Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Taylor, James L.; Cockrell, Charles E.; Tuma, Margaret L.; Askins, Bruce R.; Bland, Jeff D.; Davis, Stephan R.; Patterson, Alan F.; Taylor, Terry L.; Robinson, Kimberly L.
2008-01-01
The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.
Ares I Crew Launch Vehicle Upper Stage Element Overview
NASA Technical Reports Server (NTRS)
McArthur, J. Craig
2008-01-01
This viewgraph presentation gives an overview of NASA's Ares I Crew Launch Vehicle Upper Stage Element. The topics include: 1) What is NASA s Mission?; 2) NASA s Exploration Roadmap What is our time line?; 3) Building on a Foundation of Proven Technologies Launch Vehicle Comparisons; 4) Ares I Upper Stage; 5) Upper Stage Primary Products; 6) Ares I Upper Stage Development Approach; 7) What progress have we made?; 8) Upper Stage Subsystem Highlights; 9) Structural Testing; 10) Common Bulkhead Processing; 11) Stage Installation at Stennis Space Center; 12) Boeing Producibility Team; 13) Upper Stage Low Cost Strategy; 14) Ares I and V Production at Michoud Assembly Facility (MAF); 15) Merged Manufacturing Flow; and 16) Manufacturing and Assembly Weld Tools.
NASA Ares I Crew Launch Vehicle Upper Stage Avionics and Software Overview
NASA Technical Reports Server (NTRS)
Nola, Charles L.; Blue, Lisa
2008-01-01
Building on the heritage of the Saturn and Space Shuttle Programs for the Design, Development, Test, and Evaluation (DDT and E) of avionics and software for NASA's Ares I Crew Launch Vehicle (CLV), the Ares I Upper Stage Element is a vital part of the Constellation Program's transportation system. The Upper Stage Element's Avionics Subsystem is actively proceeding toward its objective of delivering a flight-certified Upper Stage Avionics System for the Ares I CLV.
Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Cockrell, Charles
2008-01-01
NASA is maturing test and evaluation plans leading to flight readiness of the Ares I crew launch vehicle. Key development, qualification, and verification tests are planned . Upper stage engine sea-level and altitude testing. First stage development and qualification motors. Upper stage structural and thermal development and qualification test articles. Main Propulsion Test Article (MPTA). Upper stage green run testing. Integrated Vehicle Ground Vibration Testing (IVGVT). Aerodynamic characterization testing. Test and evaluation supports initial validation flights (Ares I-Y and Orion 1) and design certification.
Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Askins, Bruce R.; Bland, Jeffrey; Davis, Stephan; Holladay, Jon B.; Taylor, James L.; Taylor, Terry L.; Robinson, Kimberly F.; Roberts, Ryan E.; Tuma, Margaret
2007-01-01
The Ares I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew access to the International Space Station (ISS) and, together with the Ares V Cargo Launch Vehicle (CaLV), serves as one component of a future launch capability for human exploration of the Moon. During the system requirements definition process and early design cycles, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements: the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine, will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle dynamic test (IVDT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, and a highaltitude actuation of the launch abort system (LAS) following separation. The Orion-1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.
NASA Ares I Crew Launch Vehicle Upper Stage Overview
NASA Technical Reports Server (NTRS)
Davusm Daniel J.; McArthur, J. Craig
2008-01-01
By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system.
NASA Ares I Crew Launch Vehicle Upper Stage Overview
NASA Technical Reports Server (NTRS)
Davis, Daniel J.
2008-01-01
By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system. Constellation's exploration missions will include Ares I and Ares V launch vehicles required to place crew and cargo in low-Earth orbit (LEO), crew and cargo transportation systems required for human space travel, and transportation systems and scientific equipment required for human exploration of the Moon and Mars. Early Ares I configurations will support ISS re-supply missions. A self-supporting cylindrical structure, the Ares I Upper Stage will be approximately 84' long and 18' in diameter. The Upper Stage Element is being designed for increased supportability and increased reliability to meet human-rating requirements imposed by NASA standards. The design also incorporates state-of-the-art materials, hardware, design, and integrated logistics planning, thus facilitating a supportable, reliable, and operable system. With NASA retiring the Space Shuttle fleet in 2010, the success of the Ares I Project is essential to America's continued leadership in space. The first Ares I test flight, called Ares 1-X, is scheduled for 2009. Subsequent test flights will continue thereafter, with the first crewed flight of the Crew Exploration Vehicle (CEV), "Orion," planned for no later than 2015. Crew transportation to the ISS will follow within the same decade, and the first Lunar excursion is scheduled for the 2020 timeframe.
NASA Ares I Crew Launch Vehicle Upper Stage Overview
NASA Technical Reports Server (NTRS)
McArthur, J. Craig
2008-01-01
By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system. Constellation's exploration missions will include Ares I and Ares V launch vehicles required to place crew and cargo in low-Earth orbit (LEO), crew and cargo transportation systems required for human space travel, and transportation systems and scientific equipment required for human exploration of the Moon and Mars. Early Ares I configurations will support ISS re-supply missions. A self-supporting cylindrical structure, the Ares I Upper Stage will be approximately 84' long and 18' in diameter. The Upper Stage Element is being designed for increased supportability and increased reliability to meet human-rating requirements imposed by NASA standards. The design also incorporates state-of-the-art materials, hardware, design, and integrated logistics planning, thus facilitating a supportable, reliable, and operable system. With NASA retiring the Space Shuttle fleet in 2010, the success of the Ares I Project is essential to America's continued leadership in space. The first Ares I test flight, called Ares I-X, is scheduled for 2009. Subsequent test flights will continue thereafter, with the first crewed flight of the Crew Exploration Vehicle (CEV), "Orion," planned for no later than 2015. Crew transportation to the ISS will follow within the same decade, and the first Lunar excursion is scheduled for the 2020 timeframe.
NASA Ares 1 Crew Launch Vehicle Upper Stage Configuration Selection Process
NASA Technical Reports Server (NTRS)
Cook, Jerry R.
2006-01-01
The Upper Stage Element of NASA s Ares I Crew Launch Vehicle (CLV) is a "clean-sheet" approach that is being designed and developed in-house, with Element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115 long and 216" in diameter. While the Reusable Solid Rocket Booster (RSRB) design has changed since the CLV inception, the Upper Stage Element design has remained essentially a clean-sheet approach. Although a clean-sheet upper stage design inherently carries more risk than a modified design, it does offer many advantages: a design for increased reliability; built-in extensibility to allow for commonality/growth without major redesign; and incorporation of state-of-the-art materials, hardware, and design, fabrication, and test techniques and processes to facilitate a potentially better, more reliable system.
Developmental Flight Instrumentation System for the Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Crawford, Kevin; Thomas, John
2006-01-01
The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.
STS-26 Post-Flight Crew Press Conference
NASA Technical Reports Server (NTRS)
1988-01-01
This video tape contains footage selected and narrated by the STS-26 crew including launch, TDRS-C/IUS (Tracking and Data Relay Satellite C / Inertial Upper Stage) deployment, onboard activities, and landing.
Manned geosynchronous mission requirements and systems analysis study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Boyland, R. E.; Sherman, S. W.; Morfin, H. W.
1979-01-01
The crew capsule of the MOTV was studied with emphasis on crew accommodations, crew capsule functional requirements, subsystem interface definition between crew module and propulsion module, and man rating requirements. Competing mission modes were studied covering a wide range of propulsion concepts. These included one stage, one and one half stage, and two stage concepts using either the standard STS or an augmented STS. Several deorbit concepts were considered, including all propulsive modes, direct re-entry, and aeromaneuvering skip in skip out in the upper reaches of Earth's atmosphere. A five year plan covering costs, schedules, and critical technology issues is discussed.
NASA Ares I Crew Launch Vehicle Upper State Overview
NASA Technical Reports Server (NTRS)
Davis, Daniel J.
2008-01-01
By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA s Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program s transportation system.
2008-03-15
A CONCEPT IMAGE SHOWS THE ARES I CREW LAUNCH VEHICLE DURING ASCENT. ARES I IS AN IN-LINE, TWO-STAGE ROCKET CONFIGURATION TOPED BY THE ORION CREW EXPLORATION VEHICLE AND LAUNCH ABORT SYSTEM. THE ARES I FIRST STAGE IS A SINGLE, FIVE-SEGMENT REUSABLE SOLID ROCKET BOOSTER, DERIVED FROM THE SPACE SHUTTLE. ITS UPPER STAGE IS POWERED BY A J-2X ENGINE. ARES I WILL CARRY THE ORION WITH ITS CRW OF UP TO SIX ASTRONAUTS TO EARTH ORBIT.
Ares 1 First Stage Design, Development, Test, and Evaluation
NASA Technical Reports Server (NTRS)
Williams, Tom; Cannon, Scott
2006-01-01
The Ares I Crew Launch Vehicle (CLV) is an integral part of NASA s exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster (SRB) first stage derived from the current Space Shuttle SRB, a liquid oxygen/hydrogen fueled second stage utilizing a derivative of the Apollo upper stage engine for propulsion, and a Crew Exploration Vehicle (CEV) composed of command and service modules. This paper deals with current design, development, test, and evaluation planning for the CLV first stage SRB. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.
NASA Technical Reports Server (NTRS)
Byrd, Thomas D.; Kynard, Michael .
2007-01-01
NASA's Vision for Exploration requires a safe, reliable, affordable upper stage engine to power the Ares I Crew Launch Vehicle (CLV) and the Ares V Cargo Launch Vehicle. The J-2X engine is being developed for that purpose, epitomizing NASA's philosophy of employing legacy knowledge, heritage hardware, and commonality to carry the next generation of explorers into low-Earth orbit and out into the solar system This presentation gives top-level details on accomplishments to date and discusses forward work necessary to bring the J-2X engine to the launch pad.
Ares I Crew Launch Vehicle Upper Stage/Upper Stage Engine Element Overview
NASA Technical Reports Server (NTRS)
McArthur, J. Craig
2008-01-01
The Ares I upper stage is an integral part of the Constellation Program transportation system. The upper stage provides guidance, navigation and control (GN and C) for the second stage of ascent flight for the Ares I vehicle. The Saturn-derived J-2X upper stage engine will provide thrust and propulsive impulse for the second stage of ascent flight for the Ares I launch vehicle. Additionally, the upper stage is responsible for the avionics system of the the entire Ares I. This brief presentation highlights the requirements, design, progress and production of the upper stage. Additionally, test facilities to support J-2X development are discussed and an overview of the operational and manufacturing flows are provided. Building on the heritage of the Apollo and Space Shuttle Programs, the Ares I Us and USE teams are utilizing extensive lessons learned to place NASA and the US into another era of space exploration. The NASA, Boeing and PWR teams are integrated and working together to make progress designing and building the Ares I upper stage to minimize cost, technical and schedule risks.
Risk Assessment Challenges in the Ares I Upper Stage
NASA Technical Reports Server (NTRS)
Stott, James E.; Ring, Robert W.; Elrada, Hassan A.; Hark, Frank
2007-01-01
NASA Marshall Space Flight Center (MSFC) is currently at work developing hardware and systems for the Ares I rocket that will send future astronauts into orbit. Built on cutting-edge launch technologies, evolved powerful Apollo and Space Shuttle propulsion elements, and decades of NASA spaceflight experience, Ares I is the essential core of a safe, reliable, cost-effective space transportation system -- one that will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I is an in-line, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to the vehicle's primary mission -carrying crews of four to six astronauts to Earth orbit --Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Crew transportation to the International Space Station is planned to begin no later than 2014. The first lunar excursion is scheduled for the 2020 timeframe. This paper presents the challenges in designing the Ares I upper stage for reliability and safety while minimizing weight and maximizing performance.
The Ares Projects: Building America's Future in Space
NASA Technical Reports Server (NTRS)
Cook, Stephen A.
2009-01-01
NASA's Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. In 2009, the Ares Projects plan to conduct the first test flight of Ares I, Ares I-X; the first firing of a five-segment development solid rocket motor for the Ares I first stage; building the first integrated Ares I upper stage; continue component testing for the J-2X upper stage engine; and perform more-detailed design studies for the Ares V cargo launch vehicle. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond.
Crew Launch Vehicle (CLV) Upper Stage Configuration Selection Process
NASA Technical Reports Server (NTRS)
Davis, Daniel J.; Coook, Jerry R.
2006-01-01
The Crew Launch Vehicle (CLV), a key component of NASA's blueprint for the next generation of spacecraft to take humans back to the moon, is being designed and built by engineers at NASA s Marshall Space Flight Center (MSFC). The vehicle s design is based on the results of NASA's 2005 Exploration Systems Architecture Study (ESAS), which called for development of a crew-launch system to reduce the gap between Shuttle retirement and Crew Exploration Vehicle (CEV) Initial Operating Capability, identification of key technologies required to enable and significantly enhance these reference exploration systems, and a reprioritization of near- and far-term technology investments. The Upper Stage Element (USE) of the CLV is a clean-sheet approach that is being designed and developed in-house, with element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115' long and 216" in diameter, consisting of the following subsystems: Primary Structures (LOX Tank, LH2 Tank, Intertank, Thrust Structure, Spacecraft Payload Adaptor, Interstage, Forward and Aft Skirts), Secondary Structures (Systems Tunnel), Avionics and Software, Main Propulsion System, Reaction Control System, Thrust Vector Control, Auxiliary Power Unit, and Hydraulic Systems. The ESAS originally recommended a CEV to be launched atop a four-segment Space Shuttle Main Engine (SSME) CLV, utilizing an RS-25 engine-powered upper stage. However, Agency decisions to utilize fewer CLV development steps to lunar missions, reduce the overall risk for the lunar program, and provide a more balanced engine production rate requirement prompted engineers to switch to a five-segment design with a single Saturn-derived J-2X engine. This approach provides for single upper stage engine development for the CLV and an Earth Departure Stage, single Reusable Solid Rocket Booster (RSRB) development for the CLV and a Cargo Launch Vehicle, and single core SSME development. While the RSRB design has changed since the CLV Project's inception, the USE design has remained essentially a clean-sheet approach. Although a clean-sheet upper stage design inherently carries more risk than a modified design, it does offer many advantages: a design for increased reliability; built-in extensibility to allow for commonality/growth without major redesign; and incorporation of state-of-the-art materials, hardware, and design, fabrication, and test techniques and processes to facilitate a potentially better, more reliable system. Because consideration was given in the ESAS to both clean-sheet and modified USE designs, this paper will highlight the advantages and disadvantages of both approaches and provide a detailed discussion of trades/selections made that led to the final upper stage configuration.
Crew Launch Vehicle (CLV) Avionics and Software Integration Overview
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Flynn, Kevin C.; Maroney, Johnny
2006-01-01
On January 14, 2004, the President of the United States announced a new plan to explore space and extend a human presence across our solar system. The National Aeronautics and Space Administration (NASA) established the Exploration Systems Mission Directorate (ESMD) to develop and field a Constellation Architecture that will bring the Space Exploration vision to fruition. The Constellation Architecture includes a human-rated Crew Launch Vehicle (CLV) segment, managed by the Marshall Space Flight Center (MSFC), comprised of the First Stage (FS), Upper Stage (US), and Upper Stage Engine (USE) elements. The CLV s purpose is to provide safe and reliable crew and cargo transportation into Low Earth Orbit (LEO), as well as insertion into trans-lunar trajectories. The architecture's Spacecraft segment includes, among other elements, the Crew Exploration Vehicle (CEV), managed by the Johnson Space Flight Center (JSC), which is launched atop the CLV. MSFC is also responsible for CLV and CEV stack integration. This paper provides an overview of the Avionics and Software integration approach (which includes the Integrated System Health Management (ISHM) functions), both within the CLV, and across the CEV interface; it addresses the requirements to be met, logistics of meeting those requirements, and the roles of the various groups. The Avionics Integration and Vehicle Systems Test (ANST) Office was established at the MSFC with system engineering responsibilities for defining and developing the integrated CLV Avionics and Software system. The AIVST Office has defined two Groups, the Avionics and Software Integration Group (AVSIG), and the Integrated System Simulation and Test Integration Group (ISSTIG), and four Panels which will direct trade studies and analyses to ensure the CLV avionics and software meet CLV system and CEV interface requirements. The four panels are: 1) Avionics Integration Panel (AIP), 2) Software Integration Panel, 3) EEE Panel, and 4) Systems Simulation and Test Panel. Membership on the groups and panels includes the MSFC representatives from the requisite engineering disciplines, the First Stage, the Upper Stage, the Upper Stage Engine projects, and key personnel from other NASA centers. The four panels will take the results of trade studies and analyses and develop documentation in support of Design Analysis Cycle Reviews and ultimately the System Requirements Review.
Status, Plans and Initial Results for Ares I Crew Launch Vehicle Aerodynamics
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Hall, Robert M.; Haynes, Davy A.; Pamadi, Bandu N.; Taylor, Terry L.; Seaford, C. Mark
2008-01-01
Following the completion of NASA s Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Ares Projects Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented. Keywords: Ares I Crew Launch Vehicle, aerodynamics, wind tunnel testing, computational fluid dynamics
ARES I Upper Stage Subsystems Design and Development
NASA Technical Reports Server (NTRS)
Frate, David T.; Senick, Paul F.; Tolbert, Carol M.
2011-01-01
From 2005 through early 2011, NASA conducted concept definition, design, and development of the Ares I launch vehicle. The Ares I was conceived to serve as a crew launch vehicle for beyond-low-Earth-orbit human space exploration missions as part of the Constellation Program Architecture. The vehicle was configured with a single shuttle-derived solid rocket booster first stage and a new liquid oxygen/liquid hydrogen upper stage, propelled by a single, newly developed J-2X engine. The Orion Crew Exploration Vehicle was to be mated to the forward end of the Ares I upper stage through an interface with fairings and a payload adapter. The vehicle design passed a Preliminary Design Review in August 2008, and was nearing the Critical Design Review when efforts were concluded as a result of the Constellation Program s cancellation. At NASA Glenn Research Center, four subsystems were developed for the Ares I upper stage. These were thrust vector control (TVC) for the J-2X, electrical power system (EPS), purge and hazardous gas (P&HG), and development flight instrumentation (DFI). The teams working each of these subsystems achieved 80 percent or greater design completion and extensive development testing. These efforts were extremely successful representing state-of-the-art technology and hardware advances necessary to achieve Ares I reliability, safety, availability, and performance requirements. This paper documents the designs, development test activity, and results.
NASA Technical Reports Server (NTRS)
Taylor, J. L.; Cockrell, C. E.
2009-01-01
Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.
Status, Plans, and Initial Results for ARES 1 Crew Launch Vehicle Aerodynamics
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Haynes, Davy A.; Taylor, Terry L.; Hall, Robert M.; Pamadi, Bandu N.; Seaford, C. Mark
2006-01-01
Following the completion of NASA's Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Exploration Launch Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented.
Building and Leading the Next Generation of Exploration Launch Vehicles
NASA Technical Reports Server (NTRS)
Cook, Stephen A.; Vanhooser, Teresa
2010-01-01
NASA s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond. Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicle. In 2009, the Ares Projects plan to: conduct the first flight test of Ares I, test-fire the Ares I first stage solid rocket motor; build the first integrated Ares I upper stage; continue testing hardware for the J-2X upper stage engine, and continue refining the design of the Ares V cargo launch vehicle. These efforts come with serious challenges for the project leadership team as it continues to foster a culture of ownership and accountability, operate with limited funding, and works to maintain effective internal and external communications under intense external scrutiny.
Ares I-X: On the Threshold of Exploration
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Askins, Bruce
2009-01-01
Ares I-X, the first flight of the Ares I crew launch vehicle, is less than a year from launch. Ares I-X will test the flight characteristics of Ares I from liftoff to first stage separation and recovery. The flight also will demonstrate the computer hardware and software (avionics) needed to control the vehicle; deploy the parachutes that allow the first stage booster to land in the ocean safely; measure and control how much the rocket rolls during flight; test and measure the effects of first stage separation; and develop and try out new ground handling and rocket stacking procedures in the Vehicle Assembly Building (VAB) and first stage recovery procedures at Kennedy Space Center (KSC) in Florida. All Ares I-X major elements have completed their critical design reviews, and are nearing final fabrication. The first stage--four-segment solid rocket booster from the Space Shuttle inventory--incorporates new simulated forward structures to match the Ares I five-segment booster. The upper stage, Orion crew module, and launch abort system will comprise simulator hardware that incorporates developmental flight instrumentation for essential data collection during the mission. The upper stage simulator consists of smaller cylindrical segments, which were transported to KSC in fall 2008. The crew module and launch abort system simulator were shipped in December 2008. The first stage hardware, active roll control system (RoCS), and avionics components will be delivered to KSC in 2009. This paper will provide detailed statuses of the Ares I-X hardware elements as NASA's Constellation Program prepares for this first flight of a new exploration era in the summer of 2009.
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin
2007-01-01
In January 2004, President Bush gave the National Aeronautics and Space Administration (NASA) a vision for Space Exploration by setting our sight on a bold new path to go back to the Moon, then to Mars and beyond. In response to this vision, NASA started the Constellation Program, which is a new exploration launch vehicle program. The primary mission for the Constellation Program is to carry out a series of human expeditions ranging from Low Earth Orbit to the surface of Mars and beyond for the purposes of conducting human exploration of space, as specified by the Vision for Space Exploration (VSE). The intent is that the information and technology developed by this program will provide the foundation for broader exploration activities as our operational experience grows. The ARES I Crew Launch Vehicle (CLV) has been designated as the launch vehicle that will be developed as a "first step" to facilitate the aforementioned human expeditions. The CLV Project is broken into four major elements: First Stage, Upper Stage Engine, Upper Stage (US), and the Crew Exploration Vehicle (CEV). NASA's Marshall Space Flight Center (MSFC) is responsible for the design of the CLV and has the prime responsibility to design the upper stage of the vehicle. The US is the second propulsive stage of the CLV and provides CEV insertion into low Earth orbit (LEO) after separation from the First Stage of the Crew Launch Vehicle. The fully integrated Upper Stage is a mix of modified existing heritage hardware (J-2X Engine) and new development (primary structure, subsystems, and avionics). The Upper Stage assembly is a structurally stabilized cylindrical structure, which is powered by a single J-2X engine which is developed as a separate Element of the CLV. The primary structure includes the load bearing liquid hydrogen (LH2) and liquid oxygen (LOX) propellant tanks, a Forward Skirt, the Intertank structure, the Aft Skirt and the Thrust Structure. A Systems Tunnel, which carries fluid and electrical power functions to other Elements of the CLV, is included as secondary structure. The MSFC has an overall responsibility for the integrated US element as well as structural design an thermal control of the fuel tanks, intertank, interstage, avionics, main propulsion system, Reaction Control System (RCS) for both the Upper Stage and the First Stage. MSFC's Spacecraft and Vehicle Department, Structural and Analysis Design Division is developing a set of predicted mass of these elements. This paper details the methodology, criterion and tools used for the preliminary mass predictions of the upper stage structural assembly components. In general, weight of the cylindrical barrel sections are estimated using the commercial code Hypersizer, whereas, weight of the domes are developed using classical solutions. HyperSizer is software that performs automated structural analysis and sizing optimization based on aerospace methods for strength, stability, and stiffness. Analysis methods range from closed form, traditional hand calculations repeated every day in industry to more advanced panel buckling algorithms. Margin-of-safety reporting for every potential failure provides the engineer with a powerful insight into the structural problem. Optimization capabilities include finding minimum weight panel or beam concepts, material selections, cross sectional dimensions, thicknesses, and lay-ups from a library of 40 different stiffened and sandwich designs and a database of composite, metallic, honeycomb, and foam materials. Multiple different concepts (orthogrid, isogrid, and skin stiffener) were run for multiple loading combinations of ascent design load with and with out tank pressure as well as proof pressure condition. Subsequently, selected optimized concept obtained from Hypersizer runs was translated into a computer aid design (CAD) model to account for the wall thickness tolerance, weld land etc for developing the most probable weight of the components. The flow diram summarizes the analysis steps used in developing these predicted mass.
Crew Dragon Demonstration Mission 1
2018-06-13
SpaceX’s Crew Dragon is at NASA’s Plum Brook Station in Ohio, ready to undergo testing in the In-Space Propulsion Facility — the world’s only facility capable of testing full-scale upper-stage launch vehicles and rocket engines under simulated high-altitude conditions. The chamber will allow SpaceX and NASA to verify Crew Dragon’s ability to withstand the extreme temperatures and vacuum of space. This is the spacecraft that SpaceX will fly during its Demonstration Mission 1 flight test under NASA’s Commercial Crew Transportation Capability contract with the goal of returning human spaceflight launch capabilities to the U.S.
Preliminary Performance of Lithium-ion Cell Designs for Ares I Upper Stage Applications
NASA Technical Reports Server (NTRS)
Miller, Thomas B.; Reid, Concha M.; Kussmaul, Michael T.
2011-01-01
NASA's Ares I Crew Launch Vehicle (CLV) baselined lithium-ion technology for the Upper Stage (US). Under this effort, the NASA Glenn Research Center investigated three different aerospace lithium-ion cell suppliers to assess the performance of the various lithium-ion cell designs under acceptance and characterization testing. This paper describes the overall testing approaches associated with lithium-ion cells, their ampere-hour capacity as a function of temperature and discharge rates, as well as their performance limitations for use on the Ares I US vehicle.
History of Chandra X-Ray Observatory
1999-07-01
A crew member of the STS-93 mission took this photograph of the Chandra X-Ray Observatory, still attached to the Inertial Upper Stage (IUS), backdropped against the darkness of space not long after its release from Orbiter Columbia. Two firings of an attached IUS rocket placed the Observatory into its working orbit. The primary duty of the crew of this mission was to deploy the 50,162-pound Observatory, the world's most powerful x-ray telescope.
Ares I-X Test Flight Reference Trajectory Development
NASA Technical Reports Server (NTRS)
Starr, Brett R.; Gumbert, Clyde R.; Tartabini, Paul V.
2011-01-01
Ares I-X was the first test flight of NASA's Constellation Program's Ares I crew launch vehicle. Ares I is a two stage to orbit launch vehicle that provides crew access to low Earth orbit for NASA's future manned exploration missions. The Ares I first stage consists of a Shuttle solid rocket motor (SRM) modified to include an additional propellant segment and a liquid propellant upper stage with an Apollo J2X engine modified to increase its thrust capability. The modified propulsion systems were not available for the first test flight, thus the test had to be conducted with an existing Shuttle 4 segment reusable solid rocket motor (RSRM) and an inert Upper Stage. The test flight's primary objective was to demonstrate controllability of an Ares I vehicle during first stage boost and the ability to perform a successful separation. In order to demonstrate controllability, the Ares I-X ascent control algorithms had to maintain stable flight throughout a flight environment equivalent to Ares I. The goal of the test flight reference trajectory development was to design a boost trajectory using the existing RSRM that results in a flight environment equivalent to Ares I. A trajectory similarity metric was defined as the integrated difference between the Ares I and Ares I-X Mach versus dynamic pressure relationships. Optimization analyses were performed that minimized the metric by adjusting the inert upper stage weight and the ascent steering profile. The sensitivity of the optimal upper stage weight and steering profile to launch month was also investigated. A response surface approach was used to verify the optimization results. The analyses successfully defined monthly ascent trajectories that matched the Ares I reference trajectory dynamic pressure versus Mach number relationship to within 10% through Mach 3.5. The upper stage weight required to achieve the match was found to be feasible and varied less than 5% throughout the year. The paper will discuss the flight test requirements, provide Ares I-X vehicle background, discuss the optimization analyses used to meet the requirements, present analysis results, and compare the reference trajectory to the reconstructed flight trajectory.
