podzolized during the Holocene; as a result of the textural lateral sorting, the thickness of the podzolic E and Bs horizons varied widely across the patterns. The lower boundary of the Holocene Podzols was abrupt, and corresponded with dense layers with thick coarse laminar structure and illuvial silt accumulation (Cjj horizons). Dense Cjj diapiric inclusions were sometimes preserved in the central parts of the patterns. Where cover beds were developed, more superimposed podzol cycles were observed: the deeper podzols, included in the dense layer, were strongly cryoturbated and showed convoluted horizons and buried organic horizons. The presence of the dense Cjj horizons also influenced surface soil hydrology, which in turn influenced the expression of E and Bs horizons, in addition to textural lateral variability. In conclusion, surface morphology and soil properties evidence the presence of permafrost during cold Pleistocene phases, with an active layer 60-120 cm thick, associated with a particularly strong cryoturbation. However, all the permafrost features were not necessarily formed during the same periods, and dating of different materials would be necessary in order to obtain precise paleoenvironmental reconstructions of cold Quaternary phases in the Alps.
Velasco, H; Astorga, R Torres; Joseph, D; Antoine, J S; Mabit, L; Toloza, A; Dercon, G; Walling, Des E
2018-03-01
Large-scale deforestation, intensive land use and unfavourable rainfall conditions are responsible for significant continuous degradation of the Haitian uplands. To develop soil conservation strategies, simple and cost-effective methods are needed to assess rates of soil loss from farmland in Haiti. The fallout radionuclide caesium-137 ( 137 Cs) provides one such means of documenting medium-term soil redistribution rates. In this contribution, the authors report the first use in Haiti of 137 Cs measurements to document soil redistribution rates and the associated pattern of erosion/sedimentation rates along typical hillslopes within a traditional upland Haitian farming area. The local 137 Cs reference inventory, measured at an adjacent undisturbed flat area, was 670 Bq m -2 (SD = 100 Bq m -2 , CV = 15%, n = 7). Within the study area, where cultivation commenced in 1992 after deforestation, three representative downslope transects were sampled. These were characterized by 137 Cs inventories ranging from 190 to 2200 Bq m -2 . Although, the study area was cultivated by the local farmers, the 137 Cs depth distributions obtained from the area differed markedly from those expected from a cultivated area. They showed little evidence of tillage mixing within the upper part of the soil or, more particularly, of the near-uniform activities normally associated with the plough layer or cultivation horizon. They were very similar to that found at the reference site and were characterized by high 137 Cs activities at the surface and much lower activities at greater depths. This situation is thought to reflect the traditional manual tillage practices which cause limited disturbance and mixing of the upper part of the soil. It precluded the use of the conversion models normally used to estimate soil redistribution rates from 137 Cs measurements on cultivated soils and the Diffusion and Migration conversion model frequently used for uncultivated soils was modified for application to the cultivated soils of the study area, in order to take account of the unusual local conditions. The model was also modified to take account of the fact that cultivation in the study area commenced in 1992, rather than predating the period of weapons test fallout which extended from the mid 1950s to the 1970s. Erosion rates on the upper parts of the hillside involved in the study were found to be relatively high and ca. -23 t ha -1 y -1 with low spatial variability. In the lower, flatter areas at the bottom of the slope, deposition occurred. Deposition rates were characterized by high spatial variability, ranging from 6.0 to 71 t ha -1 y -1 . Soil redistribution rates of this magnitude are a cause for concern and there is an urgent need to implement soil conservation measures to ensure the longer-term sustainability of the local agricultural practices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antisoiling technology: Theories of surface soiling and performance of antisoiling surface coatings
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Willis, P. B.
1984-01-01
Physical examination of surfaces undergoing natural outdoor soiling suggests that soil matter accumulates in up to three distinct layers. The first layer involves strong chemical attachment or strong chemisorption of soil matter on the primary surface. The second layer is physical, consisting of a highly organized arrangement of soil creating a gradation in surface energy from a high associated with the energetic first layer to the lowest possible state on the outer surfce of the second layer. The lowest possible energy state is dictated by the physical nature of the regional atmospheric soiling materials. These first two layers are resistant to removal by rain. The third layer constitutes a settling of loose soil matter, accumulating in dry periods and being removed during rainy periods. Theories and evidence suggest that surfaces that should be naturally resistant to the formation of the first two-resistant layers should be hard, smooth, hydrophobic, free of first-period elements, and have the lowest possible surface energy. These characteristics, evolving as requirements for low-soiling surfaces, suggest that surfaces or surface coatings should be of fluorocarbon chemistry. Evidence for the three-soil-layer concept, and data on the positive performance of candidate fluorocarbon coatings on glass and transparent plastic films after 28 months of outdoor exposure, are presented.
BOREAS Soils Data over the SSA in Raster Format and AEAC Projection
NASA Technical Reports Server (NTRS)
Knapp, David; Rostad, Harold; Hall, Forrest G. (Editor)
2000-01-01
This data set consists of GIS layers that describe the soils of the BOREAS SSA. The original data were submitted as vector layers that were gridded by BOREAS staff to a 30-meter pixel size in the AEAC projection. These data layers include the soil code (which relates to the soil name), modifier (which also relates to the soil name), and extent (indicating the extent that this soil exists within the polygon). There are three sets of these layers representing the primary, secondary, and tertiary soil characteristics. Thus, there is a total of nine layers in this data set along with supporting files. The data are stored in binary, image format files.
He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang
2016-08-26
Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them.
He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang
2016-01-01
Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546
Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields
NASA Astrophysics Data System (ADS)
Kimura, M.
2004-12-01
Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were leached from the plow layer by percolating water amounted to 170 kgC ha-1 in a Japanese rice field, among which 120 kgC of organic materials were adsorbed in the subsoil layer between 13 and 40 cm depth.
An Experimental Study on the Impact of Different-frequency Elastic Waves on Water Retention Curve
NASA Astrophysics Data System (ADS)
Deng, J. H.; Dai, J. Y.; Lee, J. W.; Lo, W. C.
2017-12-01
ABSTEACTOver the past few decades, theoretical and experimental studies on the connection between elastic wave attributes and the physical properties of a fluid-bearing porous medium have attracted the attention of many scholars in fields of porous medium flow and hydrogeology. It has been previously determined that the transmission of elastic waves in a porous medium containing two immiscible fluids will have an effect on the water retention curve, but it has not been found that the water retention curve will be affected by the frequency of elastic vibration waves or whether the effect on the soil is temporary or permanent. This research is based on a sand box test in which the soil is divided into three layers (a lower, middle, and upper layer). In this case, we discuss different impacts on the water retention curve during the drying process under sound waves (elastic waves) subject to three frequencies (150Hz, 300Hz, and 450Hz), respectively. The change in the water retention curve before and after the effect is then discussed. In addition, how sound waves affect the water retention curve at different depths is also observed. According to the experimental results, we discover that sound waves can cause soil either to expand or to contract. When the soil is induced to expand due to sound waves, it can contract naturally and return to the condition it was in before the influence of the sound waves. On the contrary, when the soil is induced to contract, it is unable to return to its initial condition. Due to the results discussed above, it is suggested that sound waves causing soil to expand have a temporary impact while those causing soil to contract have a permanent impact. In addition, our experimental results show how sound waves affect the water retention curve at different depths. The degree of soil expansion and contraction caused by the sound waves will differ at various soil depths. Nevertheless, the expanding or contracting of soil is only subject to the frequency of sound waves. Key words: Elastic waves, Water retention curve, Sand box test.
Microwave applications range from under the soil to the stratosphere
NASA Astrophysics Data System (ADS)
Bierman, Howard
1990-11-01
While the current cutback in defense spending had a negative impact on the microwave industry, microwave technology is now being applied to improve mankind's health, to clean up the environment, and provide more food. The paper concentrates on solutions for traffic jams and collision avoidance, the application of microwave hyperthermia to detect and destroy cancer cells, applications for controlling ozone-layer depletion, for investigating iceberg activity and ocean-current patterns in the Arctic, and for measuring soil-moisture content to improve crop efficiency. An experimental 60-GHz communication system for maintaining contact with up to 30 vehicles is described, along with dielectric-loaded lens and multimicrostrip hyperthermia applicators, and microwave equipment for NASA's upper-atmosphere research satellite and ESA's remote-sensing satellite. Stripline techniques to monitor process control on semiconductor wafer and paper production lines are also outlined.
AmeriFlux US-Snd Sherman Island
Baldocchi, Dennis [University of California, Berkeley
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Snd Sherman Island. Site Description - The Sherman Island site is a 38-ha peatland pasture, west of the Delta, that is owned by the state and managed by the California Department of Water Resources. The site is degraded and heavily grazed with ~100 cattle in the area that circumscribes the main field and fetch. The island has been drained and farmed since the late 1800s. The soils of the Delta overlay deep peat that was sequestered over the Holocene period as sea-level rose and flooding of archaic wetlands prevented decomposition of roots and stems. Hence, the upper 10 m of peatland has been lost to decomposition, compaction, and subsidence. Today a mineral soil overlays a peat layer, which coincides with the general depth of the water table.
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion. PMID:28982191
Underwater Flow Visualization Methods in the Upper Layer of the Ocean.
1981-05-22
AD-A107 919 NAVAL RESEARCH LAB WASHINGTON DC F/G 8/3 UNDERWATER FLOW VISUALIZATION METHODS IN T1E UPPER LAYER OF THE-ETC(U) AMAY 81 J R MCGRATH, C M...S.bOti1.) S. TYPE OF REPORT I PERIOD COVERED UNDERWATER FLOW VISUALIZATION METHODS Interim report on a continuingNRL problem. IN THE UPPER LAYER OF THE...56 UNDERWATER FLOW VISUALIZATION METHODS IN THE UPPER LAYER OF THE OCEAN 1. INTRODUCTION a) Purpose This report documents the
Influence of Acacia trees on soil nutrient levels in arid lands
NASA Astrophysics Data System (ADS)
De Boever, Maarten; Gabriels, Donald; Ouessar, Mohamed; Cornelis, Wim
2014-05-01
The potential of scattered trees as keystone structures in restoring degraded environments is gaining importance. Scattered trees have strong influence on their abiotic environment, mainly causing changes in microclimate, water budget and soil properties. They often function as 'nursing trees', facilitating the recruitment of other plants. Acacia raddiana is such a keystone species which persists on the edge of the Sahara desert. The study was conducted in a forest-steppe ecosystem in central Tunisia where several reforestation campaigns with Acacia took place. To indentify the impact of those trees on soil nutrients, changes in nutrient levels under scattered trees of three age stages were examined for the upper soil layer (0-10 cm) at five microsites with increasing distance from the trunk. In addition, changes in soil nutrient levels with depth underneath and outside the canopy were determined for the 0-30 cm soil layer. Higher concentrations of organic matter (OM) were found along the gradient from underneath to outside the canopy for large trees compared to medium and small trees, especially at microsites close to the trunk. Levels of soluble K, electrical conductivity (EC), available P, OM, total C and N decreased whereas pH and levels of soluble Mg increased with increasing distance from tree. Levels of soluble Ca and Na remained unchanged along the gradient. At the microsite closest to the trunk a significant decrease in levels of soluble K, EC, OM, available P, total C and N, while a significant increase in pH was found with increasing depth. The concentration of other nutrients remained unchanged or declined not differently underneath compared to outside the canopy with increasing depth. Differences in nutrient levels were largely driven by greater inputs of organic matter under trees. Hence, Acacia trees can affect the productivity and reproduction of understory species with the latter in term an important source of organic matter. This positive feedback mechanism is of crucial importance for soil nutrient conservation and the restoration of degraded arid environments.
NASA Astrophysics Data System (ADS)
Eremin, Dmitry
2017-10-01
Sedimentary properties territory Tura-Pyshma interfluve, where Tyumen is located are determined by the general course of ancient and especially the newest tectonic movements. Active development of the transport network on the territory of the Tour-Pyshma interfluve has created the need for a contemporary study of regional peculiarities of grounds. This will allow you to create roads with the quality meet the international standards. The use of average values of indicators of the properties of silty-clay soils during the development of the transport infrastructure projects of the city of Tyumen and its environs is ineffective due to the genetic characteristics of the rocks located at the depth of 1.5-5.0 meters. Detailed analysis showed that the studied soil belongs to the covering carbonate loams and clays, differing in its characteristics from loess-like sediments of the European part of Russia. The thickness of the covering rocks is not more than 5 meters. It’s low-carbonate, non-saline and often has a layered structure. The upper three meters of sediments contain the minimum quantity of water-soluble salts (dry residue less than 0.1%). Studied covering loams are characterized by favorable physical properties: the density of the bulk and the particle is 1.44 to 1.62 and 2.70-2.78 g/cm3, respectively. Water permeability is high - the filtration coefficient varies from 3.4 to 6.4 m/day, the minimum water velocity observed in the clay types of soil. The presence of sand layers adversely affects the permeability of soil. Therefore, the design and construction of transport infrastructure of the city and the surrounding territories it is necessary to consider regional features of grounds.
Xue, S; Zhao, Q L; Wei, L L; Ma, X P; Tie, M
2013-01-01
The aim of this study was to identify qualitative and quantitative changes in the character of water-extractable organic matter (WEOM) in soils as a consequence of soil aquifer treatment (SAT). Soil samples were obtained from a soil-column system with a 2-year operation, and divided into seven layers from top to bottom: CS1 (0-12.5 cm), CS2 (12.5-25 cm), CS3 (25-50 cm), CS4 (50-75 cm), CS5 (75-100 cm), CS6 (100-125 cm) and CS7 (125-150 cm). A sample of the original soil used to pack the columns was also analysed to determine the effects of SAT. Following 2 years of SAT operation, both soil organic carbon and water-extractable organic carbon were shown to accumulate in the top soil layer (0-12.5 cm), and to decrease in soil layers deeper than 12.5 cm. The WEOM in the top soil layer was characterized by low aromaticity index (AI), low emission humification index (HIX) and low fluorescence efficiency index (F(eff)). On the other hand, the WEOM in soil layers deeper than 12.5 cm had increased values of HIX and F(eff), as well as decreased AI values relative to the original soil before SAT. In all soil layers, the percentage of hydrophobic and transphilic fractions decreased, while that of the hydrophilic fraction increased, as a result of SAT. The production of the amide-2 functional groups was observed in the top soil layer. SAT operation also led to the enrichment of hydrocarbon and amide-1 functional groups, as well as the depletion of oxygen-containing functional groups in soil layers deeper than 12.5 cm.
Soil erosion at agricultural land in Moravia loess region estimated by using magnetic properties
NASA Astrophysics Data System (ADS)
Kapicka, Ales; Dlouha, Sarka; Petrovsky, Eduard; Jaksik, Ondrej; Grison, Hana; Kodesova, Radka
2014-05-01
A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and subsequent laboratory analyses have been carried out in order to test the applicability of magnetic methods for the estimation of soil erosion. Chernozem, the original dominant soil unit in the wider area, is nowadays progressively transformed into different soil units along with intensive soil erosion. As a result, an extremely diversified soil cover structure has resulted from the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. We found a strong correlation between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). The soil profile that was unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples from layers along the whole profile with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a basis for examining the changes in cultivated soils, tillage homogenization model can be applied to predict changes in the surface soil magnetism with progressive soil erosion. The model is very well applicable at the studied site. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319
[Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.
Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui
2016-04-22
In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.
NASA Astrophysics Data System (ADS)
Gao, Lei; Lv, Yujuan; Wang, Dongdong; Tahir, Muhammad; Peng, Xinhua
2015-12-01
Knowing the amount of soil water storage (SWS) in agricultural soil profiles is important for understanding physical, chemical, and biological soil processes. However, measuring the SWS in deep soil layers is more expensive and time consuming than in shallower layers. Whether deep SWS can be predicted from shallow-layer measurements through temporal stability analysis (TSA) remains unclear. To address this issue, the soil water content was measured at depths of 0-1.6 m (0.2-m depth intervals) at 79 locations along an agricultural slope on 28 occasions between July 2013 and October 2014. SWSs values were then calculated for the 0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, and 0-1.6 m soil layers. The SWS exhibited strong temporal stability, with mean Spearman's ranking coefficients (rs) of 0.83, 0.92, 0.83, and 0.79 in the 0-0.4, 0.4-0.8, 0.8-1.2, and 1.2-1.6 m soil layers, respectively. As expected, the most temporally stable location (MTSL1) accurately predicted the average SWS of the corresponding soil layer, and the values of absolute bias relative to mean (ARB) were lower than 3% for all of the investigated soil layers. Using TSA, deep-layer SWS information could be predicted using a single-location measurement in the 0-0.4 m soil layer. The mean ARB values between the observed and predicted mean SWS values were 2.9%, 4.3%, 3.9%, and 2.7% in the 0.4-0.8, 0.8-1.2, 1.2-1.6, and 0-1.6 m soil layers, respectively. The prediction accuracy of the spatial distribution generally decreased with increasing depth, with linear determination coefficients (R2) of 0.93, 0.79, 0.72, and 0.84 for the four soil layers, respectively. The proposed method could further expand the application of the temporal stability technique in the estimation of SWS.
Xiong, Li; Xu, Zhen-Feng; Wu, Fu-Zhong; Yang, Wan-Qin; Yin, Rui; Li, Zhi-Ping; Gou, Xiao-Lin; Tang, Shi-Shan
2014-05-01
This study characterized the dynamics of the activities of urease, nitrate reductase and nitrite reductase in both soil organic layer and mineral soil layer under three depths of snow pack (deep snowpack, moderate snowpack and shallow snowpack) over the three critical periods (snow formed period, snow stable period, and snow melt period) in the subalpine Abies faxoniana forest of western Sichuan in the winter of 2012 and 2013. Throughout the winter, soil temperature under deep snowpack increased by 46.2% and 26.2%, respectively in comparison with moderate snowpack and shallow snowpack. In general, the three nitrogen-related soil enzyme activities under shallow snowpack were 0.8 to 3.9 times of those under deep snowpack during the winter. In the beginning and thawing periods of seasonal snow pack, shallow snowpack significantly increased the activities of urease, nitrate and nitrite reductase enzyme in both soil organic layer and mineral soil layer. Although the activities of the studied enzymes in soil organic layer and mineral soil layer were observed to be higher than those under deep- and moderate snowpacks in deep winter, no significant difference was found under the three snow packs. Meanwhile, the effects of snowpack on the activities of the measured enzymes were related with season, soil layer and enzyme type. Significant variations of the activities of nitrogen-related enzymes were found in three critical periods over the winter, and the three measured soil enzymes were significantly higher in organic layer than in mineral layer. In addition, the activities of the three measured soil enzymes were closely related with temperature and moisture in soils. In conclusion, the decrease of snow pack induced by winter warming might increase the activities of soil enzymes related with nitrogen transformation and further stimulate the process of wintertime nitrogen transformation in soils of the subalpine forest.
Crop residue incorporation for increasing SOC stock. Is it worth it?
NASA Astrophysics Data System (ADS)
Pituello, Chiara; Berti, Antonio; Morari, Francesco
2015-04-01
In the last fifty years, soil organic carbon (SOC) in North-Eastern Italy decreased at rates ranging from 0.02 to 0.58 t ha/year as a consequence of the intensification and simplification of cropping systems. Most recently, the removal of crop residue for bioenergy production raises concerns about its potential impact on SOC evolution. Crop residue incorporation has been included in the Recommended Management Practices (RMPs) for climate change mitigation, however, several doubts still remain on its actual effectiveness. Indeed, long term effects of residue incorporation on SOC stocks have been studied by many authors with apparently contrasting findings. Thus, given the pivotal role played by SOC on ecosystem services, investigating the effects of residues incorporation on soil quality constitutes a key step towards understanding soil processes and will help establish a rationale bioenergy production policy. For this purpose, soil samples were taken from a long-term field experiment started in 1970, with three types of soil: sand, silt-loam and clay. The experiment design adopted implied a crop rotation including maize, wheat, and potatoes with only two types of residues management: incorporation and removal. The levels of nitrogen application were six (0, 50, 100, 200, 300, 400 kg ha-1) with a factorial combination with the residues management. Residue incorporation affected significantly the carbon stock within the profile (0-70cm), with an average increase in carbon content from 60 to 67 t C ha-1 in 42 years (0.16 t C ha-1 y-1). In clay and silt-loam soils the C stock varied within the whole profile, with an increase in the upper layer (0-20 cm) ranging from 29% (silt-loam) to 60% (clay soil) of the total increment. Conversely, in sand soil the effect was found only in the upper horizon, where the incorporation of residues increased SOC of only 1.9 t ha-1. This indicates that in sand soil the increase of C is mainly attributable to the direct effect of residues input, while in the other two soils the accumulation depends both on direct effect and root-C input due to the enhancement of crop growth. The effectiveness of residue incorporation strongly depends on the type of soil, a factor which should be considered by the future bioenergy production policy.
Development of a model to simulate the impact of atmospheric stability on N2O-fluxes from soil
NASA Astrophysics Data System (ADS)
Thieme, Christoph; Klein, Christian; Biernath, Christian; Heinlein, Florian; Priesack, Eckart
2014-05-01
The trace gas N2O, mainly produced by microorganisms in agricultural soils, is a very stable and thus potent greenhouse gas and is the main contributor for the recent depletion of ozone in the stratosphere. Therefore N2O-emissions need to be mitigated and thus much effort has been made to reveal the causes of N2O-formation in soils. At present some crucial drivers for N2O-fluxes are known, but underlying processes of N2O-fluxes are not yet understood or described adequately. An important shortcoming is the description of the upper boundary layer at the soil-atmosphere interface. Therefore, the aim of this study is to develop a mechanistic simulation model, which considers both the formation of N2O in agricultural soils, and the impact of the atmospheric conditions on the transport of soil-born N2O into the atmosphere. The new model simulates N2O-flux as a function of meteorological values instead of a model that just releases the whole amount of N2O into the atmosphere. For this purpose the modular ecosystem model framework Expert-N, which allows to simulate the formation of N2O in the soils will be extended to a model with a more detailed description of the upper boundary condition at the soil-atmosphere interface. In detail, this is realized in the form of a resistance approach, where N2O-fluxes are constrained by a land-air resistance that depends on a Bulk-Exchange Coefficient, wind speed and a gradient of N2O concentrations in the lower atmosphere. Descriptions of atmospheric stability follow the Monin-Obhukov Similarity Theory. The newly developed model will be validated using Eddy Covariance measurements of N2O-fluxes. Measurement device for the N2O concentrations is a Quantum-Cascade-Dual-Laser produced by Aerodyne Research Inc. (Billerca, Mass., USA). The measurements were conducted on an intensively managed field at the TERENO research farm Scheyern (Germany), which is part of the TERENO Bavarian Alps / Pre-Alps observatory.
Curtosi, Antonio; Pelletier, Emilien; Vodopivez, Cristian L; Mac Cormack, Walter P
2007-09-20
Although Antarctica is still considered as one of the most pristine areas of the world, the growing tourist and fisheries activities as well as scientific operations and their related logistic support are responsible for an increasing level of pollutants in this fragile environment. Soils and coastal sediments are significantly affected near scientific stations particularly by polycyclic aromatic hydrocarbons (PAHs). In this work sediment and soil were sampled in two consecutive summer Antarctic expeditions at Potter Cove and peninsula, in the vicinity of Jubany Station (South Shetland Islands). Two- and 3-ring PAHs (methylnaphthalene, fluorene, phenanthrene and anthracene) were the main compounds found in most sites, although total PAH concentrations showed relatively low levels compared with other human-impacted areas in Antarctica. Pattern distribution of PAHs observed in samples suggested that low-temperature combustion processes such as diesel motor combustion and open-field garbage burning are the main sources of these compounds. An increase in PAH concentrations was observed from surface to depth into the active soil layer except for a unique sampling site where a fuel spill had been recently reported and where an inverted PAH concentration gradient was observed. The highest level was detected in the upper layer of permafrost followed by a sharp decrease in depth, showing this layer is acting as a barrier for downward PAH migration. When PAH levels in soil from both sampling programs were compared a significant decrease (p<0.01) was observed in summer 2005 (range at 75-cm depth: 12+/-1-153+/-22 ng/g) compared to summer 2004 (range at 75-cm depth: 162+/-15-1182+/-113 ng/g) whereas concentrations in surface sediment collected nearby the station PAHs increased drastically in 2005 (range: 36+/-3-1908+/-114 ng/g) compared to 2004 (range: 28+/-3-312+/-24 ng/g). Precipitation regime and water run off suggest that an important wash out of soil-PAHs occurred during the interval time between samplings. Results showed that the present PAH contamination level of Jubany Station is relatively low compared to other reported cases in Antarctica but also suggests that an increase in rain and in thawing processes caused by the global warming could result in an important soil-associated PAH mobilization with unpredictable consequences for the biota of Potter Cove.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia M.