2004-09-03
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage at right in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-03
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage behind them in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage at right in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASAs Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
NASA Technical Reports Server (NTRS)
Seiler, James; Brasfield, Fred; Cannon, Scott
2008-01-01
Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.
2008-01-01
Ares I Crew Launch Vehicle Upper Stage is designed and developed based on sound systems engineering principles. Systems Engineering starts with Concept of Operations and Mission requirements, which in turn determine the launch system architecture and its performance requirements. The Ares I-Upper Stage is designed and developed to meet these requirements. Designers depend on the support from materials, processes and manufacturing during the design, development and verification of subsystems and components. The requirements relative to reliability, safety, operability and availability are also dependent on materials availability, characterization, process maturation and vendor support. This paper discusses the roles and responsibilities of materials and manufacturing engineering during the various phases of Ares IUS development, including design and analysis, hardware development, test and verification. Emphasis is placed how materials, processes and manufacturing support is integrated over the Upper Stage Project, both horizontally and vertically. In addition, the paper describes the approach used to ensure compliance with materials, processes, and manufacturing requirements during the project cycle, with focus on hardware systems design and development.
2008-10-17
CAPE CANAVERAL, Fla. - Workers lift the Ares IX upper stage segments’ ballast assemblies off a truck in high bay 4 of the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - Workers position Ares IX upper stage segments’ ballast assemblies along the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - One of five trucks transporting the Ares IX upper stage segments’ ballast assemblies arrives at the Vehicle Assembly Building at NASA’s Kennedy Space, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - The Ares IX upper stage segments’ ballast assemblies are offloaded from one of five trucks which delivered them to the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - Workers lower an Ares IX upper stage segments’ ballast assembly onto the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - The Ares IX upper stage segments’ ballast assemblies have arrived at NASA’s Kennedy Space Center and are positioned along the floor of high bay 4 in the Vehicle Assembly Building, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - Ares IX upper stage segments’ ballast assemblies are positioned along the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - The Ares IX upper stage segments’ ballast assemblies have arrived at NASA’s Kennedy Space Center and are positioned along the floor of high bay 4 in the Vehicle Assembly Building, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
Orbit Transfer Systems with Emphasis on Shuttle Applications, 1986-1991
NASA Technical Reports Server (NTRS)
1977-01-01
A systems study is presented for a transportation system which will follow the interim upper stage and spinning solid upper stage. Included are concepts, concept comparisons, trends, parametric data, etc. associated with the future system. Relevant technical and programmatic information is developed. This information is intended to focus future activity to identify attractive options and to summarize the major issues associated with the future development of the system. To establish a common basis for identifying current transportation concepts, an orbit transfer vehicle (OTV) is defined as a propulsive (velocity producing) rocket or stage. When used with a crew transfer module, a manned sortie module or other payloads, the combination becomes an orbit transfer system (OTS). Standardization of OTV's and OTS's is required.
NASA Technical Reports Server (NTRS)
Crowe, Kathryn; Williams, Michael
2015-01-01
Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space Shuttle. The test plan for the integrated core stage was broken down into several segments: Component testing, system level testing, and element level testing. In this context, components are items such as valves, controllers, sensors, etc. Systems are items such as an entire engine, a tank, or the outer stage body. The core stage itself is considered to be an element. The rocket engines are also considered an element. At the program level, it was decided to perform a single green run test on the integrated core stage prior to shipment of it to Kennedy Space Center (KSC) for use in the EM-1 test flight of the SLS vehicle. A green run test is the first live fire of the new integrated core stage and engine elements - without boosters of course. The SLS Program had to decide where to perform SLS green run testing.
CRYOGENIC UPPER STAGE SYSTEM SAFETY
NASA Technical Reports Server (NTRS)
Smith, R. Kenneth; French, James V.; LaRue, Peter F.; Taylor, James L.; Pollard, Kathy (Technical Monitor)
2005-01-01
NASA s Exploration Initiative will require development of many new systems or systems of systems. One specific example is that safe, affordable, and reliable upper stage systems to place cargo and crew in stable low earth orbit are urgently required. In this paper, we examine the failure history of previous upper stages with liquid oxygen (LOX)/liquid hydrogen (LH2) propulsion systems. Launch data from 1964 until midyear 2005 are analyzed and presented. This data analysis covers upper stage systems from the Ariane, Centaur, H-IIA, Saturn, and Atlas in addition to other vehicles. Upper stage propulsion system elements have the highest impact on reliability. This paper discusses failure occurrence in all aspects of the operational phases (Le., initial burn, coast, restarts, and trends in failure rates over time). In an effort to understand the likelihood of future failures in flight, we present timelines of engine system failures relevant to initial flight histories. Some evidence suggests that propulsion system failures as a result of design problems occur shortly after initial development of the propulsion system; whereas failures because of manufacturing or assembly processing errors may occur during any phase of the system builds process, This paper also explores the detectability of historical failures. Observations from this review are used to ascertain the potential for increased upper stage reliability given investments in integrated system health management. Based on a clear understanding of the failure and success history of previous efforts by multiple space hardware development groups, the paper will investigate potential improvements that can be realized through application of system safety principles.
Aerodynamic Analyses and Database Development for Ares I Vehicle First Stage Separation
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Pei, Jing; Pinier, Jeremy T.; Klopfer, Goetz H.; Holland, Scott D.; Covell, Peter F.
2011-01-01
This paper presents the aerodynamic analysis and database development for first stage separation of Ares I A106 crew launch vehicle configuration. Separate 6-DOF databases were created for the first stage and upper stage and each database consists of three components: (a) isolated or freestream coefficients, (b) power-off proximity increments, and (c) power-on proximity increments. The isolated and power-off incremental databases were developed using data from 1% scaled model tests in AEDC VKF Tunnel A. The power-on proximity increments were developed using OVERFLOW CFD solutions. The database also includes incremental coefficients for one BDM and one USM failure scenarios.
The J-2X Upper Stage Engine: From Design to Hardware
NASA Technical Reports Server (NTRS)
Byrd, Thomas
2010-01-01
NASA is well on its way toward developing a new generation of launch vehicles to support of national space policy to retire the Space Shuttle fleet, complete the International Space Station, and return to the Moon as the first step in resuming this nation s exploration of deep space. The Constellation Program is developing the launch vehicles, spacecraft, surface systems, and ground systems to support those plans. Two launch vehicles will support those ambitious plans the Ares I and Ares V. (Figure 1) The J-2X Upper Stage Engine is a critical element of both of these new launchers. This paper will provide an overview of the J-2X design background, progress to date in design, testing, and manufacturing. The Ares I crew launch vehicle will lift the Orion crew exploration vehicle and up to four astronauts into low Earth orbit (LEO) to rendezvous with the space station or the first leg of mission to the Moon. The Ares V cargo launch vehicle is designed to lift a lunar lander into Earth orbit where it will be docked with the Orion spacecraft, and provide the thrust for the trans-lunar journey. While these vehicles bear some visual resemblance to the 1960s-era Saturn vehicles that carried astronauts to the Moon, the Ares vehicles are designed to carry more crew and more cargo to more places to carry out more ambitious tasks than the vehicles they succeed. The government/industry team designing the Ares rockets is mining a rich history of technology and expertise from the Shuttle, Saturn and other programs and seeking commonality where feasible between the Ares crew and cargo rockets as a way to minimize risk, shorten development times, and live within the budget constraints of its original guidance.
1989-05-05
The STS-30 mission launched aboard the Space Shuttle Atlantis on May 4, 1989 at 2:46:59pm (EDT) carrying a crew of five. Aboard were Ronald J. Grabe, pilot; David M. Walker, commander; and mission specialists Norman E. Thagard, Mary L. Cleave, and Mark C. Lee. The primary payload for the mission was the Magellan/Venus Radar mapper spacecraft and attached Inertial Upper Stage (IUS).
Aerodynamic Analyses and Database Development for Ares I Vehicle First Stage Separation
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Pei, Jing; Pinier, Jeremy T.; Holland, Scott D.; Covell, Peter F.; Klopfer, Goetz, H.
2012-01-01
This paper presents the aerodynamic analysis and database development for the first stage separation of the Ares I A106 Crew Launch Vehicle configuration. Separate databases were created for the first stage and upper stage. Each database consists of three components: isolated or free-stream coefficients, power-off proximity increments, and power-on proximity increments. The power-on database consists of three parts, all plumes firing at nominal conditions, the one booster deceleration motor out condition, and the one ullage settling motor out condition. The isolated and power-off incremental databases were developed using wind tunnel test data. The power-on proximity increments were developed using CFD solutions.
1988-04-26
Five astronauts composed the STS-30 crew. Pictured (left to right) are Ronald J. Grabe, pilot; David M. Walker, commander; and mission specialists Norman E. Thagard, Mary L. Cleave, and Mark C. Lee. The STS-30 mission launched aboard the Space Shuttle Atlantis on May 4, 1989 at 2:46:59pm (EDT). The primary payload was the Magellan/Venus Radar mapper spacecraft and attached Inertial Upper Stage (IUS).
Development Status of the J-2X
NASA Technical Reports Server (NTRS)
Kynard, Mike; Vilja, John
2008-01-01
In June 2006, the NASA Marshall Space Flight Center (MSFC) and Pratt & Whitney Rocketdyne began development of an engine for use on the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The development program will be completed in December 2012 at the end of a Design Certification Review and after certification testing of two flight configuration engines. A team of over 600 people within NASA and Pratt & Whitney Rocketdyne are currently working to prepare for the fall 2008 Critical Design Review (CDR), along with supporting an extensive risk mitigation test program. The J-2X will power the Ares I upper stage and the Ares V earth departure stage (EDS). The initial use will be in the Ares I, used to launch the Orion crew exploration vehicle. In this application, it will power the upper stage after being sent aloft on a Space Shuttle-derived. 5-segment solid rocket booster first stage. In this mission. the engine will ignite at altitude and provide the necessary acceleration force to allow the Orion to achieve orbital velocity. The Ares I upper stage, along with the J-2X. will then be expended. On the Ares V. first stage propulsion is provided by five RS-68B engines and two 5-segment boosters similar to the Ares I configuration. In the Ares V mission. the J-2X is first started to power the EDS and its payload. the Altair lunar lander. into earth orbit, then shut-down and get prepared for its next start. The EDS/Altair will remain in a parking orbit, awaiting rendezvous and docking with Orion. Once the two spacecraft are mated, the J-2X will be restarted to achieve earth departure velocity. After powering the Orion and Altair, the EDS will be expended. By using the J-2X Engine in both applications, a significant infrastructure cost savings is realized. Only one engine development is required, and the sustaining engineering and flight support infrastructures can be combined. There is also flexibility for changing, the production and flight manifest because a single production line can support both missions with minimal differences between each engine configuration kit.
Stir Friction Welding Used in Ares I Upper Stage Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
The Grid Density Dependence of the Unsteady Pressures of the J-2X Turbines
NASA Technical Reports Server (NTRS)
Schmauch, Preston B.
2011-01-01
The J-2X engine was originally designed for the upper stage of the cancelled Crew Launch Vehicle. Although the Crew Launch Vehicle was cancelled the J-2X engine, which is currently undergoing hot-fire testing, may be used on future programs. The J-2X engine is a direct descendent of the J-2 engine which powered the upper stage during the Apollo program. Many changes including a thrust increase from 230K to 294K lbf have been implemented in this engine. As part of the design requirements, the turbine blades must meet minimum high cycle fatigue factors of safety for various vibrational modes that have resonant frequencies in the engine's operating range. The unsteady blade loading is calculated directly from CFD simulations. A grid density study was performed to understand the sensitivity of the spatial loading and the magnitude of the on blade loading due to changes in grid density. Given that the unsteady blade loading has a first order effect on the high cycle fatigue factors of safety, it is important to understand the level of convergence when applying the unsteady loads. The convergence of the unsteady pressures of several grid densities will be presented for various frequencies in the engine's operating range.
2004-09-02
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (right) is ready for mating with the upper stage (foreground) in preparation for launch on the Orbital Sciences Pegasus XL. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-02
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft, suspended by a crane, over the upper stage in preparation for launch on the Orbital Sciences Pegasus XL. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (in background) has been rotated from vertical to horizontal and is ready for mating with the upper stage (foreground). DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Orbital Sciences Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-02
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (right) is ready for mating with the upper stage (behind it) in preparation for launch on the Orbital Sciences Pegasus XL. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft is ready for mating with the upper stage of the Orbital Sciences Pegasus XL behind it (right). DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
Ares I-X Flight Test Vehicle: Stack 5 Modal Test
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Danel R.
2010-01-01
Ares I-X was the first flight test vehicle used in the development of NASA's Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the first modal test that was performed on the top section of the vehicle referred to as Stack 5, which consisted of the spacecraft adapter, service module, crew module and launch abort system simulators. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 5 modal test.
NASA Technical Reports Server (NTRS)
Anderson, Loren A.; Armitage, Pamela Kay
1993-01-01
The 1992-1993 senior Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle. The Assured Crew Return Vehicle will be permanently docked to the space station fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard the space station. The objective of the project was to give the Assured Crew Return Vehicle Project Office data to feed into their feasibility studies. Three design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined efforts to design a one-third scale model of the Russian Soyuz TM Descent Module, and an on-board flotation system. This model was designed to determine the flotation characteristics and test the effects of a rigid flotation and orientation system. Group three designed a portable water wave test facility to be located on campus. Because of additional funding from Thiokol Corporation, testing of the Soyuz model and flotation systems took place at the Offshore Technology Research Center. Universities Space Research Association has been studying the use of small expendable launch vehicles for missions which cost less than 200 million dollars. The Crusader2B. which consists of the original Spartan first and second stage with an additional Spartan second stage and the Minuteman III upper stage is being considered for this task. University of Central Florida project accomplishments include an analysis of launch techniques, a modeling technique to determine flight characteristics, and input into the redesign of an existing mobile rail launch platform.
Ares I and Ares I-X Stage Separation Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Pinier, Jeremy T.; Niskey, Charles J.
2011-01-01
The aerodynamics of the Ares I crew launch vehicle (CLV) and Ares I-X flight test vehicle (FTV) during stage separation was characterized by testing 1%-scale models at the Arnold Engineering Development Center s (AEDC) von Karman Gas Dynamics Facility (VKF) Tunnel A at Mach numbers of 4.5 and 5.5. To fill a large matrix of data points in an efficient manner, an injection system supported the upper stage and a captive trajectory system (CTS) was utilized as a support system for the first stage located downstream of the upper stage. In an overall extremely successful test, this complex experimental setup associated with advanced postprocessing of the wind tunnel data has enabled the construction of a multi-dimensional aerodynamic database for the analysis and simulation of the critical phase of stage separation at high supersonic Mach numbers. Additionally, an extensive set of data from repeated wind tunnel runs was gathered purposefully to ensure that the experimental uncertainty would be accurately quantified in this type of flow where few historical data is available for comparison on this type of vehicle and where Reynolds-averaged Navier-Stokes (RANS) computational simulations remain far from being a reliable source of static aerodynamic data.
Documentary view of the Magellan spacecraft, during Checkout, and an art
1988-10-14
S88-50418 (August 1988) --- Engineers and technicians at the Martin Marietta plant in Denver, Colorado, prepare the spacecraft for its six-week long trip to the Kennedy Space Center (KSC). The spacecraft, destined for unprecedented studies of Venusian topographic features, will be mated to its upper stage while at KSC and later onloaded to Atlantis and eventually will be deployed by the crew of NASA's STS-30 mission in April 1989.
Economic benefits of commercial space activities
NASA Technical Reports Server (NTRS)
Stone, Barbara A.
1988-01-01
This paper discusses the current and potential impact on the economy of selected private sector space activities including materials processing in space and satellite communications. Spacehab, a commercially developed and manufactured pressurized metal cylinder which fits in the Shuttle payload bay and connects to the crew compartment is examined along with potential uses of the Shuttle external tank. Private sector upper stage development, the privatization of expendable launch vehicles, and the transfer of NASA technology are discussed.
1991-08-02
Launched aboard the Space Shuttle Atlantis on August 2, 1991, the STS-43 mission’s primary payload was the Tracking and Data Relay Satellite 5 (TDRS-5) attached to an Inertial Upper Stage (IUS), which became the 4th member of an orbiting TDRS cluster. The flight crew consisted of 5 astronauts: John E. Blaha, commander; Michael A. Baker, pilot; Shannon W. Lucid, mission specialist 1; James C. Adamson, mission specialist 2; and G. David Low, mission specialist 3.
1991-08-02
Launched aboard the Space Shuttle Atlantis on August 2, 1991, the STS-43 mission’s primary payload was the Tracking and Data Relay Satellite 5 (TDRS-5) attached to an Inertial Upper Stage (IUS), which became the 4th member of an orbiting TDRS cluster. The flight crew consisted of five astronauts: John E. Blaha, commander; Michael A. Baker, pilot; Shannon W. Lucid, mission specialist 1; James C. Adamson, mission specialist 2; and G. David Low, mission specialist 3.
Stir Friction Welding Used in Ares I Upper Stage Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the preparation and placement of a confidence ring for friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are manufactured and subjected to confidence tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Stir Friction Welding Used in Ares I Upper Stage Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are subjected to confidence panel tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
From Paper to Production: An Update on NASA's Upper Stage Engine for Exploration
NASA Technical Reports Server (NTRS)
Kynard, Mike
2010-01-01
In 2006, NASA selected an evolved variant of the proven Saturn/Apollo J-2 upper stage engine to power the Ares I crew launch vehicle upper stage and the Ares V cargo launch vehicle Earth departure stage (EDS) for the Constellation Program. Any design changes needed by the new engine would be based where possible on proven hardware from the Space Shuttle, commercial launchers, and other programs. In addition to the thrust and efficiency requirements needed for the Constellation reference missions, it would be an order of magnitude safer than past engines. It required the J-2X government/industry team to develop the highest performance engine of its type in history and develop it for use in two vehicles for two different missions. In the attempt to achieve these goals in the past five years, the Upper Stage Engine team has made significant progress, successfully passing System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of spring 2010, more than 100,000 experimental and development engine parts have been completed or are in various stages of manufacture. Approximately 1,300 of more than 1,600 engine drawings have been released for manufacturing. This progress has been due to a combination of factors: the heritage hardware starting point, advanced computer analysis, and early heritage and development component testing to understand performance, validate computer modeling, and inform design trades. This work will increase the odds of success as engine team prepares for powerpack and development engine hot fire testing in calendar 2011. This paper will provide an overview of the engine development program and progress to date.
Ares I-X Flight Test Philosophy
NASA Technical Reports Server (NTRS)
Davis, S. R.; Tuma, M. L.; Heitzman, K.
2007-01-01
In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.
Orion: Design of a system for assured low-cost human access to space
NASA Technical Reports Server (NTRS)
Elvander, Josh; Heifetz, Andy; Hunt, Teresa; Zhu, Martin
1994-01-01
In recent years, Congress and the American people have begun to seriously question the role and importance of future manned spaceflight. This is mainly due to two factors: a decline in technical competition caused by the collapse of communism, and the high costs associated with the Space Shuttle transportation system. With these factors in mind, the ORION system was designed to enable manned spaceflight at a low cost, while maintaining the ability to carry out diverse missions, each with a high degree of flexibility. It is capable of performing satellite servicing missions, supporting a space station via crew rotation and resupply, and delivering satellites into geosynchronous orbit. The components of the system are a primary launch module, an upper stage, and a manned spacecraft capable of dynamic reentry. For satellite servicing and space station resupply missions, the ORION system utilizes three primary modules, an upper stage, and the spacecraft, which is delivered to low earth orbit and used to rendezvous, transfer materials, and make repairs. For launching a geosynchronous satellite, one primary module and an upper stage are used to deliver the satellite, along with an apogee kick motor, into orbit. The system is designed with reusability and modularity in mind in an attempt to lower cost.
20. Readiness Crew Building interior, upper level corridor. This corridor ...
20. Readiness Crew Building interior, upper level corridor. This corridor runs from northwest to southeast. Photograph taken at the northwest end looking southeast. Lyon - Whiteman Air Force Base, Bomber Alert Facility S-6, 1300 Alert Road, Knob Noster, Johnson County, MO
Ares I-X: Lessons for a New Era of Spaceflight
NASA Technical Reports Server (NTRS)
Davis, Stephan R.
2010-01-01
Since 2005, the Ares Projects at Marshall Space Flight Center (MSFC) have been developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Despite the President s intention to cancel the Constellation Program of which Ares is a part, this historic flight has produced a great amount of data and numerous lessons learned for any future launch vehicles. This paper will describe the accomplishments of Ares I-X and the lessons that other programs can glean from this successful mission. Ares I was designed to carry up to four astronauts to the International Space Station (ISS). It also was designed to be used with the Ares V cargo launch vehicle for a variety of missions beyond low-Earth orbit (LEO). The Ares I-X development flight test was conceived in 2006 to acquire early engineering and environment data during liftoff, ascent, and first stage recovery. The test achieved the following primary objectives: Demonstrated control of a dynamically similar, integrated Ares I/Orion, using Ares I relevant ascent control algorithms. Performed an in-flight separation/staging event between a Ares I-similar First Stage and a representative Upper Stage. Demonstrated assembly and recovery of a new Ares I-like First Stage element at KSC. Demonstrated First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics, and parachute performance. Characterized the magnitude of integrated vehicle roll torque throughout First Stage flight.
SLS Block 1-B and Exploration Upper Stage Navigation System Design
NASA Technical Reports Server (NTRS)
Oliver, T. Emerson; Park, Thomas B.; Smith, Austin; Anzalone, Evan; Bernard, Bill; Strickland, Dennis; Geohagan, Kevin; Green, Melissa; Leggett, Jarred
2018-01-01
The SLS Block 1B vehicle is planned to extend NASA's heavy lift capability beyond the initial SLS Block 1 vehicle. The most noticeable change for this vehicle from SLS Block 1 is the swapping of the upper stage from the Interim Cryogenic Propulsion stage (ICPS), a modified Delta IV upper stage, to the more capable Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability and execute more demanding missions so must the SLS Integrated Navigation System to support those missions. The SLS Block 1 vehicle carries two independent navigation systems. The responsibility of the two systems is delineated between ascent and upper stage flight. The Block 1 navigation system is responsible for the phase of flight between the launch pad and insertion into Low-Earth Orbit (LEO). The upper stage system assumes the mission from LEO to payload separation. For the Block 1B vehicle, the two functions are combined into a single system intended to navigate from ground to payload insertion. Both are responsible for self-disposal once payload delivery is achieved. The evolution of the navigation hardware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1-B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1-B vehicle navigation system is designed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. This is measured in terms of payload impact and stage disposal requirements. Additionally, the Block 1-B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and Fault Detection, Isolation, and Recovery (FDIR) logic. The preliminary Block 1B integrated navigation system design is presented along with the challenges associated with meeting the design objectives. This paper also addresses the design considerations associated with the use of Block 1 and Commercial Off-the-Shelf (COTS) avionics for Block 1-B/EUS as part of an integrated vehicle suite for orbital operations.
NASA Technical Reports Server (NTRS)
Smith, Andrew; Harrison, Phil
2010-01-01
The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Crew Launch Vehicle (CLV) and Crew Exploration Vehicle (CEV). Ares I-X was selected as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight test vehicle (FTV) is an early operational model of CLV, with specific emphasis on CLV and ground operation characteristics necessary to meet Ares I-X flight test objectives. The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation of the Upper Stage Simulator (USS) from the First Stage (FS). The in-flight test also includes recovery of the FS. The random vibration response from the ARES 1-X flight will be reconstructed for a few specific locations that were instrumented with accelerometers. This recorded data will be helpful in validating and refining vibration prediction tools and methodology. Measured vibroacoustic environments associated with lift off and ascent phases of the Ares I-X mission will be compared with pre-flight vibration predictions. The measured flight data was given as time histories which will be converted into power spectral density plots for comparison with the maximum predicted environments. The maximum predicted environments are documented in the Vibroacoustics and Shock Environment Data Book, AI1-SYS-ACOv4.10 Vibration predictions made using statistical energy analysis (SEA) VAOne computer program will also be incorporated in the comparisons. Ascent and lift off measured acoustics will also be compared to predictions to assess whether any discrepancies between the predicted vibration levels and measured vibration levels are attributable to inaccurate acoustic predictions. These comparisons will also be helpful in assessing whether adjustments to prediction methodologies are needed to improve agreement between the predicted and measured flight data. Future assessment will incorporate hybrid methods in VAOne analysis (i.e., boundary element methods, BEM and finite element methods, FEM). These hybrid methods will enable the ability to import NASTRAN models providing much more detailed modeling of the underlying beams and support structure of the ARES 1-X test vehicle. Measured acoustic data will be incorporated into these analyses to improve correlation for additional post flight analysis.
2009-01-31
CAPE CANAVERAL, Fla. – The Ares I-X roll control system module is revealed after removal of the plastic wrap. The module is in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller
2009-01-31
CAPE CANAVERAL, Fla. – The Ares I-X roll control system module has been placed on the floor of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after its arrival. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller
2009-01-31
CAPE CANAVERAL, Fla. – On the floor of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers start removing the plastic wrap from the Ares I-X roll control system module. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller
2009-01-31
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers look at the Ares I-X roll control system module before removing the plastic wrap. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller
2009-01-31
CAPE CANAVERAL, Fla. – The Ares I-X roll control system module arrives in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller
Ares I First Stage Booster Deceleration System: An Overview
NASA Technical Reports Server (NTRS)
King, Ron; Hengel, John E.; Wolf, Dean
2009-01-01
In 2005, the Congressional NASA Authorization Act enacted a new space exploration program, the "Vision for Space Exploratien". The Constellation Program was formed to oversee the implementation of this new mission. With an intent not simply to support the International Space Station, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains, the Constellation Program is supervising the development of a brand new fleet of launch vehicles, the Ares. The Ares lineup will include two new launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle. A crew exploration vehicle, Orion, will be launched on the Ares I. It will be capable of docking with the Space Station, the lunar lander, Altair, and the Earth Departure Stage of Ares V. The Ares V will be capable of lifting both large-scale hardware and the Altair into space. The Ares First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low Earth orbit. The Ares I First Stage booster is a 12-foot diameter, five-segment, reusable solid rocket booster derived from the Space Shuttle's four segment reusable solid rocket booster (SRB). It is separated from the Upper Stage through the use of a Deceleration Subsystem (DSS). Booster Tumble Motors are used to induce the pitch tumble following separation from the Upper Stage. The spent Ares I booster must be recoverable using a parachute deceleration system similar to that of the Shuttle SRB heritage system. Since Ares I is much heavier and reenters the Earth's atmosphere from a higher altitude at a much higher velocity than the SRB, all of the parachutes must be redesigned to reliably meet the operational requisites of the new launch vehicles. This paper presents an overview of this new booster deceleration system. It includes comprehensive detail of the parachute deceleration system, its design and deployment sequences, including how and why it is being developed, the requirements it must meet, and the testing involved in its implementation.
2006-07-14
A model of the new Aries I crew launch vehicle, for which NASA is designing, testing and evaluating hardware and related systems, is seen here on display at the Marshall Space Fight Center (MSFC), in Huntsville, Alabama. The Ares I crew launch vehicle is the rocket that will carry a new generation of space explorers into orbit. Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA’s Constellation Program. These transportation systems will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is led by the Exploration Launch Projects Office at NASA’s MFSC. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module and a launch abort system. The launch vehicle’s first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program’s reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. In addition to its primary mission of carrying crews of four to six astronauts to Earth orbit, the launch vehicle’s 25-ton payload capacity might be used for delivering cargo to space, bringing resources and supplies to the International Space Station or dropping payloads off in orbit for retrieval and transport to exploration teams on the moon. Crew transportation to the space station is planned to begin no later than 2014. The first lunar excursion is scheduled for the 2020 timeframe.
2009-06-30
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, Marshall Smith, the Ares I-X Systems Engineering and Integration chief, reviews consensus for stacking and mating of the I-X upper stage segments with the management team. Launch of the Ares I-X flight test is targeted no earlier than Aug. 30 from Launch Pad 39B. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Photo credit: NASA/Dimitri Gerondidakis
NASA Technical Reports Server (NTRS)
2007-01-01
Tree clearing for the site of the new A-3 Test Stand at Stennis Space center began June 13. NASA's first new large rocket engine test stand to be built since the site's inception, A-3 construction begins a historic era for America's largest rocket engine test complex. The 300-foot-tall structure is scheduled for completion in August 2010. A-3 will perform altitude tests on the Constellation's J-2X engine that will power the upper stage of the Ares I crew launch vehicle and earth departure stage of the Ares V cargo launch vehicle. The Constellation Program, NASA's plan for carrying out the nation's Vision for Space Exploration, will return humans to the moon and eventually carry them to Mars and beyond.
2007-06-13
Tree clearing for the site of the new A-3 Test Stand at Stennis Space center began June 13. NASA's first new large rocket engine test stand to be built since the site's inception, A-3 construction begins a historic era for America's largest rocket engine test complex. The 300-foot-tall structure is scheduled for completion in August 2010. A-3 will perform altitude tests on the Constellation's J-2X engine that will power the upper stage of the Ares I crew launch vehicle and earth departure stage of the Ares V cargo launch vehicle. The Constellation Program, NASA's plan for carrying out the nation's Vision for Space Exploration, will return humans to the moon and eventually carry them to Mars and beyond.
Main Propulsion for the Ares Projects
NASA Technical Reports Server (NTRS)
Sumrall, Phil
2009-01-01
The goal of this slide presentation is to provide an update on the status of the Ares propulsion systems. The Ares I is the vehicle to launch the crew and the Ares V is a heavy lift vehicle that is being designed to launch cargo into Low Earth Orbit (LEO) and transfer cargo and crews to the moon. The Ares propulsion systems are based on the heritage hardware and experiences from the Apollo project to the Space Shuttle and also to current expendable launch vehicles (ELVs). The presentation compares the various launch vehicles from the Saturn V to the space shuttle, including the planned details of the Ares I and V. There are slides detailing the elements of the Ares I and the Ares V, including views of the J2X upper stage engine that is to serve both the Ares I and V. The extent of the progress is reviewed.
STS-93 Flight Day 1 Highlights and Crew Activities
NASA Technical Reports Server (NTRS)
1999-01-01
On this first day of the STS-93 Columbia mission, the flight crew, Commander Eileen Collins, Pilot Jeff Ashby and Mission Specialists Cady Coleman, Steve Hawley and Michael Tognini deployed the Chandra X-Ray Observatory into space. This was done after a full night of work and preparation. Chandra will study the invisible, and often violent mysteries of x-ray astronomy. Commander Collins maneuvered Columbia to a safe distance away from the telescope as an internal timer counted down to the first of a two-phase ignition of the Inertial Upper Stage. After switching to internal battery power until its solar rays are deployed, the telescope reaches an oval orbit one-third the distance to the Moon to conduct its astronomical observations. Since Chandra is safely on its way and the major objective of their mission is successfully completed, the astronauts end their long day and begin an eight hour sleep period.
Ares I-X Flight Test Vehicle:Stack 1 Modal Test
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.
2010-01-01
Ares I-X was the first flight test vehicle used in the development of NASA s Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the second modal test that was performed on the middle section of the vehicle referred to as Stack 1, which consisted of the subassembly from the 5th segment simulator through the interstage. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 1 modal test.
STS-41 Ulysses Breakfast, Suit-up, C-7 Exit, Launch and ISOS Cam Views
NASA Technical Reports Server (NTRS)
1990-01-01
Live footage shows the crewmembers of STS-41, Commander Richard N. Richards, Pilot Robert D. Cabana, Mission Specialists William M. Shepherd, Bruce E. Melnick, and Thomas D. Akers, participating in the traditional activities the day of their flight. The crew are seen eating breakfast, suiting-up, walking out to the Astronaut-Van, putting on life vests in the 'White Room' area, and entering the crew module of the Discovery Orbiter. Footage also includes preparation of the Ulysses Payload. Engineers are seen loading Ulysses to the upper stage, transferring Discovery to an upright position, bolting Discovery to the external tank, rolling Discovery out to the launch pad, and finally installing the Ulysses Payload inside Discovery. Also shown are both night and morning panoramic shots of the shuttle on the pad, main engine start, ignition, liftoff, booster separation, and various camera views of the launch.
Ares I-X Flight Test Vehicle Modal Test
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.
2010-01-01
The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, was launched on October 28, 2009. Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle was not practical within project constraints, modal tests for several configurations during vehicle stacking were defined to calibrate the FEM. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report describes the test requirements, constraints, pre-test analysis, test execution and results for the Ares I-X flight test vehicle modal test on the Mobile Launcher Platform. Initial comparisons between pre-test predictions and test data are also presented.
Ares I Upper Stage Pressure Tests in Wind Tunnel
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)
2007-07-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, an Ares I x-test involves the upper stage separating from the first stage. This particular test was conducted at the NASA Langley Research Center in July 2007. (Highest resolution available)
Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond
NASA Technical Reports Server (NTRS)
Schorr, Andrew A.; Creech, Stephen D.
2017-01-01
While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already also underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, Space Launch System (SLS), is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations program is transforming Kennedy Space Center into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress in on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on the first flight of SLS. The element has overseen production of the Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage, which was manufactured at United Launch Alliance in Decatur, Alabama, prior to being shipped to Florida for flight preparations. Manufacture of the Orion Stage Adapter and the Launch Vehicle Stage Adapter (LVSA) took place at the Friction Stir Facility located at Marshall Space Flight Center in Huntsville, Alabama. Marshall is also home to the Integrated Structural Test of the ICPS, LVSA, and OSA, subjecting the stacked components to simulated stresses of launch. The SPIE Element is also overseeing integration of 13 "CubeSat" secondary payloads that will fly on the first flight of SLS, providing access to deep space regions in a way currently not available to the science community. At the same time as this preparation work is taking place toward the first launch of SLS, however, the Space Launch System Program is actively working toward its second launch. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 metric tons to low Earth orbit, the Block 1B vehicle will increase that capability to 105 t. For that flight, the new configuration introduces two major new elements to the vehicle - an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a "payload bay" for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Welding is taking place on the second rocket's core stage. Flight hardware production has begun on booster components. An RS-25 engine slated for that flight has been tested. Development work is taking place on the Exploration Upper Stage, with contracts in place for both the stage and the RL10 engines which will power it. (The EUS will use four RL10 engines, an increase from one on the ICPS.) For the crew configuration of the Block 1B vehicle, the SLS SPIE element is managing the USA and accompanying Payload Adapter, which will accommodate both large payloads co-manifested with Orion and small-satellite secondary payloads. This co-manifested payload capacity will be instrumental for missions into the Proving Ground around the moon, where NASA will test new systems and demonstrate new capabilities needed for human exploration farther into deep space.
Waterhammer Testing and Modeling of the Ares I Upper Stage Reaction Control System
NASA Technical Reports Server (NTRS)
Williams, J. Hunter; Holt, Kimberly A.
2010-01-01
NASA's Ares I rocket is the agency's first step in completing the goals of the Constellation Program, which plans to deliver a new generation of space explorers into low earth orbit for future missions to the International Space Station, the moon, and other destinations within the solar system. Ares I is a two-stage rocket topped by the Orion crew capsule and its service module. The launch vehicle's First Stage is a single, five-segment reusable solid rocket booster (RSRB), derived from the Space Shuttle Program's four segment RSRB. The vehicle's Upper Stage, being designed at Marshall Space Flight Center (MSFC), is propelled by a single J-2X Main Engine fueled with liquid oxygen and liquid hydrogen. During active Upper Stage flight of the Ares I launch vehicle, the Upper Stage Reaction Control System (US ReCS) will perform attitude control operations for the vehicle. The US ReCS will provide three-axis attitude control capability (roll, pitch, and yaw) for the Upper Stage while the J-2X is not firing and roll control capability while the engine is firing. Because of the requirements imposed upon the system, the design must accommodate rapid pulsing of multiple thrusters simultaneously to maintain attitude control. In support of these design activities and in preparation for Critical Design Review, analytical models of the US ReCS propellant feed system have been developed using the Thermal Hydraulic Library of MSC.EASY5 v.2008, herein referred to as EASY5. EASY5 is a commercially available fluid system modeling package with significant history of modeling space propulsion systems. In Fall 2009, a series of development tests were conducted at MSFC on a cold-flow test article for the US ReCS, herein referred to as System Development Test Article (SDTA). A subset of those tests performed were aimed at examining the effects of waterhammer on a flight-representative system and to ensure that those effects could be quantified with analytical models and incorporated into the design of the flight system. This paper presents an overview of the test article and the test approach, along with a discussion of the analytical modeling methodology. In addition, the results of that subset of development tests, along with analytical model pre-test predictions and post-test model correlations, will also be discussed in detail.
NASA Technical Reports Server (NTRS)
Young, Archie
1999-01-01
The Mars exploration is a candidate pathway to expand human presence and useful activities in the solar system. There are several propulsion system options being considered to place the Mars payload on its inter-planetary transfer trajectory. One propulsion option is the use of Solar Electric Propulsion (SEP) to spiral out with the Mars payload from an initial Low Earth Orbit (LEO) to an elliptical High Earth Orbit (HEO). This report, presented in annotated facing page format, describes the work completed on the design of a crew taxi propulsion stage used in conjunction with the SEP. Transportation system/mission analysis topics covered in this report include sub-system analysis, trajectory profile description, mass performance and crew taxi stage sizing, stage configuration, stage cost, and Trans-Mars Injection (TMI) launch window. The high efficiency of SEP is used to provide the major part of the TMI propulsion maneuver. Orbital energy is continuously added over a period of approximately twelve months. The SEP and Mars payload follow a spiral trajectory from an initial LEO to a final elliptical HEO. A small chemical stage is then used to provide the final part of the TMI. The now unloaded SEP returns to LEO to repeat another spiral trajectory with payload to HEO. The spiral phase of the SEP's trajectory takes several months to reach HEO, thus significantly increasing the exposure time of the crew to zero-gravity. In order to minimize the long zero-gravity effects, a high thrust chemical stage delivers the crew to the SEP's HEO. The crew rendezvous with the Mars payload in HEO. After a checkout period the Mars payload with the crew is injected onto a Trans-Mars Trajectory by a small chemical stage.
NASA Technical Reports Server (NTRS)
Young, Archie
1999-01-01
The Mars exploration is a candidate pathway to expand human presence and useful activities in the solar system. There are several propulsion system options being considered to place the Mars payload on its interplanetary transfer trajectory. One propulsion option is the use of Solar Electric Propulsion (SEP) to spiral out with the Mars payload from an initial Low Earth Orbit (LEO) to an elliptical High Earth Orbit (HEO). This report, presented in annotated facing page format, describes the work completed on the design of a crew taxi propulsion stage used in conjunction with the SEP. Transportation system/mission analysis topics covered in this report include sub-system analysis, trajectory profile description, mass performance and crew taxi stage sizing, stage configuration, stage cost, and Trans-Mars Injection (TMI) launch window. The high efficiency of SEP is used to provide the major part of the TMI propulsion maneuver. Orbital energy is continuously added over a period of approximately twelve months. The SEP and Mars payload follow a spiral trajectory from an initial LEO to a final elliptical HEO. A small chemical stage is then used to provide the final part of the TMI. The now unloaded SEP returns to LEO to repeat another spiral trajectory with payload to HEO. The spiral phase of the SEP's trajectory takes several months to reach HEO, thus significantly increasing the exposure time of the crew to zero-gravity. In order to minimize the long zero-gravity effects, a high thrust chemical stage delivers the crew to the SEP's HEO. The crew rendezvous with the Mars payload in HEO. After a checkout period the Mars payload with the crew is injected onto a Trans-Mars Trajectory by a small chemical stage.
Ares I-X Flight Test - The Future Begins Here
NASA Technical Reports Server (NTRS)
Davis, Stephan R.
2008-01-01
In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission. Like the Apollo program, the Ares launch vehicles will rely upon extensive ground, flight, and orbital testing before sending the Orion crew exploration vehicle into space with humans on board. The first flight of Ares I, designated Ares I-X, will be a suborbital development flight test. Ares I-X gives NASA its first opportunity to gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future operational flights; and demonstrate the first stage recovery system. NASA also will begin modifying the launch infrastructure and fine-tuning ground and mission operations, as the agency makes the transition from the Space Shuttle to the Ares/Orion system.
Human Factors Vehicle Displacement Analysis: Engineering In Motion
NASA Technical Reports Server (NTRS)
Atencio, Laura Ashley; Reynolds, David; Robertson, Clay
2010-01-01
While positioned on the launch pad at the Kennedy Space Center, tall stacked launch vehicles are exposed to the natural environment. Varying directional winds and vortex shedding causes the vehicle to sway in an oscillating motion. The Human Factors team recognizes that vehicle sway may hinder ground crew operation, impact the ground system designs, and ultimately affect launch availability . The objective of this study is to physically simulate predicted oscillation envelopes identified by analysis. and conduct a Human Factors Analysis to assess the ability to carry out essential Upper Stage (US) ground operator tasks based on predicted vehicle motion.
Potential problems relative to TDRS/IUS tilt table elevation with failed VRCS
NASA Technical Reports Server (NTRS)
Bell, J.
1980-01-01
Operational concerns and preliminary solution alternatives related to elevating the inertial upper stage/tracking and data relay satellite (IUS/TDRS) with a failed orbiter vernier reaction control system (VRCS) are presented. Problems arise from the combination of TDRS thermal constraints and tilt table constraints (the primary reaction control system (PRCS) cannot be used to hold attitude while the tilt table is being elevated), and the problems are compounded by the minimum PRCS attitude deadband. The potential solution options are affected by the launch window, flight profile, crew procedures, vehicle capability and constraints, and flight rules.
2008-07-01
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center, a crane is lowered over the aft skirt for the Ares 1-X rocket. The segment is being lifted into a machine shop work stand for drilling modifications. The modifications will prepare it for the installation of the auxiliary power unit controller, the reduced-rate gyro unit, the booster decelerator motors and the booster tumble motors. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. Ares I-X is a test rocket. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Jim Grossmann
Design for Reliability and Safety Approach for the NASA New Launch Vehicle
NASA Technical Reports Server (NTRS)
Safie, Fayssal, M.; Weldon, Danny M.
2007-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program intended for sending crew and cargo to the international Space Station (ISS), to the moon, and beyond. This program is called Constellation. As part of the Constellation program, NASA is developing new launch vehicles aimed at significantly increase safety and reliability, reduce the cost of accessing space, and provide a growth path for manned space exploration. Achieving these goals requires a rigorous process that addresses reliability, safety, and cost upfront and throughout all the phases of the life cycle of the program. This paper discusses the "Design for Reliability and Safety" approach for the NASA new crew launch vehicle called ARES I. The ARES I is being developed by NASA Marshall Space Flight Center (MSFC) in support of the Constellation program. The ARES I consists of three major Elements: A solid First Stage (FS), an Upper Stage (US), and liquid Upper Stage Engine (USE). Stacked on top of the ARES I is the Crew exploration vehicle (CEV). The CEV consists of a Launch Abort System (LAS), Crew Module (CM), Service Module (SM), and a Spacecraft Adapter (SA). The CEV development is being led by NASA Johnson Space Center (JSC). Designing for high reliability and safety require a good integrated working environment and a sound technical design approach. The "Design for Reliability and Safety" approach addressed in this paper discusses both the environment and the technical process put in place to support the ARES I design. To address the integrated working environment, the ARES I project office has established a risk based design group called "Operability Design and Analysis" (OD&A) group. This group is an integrated group intended to bring together the engineering, design, and safety organizations together to optimize the system design for safety, reliability, and cost. On the technical side, the ARES I project has, through the OD&A environment, implemented a probabilistic approach to analyze and evaluate design uncertainties and understand their impact on safety, reliability, and cost. This paper focuses on the use of the various probabilistic approaches that have been pursued by the ARES I project. Specifically, the paper discusses an integrated functional probabilistic analysis approach that addresses upffont some key areas to support the ARES I Design Analysis Cycle (DAC) pre Preliminary Design (PD) Phase. This functional approach is a probabilistic physics based approach that combines failure probabilities with system dynamics and engineering failure impact models to identify key system risk drivers and potential system design requirements. The paper also discusses other probabilistic risk assessment approaches planned by the ARES I project to support the PD phase and beyond.
Ares V: Progress Toward Unprecedented Heavy Lift
NASA Technical Reports Server (NTRS)
Sumrall, Phil
2010-01-01
Ares V represents the vehicle that will again make possible human exploration beyond low Earth orbit. The Ares V is part of NASA s Constellation Program architecture developed to support the International Space Station (ISS), establish a permanent human presence on the Moon, and explore it to an extent far greater than was possible with the Apollo Program. Ares V will carry the lunar lander to orbit where it will join the Orion crew spacecraft, launched by the smaller Ares I launch vehicle. Then the Ares V upper stage will send the Orion and lander to the Moon. Ares V is also intended to launch automated cargo landers to the Moon. The Ares vehicles are designed to employ the proven technologies and experience from the Space Shuttle, Delta IV, and earlier U.S. programs, as well as sharing common components where feasible. The Ares V is in an early stage of concept development. However, commonality allows it to benefit from development work already under way on the Ares I, including the first stage booster, and upper stage, J-2X upper stage engine. This paper will discuss progress to date on the Ares V and its potential for freeing payload designers from current mass and volume constraints. Progress includes development progress on Ares I elements that will be shared by the two launch vehicles. The Ares I first stage recently completed a successful test firing of Development Motor 1 (DM-1). The J-2X engine is proceeding with manufacturing of components for the first development engines that will be used for testing. Several component-level tests have been completed or are under way that will help verify designs and confirm solutions to design challenges. The Ares V Earth departure stage will benefit from the Ares I upper stage development, including design, manufacturing, and materials testing. NASA is also working with government and industry to collect data on flights and testing of the operational RS-68 engine and potential upgrades. The Ares V team continues to evaluate technical options, vehicle configurations, and operations concepts for the Ares V. The team recently completed a Fall Face-to-Face meeting that served as a stepping-stone to the Systems Requirements Review (SRR). This four-day meeting served as an information exchange for the various teams at several NASA field centers and supporting contractors.
Space Launch System Spacecraft and Payload Elements: Making Progress Toward First Launch
NASA Technical Reports Server (NTRS)
Schorr, Andrew A.; Creech, Stephen D.
2016-01-01
Significant and substantial progress continues to be accomplished in the design, development, and testing of the Space Launch System (SLS), the most powerful human-rated launch vehicle the United States has ever undertaken. Designed to support human missions into deep space, SLS is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development directorate. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit, and the Ground Systems Development and Operations program is transforming Kennedy Space Center into next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. SLS will deliver a near-term heavy-lift capability for the nation with its 70 metric ton (t) Block 1 configuration, and will then evolve to an ultimate capability of 130 t. The SLS program marked a major milestone with the successful completion of the Critical Design Review in which detailed designs were reviewed and subsequently approved for proceeding with full-scale production. This marks the first time an exploration class vehicle has passed that major milestone since the Saturn V vehicle launched astronauts in the 1960s during the Apollo program. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS -- Exploration Mission-1 (EM-1), an un-crewed mission to orbit the moon and return. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress in on track to meet the initial targeted launch date in 2018. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. This paper will particularly focus on work taking place at Marshall Space Flight Center (MSFC) and United Launch Alliance in Alabama, where upper stage and adapter elements of the vehicle are being constructed and tested. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) Element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on EM-1. Construction is already underway on the EM-1 Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage. Manufacture of the Orion Stage Adapter and the Launch Vehicle Stage Adapter is set to begin at the Friction Stir Facility located at MSFC while structural test articles are either completed (OSA) or nearing completion (Launch Vehicle Stage Adapter). An overview is provided of the launch vehicle capabilities, with a specific focus on SPIE Element qualification/testing progress, as well as efforts to provide access to deep space regions currently not available to the science community through a secondary payload capability utilizing CubeSat-class satellites.
1999-02-09
In the Solid Motor Assembly Building, Cape Canaveral Air Station, STS-93 Mission Specialist Catherine G. Coleman (left) lifts the protective covering to look at the avionics box on the Inertial Upper Stage booster. Next to her are Eric Herrburger (center), with Boeing, and crew member Mission Specialist Michel Tognini (right) of France, who represents the Centre National d'Etudes Spatiales (CNES). STS-93 is scheduled to launch July 9 aboard Space Shuttle Columbia and has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Other STS-93 crew members are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby and Mission Specialist Steven A. Hawley
CLV First Stage Design, Development, Test and Evaluation
NASA Technical Reports Server (NTRS)
Burt, Richard K.; Brasfield, F.
2006-01-01
The Crew Launch Vehicle (CLV) is an integral part of NASA's Exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster first stage derived from the current Space Shuttle SRB, a LOX/hydrogen liquid fueled second stage utilizing a derivative of the Space Shuttle Main Engine (SSME) for propulsion, and a Crew Exploration Vehicle (GEV) composed of Command and Service Modules. This paper deals with current DDT&E planning for the CLV first stage solid rocket booster. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.
Upper Extremity Injuries in NASCAR Drivers and Pit Crew: An Epidemiological Study.
Wertman, Gary; Gaston, R Glenn; Heisel, William
2016-02-01
Understanding the position-specific musculoskeletal forces placed on the body of athletes facilitates treatment, prevention, and return-to-play decisions. While position-specific injuries are well documented in most major sports, little is known about the epidemiology of position-specific injuries in National Association for Stock Car Automobile Racing (NASCAR) drivers and pit crew. To investigate position-specific upper extremity injuries in NASCAR drivers and pit crew members. Descriptive epidemiological study. A retrospective chart review was performed to assess position-specific injuries in NASCAR drivers and pit crew members. Included in the study were patients seen by a single institution between July 2003 and October 2014 with upper extremity injuries from race-related NASCAR events or practices. Charts were reviewed to identify the diagnosis, mechanism of injury, and position of each patient. A total of 226 NASCAR team members were treated between July 2003 and October 2014. Of these, 118 injuries (52%) occurred during NASCAR racing events or practices. The majority of these injuries occurred in NASCAR changers (42%), followed by injuries in drivers (16%), carriers (14%), jack men (11%), fuel men (9%), and utility men (8%). The majority of the pit crew positions are at risk for epicondylitis, while drivers are most likely to experience neuropathies, such as hand-arm vibration syndrome. The changer sustains the most hand-related injuries (42%) on the pit crew team, while carriers commonly sustain injuries to their digits (29%). Orthopaedic injuries in NASCAR vary between positions. Injuries in NASCAR drivers and pit crew members are a consequence of the distinctive forces associated with each position throughout the course of the racing season. Understanding these forces and position-associated injuries is important for preventive measures and facilitates diagnosis and return-to-play decisions so that each team can function at its maximal efficiency.
Ares I-X Launch Vehicle Modal Test Overview
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Bartolotta, Paul A.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.
2010-01-01
The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, is scheduled for launch in 2009. Ares IX will use a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle is not practical within project constraints, modal tests for several configurations in the nominal integration flow were defined to calibrate the FEM. A traceability study by Aerospace Corporation was used to identify the critical modes for the tested configurations. Test configurations included two partial stacks and the full Ares I-X launch vehicle on the Mobile Launcher Platform. This paper provides an overview for companion papers in the Ares I-X Modal Test Session. The requirements flow down, pre-test analysis, constraints and overall test planning are described.
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts confidence testing of a manufactured aluminum panel that will fabricate the Ares I upper stage barrel. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, processes for upper stage barrel fabrication are talking place. Aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Largest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured panel that will be used for the Ares I upper stage barrel fabrication. The aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Space station: Cost and benefits
NASA Technical Reports Server (NTRS)
1983-01-01
Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.
Systems Integration Processes for NASA Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Taylor, James L.; Reuter, James L.; Sexton, Jeffrey D.
2006-01-01
NASA's Exploration Initiative will require development of many new elements to constitute a robust system of systems. New launch vehicles are needed to place cargo and crew in stable Low Earth Orbit (LEO). This paper examines the systems integration processes NASA is utilizing to ensure integration and control of propulsion and nonpropulsion elements within NASA's Crew Launch Vehicle (CLV), now known as the Ares I. The objective of the Ares I is to provide the transportation capabilities to meet the Constellation Program requirements for delivering a Crew Exploration Vehicle (CEV) or other payload to LEO in support of the lunar and Mars missions. The Ares I must successfully provide this capability within cost and schedule, and with an acceptable risk approach. This paper will describe the systems engineering management processes that will be applied to assure Ares I Project success through complete and efficient technical integration. Discussion of technical review and management processes for requirements development and verification, integrated design and analysis, integrated simulation and testing, and the integration of reliability, maintainability and supportability (RMS) into the design will also be included. The Ares I Project is logically divided into elements by the major hardware groupings, and associated management, system engineering, and integration functions. The processes to be described herein are designed to integrate within these Ares I elements and among the other Constellation projects. Also discussed is launch vehicle stack integration (Ares I to CEV, and Ground and Flight Operations integration) throughout the life cycle, including integrated vehicle performance through orbital insertion, recovery of the first stage, and reentry of the upper stage. The processes for decomposing requirements to the elements and ensuring that requirements have been correctly validated, decomposed, and allocated, and that the verification requirements are properly defined to ensure that the system design meets requirements, will be discussed.