Uncertainty of predicted change in precipitation frequency and intensity motivates the scientific community to better understand, quantify, and model the possible outcome of dryland ecosystems. In pulse dependent ecosystems (i.e. monsoon driven) soil moisture is tightly linked to atmospheric processes. Here, I analyze three overarching questions; Q1) How does soil moisture presence or absence in a shallow or deep layer influence the surface energy budget and planetary boundary layer characteristics?, Q2) What is the role of vegetation on ecosystem albedo in the presence or absence of deep soil moisture?, Q3) Can we develop empirical relationships between soil moisture and the planetary boundary layer height to help evaluate the role of future precipitation changes in land surface atmosphere interactions? . To address these questions I use a conceptual framework based on the presence or absence of soil moisture in a shallow or deep layer. I define these layers by using root profiles and establish soil moisture thresholds for each layer using four years of observations from the Santa Rita Creosote Ameriflux site. Soil moisture drydown curves were used to establish the shallow layer threshold in the shallow layer, while NEE (Net Ecosystem Exchange of carbon dioxide) was used to define the deep soil moisture threshold. Four cases were generated using these thresholds: Case 1, dry shallow layer and dry deep layer; Case 2, wet shallow layer and dry deep layer; Case 3, wet shallow layer and wet deep layer, and Case 4 dry shallow and wet deep layer. Using this framework, I related data from the Ameriflux site SRC (Santa Rita Creosote) from 2008 to 2012 and from atmospheric soundings from the nearby Tucson Airport; conducted field campaigns during 2011 and 2012 to measure albedo from individual bare and canopy patches that were then evaluated in a grid to estimate the influence of deep moisture on albedo via vegetation cover change; and evaluated the potential of using a two-layer bucket model and empirical relationships to evaluate the link between deep soil moisture and the planetary boundary layer height under changing precipitation regime. My results indicate that (1) the presence or absence of water in two layers plays a role in surface energy dynamics, (2) soil moisture presence in the deep layer is linked with decreased ecosystem albedo and planetary boundary layer height, (3) deep moisture sustains vegetation greenness and decreases albedo, and (4) empirical relationships are useful in modeling planetary boundary layer height from dryland ecosystems. Based on these results we argue that deep soil moisture plays an important role in land surface-atmosphere interactions.
A tracer experiment to study flow paths of water in a forest soil
NASA Astrophysics Data System (ADS)
Feyen, H.; Wunderli, H.; Wydler, H.; Papritz, A.
1999-12-01
This contribution discusses a tracer experiment, which was performed to study the flow paths of water in a macroporous forest soil. The experiment was performed in the framework of a study on the cycling of nitrogen in forested Prealpine catchments, in which losses of nitrate from virtually pristine areas were observed. Two soil plots with distinct micro-topography and top-soil were investigated: a well drained mor humus on a mound and a wet muck humus in a small depression. To reveal the effect of the soil horizons on the flow regime, tracers were applied both onto the soil surface and injected into the sub-soil. Tracers injected directly into the gleyic sub-soil reached the outlet (at a distance of 3.3 m) about 1000 times faster than could be expected from the saturated hydraulic conductivity of the soil matrix. Peak concentrations were observed after 18 (muck humus, tracer recovery 31%) to 70 min (mor humus, tracer recovery 40%). The peak concentration was 10 times smaller on the drier mor humus plot as compared to the muck humus. The mobile water content of the sub-soil varied between 0.5 (muck humus) and 1.3% (mor humus) of the total available soil water. The discrepancy in residence time, peak concentration and volume of mobile water between both sub-soils can be attributed to the differently structured sub-soil (longer travel distance and mixing volume in the drier mor humus). Tracers applied onto the soil surface resulted in a much slower breakthrough (tracer peaks after 400-700 min). Thus, in contrast to the sub-soil, flow through the matrix was the predominating transport process in the upper humus layers of both plots.
[Fine root dynamics and its relationship with soil fertility in tropical rainforests of Chocó].
Quinto, Harley; Caicedo, Haylin; Thelis Perez, May; Moreno, Flavio
2016-12-01
The fine roots play an important role in the acquisition of water and minerals from the soil, the global carbon balance and mitigation of climate change. The dynamics (productivity and turnover) of fine roots is essential for nutrient cycling and carbon balance of forest ecosystems. The availability of soil water and nutrients has significantly determined the productivity and turnover of fine roots. It has been hypothesized that fine roots dynamics increases with the availability of soil resources in tropical forest ecosystems. To test this hypothesis in tropical rainforests of Chocó (ecosystems with the highest rainfall in the world), five one-ha permanent plots were established in the localities of Opogodó and Pacurita, where the productivity and turnover of fine roots were measured at 0-10 cm and 10-20 cm depth. The measurement of the fine root production was realized by the Ingrowth core method. The fine root turnover was measured like fine roots production divided mean annual biomass. In addition, soil fertility parameters (pH, nutrients, and texture) were measured and their association with productivity and turnover of fine roots was evaluated. It was found that the sites had nutrient-poor soils. The localities also differ in soil; Opogodó has sandy soils and flat topography, and Pacurita has clay soils, rich in aluminum and mountainous topography. In Opogodó fine root production was 6.50 ± 2.62 t/ha.yr (mean ± SD). In Pacurita, fine root production was 3.61 ± 0.88 t/ha.yr. Also in Opogodó, the fine root turnover was higher than in Pacurita (1.17 /y and 0.62 /y, respectively). Fine root turnover and production in the upper soil layers (10 cm upper soil) was considerably higher. Productivity and turnover of fine roots showed positive correlation with pH and contents of organic matter, total N, K, Mg, and sand; whereas correlations were negative with ECEC and contents of Al, silt, and clay. The percentage of sand was the parameter that best explained the variations of fine root production. The fine root turnover was negatively explained by soil Al availability. Results suggested the increase of fine root dynamics with soil fertility at a local scale, which also indicates that under the oligotrophic conditions of soils in tropical rainforests, fine roots tend to proliferate rapidly in small patches of soil rich in sand and nutrients.
Biodiversity effects on the water balance of an experimental grassland
NASA Astrophysics Data System (ADS)
Leimer, Sophia; Kreutziger, Yvonne; Rosenkranz, Stephan; Beßler, Holger; Engels, Christof; Oelmann, Yvonne; Weisser, Wolfgang W.; Wirth, Christian; Wilcke, Wolfgang
2013-04-01
Plant species richness increases aboveground biomass production in biodiversity experiments. Biomass production depends on and feeds back to the water balance, but it remains unclear how plant species richness influences soil water contents and water fluxes (actual evapotranspiration (ETa), downward flux (DF), and upward flux (UF)). Our objective was to determine the effects of plant species and functional richness and functional identity on soil water contents and water fluxes for two soil depths (0-0.3 and 0.3.-0.7 m). To achieve this, we used a water balance model in connection with Bayesian hierarchical modeling. We monitored soil water contents on 86 plots of a grassland plant diversity experiment in Jena, Germany between July 2002 and January 2006. In the field experiment, plant species richness (0, 1, 2, 4, 8, 16, 60) and functional group composition (0-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Climate data (air temperature, precipitation, wind velocity, relative humidity, global radiation, soil moisture) was measured at a central climate station between July 2002 and December 2007. Root biomass data from July 2006 was available per plot. Missing water contents per plot and depth were estimated in weekly resolution for the years 2003-2007 with a Bayesian hierarchical model using measured water contents per plot and centrally measured soil moisture. To obtain ETa, DF, and UF of the two different soil depths, we modified a soil water balance model which had been developed for our study site. The model is based on changes in soil water content between subsequent observation dates and modeled potential evapotranspiration which was partitioned between soil layers according to percentage of root biomass. The presence of specific functional groups significantly changed water contents and fluxes with partly opposing effects in the two soil depths. Presence of grasses decreased water contents in both depths, DF in topsoil, and ETa in subsoil, but increased ETa in topsoil. As grasses produce less shade than other plant functional groups because of their leaf morphology, higher ETa in topsoil could be explained by higher soil evaporation. Moreover, grasses have an extensive, shallow rooting system which facilitates exhaustive water use from the upper soil layer and therefore probably decreases water contents and DF. Species richness did not significantly affect water contents and fluxes in both soil layers except that the relation between species richness and water contents in subsoil changed over time. This can be explained by two equivalent but opposite effects. Transpiration increases with biomass which is positively correlated with species richness. By contrast, soil evaporation decreases with species richness because the greater vegetation cover in species-rich communities produces more shade. We conclude that the contrasting effects of plant species richness on transpiration and evaporation counterbalance each other and that functional traits of specific plant functional groups mediate the biologically-induced changes in the water balance.
Accumulation of free amino acids during exposure to drought in three springtail species.
Holmstrup, Martin; Slotsbo, Stine; Rozsypal, Jan; Henriksen, Per G; Bayley, Mark
2015-11-01
Springtails are closely related to insects, but they differ from these with respect to water balance, in particular because springtails are small and have high integumental permeability to water. Here we report a series of experiments addressing the dynamics of osmoregulation, water content and accumulation of free amino acids (FAAs) in three springtail species during exposure to a gradually increasing environmental desiccation simulating conditions in drought exposed soil. Folsomia candida and Protaphorura fimata (both living in the deeper soil layers; euedaphic species) were active throughout the 3week exposure, with the developing drought regime ending at -3.56MPa (the soil water activity at the permanent wilting point of plants is -1.5MPa) and remained hyperosmotic (having an body fluid osmolality higher than the corresponding environment) to their surrounding air. Sinella curviseta (living in upper soil/litter layers; hemiedaphic species) also survived this exposure, but remained hypoosmotic throughout (i.e. with lower osmolality than the environment). The body content of most FAAs increased in response to drought in all three species. Alanine, proline and arginine were the most significantly upregulated FAAs. By combining our results with data in the literature, we could account for 82% of the observed osmolality at -3.56MPa in F. candida and 92% in P. fimata. The osmolality of S. curviseta was only slightly increased under drought, but here FAAs were considerably more important as osmolytes than in the two other species. We propose that FAAs probably have general importance in drought tolerance of springtails. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Sausen, T. M.
1981-01-01
The use of LANDSAT multispectral ban scanner imagery to verify the relationship between the behavior of the Tres Marias reservoir and the dynamics of the Sao Francisco River supply basin is described. The dispersion of suspended sediments and their concentration in the surface layers of the water are considered. A five year survey of the region during both dry and rainy seasons was performed. The drainage network was analyzed based on the patterns of dessication, water rises and soil use in the supply basin. Surface layers of the reservoir were tabulated as a function of the levels of gray in the imagery. In situ observations of water depth and reflectance were performed. Ground truth and LANDSAT data were correlated to determine the factors affecting the dynamics of the supply basin.
[Do volcanic eruptions and wide-spread fires affect our climate?].
Primault, B
1992-03-31
During the first half of 1991, the press, radio and TV have often reported about large fires (Kuwait, forest fires in Portugal) or volcanic eruptions (Mount Unzen, Pinatubo). Starting with the facts, the author investigates first the kind of particles constituting such smoke clouds and in particular their size. He places the main cloud in the atmosphere and asks; the cloud remains near the soil, whether it reaches the upper layers of the troposphere or it breaks out into the stratosphere? The transport of the cloud depends on particle-size and of the winds blowing in the reached layer. All these clouds have an impact on the weather. The author analyses finally the credible influence of such clouds on weather elements: radiation and temperature as well as the extent of these effects. He corroborates his analysis by visual observations or measurements.
Street, R.; Woolery, E.W.; Wang, Z.; Harris, J.B.
2001-01-01
Local soil conditions have a profound influence on the characteristics of ground shaking during an earthquake. Exceptionally deep soil deposits, on the order of 100-1000 m deep, are found in the Upper Mississippi Embayment of the central United States. Shear waves (SH) from earthquakes in the New Madrid seismic zone are expected to be strongly affected by the sharp impedance contrasts at the bedrock/sediment interface, attenuation of seismic waves in the soil column, and the SH-wave velocities of the more poorly consolidated near-surface (???50 m) soils. SH-wave velocities of the near-surface soils at nearly 400 sites in the Upper Mississippi Embayment were determined using conventional seismic SH-wave refraction and reflection techniques. Based on the average SH-wave velocities of the upper 30 m of the soils, sites in the Mississippi River floodplain portion of the study area are predominantly classified as Site Class D (180-360 m/s) in accordance with the 1997 NEHRP provisions. Sites away from the active floodplains in western Kentucky and western Tennessee, the SH-wave velocities of the upper 30 m of soils typically ranged from mid-200 to mid-300 m/s. Several sites in western Kentucky had averaged SH-wave velocities greater than 360 m/s, thereby qualifying them as Site Class C (360-760 m/s) in accordance with the 1997 NEHRP provisions. One dimensional site effects, including amplification and dynamic site period, were calculated for a representative suite of sites across the Upper Mississippi Embayment at latitude ?? 38.5??. Although seismic attenuation is greater in the Mississippi River floodplain (i.e. thicker, lower velocity material), the site effects tend to be greater than in the uplands of western Tennessee because of larger impedance contrasts within the near-surface soils. ?? 2001 Elsevier Science B.V. All rights reserved.
Predicting Soil Strength in Terms of Cone Index and California Bearing Ratio for Trafficability
2016-03-01
conditions, however, soil strength will be a key factor. The Wet- Slippery conditions are considered when the top layer has reached a point of...the soil . Modeling moisture content of a soil in a layered system can be conducted using a finite difference water budget model illustrated in...Figure 2 (Sellers et al. 1986). Figure 2 shows how flow Q through the soil layer ij is modeled. In general, saturation of layer Qi due to rainfall is
NASA Astrophysics Data System (ADS)
Tao, Yu; He, Yangbo; Duan, Xiaoqian; Zou, Ziqiang; Lin, Lirong; Chen, Jiazhou
2017-10-01
Soil preferential flow (PF) has important effects on rainfall infiltration, moisture distribution, and hydrological and ecological process; but it is very difficult to monitor and characterize on a slope. In this paper, soil water and soil temperature at 20, 40, 60, 80 cm depths in six positions were simultaneously monitored at high frequency to confirm the occurrence of PF at a typical Benggang slope underlain granite residual deposits, and to determine the interaction of soil moisture distribution and Benggang erosion. In the presence of PF, the soil temperature was first (half to one hour) governed by the rainwater temperature, then (more than one hour) governed by the upper soil temperature; in the absence of PF (only matrix flow, MF), the soil temperature was initially governed by the upper soil temperature, then by the rainwater temperature. The results confirmed the water replacement phenomenon in MF, thus it can be distinguished from PF by additional temperature monitoring. It indicates that high frequency moisture and temperature monitoring can determine the occurrence of PF and reveal the soil water movement. The distribution of soil water content and PF on the different positions of the slope showed that a higher frequency of PF resulted in a higher variation of average of water content. The frequency of PF at the lower position can be three times as that of the upper position, therefore, the variation coefficient of soil water content increased from 4.67% to 12.68% at the upper position to 8.18%-33.12% at the lower position, where the Benggang erosion (soil collapse) was more possible. The results suggest strong relationships between PF, soil water variation, and collapse activation near the Benggang wall.
Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.
2015-01-01
Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.
Field Soil Water Retention of the Prototype Hanford Barrier and Its Variability with Space and Time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. F.
Engineered surface barriers are used to isolate underlying contaminants from water, plants, animals, and humans. To understand the flow processes within a barrier and the barrier’s ability to store and release water, the field hydraulic properties of the barrier need to be known. In situ measurement of soil hydraulic properties and their variation over time is challenging because most measurement methods are destructive. A multiyear test of the Prototype Hanford Barrier (PHB) has yielded in situ soil water content and pressure data for a nine-year period. The upper 2 m layer of the PHB is a silt loam. Within thismore » layer, water content and water pressure were monitored at multiple depths at 12 water balance stations using a neutron probe and heat dissipation units. Valid monitoring data from 1995 to 2003 for 4 depths at 12 monitoring stations were used to determine the field water retention of the silt loam layer. The data covered a wide range of wetness, from near saturation to the permanent wilt point, and each retention curve contained 51 to 96 data points. The data were described well with the commonly used van Genuchten water retention model. It was found that the spatial variation of the saturated and residual water content and the pore size distribution parameter were relatively small, while that of the van Genuchten alpha was relatively large. The effects of spatial variability of the retention properties appeared to be larger than the combined effects of added 15% w/w pea gravel and plant roots on the properties. Neither of the primary hydrological processes nor time had a detectible effect on the water retention of the silt loam barrier.« less
NASA Astrophysics Data System (ADS)
Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.
2015-11-01
Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.
Yang, Meng; Li, Yong Fu; Li, Yong Chun; Xiao, Yong Heng; Yue, Tian; Jiang, Pei Kun; Zhou, Guo Mo; Liu, Juan
2016-11-18
In order to elucidate the effects of intensive management on soil carbon pool, nitrogen pool, enzyme activities in Moso bamboo (Phyllostachys pubescens) plantations, we collected soil samples from the soil surface (0-20 cm) and subsurface (20-40 cm) layers in the adjacent Moso bamboo plantations with extensive and intensive managements in Sankou Township, Lin'an City, Zhejiang Province. We determined different forms of C, N and soil invertase, urease, catalase and acid phosphatase activities. The results showed that long-term intensive management of Moso bamboo plantations significantly decreased the content and storage of soil organic carbon (SOC), with the SOC storage in the soil surface and subsurface layers decreased by 13.2% and 18.0%, respectively. After 15 years' intensive management of Masoo bamboo plantations, the contents of soil water soluble carbon (WSOC), hot water soluble carbon (HWSOC), microbial carbon (MBC) and readily oxidizable carbon (ROC) were significantly decreased in the soil surface and subsurface layers. The soil N storage in the soil surface and subsurface layers in intensively managed Moso bamboo plantations increased by 50.8% and 36.6%, respectively. Intensive management significantly increased the contents of nitrate-N (NO 3 - -N) and ammonium-N (NH 4 + -N), but decreased the contents of water-soluble nitrogen (WSON) and microbial biomass nitrogen (MBN). After 15 years' intensive management of Masoo bamboo plantations, the soil invertase, urease, catalase and acid phosphatase activities in the soil surface layer were significantly decreased, the soil acid phosphatase activity in the soil subsurface layer were significantly decreased, and other enzyme activities in the soil subsurface layer did not change. In conclusion, long-term intensive management led to a significant decline of soil organic carbon storage, soil labile carbon and microbial activity in Moso bamboo plantations. Therefore, we should consider the use of organic fertilizer in the intensive mana-gement process for the sustainable management of Moso bamboo plantations in the future.
Grau-Andrés, Roger; Davies, G Matt; Waldron, Susan; Scott, E Marian; Gray, Alan
2017-12-15
Variation in the structure of ground fuels, i.e. the moss and litter (M/L) layer, may be an important control on fire severity in heather moorlands and thus influence vegetation regeneration and soil carbon dynamics. We completed experimental fires in a Calluna vulgaris-dominated heathland to study the role of the M/L layer in determining (i) fire-induced temperature pulses into the soil and (ii) post-fire soil thermal dynamics. Manually removing the M/L layer before burning increased fire-induced soil heating, both at the soil surface and 2 cm below. Burnt plots where the M/L layer was removed simulated the fuel structure after high severity fires where ground fuels are consumed but the soil does not ignite. Where the M/L layer was manually removed, either before or after the fire, post-fire soil thermal dynamics showed larger diurnal and seasonal variation, as well as similar patterns to those observed after wildfires, compared to burnt plots where the M/L layer was not manipulated. We used soil temperatures to explore potential changes in post-fire soil respiration. Simulated high fire severity (where the M/L layer was manually removed) increased estimates of soil respiration in warm months. With projected fire regimes shifting towards higher severity fires, our results can help land managers develop strategies to balance ecosystem services in Calluna-dominated habitats. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Root systems of chaparral shrubs.
Kummerow, Jochen; Krause, David; Jow, William
1977-06-01
Root systems of chaparral shrubs were excavated from a 70 m 2 plot of a mixed chaparral stand located on a north-facing slope in San Diego County (32°54' N; 900 m above sea level). The main shrub species present were Adenostoma fasciculatum, Arctostaphylos pungens, Ceanothus greggii, Erigonum fasciculatum, and Haplopappus pinifolius. Shrubs were wired into their positions, and the soil was washed out beneath them down to a depth of approximately 60 cm, where impenetrable granite impeded further washing and root growth was severely restricted. Spacing and interweaving of root systems were recorded by an in-scale drawing. The roots were harvested in accordance to their depths, separated into diameter size classes for each species, and their dry weights measured. Roots of shrubs were largely confined to the upper soil levels. The roots of Eriogonum fasciculatum were concentrated in the upper soil layer. Roots of Adenostoma fasciculatum tended to be more superficial than those from Ceanothus greggii. It is hypothesized that the shallow soil at the excavation site impeded a clear depth zonation of the different root systems. The average dry weight root:shoot ratio was 0.6, ranging for the individual shrubs from 0.8 to 0.4. The root area always exceeded the shoot area, with the corresponding ratios ranging from 6 for Arctostaphylos pungens to 40 for Haplopappus pinifolius. The fine root density of 64 g dry weight per m 2 under the canopy was significantly higher than in the unshaded area. However, the corresponding value of 45 g dry weight per m 2 for the open ground is still high enough to make the establishment of other shrubs difficult.
Increased Calcium Availability Leads to Greater Forest Floor Accumulation in an Adirondack Forest
NASA Astrophysics Data System (ADS)
Melvin, A.; Goodale, C. L.
2010-12-01
Nutrient availability in Northeastern US forests has been dramatically altered by anthropogenic activities. Acid deposition has not only increased nitrogen (N) availability, but has also been linked to soil acidification and a loss of base cations, largely calcium (Ca). We are studying the long-term effects of a Ca addition on carbon (C) and N cycling in a forested catchment in the Adirondack Park, New York. In 1989, calcium carbonate (lime) was added to two subcatchments within the Woods Lake Watershed to ameliorate the effects of soil Ca depletion. Two additional subcatchments were left as controls. Eighteen years after the Ca application, both soil pH and exchangeable Ca concentrations remain elevated in the organic horizons and upper mineral soils of the treated subcatchments. The forest floor mass in this watershed is very large and measurements show that the organic layer in the limed subcatchments is significantly larger than in the controls (212 t/ha vs. 116 t/ha), resulting in greater C and N stocks in the Ca-amended soils. This finding suggests that Ca may stabilize soil organic matter (SOM), resulting in greater C storage under high soil Ca conditions. We are investigating potential drivers of this SOM accumulation in the limed subcatchments, including rates of leaf litter production and the decomposition rate of forest floor material. This work will provide important insights into how long-term changes in soil Ca availability influence SOM stabilization, retention and nutrient cycling.
Pollution level and reusability of the waste soil generated from demolition of a rural railway.
Han, Il; Wee, Gui Nam; No, Jee Hyun; Lee, Tae Kwon
2018-09-01
Railways are typically considered polluted from years of train operation. However, the pollution level of railway in a rural area, which is less exposed to hazardous material from trains and freights, is rarely assessed. This study evaluated common railway pollutants such as heavy metals, total petroleum hydrocarbons (TPHs) and polycyclic aromatic hydrocarbons (PAHs) and their chemical properties in the waste soil generated from the renovation of an old railway in rural area of Wonju, South Korea. Furthermore, lab-scale cultivation tests of peas (Pisum sativum) were performed to assess reusability of the waste soil as a soil amendment. Carbonaceous materials were found in the upper layer of the railway (0 to -40 cm) and the concentration of common railway pollutants was comparable to those of the agricultural land nearby. Specifically, total aromatic and aliphatic TPHs were below detection limit; and total PAHs < 1.0 mg kg -1 was 1000-times less than railway functional parts. Applying the carbonaceous waste soil improved the water holding capacity of soil by approximately 10% and sprouts formed on the soil with 10% waste soil composition had greater fresh weight, stem length, and root length than the control. Although this investigation was confined to a small length of the railway route, the results confirm environmental safety and the potential value of the waste generated from rural railways for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Assessing tungsten transport in the vadose zone: from dissolution studies to soil columns.