NASA Technical Reports Server (NTRS)
Evans, S.; Lewis, H.; Williamsen, J.; Evans, H.; Bohl, W.; Parker, Nelson (Technical Monitor)
2002-01-01
Orbital debris impacts on the International Space Station occur frequently. To date, none of the impacting particles has been sufficiently large to penetrate manned pressurized volumes. We used the Manned Spacecraft Crew Survivability code to evaluate the risk to crew of penetrations of pressurized modules at two assembly stages: after Flight lJ, when the pressurized elements of Kibo, the Japanese Experiment Module, are present, and after Flight lE, when the European Columbus Module is present. Our code is a Monte Carlo simulation of impacts on the Station that considers several potential event types that could lead to crew loss. Among the statistics tabulated by the program is the probability of death of one or more crew members, expressed as the risk factor, R. This risk factor is dependent on details of crew operations during both ordinary circumstances and decompression emergencies, as well as on details of internal module configurations. We conducted trade studies considering these procedure and configuration details to determine the bounds on R at the 1J and 1E stages in the assembly sequence. Here we compare the R-factor bounds, and procedures and configurations that reduce R at these stages.
The J-2X Upper Stage Engine: From Heritage to Hardware
NASA Technical Reports Server (NTRS)
Byrd, THomas
2008-01-01
NASA's Global Exploration Strategy requires safe, reliable, robust, efficient transportation to support sustainable operations from Earth to orbit and into the far reaches of the solar system. NASA selected the Ares I crew launch vehicle and the Ares V cargo launch vehicle to provide that transportation. Guiding principles in creating the architecture represented by the Ares vehicles were the maximum use of heritage hardware and legacy knowledge, particularly Space Shuttle assets, and commonality between the Ares vehicles where possible to streamline the hardware development approach and reduce programmatic, technical, and budget risks. The J-2X exemplifies those goals. It was selected by the Exploration Systems Architecture Study (ESAS) as the upper stage propulsion for the Ares I Upper Stage and the Ares V Earth Departure Stage (EDS). The J-2X is an evolved version ofthe historic J-2 engine that successfully powered the second stage of the Saturn I launch vehicle and the second and third stages of the Saturn V launch vehicle. The Constellation architecture, however, requires performance greater than its predecessor. The new architecture calls for larger payloads delivered to the Moon and demands greater loss of mission reliability and numerous other requirements associated with human rating that were not applied to the original J-2. As a result, the J-2X must operate at much higher temperatures, pressures, and flow rates than the heritage J-2, making it one of the highest performing gas generator cycle engines ever built, approaching the efficiency of more complex stage combustion engines. Development is focused on early risk mitigation, component and subassembly test, and engine system test. The development plans include testing engine components, including the subscale injector, main igniter, powerpack assembly (turbopumps, gas generator and associated ducting and structural mounts), full-scale gas generator, valves, and control software with hardware-in-the-loop. Testing expanded in 2007, accompanied by the refinement of the design through several key milestones. This paper discusses those 2007 tests and milestones, as well as updates key developments in 2008.
Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing
NASA Technical Reports Server (NTRS)
Tuma, M. L.; Chenevert, D. J.
2010-01-01
Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was upgraded. Two new cranes will help move test articles at the test stand and at the Redstone Arsenal railhead where first stage segments will be received in 2011. The Hydrodynamic Support systems (HDSs) used for Saturn and Shuttle have been disassembled and evaluated for use during IVGVT. Analyses indicate that the 45-year-old HDSs can be refurbished to support the Ares I IVGVT. An alternate concept for a pneumatic suspension system is also being explored. A decision on which suspension system configuration to use for IVGVT will be made in 2010. In the next three years, the team will complete the updates to TS 4550, upgrade the test and data collection equipment, and finalize the configurations of the test articles to be used in the IVGVT. With NASA's GVT capabilities reestablished, the FITO team will be well positioned to perform similar work on Ares V, the largest exploration launch vehicle NASA has ever built. The GVT effort continues NASA's 50-year commitment to using testing and data analysis for safer, more reliable launch vehicles.
Development of Weld Inspection of the Ares I Crew Launch Vehicle Upper Stage
NASA Technical Reports Server (NTRS)
Russell, Sam; Ezell, David
2010-01-01
NASA is designing a new crewed launch vehicle called Ares I to replace the Space Shuttle after its scheduled retirement in 2010. This new launch vehicle will build on the Shuttle technology in many ways including using a first stage based upon the Space Shuttle Solid Rocket Booster, advanced aluminum alloys for the second stage tanks, and friction stir welding to assemble the second stage. Friction stir welding uses a spinning pin that is inserted in the joint between two panels that are to be welded. The pin mechanically mixes the metal together below the melting temperature to form the weld. Friction stir welding allows high strength joints in metals that would otherwise lose much of their strength as they are melted during the fusion welding process. One significant change from the Space Shuttle that impacts NDE is the implementation of self-reacting friction stir welding for non-linear welds on the primary metallic structure. The self-reacting technique differs from the conventional technique because the load of the pin tool pressing down on the metal being joined is reacted by a nut on the end of the tool rather than an anvil behind the part. No spacecraft has ever flown with a self-reacting friction stir weld, so this is a major advancement in the manufacturing process, bringing with it a whole new set of challenges for NDE to overcome. The metal microstructure and possible defects are different from other weld processes. Friction plug welds will be used to close out the hole remaining in the radial welds when friction stir welded. This plug welding also has unique challenges in inspection. The current state of development of these inspections will be presented, along with other information pertinent to NDE of the Ares I.
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)
Constellation's First Flight Test: Ares I-X
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Askins, Bruce R.
2010-01-01
On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.
Advanced Space Transportation Program (ASTP)
2006-09-09
Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.
Illustration of Ares I and Ares V Launch Vehicles
NASA Technical Reports Server (NTRS)
2006-01-01
Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.
Wind Tunnel Testing Underway for Next, More Powerful Version of NASA SLS Rocket
2017-01-24
Engineers at NASA's Langley Research Center and Ames Research Center are running tests in supersonic wind tunnels to develop the next, more powerful version of the world's most advanced launch vehicle, the Space Launch System -- capable of carrying humans to deep space destinations. The new wind tunnel tests are for the second generation of SLS. It will deliver a 105-metric-ton (115-ton) lift capacity and will be 364 feet tall in the crew configuration -- taller than the Saturn V that launched astronauts on missions to the moon. The rocket's core stage will be the same, but the newer rocket will feature a powerful exploration upper stage. On SLS’s second flight with Orion, the rocket will carry up to four astronauts on a mission around the moon, in the deep-space proving ground for the technologies and capabilities needed on NASA’s Journey to Mars.
Evans, S; Lewis, H; Williamsen, J; Evans, H; Bohl, W
2004-01-01
Orbital debris impacts on the International Space Station occur frequently. To date, none of the impacting particles has been large enough to penetrate manned pressurized volumes. We used the Manned Spacecraft Crew Survivability code to evaluate the risk to crew of penetrations of pressurized modules at two assembly stages: after Flight 1J, when the pressurized elements of Kibo, the Japanese Experiment Module, are present, and after Flight 1E, when the European Columbus Module is present. Our code is a Monte-Carlo simulation of impacts on the Station that considers several potential event types that could lead to crew loss. Among the statistics tabulated by the program is the probability of death of one or more crew members in the event of a penetration, expressed as the risk factor, R. This risk factor is dependent on details of crew operations during both ordinary circumstances and decompression emergencies, as well as on details of internal module configurations. We conducted trade studies considering these procedure and configuration details to determine the bounds on R at the 1J and 1E stages in the assembly sequence. Here we compare the R-factor bounds, and procedures could that reduce R at these stages. Published by Elsevier Ltd on behalf of COSPAR.
NASA Technical Reports Server (NTRS)
Evans, S.; Lewis, H.; Williamsen, J.; Evans, H.; Bohl, W.
2004-01-01
Orbital debris impacts on the International Space Station occur frequently. To date, none of the impacting particles has been large enough to penetrate manned pressurized volumes. We used the Manned Spacecraft Crew Survivability code to evaluate the risk to crew of penetrations of pressurized modules at two assembly stages: after Flight 1J, when the pressurized elements of Kibo, the Japanese Experiment Module, are present, and after Flight 1E, when the European Columbus Module is present. Our code is a Monte-Carlo simulation of impacts on the Station that considers several potential event types that could lead to crew loss. Among the statistics tabulated by the program is the probability of death of one or more crew members in the event of a penetration, expressed as the risk factor, R. This risk factor is dependent on details of crew operations during both ordinary circumstances and decompression emergencies, as well as on details of internal module configurations. We conducted trade studies considering these procedure and configuration details to determine the bounds on R at the 1J and 1E stages in the assembly sequence. Here we compare the R-factor bounds, and procedures could that reduce R at these stages. Published by Elsevier Ltd on behalf of COSPAR.
Testing for the J-2X Upper Stage Engine
NASA Technical Reports Server (NTRS)
Buzzell, James C.
2010-01-01
NASA selected the J-2X Upper Stage Engine in 2006 to power the upper stages of the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Based on the proven Saturn J-2 engine, this new engine will provide 294,000 pounds of thrust and a specific impulse of 448 seconds, making it the most efficient gas generator cycle engine in history. The engine's guiding philosophy emerged from the Exploration Systems Architecture Study (ESAS) in 2005. Goals established then called for vehicles and components based, where feasible, on proven hardware from the Space Shuttle, commercial, and other programs, to perform the mission and provide an order of magnitude greater safety. Since that time, the team has made unprecedented progress. Ahead of the other elements of the Constellation Program architecture, the team has progressed through System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of February 2010, more than 100,000 development engine parts have been ordered and more than 18,000 delivered. Approximately 1,300 of more than 1,600 engine drawings were released for manufacturing. A major factor in the J-2X development approach to this point is testing operations of heritage J-2 engine hardware and new J-2X components to understand heritage performance, validate computer modeling of development components, mitigate risk early in development, and inform design trades. This testing has been performed both by NASA and its J-2X prime contractor, Pratt & Whitney Rocketdyne (PWR). This body of work increases the likelihood of success as the team prepares for testing the J-2X powerpack and first development engine in calendar 2011. This paper will provide highlights of J-2X testing operations, engine test facilities, development hardware, and plans.
2007-12-12
WASHINGTON, D.C. -- (From left) Brewster Shaw, vice president and genral manager of Boeing Space Exploration; Jeff Hanley, Constellation Program manager; Danny Davis, Upper Stage Element manager; Steve Cook, Ares Project manager; Doug Cooke, deputy associate administrator for Exploration Systems; and Rick Gilbrech, associate administrator for Space Exploration, stand with a model of the Ares I rocket on Dec. 12, 2007, at NASA Headquarters in Washington. NASA has selected The Boeing Company of Huntsville, Ala., as the prime contractor to produce, deliver and install avionics systsems for the Ares I rocket that will launch the Orion crew exploration vehicle into orbit. The selection is the final major contract award for Ares I. Photo credit: NASA/Paul E. Alers
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are subjected to confidence panel tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California.
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image, depicts a manufactured aluminum panel, that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2006-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2006-08-08
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2008-02-15
SHOWN IS A CONCEPT IMAGE OF THE ARES V EARTH DEPARTURE STAGE AND LUNAR SURFACE ACCESS MODULE DOCKED WITH THE ORION CREW EXPLORATION VEHICLE IN EARTH ORBIT. THE DEPARTURE STAGE, POWERED BY A J-2X ENGINE, IS NEEDED TO ESCAPE EARTH'S GRAVITY AND SEND THE CREW VEHICLE AND LUNAR MODULE ON THEIR JOURNEY TO THE MOON.
NASA Astrophysics Data System (ADS)
Cormier, Len
1992-07-01
The Space Van is a proposed commercial launch vehicle that is designed to carry 1150 kg to a space-station orbit for a price of $1,900,000 per flight in 1992 dollars. This price includes return on preoperational investment. Recurring costs are expected to be about $840,000 per flight. The Space Van is a fully reusable, assisted-single-stage-to orbit system. The most innovative new feature of the Space Van system is the assist-stage concept. The assist stage uses only airbreathing engines for vertical takeoff and vertical landing in the horizontal attitude and for launching the rocket-powered orbiter stage at mach 0.8 and an altitude of about 12 km. The primary version of the orbiter is designed for cargo-only without a crew. However, a passenger version of the Space Van should be able to carry a crew of two plus six passengers to a space-station orbit. Since the Space Van is nearly single-stage, performance to polar orbit drops off significantly. The cargo version should be capable of carrying 350 kg to a 400-km polar orbit. In the passenger version, the Space Van should be able to carry two crew members - or one crew member plus a passenger.
Commerical Crew Program - SpaceX
2016-06-28
The inter-stage of a SpaceX Falcon 9 rocket inside the company's manufacturing facility. SpaceX is developing its Crew Dragon spacecraft and Falcon 9 rocket in partnership with NASA's Commercial Crew Program to carry astronauts to and from the International Space Station.
NASA Technical Reports Server (NTRS)
Otte, Neil E.; Lyles, Garry; Reuter, James L.; Davis, Daniel J.
2008-01-01
Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions. The technical personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo-era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. The Ares Projects Office, resident at Marshall, is managing the design and development of America's new space fleet, including the Ares I, which will loft the Orion crew capsule for its first test flight in the 2013 timeframe, as well as the heavy-lift Ares V, which will round out the capability to leave low-Earth orbit once again, when it delivers the Altair lunar lander to orbit late next decade. This paper provides information about the approach to integrating the Ares I stack and designing the upper stage in house, using unique facilities and an expert workforce to revitalize the nation's space exploration resources.
Crew activities, science, and hazards of manned missions to Mars
NASA Technical Reports Server (NTRS)
Clark, Benton C.
1988-01-01
The crew scientific and nonscientific activities that will occur at each stage of a mission to Mars are examined. Crew activities during the interplanetary flight phase will include simulations, maintenance and monitoring, communications, upgrading procedures and operations, solar activity monitoring, cross-training and sharpening of skills, physical conditioning, and free-time activities. Scientific activities will address human physiology, human psychology, sociology, astronomy, space environment effects, manufacturing, and space agriculture. Crew activities on the Martian surface will include exploration, construction, manufacturing, food production, maintenance and training, and free time. Studies of Martian geology and atmosphere, of the life forms that may exist there, and of the Martian moons will occur on the planet's surface. Crew activities and scientific studies that will occur in Mars orbit, and the hazards relevant to each stage of the mission, are also addressed.
Design/Development of Spacecraft and Module Crew Compartments
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.
2010-01-01
This slide presentation reviews the design and development of crew compartments for spacecraft and for modules. The Crew Compartment or Crew Station is defined as the spacecraft interior and all other areas the crewman interfaces inside the cabin, or may potentially interface.It uses examples from all of the human rated spacecraft. It includes information about the process, significant drivers for the design, habitability, definitions of models, mockups, prototypes and trainers, including pictures of each stage in the development from Apollo, pictures of the space shuttle trainers, and International Space Station trainers. It further reviews the size and shape of the Space Shuttle orbiter crew compartment, and the Apollo command module and the lunar module. It also has a chart which reviews the International Space Station (ISS) internal volume by stage. The placement and use of windows is also discussed. Interestingly according to the table presented, the number 1 rated piece of equipment for recreation was viewing windows. The design of crew positions and restraints, crew translation aids and hardware restraints is shown with views of the restraints and handholds used from the Apollo program through the ISS.
Earth Observations taken by the Expedition 39 Crew
2014-05-03
ISS039-E-018314 (3 May 2014) --- One of the Expedition 39 crew members aboard the International Space Station recorded this still image of the Aurora Australis when the orbital outpost was passing over the Indian Ocean on May 3, 2014. Hardware on the station is seen as a silhouette in upper left.
Reflected view of the TDRS in the STS-6 Challengers payload bay
1983-04-04
STS006-38-844 (4 April 1983) --- The stowed tracking and data relay satellite (TDRS) and its inertial upper stage (IUS) are seen in duplicate in this 70mm frame taken by the STS-6 crew aboard the Earth-orbiting space shuttle Challenger on its first day in space. A reflection in the aft window of the flight deck resulted in the mirage effect of the “second” TDRS. The three canisters in the aft foreground contain experiments of participants in NASA’s STS getaway special (GAS) program. Onboard the second reusable shuttle for this five-day flight were astronauts Paul J. Weitz, Karol J. Bobko, Dr. F. Story Musgrave and Donald H. Peterson. Photo credit: NASA
Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond
NASA Technical Reports Server (NTRS)
Schorr, Andrew A.; Smith, David Alan; Holcomb, Shawn; Hitt, David
2017-01-01
While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, SLS is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations (GSDO) program is transforming Kennedy Space Center (KSC) into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress is on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility (MAF) in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on the first flight of SLS. The element has overseen production of the Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage, which was manufactured at United Launch Alliance (ULA) in Decatur, Alabama, prior to being shipped to Florida for flight preparations. Manufacture of the OSA and the Launch Vehicle Stage Adapter (LVSA) took place at the Friction Stir Facility located at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Marshall is also home to the Integrated Structural Test of the ICPS, LVSA, and OSA, subjecting the stacked components to simulated stresses of launch. The SPIE Element is also overseeing integration of 13 "CubeSat" secondary payloads that will fly on the first flight of SLS, providing access to deep space regions in a way currently not available to the science community. At the same time as this preparation work is taking place toward the first launch of SLS, however, the Space Launch System Program is actively working toward its second launch. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 t to LEO, the Block 1B vehicle will increase that capability to 105 t. For that flight, the new configuration introduces two major new elements to the vehicle - an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a "payload bay" for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Welding is taking place on the second rocket's core stage. Flight hardware production has begun on booster components. An RS-25 engine slated for that flight has been tested. Development work is taking place on the EUS, with contracts in place for both the stage and the RL10 engines which will power it. (The EUS will use four RL10 engines, an increase from one on the ICPS.) For the crew configuration of the Block 1B vehicle, the SLS SPIE element is managing the USA and accompanying Payload Adapter, which will accommodate both large payloads co-manifested with Orion and small-satellite secondary payloads. This co-manifested payload capacity will be instrumental for missions into the proving ground around the moon, where NASA will test new systems and demonstrate new capabilities needed for human exploration farther into deep space.
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the preparation and placement of a confidence ring for friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are manufactured and subjected to confidence tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Preparing America for Deep Space Exploration Episode 16: Exploration On The Move
2018-02-22
Preparing America for Deep Space Exploration Episode 16: Exploration On The Move NASA is pressing full steam ahead toward sending humans farther than ever before. Take a look at the work being done by teams across the nation for NASA’s Deep Space Exploration System, including the Space Launch System, Orion, and Exploration Ground Systems programs, as they continue to propel human spaceflight into the next generation. Highlights from the fourth quarter of 2017 included Orion parachute drop tests at the Yuma Proving Ground in Arizona; the EM-1 Crew Module move from Cleanroom to Workstation at Kennedy Space Center; Crew Training, Launch Pad Evacuation Scenario, and Crew Module Vibration and Legibility Testing at NASA’s Johnson Space Center; RS-25 Rocket Engine Testing at Stennis Space Center; Core Stage Engine Section arrival, Core Stage Pathfinder; LH2 Qualification Tank; Core Stage Intertank Umbilical lift at Mobile Launcher; Crew Access Arm move to Mobile Launcher; Water Flow Test at Launch Complex 39-B.
Calculations of reliability predictions for the Apollo spacecraft
NASA Technical Reports Server (NTRS)
Amstadter, B. L.
1966-01-01
A new method of reliability prediction for complex systems is defined. Calculation of both upper and lower bounds are involved, and a procedure for combining the two to yield an approximately true prediction value is presented. Both mission success and crew safety predictions can be calculated, and success probabilities can be obtained for individual mission phases or subsystems. Primary consideration is given to evaluating cases involving zero or one failure per subsystem, and the results of these evaluations are then used for analyzing multiple failure cases. Extensive development is provided for the overall mission success and crew safety equations for both the upper and lower bounds.
Earth observation taken by the Expedition 29 crew
2011-11-16
ISS029-E-042846 (16 Nov. 2011) --- Parts of the U.S. and Mexico are seen in this image photographed by one of the Expedition 29 crew members from the International Space Station as it flew above the Pacific Ocean on Nov. 16, 2011. The Salton Sea is in the center of the frame, with the Gulf of Cortez, Mexico's Baja California and the Colorado River in the upper right quadrant. The Los Angeles Basin and Santa Catalina and San Clemente islands are at the bottom center edge of the image. Lake Mead and the Las Vegas area of Nevada even made it into the frame in the upper left quadrant.
NASA Technical Reports Server (NTRS)
Snoddy, Jim
2006-01-01
The United States (U.S.) Vision for Space Exploration directs NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. This decision was reached after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by building on the Apollo Program and other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.
Model of the Ares V Launch System
NASA Technical Reports Server (NTRS)
2006-01-01
This is a studio photograph of a model of the Ares V rocket. Named for the Greek god associated with Mars, Ares vehicles will return humans to the moon and later take them to Mars and other destinations. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars, while the Crew will be carried by the Ares I. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.
The J-2X Oxidizer Turbopump - Design, Development, and Test
NASA Technical Reports Server (NTRS)
Brozowski, Laura A.; Beatty, D. Preston; Shinguchi, Brian H.; Marsh, Matthew W.
2011-01-01
Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the Design, Development, Test, and Evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety-four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine which was a design upgrade of the flight proven J-2 engine used to put American astronauts on the moon. This paper will discuss the design trades and analyses performed to achieve the required uprated Oxidizer Turbopump performance; structural margins and rotordynamic margins; incorporate updated materials and fabrication capability; and reflect lessons learned from legacy and existing Liquid Rocket Propulsion Engine turbomachinery. These engineering design, analysis, fabrication and assembly activities support the Oxidizer Turbopump readiness for J-2X engine test in 2011.
Constellation Training Facility Support
NASA Technical Reports Server (NTRS)
Flores, Jose M.
2008-01-01
The National Aeronautics and Space Administration is developing the next set of vehicles that will take men back to the moon under the Constellation Program. The Constellation Training Facility (CxTF) is a project in development that will be used to train astronauts, instructors, and flight controllers on the operation of Constellation Program vehicles. It will also be used for procedure verification and validation of flight software and console tools. The CxTF will have simulations for the Crew Exploration Vehicle (CEV), Crew Module (CM), CEV Service Module (SM), Launch Abort System (LAS), Spacecraft Adapter (SA), Crew Launch Vehicle (CLV), Pressurized Cargo Variant CM, Pressurized Cargo Variant SM, Cargo Launch Vehicle, Earth Departure Stage (EDS), and the Lunar Surface Access Module (LSAM). The Facility will consist of part-task and full-task trainers, each with a specific set of mission training capabilities. Part task trainers will be used for focused training on a single vehicle system or set of related systems. Full task trainers will be used for training on complete vehicles and all of its subsystems. Support was provided in both software development and project planning areas of the CxTF project. Simulation software was developed for the hydraulic system of the Thrust Vector Control (TVC) of the ARES I launch vehicle. The TVC system is in charge of the actuation of the nozzle gimbals for navigation control of the upper stage of the ARES I rocket. Also, software was developed using C standards to send and receive data to and from hand controllers to be used in CxTF cockpit simulations. The hand controllers provided movement in all six rotational and translational axes. Under Project Planning & Control, support was provided to the development and maintenance of integrated schedules for both the Constellation Training Facility and Missions Operations Facilities Division. These schedules maintain communication between projects in different levels. The CxTF support provided is one that requires continuous maintenance since the project is still on initial development phases.
Combining near-term technologies to achieve a two-launch manned Mars mission
NASA Technical Reports Server (NTRS)
Baker, David A.; Zubrin, Robert M.
1990-01-01
This paper introduces a mission architecture called 'Mars Direct' which brings together several technologies and existing hardware into a novel mission strategy to achieve a highly capable and affordable approach to the Mars and Lunar exploratory objective of the Space Exploration Initiative (SEI). Three innovations working in concept cut the initial mass by a factor of three, greatly expand out ability to explore Mars, and eliminate the need to assemble vehicles in Earth orbit. The first innovation, a hybrid Earth/Mars propellant production process works as follows. An Earth Return Vehicle (ERV), tanks loaded with liquid hydrogen, is sent to Mars. After landing, a 100 kWe nuclear reactor is deployed which powers a propellant processor that combines onboard hydrogen with Mars' atmospheric CO2 to produce methane and water. The water is then electrolized to create oxygen and, in the process, liberates the hydrogen for further processing. Additional oxygen is gained directly by decomposition of Mars' CO2 atmosphere. This second innovation, a hybrid crew transport/habitation method, uses the same habitat for transfer to Mars as well as for the 18 month stay on the surface. The crew return via the previously launched ERV in a modest, lightweight return capsule. This reduces mission mass for two reasons. One, it eliminates the unnecessary mass of two large habitats, one in orbit and one on the surface. And two, it eliminates the need for a trans-Earth injection stage. The third innovation is a launch vehicle optimized for Earth escape. The launch vehicle is a Shuttle Derived Vehicle (SDV) consisting of two solid rocket boosters, a modified external tank, four space shuttle main engines and a large cryogenic upper stage mounted atop the external tank. This vehicle can throw 40 tonnes (40,000 kg) onto a trans-Mars trajectory, which is about the same capability as Saturn-5. Using two such launches, a four person mission can be carried out every twenty-six months with minimal impact on shared Shuttle launch facilities at Kennedy Space Center (KSC). The same launch vehicle, habitat, and upper stage of the ERV can also be used to perform Lunar missions. It is concluded that the Mars Direct architecture offers a cost effective approach to accomplishing the Lunar and Mars goals of the Space Exploration Initiative.
NASA Technical Reports Server (NTRS)
Kromis, Phillip A.