Tuna, Gulsah Sen; Braida, Washington; Ogundipe, Adebayo; Strickland, David
2012-03-01
This study investigates the dissolution, sorption, leachability, and plant uptake of tungsten and alloying metals from canister round munitions in the presence of model, well characterized soils. The source of tungsten was canister round munitions, composed mainly of tungsten (95%) with iron and nickel making up the remaining fraction. Three soils were chosen for the lysimeter studies while four model soils were selected for the adsorption studies. Lysimeter soils were representatives of the typical range of soils across the continental USA; muck-peat, clay-loamy and sandy-quartzose soil. Adsorption equilibrium data on the four model soils were modeled with Langmuir and linear isotherms and the model parameters were obtained. The adsorption affinity of soils for tungsten follows the order: Pahokee peat>kaolinite>montmorillonite>illite. A canister round munition dissolution study was also performed. After 24 d, the measured dissolved concentrations were: 61.97, 3.56, 15.83 mg L(-1) for tungsten, iron and nickel, respectively. Lysimeter transport studies show muck peat and sandy quartzose soils having higher tungsten concentration, up to 150 mg kg(-1) in the upper layers of the lysimeters and a sharp decline with depth suggesting strong retardation processes along the soil profile. The concentrations of tungsten, iron and nickel in soil lysimeter effluents were very low in terms of posing any environmental concern; although no regulatory limits have been established for tungsten in natural waters. The substantial uptake of tungsten and nickel by ryegrass after 120 d of exposure to soils containing canister round munition suggests the possibility of tungsten and nickel entering the food chain. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of inter row management intensity on soil physical properties in European vineyards.
NASA Astrophysics Data System (ADS)
Bauer, Thomas; Strauss, Peter; Kumpan, Monika; Guzmán, Gema; Gómez, Jose A.; Stiper, Katrin; Popescou, Daniela; Guernion, Muriel; Nicolai, Annegret; Winter, Silvia; Zaller, Johann G.
2017-04-01
Successful viticulture is mainly depending on soil, climate and management capabilities of vine growers. These factors influence on the availability of water during the growing season which in turn impacts on wine quality and quantity. To protect soil from being eroded many winegrowers try to keep the inter row zones of the vineyards green for as much time as possible. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, the management strategies concerning the intensity of inter row management are widely different across Europe. They differ within regions, between regions and between countries and are mainly based on personal experience of the winegrowers. To measure possible effects of inter row management in vineyards on soil physical parameters we selected vineyards with different inter row management intensities in Austria, Romania, France and Spain. In total more than 700 undisturbed core samples (from 3 to 8 cm depth) out of 50 individual vineyards were analysed for saturated and unsaturated hydraulic conductivity, soil water retention, aggregate stability, total organic carbon, soil texture and bulk density. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with less frequent soil disturbance and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not necessarily improve for the upper soil layer in every region. The results indicate that the influence of long term and high frequency mechanical stress imposed on soil by use of agricultural machinery in inter rows as well as different fertilization strategies may in some cases exhibit higher impacts on soil physical properties than the different tillage strategies.
Nickel, Carmen; Gabsch, Stephan; Hellack, Bryan; Nogowski, Andre; Babick, Frank; Stintz, Michael; Kuhlbusch, Thomas A J
2015-07-01
Nanomaterials are commonly used in everyday life products and during their life cycle they can be released into the environment. Soils and sediments are estimated as significant sinks for those nanomaterials. To investigate and assess the behaviour of nanomaterials in soils and sediments standardized test methods are needed. In this study the applicability of two existing international standardized test guidelines for the testing of nanomaterials, OECD TG 106 "Adsorption/Desorption using a Bath Equilibrium Method" and the OECD TG 312 "Leaching in Soil Columns", were investigated. For the study one coated and two uncoated TiO2 nanomaterials were used, respectively. The results indicate that the OECD TG 106 is not applicable for nanomaterials. However, the test method according to OECD TG 312 was found to be applicable if nano-specific adaptations are applied. The mobility investigations of the OECD TG 312 indicated a material-dependent mobility of the nanomaterials, which in some cases may lead to an accumulation in the upper soil layers. Whereas no significant transport was observed for the uncoated materials for the double-coated material (coating with dimethicone and aluminiumoxide) a significant transport was detected and attributed to the coating. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bogorodskaya, A. V.; Ponomareva, T. V.; Efimov, D. Yu.; Shishikin, A. S.
2017-06-01
Changes in soil microbial processes and phytocenotic parameters were studied in clearings made for power transmission lines in the subtaiga and southern taiga of Central Siberia. In these clearings, secondary meadow communities play the main environmental role. The substitution of meadow vegetation for forest vegetation, the increase in the phytomass by 40-120%, and the transformation of the hydrothermic regime in the clearings led to the intensification of the humus-accumulative process, growth of the humus content, reduction in acidity and oligotrophy of the upper horizons in the gray soils of the meadow communities, and more active microbial mineralization of organic matter. In the humus horizon of the soils under meadows, the microbial biomass (Cmicr) increased by 20-90%, and the intensity of basal respiration became higher by 60-90%. The values of the microbial metabolic quotient were also higher in these soils than in the soils under the native forests. In the 0- to 50-cm layer of the gray soils under the meadows, the total Cmicr reserves were 35-45% greater and amounted to 230-320 g/m3; the total microbial production of CO2 was 1.5-2 times higher than that in the soil of the adjacent forest and reached 770-840 mg CO2-C/m3 h. The predominance of mineralization processes in the soils under meadows in the clearings reflected changes in edaphic and trophic conditions of the soils and testified to an active inclusion of the herb falloff into the biological cycle.
Chen, Tao; Niu, Rui-qing; Wang, Yi; Li, Ping-xiang; Zhang, Liang-pei; Du, Bo
2011-08-01
Soil conservation planning often requires estimates of the spatial distribution of soil erosion at a catchment or regional scale. This paper applied the Revised Universal Soil Loss Equation (RUSLE) to investigate the spatial distribution of annual soil loss over the upper basin of Miyun reservoir in China. Among the soil erosion factors, which are rainfall erosivity (R), soil erodibility (K), slope length (L), slope steepness (S), vegetation cover (C), and support practice factor (P), the vegetative cover or C factor, which represents the effects of vegetation canopy and ground covers in reducing soil loss, has been one of the most difficult to estimate over broad geographic areas. In this paper, the C factor was estimated based on back propagation neural network and the results were compared with the values measured in the field. The correlation coefficient (r) obtained was 0.929. Then the C factor and the other factors were used as the input to RUSLE model. By integrating the six factor maps in geographical information system (GIS) through pixel-based computing, the spatial distribution of soil loss over the upper basin of Miyun reservoir was obtained. The results showed that the annual average soil loss for the upper basin of Miyun reservoir was 9.86 t ha(-1) ya(-1) in 2005, and the area of 46.61 km(2) (0.3%) experiences extremely severe erosion risk, which needs suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes was 66.9% very low, 21.89% low, 6.18% moderate, 2.89% severe, and 1.84% very severe. Thus, by using RUSLE in a GIS environment, the spatial distribution of water erosion can be obtained and the regions which susceptible to water erosion and need immediate soil conservation planning and application over the upper watershed of Miyun reservoir in China can be identified.
Process recognition in multi-element soil and stream-sediment geochemical data
Grunsky, E.C.; Drew, L.J.; Sutphin, D.M.
2009-01-01
Stream-sediment and soil geochemical data from the Upper and Lower Coastal Plains of South Carolina (USA) were studied to determine relationships between soils and stream sediments. From multi-element associations, characteristic compositions were determined for both media. Primary associations of elements reflect mineralogy, including heavy minerals, carbonates and clays, and the effects of groundwater. The effects of groundwater on element concentrations are more evident in soils than stream sediments. A "winnowing index" was created using ratios of Th to Al that revealed differing erosional and depositional environments. Both soils and stream sediments from the Upper and Lower Coastal Plains show derivation from similar materials and subsequent similar multi-element relationships, but have some distinct differences. In the Lower Coastal Plain, soils have high values of elements concentrated in heavy minerals (Ce, Y, Th) that grade into high values of elements concentrated into finer-grain-size, lower-density materials, primarily comprised of carbonates and feldspar minerals (Mg, Ca, Na, K, Al). These gradational trends in mineralogy and geochemistry are inferred to reflect reworking of materials during marine transgressions and regressions. Upper Coastal Plain stream-sediment geochemistry shows a higher winnowing index relative to soil geochemistry. A comparison of the 4 media (Upper Coastal Plain soils and stream sediments and Lower Coastal Plain soils and stream sediments) shows that Upper Coastal Plain stream sediments have a higher winnowing index and a higher concentration of elements contained within heavy minerals, whereas Lower Coastal Plain stream sediments show a strong correlation between elements typically contained within clays. It is not possible to calculate a functional relationship between stream sediment-soil compositions for all elements due to the complex history of weathering, deposition, reworking and re-deposition. However, depending on the spatial separation of the stream-sediment and soil samples, some elements are more highly correlated than others. Crown Copyright ?? 2009.
Zhang, Manping; Luo, Yi; Lin, Li'an; Lin, Xiaolan; Hetharua, Buce; Zhao, Weijun; Zhou, Mengkai; Zhan, Qing; Xu, Hong; Zheng, Tianling; Tian, Yun
2018-03-01
Nitrite-dependent anaerobic methane oxidation (n-damo), which is mediated by "Candidatus Methylomirabilis oxyfera-like" bacteria, is unique in linking the carbon and nitrogen cycles. However, the niche and activity of n-damo bacteria in the mangrove ecosystem have not been confirmed. Here, we report the occurrence of the n-damo process in the mangrove wetland of the Zhangjiang Estuary, China. The widespread occurrence of n-damo bacteria in mangrove wetland was confirmed using real-time quantitative polymerase chain reaction (qPCR) assay, which showed that the abundance of Methylomirabilis oxyfera-like bacterial 16S rRNA and pmoA genes ranged from 2.43 × 10 6 to 2.09 × 10 7 and 2.07 × 10 6 to 3.38 × 10 7 copies per gram of dry soil in the examined sediment cores. The highest amount of targeting genes was all detected in the upper layer (0-20 cm). Phylogenetic analyses of n-damo bacterial 16S rRNA and pmoA genes illustrated the depth-specific distribution and high diversity of n-damo bacteria in the mangrove wetland. Stable isotope experiments further confirmed the occurrence of n-damo in the examined mangrove sediments, and the potential n-damo rates ranged from 25.93 to 704.08 nmol CO 2 per gram of dry soil per day at different depths of the sediment cores, with the n-damo being more active in the upper layer of the mangrove sediments. These results illustrate the existence of active M. oxyfera-like bacteria and indicate that the n-damo process is a previously overlooked microbial methane sink in the mangrove wetlands.
Turbulent transports over tundra
NASA Technical Reports Server (NTRS)
Fitzjarrald, David R.; Moore, Kathleen E.
1992-01-01
An extensive period of eddy correlation surface flux measurements was conducted at a site distant from the coast on the western Alaskan tundra. The surface exchange of heat and moisture over tundra during the summer was limited by a strong resistance to transfer from the upper soil layer through the ground cover, with canopy resistances to evaporation observed to be approximately 200 s/m. Though July 1988 was anomalously warm and dry in the region and August was close to normal temperature and rainfall, there was no appreciable difference in the canopy resistance between the periods. During the dry sunny period at the end of July, the observed evaporation rate was 2 mm/d. High canopy resistance led to an approximate equipartition of net radiation between latent and sensible heat, each accounting for 40 percent of the available energy, with heat balance apparently going into soil heat flux.
Role of plant-mediated gas transport in CH4 emissions from Phragmites-dominated peatlands
NASA Astrophysics Data System (ADS)
van den Berg, Merit; Ingwersen, Joachim; van den Elzen, Eva; Lamers, Leon P. M.; Streck, Thilo
2016-04-01
A large part of the methane (CH4) produced in peatlands is directly oxidized and the extent of its oxidation depends on the gas transport pathway. In wetland ecosystems, CH4 can be transported from the soil to the atmosphere via diffusion, ebullition and via aerenchyma of roots and stems of vascular plants. Compared to other wetland plants, the very common species Phragmites australis (Common reed) appears to have a high ability to transport gases between the soil and atmosphere. The gas exchange within Phragmites plants takes place via convective flow through the culm, which is believed to be achieved by a humidity-induced pressure gradient and is more than 5-times as efficient as diffusion. By this mechanism, CH4 surpasses the upper (oxic) soil layers and therefore oxidation of CH4 may well be reduced. On the other hand, transport of oxygen in Phragmites plants tends to enhance O2concentration in the rhizosphere, which will foster CH4oxidation in deeper soil layers. It is therefore unknown whether humidity-induced convection leads to higher or lower overall CH4 emission in Phragmites, which is essential to understand their role in the emissions from these very common peatland types. To investigate whether this internal gas transport mechanism of reed promotes or reduces CH4 fluxes to the atmosphere, we conducted manipulative field experiments in a large Phragmites peatland in South-West Germany in October 2014 and July 2015. Using large chambers, we compared CH4 fluxes from intact plots, plots with cut reed, and plots with cut + sealed reed to exclude gas transport through the plants. Additionally, pore water samples from the plots were analyzed for possible changes in soil chemistry due to the change of oxygen transport into the soil by the treatments. Based on our results, we will explain the potential role of rhizosphere oxygenation and convective flow on CH4 emissions from Phragmites-dominated peatlands in relation to other environmental condition.
NASA Astrophysics Data System (ADS)
Bogacz, A.; Roszkowicz, M.
2009-04-01
SUMMARY The aim of this work was to determine the properties of organic soils modified by man, muddy and fluvial process. Peat horizons were analyzed and classified by types - and species of peat. Three profiles of shallow peat and peaty gley soils identified. Investigation showed that organic soil developed on a sandy weathered sandstone base according to oligotrophic type of sites. Organic horizons were mixed with sand and separated by sandy layers. Those soils were classified as Sapric Histosols Dystric or Sapric Gleysols Histic (WRB 2006). The throphism of organic soil in this object resulted from both natural factors and anthropo-pedogenesis. key words: peat deposit, organic soils, soil properties, muddy process, sandy layers INTRODUCTION The areas of Stolowe Mountains National Park were influenced by forestry management. Many peatlands in the Park area were drained for forestry before World War II. Several amelioration attempts were undertaken as early as in the nineteenth century. The system of forest roads were built on drained areas. The Kragle Mokradlo Peatland is located in the Skalniak plateau. The object is cut by a melioration ditch. This ditch has been recently blocked to rewet the objects. Several forest roads pass in the close neighbourhood of investigated areas. In a border part of Kragle Mokradlo Peatlands, we can observe artificial spruce habitat. Investigated object represents shallow peat soil developed on sandy basement. The early investigations showed that peaty soils were also covered by sandstone - related deposits, several dozen centimeter thick (BOGACZ 2000). Those layers was developed from sandstone weathered material transported by wind and water. The aim of presented works was to determine the stage of evolution of organic soils on the base on their morphological, physical and chemical properties. MATERIAL AND METHODS Peat soils in different locations (3 profiles, 18 samples) were selected for examination. Peat samples were collected from study areas using a 6.0 cm diameter Instorfu peat auger (HORAWSKI 1987). Soil horizons were determined on the basis of colour, degree of organic matter decomposition and the quality of vegetation remains. Cores were taken to the depth where underlying mineral material was encountered. The cores ware sectioned to subsamples at intervals at major stratigrafic breaks. Some physical, chemical properties and botanical composition of peat were determined in this material. Differentiation in botanical composition of peat was analyzed by the microscopic method and subsequently classified according to the Polish standards (Oznaczanie gatunku...1977). Peat humification degree was measured using two methods: SPEC method and half syringe method (LYNN at all. 1974). Ash content was estimated by combusting the material in a muffle furnace at 500oC for 4 hours. The texture of mineral horizons was determined using the Bouyoucos hydrometer method (GEE AND BOUNDER 1986). The specific gravity (W) and bulk density (Z) of organic soils were calculated using the following formula's (ZAWADZKI 1970): W=0.11A+1.451, (1.451) represents the specific gravity of humus, Z =0.004A+0.0913, A is a ash content and constant (0.0913) represents the bulk density of humus. The following chemical properties of organic soil horizons were analyzed: content of total carbon and nitrogen, acidity in H2O and 1mol dm-3 KCl and CECe in CH3COONH4 at pH 7. Base saturation (BS) of soil sorption complex was calculated. The soils were classified to reference groups in WRB Classification System (WRB 2006). RESULTS AND DISSCUSION Based on the cores, -the soils in the border part of Kragle Mokradlo Peatland area were classified as Sapric Histosols Dystric or Sapric Gleysols Histic (WRB 2006). Soils represented ombrogenic type of hydrological conditions. In that site, an ombrogenic type of hydrological input is the predominant mechanism of soil evolution. Soil examined in this study have developed in oligotrophic type of site. Organic soils developed on sandy weathered sandstones. The depth of organic horizons ranged from 40 to 80 cm. The object represented spruce forests habitat introduced by man. Organic horizons were separated by sandy layers. The process of sandstone weathering and forestry management changed morphological features of soils. Presently, the area is under the influence of fluvigenic type of hydrological input, too. Geobotanical analyses of peat layers indicated significant presence of preserved fragments of roots grasses, Sphagnum sp. and Bryales sp. Hemic or sapric material were usually present in organic horizons of this object. Analysis of organic horizons showed that their specific gravity was about 1.58-2.25 g cm-3, the bulk density was 0.14-0.42 g cm-3. The total porosity was in the range 82.0-91.1% and the ash content: in the range 11.74-77.96% of soil dry matter. Organic material consisting of weathered sandstone was likely to move down the profiles, increasing the concentration of sand and silt fractions in organic horizons. The similar phenomenon of residual deposits was reported by KLEMENTOWSKI (1979). The values of bulk density of peatland soils are connected with the high ash content. Ash content was different in situated layers. This is caused by the muddy and fluvial process. This situation was influenced by trophical status of this soils. The pH of sand and peat layers in a border part of Krągłe Mokradło Peatland was strongly acidic: pH H2O 2.92-3.51, pH KCl 2.38-3.07. The acidity was lower in upper horizons than in deeper ones. The ratio C/N in organic horizons ranged between 10:1 to 40:1. Low ratios of C/N in some upper horizons were probably caused by strong mineralization of organic matter. Strongly acidic soil horizons usually exhibited high cation exchange capacity (CECe). In general, the base saturated (BS) did not exceed 50%. Organic surface horizons showed higher content of potassium, calcium and magnesium than lower horizons. CONCLUSIONS Shallow organic soils occupy the ombrotrophic sites of a border part of Kragle Mokradlo Peatland. The variety of organic soil throphism in the object resulted from the placement on the base sandstone, partial mixing of soil horizons as well as from muddy and fluvial processes. Peat horizons present in the studied profiles were generally classified as hemic and sapric, sometimes as fibric. Soil horizons exhibited differed thickness and ash content. Forest management strongly changed the properties of organic soil. REFERENCES Bogacz, A. (2000). Physical properties of organic soil in Stolowe Mountains National Park (Poland). Suo 51,3; pp.105-113. Gee, G.W. and Bauder, J.W. (1986). Particle-size analysis. In: Klute, A.(ed.) Methods of Soil Analysis Part I. Agronomy series No. 9. Am. Soc. Agronomy Soil Sci. Am, Inc., Publ., Madison, WI.pp. 383-411. Horawski, M. (1987). Torfoznawstwo dla meliorantow. Pojecia podstawowe.[Peat science for melioration. Basic definitions.]. Wydawnictwo Akademii Rolniczej w Krakowie. pp.37-39.[In Polish]. Lubliner - Mianowska, K. (1951). Wskazowki do badania torfu. Metody geobotaniczne, polowe i laboratoryjne [Hints to peat research. In: Geobotanical, field and laboratory methods] Państwowe Wydawnictwo Techniczne, Katowice.pp.58-60. [In Polish]. Lynn, W.C., Mc Kinzie, W.E., Grossman, R.B. (1974). Field Laboratory Test for characterization of Histosols. In: Histosols, their characteristics, classification and use. pp. 11-20. Oznaczanie gatunku, rodzaju i typu torfu. (1977). [Peat and peat varies. Determination of classes, sort and types of peat]. Polish standard PN-76/G-02501, [Polish Normalization Commitee]. pp.1-11.[In Polish]. Word Reference Base for Soil Resources. 1998. Word Soil Resources Report, 84. FAO-ISRIC-ISSS, Rome, pp.1-88. Zawadzki, S. (1970). Relationship between the content of organic matter and physical properties of hydrogenic soils. Polish Journal of Soil Science Vol.III, 1; pp.3-9.
Agriculture Canada Central Saskatchewan Vector Soils Data
NASA Technical Reports Server (NTRS)
Knapp, David; Hall, Forrest G. (Editor); Rostad, Harold
2000-01-01
This data set consists of GIS layers that describe the soils of the BOREAS SSA. These original data layers were submitted as vector data in ARC/INFO EXPORT format. These data also include the soil name and soil layer files, which provide additional information about the soils. There are three sets of attributes that include information on the primary, secondary, and tertiary soil type within each polygon. Thus, there is a total of nine main attributes in this data set.
Effect of integrating straw into agricultural soils on soil infiltration and evaporation.
Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong
2012-01-01
Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.
Driese, S.G.; Ludvigson, Greg A.; Roberts, J.A.; Fowle, D.A.; Gonzalez, Luis A.; Smith, J.J.; Vulava, V.M.; McKay, L.D.
2010-01-01
Alluvial clay soil samples from six boreholes advanced to depths of 400-450 cm (top of limestone bedrock) from the Chattanooga Coke Plant (CCP) site were examined micromorphologically and geochemically in order to determine if pedogenic siderite (FeCO3) was present and whether siderite occurrence was related to organic contaminant distribution. Samples from shallow depths were generally more heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) than those at greater depth. The upper 1 m in most boreholes consisted of mixtures of anthropogenically remolded clay soil fill containing coal clinker, cinder grains, and limestone gravel; most layers of coarse fill were impregnated with creosote and coal tar. Most undisturbed soil (below 1 m depth) consisted of highly structured clays exhibiting fine subangular blocky ped structures, as well as redox-related features. Pedogenic siderite was abundant in the upper 2 m of most cores and in demonstrably historical (< 100 years old) soil matrices. Two morphologies were identified: (1) sphaerosiderite crystal spherulites ranging from 10 to 200 um in diameter, and (2) coccoid siderite comprising grape-like "clusters" of crystals 5-20 ??n in diameter. The siderite, formed in both macropores and within fine-grained clay matrices, indicates development of localized anaerobic, low-Eh conditions, possibly due to microbial degradation of organic contaminants. Stable-isotope compositions of the siderite have ??13C values spanning over 25%o (+7 to - 18%o VPDB) indicating fractionation of DIC by multiple microbial metabolic pathways, but with relatively constant ??18O values from (-4.8 ?? 0.66%o VPDB) defining a meteoric sphaerosiderite line (MSL). Calculated isotope equilibrium water ??18O values from pedogenic siderites at the CCP site are from 1 to 5 per mil lighter than the groundwater ??18O values that we estimate for the site. If confirmed by field studies in progress, this observation might call for a reevaluation of low-temperature siderite-water 18O fractionations. Investigations at the CCP site thus provide valuable information on the geochemical conditions under which siderite can form in modern soils, and thus insight on controls on siderite formation in ancient soils. Copyright ?? 2010, SEPM (Society for Sedimentary Geology).
Dittman, Jason A.; Shanley, James B.; Driscoll, Charles T.; Aiken, George R.; Chalmers, Ann T.; Towse, Janet E.; Selvendiran, Pranesh
2010-01-01
Mercury (Hg) contamination is widespread in remote areas of the northeastern United States. Forested uplands have accumulated a large reservoir of Hg in soil from decades of elevated anthropogenic deposition that can be released episodically to stream water during high flows. The objective of this study was to evaluate spatial and temporal variations in stream water Hg species and organic matter fractions over a range of hydrologic conditions in three forested upland watersheds (United States). Mercury and organic matter concentrations increased with discharge at all three sites; however, the partitioning of Hg fractions (dissolved versus particulate) differed among sites and seasons. Associated with increased discharge, flow paths shifted from mineral soil under base flow to upper soil horizons. As flow paths shifted, greater concentrations of dissolved organic carbon (DOC) richer in aromatic substances were flushed from upper soil horizons to stream water. The hydrophobic organic matter associated with humic material from upper soils appears to have had a greater capacity to bind Hg. Because of the strong correlation between Hg and DOC, we hypothesize that there was a concurrent shift in the source of Hg with DOC from lower mineral soil to upper soil horizons. Our study suggests that stream discharge is an effective predictor of dissolved total Hg flux.
The influence of wildfire severity on soil char composition and nitrogen dynamics
NASA Astrophysics Data System (ADS)
Rhoades, Charles; Fegel, Timothy; Chow, Alex; Tsai, Kuo-Pei; Norman, John, III; Kelly, Eugene
2017-04-01
Forest fires cause lasting ecological changes and alter the biogeochemical processes that control stream water quality. Decreased plant nutrient uptake is the mechanism often held responsible for lasting post-fire shifts in nutrient supply and demand, though other upland and in-stream factors also likely contribute to elevated stream nutrient losses. Soil heating, for example, creates pyrogenic carbon (C) and char layers that influence C and nitrogen (N) cycling. Char layer composition and persistence vary across burned landscapes and are influenced first by fire behavior through the temperature and duration of combustion and then by post-fire erosion. To evaluate the link between soil char and stream C and N export we studied areas burned by the 2002 Hayman Fire, the largest wildfire in Colorado, USA history. We compared soil C and N pools and processes across ecotones that included 1) unburned forests, 2) areas with moderate and 3) high wildfire severity. We analyzed 1-2 cm thick charred organic layers that remain visible 15 years after the fire, underlying mineral soils, and soluble leachate from both layers. Unburned soils released more dissolved organic C and N (DOC and DON) from organic and mineral soil layers than burned soils. The composition of DOC leachate characterized by UV-fluorescence, emission-excitation matrices (EEMs) and Fluorescence Regional Integration (FRI) found similarity between burned and unburned soils, underscoring a common organic matter source. Humic and fulvic acid-like fractions, contained in regions V and III of the FRI model, comprised the majority of the fluorescing DOM in both unburned and char layers. Similarity between two EEMs indices (Fluorescence and Freshness), further denote that unburned soils and char layers originate from the same source and are consistent with visual evidence char layers contain significant amounts of unaltered OM. However, the EEMs humification index (HIX) and compositional analysis with pyrolysis GCMS both indicate that C contained or leached from severely-burned char layers has higher aromaticity and thus chemical stability compared to C in unburned soils. Mineral soil (0-5 cm depth) beneath char layers in high severity portions of the Hayman Fire had significantly more soil N and C and lower pH. Potential net mineralization - an index of the supply of plant-available nitrogen - differed between the severely-burned areas and both unburned and moderately-burn areas. Negative net mineralization in unburned and moderately burned soils indicates immobilization or retention of inorganic N by soil microbes. In contrast, soils burned at high severity produced inorganic N sources available to plants, leaching and gas losses. Water soluble nitrate comprised a larger proportion of inorganic N leached from the char layer of high severity burns. Mineral soil in those areas had both higher water soluble nitrate and total inorganic N in leachate. Char layers that have persisted for fifteen years influence soil N turnover within the Hayman Fire affected area and may contribute to elevated N losses in streams burned at high severity. The chemical stability of soil char layers perpetuates their importance for C sequestration and N dynamics in burned landscapes.
Singh, G; Bhati, M
2005-06-01
Increasing demand for fodder and fuelwood and the scarcity of a good quality water in arid areas has resulted in a search for an alternative source of water for biomass production. An experiment utilizing municipal effluent in growing Dalbergia sissoo was conducted. Five treatments included T1, municipal effluent at 1 PET (Potential evapo-transpiration) (without plant); T2, municipal effluent at 1/2 PET; T3, municipal effluent at 1PET; T4, municipal effluent at 2 PET; and T5, canal water at 1 PET. Observations included plant height, collar diameter at one-month intervals and plant mineral composition, mineral uptake and changes in soil properties at 24 months of plant age. Application of municipal effluent produced better growth in D. sissoo seedlings. Concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were greater in seedlings irrigated with municipal effluent than those of the seedlings irrigated by the treatment T5, and positively related with the quantity of irrigation. The concentrations were greatest in foliage compared to the other parts of seedling, with the exception of Cu concentration. Application of municipal effluents resulted in a 2- to 3-fold increase in the concentrations of soil K, Cu, Fe, Mn and Zn, whereas NH4-N and PO4-P availability increased by 8.1- and 4.5-fold, respectively. The increase in soil organic carbon was only observed in treatments T3 and T4. The accumulations of soil NO3-N, Na, Cu, Fe, Mn and Zn were more in lower soil layers but the other soil parameters showed their greatest values in the upper soil layer. Irrigation using municipal effluent did not result in toxicity to the seedlings before the age of 24 months. The results suggest that municipal effluent could be utilized, as an important source of water and nutrients in growing D. sissoo to increase biomass production in the needs of suburban dwellers. However, a preliminary treatment to reduce excess NH4-N and PO4-P will be required before application to the plantation.
NASA Astrophysics Data System (ADS)
Kumar, P.; Quijano, J. C.; Drewry, D.
2010-12-01
Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling results using coupled partial differential equations of transport in soils and roots along with that for nutrient dynamics. We study the feedbkack of HR on the dynamics of water and nitrogen cycling in the soil and how these dynamics influence root water and nitrogen uptake and consequently carbon assimilation by the canopy. The forcing data is obtained from the Ameriflux Tower located in Blodgett Forest, Sierra Nevada, California. We consider single-species (Ponderosa Pine) and multi-species (overstory Ponderosa Pine and understory shrubs) interaction. When single species is considered, the near surface soil-moisture available from HR during dry summer season is an important source of evaporation and contributes significantly to the total ET flux. However, when multi-species interactions are taken into account, the soil-water from the HR becomes an important source of transpiration from the understory. The results also show that passive plant nitrogen uptake is higher when HR is present and it is critical for sustaining expected rates of carbon assimilation.
Mobility and leachability of zinc in two soils treated with six organic zinc complexes.
Alvarez, J M; Novillo, J; Obrador, A; López-Valdivia, L M
2001-08-01
A study of soil columns was conducted to evaluate Zn movement potential in two reconstructed soil profiles. Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-heptagluconate were applied in the upper zone of the column. The different physicochemical properties of the two soils and the micronutrient source may influence Zn leaching, the distribution of Zn among soil fractions, and the Zn available to the plant in the depth of the layers. In Aquic Haploxeralf soil, the application of six fertilizers produced little migration and very small leaching of Zn in the soil profiles. In Calcic Haploxeralf soil, Zn-EDTA migrated and was distributed throughout the soil columns. This Zn chelate produces a loss of Zn by leaching, which was 36% of the added Zn. In the latter soil, Zn leached very little with the other five fertilizer treatments. The same as for these organic Zn complexes, the retention of added Zn indicated the potential of metal accumulation in the A(p) horizons of the two soil profiles. A large portion of applied Zn was available to plants [diethylenetriaminepentaacetic acid (DTPA) and Mehlich-3 extractable Zn] in the depths reached by the different commercial formulations. The relationship between the two methods was highly significant (Mehlich-3-Zn = 1.25 + 1.13 DTPA-Zn, R(2) = 99.19%). When Zn was added as Zn-EDTA, the amounts of the most labile fractions (water-soluble plus exchangeable and organically complexed Zn) increased throughout the entire profile column in comparison with the control columns, although in the B(t) horizon of the Aquic Haploxeralf soil they increased only slightly.
Allen, Casey D
2009-02-01
Characterized by expensive housing, high socioeconomic status, and topographic relief, Upper Sonoran Lifestyle communities are found primarily along the Wildland-Urban Interface (WUI) in the Phoenix, Arizona metro area. Communities like these sprawl into the wildlands in the United States Southwest, creating a distinct urban fringe. This article, through locational comparison, introduces and evaluates a new field assessment tool for monitoring anthropogenic impact on soil-vegetation interactions along the well-maintained multi-use recreational trails in Upper Sonoran Lifestyle region. Comparing data from randomly selected transects along other multi-use trails with data from a control site revealed three key indicators of anthropogenic disturbances on soil-vegetation interactions: soil disturbance, vegetation disturbance, and vegetation density. Soil and vegetation disturbance displayed an average distance decay exponent factor of -0.60, while vegetation density displayed a reverse decay average of 0.60. Other important indicators of disturbance included vegetation type, biological soil crusts, and soil bulk density. The predictive ability of this new field tool enhances its applicability, offering a powerful rapid ecological assessment method for monitoring long-term anthropogenic impact in the Upper Sonoran Lifestyle, and other sprawling cities along the WUI.
Zhu, Han-hua; Huang, Dao-you; Liu, Shou-long; Zhu, Qi-hong
2007-11-01
Two typical land-use types, i.e., newly cultivated slope land and mellow upland, were selected to investigate the effects of ex situ rice straw incorporation on the organic matter content, field water-holding capacity, bulk density, and porosity of hilly red soil, and to approach the correlations between these parameters. The results showed that ex situ incorporation of rice straw increased soil organic matter content, ameliorated soil physical properties, and improved soil water storage. Comparing with non-fertilization and applying chemical fertilizers, ex situ incorporation of rice straw increased the contents of organic matter (5.8%-28.9%) and > 0.25 mm water-stable aggregates in 0-20 cm soil layer, and increased the field water-holding capacity (6.8%-16.2%) and porosity (4.8%-7.7%) significantly (P < 0.05) while decreased the bulk density (4.5%-7.5%) in 10-15 cm soil layer. The organic matter content in 0-20 cm soil layer was significantly correlated to the bulk density, porosity, and field water-holding capacity in 10-15 cm soil layer (P < 0.01), and the field water-holding capacity in 0-20 cm and 10-15 cm soil layers was significantly correlated to the bulk density and porosity in these two layers (P < 0.05).
Ceramic substrate including thin film multilayer surface conductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Joseph Ambrose; Peterson, Kenneth A.
2017-05-09
A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on anmore » upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.« less
New approach to analyzing soil-building systems
Safak, E.
1998-01-01
A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.
Trace Element and Cu Isotopic Tracers of Subsurface Flow and Transport in Wastewater Irrigated Soils
NASA Astrophysics Data System (ADS)
Carte, J.; Fantle, M. S.
2017-12-01
An understanding of subsurface flow paths is critical for quantifying the fate of contaminants in wastewater irrigation systems. This study investigates the subsurface flow of wastewater by quantifying the distribution of trace contaminants in wastewater irrigated soils. Soil samples were collected from the upper 1m of two wetlands at Penn State University's wastewater irrigation site, at which all effluent from the University's wastewater treatment plant has been sprayed since 1983. Major and trace element and Cu isotopic composition were determined for these samples, in addition to wastewater effluent and bedrock samples. The upper 20 cm of each wetland shows an enrichment of Bi, Cd, Cr, Cu, Mo, Ni, Pb, and Zn concentrations relative to deep (>1m) soils at the site by a factor of 1.7-3.5. Each wetland also has a subsurface clay rich horizon with Bi, Cu, Li, Ni, Pb, and Zn concentrations enriched by a factor of 1.4 to 5 relative to deep soils. These subsurface horizons directly underlie intervals that could facilitate preferential effluent flow: a gravel layer in one wetland, and a silty loam with visible mottling, an indication of dynamic water saturation, in the other. Trace metal concentrations in other horizons from both wetlands fall in the range of the deep soils. Significant variability in Cu isotopic composition is present in soils from both wetlands, with δ65Cu values ranging from 0.74‰ to 5.09‰. Soil δ65Cu correlates well with Cu concentrations, with lighter δ65Cu associated with higher concentrations. The Cu isotopic composition of the zones of metal enrichment are comparable to the ostensible average wastewater effluent δ65Cu value (0.61‰), while other horizons have considerably heavier δ65Cu values. We hypothesize that wastewater is the source of the metal enrichments, as each of the enriched elements are present as contaminants in wastewater, and the enrichments are located in clay-rich horizons conducive to trace metal immobilization due to adsorption. This hypothesis will be further tested by modeling with the reactive transport code CrunchTope. This study provides evidence that trace element and isotopic composition of soils can be useful tracers of subsurface hydrologic pathways and elemental fate and transport.
Observations and modelling of thoron and its progeny in the soil-atmosphere-plant system.
Baldacci, A E; Gattavecchia, E; Kirchner, G
2010-11-01
Samples of pasture vegetation, mainly Trifolium pratensis, were collected at the Botanic Garden of the University of Bologna during the period 1998-2000 and measured by gamma-spectrometry for determining thoron progeny. Concentrations of (212)Pb were between 1.5 and 20 Bq m(-2), with individual peaks up to 70 Bq m(-2). Soil samples were collected at the same location and physically characterised. Their chemical composition (particularly Th and U) was determined by X-ray fluorescence spectroscopy. Lead-212 on plants mainly originates from dry and wet deposition of this isotope generated in the lower atmosphere by the decay of its short-lived precursor (220)Rn, which is produced in the upper soil layers as a member of the natural thorium decay chain and exhales into the atmosphere. Concentrations of (220)Rn in the atmosphere depend on (1) the amount of Th present in soil, (2) the radon fraction which escapes from the soil minerals into the soil pore space, (3) its transport into the atmosphere, and (4) its redistribution within the atmosphere. The mobility of radon in soil pore space can vary by orders of magnitude depending on the soil water content, thus being the main factor for varying concentrations of (220)Rn and (212)Pb in the atmosphere. We present a simple model to predict concentrations of thoron in air and its progeny deposited from the atmosphere, which takes into account varying soil moisture contents calculated by the OPUS code. Results of this model show close agreement with our observations.
Waldrop, M.P.; Wickland, K.P.; White, Rickie; Berhe, A.A.; Harden, J.W.; Romanovsky, V.E.
2010-01-01
The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5 ??C were measured to calculate temperature response quotients (Q10). The Q10 was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q10 values. CH4 fluxes were correlated with methanogen abundance and the highest CH4 production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region. Published 2010. This article is a US Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Marchenko, S. S.; Helene, G.; Euskirchen, E. S.; Breen, A. L.; McGuire, D.; Rupp, S. T.; Romanovsky, V. E.; Walsh, J. E.
2017-12-01
The Soil Temperature and Active Layer Thickness (ALT) Gridded Data was developed to quantify the nature and rate of permafrost degradation and its impact on ecosystems, infrastructure, CO2 and CH4 fluxes and net C storage following permafrost thaw across Alaska. To develop this database, we used the process-based permafrost dynamics model GIPL2 developed in the Geophysical Institute Permafrost Lab, UAF and which is the permafrost module of the Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada. The climate forcing data for simulations were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP, http://www.snap.uaf.edu/). These data are based on the historical CRU3.1 data set for the retrospective analysis period (1901-2009) and the five model averaged data were derived from the five CMIP5/AR5 IPCC Global Circulation Models that performed the best in Alaska and other northern regions: NCAR-CCSM4, GFDL-CM3, GISS-E2-R, IPSL-CM5A-LR, MRI-CGCM3. A composite of all five-model outputs for the RCP4.5 and RCP8.5 were used in these particular permafrost dynamics simulations. Data sets were downscaled to a 771 m resolution, using the Parameter-elevation Regressions on Independent Slopes Model (PRISM) climatology. Additional input data (snow characteristics, soil thermal properties, soil water content, organic matter accumulation or its loss due to fire, etc.) came from the Terrestrial Ecosystem Model (TEM) and the ALFRESCO (ALaska FRame-based EcoSystem COde) model simulations. We estimated the dynamics of permafrost temperature, active layer thickness, area occupied by permafrost, and volume of seasonally thawed soils within the 4.75 upper meters (original TEM soil column) across the Alaska domain. Simulations of future changes in permafrost indicate that, by the end of the 21st century, late-Holocene permafrost in Alaska will be actively thawing at all locations and that some Late Pleistocene carbon-rich peatlands underlain by permafrost will start to thaw at some locations. The modeling results also indicate how different types of ecosystems affect the thermal state of permafrost and its stability. The release of carbon and the net effect of this thawing depends on the balance between increased productivity and respiration, which depend, in part, on soil moisture dynamics.
NASA Astrophysics Data System (ADS)
Vodnik, D.; Thomalla, A.; Ferlan, M.; Levanič, T.; Eler, K.; Ogrinc, N.; Wittmann, C.; Pfanz, H.
2018-06-01
Mofettes are often investigated in ecology, either as extreme sites, natural analogues to future conditions under climate change, or model ecosystems for environmental impact assessments of carbon capture and storage systems. Much of this research, however, inadequately addresses the complexity of the gas environment at these sites, mainly focusing on aboveground CO2-enrichment. In the current research, the gaseous environment of Norway spruce (Picea abies (L) Karst.) trees growing at the Stavešinske slepice mofette (NE Slovenia) were studied by measuring both soil ([CO2]soil) and atmospheric CO2 concentrations ([CO2]air). Within the studied site (800 m2), soil CO2 enrichment was spatially heterogeneous; about 25% of the area was characterized by very high [CO2]soil (>40%) and hypoxic conditions. Aboveground gas measurements along vertical profiles not only revealed substantially elevated [CO2]air close to the ground (height up to 1.5 m), but also in the upper heights (20-25 m; crown layer). On the basis δ13C of CO2, it was shown that elevated CO2 relates to a geogenic source. Trees grown in high [CO2]soil were characterized by decreased radial growth; the δ13C of their wood was less negative than in trees growing in normal soil. Unfavorable gaseous soil conditions should generally be accepted as being by far the most important factor affecting (i.e. disturbing) the growth of mofette trees.
Klimkowicz-Pawlas, Agnieszka; Smreczak, Bozena; Ukalska-Jaruga, Aleksandra
2017-04-01
The level of 16PAH accumulation was determined in 75 soil samples collected from two agricultural regions of Poland corresponding to the smallest Polish administrative unit at the LAU 2 level. Both regions are characterised by similar territory and soil cover but different history of pollution and different pressure of anthropogenic factors. Overall accumulation of Σ16PAHs in the upper soil layer was within a wide range with the median value of 291 and 1253 μg kg -1 for a non-contaminated and high anthropopressure region, respectively. Nearly 75 % of the total polycyclic aromatic hydrocarbon (PAH) pool was represented by high molecular four-to-six-ring compounds, deriving mainly from combustion sources. The total organic carbon (C org ) and black carbon (BC) contents were the main parameters associated with the PAH accumulation in soils, and the level of the regional anthropopressure was considered a significant factor. The strongest links of PAHs/BC (r = 0.70, p ≤ 0.05) were found in the region of high anthropopressure, characterized by a relatively high content of BC (up to 45.3 g kg -1 ), which tends to heavily adsorb hydrocarbons. In a region of low influence exerted by anthropopressure, the PAH/C org or PAH/BC relationships were not observed, which may suggest different diffuse sources of PAH origin and a dominant role of other organic matter fractions in retention of PAHs in soils.
Transport of sulfonamide antibiotics in small fields during monsoon season
NASA Astrophysics Data System (ADS)
Park, J. Y.; Huwe, B.; Kolb, A.; Tenhunen, J.
2012-04-01
Transport and fate of 3 sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) were studied in small agricultural land during monsoon period. The experiment has been conducted in 2 typical sandy loam potato fields of South Korea after application of the veterinary antibiotics and bromide. Precipitation was measured by AWS (Automatic Weather Station) near the fields during the whole monsoon season. Runoff generation was estimated by multislot divisors in combination with pressure sensor. Concentration of the target antibiotics and the conservative tracer in runoff, soil-water and soil was determined using HPLC-MS-MS and Br selected electrode. Transport simulation has been performed with Hydrus-2D program which can consider soil characteristics, climate condition, adsorption/desorption and degradation. Results from the measurements and modeling focus on the role of heavy rainfall, of related the ratio of runoff and infiltration in terms of the selected antibiotics distribution and fate. Bromide on topsoil was moved into soil as increasing rainfall loading. On the contrary, the sulfonamides were relatively retarded in upper soil layer owing to adsorption onto soil particles. Different patterns of runoff were observed, and slope and rain intensity was representative factor in this study. Distribution of target pharmaceuticals was strongly dependent on constitution of furrow and ridge in the agricultural fields. Modeling results positively matched with background studies that describe physico-chemical properties of the sulfonamides, interaction between soil and the antibiotic group, solute transport through vadose zone and runoff induction by storm events.
Frozen soil parameterization in a distributed biosphere hydrological model
NASA Astrophysics Data System (ADS)
Wang, L.; Koike, T.; Yang, K.; Jin, R.; Li, H.
2010-03-01
In this study, a frozen soil parameterization has been modified and incorporated into a distributed biosphere hydrological model (WEB-DHM). The WEB-DHM with the frozen scheme was then rigorously evaluated in a small cold area, the Binngou watershed, against the in-situ observations from the WATER (Watershed Allied Telemetry Experimental Research). First, by using the original WEB-DHM without the frozen scheme, the land surface parameters and two van Genuchten parameters were optimized using the observed surface radiation fluxes and the soil moistures at upper layers (5, 10 and 20 cm depths) at the DY station in July. Second, by using the WEB-DHM with the frozen scheme, two frozen soil parameters were calibrated using the observed soil temperature at 5 cm depth at the DY station from 21 November 2007 to 20 April 2008; while the other soil hydraulic parameters were optimized by the calibration of the discharges at the basin outlet in July and August that covers the annual largest flood peak in 2008. With these calibrated parameters, the WEB-DHM with the frozen scheme was then used for a yearlong validation from 21 November 2007 to 20 November 2008. Results showed that the WEB-DHM with the frozen scheme has given much better performance than the WEB-DHM without the frozen scheme, in the simulations of soil moisture profile at the cold regions catchment and the discharges at the basin outlet in the yearlong simulation.
Li, Ting-Liang; Xie, Ying-He; Hong, Jian-Ping; Feng, Qian; Sun, Cheng-Hong; Wang, Zhi-Wei
2013-06-01
In 2009-2011, a field experiment was conducted in a rain-fed winter wheat field in Southern Shanxi of China to study the effects of different fertilization modes on the change characteristics of soil moisture and nitrate-N contents in 0-200 cm layer and of soil available phosphorus (Oslen-P) and potassium contents in 0-40 cm layer during summer fallow period (from June to September). Three fertilization modes were installed, i. e., conventional fertilization (CF), recommended fertilization (RF), and ridge film furrow planting (RFFP) combined with straw mulch. The results showed that the rainfall in summer fallow period could complement the consumed water in 0-200 cm soil layer in dryland wheat field throughout the growth season, and more than 94% of the water storage was in 0-140 cm soil layer, with the fallow efficiency ranged from 6% to 27%. The rainfall in summer fallow period caused the soil nitrate-N moving downward. 357-400 mm rainfall could make the soil nitrate-N leaching down to 100 cm soil layer, with the peak in 20-40 cm soil layer. Straw mulching or plastic film with straw mulch in summer fallow period could effectively increase the Oslen-P and available K contents in 0-40 cm soil layer, and the accumulative increment in three summer fallow periods was 16-45% and 36-49%, respectively. Among the three modes, the binary coverage mode of RFFP plus furrow straw mulching had the best effect in maintaining soil water and fertility. The accumulative water storage and mineral N in 0-200 cm soil layer in three summer fallow periods were up to 215 mm and 90 kg x hm(-2), and the accumulative Oslen-P and available K contents in plough layer were increased by 2.7 mg x kg(-1) and 83 mg x kg(-1), respectively, being significantly higher than those in treatments CF and RF. There were no significant differences in the change characteristics in the soil moisture and nutrients between treatments CF and RF.
Chemical features of soils in a natural forest of West Hungary
NASA Astrophysics Data System (ADS)
Hofmann, Eszter; Bidló, András
2015-04-01
The present research focuses on the chemical results of soils formed on miocene carbonate rocks in a natural forest of West Hungary. Soil profiles derived from the Szárhalom Forest, located near the Lake Fertő, next to the city of Sopron. Six soil profiles were opened and analysed in this area. In the field the following physical parameters were evaluated from the soil profiles: transition, structure, compactness, roots, skeletal percent, colour, physical assortment, concretion and soil defect. Laboratory analysis involved the measurement of acidity, particle distribution, carbonated lime content, humus content, ammonium lactate-acetic acid soluble phosphorus- and potassium content, potassium chloride soluble calcium- and magnesium content, ethylene-diamine-tetraacetic-acid (EDTA) and diethylene-triamine-pentaacetic-acid (DTPA) soluble copper-, iron-, manganese- and zinc contents. These soils formed under a hornbeam-oak forest climate mainly and under a beech forest climate diffusely. The location and climate of the sites forms a basis of the comparison of the soils with similar base rock. The formation of the acidic and humus-rich upper layer of the soil profiles is influenced by the mineral composition and the weathering of the rocks. X-ray diffraction (Philips P W3710/PW1050 type X-ray diffractometer), thermoanalytical measurements (Mettler Toledo TGA/DSC 1 type thermogravimeter) and ICP-OES (Thermo Scientific iCAP 7000 Series) were also carried out to determine the mineral composition of the soils and the content of heavy metals. The soil samples were collected with both traditional and undisturbed (using the Kubiena box) sampling methods to enable further micromorphological investigations as well. The research is supported by the "Agroclimate-2" (VKSZ_12-1-2013-0034) joint EU-national research project. Key words: Natural forest, Miocene limestone, Mineral composition, Thermal analysis, Micromorphology
NASA Technical Reports Server (NTRS)
Wood, Stephen E.; Paige, David A.