2010-01-01
This viewgraph presentation describes the modeling and simulation of the Ares Upper Stage Transportation, lifting, stacking, and mating operations within the Vehicle Assembly Building (VAB) at Kennedy Space Center (KSC). An aerial view of KSC Launch Shuttle Complex, two views of the Delmia process control layout, and an upper stage move subroutine and breakdown are shown. An overhead image of the VAB and the turning basin along with the Pegasus barge at the turning basin are also shown. This viewgraph presentation also shows the actual design and the removal of the mid-section spring tensioners, the removal of the AFT rear and forward tensioners tie downs, and removing the AFT hold down post and mount. US leaving the Pegasus Barge, the upper stage arriving at transfer aisle, upper stage receiving/inspection in transfer aisle, and an overhead view of upper stage receiving/inspection in transfer aisle are depicted. Five views of the actual connection of the cabling to the upper stage aft lifting hardware are shown. The upper stage transporter forward connector, two views of the rotation horizontal to vertical, the disconnection of the rear bolt ring cabling, the lowering of the upper stage to the inspection stand, disconnection of the rear bolt ring from the upper stage, the lifting of the upper stage and inspection of AFT fange, and the transfer of upper stage in an integrated stack are shown. Six views of the mating of the upper stage to the first stage are depicted. The preparation, inspection, and removal of the forward dome are shown. The upper stage mated on the integrated stack and crawler is also shown. This presentation concludes with A Rapid Upper Limb Assessment (RULA) utilizing male and female models for assessing risk factors to the upper extremities of human beings in an actual physical environment.
NASA Technical Reports Server (NTRS)
Chicatelli, Amy; Fulton, Chris; Connolly, Joe; Hunker, Keith
2010-01-01
As a replacement to the current Shuttle, the Ares I rocket and Orion crew module are currently under development by the National Aeronautics and Space Administration (NASA). This new launch vehicle is segmented into major elements, one of which is the Upper Stage (US). The US is further broken down into subsystems, one of which is the Thrust Vector Control (TVC) subsystem which gimbals the US rocket nozzle. Nominal and off-nominal simulations for the US TVC subsystem are needed in order to support the development of software used for control systems and diagnostics. In addition, a clear and complete understanding of the effect of off-nominal conditions on the vehicle flight dynamics is desired. To achieve these goals, a simulation of the US TVC subsystem combined with the Ares I vehicle as developed. This closed-loop dynamic model was created using Matlab s Simulink and a modified version of a vehicle simulation, MAVERIC, which is currently used in the Ares I project and was developed by the Marshall Space Flight Center (MSFC). For this report, the effects on the flight trajectory of the Ares I vehicle are investigated after failures are injected into the US TVC subsystem. The comparisons of the off-nominal conditions observed in the US TVC subsystem with those of the Ares I vehicle flight dynamics are of particular interest.
2006-09-29
The Stennis Space Center conducted the final space shuttle main engine test on its A-1 Test Stand Friday. The A-1 Test Stand was the site of the first test on a shuttle main engine in 1975. Stennis will continue testing shuttle main engines on its A-2 Test Stand through the end of the Space Shuttle Program in 2010. The A-1 stand begins a new chapter in its operational history in October. It will be temporarily decommissioned to convert it for testing the J-2X engine, which will power the upper stage of NASA's new crew launch vehicle, the Ares I. Although this ends the stand's work on the Space Shuttle Program, it will soon be used for the rocket that will carry America's next generation human spacecraft, Orion.
2009-01-27
CAPE CANAVERAL, Fla. – In Vehicle Assembly Building high bay 4, cables from an overhead crane lower ballast into segment 7 for the Ares I-X rocket. These ballast assemblies are being installed in the upper stage segments 1 and 7 and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller
2009-01-27
CAPE CANAVERAL, Fla. – In Vehicle Assembly Building high bay 4, workers attached cables to ballast that will be installed in segment 7 for the Ares I-X rocket. These ballast assemblies are being installed in the upper stage segments 1 and 7 and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Weber, Gary A.
1991-01-01
During the 90-day study, support was provided to NASA in defining a point-of-departure space transfer vehicle (STV). The resulting STV concept was performance optimized with a two-stage LTV/LEV configuration. Appendix A reports on the effort during this period of the study. From the end of the 90-day study until the March Interim Review, effort was placed on optimizing the two-stage vehicle approach identified in the 90-day effort. After the March Interim Review, the effort was expanded to perform a full architectural trade study with the intent of developing a decision database to support STV system decisions in response to changing SEI infrastructure concepts. Several of the architecture trade studies were combined in a System Architecture Trade Study. In addition to this trade, system optimization/definition trades and analyses were completed and some special topics were addressed. Program- and system-level trade study and analyses methodologies and results are presented in this section. Trades and analyses covered in this section are: (1) a system architecture trade study; (2) evolution; (3) safety and abort considerations; (4) STV as a launch vehicle upper stage; and (5) optimum crew and cargo split.
Earth observation taken by the Expedition 28 crew
2011-09-07
ISS028-E-043559 (7 Sept. 2011) --- This view, from the camera of an Expedition 28 crew member onboard the International Space Station, looks from the northwest toward southeast and covers many counties in southeast Texas that have been heavily affected by dozens of wild fires. Houston can be seen near frame center and the Gulf of Mexico takes up the upper right quadrant of the frame.
Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions
NASA Technical Reports Server (NTRS)
Chai, Patrick R.; Merrill, Raymond G.; Qu, Min
2015-01-01
NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.
Developing Primary Propulsion for the Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Priskos, Alex S.; Williams, Thomas L.; Ezell, Timothy G.; Burt, Rick
2007-01-01
In accordance with the U.S. Vision for Space Exploration, NASA has been tasked to send human beings to the moon, Mars, and beyond. The first stage of NASA's new Ares I crew launch vehicle (Figure 1), which will loft the Orion crew exploration vehicle into low-Earth orbit early next decade, will consist of a Space Shuttle-derived five-segment Reusable Solid Rocket Booster (RSRB); a pair of similar RSRBs also will be used on the Ares V cargo launch vehicle's core stage propulsion system. This paper will discuss the basis for choosing this particular propulsion system; describe the activities the Exploration Launch Projects (ELP) Office is engaged in at present to develop the first stage; and offer a preview of future development activities related to the first Ares l integrated test flight, which is planned for 2009.
NASA's Space Launch System: A New Opportunity for CubeSats
NASA Technical Reports Server (NTRS)
Hitt, David; Robinson, Kimberly F.; Creech, Stephen D.
2016-01-01
Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. Together with the Orion crew vehicle and ground operations at NASA's Kennedy Space Center in Florida, SLS is a foundational capability for NASA's Journey to Mars. From the beginning of the SLS flight program, utilization of the vehicle will also include launching secondary payloads, including CubeSats, to deep-space destinations. Currently, SLS is making rapid progress toward readiness for its first launch in 2018, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, Exploration Mission-1, SLS will launch an uncrewed test flight of the Orion spacecraft into distant retrograde orbit around the moon. Accompanying Orion on SLS will be 13 CubeSats, which will deploy in cislunar space. These CubeSats will include not only NASA research, but also spacecraft from industry and international partners and potentially academia. Following its first flight and potentially as early as its second, which will launch a crewed Orion spacecraft into cislunar space, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from Block 1, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for CubeSats. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the opportunities the vehicle offers for CubeSats and secondary payloads, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018.
Space Launch System Spacecraft and Payload Elements: Making Progress Toward First Launch
NASA Technical Reports Server (NTRS)
Schorr, Andrew A.; Creech, Stephen D.; Ogles, Michael; Hitt, David
2016-01-01
Significant and substantial progress continues to be accomplished in the design, development, and testing of the Space Launch System (SLS), the most powerful human-rated launch vehicle the United States has ever undertaken. Designed to support human missions into deep space, SLS is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development directorate. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit, and the Ground Systems Development and Operations (GSDO) program is transforming Kennedy Space Center (KSC) into next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. SLS will deliver a near-term heavy-lift capability for the nation with its 70 metric ton Block 1 configuration, and will then evolve to an ultimate capability of 130 metric tons. The SLS program marked a major milestone with the successful completion of the Critical Design Review in which detailed designs were reviewed and subsequently approved for proceeding with full-scale production. This marks the first time an exploration class vehicle has passed that major milestone since the Saturn V vehicle launched astronauts in the 1960s during the Apollo program. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS - Exploration Mission-1 (EM-1), an uncrewed mission to orbit the moon and return, and progress in on track to meet the initial targeted launch date in 2018. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility (MAF) in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. This paper will particularly focus on work taking place at Marshall Space Flight Center (MSFC) and United Launch Alliance (ULA) in Alabama, where upper stage and adapter elements of the vehicle are being constructed and tested. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) Element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on EM-1. Construction is already underway on the EM-1 Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage. Manufacture of the Orion Stage Adapter and the Launch Vehicle Stage Adapter is set to begin at the Friction Stir Facility located at MSFC while structural test articles are either completed (OSA) or nearing completion (Launch Vehicle Stage Adapter). An overview is provided of the launch vehicle capabilities, with a specific focus on SPIE Element qualification/testing progress, as well as efforts to provide access to deep space regions currently not available to the science community through a secondary payload capability utilizing CubeSat-class satellites.
Internal Arrangement of Skylab Workshop Crew Quarters
NASA Technical Reports Server (NTRS)
1972-01-01
This image depicts a layout of the Skylab workshop 1-G trainer crew quarters. At left, in the sleep compartment, astronauts slept strapped to the walls of cubicles and showered at the center. Next right was the waste management area where wastes were processed and disposed. Upper right was the wardroom where astronauts prepared their meals and foods were stored. In the experiment operation area, upper left, against the far wall, was the lower-body negative-pressure device (Skylab Experiment M092) and the Ergometer for the vectorcardiogram experiment (Skylab Experiment M063). The trainers and mockups were useful in the developmental phase, while engineers and astronauts were still working out optimum designs. They provided much data applicable to the manufacture of the flight articles.
Earth Observations taken by the Expedition 13 crew
2006-08-27
ISS013-E-69718 (27 August 2006) --- This vertical view of Hurricane Ernesto was taken by the crew of the International Space Station on Sunday, Aug. 27, 2006, from an altitude of about 215 miles. At that time, Ernesto was approaching Cuba and was expected to eventually make landfall on the coast of southern Florida. Part of a Russian spacecraft, docked to the orbital outpost, is visible in upper left corner.
Earth observation taken by the Expedition 35 crew
2013-04-23
ISS035-E-027434 (23 April 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station recorded this widespread image covering parts of Mexico, California and Nevada: Grand Canyon to Lake Mead and Las Vegas area (lower right corner), and westward to include the Gulf of California (beneath the docked Russian vehicle at upper left), the Salton Sea, Los Angeles Basin, and Great Valley.
The IRIS-GUS Shuttle Borne Upper Stage System
NASA Technical Reports Server (NTRS)
Tooley, Craig; Houghton, Martin; Bussolino, Luigi; Connors, Paul; Broudeur, Steve (Technical Monitor)
2002-01-01
This paper describes the Italian Research Interim Stage - Gyroscopic Upper Stage (IRIS-GUS) upper stage system that will be used to launch NASA's Triana Observatory from the Space Shuttle. Triana is a pathfinder earth science mission being executed on rapid schedule and small budget, therefore the mission's upper stage solution had to be a system that could be fielded quickly at relatively low cost and risk. The building of the IRIS-GUS system wa necessary because NASA lost the capability to launch moderately sized upper stage missions fro the Space Shuttle when the PAM-D system was retired. The IRIS-GUS system restores this capability. The resulting system is a hybrid which mates the existing, flight proven IRIS (Italian Research Interim Stage) airborne support equipment to a new upper stage, the Gyroscopic Upper Stage (GUS) built by the GSFC for Triana. Although a new system, the GUS exploits flight proven hardware and design approaches in most subsystems, in some cases implementing proven design approaches with state-of-the-art electronics. This paper describes the IRIS-GUS upper stage system elements, performance capabilities, and payload interfaces.
46 CFR 62.20-3 - Plans for information.
Code of Federal Regulations, 2011 CFR
2011-10-01
... detected by the crew, alternatives available to the crew, and possible design verification tests necessary... reliability of the design. It should be conducted to a level of detail necessary to demonstrate compliance... at an early stage of design. ...
STS-44 DSP satellite and IUS during preflight processing at Cape Canaveral
1991-10-19
S91-50773 (19 Oct 1991) --- At a processing facility on Cape Canaveral Air Force Station, the Defense Support Program (DSP) satellite is being transferred into the payload canister transporter for shipment to Launch Pad 39A at KSC. The DSP will be deployed during Space Shuttle Mission STS-44 later this year. It is a surveillance satellite, developed for the Department of Defense, which can detect missile and space launches, as well as nuclear detonations. The Inertial Upper Stage which will boost the DSP satellite to its proper orbital position is the lower portion of the payload. DSP satellites have comprised the spaceborne segment of NORAD's (North American Air Defense Command) Tactical Warning and Attack Assessment System since 1970. STS- 44, carrying a crew of six, will be a ten-day flight.
1991-10-02
The STS-48 crew portrait includes (front row left to right): Mark N. Brown, mission specialist; John O. Creighton, commander; and Kenneth S. Reightler, pilot. Pictured on the back row (left to right) are mission specialists Charles D. (Sam) Gemar, and James F. Buchli. The crew of five launched aboard the Space Shuttle Discovery on September 12, 1991 at 7:11:04 pm (EDT). The primary payload of the mission was the Upper Atmosphere Research Satellite (UARS).
1999-08-27
STS048-S-001 (July 1991) --- Designed by the astronaut crew members, the patch represents the space shuttle orbiter Discovery in orbit about Earth after deploying the Upper Atmospheric Research Satellite (UARS) depicted in block letter style. The stars are those in the northern hemisphere as seen in the fall and winter when UARS will begin its study of Earth's atmosphere. The color bands on Earth's horizon, extending up to the UARS spacecraft, depict the study of Earth's atmosphere. The triangular shape represents the relationship among the three atmospheric processes that determine upper atmospheric structure and behavior: chemistry, dynamics and energy. In the words of the crew members, "This continuous process brings life to our planet and makes our planet unique in the solar system." The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced. Photo credit: NASA
Mars Conjunction Crewed Missions With a Reusable Hybrid Architecture
NASA Technical Reports Server (NTRS)
Merrill, Raymond G.; Strange, Nathan J.; Qu, Min; Hatten, Noble
2015-01-01
A new crew Mars architecture has been developed that provides many potential benefits for NASA-led human Mars moons and surface missions beginning in the 2030s or 2040s. By using both chemical and electric propulsion systems where they are most beneficial and maintaining as much orbital energy as possible, the Hybrid spaceship that carries crew round trip to Mars is pre-integrated before launch and can be delivered to orbit by a single launch. After check-out on the way to cis-lunar space, it is refueled and can travel round trip to Mars in less than 1100 days, with a minimum of 300 days in Mars vicinity (opportunity dependent). The entire spaceship is recaptured into cis-lunar space and can be reused. The spaceship consists of a habitat for 4 crew attached to the Hybrid propulsion stage which uses long duration electric and chemical in-space propulsion technologies that are in use today. The hybrid architecture's con-ops has no in-space assembly of the crew transfer vehicle and requires only rendezvous of crew in a highly elliptical Earth orbit for arrival at and departure from the spaceship. The crew transfer vehicle does not travel to Mars so it only needs be able to last in space for weeks and re-enter at lunar velocities. The spaceship can be refueled and resupplied for multiple trips to Mars (every other opportunity). The hybrid propulsion stage for crewed transits can also be utilized for cargo delivery to Mars every other opportunity in a reusable manner to pre-deploy infrastructure required for Mars vicinity operations. Finally, the Hybrid architecture provides evolution options for mitigating key long-duration space exploration risks, including crew microgravity and radiation exposure.
NASA Technical Reports Server (NTRS)
Stein, William B.; Holt, K.; Holton, M.; Williams, J. H.; Butt, A.; Dervan, M.; Sharp, D.
2010-01-01
The Ares I launch vehicle is an integral part of NASA s Constellation Program, providing a foundation for a new era of space access. The Ares I is designed to lift the Orion Crew Module and will enable humans to return to the Moon as well as explore Mars.1 The Ares I is comprised of two inline stages: a Space Shuttle-derived five-segment Solid Rocket Booster (SRB) First Stage (FS) and an Upper Stage (US) powered by a Saturn V-derived J-2X engine. A dedicated Roll Control System (RoCS) located on the connecting interstage provides roll control prior to FS separation. Induced yaw and pitch moments are handled by the SRB nozzle vectoring. The FS SRB operates for approximately two minutes after which the US separates from the vehicle and the US Reaction Control System (ReCS) continues to provide reaction control for the remainder of the mission. A representation of the Ares I launch vehicle in the stacked configuration and including the Orion Crew Exploration Vehicle (CEV) is shown in Figure 1. Each Reaction Control System (RCS) design incorporates a Gaseous Helium (GHe) pressurization system combined with a monopropellant Hydrazine (N2H4) propulsion system. Both systems have two diametrically opposed thruster modules. This architecture provides one failure tolerance for function and prevention of catastrophic hazards such as inadvertent thruster firing, bulk propellant leakage, and over-pressurization. The pressurization system on the RoCS includes two ambient pressure-referenced regulators on parallel strings in order to attain the required system level single Fault Tolerant (FT) design for function while the ReCS utilizes a blow-down approach. A single burst disk and relief valve assembly is also included on the RoCS to ensure single failure tolerance for must-not-occur catastrophic hazards. The Reaction Control Systems are designed to support simultaneously firing multiple thrusters as required
Earth Observations taken by the Expedition 31 Crew
2012-06-02
ISS031-E-84006 (2 June 2012) --- This digital image from the Expedition 31 crew aboard the International Space Station is one of a series from a mounted, automated, and nighttime session of a still camera when viewed in sequence shows the flame-ring associated with wild fires in the Southwest slip by in the upper right while the lights of the El Paso-Las Cruces rise from bottom center. A Russian spacecraft is docked to the station
NASA Technical Reports Server (NTRS)
Greene, WIlliam
2007-01-01
The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020 by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage (EDS). This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo era experts to derive other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.
NASA Technical Reports Server (NTRS)
Greene, William D.; Snoddy, Jim
2007-01-01
The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo-era experts to derive other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.
Thrust vector control of upper stage with a gimbaled thruster during orbit transfer
NASA Astrophysics Data System (ADS)
Wang, Zhaohui; Jia, Yinghong; Jin, Lei; Duan, Jiajia
2016-10-01
In launching Multi-Satellite with One-Vehicle, the main thruster provided by the upper stage is mounted on a two-axis gimbal. During orbit transfer, the thrust vector of this gimbaled thruster (GT) should theoretically pass through the mass center of the upper stage and align with the command direction to provide orbit transfer impetus. However, it is hard to be implemented from the viewpoint of the engineering mission. The deviations of the thrust vector from the command direction would result in large velocity errors. Moreover, the deviations of the thrust vector from the upper stage mass center would produce large disturbance torques. This paper discusses the thrust vector control (TVC) of the upper stage during its orbit transfer. Firstly, the accurate nonlinear coupled kinematic and dynamic equations of the upper stage body, the two-axis gimbal and the GT are derived by taking the upper stage as a multi-body system. Then, a thrust vector control system consisting of the special attitude control of the upper stage and the gimbal rotation of the gimbaled thruster is proposed. The special attitude control defined by the desired attitude that draws the thrust vector to align with the command direction when the gimbal control makes the thrust vector passes through the upper stage mass center. Finally, the validity of the proposed method is verified through numerical simulations.
Space Launch System Mission Flexibility Assessment
NASA Technical Reports Server (NTRS)
Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan
2012-01-01
The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.
Earth Observation taken by the STS-125 Crew
2009-05-13
S125-E-007099 (13 May 2009) --- Part of southern California, including the San Diego area, and the border with Mexico can be seen in this STS-125 still photo taken from the Space Shuttle Atlantis as it passed over the Pacific Coast. The Salton Sea can be seen at upper right. The greater Los Angeles area is just out of frame at upper left.
1969-07-06
The astronauts enter the spacecraft. After launch and Saturn V first-stage burnout and jettison, the S-II second stage ignites. The crew checks spacecraft systems in Earth orbit before the S-IVB third stage ignites the second time to send Apollo 11 to the Moon
Astronaut Stephen Oswald and fellow crew members on middeck
NASA Technical Reports Server (NTRS)
1995-01-01
Astronaut Stephen S. Oswald (center), STS-67 mission commander, is seen with two of his fellow crew members and an experiment which required a great deal of his time on the middeck of the Earth orbiting Space Shuttle Endeavour. Astronaut John M. Grunsfeld inputs mission data on a computer while listening to a cassette. Astronaut William G. Gregory (right edge of frame), pilot, consults a check list. The Middeck Active Control Experiment (MACE), not in use here, can be seen in upper center.
Explosion/Blast Dynamics for Constellation Launch Vehicles Assessment
NASA Technical Reports Server (NTRS)
Baer, Mel; Crawford, Dave; Hickox, Charles; Kipp, Marlin; Hertel, Gene; Morgan, Hal; Ratzel, Arthur; Cragg, Clinton H.
2009-01-01
An assessment methodology is developed to guide quantitative predictions of adverse physical environments and the subsequent effects on the Ares-1 crew launch vehicle associated with the loss of containment of cryogenic liquid propellants from the upper stage during ascent. Development of the methodology is led by a team at Sandia National Laboratories (SNL) with guidance and support from a number of National Aeronautics and Space Administration (NASA) personnel. The methodology is based on the current Ares-1 design and feasible accident scenarios. These scenarios address containment failure from debris impact or structural response to pressure or blast loading from an external source. Once containment is breached, the envisioned assessment methodology includes predictions for the sequence of physical processes stemming from cryogenic tank failure. The investigative techniques, analysis paths, and numerical simulations that comprise the proposed methodology are summarized and appropriate simulation software is identified in this report.
1999-02-09
In the Solid Motor Assembly Building, Cape Canaveral Air Station, looking over the Inertial Upper Stage booster being readied for their mission are (left to right) STS-93 Pilot Jeffrey S. Ashby and Mission Specialists Michel Tognini, who represents the Centre National d'Etudes Spatiales (CNES), and Steven A. Hawley. On the far right is Eric Herrburger, with Boeing. Other crew members (not shown) are Commander Eileen Collins and Mission Specialist Catherine G. Coleman. STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-09
In the Solid Motor Assembly Building, Cape Canaveral Air Station, STS-93 Mission Specialist Catherine G. Coleman kneels next to the Inertial Upper Stage booster being readied for the mission. Other crew members (not shown) are Commander Eileen Collins, Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-09
In the Solid Motor Assembly Building, Cape Canaveral Air Station, STS-93 Pilot Jeffrey S. Ashby and Mission Specialist Steven A. Hawley look over the Inertial Upper Stage booster being readied for their mission. Other crew members (not shown) are Commander Eileen Collins and Mission Specialists Catherine G. Coleman and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
STS-93: Crew Interview - Cady Coleman
NASA Technical Reports Server (NTRS)
1999-01-01
Live footage of a preflight interview with Mission Specialist Catherine G. Coleman is presented. The interview addresses many different questions including why Coleman wanted to be an astronaut, why she wanted to become a chemist, and how this historic flight (first female Commander of a mission) will influence little girls. Other interesting information that this one-on-one interview discusses is the deployment of the Chandra satellite, why people care about x ray energy, whether or not Chandra will compliment the other X Ray Observatories currently in operation, and her responsibilities during the major events of this mission. Coleman mentions the Inertial Upper Stage (IUS) rocket that will deploy Chandra, and the design configuration of Chandra that will allow for the transfer of information. The Southwest Research Ultraviolet Imaging System (SWUIS) Telescope on board Columbia, the Plant Growth Investigation in Microgravity (PGIM) experiment, and the two observatories presently in orbit (Gamma Ray Observatory, and Hubble Space Telescope) are also discussed.
Crew accidents reported during 3 years on a cruise ship.
Dahl, Eilif; Ulven, Arne; Horneland, Alf Magne
2008-01-01
To register and analyze data from all crew injuries reported to the medical center of a cruise ship with a median crew of 630 during a three-year period and to determine high risk areas, equipment and behavior. All crew injuries reported to the medical center aboard were registered on a standardized form at first visit. An injury was classified at follow-up as 'lost time accident' (LTA) if it caused the victim to be off work for more than one day and/or to be signed off for medical attention (medical sign-off). During 3 years, 361 injuries (23% women) were reported aboard. Thirty percent were LTA. The marine department accounted for 14% (deck 5%; engine 9%), the hotel'department for 79% and contractors for 7% of the reports. Filipinos comprised half the crew, reported 35% of the accidents, and their rate of serious injuries were lower than non-Filipino crew (p<0.01). Hotel crew had a higher rate of LTA occurring during work than marine crew (p<0.05). The dancers' rate of serious injuries was higher than other hotel crew (p<0.05) and marine crew (p<0.01). The upper extremity was the most frequently injured body part (51%), open wounds the most common injury type (37%), and galleys the most common accident location (30%). Less than one in ten reported injuries caused medical sign-off. Well-equipped, competent medical staff aboard can after crew injury effectively reduce time off work, as well as number of referrals to medical specialists ashore, helicopter evacuations and ship diversions, and medical sign-off.
Environmental protection requirements for scout/shuttle auxiliary stages
NASA Technical Reports Server (NTRS)
Qualls, G. L.; Kress, S. S.; Storey, W. W.; Ransdell, P. N.
1980-01-01
The requirements for enabling the Scout upper stages to endure the expected temperature, mechanical shock, acoustical and mechanical vibration environments during a specified shuttle mission were determined. The study consisted of: determining a shuttle mission trajectory for a 545 kilogram (1200 pound) Scout payload; compilation of shuttle environmental conditions; determining of Scout upper stages environments in shuttle missions; compilation of Scout upper stages environmental qualification criteria and comparison to shuttle mission expected environments; and recommendations for enabling Scout upper stages to endure the exptected shuttle mission environments.
Advanced Launch Vehicle Upper Stages Using Liquid Propulsion and Metallized Propellants
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
1990-01-01
Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum (Al) particles are the metal additive. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellant for volume-and mass-constrained upper stages can deliver modest increases in performance for low earth orbit to geosynchronous earth orbit (LEO-GEO) and other earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System (STS) and Space Transportation System-Cargo (STS-C) launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.
Validated biomechanical model for efficiency and speed of rowing.
Pelz, Peter F; Vergé, Angela
2014-10-17
The speed of a competitive rowing crew depends on the number of crew members, their body mass, sex and the type of rowing-sweep rowing or sculling. The time-averaged speed is proportional to the rower's body mass to the 1/36th power, to the number of crew members to the 1/9th power and to the physiological efficiency (accounted for by the rower's sex) to the 1/3rd power. The quality of the rowing shell and propulsion system is captured by one dimensionless parameter that takes the mechanical efficiency, the shape and drag coefficient of the shell and the Froude propulsion efficiency into account. We derive the biomechanical equation for the speed of rowing by two independent methods and further validate it by successfully predicting race times. We derive the theoretical upper limit of the Froude propulsion efficiency for low viscous flows. This upper limit is shown to be a function solely of the velocity ratio of blade to boat speed (i.e., it is completely independent of the blade shape), a result that may also be of interest for other repetitive propulsion systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2006-01-01
The United States (US) Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with new space transportation systems for missions to the Moon, Mars, and beyond. The Crew Exploration Vehicle (CEV) that the new human-rated Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station (ISS) Toward the end of the next decade, a heavy-lift Cargo Launch Vehicle (CaLV) will deliver the Earth Departure Stage (EDS) carrying the Lunar Surface Access Module (LSAM) to low-Earth orbit (LEO), where it will rendezvous with the CEV launched on the CLV and return astronauts to the Moon for the first time in over 30 years. This paper outlines how NASA is building these new space transportation systems on a foundation of legacy technical and management knowledge, using extensive experience gained from past and ongoing launch vehicle programs to maximize its design and development approach, with the objective of reducing total life cycle costs through operational efficiencies such as hardware commonality. For example, the CLV in-line configuration is composed of a 5-segment Reusable Solid Rocket Booster (RSRB), which is an upgrade of the current Space Shuttle 4- segment RSRB, and a new upper stage powered by the liquid oxygen/liquid hydrogen (LOX/LH2) J-2X engine, which is an evolution of the J-2 engine that powered the Apollo Program s Saturn V second and third stages in the 1960s and 1970s. The CaLV configuration consists of a propulsion system composed of two 5-segment RSRBs and a 33- foot core stage that will provide the LOX/LED needed for five commercially available RS-68 main engines. The J-2X also will power the EDS. The Exploration Launch Projects, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design, development, testing, and operations planning for these new space transportation systems. Utilizing a foundation of heritage hardware and management lessons learned mitigates both technical and programmatic risk. Project engineers and managers work closely with the Space Shuttle Program to transition hardware, infrastructure, and workforce assets to the new launch systems, leveraging a wealth of knowledge from Shuffle operations. In addition, NASA and its industry partners have tapped into valuable Apollo databases and are applying corporate wisdom conveyed firsthand by Apollo-era veterans of America s original Moon missions. Learning from its successes and failures, NASA employs rigorous systems engineering and systems management processes and principles in a disciplined, integrated fashion to further improve the probability of mission success.
Seal Analysis for the Ares-I Upper Stage Fuel Tank Manhole Cover
NASA Technical Reports Server (NTRS)
Phillips, Dawn R.; Wingate, Robert J.
2010-01-01
Techniques for studying the performance of Naflex pressure-assisted seals in the Ares-I Upper Stage liquid hydrogen tank manhole cover seal joint are explored. To assess the feasibility of using the identical seal design for the Upper Stage as was used for the Space Shuttle External Tank manhole covers, a preliminary seal deflection analysis using the ABAQUS commercial finite element software is employed. The ABAQUS analyses are performed using three-dimensional symmetric wedge finite element models. This analysis technique is validated by first modeling a heritage External Tank liquid hydrogen tank manhole cover joint and correlating the results to heritage test data. Once the technique is validated, the Upper Stage configuration is modeled. The Upper Stage analyses are performed at 1.4 times the expected pressure to comply with the Constellation Program factor of safety requirement on joint separation. Results from the analyses performed with the External Tank and Upper Stage models demonstrate the effects of several modeling assumptions on the seal deflection. The analyses for Upper Stage show that the integrity of the seal is successfully maintained.
Systems integration of lunar Campsite vehicles
NASA Technical Reports Server (NTRS)
Capps, Stephen; Ruff, Theron
1992-01-01
This paper describes the configuration design and subsystems integration resolution for lunar Campsite vehicles and the crew vehicles (CVs) which support them. This concept allows early return to the moon while minimizing hardware development. Once in place, the Campsite can be revisited for extended periods. Configuration and operations issues are addressed, and explanations of the parametric subsystem analysis, as well as descriptions of the hardware concept and performance data, are provided. Within an assumed set of launch and mission constraints, a common vehicle stage design for both the Campsite and the CV landers was the chief design driver. Accommodation of a heat-shielded, ballistic crew transportation/return vehicle, scars for later system growth and upgrades, landing the crew in close proximity to the Campsite, and appropriate kinds of robotic systems were all secondary design drivers. Physical integration of the crew module and airlock, structural system, thermal radiators, power production and storage systems, external life support consumables, and payloads are covered. The vehicle performance data were derived using a Boeing lunar transportation sizing code to optimize vehicle stage sizes and commonality. Configuration trades were conducted and detailed sketches were produced.
NASA Technical Reports Server (NTRS)
Chandler, Michael
2010-01-01
As the Space Shuttle Program comes to an end, it is important that the lessons learned from the Columbia accident be captured and understood by those who will be developing future aerospace programs and supporting current programs. Aeromedical lessons learned from the Accident were presented at AsMA in 2005. This Panel will update that information, closeout the lessons learned, provide additional information on the accident and provide suggestions for the future. To set the stage, an overview of the accident is required. The Space Shuttle Columbia was returning to Earth with a crew of seven astronauts on 1Feb, 2003. It disintegrated along a track extending from California to Louisiana and observers along part of the track filmed the breakup of Columbia. Debris was recovered from Littlefield, Texas to Fort Polk, Louisiana, along a 567 statute mile track; the largest ever recorded debris field. The Columbia Accident Investigation Board (CAIB) concluded its investigation in August 2003, and released their findings in a report published in February 2004. NASA recognized the importance of capturing the lessons learned from the loss of Columbia and her crew and the Space Shuttle Program managers commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT) to accomplish this. Their task was to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival, including the design features, equipment, training and procedures intended to protect the crew. NASA released the Columbia Crew Survival Investigation Report in December 2008. Key personnel have been assembled to give you an overview of the Space Shuttle Columbia accident, the medical response, the medico-legal issues, the SCSIIT findings and recommendations and future NASA flight surgeon spacecraft accident response training. Educational Objectives: Set the stage for the Panel to address the investigation, medico-legal issues, the Spacecraft Crew Survival Integrated Investigation Team report and training for accident response.
Conflict-handling mode scores of three crews before and after a 264-day spaceflight simulation.
Kass, Rachel; Kass, James; Binder, Heidi; Kraft, Norbert
2010-05-01
In both the Russian and U.S. space programs, crew safety and mission success have at times been jeopardized by critical incidents related to psychological, behavioral, and interpersonal aspects of crew performance. The modes used for handling interpersonal conflict may play a key role in such situations. This study analyzed conflict-handling modes of three crews of four people each before and after a 264-d spaceflight simulation that was conducted in Russia in 1999-2000. Conflict was defined as a situation in which the concerns of two or more individuals appeared to be incompatible. Participants were assessed using the Thomas-Kilmann Conflict Mode Instrument, which uses 30 forced-choice items to produce scores for five modes of conflict handling. Results were compared to norms developed using managers at middle and upper levels of business and government. Both before and after isolation, average scores for all crews were above 75% for Accommodating, below 25% for Collaborating, and within the middle 50% for Competing, Avoiding, and Compromising. Statistical analyses showed no significant difference between the crews and no statistically significant shift from pre- to post-isolation. A crew predisposition to use Accommodating most and Collaborating least may be practical in experimental settings, but is less likely to be useful in resolving conflicts within or between crews on actual flights. Given that interpersonal conflicts exist in any environment, crews in future space missions might benefit from training in conflict management skills.
Project Minerva: A low-cost manned Mars mission based on indigenous propellant production
NASA Technical Reports Server (NTRS)
Bruckner, Adam P.; Anderson, Hobie; Caviezel, Kelly; Daggert, Todd; Folkers, Mike; Fornia, Mark; Hamling, Steven; Johnson, Bryan; Kalberer, Martin; Machula, Mike
1992-01-01
Project Minerva is a low-cost manned Mars mission designed to deliver a crew of four to the Martian surface, using only two sets of two launches. Key concepts which make this mission realizable are the use of near-term technologies and in-situ propellant production, following the senario originally proposed by R. Zubrin of Martin Marietta. The first set of launches delivers two unmanned payloads into low earth orbit (LEO): one consists of an Earth Return Vehicle (ERV), a propellant production plant, and a set of robotic vehicles, and the second consists of the upper stage/trans-Mars injection (TMI) booster. In LEO, the two payloads are joined and inserted into a Mars transfer orbit. The landing on Mars is performed with the aid of multiple aerobraking maneuvers. On the Martian surface, the propellant production plant uses a Sabatier/electrolysis-type process to combine six tons of hydrogen brought from earth with carbon dioxide from the Martian atmosphere to produce 100 tons of liquid oxygen and methane, which are later used as the propellants for the rover expeditions and the manned return journey of the ERV. Once the in-situ propellant production is completed, approximately two years after the first set of launches, the manned portion of the mission leaves earth. This set of two launches is similar to that of the unmanned vehicles; the two payloads are the Manned Transfer Vehicle (MTV) and the upper stage/TMI booster. The MTV contains the manned rover and the habitat which houses the astronauts enroute to Mars and on the Martian surface. During the 180-day trip to Mars, artificial gravity is created by tethering the MTV to the TMI booster and inducing rotation. Upon arrival the MTV performs aerobraking maneuvers to land near the fully-fueled ERV, which will be used by the crew a year and a half later to return to earth. The mission entails moderate travel times with relatively low-energy conjunction-class trajectories and allows ample time for scientific exploration. This set of missions can be repeated every two years in order to continue exploration at a variety of sites and gradually establish the infrastructure for a permanent base on Mars.
Earth Observations taken by the Expedition 13 crew
2006-05-10
ISS013-E-17394 (10 May 2006) --- The central Phoenix Metro Area, Arizona is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. The Phoenix, Arizona metropolitan area is the largest in the southwestern United States, and is comprised of 21 contiguous incorporated municipalities. Such a collection of discrete political entities forming a larger integrated urban landscape is referred to as a conurbation by urban geographers. This portion of a high resolution (approximately 9 meters/pixel) photograph (upper image) of the central metro region includes the boundary area between three of the municipalities included in the conurbation: the Cities of Phoenix (upper image, left), Tempe (upper image, center and lower right), and Scottsdale (upper image, upper right).
Descent Assisted Split Habitat Lunar Lander Concept
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.
2008-01-01
The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs
1970-01-01
This photograph was taken during assembly of the bottom and upper floors of the Skylab Orbital Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.
STS-127 Crew Visit to Anne Beers Elementary
2009-09-23
Students and teachers look on as STS-127 Commander Mark Polansky, seated left on stage talks about the mission to the International Space Station as other crew members Chris Cassidy, Doug Hurley, David Wolf, Tom Marshburn looks on during a visit to Anne Beers Elementary school, Thursday, Sept. 24, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)
Earth Observations taken by the Expedition 27 Crew
2011-05-12
ISS027-E-027026 (12 May 2011) --- An Expedition 27 crew member recorded this image aboard the International Space Station as the orbital outpost was passing over the Mississippi River flood waters from 220 miles above. North is toward the bottom of the image, which was captured using a 400-mm lens. This highly impacted area, centered near 36.6 degrees north latitude and 89.5 degrees west longitude, is just east of New Madrid, Mo. (visible in upper right). Levees appear to be intact here, but there is extensive lowland crop flooding.
NASA's Space Launch System: Development and Progress
NASA Technical Reports Server (NTRS)
Honeycutt, John; Lyles, Garry
2016-01-01
NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS), supported by NASA's commercial partners, and robotic probes, are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) that will carry out a series of increasingly challenging missions that will eventually lead to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (t) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 t through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any rocket in history, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward first launch readiness of the Block 1 vehicle in 2018. Every major element of SLS continued to make significant progress in 2015. The Boosters element fired Qualification Motor 1 (QM-1) in March 2015, to test the 5-segment motor, including new insulation, joint, and propellant grain designs. The Stages element marked the completion of more than 70 major components of test article and flight core stage tanks. The Liquid Engines element conducted seven test firings of an RS-25 engine under SLS conditions. The Spacecraft/Payload Integration and Evolution element marked completion of the upper stage test article. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.
Extended duration lunar lander
NASA Technical Reports Server (NTRS)
Babic, Nikola; Carter, Matt; Cosper, Donna; Garza, David; Gonzalez, Eloy; Goodine, David; Hirst, Edward; Li, Ray; Lindsey, Martin; Ng, Tony
1993-01-01
Selenium Technologies has been conducting preliminary design work on a manned lunar lander for use in NASA's First Lunar Outpost (FLO) program. The resulting lander is designed to carry a crew of four astronauts to a prepositioned habitat on the lunar surface, remain on the lunar surface for up to 45 days while the crew is living in the habitat, then return the crew to earth via direct reentry and land recovery. Should the need arise, the crew can manually guide the lander to a safe lunar landing site, and live in the lander for up to ten days on the surface. Also, an abort to earth is available during any segment of the mission. The main propulsion system consists of a cluster of four modified Pratt and Whitney RL10 rocket engines that use liquid methane (LCH4) and liquid oxygen (LOX). Four engines are used to provide redundancy and a satisfactory engine out capability. Differences between the new propulsion system and the original system include slightly smaller engine size and lower thrust per engine, although specific impulse remains the same despite the smaller size. Concerns over nozzle ground clearance and engine reliability, as well as more information from Pratt and Whitney, brought about this change. The power system consists of a combination of regenerative fuel cells and solar arrays. While the lander is in flight to or from the moon, or during the lunar night, fuel cells provide all electrical power. During the lunar day, solar arrays are deployed to provide electrical power for the lander as well as electrolyzers, which separate some water back into hydrogen and oxygen for later use by the fuel cells. Total storage requirements for oxygen, hydrogen, and water are 61 kg, 551 kg, and 360 kg, respectively. The lander is a stage-and-a-half design with descent propellant, cargo, and landing gear contained in the descent stage, and the main propulsion system, ascent propellant, and crew module contained in the ascent stage. The primary structure for both stages is a truss, to which all tanks and components are attached. The crew module is a conical shape similar to that of the Apollo Command Module, but significantly larger with a height and maximum diameter of six meters.
STS-43 MS Adamson checks OCTW experiment on OV-104's aft flight deck
1991-08-11
STS043-04-038 (2-11 Aug 1991) --- Astronaut James C. Adamson, STS-43 mission specialist, checks on an experiment on Atlantis? flight deck. Part of the experiment, Optical Communications Through the Shuttle Window (OCTW), can be seen mounted in upper right. The OCTW system consists of two modules, one inside the orbiter crew cabin (as pictured here) and one in the payload bay. The crew compartment version houses an optoelectronic transmitter/receiver pair for video and digital subsystems, test circuitry and interface circuitry. The payload bay module serves as a repeater station. During operation a signal is transmitted through the shuttle window to a bundle of optical fiber cables mounted in the payload bay near an aft window. The cables carry optical signals from the crew compartment equipment to the OCTW payload bay module. The signals are returned via optical fiber cable to the aft flight deck window, retransmitted through the window, and received by the crew compartment equipment.
NASA Astrophysics Data System (ADS)
Polyakov, V. V.
During a final 4-month stage of I-year space flight of cosmonauts Titov and Manarov, a physician, Valery Polyakov was included on a crew for the purpose of evaluating their health, correcting physical status to prepare for the spacecraft reentry and landing operations. The complex program of scientific investigations and experiments performed by a physician included an evaluation of adaptation reactions of the human body at different stages of space mission using clinicophysiological and biochemical methods; testing of alternative regimes of exercises and new countermeasures to prevent an unfavorable effect of long-term weightlessness.
Characterization of Subsystems for a WB-003 Single Stage Shuttle
NASA Technical Reports Server (NTRS)
MacConochie, Ian O.; Lepsch, Roger A., Jr. (Technical Monitor)
2002-01-01
Subsystems for an all oxygen-hydrogen-single-stage shuttle are characterized for a vehicle designated WB-003. Features of the vehicle include all-electric actuation, fiber optics for information circuitry, fuel cells for power generation, and extensive use of composites for structure. The vehicle is sized for the delivery of a 25,000 lb. payload to a space station orbit without crew. When crew are being delivered, they are carried in a module in the payload bay with escape and manual override capabilities. The underlying reason for undertaking this task is to provide a framework for the study of the operations costs of the newer shuttles.
1975-01-14
CAPE CANAVERAL, Fla. – Model of docked Apollo and Soyuz spacecraft in the foreground and skylight in the Vehicle Assembly Building high bay frame the second stage of the Saturn 1B booster that will launch the United States ASTP mission as a crane raises it prior to its mating with the Saturn 1B first stage. Mating of the Saturn 1B first and second stages was completed this morning. The U. S. ASTP launch with mission commander Thomas Stafford, command module pilot Vance Brand and docking module pilot Donald Slayton is scheduled at 3:50 p.m. EDT July 15. The first international crewed spaceflight was a joint U.S.-U.S.S.R. rendezvous and docking mission. The Apollo-Soyuz Test Project, or ASTP, took its name from the spacecraft employed: the American Apollo and the Soviet Soyuz. The three-man Apollo crew lifted off from Kennedy Space Center aboard a Saturn IB rocket on July 15, 1975, to link up with the Soyuz that had launched a few hours earlier. A cylindrical docking module served as an airlock between the two spacecraft for transfer of the crew members. Photo credit: NASA
Ares I-X: First Step in a New Era of Exploration
NASA Technical Reports Server (NTRS)
Davis, Stephan R.
2010-01-01
Since 2005, NASA's Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). On October 28, 2009, the Ares Projects successfully launched the first suborbital development flight test of the Ares I crew launch vehicle, Ares I-X, from Kennedy Space Center (KSC). Although the final Constellation Program architecture is under review, data and lessons obtained from Ares I-X can be applied to any launch vehicle. This presentation will discuss the mission background and future impacts of the flight. Ares I is designed to carry up to four astronauts to the International Space Station (ISS). It also can be used with the Ares V cargo launch vehicle for a variety of missions beyond LEO. The Ares I-X development flight test was conceived in 2006 to acquire early engineering, operations, and environment data during liftoff, ascent, and first stage recovery. Engineers are using the test flight data to improve the Ares I design before its critical design review the final review before manufacturing of the flight vehicle begins. The Ares I-X flight test vehicle incorporated a mix of flight and mockup hardware, reflecting a similar length and mass to the operational vehicle. It was powered by a four-segment SRB from the Space Shuttle inventory, and was modified to include a fifth, spacer segment that made the booster approximately the same size as the five-segment SRB. The Ares I-X flight closely approximated flight conditions the Ares I will experience through Mach 4.5, performing a first stage separation at an altitude of 125,000 feet and reaching a maximum dynamic pressure ("Max Q") of approximately 850 pounds per square foot. The Ares I-X Mission Management Office (MMO) was organized functionally to address all the major test elements, including: first stage, avionics, and roll control (Marshall Space Flight Center); upper stage simulator (Glenn Research Center); crew module/launch abort system simulator (Langley Research Center); and ground systems and operations (KSC). Interfaces between vehicle elements and vehicle-ground elements, as well as environment analyses were performed by a systems engineering and integration team at Langley. Experience and lessons learned from these integrated product teams area are already being integrated into the Ares Projects to support the next generation of exploration launch vehicles.
Real-Time Simulation of Ares I Launch Vehicle
NASA Technical Reports Server (NTRS)
Tobbe, Patrick; Matras, Alex; Wilson, Heath; Alday, Nathan; Walker, David; Betts, Kevin; Hughes, Ryan; Turbe, Michael
2009-01-01
The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory (SIL) at the Marshall Space Flight Center (MSFC). The primary purpose of the Ares SIL is to test the vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time software backbone to stimulate all required Ares components through high-fidelity simulation. ARTEMIS has been designed to take full advantage of the advances in underlying computational power now available to support HWIL testing. A modular real-time design relying on a fully distributed computing architecture has been achieved. Two fundamental requirements drove ARTEMIS to pursue the use of high-fidelity simulation models in a real-time environment. First, ARTEMIS must be used to test a man-rated integrated avionics hardware and software system, thus requiring a wide variety of nominal and off-nominal simulation capabilities to certify system robustness. The second driving requirement - derived from a nationwide review of current state-of-the-art HWIL facilities - was that preserving digital model fidelity significantly reduced overall vehicle lifecycle cost by reducing testing time for certification runs and increasing flight tempo through an expanded operational envelope. These two driving requirements necessitated the use of high-fidelity models throughout the ARTEMIS simulation. The nature of the Ares mission profile imposed a variety of additional requirements on the ARTEMIS simulation. The Ares I vehicle is composed of multiple elements, including the First Stage Solid Rocket Booster (SRB), the Upper Stage powered by the J- 2X engine, the Orion Crew Exploration Vehicle (CEV) which houses the crew, the Launch Abort System (LAS), and various secondary elements that separate from the vehicle. At launch, the integrated vehicle stack is composed of these stages, and throughout the mission, various elements separate from the integrated stack and tumble back towards the earth. ARTEMIS must be capable of simulating the integrated stack through the flight as well as propagating each individual element after separation. In addition, abort sequences can lead to other unique configurations of the integrated stack as the timing and sequence of the stage separations are altered.
2018-03-04
SpaceX performed its fourteenth overall parachute test supporting Crew Dragon development. This most recent exercise was the first of several planned parachute system qualification tests ahead of the spacecraft’s first crewed flight and resulted in the successful touchdown of Crew Dragon’s parachute system. During this test, a C-130 aircraft transported the parachute test vehicle, designed to achieve the maximum speeds that Crew Dragon could experience on re-entry, over the Mojave Desert in Southern California and dropped the vehicle from an altitude of 25,000 feet. The test demonstrated an off-nominal situation, deploying only one of the two drogue chutes and intentionally skipping a reefing stage on one of the four main parachutes, proving a safe landing in such a contingency scenario.
Crew Exploration Vehicle Environmental Control and Life Support Development Status
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard; Carrasquillo, Robyn; Cross, Cindy; Peterson, Laurie; Tuan, George
2009-01-01
The Orion Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the Moon and back again. This year, the vehicle continued to go through design refinements to reduce weight, meet requirements, and operate reliably. Preliminary Design Review was performed and long lead procurement items were started. The design of the Orion Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is progressing through the design stage into manufacturing. This paper covers the Orion ECLS development from April 2009 to April 2010.
Crew Exploration Vehicle Environmental Control and Life Support Ddevelopment Status
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard A.; Carrasquillo, Robyn; Cross, Cynthia d.; Rains, Ed; Tuan, George C.
2010-01-01
The Orion Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the Moon and back again. This year, the vehicle continued to go through design refinements to reduce weight, meet requirements, and operate reliably. Preliminary Design Review was performed and long lead procurement items were started. The design of the Orion Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is progressing through the design stage into manufacturing. This paper covers the Orion ECLS development from April 2009 to April 2010
NASA Technical Reports Server (NTRS)
2001-01-01
The crewmembers of STS-104, Commander Steven Lindsey, Pilot Charles Hobaugh, and Mission Specialists Michael Gernhardt, James Reilly, and Janet Kavandi, are seen during various stages of their training. Footage shows the following: (1) Water Survival Training at the Neutral Buoyancy Laboratory (NBL); (2) Rendezvous and Docking Training in the Shuttle Mission Simulator; (3) Training in the Space Station Airlock; (4) Training in the Virtual Reality Lab; (5) Post-insertion Operations in the Fixed Base Simulator; (6) Extravehicular Activity Training at the NBL; (7) Crew Stowage Training in the Space Station Mock-up Training Facility; and (8) Water Transfer Training in the Crew Compartment Trainer.
Reusable Agena study. Volume 1: Executive summary. [space shuttle Agena upper stage tug concept
NASA Technical Reports Server (NTRS)
1974-01-01
The shuttle Agena upper stage interim tug concept is based on a building block approach. These building block concepts are extensions of existing ascent Agena configurations. Several current improvements, have been used in developing the shuttle/Agena upper stage concepts. High-density acid is used as the Agena upper stage oxidizer. The baffled injector is used in the main engine. The DF-224 is a fourth generation computer currently in development and will be flight proven in the near future. The Agena upper stage building block concept uses the current Agena as a baseline, adds an 8.5-inch (21.6 cm) extension to the fuel tank for optimum mixture ratio, uses monomethyl hydrazine as fuel, exchanges a 150:1 nozzle extension for the existing 45:1, exchanges an Autonetics DF-224 for the existing Honeywell computer, and adds a star sensor for guidance update. These modifications to the current Agena provide a 5-foot (1.52m) diameter shuttle/Agena upper stage that will fly all Vandenberg Air Force Base missions in the reusable mode without resorting to a kick motor. The delta V velocity of the Agena is increased by use of a strap-on propellant tank option. This option provides a shuttle/Agena upper stage with the capability to place almost 3900 pounds (1769 kg) into geosynchronous orbit (24 hour period) without the aid of kick motors.
1970-01-01
This photograph was taken during installation of floor grids on the upper and lower floors inside the Skylab Orbital Workshop at the McDornell Douglas plant at Huntington Beach, California. The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.
ERIC Educational Resources Information Center
Irving, Paul W.; Sayre, Eleanor C.
2013-01-01
As part of a longitudinal study into identity development in upper-level physics students a phenomenographic research method is employed to assess the stages of identity development of a group of upper-level students. Three categories of description were discovered which indicate the three different stages of identity development for this group…
Integrated NTP Vehicle Radiation Design
NASA Technical Reports Server (NTRS)
Caffrey, Jarvis A.; Rodriquez, Mitchell A.
2018-01-01
The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves.
Integrated NTP Vehicle Radiation Design
NASA Technical Reports Server (NTRS)
Caffrey, Jarvis; Rodriquez, Mitchell
2018-01-01
The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves
Upper gastrointestinal bleeding in patients with CKD.
Liang, Chih-Chia; Wang, Su-Ming; Kuo, Huey-Liang; Chang, Chiz-Tzung; Liu, Jiung-Hsiun; Lin, Hsin-Hung; Wang, I-Kuan; Yang, Ya-Fei; Lu, Yueh-Ju; Chou, Che-Yi; Huang, Chiu-Ching
2014-08-07
Patients with CKD receiving maintenance dialysis are at risk for upper gastrointestinal bleeding. However, the risk of upper gastrointestinal bleeding in patients with early CKD who are not receiving dialysis is unknown. The hypothesis was that their risk of upper gastrointestinal bleeding is negatively linked to renal function. To test this hypothesis, the association between eGFR and risk of upper gastrointestinal bleeding in patients with stages 3-5 CKD who were not receiving dialysis was analyzed. Patients with stages 3-5 CKD in the CKD program from 2003 to 2009 were enrolled and prospectively followed until December of 2012 to monitor the development of upper gastrointestinal bleeding. The risk of upper gastrointestinal bleeding was analyzed using competing-risks regression with time-varying covariates. In total, 2968 patients with stages 3-5 CKD who were not receiving dialysis were followed for a median of 1.9 years. The incidence of upper gastrointestinal bleeding per 100 patient-years was 3.7 (95% confidence interval, 3.5 to 3.9) in patients with stage 3 CKD, 5.0 (95% confidence interval, 4.8 to 5.3) in patients with stage 4 CKD, and 13.9 (95% confidence interval, 13.1 to 14.8) in patients with stage 5 CKD. Higher eGFR was associated with a lower risk of upper gastrointestinal bleeding (P=0.03), with a subdistribution hazard ratio of 0.93 (95% confidence interval, 0.87 to 0.99) for every 5 ml/min per 1.73 m(2) higher eGFR. A history of upper gastrointestinal bleeding (P<0.001) and lower serum albumin (P=0.004) were independently associated with higher upper gastrointestinal bleeding risk. In patients with CKD who are not receiving dialysis, lower renal function is associated with higher risk for upper gastrointestinal bleeding. The risk is higher in patients with previous upper gastrointestinal bleeding history and low serum albumin. Copyright © 2014 by the American Society of Nephrology.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.