1992-01-01
The present diurnal and seasonal thermal model for Mars, in which surface CO2 frost condensation and sublimation are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers, in order to simulate seasonal exchanges of CO2 between the polar caps and atmosphere, successfully reproduces the measured pressured variations at the Viking Lander 1 site. In the second part of this work, the year-to-year differences between measured surface pressures at Viking sites as a function of season are used as upper limits on the potential magnitudes of interannual variations in the Martian atmosphere's mass. Simulations indicate that the dust layers deposited onto the condensing north seasonal polar cap during dust storms can darken seasonal frost deposits upon their springtime uncovering, while having little effect on seasonal pressure variations.
NASA Technical Reports Server (NTRS)
Delascuevas, R. N. (Principal Investigator); Dearagon, A. M.
1981-01-01
Data obtained by HCMM satellite over a complex area in eastern Spain were evaluated and found to be most useful in studying macrostructures in geology and in analyzing marine currents, layers, and areas (although other satellites provide more data). The upper scale to work with HCMM data appears to be 1:2.000.000. Techniques used in preprocessing, processing, and analyzing imagery are discussed as well as methods for pattern recognition. Surface temperatures obtained for soils, farmlands, forests, geological structures, and coastal waters are discussed. Suggestions are included for improvements needed to achieve better results in geographic areas similar to the study area.
Localization of 15N uptake in a Tibetan alpine Kobresia pasture
NASA Astrophysics Data System (ADS)
Schleuß, Per-Marten; Kuzyakov, Yakov
2014-05-01
The Kobresia Pygmea ecotone covers approximately 450.000 km2 and is of large global and regional importance due several socio-ecological aspects. For instance Kobresia pastures store high amounts of carbon, nitrogen and other nutrients, represent large grazing areas for herbivores, provide a fast regrowth after grazing events and protect against mechanical degradation and soil erosion. However, Kobresia pastures are assumed to be a grazing induced and are accompanied with distinct root mats varying in thickness between 5-30 cm. Yet, less is known about the morphology and the functions of this root mats, especially in the background of a progressing degradation due to changes of climate and management. Thus we aimed to identify the importance of single soil layers for plant nutrition. Accordingly, nitrogen uptake from different soil depths and its remain in above-ground biomass (AGB), belowground biomass (BGB) and soil were determined by using a 15N pulse labeling approach during the vegetation period in summer 2012. 15N urea was injected into six different soil depths (0.5 cm, 2.5 cm, 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm / for each 4 replicates) and plots were sampled 45 days after the labeling. For soil and BGB samples were taken in strict sample intervals of 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Results indicate that total recovery (including AGB, BGB and soil) was highest, if tracer was injected into the top 5 cm and subsequently decreased with decreasing injection depth. This is especially the case for the 15N recovery of BGB, which is clearly attributed to the root density and strongly decreased with soil depth. In contrast, the root activity derived from the 15N content of roots increased with soil depth, which is primary associated to a proportionate increase of living roots related to dead roots. However, most 15N was captured in plant biomass (67.5-85.3 % of total recovery), indicating high 15N uptake efficiency possibly due to N limitation of Kobresia ecosystems. Considering only the nitrogen uptake of AGB hardly any differences appeared between the six injection depths. Nevertheless, it could be shown, that 50.4 % percent of total variance of AGB nitrogen uptake could be explained by combining root density and root activity. Concluding, from the upper root mat horizons highest amounts of nitrogen were taken up by plants, because root densities are correspondingly high. However, in deeper root mat layers the root activity increases and accordingly plays a key role for plant nitrogen supply in this depth. Underlying causes for increasing root activities may be better soil moisture conditions, lower variation of soil temperature and/or a higher access to plant available nitrogen in deeper soil layers.Please fill in your abstract text.
Nitrogen uptake in a Tibetan grasland and implications for a vulnerable ecosystem
NASA Astrophysics Data System (ADS)
Schleuß, Per; Heitkamp, Felix; Sun, Yue; Kuzyakov, Yakov
2016-04-01
Grasslands are very important regionally and globally because they store large amounts of carbon (C) and nitrogen (N) and provide food for grazing animals. Intensive degradation of alpine grasslands in recent decades has mainly impacted the upper root-mat/soil horizon, with severe consequences for nutrient uptake in these nutrient-limited ecosystems. We used 15N labelling to identify the role of individual soil layers for N-uptake by Kobresia pygmaea. We hypothesized a very efficient N-uptake corresponding mainly to the vertical distribution of living root biomass (topsoil > subsoil). We assume that K. pygmaea develops a very dense root mat, which has to be maintained by small aboveground biomass, to enable this efficient N-uptake. Consequently, we expect a higher N-investment into roots compared to shoots. The 15N recovery in the whole plants (~70%) indicated very efficient N-uptake from the upper injection depths. The highest 15N amounts were recovered in root biomass, whereby values strongly decreased with depth. In contrast, 15N recovery in shoots was generally low (~18%) and independent of the 15N injection depth. This clearly shows that the low N demand of Kobresia shoots can be easily covered by N-uptake from any depth. Less living root biomass in lower versus upper soil was compensated by a higher specific root activity for N-uptake. The 15N allocation into roots was on average 1.7 times higher than that into shoots, which agreed well with the very high R/S ratio. Increasing root biomass is an efficient strategy of K. pygmaea to compete for belowground resources at depths and periods when resources are available. This implies high C costs to maintain root biomass (~6.0 kg DM m-2), which must be covered by a very low amount of photosynthetically active shoots (0.3 kg DM m-2). It also suggests that Kobresia grasslands react extremely sensitively towards changes in climate and management that disrupt this above-/belowground trade-off mechanism.
Xu, Wenhua; Li, Wei; Jiang, Ping; Wang, Hui; Bai, Edith
2014-01-01
The roles of substrate availability and quality in determining temperature sensitivity (Q10) of soil carbon (C) decomposition are still unclear, which limits our ability to predict how soil C storage and cycling would respond to climate change. Here we determined Q10 in surface organic layer and subsurface mineral soil along an elevation gradient in a temperate forest ecosystem. Q10 was calculated by comparing the times required to respire a given amount of soil C at 15 and 25°C in a 350-day incubation. Results indicated that Q10 of the organic layer was 0.22–0.71 (absolute difference) higher than Q10 of the mineral soil. Q10 in both the organic layer (2.5–3.4) and the mineral soil (2.1–2.8) increased with decreasing substrate quality during the incubation. This enhancement of Q10 over incubation time in both layers suggested that Q10 of more labile C was lower than that of more recalcitrant C, consistent with the Arrhenius kinetics. No clear trend of Q10 was found along the elevation gradient. Because the soil organic C pool of the organic layer in temperate forests is large, its higher temperature sensitivity highlights its importance in C cycling under global warming. PMID:25270905
Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.
2013-01-01
Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578
NASA Astrophysics Data System (ADS)
Hu, Yecui; Du, Zhangliu; Wang, Qibing; Li, Guichun
2016-07-01
The conversion of natural vegetation to human-managed ecosystems, especially the agricultural systems, may decrease soil organic carbon (SOC) and total nitrogen (TN) stocks. The objective of present study was to assess SOC and TN stocks losses by combining deep sampling with mass-based calculations upon land-use changes in a typical karst area of southwestern China. We quantified the changes from native forest to grassland, secondary shrub, eucalyptus plantation, sugarcane and corn fields (both defined as croplands), on the SOC and TN stocks down to 100 cm depth using fixed-depth (FD) and equivalent soil mass (ESM) approaches. The results showed that converting forest to cropland and other types significantly led to SOC and TN losses, but the extent depended on both sampling depths and calculation methods selected (i.e., FD or ESM). On average, the shifting from native forest to cropland led to SOC losses by 19.1, 25.1, 30.6, 36.8 and 37.9 % for the soil depths of 0-10, 0-20, 0-40, 0-60 and 0-100 cm, respectively, which highlighted that shallow sampling underestimated SOC losses. Moreover, the FD method underestimated SOC and TN losses for the upper 40 cm layer, but overestimated the losses in the deeper layers. We suggest that the ESM together with deep sampling should be encouraged to detect the differences in SOC stocks. In conclusion, the conversion of forest to managed systems, in particular croplands significantly decreased in SOC and TN stocks, although the effect magnitude to some extent depended on sampling depth and calculation approach selected.
Design and construction control guidance for chemically stabilized pavement base layers.
DOT National Transportation Integrated Search
2013-12-01
A laboratory and field study was conducted related to chemically stabilized pavement layers, which is also : referred to as soil-cement. Soil-cement practices within MDOT related to Class 9C soils used for base layers : were evaluated in this report....
NASA Astrophysics Data System (ADS)
Guimberteau, M.; Ducharne, A.; Ciais, P.; Boisier, J. P.; Peng, S.; De Weirdt, M.; Verbeeck, H.
2014-06-01
This study analyzes the performance of the two soil hydrology schemes of the land surface model ORCHIDEE in estimating Amazonian hydrology and phenology for five major sub-basins (Xingu, Tapajós, Madeira, Solimões and Negro), during the 29-year period 1980-2008. A simple 2-layer scheme with a bucket topped by an evaporative layer is compared to an 11-layer diffusion scheme. The soil schemes are coupled with a river routing module and a process model of plant physiology, phenology and carbon dynamics. The simulated water budget and vegetation functioning components are compared with several data sets at sub-basin scale. The use of the 11-layer soil diffusion scheme does not significantly change the Amazonian water budget simulation when compared to the 2-layer soil scheme (+3.1 and -3.0% in evapotranspiration and river discharge, respectively). However, the higher water-holding capacity of the soil and the physically based representation of runoff and drainage in the 11-layer soil diffusion scheme result in more dynamic soil water storage variation and improved simulation of the total terrestrial water storage when compared to GRACE satellite estimates. The greater soil water storage within the 11-layer scheme also results in increased dry-season evapotranspiration (+0.5 mm d-1, +17%) and improves river discharge simulation in the southeastern sub-basins such as the Xingu. Evapotranspiration over this sub-basin is sustained during the whole dry season with the 11-layer soil diffusion scheme, whereas the 2-layer scheme limits it after only 2 dry months. Lower plant drought stress simulated by the 11-layer soil diffusion scheme leads to better simulation of the seasonal cycle of photosynthesis (GPP) when compared to a GPP data-driven model based on eddy covariance and satellite greenness measurements. A dry-season length between 4 and 7 months over the entire Amazon Basin is found to be critical in distinguishing differences in hydrological feedbacks between the soil and the vegetation cover simulated by the two soil schemes. On average, the multilayer soil diffusion scheme provides little improvement in simulated hydrology over the wet tropical Amazonian sub-basins, but a more significant improvement is found over the drier sub-basins. The use of a multilayer soil diffusion scheme might become critical for assessments of future hydrological changes, especially in southern regions of the Amazon Basin where longer dry seasons and more severe droughts are expected in the next century.
NASA Astrophysics Data System (ADS)
Richter, D., Jr.; Mobley, M. L.; Billings, S. A.; Markewitz, D.
2016-12-01
At the Calhoun Long-Term Soil-Ecosystem field experiment (1957-present), reforestation of previously cultivated land over fifty years nearly doubled soil organic carbon (SOC) in surface soils (0 to 7.5-cm) but these gains were offset by significant SOC losses in subsoils (35 to 60-cm). Nearly all of the accretions in surface soils amounted to gains in light fraction SOC, whereas losses at depth were associated with silt and clay-sized particles. These changes are documented in the Calhoun Long-Term Soil-Ecosystem (LTSE) study that resampled soil from 16 plots about every five years and archived all soil samples from four soil layers within the upper 60-cm of mineral soil. We combined soil bulk density, density fractionation, stable isotopes, and radioisotopes to explore changes in SOC and soil organic nitrogen (SON) associated with five decades of the growth of a loblolly pine secondary forest. Isotopic signatures showed relatively large accumulations of contemporary forest-derived carbon in surface soils, and no accumulation of forest-derived carbon in subsoils. We interpret results to indicate that land-use change from cotton fields to secondary pine forests drove soil biogeochemical and hydrological changes that enhanced root and microbial activity and SOM decomposition in subsoils. As pine stands matured and are now transitioning to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth has eased due to pine mortality, and bulk SOM and SON and their isotopes in subsoils have stabilized. We anticipate major changes in the next fifty years as 1957 pine trees transition to hardwoods. This study emphasizes the importance of long-term experiments and deep soil measurements when characterizing SOC and SON responses to land use change. There is a remarkable paucity of E long-term soil data deeper than 30 cm.
NASA Astrophysics Data System (ADS)
Aravena, J.; Dussaillant, A. R.
2006-12-01
Source control is the fundamental principle behind sustainable management of stormwater. Rain gardens are an infiltration practice that provides volume and water quality control, recharge, and multiple landscape, ecological and economic potential benefits. The fulfillment of these objectives requires understanding their behavior during events as well as long term, and tools for their design. We have developed a model based on Richards equation coupled to a surface water balance, solved with a 2D finite volume Fortran code which allows alternating upper boundary conditions, including ponding, which is not present in available 2D models. Also, it can simulate non homogeneous water input, heterogeneous soil (layered or more complex geometries), and surface irregularities -e.g. terracing-, so as to estimate infiltration and recharge. The algorithm is conservative; being an advantage compared to available finite difference and finite element methods. We will present performance comparisons to known models, to experimental data from a bioretention cell, which receives roof water to its surface depression planted with native species in an organic-rich root zone soil layer (underlain by a high conductivity lower layer that, while providing inter-event storage, percolates water readily), as well as long term simulations for different rain garden configurations. Recharge predictions for different climates show significant increases from natural recharge, and that the optimal area ratio (raingarden vs. contributing impervious area) reduces from 20% (humid) to 5% (dry).
NASA Astrophysics Data System (ADS)
Sprenger, Matthias; Tetzlaff, Doerthe; Soulsby, Chris
2017-07-01
Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris) and heather (Calluna sp. and Erica Sp)) and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands, a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analyzed for their isotopic composition (δ2H and δ18O) with the direct-equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15-20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly) and depth (5 cm intervals) revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical, when using stable isotopes as tracers to assess plant water uptake patterns within the critical zone or applying them to calibrate tracer-aided hydrological models either at the plot to the catchment scale.
[Soil basal respiration and enzyme activities in the root-layer soil of tea bushes in a red soil].
Yu, Shen; He, Zhenli; Zhang, Rongguang; Chen, Guochao; Huang, Changyong
2003-02-01
Soil basal respiration potential, metabolic quotient (qCO2), and activities of urease, invertase and acid phosphomonoesterase were investigated in the root-layer of 10-, 40-, and 90-yr-old tea bushes grown on the same type of red soil. The soil daily basal respiration potential ranged from 36.23 to 58.52 mg.kg-1.d-1, and the potentials in the root-layer of 40- or 90-yr-old were greater than that of 10-yr old tea bushes. The daily qCO2, ranging from 0.30 to 0.68, was in the reverse trend. The activities of test three enzymes changed differently with tea bushes' age. Urease activity in the root-layer of all age tea bushes ranged from 41.48 to 47.72 mg.kg-1.h-1 and slightly decreased with tea bushes' age. Invertase activity was 189.29-363.40 mg.kg-1.h-1 and decreased with tea bushes' age, but its activity in the root-layer of 10-year old tea bushes was significantly greater than that in the root-layer soil of 40- or 90-year old tea bushes. Acid phosphomonoesterase activity (444.22-828.32 mg.kg-1.h-1) increased significantly with tea bushes' age. Soil basal respiration potential, qCO2 and activities of 3 soil enzymes were closely related to soil pH, soil organic carbon, total nitrogen and C/N ratio, total soluble phenol, and microbial biomass carbon, respectively.
NASA Astrophysics Data System (ADS)
Liu, S.; Weymann, D.; Gottselig, N.; Wiekenkamp, I.; Vereecken, H.; Brueggemann, N.
2014-12-01
Hydroxylamine (HA) as a crucial intermediate in the microbial oxidation of ammonium to nitrite (nitrification) is a potential precursor of abiotic N2O formation in the soil. However, the determination of HA concentration in natural soil samples has not been reported until now. Here, we determined the HA concentrations in organic (Oh) and mineral (Ah) layers of 135 soil samples collected from a spruce forest (Wüstebach, Eifel National Park, Germany) using a novel approach, based on the fast extraction of HA from the soil at a pH of 1.7, the oxidation of HA to N2O with Fe3+, and the analysis of produced N2O using gas chromatography (GC). Meanwhile, N2O emission rates were determined by means of aerobic laboratory incubations of 3-g soil in 22-mL vials. Subsequently, the spatial distribution of soil HA concentrations and N2O emission rates in the Oh and Ah layers of the whole sampling area were analyzed using a geostatistical approach. The correlations among soil HA, N2O emission rate, pH, soil C, N, Fe, Mn and soil water content (SWC) were further explored. The HA concentrations ranged from 0.3-44.6 μg N kg-1 dry soil and 0.02-16.2 μg N kg-1 dry soil in the Oh and the Ah layer, respectively. The spatial distribution of HA was similar in both layers, with substantial spatial variability dependent on soil type, tree density and distance to a stream. For example, HA concentration was greater at locations with a thick litter layer or at locations close to the stream. The average N2O emission rate in the Oh layer was 0.38 μg N kg-1 dry soil h-1, 10-fold larger than in the Ah layer. Interestingly, N2O emission rate exhibited high correlation with soil HA content in the Oh (R2 = 0.65, p < 0.01) and Ah (R2 = 0.45, p < 0.05) layer. The results demonstrated that HA is a crucial component for aerobic N2O formation and emission in spruce forest soils. Moreover, HA concentration was negatively correlated with pH and positively correlated with SWC in the Oh layer, while positively correlated with C and N as well as NO3- content in the Ah layer. Mn content was the most important factor for HA recovery at the specific extraction conditions. Further studies should focus on the effects of soil organic matter, Mn content, and pH on the production of N2O from HA under aerobic conditions.
Soil moisture profile variability in land-vegetation- atmosphere continuum
NASA Astrophysics Data System (ADS)
Wu, Wanru
Soil moisture is of critical importance to the physical processes governing energy and water exchanges at the land-air boundary. With respect to the exchange of water mass, soil moisture controls the response of the land surface to atmospheric forcing and determines the partitioning of precipitation into infiltration and runoff. Meanwhile, the soil acts as a reservoir for the storage of liquid water and slow release of water vapor into the atmosphere. The major motivation of the study is that the soil moisture profile is thought to make a substantial contribution to the climate variability through two-way interactions between the land-surface and the atmosphere in the coupled ocean-atmosphere-land climate system. The characteristics of soil moisture variability with soil depth may be important in affecting the atmosphere. The natural variability of soil moisture profile is demonstrated using observations. The 16-year field observational data of soil moisture with 11-layer (top 2.0 meters) measured soil depths over Illinois are analyzed and used to identify and quantify the soil moisture profile variability, where the atmospheric forcing (precipitation) anomaly propagates down through the land-branch of the hydrological cycle with amplitude damping, phase shift, and increasing persistence. Detailed statistical data analyses, which include application of the periodogram method, the wavelet method and the band-pass filter, are made of the variations of soil moisture profile and concurrently measured precipitation for comparison. Cross-spectral analysis is performed to obtain the coherence pattern and phase correlation of two time series for phase shift and amplitude damping calculation. A composite of the drought events during this time period is analyzed and compared with the normal (non-drought) case. A multi-layer land surface model is applied for modeling the soil moisture profile variability characteristics and investigating the underlying mechanisms. Numerical experiments are conducted to examine the impacts of some potential controlling factors, which include atmospheric forcing (periodic and pulse) at the upper boundary, the initial soil moisture profile, the relative root abundance and the soil texture, on the variability of soil moisture profile and the corresponding evapotranspiration. Similar statistical data analyses are performed for the experimental data. Observations from the First International Satellite Land Surface Climatological Project (ISLSCP) Field Experiment (FIFE) are analyzed and used for the testing of model. The integration of the observational and modeling approaches makes it possible to better understand the mechanisms by which the soil moisture profile variability is generated with phase shift, fluctuation amplitude damping and low-pass frequency filtering with soil depth, to improve the strategies of parameterizations in land surface schemes, and furthermore, to assess its contribution to climate variability.
Yu, Xing Xiu; Xui, Miao Miao; Zhao, Jin Hui; Zhang, Jia Peng; Wang, Wei; Guo, Ya Li; Xiao, Juan Hua
2018-04-01
The objective of this study was to investigate the rate of nitrogen mineralization in various soil layers (0-10, 10-20, and 20-30 cm) and its influencing factors under plastic film mulching ridge-furrow in a corn field of Wulongchi small watershed, Danjiangkou Reservoir Area. Results showed that the rate of soil ammonification decreased with soil depth during the entire maize growth period. The rate of nitrification in seedling, jointing, and heading stages decreased in the following order: 10-20 cm > 0-10 cm > 20-30 cm, while it increased with soil depth in maturation stage. The rate of soil nitrogen mineralization decreased with the increases in soil depth in the seedling, jointing and heading stages, whereas an opposite pattern was observed in maturation stage. Compared with non-filming, film mulching promoted the soil ammonification process in 0-10 cm and the soil nitrification and nitrogen mineralization processes in jointing, heading, and maturation stages in both 0-10 and 10-20 cm. However, the rates of soil nitrification and nitrogen mineralization under film mulching were much lower than those under non-filming in seedling stage. The stepwise regression analysis indicated that the main factors influencing soil nitrogen mineralization rate varied with soil depth. Soil moisture and total N content were the dominant controller for variation of soil nitrogen mineralization in 0-10 cm layer. Soil temperature, moisture, and total N content were dominant controller for that in 10-20 cm layer. Soil temperature drove the variation of soil nitrogen mineralization in 20-30 cm layer.
Effects of bedrock geology on source and flowpath of runoff water in steep unchanneled hollows
NASA Astrophysics Data System (ADS)
Uchida, T.; Asano, Y.; Kosugi, K.; Ohte, N.; Mizuyama, T.
2001-05-01
Simultaneous measurements of runoff, soil pore water pressure and soil temperature were taken to evaluate the spatial and temporal nature of flowpaths and flow sources in steep unchanneled hollows in central Japan. Two small hollows were monitored; one is underlain by granite and one is underlain by Paleozoic shale. In both catchments, tensiometers showed that a saturated area formed in the areas near a spring. The soil temperature suggests that in the small perennially saturated area near the spring, water percolating through the vadose zone mixed with water emerging from the bedrock. During rainstorms, the streamflow varied with the soil pore water pressure on the upper slope; the soil pore water pressure in the area near the spring remained nearly constant._@ Moreover, the spring water temperature was almost the same as the transient groundwater temperature on the upper slope. This indicates that the transient groundwater in the upper slope flowed to the spring via lateral preferential paths in both catchments. During summer rainstorms, the soil-bedrock interface temperature increased as the ground became saturated in the granite hollow, suggesting that both rainwater and shallow soil water had important effects on the formation of transient saturated groundwater on the upper slope. That is, it can be concluded that the contribution of the bedrock groundwater to the streamflow was relatively small in the granite hollow during storm runoff. The area where the bedrock groundwater seeped into the soil mantle did not grow in size as the contributing area for the streamflow extended to the upper hollow in the granite catchment. In contrast, the soil temperature indicated that after heavy rainfall (77.5 mm), bedrock groundwater played an important role in the formation of the transient groundwater in the Paleozoic shale hollow. Consequently, the contribution of the bedrock groundwater to the streamflow was relatively large in the shale hollow after heavy rainfall.
Subaquatic soils in the Volga, Don and Kuban Rivers deltas.
NASA Astrophysics Data System (ADS)
Tkachenko, Anna; Gerasimova, Maria; Lychagin, Mikhail
2015-04-01
River deltas occupy a special interface position in the environment and are characterized by contrasting hydrological and landscape-geochemical regimes. Small depth of water and weak currents contribute to suspended matter deposition. Significant spread of aquatic plants provides the enrichment of subaquatic soils in organic matter. All these factors contribute to the formation of different subaquatic soils. Possibility of including them in the classification systems is discussed by many authors (Demas and Rabenhorst, 2001; Stolt et al., 2011); there is also a special subaquatic qualifier for submerged soils in WRB; however, they are still absent in many national classification systems, as well as in the recent Russian one (2008). The purpose of this research is to reveal the properties of the subaquatic soils in the Volga, Don and Kuban Rivers deltaic areas and to propose pedogenetic approaches to categorize AQUAZEMS. Investigations of deltaic areas were performed in 2010-2012 in deltaic lagoons, fresh-water bays, small channels, oxbow lakes, and also in the part of deltaic near-shore zone. Morphological descriptions of distinguishable layers (colour, texture, thickness, boundaries, consistence, plant residues and shell debris) were made in columns obtained by augering as it is done by other researchers (Stolt et al., 2011), and supplemented with analytical data (pH, Eh, TDS, particle-size composition, and Corg). It is suggested to name the horizons in aquazems in the same way as in terrestrial soils in the recent Russian soil classification system, and apply symbols starting with the combination of caps - AQ. Most typical for aquazems is their aquagley AQG horizon that has features similar to terrestrial gleys - homogeneity in color and consistence, permeation by clay, predominance of dove grey colour. The AQG horizon gradually merges into parent material - stratified bottom sediments. The "topsoil" is usually enriched in organic matter and may be different in accordance with plant communities. The highest Corg content (4-6%) was recorded under lotus (Nelumbo sp.) and reed (Phragmites australis); reed is hard to decompose and its residues preserve recognizable plant tissues. Hence, two variants of upper horizons may be identified: aquahumus horizon - AQA and aquapeat horizon - AQT. Floating plants do not create any stable horizon under active hydrodynamic processes, whereas if they are weak, a discontinuous greyish-bluish horizon, 2-3 cm thick, is formed with Сorg content not exceeding 1-2%. In active channels, mixing of the upper part of aquazem profiles by currents results in the formation of a thin yellowish-grey oxidized layer (AQOX) with a very low content of Corg: less than 1%. Following the rules of the new system of soil classification of Russia (2004, 2008) aquazems may be tentatively classified in the following way. All aquazems may be referred to the trunk of synlithogenic soils as a special aquazem order; aquazem types may be specified by the combinations of horizons, hence, typical (AQA-AQG-AQC-C), organogenic (AQT-AQG-AQC-C), and oxidized (AQA-AQOX-AQG-AQC-C). The extension of studies is sure to find new types.