2012-01-01
The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.
2009-01-16
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a ballast assembly is moved above the Ares I-X segment 7. Ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Dimitri Gerondidakis
2009-01-16
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a ballast assembly is lowered into the Ares I-X segment 7. Ballast assemblies are being installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Dimitri Gerondidakis
2009-01-16
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a ballast assembly is lifted toward the Ares I-X segments for installation. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Dimitri Gerondidakis
2009-01-16
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a ballast assembly is lowered into the Ares I-X segment 7. Ballast assemblies are being installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Dimitri Gerondidakis
Researcher Poses with a Nuclear Rocket Model
1961-11-21
A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
Ares I Integrated Test Approach
NASA Technical Reports Server (NTRS)
Taylor, Jim
2008-01-01
This slide presentation reviews the testing approach that NASA is developing for the Ares I launch vehicle. NASA is planning a complete series of development, qualification and verification tests. These include: (1) Upper stage engine sea-level and altitude testing (2) First stage development and qualification motors (3) Upper stage structural and thermal development and qualification test articles (4) Main Propulsion Test Article (MPTA) (5) Upper stage green run testing (6) Integrated Vehicle Ground Vibration Testing (IVGVT) and (7) Aerodynamic characterization testing.
Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis
2013-01-01
To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.
Expendable solid rocket motor upper stages for the Space Shuttle
NASA Technical Reports Server (NTRS)
Davis, H. P.; Jones, C. M.
1974-01-01
A family of expendable solid rocket motor upper stages has been conceptually defined to provide the payloads for the Space Shuttle with performance capability beyond the low earth operational range of the Shuttle Orbiter. In this concept-feasibility assessment, three new solid rocket motors of fixed impulse are defined for use with payloads requiring levels of higher energy. The conceptual design of these motors is constrained to limit thrusting loads into the payloads and to conserve payload bay length. These motors are combined in various vehicle configurations with stage components derived from other programs for the performance of a broad range of upper-stage missions from spin-stabilized, single-stage transfers to three-axis stabilized, multistage insertions. Estimated payload delivery performance and combined payload mission loading configurations are provided for the upper-stage configurations.
Crew Exploration Vehicle Environmental Control and Life Support Development Status
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard A.; Cross, Cynthia D.; Carrasquillo, Robyn; Rains, George Edward
2011-01-01
The Orion Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is currently being developed to transport the crew safely from the Earth to the Moon and back again. This year, the vehicle focused on building the Orion Flight Test 1 (OFT1) vehicle to be launched in 2013. The development of the Orion Environmental Control and Life Support (ECLS) System, focused on the components which are on OFT1 which includes pressure control and active thermal control systems, is progressing through the design stage into manufacturing. Additional development work was done to keep the remaining component progressing towards implementation. This paper covers the Orion ECLS development from April 2010 to April 2011.
A High-Heritage Blunt-Body Entry, Descent, and Landing Concept for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Price, Humphrey; Manning, Robert; Sklyanskiy, Evgeniy; Braun, Robert
2016-01-01
Human-scale landers require the delivery of much heavier payloads to the surface of Mars than is possible with entry, descent, and landing (EDL) approaches used to date. A conceptual design was developed for a 10 m diameter crewed Mars lander with an entry mass of approx.75 t that could deliver approx.28 t of useful landed mass (ULM) to a zero Mars areoid, or lower, elevation. The EDL design centers upon use of a high ballistic coefficient blunt-body entry vehicle and throttled supersonic retro-propulsion (SRP). The design concept includes a 26 t Mars Ascent Vehicle (MAV) that could support a crew of 2 for approx.24 days, a crew of 3 for approx.16 days, or a crew of 4 for approx.12 days. The MAV concept is for a fully-fueled single-stage vehicle that utilizes a single pump-fed 250 kN engine using Mono-Methyl Hydrazine (MMH) and Mixed Oxides of Nitrogen (MON-25) propellants that would deliver the crew to a low Mars orbit (LMO) at the end of the surface mission. The MAV concept could potentially provide abort-to-orbit capability during much of the EDL profile in response to fault conditions and could accommodate return to orbit for cases where the MAV had no access to other Mars surface infrastructure. The design concept for the descent stage utilizes six 250 kN MMH/MON-25 engines that would have very high commonality with the MAV engine. Analysis indicates that the MAV would require approx.20 t of propellant (including residuals) and the descent stage would require approx.21 t of propellant. The addition of a 12 m diameter supersonic inflatable aerodynamic decelerator (SIAD), based on a proven flight design, was studied as an optional method to improve the ULM fraction, reducing the required descent propellant by approx.4 t.
A High-Heritage Blunt-Body Entry, Descent, and Landing Concept for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Price, Humphrey; Manning, Robert; Sklyanskiy, Evgeniy; Braun, Robert
2016-01-01
Human-scale landers require the delivery of much heavier payloads to the surface of Mars than is possible with entry, descent, and landing (EDL) approaches used to date. A conceptual design was developed for a 10 m diameter crewed Mars lander with an entry mass of approx. 75 t that could deliver approx. 28 t of useful landed mass (ULM) to a zero Mars areoid, or lower, elevation. The EDL design centers upon use of a high ballistic coefficient blunt-body entry vehicle and throttled supersonic retro-propulsion (SRP). The design concept includes a 26 t Mars Ascent Vehicle (MAV) that could support a crew of 2 for approx. 24 days, a crew of 3 for approx.16 days, or a crew of 4 for approx.12 days. The MAV concept is for a fully-fueled single-stage vehicle that utilizes a single pump-fed 250 kN engine using Mono-Methyl Hydrazine (MMH) and Mixed Oxides of Nitrogen (MON-25) propellants that would deliver the crew to a low Mars orbit (LMO) at the end of the surface mission. The MAV concept could potentially provide abort-to-orbit capability during much of the EDL profile in response to fault conditions and could accommodate return to orbit for cases where the MAV had no access to other Mars surface infrastructure. The design concept for the descent stage utilizes six 250 kN MMH/MON-25 engines that would have very high commonality with the MAV engine. Analysis indicates that the MAV would require approx. 20 t of propellant (including residuals) and the descent stage would require approx. 21 t of propellant. The addition of a 12 m diameter supersonic inflatable aerodynamic decelerator (SIAD), based on a proven flight design, was studied as an optional method to improve the ULM fraction, reducing the required descent propellant by approx.4 t.
Space Station Crew Discusses Life in Space with Georgia Students
2017-10-23
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA discussed life and research aboard the orbital outpost during an in-flight educational event Oct. 23 with students at the New Prospect Elementary School in Alpharetta, Georgia. The crew members are in various stages of their five and a half month missions on the orbital complex.
Earth Observation taken by the Expedition 20 crew
2009-10-06
ISS020-E-047807 (6 Oct. 2009) --- Thunderstorms on the Brazilian horizon are featured in this image photographed by an Expedition 20 crew member on the International Space Station. A picturesque line of thunderstorms and numerous circular cloud patterns filled the view as the station crew members looked out at the limb and atmosphere (blue line on the horizon) of Earth. This region displayed in the photograph (top) includes an unstable, active atmosphere forming a large area of cumulonimbus clouds in various stages of development. The crew was looking west southwestward from the Amazon Basin, along the Rio Madeira, toward Bolivia when the image was taken. The distinctive circular patterns of the clouds in this view are likely caused by the aging of thunderstorms. Such ring structures often form during the final stages of a storm?s development as their centers collapse. Sunglint is visible on the waters of the Rio Madeira and Lago Acara in the Amazon Basin. Widespread haze over the basin gives the reflected light an orange hue. The Rio Madeira flows northward and joins the Amazon River on its path to the Atlantic Ocean. Scientists believe that a large smoke plume near the bottom center of the image may explain one source of the haze.
23. Photocopy of engineering drawing, April 10, 1958 (original drawing ...
23. Photocopy of engineering drawing, April 10, 1958 (original drawing located at Fairchild Air Force Base, Civil Engineering Building, Civil Engineering Vault). READINESS CREW BUILDING, UPPER FLOOR PLANS - Fairchild Air Force Base, Bomber Alert Facility, 803G South Taxi Way, Spokane, Spokane County, WA
NASA Technical Reports Server (NTRS)
Walsh, Ptrick; Coulon, Adam; Edwards, Stephen; Mavris, Dimitri N.
2012-01-01
The problem of trajectory optimization is important in all space missions. The solution of this problem enables one to specify the optimum thrust steering program which should be followed to achieve a specified mission objective, simultaneously satisfying the constraints.1 It is well known that whether or not the ascent trajectory is optimal can have a significant impact on propellant usage for a given payload, or on payload weight for the same gross vehicle weight.2 Consequently, ascent guidance commands are usually optimized in some fashion. Multi-stage vehicles add complexity to this analysis process as changes in vehicle properties in one stage propagate to the other stages through gear ratios and changes in the optimal trajectory. These effects can cause an increase in analysis time as more variables are added and convergence of the optimizer to system closure requires more analysis iterations. In this paper, an approach to simplifying this multi-stage problem through the creation of an upper stage capability boundary is presented. This work was completed as part of a larger study focused on trade space exploration for the advanced booster system that will eventually form a part of NASA s new Space Launch System.3 The approach developed leverages Design of Experiments and Surrogate Modeling4 techniques to create a predictive model of the SLS upper stage performance. The design of the SLS core stages is considered fixed for the purposes of this study, which results in trajectory parameters such as staging conditions being the only variables relevant to the upper stage. Through the creation of a surrogate model, which takes staging conditions as inputs and predicts the payload mass delivered by the SLS upper stage to a reference orbit as the response, it is possible to identify a "surface" of staging conditions which all satisfy the SLS requirement of placing 130 metric tons into low-Earth orbit (LEO).3 This identified surface represents the 130 metric ton capability boundary for the upper stage, such that if the combined first stage and boosters can achieve any one staging point on that surface, then the design is identified as feasible. With the surrogate model created, design and analysis of advanced booster concepts is streamlined, as optimization of the upper stage trajectory is no longer required in every design loop.
Lunar campsite concept: Space transfer concepts and analysis for exploration missions
NASA Astrophysics Data System (ADS)
1991-05-01
The lunar Campsite concept responds to a perceived need to identify early manned science and exploration missions that require minimal initial funding. The Campsite concept defers the build-up of many infrastructure components without escalating total program costs. The lunar Campsite has been sized nominally for four crew for 42 days (1 lunar night and 2 lunar days), but can be modified to span two lunar nights up to 60 days. Total mission fulfillment requires five Earth-to-LEO launches, four (100 mt class launch vehicle) for the two vehicle assemblies and one (PLS or NSTS) for the crew. The lunar Campsite mission mode is tandem direct using a booster stage and a lander stage. The booster is separated from the lander after the TLI burn and is expended into the Earth's atmosphere. In the Campsite mode, the lander lands on the surface not to be returned. In the crew delivery mode, the lander is guided to a precision landing about 500 m from the Campsite, and with enough propellant to return the crew to Earth. The Campsite consists of a habitat and airlock, body mounted radiators with a surface shield, sun tracking solar arrays, and an Earth-tracking high-gain antenna. The CV is very similar to the campsite delivery vehicle. The CV does not, however, have radiators or solar arrays. The vehicle stacks are essentially common in that they utilize the same structure system and engines, the same propellant tanks, the same 'cut-out' in which the CRV and payloads are incorporated, and the same RCS locations. The booster and lander stage propellant tank propellant capacities are identical and have margins which would allow additional fueling for propulsive capture of the boost stage into Earth orbit. This contractual study was performed to identify Campsite and vehicle interfaces and vehicle requirements, and to surface issues related to the integration of the Campsite and LTV's.
Earth Observations taken by the Expedition 20 crew
2009-06-12
ISS020-E-009048 (12 June 2009) --- Sarychev Peak Volcano eruption, Kuril Islands, is featured in this image photographed by an Expedition 20 crew member on the International Space Station. A fortuitous orbit of the International Space Station allowed the astronauts this striking view of Sarychev volcano (Russia?s Kuril Islands, northeast of Japan) in an early stage of eruption on June 12, 2009. Sarychev Peak is one of the most active volcanoes in the Kuril Island chain and is located on the northwestern end of Matua Island. Prior to June 12, the last explosive eruption had occurred in 1989 with eruptions in 1986, 1976, 1954, and 1946 also producing lava flows. Ash from the June 2009 eruption has been detected 2407 kilometers ESE and 926 kilometers WNW of the volcano, and commercial airline flights are being diverted away from the region to minimize the danger of engine failures from ash intake. This detailed photograph is exciting to volcanologists because it captures several phenomena that occur during the earliest stages of an explosive volcanic eruption. The main column is one of a series of plumes that rose above Matua Island (48.1 degrees north latitude and 153.2 degrees east longitude) on June 12. The plume appears to be a combination of brown ash and white steam. The vigorously rising plume gives the steam a bubble-like appearance; the surrounding atmosphere has been shoved up by the shock wave of the eruption. The smooth white cloud on top may be water condensation that resulted from rapid rising and cooling of the air mass above the ash column, and is probably a transient feature (the eruption plume is starting to punch through). The structure also indicates that little to no shearing winds were present at the time to disrupt the plume. Another series of images, acquired 2-3 days after the start of eruptive activity, illustrate the effect of shearing winds on extent of the ash plumes across the Pacific Ocean. By contrast, a cloud of denser, gray ash ? most probably a pyroclastic flow -- appears to be hugging the ground, descending from the volcano summit. The rising eruption plume casts a shadow to the northwest of the island (bottom center). Brown ash at a lower altitude of the atmosphere spreads out above the ground at upper right. Low-level stratus clouds approach Matua Island from the east, wrapping around the lower slopes of the volcano. Only about 1.5 kilometers of the coastline of Matua Island (upper center) can be seen beneath the clouds and ash.
SLS INTERIM CRYOGENIC PROPULSION STAGE TEST ARTICLE ARRIVAL
2016-06-19
SLS INTERIM CRYOGENIC PROPULSION STAGE TEST ARTICLE ARRIVES AT WEST DOCK ON SHIELDS ROAD AND IS OFF LOADED FROM BARGEUAH ENGINEERING STUDENT ROBERT HILLAN TALKS TO SPACE STATION CREW MEMBERS ABOUT HIS WINNING 3-D PRINTED TOOL DESIGNED FOR USE ON ISS, AND IS INTERVIEWED BY LOCAL MEDIA
2009-06-09
The escape tower, Soyuz TMA-14 spacecraft and third stage are moved for assembly to the first and second stages Monday, March 23, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)
Two-statge sorption type cryogenic refrigerator including heat regeneration system
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)
1989-01-01
A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.
2008-09-05
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, crew members with the STS-125 mission get a close look at some of the equipment associated with their mission to service NASA’s Hubble Space Telescope. Looking at the box containing the Cosmic Origins Spectrograph, or COS, on the orbital replacement unit carrier are Mission Specialist Michael Good (upper right, on stand) and HST inspectors. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The STS-125 crew is taking part in a crew equipment interface test, which provides experience handling tools, equipment and hardware they will use on their mission. Space shuttle Atlantis is targeted to launch on the STS-125 mission Oct. 10. Photo credit: NASA/Kim Shiflett
Two stage sorption type cryogenic refrigerator including heat regeneration system
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)
1989-01-01
A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system is disclosed. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.
The Shock and Vibration Bulletin. Part 3. Skylab, Vibration Testing and Analysis
1973-06-01
Zft- ,Instrument Unit - (Acoustic Test Only) -orward Compartment Crew Ouarters Meteoroid Shield IntertageTACS Spheres (Acoustic Tesi - Radiator...weighs more than the lower floor. You Mru ertes: You hadn’t flown this struc- might feel that since the analysis approach wasconfirmed on the upper floor
Earth Observations taken by the Expedition 26 Crew
2010-12-28
ISS026-E-013147 (28 Dec. 2010) --- A southerly looking night view of the upper two thirds of the Florida peninsula was recorded by one of the Expedition 26 crew members aboard the International Space Station on Dec. 28, 2010. Cape Canaveral and the Kennedy Space Center are very well lighted on the left (Atlantic Ocean) side of the peninsula. The Tampa-St. Petersburg area is seen on the Gulf of Mexico or right side of the frame. At bottom or in the north areas of the picture are portions of the state?s panhandle as well as cities and communities in southern Georgia.
Earth Observations taken by the Expedition 26 Crew
2010-12-28
ISS026-E-013123 (28 Dec. 2010) --- A southerly looking night view of the upper two thirds of the Florida peninsula was recorded by one of the Expedition 26 crew members aboard the International Space Station on Dec. 28, 2010. Cape Canaveral and the Kennedy Space Center are very well lighted on the left (Atlantic Ocean) side of the peninsula. The Tampa-St. Petersburg area is seen on the Gulf of Mexico or right side of the frame. At bottom or in the north areas of the picture are portions of the state?s panhandle as well as cities and communities in southern Georgia.
NASA Technical Reports Server (NTRS)
Simon, Matthew A.; Toups, Larry; Howe, A. Scott; Wald, Samuel I.
2015-01-01
The Evolvable Mars Campaign (EMC) is the current NASA Mars mission planning effort which seeks to establish sustainable, realistic strategies to enable crewed Mars missions in the mid-2030s timeframe. The primary outcome of the Evolvable Mars Campaign is not to produce "The Plan" for sending humans to Mars, but instead its intent is to inform the Human Exploration and Operations Mission Directorate near-term key decisions and investment priorities to prepare for those types of missions. The FY'15 EMC effort focused upon analysis of integrated mission architectures to identify technically appealing transportation strategies, logistics build-up strategies, and vehicle designs for reaching and exploring Mars moons and Mars surface. As part of the development of this campaign, long duration habitats are required which are capable of supporting crew with limited resupply and crew abort during the Mars transit, Mars moons, and Mars surface segments of EMC missions. In particular, the EMC design team sought to design a single, affordable habitation system whose manufactured units could be outfitted uniquely for each of these missions and reused for multiple crewed missions. This habitat system must provide all of the functionality to safely support 4 crew for long durations while meeting mass and volume constraints for each of the mission segments set by the chosen transportation architecture and propulsion technologies. This paper describes several proposed long-duration habitation strategies to enable the Evolvable Mars Campaign through improvements in mass, cost, and reusability, and presents results of analysis to compare the options and identify promising solutions. The concepts investigated include several monolithic concepts: monolithic clean sheet designs, and concepts which leverage the co-manifested payload capability of NASA's Space Launch System (SLS) to deliver habitable elements within the Universal Payload Adaptor between the SLS upper stage and the Orion/Service module on the top of the vehicle. Multiple modular habitat options for Mars surface and in-space missions are also considered with various functionality and volume splits between modules to find the best balance of reducing the single largest mass which must be delivered to a destination and reducing the number of separate elements which must be launched. Analysis results presented for each of these concepts in this paper include mass/volume/power sizing using parametric sizing tools, identification of unique operational constraints, and limited comments on the additional impacts of reusability/dormancy on system design. Finally, recommendations will be made for promising solutions which will be carried forward for consideration in the Evolvable Mars Campaign work.
Roberts, Graham J; McDonald, Fraser; Andiappan, Manoharan; Lucas, Victoria S
2015-11-01
The final stage of dental development of third molars is usually helpful to indicate whether or not a subject is aged over 18 years. A complexity is that the final stage of development is unlimited in its upper border. Investigators usually select an inappropriate upper age limit or censor point for this tooth development stage. The literature was searched for appropriate data sets for dental age estimation and those that provided the count (n), the mean (x¯), and the standard deviation (sd) for each of the tooth development stages. The Demirjian G and Demirjian H were used for this study. Upper and lower limits of the Stage G and Stage H data were calculated limiting the data to plus or minus three standard deviations from the mean. The upper border of Stage H was limited by appropriate censoring at the maximum value for Stage G. The maximum age at attainment from published data, for Stage H, ranged from 22.60 years to 34.50 years. These data were explored to demonstrate how censoring provides an estimate for the correct maximum age for the final stage of Stage H as 21.64 years for UK Caucasians. This study shows that confining the data array of individual tooth developments stages to ± 3sd provides a reliable and logical way of censoring the data for tooth development stages with a Normal distribution of data. For Stage H this is inappropriate as it is unbounded in its upper limit. The use of a censored data array for Stage H using Percentile values is appropriate. This increases the reliability of using third molar Stage H alone to determine whether or not an individual is over 18 years old. For Stage H, individual ancestral groups should be censored using the same technique. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview
NASA Technical Reports Server (NTRS)
Davidson, John B.; Kim, Sungwan; Raney, David L.; Aubuchon, Vanessa V.; Sparks, Dean W.; Busan, Ronald C.; Proud, Ryan W.; Merritt, Deborah S.
2008-01-01
Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results.
CREW CHIEF: A computer graphics simulation of an aircraft maintenance technician
NASA Technical Reports Server (NTRS)
Aume, Nilss M.
1990-01-01
Approximately 35 percent of the lifetime cost of a military system is spent for maintenance. Excessive repair time is caused by not considering maintenance during design. Problems are usually discovered only after a mock-up has been constructed, when it is too late to make changes. CREW CHIEF will reduce the incidence of such problems by catching design defects in the early design stages. CREW CHIEF is a computer graphic human factors evaluation system interfaced to commercial computer aided design (CAD) systems. It creates a three dimensional man model, either male or female, large or small, with various types of clothing and in several postures. It can perform analyses for physical accessibility, strength capability with tools, visual access, and strength capability for manual materials handling. The designer would produce a drawing on his CAD system and introduce CREW CHIEF in it. CREW CHIEF's analyses would then indicate places where problems could be foreseen and corrected before the design is frozen.
Orion Multi Purpose Crew Vehicle Environmental Control and Life Support Development Status
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard A.; Cross, Cynthia D.; Carrasquillo, Robyn; Rains, George Edward
2012-01-01
The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely from the Earth beyond Earth orbit. This year, the vehicle focused on building the Exploration Flight Test 1 (EFT1) vehicle to be launched in 2014. The development of the Orion Environmental Control and Life Support (ECLS) System, focused on the components which are on EFT1 which includes pressure control and active thermal control systems, is progressing through the design stage into manufacturing. Additional development work was done to keep the remaining component progressing towards implementation for a flight tests in 2017 and in 2020. This paper covers the Orion ECLS development from April 2011 to April 2012.
Multi Purpose Crew Vehicle Environmental Control and Life Support Development Status
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard A.; Cross, Cynthia D.; Carrasquillo, Robyn; Rains, George Edward
2011-01-01
The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely from the Earth beyond Earth orbit. This year, the vehicle focused on building the Orion Flight Test 1 (OFT1) vehicle to be launched in 2013. The development of the Orion Environmental Control and Life Support (ECLS) System, focused on the components which are on OFT1 which includes pressure control and active thermal control systems, is progressing through the design stage into manufacturing. Additional development work was done to keep the remaining component progressing towards implementation for a flight test in 2017. This paper covers the Orion ECLS development from April 2011 to April 2012.
NASA Technical Reports Server (NTRS)
1992-01-01
Footage of various stages of the STS-53 Discovery launch is shown, including shots of the crew at breakfast, getting suited up, and departing to board the Orbiter. The launch is seen from many vantage points, as is the landing. On-orbit activities show the crew performing several medical experiments, such as taking a picture of the retina and measuring the pressure on the eyeball. One crewmember demonstrates how to use the rowing machine in an antigravity environment.
Interior View of the Orbital Workshop
NASA Technical Reports Server (NTRS)
1972-01-01
This photograph is an interior view of the Orbital Workshop (OWS) upper level looking from the airlock hatch, showing the octagonal opening that separated the workshop's two levels. The trash airlock can be seen at center. The lower level of the OWS provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.
Aerodynamic characteristics of the upper stages of a launch vehicle in low-density regime
NASA Astrophysics Data System (ADS)
Oh, Bum Seok; Lee, Joon Ho
2016-11-01
Aerodynamic characteristics of the orbital block (remaining configuration after separation of nose fairing and 1st and 2nd stages of the launch vehicle) and the upper 2-3stage (configuration after separation of 1st stage) of the 3 stages launch vehicle (KSLV-II, Korea Space Launch Vehicle) at high altitude of low-density regime are analyzed by SMILE code which is based on DSMC (Direct Simulation Monte-Carlo) method. To validating of the SMILE code, coefficients of axial force and normal forces of Apollo capsule are also calculated and the results agree very well with the data predicted by others. For the additional validations and applications of the DSMC code, aerodynamic calculation results of simple shapes of plate and wedge in low-density regime are also introduced. Generally, aerodynamic characteristics in low-density regime differ from those of continuum regime. To understand those kinds of differences, aerodynamic coefficients of the upper stages (including upper 2-3 stage and the orbital block) of the launch vehicle in low-density regime are analyzed as a function of Mach numbers and altitudes. The predicted axial force coefficients of the upper stages of the launch vehicle are very high compared to those in continuum regime. In case of the orbital block which flies at very high altitude (higher than 250km), all aerodynamic coefficients are more dependent on velocity variations than altitude variations. In case of the upper 2-3 stage which flies at high altitude (80km-150km), while the axial force coefficients and the locations of center of pressure are less changed with the variations of Knudsen numbers (altitudes), the normal force coefficients and pitching moment coefficients are more affected by variations of Knudsen numbers (altitude).
Ares I Stage Separation System Design Certification Testing
NASA Technical Reports Server (NTRS)
Mayers, Stephen L.; Beard, Bernard B.; Smith, R. Kenneth; Patterson, Alan
2009-01-01
NASA is committed to the development of a new crew launch vehicle, the Ares I, that can support human missions to low Earth orbit (LEO) and the moon with unprecedented safety and reliability. NASA's Constellation program comprises the Ares I and Ares V launch vehicles, the Orion crew vehicle, and the Altair lunar lander. Based on historical precedent, stage separation is one of the most significant technical and systems engineering challenges that must be addressed in order to achieve this commitment. This paper surveys historical separation system tests that have been completed in order to ensure staging of other launch vehicles. Key separation system design trades evaluated for Ares I include single vs. dual separation plane options, retro-rockets vs. pneumatic gas actuators, small solid motor quantity/placement/timing, and continuous vs. clamshell interstage configuration options. Both subscale and full-scale tests are required to address the prediction of complex dynamic loading scenarios present during staging events. Test objectives such as separation system functionality, and pyroshock and debris field measurements for the full-scale tests are described. Discussion about the test article, support infrastructure and instrumentation are provided.