Should precipitation influence dust emission in global dust models?
NASA Astrophysics Data System (ADS)
Okin, Gregory
2016-04-01
Soil moisture modulates the threshold shear stress required to initiate aeolian transport and dust emission. Most of the theoretical and laboratory work that has confirmed the impact of soil moisture has appropriately acknowledged that it is the soil moisture of a surface layer a few grain diameters thick that truly controls threshold shear velocity. Global and regional models of dust emission include the effect of soil moisture on transport threshold, but most ignore the fact that only the moisture of the very topmost "active layer" matters. The soil moisture in the active layer can differ greatly from that integrated through the top 2, 5, 10, or 100 cm (surface layers used by various global models) because the top 2 mm of heavy texture soils dries within ~1/2 day while sandy soils dry within less than 2 hours. Thus, in drylands where dust emission occurs, it is likely that this top layer is drier than the underlying soil in the days and weeks after rain. This paper explores, globally, the time between rain events in relation to the time for the active layer to dry and the timing of high wind events. This analysis is carried out using the same coarse reanalyses used in global dust models and is intended to inform the soil moisture controls in these models. The results of this analysis indicate that the timing between events is, in almost all dust-producing areas, significantly longer than the drying time of the active layer, even when considering soil texture differences. Further, the analysis shows that the probability of a high wind event during the period after a rain where the surface is wet is small. Therefore, in coarse global models, there is little reason to include rain-derived soil moisture in the modeling scheme.
Chad M. Lincoln; Rodney E. Will; Lawrence A. Morris; Emily A. Carter; Daniel Markewtiz; John R. Britt; Ben Cazell; Vic Ford
2007-01-01
To determine the relationship between changes in soil physical properties due to tillage and growth of loblolly pine (Pinus taeda L.) seedlings, we measured soil moisture and penetration resistance for a range of tillage treatments on two Upper Coastal Plain sites in Georgia and correlated these measurements to the growth of individual seedlings. The...
Arctic Ocean Model Intercomparison Using Sound Speed
NASA Astrophysics Data System (ADS)
Dukhovskoy, D. S.; Johnson, M. A.
2002-05-01
The monthly and annual means from three Arctic ocean - sea ice climate model simulations are compared for the period 1979-1997. Sound speed is used to integrate model outputs of temperature and salinity along a section between Barrow and Franz Josef Land. A statistical approach is used to test for differences among the three models for two basic data subsets. We integrated and then analyzed an upper layer between 2 m - 50 m, and also a deep layer from 500 m to the bottom. The deep layer is characterized by low time-variability. No high-frequency signals appear in the deep layer having been filtered out in the upper layer. There is no seasonal signal in the deep layer and the monthly means insignificantly oscillate about the long-period mean. For the deep ocean the long-period mean can be considered quasi-constant, at least within the 19 year period of our analysis. Thus we assumed that the deep ocean would be the best choice for comparing the means of the model outputs. The upper (mixed) layer was chosen to contrast the deep layer dynamics. There are distinct seasonal and interannual signals in the sound speed time series in this layer. The mixed layer is a major link in the ocean - air interaction mechanism. Thus, different mean states of the upper layer in the models might cause different responses in other components of the Arctic climate system. The upper layer also strongly reflects any differences in atmosphere forcing. To compare data from the three models we have used a one-way t-test for the population mean, the Wilcoxon one-sample signed-rank test (when the requirement of normality of tested data is violated), and one-way ANOVA method and F-test to verify our hypothesis that the model outputs have the same mean sound speed. The different statistical approaches have shown that all models have different mean characteristics of the deep and upper layers of the Arctic Ocean.
Apparent thermal inertia and the surface heterogeneity of Mars
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.; Mellon, Michael T.
2007-11-01
Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.
Evaluation of organic carbon stocks and CO2 fluxes in grasslands of Western Transbaikalia
NASA Astrophysics Data System (ADS)
Lavrentyeva, I. N.; Merkusheva, M. G.; Ubugunov, L. L.
2017-04-01
The stocks of organic carbon and mean rates of the CO2 emission during the growing season (May-September) and the entire year were estimated in a sequence of grass ecosystems along the transect encompassing chestnut and meadow-chestnut steppe soils, marsh and meadow alluvial soils, and a haloxerophytic community on a typical solonchak. The total stocks of organic carbon comprised 6.17-9.70 kg C/m2 in steppe, 7.41-10.04 kg C/m2 in floodplain, and 4.74 kg C/m2 in haloxerophytic ecosystems. The portion of humus carbon in the upper 50-cm-thick soil layer comprised 79-92% of the total carbon stock. The mean daily CO2 emission (C-CO2/(m2 day)) from alluvial soils was moderate (3.3-4.9) or low (1.5-2.5). The dependence of the CO2 emission on the moistening of steppe soils, temperature of alluvial soils, and temperature and moistening of solonchak was revealed. In comparison with the CO2 emission from the zonal chestnut soil, its mean values during the growing season and the entire year were 1.2 times higher for the meadowchestnut soil, 3.3 times higher for the marsh alluvial soil, 2.3 times higher for the meadow alluvial soil, and 1.7 times higher for the solonchak. The portion of the CO2 emission beyond the growing season in the mean annual emission averaged 19.8-24.2% and depended on the type of grass ecosystem and on weather conditions of particular years. The sink of carbon in the grass ecosystems exceeded carbon emission, especially in the steppe ecosystems.
NASA Astrophysics Data System (ADS)
Kashulina, G. M.
2018-04-01
The results of landscape monitoring of the concentrations of acid-extractable Ni, Cu, Co, Mn, and Zn in soils of the local impact zone of the Severonikel industrial complex on the Kola Peninsula are discussed. The aim of monitoring studies was to reveal the spatial and temporal regularities of variation in the degree of soil contamination by heavy metals. In 2001-2011, the concentrations of acid-extractable compounds of the elements in the upper part of organic soil horizons around this plant exceeded their background concentrations by two orders of magnitude for Cu and Co and by three orders of magnitude for Ni. The degree of topsoil contamination with Ni, Cu, and Co generally corresponded to the distance of the plots from the contamination source and to the modern technogenic load. However, because of the long period of the emissions, their extreme amounts, and complex composition, indirect factors—the degree of technogenic soil degradation, the loss of soil organic matter, saturation of the surface soil layers by the contaminating metals, and competitive relationships between the elements—also affect soil contamination level. The concentrations of all the studied metals in the topsoil are characterized by considerable (1.5 to 7 times) variability in their long-term dynamics. The most important factors of this variability for Ni, Cu, and Co are the organic matter content of the samples and the amount of atmospheric precipitation in the year preceding the sampling. An inverse relationship between element concentrations in the soils and the amount of atmospheric precipitation attests to the dynamic nature and reversible character of the accumulation of heavy metals in the soils.
NASA Astrophysics Data System (ADS)
Li, Fucheng; Sun, Zhen; Zhang, Jiangyang
2018-06-01
Although the presence of low-viscosity middle crustal layer in the continental crust has been detected by both geophysical and geochemical studies, its influence on the deformation behavior of continental crust during subduction remains poorly investigated. To illustrate the crustal deformation associated with layered crust during continental subduction, we conducted a suite of 2-D thermo-mechanical numerical studies with visco-brittle/plastic rheology based on finite-differences and marker-in-cell techniques. In the experiments, we established a three-layer crustal model with a quartz-rich middle crustal layer embedded between the upper and lower continental crust. Results show that the middle crustal layer determines the amount of the accreted upper crust, maximum subduction depth, and exhumation path of the subducted upper crust. By varying the initial effective viscosity and thickness of the middle crustal layer, the further effects can be summarized as: (1) a rheologically weaker and/or thicker middle crustal layer results in a larger percentage of the upper crust detaching from the underlying slab and accreting at the trench zone, thereby leading to more serious crustal deformation. The rest of the upper crust only subducts into the depths of high pressure (HP) conditions, causing the absence of ultra-high pressure (UHP) metamorphic rocks; (2) a rheologically stronger and/or thinner middle crustal layer favors the stable subduction of the continental crust, dragging the upper crust to a maximum depth of ∼100 km and forming UHP rocks; (3) the middle crustal layer flows in a ductile way and acts as an exhumation channel for the HP-UHP rocks in both situations. In addition, the higher convergence velocity decreases the amount of subducted upper crust. A detailed comparison of our modeling results with the Himalayan collisional belt are conducted. Our work suggests that the presence of low-viscosity middle crustal layer may be another possible mechanism for absence of UHP rocks in the southern Tibet.
Zhao, Zhi Yuan; Zheng, Wei; Liu, Jie; Ma, Peng Yi; Li, Zi Yan; Zhai, Bing Nian; Wang, Zhao Hui
2018-04-01
To evaluate the variations of soil moisture under different water and fertilizer treatments in apple orchard in the Weibei dryland, a field experiment was carried out in 2013-2016 at Tianjiawa Village, Baishui County, Shaanxi Province. There were three treatments, i.e., farmers traditional model (only addition of NPK chemical fertilizer, FM), extension model (swine manure and NPK chemical fertilizer combined with black plastic film in tree row space, EM), and optimized model (swine manure and NPK chemical fertilizer combined with black plastic film in tree row space and planting rape in the inter-row of apple trees, OM). The results showed that OM treatment significantly increased soil water storage capacity in 0-200 cm soil layer. Water content of 0-100 cm soil layer was increased by 5.6% and 15.3% in the dry season compared with FM and EM treatment, respectively. Moreover, the soil water relative deficit index of OM was lower than that of EM in 200-300 cm soil layer. The rainfall infiltration in the dry year could reach 300 cm depth under OM. Meanwhile, OM stabilized soil water content and efficiently alleviated the desiccation in deep soil layer. Compared with FM and EM, the 4-year average yield of OM was increased by 36.6% and 22.5%, respectively. In summary, OM could increase water use efficiency through increasing the contents of available soil water and improving the soil water condition in shallow and deep layers, which help alleviate the soil deficit in deep layer and increase yield.
Photovoltaic module and laminate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.
A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaicmore » solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.« less
Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole
NASA Astrophysics Data System (ADS)
Lehner, Manuela; Whiteman, C. David; Dorninger, Manfred
2017-06-01
Semi-idealized model simulations are made of the nocturnal cold-air pool development in the approximately 1-km wide and 100-200-m deep Grünloch basin, Austria. The simulations show qualitatively good agreement with vertical temperature and wind profiles and surface measurements collected during a meteorological field expedition. A two-layer stable atmosphere forms in the basin, with a very strong inversion in the lowest part, below the approximate height of the lowest gap in the surrounding orography. The upper part of the stable layer is less strongly stratified and extends to the approximate height of the second-lowest gap. The basin atmosphere cools most strongly during the first few hours of the night, after which temperatures decrease only slowly. An outflow of air forms through the lowest gap in the surrounding orography. The outflow connects with a weak inflow of air through a gap on the opposite sidewall, forming a vertically and horizontally confined jet over the basin. Basin cooling shows strong sensitivity to surface-layer characteristics, highlighting the large impact of variations in vegetation and soil cover on cold-air pool development, as well as the importance of surface-layer parametrization in numerical simulations of cold-air-pool development.
NASA Astrophysics Data System (ADS)
Kolchanova, Kseniia; Barsova, Natalia; Motuzova, Galina; Stepanov, Andrey; Karpukhin, Mikhail
2017-04-01
The aim of this study was to investigate the forms of copper and transformation of organic matter in the soil under the influence of humic substances (potassium humate, which was obtained from coal). The object of research was the top layer of soil model field experience. Field experiments were carried out in 10-liter plastic containers.The upper layers were constructed artificially as mixture of loam, sand and peat. Below it was a layer of loam, then gravel and under it we installed lysimeters. The experiment was conducted in 3 settings: 1) control, 2) control + Cu, and 3) control + Cu + potassium humate . Copper was deposited into upper layer at soil column construction as dry powder (CuSO4*5H2O), which is 1000mg per kg. Humic substance was introduced on surface as liquid form. The focus was the state of the copper and organic matter of solid and liquid phase. In the solid phase pH, carbon content, the molecular-mass distributions for the organic matter, total (HNO3 conc.+ H2O2; decomposition in a microwave oven) and acid-soluble (1H HNO3) copper content, sequential extraction of copper (1 M MgCl2, acetate buffer pH 4,8 (AAB), 1% EDTA) were determined. For liquid phase characteristics aqueous extract was obtained and identified therein: pH, total activity and copper content and water-soluble organic matter(WOM) amphiphilic properties. The introduction of copper is accompanied by a decrease in pH in soils from 7 to 6,3. The introduction of the humic substance softens this effect. Introducing humic preparation gives an increase in carbon at 0.5%. HS and copper has no significant effect on the molecular-mass distribution of solid organic matter. Only about 4% introduced copper accounted for the exchangeable form (MgCl2) for the variant only copper contaminated. Copper, mainly precipitated as hydroxides, moved in an AAB extract. And compared with the exchangeable forms its quantity increases by 10 times. Still more copper goes into an extract of EDTA, about half of the total. That is, the introduction of humic substances increases the amount of copper associated with organic matter in complexes with high stability constants. The total amount of copper of the results of extraction is 88-96% of the all total content. Water-soluble copper contains only 0.5% of the total. But the introduction of humic substances increases the amount of water-soluble copper is 3 times. This is due to the increase in the content of the WOM by 2.5-3 times, both due to the hydrophobic and hydrophilic factions of WOM. And this leads to a sharp reduction in the activity of copper in the liquid phase. Dual effect of introducing humic substances was obtained on the results of the work. On the one hand the introduction of humic substances contributes the immobilization of copper by increasing the fraction associated with organic matter in the solid phase. On the other hand the introduction of humic substances contributes the mobilization of copper in the liquid phase due to the increase of WOM.
NASA Astrophysics Data System (ADS)
Crow, S.; Cooper, E.; Beilman, D.; Filley, T.; Reimer, P.
2009-04-01
On the Svalbard archipelago, as in other high Arctic regions, tundra soil organic matter (SOM) is primarily plant detritus that is largely stabilized by cold, moist conditions and low nitrogen availability. However, the resistance of SOM to decomposition is also influenced by the quality of organic matter inputs to soil. Different plant communities are likely to give different qualities to SOM, especially where lignin-rich woody species encroach into otherwise graminoid and bryophyte-dominated regions. Arctic woody plant species are particularly sensitive to changes in temperature, snow cover, and growing season length. In a changing environment, litter chemistry may emerge as an important control on tundra SOM stabilization. In summer 2007, we collected plant material and soil from the highly-organic upper horizon (appx. 0-5 cm) and the mineral-dominated lower horizon (appx. 5-10cm) from four locations in the southwest facing valleys of Svalbard, Norway. The central goal of the ongoing experiment is to determine whether a greater abundance of woody plants could provide a negative feedback to warming impacts on the carbon (C) balance of Arctic soils. Towards this, we used a combination of plant biopolymer analyses (cupric oxide oxidation and quantification of lignin-derived phenols and cutin/suberin-derived aliphatics) and radiocarbon-based estimates of C longevity and mean residence time (MRT) to characterize potential links between plant type and soil C pools. We found that graminoid species regenerate above- and belowground tissue each year, whereas woody species (Cassiope tetragona and Dryas octopetala) regenerated only leaves yearly. In contrast, C within live branches and roots persisted for 15-18 yr on average. Leaves from woody species remained nearly intact in surface litter for up to 20 yr without being incorporated into the upper soil horizon. Leaves from both graminoid and woody species were concentrated in lignin-derived phenols relative to roots, but were dominated by cinnamyl-lignin forms that are easily degraded and thus not likely to persist as SOM. In contrast, roots and branches were comprised of more decay-resistant vanillyl and syringyl forms of lignin-derived phenols. Leaves of woody species were 10 times more concentrated in cutin/suberin-derived aliphatics than roots (which could provide a direct source of potentially stabilized C into the mineral soil). In the upper soil horizon, the MRT of isolated roots and organic debris was about 50 yr and the ‘resistant' C (i.e., C resistant to digestion in 6N HCl acid) was about 500 yr. In the lower soil horizon, the MRT of the ‘resistant' C was about 3500 yr, indicating that long-term C storage occurs in the near-surface layers of Arctic soil where environmental changes are likely to have a strong impact. Observed warming in high latitudes is most pronounced over land and a series of positive feedbacks between climate and net primary productivity are developing. Litter input quality may provide a rare negative feedback within this system and whether these feedbacks will ultimately result in SOM accumulation or losses due to increases in decomposition of older, stabilized C is unknown.
Performance enhancement in Sb doped Cu(InGa)Se2 thin film solar cell by e-beam evaporation
NASA Astrophysics Data System (ADS)
Chen, Jieyi; Shen, Honglie; Zhai, Zihao; Li, Yufang; Yi, Yunge
2018-03-01
To investigate the effects of Sb doping on the structural and electrical properties of Cu(InGa)Se2 (CIGS) thin films and solar cells, CIGS thin films, prepared by e-beam evaporation on soda-lime glass, were doped with lower and upper Sb layers in the precursor stacks respectively. Change of structure and introduction of stress were observed in the CIGS thin films with upper Sb layer in stack through XRD and Raman measurement. Both crystalline quality and compactness of CIGS thin films were improved by the doping of upper Sb layer in stack and the CIGS thin film showed an optimal structural property with 20 nm Sb layer. Movement of Fermi level of the surface of CIGS thin film after doping of upper Sb layer in stack and electrons transfer between Cu/Cu+ redox couple and CIGS thin films, which provided probability for the substitution of Sb for Cu sites at the surface of CIGS thin films, were proposed to explain the migration of Cu from the surface to the bulk of CIGS thin films. The larger barrier at the CIGS/CdS interface after doping of upper Sb layer in stack made contribution to the increase of VOC of CIGS solar cells. The efficiency of CIGS solar cell was improved from 3.3% to 7.2% after doping with 20 nm upper Sb. Compared to the CIGS solar cell with lower Sb layer in stack, in which an additional Cu2-xSe phase was found, the CIGS solar cell with upper Sb layer in stack possessed a higher efficiency.
Landscape and hydrologic changes in the permafrost regions of the Western Canadian Arctic
NASA Astrophysics Data System (ADS)
Marsh, P.
2012-12-01
The Western Canadian Arctic, in the vicinity of the Mackenzie River Delta, is characterized by long cold winters, short summers, low precipitation, thin organic soils, and ice-rich continuous permafrost. Over the last few decades, this region has undergone dramatic changes in climate, with warming air temperature and decreasing winter and summer precipitation. This has resulted in various landscape changes, including the warming of the upper layers of the permafrost, deepening of the active layer, drainage of permafrost affected lakes, an ongoing change from tundra to shrub tundra, and earlier spring breakup of streams, rivers and lakes. However, interactions between climate, hydrology, snow, and vegetation greatly affect both the spatial and temporal changes to the permafrost and hydrology of this region. Knowledge of these changes is important to the understanding of methane dynamics in this permafrost landscape, and for predicting future changes. Two examples of observed landscape change will be discussed. First, ground based observations and analysis of air photo images has demonstrated that shrub expansion is not uniform across the landscape, but instead is characterized by shrub patches of varying size. This patchiness is likely related to existing variations in soil temperature and moisture, active layer depth, snowcover, and tundra fires. As shrub patches further develop, they impact soil temperature and active layer depth. For example, small patches of shrubs typically have snow depths that are deeper than surrounding tundra areas due to the accumulation of blowing snow, and as a result have much warmer soil temperatures and deeper active layers. In contrast to these small shrub patches, large shrub patches have snow depths only slightly larger than found in the surrounding tundra and therefore only slightly warmer winter soil temperatures. However, shading of the surface during the summer may result in cooler summer soil temperatures. The overall effect of large shrub patches may be either deeper or shallower active layer depths than the surrounding tundra areas, depending on the leaf area index, the degree of shrub bending during the winter, and snow accumulation. Second, in contrast to many areas in Alaska and Siberia where increased rates of lake drainage have been reported, the rate of lake drainage in the Western Canadian Arctic has been decreasing over the past 50 years. The primary factors causing lake drainage in this region are high lake levels and winter cracking of ice wedges in the area immediately around the lake. Hydrologic modelling has suggested that summer lake levels have not changed significantly over the last 50 years, and therefore are not responsible for the decrease in drainage. However, the role of factors such as snow dams at lake outlets that result in high spring water levels, or the offsetting factors of warmer, but less snowy winters on ice wedge cracking are not well understood. As a result, further research is required to better understand how these lakes will respond to future changes in climate. Given the potential changes to methane dynamics in areas of changing permafrost, there is an urgent need to better understand ongoing, and future, changes in the landscape of these permafrost regions.
Du, Can; Geng, Zengchao; Wang, Qiang; Zhang, Tongtong; He, Wenxiang; Hou, Lin; Wang, Yueling
2017-09-01
Microbial communities in subsurface soil are specialized for their environment, which is distinct from that of the surface communities. However, little is known about the microbial communities (bacteria and fungi) that exist in the deeper soil horizons. Vertical changes in microbial alpha-diversity (Chao1 and Shannon indices) and community composition were investigated at four soil depths (0-10, 10-20, 20-40, and 40-60 cm) in a natural secondary forest of Betula albosinensis by high-throughput sequencing of the 16S and internal transcribed spacer rDNA regions. The numbers of operational taxonomic units (OTUs), and the Chao1 and Shannon indices decreased in the deeper soil layers. Each soil layer contained both mutual and specific OTUs. In the 40-60 cm soil layer, 175 and 235 specific bacterial and fungal OTUs were identified, respectively. Acidobacteria was the most dominant bacterial group in all four soil layers, but reached its maximum at 40-60 cm (62.88%). In particular, the 40-60 cm soil layer typically showed the highest abundance of the fungal genus Inocybe (47.46%). The Chao1 and Shannon indices were significantly correlated with the soil organic carbon content. Redundancy analysis indicated that the bacterial communities were closely correlated with soil organic carbon content (P = 0.001). Collectively, these results indicate that soil nutrients alter the microbial diversity and relative abundance and affect the microbial composition.
Identification of the Centrifuged Lipoaspirate Fractions Suitable for Postgrafting Survival.
Qiu, Lihong; Su, Yingjun; Zhang, Dongliang; Song, Yajuan; Liu, Bei; Yu, Zhou; Guo, Shuzhong; Yi, Chenggang
2016-01-01
The Coleman centrifugation procedure generates fractions with different adipocyte and progenitor cell densities. This study aimed to identify all fractions that are feasible for implantation. Human lipoaspirates were processed by Coleman centrifugation. The centrifugates were divided arbitrarily into upper, middle, and lower layers. Adipocyte viability, morphology, numbers of stromal vascular fraction cells, and adipose-derived mesenchymal stem cells of each layer were determined. The 12-week volume retention of subcutaneously implanted 0.3-ml lipoasperate of each layer was investigated in an athymic mice model. Most damaged adipocytes were located in the upper layers, whereas the intact adipocytes were distributed in the middle and lower layers. A gradient of stromal vascular fraction cell density was formed in the centrifugates. The implant volume retentions of samples from the upper, middle, and lower layers were 33.44 ± 5.9, 55.11 ± 4.4, and 71.2 ± 5.8 percent, respectively. Furthermore, the middle and lower layers contained significantly more adipose-derived stem cells than did the upper layer. The lower layer contains more viable adipocytes and stromal vascular fraction cells leading to the highest implant volume retention, whereas the most impaired cells are distributed in the upper layer, leading to the least volume retention. Although with a lower stromal vascular fraction content, the middle layer has a substantial number of intact adipocytes that are capable of retaining partial adipose tissue volume after implantation, suggesting that the middle layer may be an alternative fat source when large volumes of fat grafts are needed for transplantation.
NASA Astrophysics Data System (ADS)
Trautz, A.; Smits, K. M.; Illangasekare, T. H.; Schulte, P.
2014-12-01
The purpose of this study is to investigate the impacts of soil conditions (i.e. soil type, saturation) and atmospheric forcings (i.e. velocity, temperature, relative humidity) on the momentum, mass, and temperature boundary layers. The atmospheric conditions tested represent those typically found in semi-arid and arid climates and the soil conditions simulate the three stages of evaporation. The data generated will help identify the importance of different soil conditions and atmospheric forcings with respect to land-atmospheric interactions which will have direct implications on future numerical studies investigating the effects of turbulent air flow on evaporation. The experimental datasets generated for this study were performed using a unique climate controlled closed-circuit wind tunnel/porous media facility located at the Center for Experimental Study of Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. The test apparatus consisting of a 7.3 m long porous media tank and wind tunnel, were outfitted with a sensor network to carefully measure wind velocity, air and soil temperature, relative humidity, soil moisture, and soil air pressure. Boundary layer measurements were made between the heights of 2 and 500 mm above the soil tank under constant conditions (i.e. wind velocity, temperature, relative humidity). The soil conditions (e.g. soil type, soil moisture) were varied between datasets to analyze their impact on the boundary layers. Experimental results show that the momentum boundary layer is very sensitive to the applied atmospheric conditions and soil conditions to a much less extent. Increases in velocity above porous media leads to momentum boundary layer thinning and closely reflect classical flat plate theory. The mass and thermal boundary layers are directly dependent on both atmospheric and soil conditions. Air pressure within the soil is independent of atmospheric temperature and relative humidity - wind velocity and soil moisture effects were observed. This data provides important insight into future work of accurately modeling the exchange processes associated with evaporation under various turbulent atmospheric conditions.
Relating results from earthworm toxicity tests to agricultural soil
Beyer, W.N.; Greig-Smith, P.W.
1992-01-01
The artificial soil tests of the European Economic Community and of the Organization for Economic Cooperation produce data relating earthworm mortality to pesticide concentrations in soil under laboratory conditions. To apply these results to agricultural soils it is necessary to relate these concentrations to amounts of pesticide applied per area. This paper reviews the relevant published literature and suggests a simple relation for regulatory use. Hazards to earthworms from pesticides are suggested to be greatest soon after application, when the pesticides may be concentrated in a soil layer a few millimeters thick. For estimating exposure of earthworms, however, a thicker soil layer should be considered, to account for their movement through soil. During favorable weather conditions, earthworms belonging to species appropriate to the artificial soil test have been reported to confine their activity to a layer about 5 cm. If a 5-cm layer is accepted as relevant for regulatory purposes, then an application of 1 kg/ha would be equivalent to 1-67 ppm (dry) in the artificial soil test.
The Influence of Tree Species on Subsurface Stormflow at the Hillslope Scale
NASA Astrophysics Data System (ADS)
Jost, G.; Weiler, M.
2006-12-01
This study investigates the effect of Norway spruce (Picea abies (L.) Karst) and European beech (Fagus sylvatica L.), two very common tree species in Central Europe, on soil water storage and runoff response to precipitation. We postulate that on the same type of soil, spruce with its shallow rooting system leads to different soil water storage and runoff responses than the deep rooting beech. To test this hypothesis, we chose a beech and a spruce stand with comparable soil type, a stagnic cambisol with a stagnic layer in about 50 cm soil depth. In each of the two stands we sprinkled a hillslope of 6 m by 10 m with intensities of 100 mm/h and 60 mm/h for one hour each. Surface and shallow interflow as well as interflow in different soil depths was collected by inserted sheet metals and gutters in 10 cm, 30 cm and 60 cm soil depth. Soil water storage responses were measured by 48 multiplexed TDR sensors at each hillslope. TDR wave-guides (20 cm long) were installed in a 45° angle in 10 cm, 30 cm, 50 cm and 70 cm soil depth. Volumetric water content was measured in 6 minute intervals. Sprinkling experiments show that even at intensities of 100 mm/h all the applied water infiltrates, independent of the vegetation cover. The deeper soil horizons respond immediately to the applied precipitation. This vertical water flux response is larger under beech. Under spruce most of the water transport happens in the topsoil layers (upper 40 cm), whereas under beech the entire soil profile down to 80 cm soil depth reacts to sprinkling. Under spruce at intensities of 100 mm/h the whole pore space is almost filled. The larger pores in the topsoil under beech stemming from higher biogenic activity and in the subsoil from more intense rooting are still far from reaching their maximum capacity. High antecedent soil water content (around field capacity) still doesn't cause infiltration excess overland flow but the time that it takes for the soil water storage to drain to its initial value is less than one hour. The hillslope at the spruce stand produces between 23% and 28% runoff. However, the beech hillslope produces roughly twice as much. These experiments show that the interactions between tree species and soil in the vadose zone lead to different pore systems and thus different responses to subsurface stormflow. Beech with its deeper rooting systems and its higher biogenic activity (lower C/N ratio) creates a very effective preferential flow path system that leads to greater amounts of subsurface stormflow. Under high antecedent soil water storage, saturation excess overland flow is more likely to occur in soils under spruce with its smaller preferential flow system.
Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.
Lee, Seung-Hoon; Jang, Inyoung; Chae, Namyi; Choi, Taejin; Kang, Hojeong
2013-02-01
Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.
Hydric soils in a southeastern Oregon vernal pool
Clausnitzer, D.; Huddleston, J.H.; Horn, E.; Keller, Michael; Leet, C.
2003-01-01
Vernal pools on the High Lava Plain of the northern Great Basin become ponded in most years, but their soils exhibit weak redoximorphic features indicative of hydric conditions. We studied the hydrology, temperature, redox potentials, soil chemistry, and soil morphology of a vernal pool to determine if the soils are hydric, and to evaluate hydric soil field indicators. We collected data for 3 yr from piezometers, Pt electrodes, and thermocouples. Soil and water samples were analyzed for pH, organic C, and extractable Fe and Mn. Soils were ponded from January through April or May, but subsurface saturation was never detected. Soil temperatures 50 cm below the surface rose above 5??C by March. Clayey Bt horizons perched water and limited saturation to the upper 10 cm. Redox potentials at a 5-cm depth were often between 200 and 300 mV, indicating anaerobic conditions, but producing soluble Fe2+ concentrations <1 mg L-1. Extractable soil Fe contents indicated Fe depletion from pool surface horizons and accumulation at or near the upper Bt1 horizon. Depletions and concentrations did not satisfy the criteria of any current hydric soil indicators. We recommend development of new indicators based on acceptance of fewer, less distinct redox concentrations for recognition of a depleted A horizon, and on presence of a thin zone containing redox concentrations located in the upper part of the near-surface perching horizon.
NASA Astrophysics Data System (ADS)
Sauer, Daniela; Kadereit, Annette; Kühn, Peter; Herrmann, Ludger; Kösel, Michael; Miller, Christopher; Shinonaga, Taeko; Kreutzer, Sebastian; Starkovich, Britt
2015-04-01
Here we present a new loess profile, exposed in the gravel quarry Datthausen on the penultimate-glacial terrace of the upper Danube River, 40 km SW of Ulm, Germany. The loess in this region is by far not as thick and differentiated as in the Upper and Middle Rhine regions or in the Basin of Mainz; nevertheless, we found several similarities between those and the profile Datthausen. The profile is located in the East wall of the quarry, in a flat channel filled by reworked loess. It was sampled for grain size analysis, chemical standard analyses, analysis of the clay mineral assemblage (XRD of oriented clay specimen) and soil thin section analysis. Five luminescence dates provide a time frame (see Kadereit et al. in this session for further details). The profile starts above the Eemian paleosol, which is developed in penultimate-glacial gravel of the Danube River. No early Würmian soils are preserved; the basal section of the profile comprises a succession of several middle Würmian (MIS3) brown soil horizons (9BCr to 6Bg5; Table 1). Two additional brown horizons (5Bg4 and 5Bg3) follow on top. They both have a slight olive tint, and the upper one shows clear features of redox processes and reworking. A thin gravel band on top of the olive-brown soil horizons can be traced over ca. 170 m along the wall (4Bg2). Above the gravel band two brown, only slightly de-carbonated soil horizons (3Bw1 and 2Bg1) and two hydromorphic horizons (Cg2 and Cg1) follow. The top of the profile is made up of a Luvisol comprising the horizon sequence Ap-Bt-BCtg1-BCtg2. Table 1: Main soil-morphological characteristics of the loess-paleosol profile Datthausen Depth; horizon (FAO); color (dry, moist); structure; major characteristics -30 cm: Ap -70 cm: Bt; 10YR5/6, 10YR4/6; angular blocky and prismatic; earthworm feces, channels, clay coatings -100 cm: BCtg1; 10YR7/4, 10YR5/4; massive, pinholes; mottled, fine Mn nodules, clay coatings in channels -125 cm: BCtg2; 10YR6/4, 10YR4/4; massive, pinholes; mottled, fine Mn nodules, clay coatings in channels -150 cm: Cg1; 2.5Y7/4, 2.5Y5/; massive (fine sandy layers); fine rusty spots and Mn nodules -190 cm: Cg2; 2.5Y7/3, 2.5Y5/4; massive (fine sandy layers); mottled, fine rusty spots (2 mm) -220 cm: 2Bg1; 10YR6/4, 10YR4/4; massive to fine platy, pinholes; intense brown, slightly mottled -260 cm: 3Bw1; 10YR6/4, 10YR5/4; massive to fine platy, pinholes; snail shell fragments -275 cm: 4Bg2; 10YR6/4, 10YR5/4; massive to fine platy, pinholes; slightly mottled -300 cm: 5Bg3; 10YR6/4, 10YR5/4; massive to fine platy, pinholes; very fine Fe+Mn mottles, slight olive tint -312 cm: 5Bg4; 10YR6/4, 10YR4/4; massive to fine platy; slight olive tint, fine Fe mottles and Mn nodules -355 cm: 6Bg5; 10YR6/4, 10YR4/6; massive to fine platy; more reddish than 5Bg4, fine Mn nodules -400 cm: 7Bg6; 10YR6/4, 10YR4/4; weakly fine platy and sub. blocky, pinholes; Mn mottles and coatings -435 cm: 8Bw2; 10YR6/4, 10YR4/4; weakly subangular blocky, pinholes -465 cm: 9BCr; 2.5Y7/4, 2.5Y5/4; weakly subangular blocky; grayish, bleached and rusty mottles
NASA Astrophysics Data System (ADS)
Goss, Michael J.; Ehlers, Wilfried; Unc, Adrian
With the recognition that landscape position affects potential gradients for water movement, the linkages between soil, geology and the quality of groundwater resources have become evident. This paper provides a historical perspective of the contribution that the use of lysimeters has made to our understanding of the physical, chemical and biological features that govern water and contaminant flows through the soil-geological strata-groundwater continuum, leading to contamination of unconfined aquifers. It indicates how we can take action to mitigate effects of some of the land management practices that increase the threats to groundwater resources. The term ‘lysimeter’ has been applied to a wide variety of structures that allow measurement of changes in the volume of water within or flow of water through a bounded soil column of a variety of depths. Some have contained repacked or undisturbed soil from one or more layers, while others have enclosed the three primary soil horizons (A, B and C) together with fractured bedrock layers. Lysimeters have ranged in the size of the upper boundary from a few tens of cm 2 to at least 1 ha, and in depth from about 20 cm to a few metres. Lysimeters were first used to gain an understanding of the importance of water for plants as well as the components of the soil water balance. The quantification of the drainage component was quickly followed by enquiries into the chemical content of the leachate. Lysimeters have been used to quantify the loss of NO3--N by leaching from the soil into shallow groundwater and elucidate the sources of the nitrogen lost at any one time. With the availability of organic pesticides immediately after World War II and their identification in groundwater, considerable attention has been paid to the mechanisms governing their downwards transport and the important role of preferential flow paths in the soil. More recently concerns for the transport of pathogenic microorganisms to groundwater have further highlighted the importance of preferential flow. Lysimeters have permitted investigation of the mechanisms by which these chemical and biological materials, which can be hazardous to human health, reach our sources of drinking water. They have also provided the means of identifying soil management practices that could be used to reduce the movement contaminants in the leachate from agricultural fields.
Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone
NASA Astrophysics Data System (ADS)
Johnson, Kristofer D.; Harden, Jennifer W.; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew O.
2013-09-01
Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF), OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow (<28 cm) versus deep organic (≥28 cm) layers. The probability of observing permafrost sharply increased by 0.32 for every 10-cm OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. Across the MAT gradient, PF in sandy soils varied little, but PF in loamy and silty soils decreased substantially from cooler to warmer temperatures. The change in OLT was more heterogeneous across soil texture types—in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened at warmer locations. Furthermore, when soil organic carbon was estimated using a relationship with thickness, the average increase in carbon in OLTd soils was almost four times greater compared to the average decrease in carbon in OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.
Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone
Johnson, Kristofer D.; Harden, Jennifer W.; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew O.
2013-01-01
Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF), OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow (<28 cm) versus deep organic (≥28 cm) layers. The probability of observing permafrost sharply increased by 0.32 for every 10-cm OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. Across the MAT gradient, PF in sandy soils varied little, but PF in loamy and silty soils decreased substantially from cooler to warmer temperatures. The change in OLT was more heterogeneous across soil texture types—in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened at warmer locations. Furthermore, when soil organic carbon was estimated using a relationship with thickness, the average increase in carbon in OLTd soils was almost four times greater compared to the average decrease in carbon in OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.
Archaeological Graves Revealing By Means of Seismic-electric Effect
NASA Astrophysics Data System (ADS)
Boulytchov, A.
[a4paper,12pt]article english Seismic-electric effect was applied in field to forecast subsurface archaeological cul- tural objects. A source of seismic waves were repeated blows of a heavy hammer or powerful signals of magnetostrictive installation. Main frequency used was 500 Hz. Passed a soil layer and reached a second boundary between upper clayey-sand sedi- ments and archaeological object, the seismic wave caused electromagnetic fields on the both boundaries what in general is due to dipole charge separation owe to an im- balance of streaming currents induced by the seismic wave on opposite sides of a boundary interface. According to theoretical works of Pride the electromagnetic field appears on a boundary between two layers with different physical properties in the time of seismic wave propagation. Electric responses of electromagnetic fields were measured on a surface by pair of grounded dipole antennas or by one pivot and a long wire antenna acting as a capacitive pickup. The arrival times of first series of responses correspond to the time of seismic wave propagation from a source to a boundary between soil and clayey-sand layers. The arrival times of second row of responses correspond to the time of seismic wave way from a source to a boundary of clayey-sand layer with the archaeological object. The method depths successfully investigated were between 0.5-10 m. Similar electromagnetic field on another type of geological structure was also revealed by Mikhailov et al., Massachusetts, but their signals registered from two frontiers were too faint and not evident in comparing with ours ones that occurred to be perfect and clear. Seismic-electric method field experi- ments were successfully provided for the first time on archaeological objects.
Ruppelt, Jan P; Tondera, Katharina; Schreiber, Christiane; Kistemann, Thomas; Pinnekamp, Johannes
2018-05-01
Combined sewer overflows (CSOs) introduce numerous pathogens from fecal contamination, such as bacteria and viruses, into surface waters, thus endangering human health. In Germany, retention soil filters (RSFs) treat CSOs at sensitive discharge points and can contribute to reducing these hygienically relevant microorganisms. In this study, we evaluated the extent of how dry period, series connection and filter layer thickness influence the reduction efficiency of RSFs for Escherichia coli (E. coli), intestinal enterococci (I. E.) and somatic coliphages. To accomplish this, we had four pilot scale RSFs built on a test field at the wastewater treatment plant Aachen-Soers. While two filters were replicates, the other two filters were installed in a series connection. Moreover, one filter had a thinner filtration layer than the other three. Between April 2015 and December 2016, the RSFs were loaded in 37 trials with pre-conditioned CSO after dry periods ranging from 4 to 40 days. During 17 trials, samples for microbial analysis were taken and analyzed. The series connection of two filters showed that the removal increases when two systems with a filter layer of the same height are operated in series. Since the microorganisms are exposed twice to the environmental conditions on the filter surface and in the upper filter layers, there is a greater chance for abiotic adsorption increase. The same effect could be shown when filters with different depths were compared: the removal efficiency increases as filter thickness increases. This study provides new evidence that regardless of seasonal effects and dry period, RSFs can improve hygienic situation significantly. Copyright © 2018 Elsevier GmbH. All rights reserved.
Removal of nitrogen by a layered soil infiltration system during intermittent storm events.
Cho, Kang Woo; Song, Kyung Guen; Cho, Jin Woo; Kim, Tae Gyun; Ahn, Kyu Hong
2009-07-01
The fates of various nitrogen species were investigated in a layered biological infiltration system under an intermittently wetting regime. The layered system consisted of a mulch layer, coarse soil layer (CSL), and fine soil layer (FSL). The effects of soil texture were assessed focusing on the infiltration rate and the removal of inorganic nitrogen species. The infiltration rate drastically decreased when the uniformity coefficient was larger than four. The ammonium in the synthetic runoff was shown to be removed via adsorption during the stormwater dosing and nitrification during subsequent dry days. Stable ammonium adsorption was observed when the silt and clay content of CSL was greater than 3%. This study revealed that the nitrate leaching was caused by nitrification during dry days. Various patterns of nitrate flushing were observed depending on the soil configuration. The washout of nitrate was more severe as the silt/clay content of the CSL was greater. However, proper layering of soil proved to enhance the nitrate removal. Consequently, a strictly sandy CSL over FSL with a silt and clay content of 10% was the best configuration for the removal of ammonium and nitrate.
Water movement in stony soils: The influence of stoniness on soil water content profiles
NASA Astrophysics Data System (ADS)
Novak, Viliam; Knava, Karol
2010-05-01
WATER MOVEMENT IN STONY SOILS: THE INFLUENCE OF STONINESS ON SOIL WATER CONTENT PROFILES Viliam Novák, Karol Kňava Institute of Hydrology, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3, Slovakia, e-mail: novak@uh.savba.sk Soils containing rock fragments are widespread over the world, on Europe such soil account for 30%, 60% in Mediterranean region. In comparison to fine earth soils (soil particles are less then 2 mm) stony soils contain rock fragments characterized by the low retention capacity and hydraulic conductivity. So, for stony soils -in comparison to the fine-earth soils - is typical lower hydraulic conductivity and retention capacity, which lead to the decrease decrease of infiltration rate and low water retention. So, water movement and its modeling in stony soil would differ from fine earth (usually agricultural) soil. The aim of this contribution is to demonstrate the differences in water movement in homogeneous soil (fine earth) and stony soil. The influence of different stoniness on soil water content and soil water dynamics was studied too. Windthrow at High Tatra mountains in Slovakia (November 2004) cleared nearly 12 000 ha of 80 year conifers and this event initiated complex research of windthrow impact on the ecosystem. The important part of this study was water movement in impacted area. Specific feature of the soil in this area was moraine soil consisting of fine earth, characterized as silty sand, with the relative stone content up to 0.49, increasing with depth. Associated phenomenon to the forest clearing is the decrease of rain interception and higher undercanopy precipitation. Conifers interception capacity can be three times higher than low canopy interception, and can reach up to 40% of annual precipitation in Central Europe. Stones in the soil are decreasing infiltration rate, but paradoxically increased understorey precipitation and followingly the increased cumulative infiltration led to the increase of the soil water content of the upper 1 meter soil layer up to 53 mm at the end of vegetation period in comparison to the afforested area. Finally, soil water content profiles of stony soil differ from homogeneous ones and contain less water comparing to soil without stones.
Paulson, Anthony J.; Konrad, Christopher P.; Frans, Lonna M.; Noble, Marlene; Kendall, Carol; Josberger, Edward G.; Huffman, Raegan L.; Olsen, Theresa D.
2006-01-01
Hood Canal is a long (110 kilometers), deep (175 meters) and narrow (2 to 4 kilometers wide) fjord of Puget Sound in western Washington. The stratification of a less dense, fresh upper layer of the water column causes the cold, saltier lower layer of the water column to be isolated from the atmosphere in the late summer and autumn, which limits reaeration of the lower layer. In the upper layer of Hood Canal, the production of organic matter that settles and consumes dissolved oxygen in the lower layer appears to be limited by the load of dissolved inorganic nitrogen (DIN): nitrate, nitrite, and ammonia. Freshwater and saline loads of DIN to Hood Canal were estimated from available historical data. The freshwater load of DIN to the upper layer of Hood Canal, which could be taken up by phytoplankton, came mostly from surface and ground water from subbasins, which accounts for 92 percent of total load of DIN to the upper layer of Hood Canal. Although DIN in rain falling on land surfaces amounts to about one-half of the DIN entering Hood Canal from subbasins, rain falling directly on the surface of marine waters contributed only 4 percent of the load to the upper layer. Point-source discharges and subsurface flow from shallow shoreline septic systems contributed less than 4 percent of the DIN load to the upper layer. DIN in saline water flowing over the sill into Hood Canal from Admiralty Inlet was at least 17 times the total load to the upper layer of Hood Canal. In September and October 2004, field data were collected to estimate DIN loads to Lynch Cove - the most inland marine waters of Hood Canal that routinely contain low dissolved-oxygen waters. Based on measured streamflow and DIN concentrations, surface discharge was estimated to have contributed about one-fourth of DIN loads to the upper layer of Lynch Cove. Ground-water flow from subbasins was estimated to have contributed about one-half of total DIN loads to the upper layer. In autumn 2004, the relative contribution of DIN from shallow shoreline septic systems to the upper layer was higher in Lynch Cove (23 percent) than in the entire Hood Canal. Net transport of DIN into Lynch Cove by marine currents was measured during August and October 2004-a time of high biological productivity. The net transport of lower-layer water into Lynch Cove was significantly diminished relative to the flow entering Hood Canal at its entrance. Even though the net transport of saline water into the lower layer of Lynch Cove was only 119 cubic meters per second, estuarine currents between 33 and 47 m were estimated to have carried more than 35 times the total freshwater load of DIN to the upper layer from surface and ground water, shallow shoreline septic systems, and direct atmospheric rainfall. The subsurface maximums in measured turbidity, chlorophyll a, particulate organic carbon, and particulate organic nitrogen strongly suggest that the upward mixing of nitrate-rich deeper water is a limiting factor in supplying DIN to the upper layer that enhances marine productivity in Lynch Cove. The presence of phosphate in the upper layer in the absence of dissolved inorganic nitrogen also suggests that the biological productivity that leads to low dissolved-oxygen concentrations in the lower layer of Lynch Cove is limited by the supply of nitrogen rather than by phosphate loads. Although the near-shore zones of the shallow parts of Lynch Cove were sampled, a biogeochemical signal from terrestrial nitrogen was not found. Reversals in the normal estuarine circulation suggest that if the relative importance of the DIN load of freshwater terrestrial and atmospheric sources and the DIN load from transport of saline water by the estuarine circulation in controlling dissolved-oxygen concentrations in Lynch Cove is to be better understood, then the physical forces driving Hood Canal circulation must be better defined.
Huang, Gang; Zhao, Xue-yong; Huang, Ying-xin; Su, Yan-gui
2009-03-01
Based on the investigation data of vegetation and soil moisture regime of Caragana microphylla shrubs widely distributed in Horqin sandy land, the spatiotemporal variations of soil moisture regime and soil water storage of artificial sand-fixing C. microphylla shrubs at different topographical sites in the sandy land were studied, and the evapotranspiration was measured by water balance method. The results showed that the soil moisture content of the shrubs was the highest in the lowland of dunes, followed by in the middle, and in the crest of the dunes, and increased with increasing depth. No water stress occurred during the growth season of the shrubs. Soil moisture content of the shrubs was highly related to precipitation event, and the relationship of soil moisture content with precipitation was higher in deep soil layer (50-180 cm) than in shallow soil layer (0-50 cm). The variation coefficient of soil moisture content was also higher in deep layer than in shallow layer. Soil water storage was increasing in the whole growth season of the shrubs, which meant that the accumulation of soil water occurred in this area. The evapotranspiriation of the shrubs occupied above 64% of the precipitation.
Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons
Barry, Karen M.; Janos, David P.; Nichols, Scott; Bowman, David M. J. S.
2015-01-01
Eucalyptus obliqua, the most widespread timber tree in Tasmania, is a pioneer after fire which can eliminate the organic layer of forest soil, exposing the underlying mineral soil. We compared seedling growth, mycorrhiza formation, and mineral nutrient limitation in organic layer vs. mineral soil. We grew E. obliqua seedlings separately in pots of organic layer and mineral soil in a glasshouse. Additional treatments of organic soil only, involved fully crossed methyl-bromide fumigation and fertilization. Fertilization comprised chelated iron for 121 days after transplant (DAT) followed by soluble phosphorus. At 357 DAT, whole plant dry weight was three times greater in ambient organic than in mineral soil. In organic soil, fumigation halved ectomycorrhiza abundance and reduced seedling growth at 149 DAT, but by 357 DAT when negative effects of fumigation on seedling growth had disappeared, neither fumigation nor fertilization affected mycorrhiza abundance. Iron fertilization diminished seedling growth, but subsequent phosphorus fertilization improved it. E. obliqua seedlings grow much better in organic layer soil than in mineral soil, although phosphorus remains limiting. The prevalent forestry practice of burning to mineral soil after timber harvest exposes a poor growth medium likely only partially compensated by fire-induced mineral soil alterations. PMID:25750650
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia Mayari; Papuga, Shirley A.
2014-01-01
We present an observational analysis examining soil moisture control on surface energy dynamics and planetary boundary layer characteristics. Understanding soil moisture control on land-atmosphere interactions will become increasingly important as climate change continues to alter water availability. In this study, we analyzed 4 years of data from the Santa Rita Creosote Ameriflux site. We categorized our data independently in two ways: (1) wet or dry seasons and (2) one of the four cases within a two-layer soil moisture framework for the root zone based on the presence or absence of moisture in shallow (0-20 cm) and deep (20-60 cm) soil layers. Using these categorizations, we quantified the soil moisture control on surface energy dynamics and planetary boundary layer characteristics using both average responses and linear regression. Our results highlight the importance of deep soil moisture in land-atmosphere interactions. The presence of deep soil moisture decreased albedo by about 10%, and significant differences were observed in evaporative fraction even in the absence of shallow moisture. The planetary boundary layer height (PBLh) was largest when the whole soil profile was dry, decreasing by about 1 km when the whole profile was wet. Even when shallow moisture was absent but deep moisture was present the PBLh was significantly lower than when the entire profile was dry. The importance of deep moisture is likely site-specific and modulated through vegetation. Therefore, understanding these relationships also provides important insights into feedbacks between vegetation and the hydrologic cycle and their consequent influence on the climate system.
NASA Astrophysics Data System (ADS)
Botavin, D.; Golosov, V.; Konoplev, A.; Wakiyama, Y.
2018-01-01
Detailed study of different sections of floodplain was undertaken in the Niida River basin (Fukushima Prefecture) after an extreme flood event which occurred in the middle of September 2015. The upstream part of the basin is located in the area with very high level of radionuclide contamination after the accident at Fukushima Dai-ichi NPP. Field and GIS methods were used, including direct measurement of the depth of fresh sediment and its area, with soil descriptions for the typical floodplain sections, measurement of dose rates, interpretation of space images for a few time intervals (before and after flood event) with the following evaluation of spatial changes in deposition for different floodplain sections. In addition, results of quantitative assessment of sedimentation rates and soil radionuclide contamination were applied for understanding the effect of extreme flood on alluvial soils of the different sections. It was established that the maximum sedimentation rates (20-50 cm/event) occurred in the middle part of the lower reach of the Niida River and in some locations of the upper reaches. Dose rates had reduced considerably for all the areas with high sedimentation because the top soil layers with high radionuclide contamination were buried under fresh sediments produced mostly due to bank erosion and mass movements.
Spatial distribution of jet fuel in the vadoze zone of a heterogeneous and fractured soil.
Tzovolou, D N; Benoit, Y; Haeseler, F; Klint, K E; Tsakiroglou, C D
2009-04-01
The goal of the present work is to screen and evaluate all available data before selecting and testing remediation technologies on heterogeneous soils polluted by jet fuel. The migration pathways of non-aqueous phase liquids (NAPLs) in the subsurface relate closely with soil properties. A case study is performed on the vadoze zone of a military airport of north-west Poland contaminated by jet fuel. Soil samples are collected from various depths of two cells, and on-site and off-site chemical analyses of hydrocarbons are conducted by using Pollut Eval apparatus and GC-MS, respectively. The geological conceptual model of the site along with microscopic and hydraulic properties of the porous matrix and fractures enable us to interpret the non-uniform spatial distribution of jet fuel constituents. The total concentration of the jet fuel and its main hydrocarbon families (n-paraffins, major aromatics) over the two cells is governed by the slow preferential flow of NAPL through the porous matrix, the rapid NAPL convective flow through vertical desiccation and sub-horizontal glaciotectonic fractures, and n-paraffin biodegradation in upper layers where the rates of oxygen transfer is not limited by complexities of the pore structure. The information collected is valuable for the selection, implementation and evaluation of two in situ remediation methods.
Refining soil organic carbon stock estimates for China’s palustrine wetlands
NASA Astrophysics Data System (ADS)
Ma, Kun; Liu, Junguo; Zhang, Ying; Parry, Lauren E.; Holden, Joseph; Ciais, Philippe
2015-12-01
Palustrine wetlands (PWs) include all bogs, fens, swamps and marshes that are non-saline and which are not lakes or rivers. They therefore form a highly important group of wetlands which hold large carbon stocks. If these wetlands are not protected properly they could become a net carbon source in the future. Compilation of spatially explicit wetland databases, national inventory data and in situ measurement of soil organic carbon (SOC) could be useful to better quantify SOC and formulate long-term strategies for mitigating global climate change. In this study, a synergistic mapping approach was used to create a hybrid map for PWs for China and to estimate their SOC content. Total SOC storage in PWs was estimated to be 4.3 ± 1.4 Pg C, with a SOC density of 31.17 (±10.55) kg C m-2 in the upper 1 m of the soil layer. This carbon stock is concentrated in Northeast China (49%) and the Qinghai-Tibet Plateau (41%). Given the large pool of carbon stored in PWs compared to other soil types, we suggest that urgent monitoring programmes on SOC should be established in regions with very few datasets, but where PWs appear to be common such as the Tibet region and Northwest China.
Chang, Tong-Ju; Cui, Xiao-Qiang; Ruan, Zhen; Zhao, Xiu-Lan
2014-06-01
A long-term experiment, conducted at Southwest University since 1990, was used to evaluate the effect of tillage methods on the total and available contents of heavy metals (Fe, Mn, Cu, Zn, Pb, Cd) in the profile of purple paddy soil and the contents of those metals in root, stem leaf and brown rice. The experiment included five tillage methods: conventional tillage, paddy-upland rotation, no-tillage and fallow in winter, ridge-no-tillage and compartments-no-tillage. The results showed that the total concentrations of Fe, Cu, Zn, Pb and Cd in the soil profile had no significant differences among five treatments, but it was found that total Mn has a significant decline in 0-20 cm under conventional tillage, paddy-upland rotation and no-tillage and fallow in winter compared with ridge-no-tillage and compartments-no-tillage. The availability of Fe, Cu, Zn, Pb and Cd decreased with the increase of soil depth in all treatments, but the availability of Mn was found to be the highest in the 20-40 cm layers except those in the paddy-upland rotation. In the ploughed layer, the contents of available Fe, Mn was the highest in paddy-upland rotation, while the contents of available Zn and Pb was the highest in conventional tillage, but tillage treatments had not significant influence to the contents of available Cu. Correlation analysis showed that available Fe was significantly negatively related to the pH values and significantly negatively related to the organic matter of soils, available Mn was significantly negatively related to the pH values and organic matter of soils, whereas the available Zn was significantly positively related to total Zn. The contents of Fe, Mn in rice root, the contents of Fe, Mn, Cu and Cd in rice straw and Cu in brown rice were higher under paddy-upland rotation, ridge-no-tillage and compartments-no-tillage than those in conventional tillage and no-tillage and fellow in winter. Paddy-upland rotation can significantly lower the migration coefficient value of Cd in brown rice, and the Pb, Cd concentration in brown rice in the treatment of paddy-upland rotation was lower than the upper limit (< 0.2 mg x kg(-1)) of the National Standard for Food Hygiene for Cd concentration. The content of Fe in root was significantly and negatively related with soil pH and significantly and positively related with soil available Fe, the content of Mn in root was significantly negatively related with soil pH and significantly positively related with soil available Mn, the content of Mn in straw was significantly negatively related with soil pH, significantly positively related with soil total Mn and significantly positively related with soil available Mn, the content of Cu in straw and brown rice was significantly negatively related with soil pH, the content of Zn was significant related with soil pH and significant related with soil CEC. The content of Fe in root, Mn in root and straw and Cd in straw was positively related with soil available Fe, Mn and Cd, respectively, but was negatively related with pH in plough layer soil, Zn in straw was also negatively related with plough layer soil pH. From the results as above, it is concluded that different tillage methods can change the values of soil pH, alter the availability of heavy metal in soils, consequently affect uptake of heavy metal by rice. Of the tillage methods, paddy-upland rotation could increase the availability of Fe and Mn, but decrease the availability of Zn, Pb and Cd in purple paddy soils. Paddy-upland rotation can also increase the contents of Fe, Mn in rice root and straw, but decrease Cd content in brown rice, and could reduce the Pb, Cd contents in brown rice in a certain extent, however, attention should be given to long-term paddy-upland rotation cause of leaching of soil surface Mn.
Zhang, Xiu Lan; Wang, Fang Chao; Fang, Xiang Min; He, Ping; Zhang, Yu Fei; Chen, Fu Sheng; Wang, Hui Min
2017-02-01
A series of nitrogen (N) and phosphorus (P) addition experiments using treatments of N 0 (0 kg N·hm -2 ·a -1 ), N 1 (50 kg N·hm -2 ·a -1 ), N 2 (100 kg N·hm -2 ·a -1 ), P (50 kg P·hm -2 ·a -1 ), N 1 P and N 2 P were conducted at Cunninghamia lanceolata plantations in subtropical China. The responses of soil organic carbon (SOC), particulate organic carbon (POC) and water-soluble organic carbon (WSOC) to the nutrient addition treatments after 3 years were determined. The results showed that N and P additions had no significant effects on SOC concentration in 0-20 cm soil layer, while P addition significantly decreased soil POC content in 0-5 cm soil layer by 26.1%. The responses of WSOC to N and P addition were mainly found in 0-5 cm soil layer, and low level N and P addition significantly increased the WSOC content in 0-5 cm soil layer. Nitrogen addition had no significant effect on POC/SOC, while the POC/SOC significantly decreased by 15.9% in response to P addition in 0-5 cm soil layer. In 5-10 cm and 10-20 cm soil layers, POC/SOC was not significantly altered in N and P addition treatments. Therefore, the forest soil C stability was mainly controlled by P content in subtropical areas. P addition was liable to cause the decomposition of surface soil active organic C and increased the soil C stability in the short term treatment.
[Effect of tillage system on soil animal, microorganism and enzyme activity in paddy field].
Gao, Ming; Zhou, Baotong; Wei, Chaofu; Xie, Deti; Zhang, Lei
2004-07-01
A long-term experiment showed that under ridge-no-tillage, the amount of soil animal in 0 - 20 cm layer was 14700 ind. x m(-2), while under no-tillage and fallow in winter, paddy-upland rotation, and conventional tillage, it was 10450, 7950 and 6275 ind. x m(-2), respectively. Soil microbial biomass and microbial biomass N were more in spring and autumn, and less in summer. Soil enzyme activity was higher in surface soil layer and lower in bottom soil layer. The amount of soil animal, microbial biomass and microbial biomass N and soil enzyme activity was in order of ridge-no-tillage > paddy-upland rotation > no-tillage and fallow in winter > conventional tillage. The results also indicated that ridge-no-tillage was advantageous to improve soil ecological environment and soil fertility in paddy field.
NASA Astrophysics Data System (ADS)
Waltl, Peter; Schwindt, Daniel; Völkel, Jörg
2016-04-01
Since the Neolithic Revolution the intensification of agriculture has been causing increased erosion in Bavarian landscapes. The correlated sediments often induce the formation of new colluvial and alluvial soils (WRB: Regic Anthrosol and Fluvisol i.a.). The soils themselves are able to absorb, bind, and store considerable amounts of C- and N-compounds. Therefore, they are important reactors regarding climate-relevant greenhouse-gas balances in the atmosphere. Learning about the exact spatial extent and thickness of these soils in representative landscapes, but also about their geneses and processes is essential. It allows for a detailed quantification and understanding of the current and potential properties and characteristics of these soils in their role of greenhouse-gas reactors. Two research locations were elected as representative Bavarian landscapes composed of different lithology and pedo-chemical environments (limestone versus crystalline setting): Rottenbuch is situated at the Ammer River in the Upper Bavarian pre-alpine forelands (Lkr. Weilheim-Schongau). The Otterbach Creek lies at the southwestern foothills of the Bavarian Forest at the Donaurandbruch tectonic line next to Donaustauf (Lkr. Regensburg). Detailed information on the soil horizons and layers within these research areas are accumulated by sounding or burrowing soil profiles and subsequently analyzing the soil samples in the lab. Geophysical methods, such as electrical resistivity tomography (ERT), seismic refraction tomography (SRT), and ground penetrating radar (GPR), allow for the extension of this point-source information into three dimensions. By repeatedly and regularly applying these methods, also temporal changes such as soil hydrology or freeze and thaw cycles can be monitored and their influence on fluxes and exchanges can be taken into account.
Reconstruction of food webs in biological soil crusts using metabolomics.
NASA Astrophysics Data System (ADS)
Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Nunes Da Rocha, Ulisses; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.
2015-04-01
Biological soil crusts (BSCs) are communities of organisms inhabiting the upper layer of soil in arid environments. BSCs persist in a dessicated dormant state for extended periods of time and experience pulsed periods of activity facilitated by infrequent rainfall. Microcoleus vaginatus, a non-diazotrophic filamentous cyanobacterium, is the key primary producer in BSCs in the Colorado Plateau and is an early pioneer in colonizing arid environments. Over decades, BSCs proceed through developmental stages with increasing complexity of constituent microorganisms and macroscopic properties. Metabolic interactions among BSC microorganisms probably play a key role in determining the community dynamics and cycling of carbon and nitrogen. However, these metabolic interactions have not been studied systematically. Towards this goal, exometabolomic analysis was performed using liquid chromatography coupled to tandem mass spectrometry on biological soil crust pore water and spent media of key soil bacterial isolates. Comparison of spent vs. fresh media was used to determine uptake or release of metabolites by specific microbes. To link pore water experiments with isolate studies, metabolite extracts of authentic soil were used as supplements for isolate exometabolomic profiling. Our soil metabolomics methods detected hundreds of metabolites from soils including many novel compounds. Overall, Microcoleus vaginatus was found to release and utilize a broad range of metabolites. Many of these metabolites were also taken up by heterotrophs but there were surprisingly few metabolites uptaken by all isolates. This points to a competition for a small set of central metabolites and specialization of individual heterotrophs towards a diverse pool of available organic nutrients. Overall, these data suggest that understanding the substrate specialization of biological soil crust bacteria can help link community structure to nutrient cycling.
NASA Astrophysics Data System (ADS)
Reichel, Katharina; Totsche, Kai Uwe
2013-04-01
Biogeochemical interfaces in soils (Totsche et al. 2010) are the "hot spots" of microbial activity and the processing of organic compounds in soils. The production and relocation of mobile organic matter (MOM) and biocolloids like microorganisms are key processes for the formation and depth propagation of biogeochemical interfaces in soils (BGI). Phenanthrene (PHE) has been shown to affect microbial communities in soils (Ding et al. 2012) and may induce shifts in MOM quantity and quality (amount, type and properties of MOM). We hypothesize that the properties of BGI in soil change significantly due to the presence of PHE. The objectives of this study are (i) to evaluate the effect of PHE on soil microbial communities and on MOM quantity and quality under flow conditions with single- and two-layer column experiments and (ii) to assess the role of these processes for the physicochemical, mechanical and sorptive properties of BGI in soils. The soil columns were operated under water-unsaturated conditions. The top layer (source layer, SL, 2 cm) is made of sieved soil material (Luvisol, Scheyern, Germany) spiked with PHE (0.2 mg/g). The bottom layer (reception layer, RL, 10 cm) comprised the same soil without PHE. PHE-free columns were conducted in parallel as reference. Release and transport of MOM in mature soil of a single-layer column experiment was found to depend on the transport regime. The release of larger sized MOM (>0.45 µm) was restricted to an increased residence time during flow interruptions. Steady flow conditions favor the release of smaller MOM (<0.45 µm). Compared to the reference, in the two-layer column experiments higher OC concentrations were detected in the effluent from PHE spiked columns after enhanced flow interruptions (26d, 52d). That indicated the PHE influenced production or mobilization of MOM. Parallel factor analysis of fluorescence excitation and emission matrices revealed the presence of a constant DOM background and two new unknown components in the effluent, probably PHE metabolites. The emergence of new components emphasizes the role of metabolization processes in the release of MOM. The identification of key microbial actors and communities are currently in progress. Totsche, K.U. et al. (2010): Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science. J. Plant Nutr. Soil Sci., 173(1), 88-99 Ding, G.-C., Heuer, H. & Smalla, K. (2012): Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front Microbio 10.3389/fmicb.2012.00290.
Climatic variability of soil water in the American Midwest: Part 2. Spatio-temporal analysis
NASA Astrophysics Data System (ADS)
Georgakakos, Konstantine P.; Bae, Deg-Hyo
1994-11-01
A study of the model-estimated soil water, aggregated over three large drainage basins of the Midwestern USA, is reported. The basin areas are in the range from 2000 km 2 to 3500 km 2, and allow the study of mesoscale (1000-10000 km 2) soil water features. In each case, a conceptual hydrologic model was used to produce upper and lower soil water estimates that are consistent with the atmospheric forcing of daily precipitation, potential evapotranspiration and air temperature, and with the observed daily streamflow divergence over a 40 year period. It is shown that the water contents of the upper and lower soil reach peaks in different months, with the soil column being most saturated in June, when the area is prone to serious flooding. Temporal and spatial features of the variability of model-estimated soil water content are identified. The autocorrelation function of monthly averaged soil water shows that the upper soil water remains persistent for about a season, whereas the persistence of the lower soil water extends to several seasons. The soil water estimates of the three study basins exhibit strong similarities in annual cycles and interannual variability. It is shown that the frequency of significant positive (wet) soil water anomalies that extend over a 2° × 2° region is lower than that of significant negative (dry) ones of the same extent in this region of the USA.
NASA Astrophysics Data System (ADS)
Wlostowski, A. N.; Gooseff, M. N.; Adams, B. J.
2018-01-01
Antarctic soil ecosystems are strongly controlled by abiotic habitat variables. Regional climate change in the McMurdo Dry Valleys is expected to cause warming over the next century, leading to an increase in frequency of freeze-thaw cycling in the soil habitat. Previous studies show that physiological stress associated with freeze-thaw cycling adversely affects invertebrate populations by decreasing abundance and positively selecting for larger body sizes. However, it remains unclear whether or not climate warming will indeed enhance the frequency of annual freeze-thaw cycling and associated physiological stresses. This research quantifies the frequency, rate, and spatial heterogeneity of active layer freezing to better understand how regional climate change may affect active layer soil thermodynamics, and, in turn, affect soil macroinvertebrate communities. Shallow active layer temperature, specific conductance, and soil moisture were observed along natural wetness gradients. Field observations show that the frequency and rate of freeze events are nonlinearly related to freezable soil moisture (θf). Over a 2 year period, soils at θf < 0.080 m3/m3 experienced between 15 and 35 freeze events and froze rapidly compared to soils with θf > 0.080 m3/m3, which experienced between 2 and 6 freeze events and froze more gradually. A numerical soil thermodynamic model is able to simulate observed freezing rates across a range of θf, reinforcing a well-known causal relationship between soil moisture and active layer freezing dynamics. Findings show that slight increases in soil moisture can potentially offset the effect of climate warming on exacerbating soil freeze-thaw cycling.
Biodegradation kinetics for pesticide exposure assessment.
Wolt, J D; Nelson, H P; Cleveland, C B; van Wesenbeeck, I J
2001-01-01
Understanding pesticide risks requires characterizing pesticide exposure within the environment in a manner that can be broadly generalized across widely varied conditions of use. The coupled processes of sorption and soil degradation are especially important for understanding the potential environmental exposure of pesticides. The data obtained from degradation studies are inherently variable and, when limited in extent, lend uncertainty to exposure characterization and risk assessment. Pesticide decline in soils reflects dynamically coupled processes of sorption and degradation that add complexity to the treatment of soil biodegradation data from a kinetic perspective. Additional complexity arises from study design limitations that may not fully account for the decline in microbial activity of test systems, or that may be inadequate for considerations of all potential dissipation routes for a given pesticide. Accordingly, kinetic treatment of data must accommodate a variety of differing approaches starting with very simple assumptions as to reaction dynamics and extending to more involved treatments if warranted by the available experimental data. Selection of the appropriate kinetic model to describe pesticide degradation should rely on statistical evaluation of the data fit to ensure that the models used are not overparameterized. Recognizing the effects of experimental conditions and methods for kinetic treatment of degradation data is critical for making appropriate comparisons among pesticide biodegradation data sets. Assessment of variability in soil half-life among soils is uncertain because for many pesticides the data on soil degradation rate are limited to one or two soils. Reasonable upper-bound estimates of soil half-life are necessary in risk assessment so that estimated environmental concentrations can be developed from exposure models. Thus, an understanding of the variable and uncertain distribution of soil half-lives in the environment is necessary to estimate bounding values. Statistical evaluation of measures of central tendency for multisoil kinetic studies shows that geometric means better represent the distribution in soil half-lives than do the arithmetic or harmonic means. Estimates of upper-bound soil half-life values based on the upper 90% confidence bound on the geometric mean tend to accurately represent the upper bound when pesticide degradation rate is biologically driven but appear to overestimate the upper bound when there is extensive coupling of biodegradation with sorptive processes. The limited data available comparing distribution in pesticide soil half-lives between multisoil laboratory studies and multilocation field studies suggest that the probability density functions are similar. Thus, upper-bound estimates of pesticide half-life determined from laboratory studies conservatively represent pesticide biodegradation in the field environment for the purposes of exposure and risk assessment. International guidelines and approaches used for interpretations of soil biodegradation reflect many common elements, but differ in how the source and nature of variability in soil kinetic data are considered. Harmonization of approaches for the use of soil biodegradation data will improve the interpretative power of these data for the purposes of exposure and risk assessment.
NASA Astrophysics Data System (ADS)
Forkel, M.; Thonicke, K.; Beer, C.; Cramer, W.; Bartalev, S.; Schmullius, C.
2012-04-01
Wildfires are a natural and important element in the functioning of boreal forests. However, in some years, fires with extreme spread and severity occur. Such severe fires degrade the forest, affect human values, emit huge amount of carbon and aerosols and alter the land surface albedo. Usually, wind, slope, and dry conditions have been recognized as factors determining fire spread. In the Baikal region, 127,000 km2 burned in 2003, while the annual average burned area is approx. 8100 km2. In average years, 16% of the burned area occurred in the continuous permafrost zone but in 2003, 33% of these burned areas coincide with the existence of permanently frozen grounds. Permafrost and the associated upper active layer, which thaws during summer and refreezes during winter, is an important supply for soil moisture in boreal ecosystems. This leads to the question if permafrost hydrology is a potential additional driving factor for extreme fire events in boreal forests. Using temperature and precipitation data, we calculated the Nesterov index as indicator for fire weather conditions. Further, we used satellite observations of burned area and surface moisture, a digital elevation model, a land cover and a permafrost map to evaluate drivers for the temporal dynamic and spatial variability of surface moisture conditions and burned area in spring 2003. On the basis of time series decomposition, we separated the effect of drivers for fire activity on different time scales. We next computed cross-correlations to identify potential time lags between weather conditions, surface moisture and fire activity. Finally, we assessed the predictive capability of different combinations of driving variables for surface moisture conditions and burned area using multivariate spatial-temporal regression models. The results from this study demonstrate that permafrost in larch-dominated ecosystems regulates the inter-annual variability of surface moisture and thus increases the inter-annual variability of burned area. The drought conditions in spring 2003 were accelerated by the presence of permafrost because less water was stored in the upper active layer from the dry previous summer 2002 and the permafrost table prevents vegetative water uptake from deeper layers. In contrast, weather conditions (precipitation anomaly, Nesterov index) are weaker predictors for the 2003 fire event. Our analysis advances the understanding of complex interactions between the atmosphere, vegetation and soil on how feedback mechanisms can lead to extreme fire events. These findings emphasize the importance of a mechanistic coupling of soil thermodynamics, hydrology, and fire activity in earth system models for projecting climate change impacts over the next century.