Study of a High-Energy Upper Stage for Future Shuttle Missions
NASA Technical Reports Server (NTRS)
Dressler, Gordon A.; Matuszak, Leo W.; Stephenson, David D.
2003-01-01
Space Shuttle Orbiters are likely to remain in service to 2020 or beyond for servicing the International Space Station and for launching very high value spacecraft. There is a need for a new STS-deployable upper stage that can boost certain Orbiter payloads to higher energy orbits, up to and including Earth-escape trajectories. The inventory of solid rocket motor Inertial Upper Stages has been depleted, and it is unlikely that a LOX/LH2-fueled upper stage can fly on Shuttle due to safety concerns. This paper summarizes the results of a study that investigated a low cost, low risk approach to quickly developing a new large upper stage optimized to fly on the existing Shuttle fleet. Two design reference missions (DRMs) were specified: the James Webb Space Telescope (JWST) and the Space Interferometry Mission (SIM). Two categories of upper stage propellants were examined in detail: a storable liquid propellant and a storable gel propellant. Stage subsystems 'other than propulsion were based largely on heritage hardware to minimize cost, risk and development schedule span. The paper presents the ground rules and guidelines for conducting the study, the preliminary conceptual designs margins, assessments of technology readiness/risk, potential synergy with other programs, and preliminary estimates of development and production costs and schedule spans. Although the Orbiter Columbia was baselined for the study, discussion is provided to show how the results apply to the remaining STS Orbiter fleet.
Upper stage technology evaluation studies
NASA Technical Reports Server (NTRS)
1972-01-01
Studies to evaluate advanced technology relative to chemical upper stages and orbit-to-orbit stages are reported. The work described includes: development of LH2/LOX stage data, development of data to indicate stage sensitivity to engine tolerance, modified thermal routines to accommodate storable propellants, added stage geometries to computer program for monopropellant configurations, determination of the relative gain obtainable through improvement of stage mass fraction, future propulsion concepts, effect of ultrahigh chamber-pressure increases, and relative gains obtainable through improved mass fraction.
Space Station Crew Holds an Out of this World Audience with the Pope
2017-10-26
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA and Flight Engineer and Italian astronaut Paolo Nespoli of the European Space Agency discussed life and work in space and the spirit of international cooperation during a question and answer session Oct. 26 with Pope Francis at the Vatican. The pope also discussed the crew members’ view of the Earth from orbit and praised the crew for its accomplishments in demonstrating the value of international collaboration for peaceful purposes. The crewmembers are in various stages of their respective five and a half month missions on the outpost.
Expedition 54 Landing Preparations
2018-02-26
NASA, Roscosmos, and Russian Search and Rescue teams arrive at the Karagada airport to deploy to Zhezkazgan, Kazakhstan to pre-stage for the Soyuz MS-06 landing with Expedition 54 crew members Joe Acaba and Mark Vande Hei of NASA and cosmonaut Alexander Misurkin, Monday, Feb. 26, 2018. Acaba, Vande Hei, and Misurkin are returning after 168 days in space where they served as members of the Expedition 53 and 54 crews onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Testing common stream sampling methods for broad-scale, long-term monitoring
Eric K. Archer; Brett B. Roper; Richard C. Henderson; Nick Bouwes; S. Chad Mellison; Jeffrey L. Kershner
2004-01-01
We evaluated sampling variability of stream habitat sampling methods used by the USDA Forest Service and the USDI Bureau of Land Management monitoring program for the upper Columbia River Basin. Three separate studies were conducted to describe the variability of individual measurement techniques, variability between crews, and temporal variation throughout the summer...
2011-09-13
CAPE CANAVERAL, Fla. -- NASA and Alliant Techsystems (ATK) managers announce an agreement that could accelerate the availability of U.S. commercial crew transportation capabilities in the Press Site auditorium at NASA's Kennedy Space Center in Florida. From left are Candrea Thomas, NASA Public Affairs; Ed Mango, Commercial Crew Program manager, NASA; Kent Rominger, vice president, Strategy and Business Development, ATK Aerospace; and John Schumacher, vice president, Space Programs, EADS North America. The unfunded Space Act Agreement (SAA) through NASA's Commercial Crew Program will allow the agency and ATK to review and discuss Liberty system requirements, safety and certification plans, computational models of rocket stage performance, and avionics architecture designs. The agreement outlines key milestones including an Initial System Design review, during which ATK will present to NASA officials the Liberty systems level requirements, preliminary design, and certification process development. For more information about NASA's Commercial Crew Program, visit http://www.nasa.gov/exploration/commercial. Photo credit: NASA/Jim Grossmann
2011-09-13
CAPE CANAVERAL, Fla. -- NASA and Alliant Techsystems (ATK) managers discuss an agreement that could accelerate the availability of U.S. commercial crew transportation capabilities with media representatives in the Press Site auditorium at NASA's Kennedy Space Center in Florida. From left are Ed Mango, Commercial Crew Program manager, NASA; Kent Rominger, vice president, Strategy and Business Development, ATK Aerospace; and John Schumacher, vice president, Space Programs, EADS North America. The unfunded Space Act Agreement (SAA) through NASA's Commercial Crew Program will allow the agency and ATK to review and discuss Liberty system requirements, safety and certification plans, computational models of rocket stage performance, and avionics architecture designs. The agreement outlines key milestones including an Initial System Design review, during which ATK will present to NASA officials the Liberty systems level requirements, preliminary design, and certification process development. For more information about NASA's Commercial Crew Program, visit http://www.nasa.gov/exploration/commercial. Photo credit: NASA/Jim Grossmann
Hadała, Michał; Barrios, Carlos
2009-05-01
The aim of this study was to describe the injuries sustained by an America's Cup crew during eight preparatory competitions of the 32nd America's Cup 2007 and the Louis Vuitton Cup (from October 2004 to June 2007). The anatomical location, type of injury, and mechanism of injury were recorded. The injuries were categorized based on each sailor's position on the boat according to three intensities of physical demands. The injury rates per sailor and per 1000 h of competition were determined. In total, 90 injuries were registered. The overall incidence was 10 injuries per 1000 competition hours. Overuse injuries accounted for 76.6% of all lesions. The most common anatomical location of injuries was the upper limb (36.6%), followed by the upper dorsal and cervical spine (34.4%). Frequency of injury was related to the sailor's position on the boat, being higher in the group with more demanding activities (grinder, bowman, and mastman). Most injuries (67%) were sustained by this group of sailors. The most common injuries in this group were muscle contractures of the quadratus lumborum (11), trapezius (8), and rhomboid (7). There were eight cases of elbow epicondylitis, four cases of tendinopathy of the supraspinous tendon, and three cases of tendinopathy of the biceps brachii. An America's Cup yachting crew is exposed to a high risk of overuse injuries, especially those sailors whose boat position involves high-intensity activity.
The Development of the Ares I-X Flight Test
NASA Technical Reports Server (NTRS)
Ess, Robert H.
2008-01-01
The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Ares I Crew Launch Vehicle (CLV) and the Orion Crew Exploration Vehicle (CEV). Ares I-X was created as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight vehicle is an early operational model of Ares, with specific emphasis on Ares I and ground operation characteristics necessary to meet Ares I-X flight test objectives. Ares I-X will encompass the design and construction of an entire system that includes the Flight Test Vehicle (FTV) and associated operations. The FTV will be a test model based on the Ares I design. Select design features will be incorporated in the FTV design to emulate the operation of the CLV in order to meet the flight test objectives. The operations infrastructure and processes will be customized for Ares I-X, while still providing data to inform the developers of the launch processing system for Ares/Orion. The FTV is comprised of multiple elements and components that will be developed at different locations. The components will be delivered to the launch/assembly site, Kennedy Space Center (KSC), for assembly of the elements and components into an integrated, flight-ready, launch vehicle. The FTV will fly a prescribed trajectory in order to obtain the necessary data to meet the objectives. Ares I-X will not be commanded or controlled from the ground during flight, but the FTV will be equipped with telemetry systems, a data recording capability and a flight termination system (FTS). The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation representative of the CLV. The in-flight test also includes separation of the Upper Stage Simulator (USS) from the First Stage and recovery of the First Stage. The data retrieved from the flight test will be analyzed and used in the design and development of the Ares I vehicle. This paper will discuss the challenges in developing a new launch vehicle in a very short timeframe. The duration from formal Authority to Proceed to launch is 32 months with launch scheduled for April, 2009. The discussion will include changes to organizational structure, system engineering approaches, and early lessons learned for a fast tracked and highly visible project.
Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis
2013-01-01
Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977
May, F.E.
1976-01-01
Fossil dinoflagellate tests have been considered to represent encysted, nonmotile stages. The discovery of flagellar porelike structures and probable trichocyst pores in the Upper Cretaceous genus Dinogymnium suggests that motile stage tests are also preserved as acid-resistant, organic-walled microfossils.
Space Shuttle guidance for multiple main engine failures during first stage
NASA Technical Reports Server (NTRS)
Sponaugle, Steven J.; Fernandes, Stanley T.
1987-01-01
This paper presents contingency abort guidance schemes recently developed for multiple Space Shuttle main engine failures during the first two minutes of flight (first stage). The ascent and entry guidance schemes greatly improve the possibility of the crew and/or the Orbiter surviving a first stage contingency abort. Both guidance schemes were required to meet certain structural and controllability constraints. In addition, the systems were designed with the flexibility to allow for seasonal variations in the atmosphere and wind. The ascent scheme guides the vehicle to a desirable, lofted state at solid rocket booster burnout while reducing the structural loads on the vehicle. After Orbiter separation from the solid rockets and the external tank, the entry scheme guides the Orbiter through one of two possible entries. If the proper altitude/range/velocity conditions have been met, a return-to-launch-site 'Split-S' maneuver may be attempted. Otherwise, a down-range abort to an equilibrium glide and subsequent crew bailout is performed.
NASA Technical Reports Server (NTRS)
1992-01-01
The Earth Orbital Rendezvous (EOR) configuration for the piloted mission is composed of three propulsive elements in addition to the Crew Module (CM): Primary Trans-Lunar Injection (PTLI), Lunar Braking Module (LBM), and Earth Return Module (ERM). The precursor mission is also composed of three propulsive elements in addition to its surface payloads: PTLI, LBM and the Payload Landing Module (PLM). Refer to Volume 1, Section 5.1 and 5.2 for a break-up of the different stages into the four launches. A quick summary is as follows: PTLI is on Launch 1 and 3 while the LBM, PLM, and surface payloads are on Launch 2 and another LBM, ERM, and CM on Launch 4. The precursor mission is designed to be as modular as possible with the piloted mission for developmental cost considerations. The following topics are discussed: launch vehicle description; primary trans-lunar injection stage; lunar braking module; earth return module; crew module; payload landing module; and surface payload description.
Seeing Earth Through the Eyes of an Astronaut
NASA Technical Reports Server (NTRS)
Dawson, Melissa
2014-01-01
The Human Exploration Science Office within the ARES Directorate has undertaken a new class of handheld camera photographic observations of the Earth as seen from the International Space Station (ISS). For years, astronauts have attempted to describe their experience in space and how they see the Earth roll by below their spacecraft. Thousands of crew photographs have documented natural features as diverse as the dramatic clay colors of the African coastline, the deep blues of the Earth's oceans, or the swirling Aurora Borealis of Australia in the upper atmosphere. Dramatic recent improvements in handheld digital single-lens reflex (DSLR) camera capabilities are now allowing a new field of crew photography: night time-lapse imagery.
Minimizing Project Cost by Integrating Subcontractor Selection Decisions with Scheduling
NASA Astrophysics Data System (ADS)
Biruk, Sławomir; Jaśkowski, Piotr; Czarnigowska, Agata
2017-10-01
Subcontracting has been a worldwide practice in the construction industry. It enables the construction enterprises to focus on their core competences and, at the same time, it makes complex project possible to be delivered. Since general contractors bear full responsibility for the works carried out by their subcontractors, it is their task and their risk to select a right subcontractor for a particular work. Although subcontractor management has been admitted to significantly affect the construction project’s performance, current practices and past research deal with subcontractor management and scheduling separately. The proposed model aims to support subcontracting decisions by integrating subcontractor selection with scheduling to enable the general contractor to select the optimal combination of subcontractors and own crews for all work packages of the project. The model allows for the interactions between the subcontractors and their impacts on the overall project performance in terms of cost and, indirectly, time and quality. The model is intended to be used at the general contractor’s bid preparation stage. The authors claim that the subcontracting decisions should be taken in a two-stage process. The first stage is a prequalification - provision of a short list of capable and reliable subcontractors; this stage is not the focus of the paper. The resulting pool of available resources is divided into two subsets: subcontractors, and general contractor’s in-house crews. Once it has been defined, the next stage is to assign them to the work packages that, bound by fixed precedence constraints, form the project’s network diagram. Each package is possible to be delivered by the general contractor’s crew or some of the potential subcontractors, at a specific time and cost. Particular crews and subcontractors can be contracted more than one package, but not at the same time. Other constraints include the predefined project completion date (the project is not allowed to take longer) and maximum total value of subcontracted work. The problem is modelled as a mixed binary linear program that minimizes project cost. It can be solved using universal solvers (e.g. LINGO, AIMMS, CPLEX, MATLAB and Optimization Toolbox, etc.). However, developing a dedicated decision-support tool would facilitate practical applications. To illustrate the idea of the model, the authors present a numerical example to find the optimal set of resources allocated to a project.
Earth Observations taken by Expedition 30 crewmember
2012-01-30
ISS030-E-060478 (30 Jan. 2012) --- The city lights of Madrid (just right of center) stand out in this photograph from the International Space Station. Recorded by one of the Expedition 30 crew members, the view shows almost the entire Iberian Peninsula (both Spain and Portugal) with the Strait of Gibraltar and Morocco appearing at lower left. What is thought to be a blur of the moon appears in upper left corner. The faint gold or brownish line of airglow?caused by ultraviolet radiation exciting the gas molecules in the upper atmosphere?parallels the horizon or Earth limb.
Space Shuttle Orbiter Digital Outer Mold Line Scanning
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; Wilson, Brad; Pavek, Mike; Berger, Karen
2012-01-01
The Space Shuttle Orbiters Discovery and Endeavor have been digitally scanned to produce post-flight configuration outer mold line surfaces. Very detailed scans of the windward side of these vehicles provide resolution of the detailed tile step and gap geometry, as well as the reinforced carbon carbon nose cap and leading edges. Lower resolution scans of the upper surface provide definition of the crew cabin windows, wing upper surfaces, payload bay doors, orbital maneuvering system pods and the vertical tail. The process for acquisition of these digital scans as well as post-processing of the very large data set will be described.
NASA Technical Reports Server (NTRS)
Shivers, C. Herb
2012-01-01
NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.
NASA Ares I Launch Vehicle Roll and Reaction Control Systems Lessons Learned
NASA Technical Reports Server (NTRS)
Butt, Adam; Popp, Chris G.; Jernigan, Frankie R.; Paseur, Lila F.; Pitts, Hank M.
2011-01-01
On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The lessons learned documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing with special emphasis on each task order. In summary, this paper attempts to capture key lessons learned that should be helpful in the development of future launch vehicle RCS designs.
1958-01-31
This illustration shows the main characteristics of the Jupiter C launch vehicle and its payload, the Explorer I satellite. The Jupiter C, America's first successful space vehicle, launched the free world's first scientific satellite, Explorer 1, on January 31, 1958. The four-stage Jupiter C measured almost 69 feet in length. The first stage was a modified liquid fueled Redstone missile. This main stage was about 57 feet in length and 70 inches in diameter. Fifteen scaled down SERGENT solid propellant motors were used in the upper stages. A "tub" configuration mounted on top of the modified Redstone held the second and third stages. The second stage consisted of 11 rockets placed in a ring formation within the tub. Inserted into the ring of second stage rockets was a cluster of 3 rockets making up the third stage. A fourth stage single rocket and the satellite were mounted atop the third stage. This "tub", all upper stages, and the satellite were set spirning prior to launching. The complete upper assembly measured 12.5 feet in length. The Explorer I carried the radiation detection experiment designed by Dr. James Van Allen and discovered the Van Allen Radiation Belt.
Crew interface specification development study for in-flight maintenance and stowage functions
NASA Technical Reports Server (NTRS)
Carl, J. G.
1971-01-01
The need and potential solutions for an orderly systems engineering approach to the definition, management and documentation requirements for in-flight maintenance, assembly, servicing, and stowage process activities of the flight crews of future spacecraft were investigated. These processes were analyzed and described using a new technique (mass/function flow diagramming), developed during the study, to give visibility to crew functions and supporting requirements, including data products. This technique is usable by NASA for specification baselines and can assist the designer in identifying both upper and lower level requirements associated with these processes. These diagrams provide increased visibility into the relationships between functions and related equipments being utilized and managed and can serve as a common communicating vehicle between the designer, program management, and the operational planner. The information and data product requirements to support the above processes were identified along with optimum formats and contents of these products. The resulting data product concepts are presented to support these in-flight maintenance and stowage processes.
1991-09-12
The STS-48 mission launched aboard the Space Shuttle Discovery on September 12, 1991 at 7:11:04 pm. Five astronauts composed the crew including: John O. Creighton, commander; Kenneth S. Reightler, pilot; and Mark N. Brown, Charles D. (Sam) Gemar, and James F. Buchli, all mission specialists. The primary payload of the mission was the Upper Atmosphere Research Satellite (UARS).
P6 Truss solar array, SABB and PV Radiator seen during EVA 3
2005-08-03
Photograph documenting the P6 Truss Solar Array Wing (SAW), Mast Canisters, Photovoltaic (PV) Radiator and Solar Array Blanket Boxes (SABB) as seen by the STS-114 crew during the third of three Extravehicular Activities (EVAs) of the mission. Part of the orbiter Discovery's nosecone is visible in the upper right of the frame.
NASA Technical Reports Server (NTRS)
2009-01-01
Media members interview Commander Christopher Ferguson (right) during his Jan. 13 visit to StenniSphere. He was joined by Mission Specialist Heidemarie Stefanyshyn-Piper (on stage, left), both members of the STS-126 shuttle mission.
Upper stage alternatives for the shuttle era
NASA Technical Reports Server (NTRS)
1981-01-01
The status and general characteristics of Space Shuttle upper stages now in use or in development, as well as new vehicle possibilities are examined. Upper stage requirements for both civil and Department of Defense missions, categorized generally into near-term (early and mid-1980's), mid-term (late 1980's to mid-1990's), and far-term (late 1990's and beyond) are discussed. Finally, the technical, schedule and cost impact of alternative ways in which these requirements could be met are examined, and a number of conclusions and recommendations are reached.
Simulink Model of the Ares I Upper Stage Main Propulsion System
NASA Technical Reports Server (NTRS)
Burchett, Bradley T.
2008-01-01
A numerical model of the Ares I upper stage main propulsion system is formulated based on first principles. Equation's are written as non-linear ordinary differential equations. The GASP fortran code is used to compute thermophysical properties of the working fluids. Complicated algebraic constraints are numerically solved. The model is implemented in Simulink and provides a rudimentary simulation of the time history of important pressures and temperatures during re-pressurization, boost and upper stage firing. The model is validated against an existing reliable code, and typical results are shown.
Illustration of Ares I During Launch
NASA Technical Reports Server (NTRS)
2006-01-01
The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the Ares I is illustrated during lift off. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. With a primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I uses a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine, derived from the J-2 engine used on the second stage of the Apollo vehicle, will power the Ares I second stage. Ares I can lift more than 55,000 pounds to low Earth orbit. The Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.
Illustration of Ares I Launch Vehicle With Call Outs
NASA Technical Reports Server (NTRS)
2006-01-01
Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares I with call outs. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to the primary mission of carrying crews of four to six astronauts to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the Apollo second stage will power the Ares I second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.
Wang, Jiaxi; Gronalt, Manfred; Sun, Yan
2017-01-01
Due to its environmentally sustainable and energy-saving characteristics, railway transportation nowadays plays a fundamental role in delivering passengers and goods. Emerged in the area of transportation planning, the crew (workforce) sizing problem and the crew scheduling problem have been attached great importance by the railway industry and the scientific community. In this paper, we aim to solve the two problems by proposing a novel two-stage optimization approach in the context of the electric multiple units (EMU) depot shunting driver assignment problem. Given a predefined depot shunting schedule, the first stage of the approach focuses on determining an optimal size of shunting drivers. While the second stage is formulated as a bi-objective optimization model, in which we comprehensively consider the objectives of minimizing the total walking distance and maximizing the workload balance. Then we combine the normalized normal constraint method with a modified Pareto filter algorithm to obtain Pareto solutions for the bi-objective optimization problem. Furthermore, we conduct a series of numerical experiments to demonstrate the proposed approach. Based on the computational results, the regression analysis yield a driver size predictor and the sensitivity analysis give some interesting insights that are useful for decision makers.
Gronalt, Manfred; Sun, Yan
2017-01-01
Due to its environmentally sustainable and energy-saving characteristics, railway transportation nowadays plays a fundamental role in delivering passengers and goods. Emerged in the area of transportation planning, the crew (workforce) sizing problem and the crew scheduling problem have been attached great importance by the railway industry and the scientific community. In this paper, we aim to solve the two problems by proposing a novel two-stage optimization approach in the context of the electric multiple units (EMU) depot shunting driver assignment problem. Given a predefined depot shunting schedule, the first stage of the approach focuses on determining an optimal size of shunting drivers. While the second stage is formulated as a bi-objective optimization model, in which we comprehensively consider the objectives of minimizing the total walking distance and maximizing the workload balance. Then we combine the normalized normal constraint method with a modified Pareto filter algorithm to obtain Pareto solutions for the bi-objective optimization problem. Furthermore, we conduct a series of numerical experiments to demonstrate the proposed approach. Based on the computational results, the regression analysis yield a driver size predictor and the sensitivity analysis give some interesting insights that are useful for decision makers. PMID:28704489
Seismic stratigraphy of the Mississippi-Alabama shelf and upper continental slope
Kindinger, J.L.
1988-01-01
The Mississippi-Alabama shelf and upper continental slope contain relatively thin Upper Pleistocene and Holocene deposits. Five stages of shelf evolution can be identified from the early Wisconsinan to present. The stages were controlled by glacioeustatic or relative sea-level changes and are defined by the stratigraphic position of depositional and erosional episodes. The stratigraphy was identified on seismic profiles by means of geomorphic pattern, high-angle clinoform progradational deposits, buried stream entrenchments, planar conformities, and erosional unconformities. The oldest stage (stage 1) of evolution occurred during the early Wisconsinan lowstand; the subaerially exposed shelf was eroded to a smooth seaward-sloping surface. This paleosurface is overlain by a thin (< 10 m) drape of transgressive deposits (stage 2). Stage 3 occurred in three phases as the late Wisconsinan sea retreated: (1) fluvial channel systems eroded across the shelf, (2) deposited a thick (90 m) shelf-margin delta, and (3) contemporaneously deposited sediments on the upper slope. Stage 4 included the rapid Holocene sea-level rise that deposited a relatively thin transgressive facies over parts of the shelf. The last major depositional episode (stage 5) was the progradation of the St. Bernard delta over the northwestern and central parts of the area. A depositional hiatus has occurred since the St. Bernard progradation. These Upper Quaternary shelf and slope deposits provide models for analogous deposits in the geologic record. Primarily, they are examples of cyclic sedimentation caused by changes in sea level and may be useful in describing short-term, sandy depositional episodes in prograding shelf and slope sequences. ?? 1988.
Prototype Conflict Alerting Logic for Free Flight
NASA Technical Reports Server (NTRS)
Yang, Lee C.; Kuchar, James K.
1997-01-01
This paper discusses the development of a prototype alerting system for a conceptual Free Flight environment. The concept assumes that datalink between aircraft is available and that conflicts are primarily resolved on the flight deck. Four alert stages are generated depending on the likelihood of a conflict. If the conflict is not resolved by the flight crews, Air Traffic Control is notified to take over separation authority. The alerting logic is based on probabilistic analysis through modeling of aircraft sensor and trajectory uncertainties. Monte Carlo simulations were used over a range of encounter situations to determine conflict probability. The four alert stages were then defined based on probability of conflict and on the number of avoidance maneuvers available to the flight crew. Preliminary results from numerical evaluations and from a piloted simulator study at NASA Ames Research Center are summarized.
Low Cost, Upper Stage-Class Propulsion
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The low cost, upper stage-class propulsion (LCUSP) element will develop a high strength copper alloy additive manufacturing (AM) process as well as critical components for an upper stage-class propulsion system that will be demonstrated with testing. As manufacturing technologies have matured, it now appears possible to build all the major components and subsystems of an upper stage-class rocket engine for substantially less money and much faster than traditionally done. However, several enabling technologies must be developed before that can happen. This activity will address these technologies and demonstrate the concept by designing, manufacturing, and testing the critical components of a rocket engine. The processes developed and materials' property data will be transitioned to industry upon completion of the activity. Technologies to enable the concept are AM copper alloy process development, AM post-processing finishing to minimize surface roughness, AM material deposition on existing copper alloy substrate, and materials characterization.
Space Radiation Risks for Astronauts on Multiple International Space Station Missions
Cucinotta, Francis A.
2014-01-01
Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA’s radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members’ radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate. PMID:24759903
Space radiation risks for astronauts on multiple International Space Station missions.
Cucinotta, Francis A
2014-01-01
Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA's radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members' radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate.
J-2X Turbopump Cavitation Diagnostics
NASA Technical Reports Server (NTRS)
Santi, I. Michael; Butas, John P.; Tyler, Thomas R., Jr.; Aguilar, Robert; Sowers, T. Shane
2010-01-01
The J-2X is the upper stage engine currently being designed by Pratt & Whitney Rocketdyne (PWR) for the Ares I Crew Launch Vehicle (CLV). Propellant supply requirements for the J-2X are defined by the Ares Upper Stage to J-2X Interface Control Document (ICD). Supply conditions outside ICD defined start or run boxes can induce turbopump cavitation leading to interruption of J-2X propellant flow during hot fire operation. In severe cases, cavitation can lead to uncontained engine failure with the potential to cause a vehicle catastrophic event. Turbopump and engine system performance models supported by system design information and test data are required to predict existence, severity, and consequences of a cavitation event. A cavitation model for each of the J-2X fuel and oxidizer turbopumps was developed using data from pump water flow test facilities at Pratt & Whitney Rocketdyne (PWR) and Marshall Space Flight Center (MSFC) together with data from Powerpack 1A testing at Stennis Space Center (SSC) and from heritage systems. These component models were implemented within the PWR J-2X Real Time Model (RTM) to provide a foundation for predicting system level effects following turbopump cavitation. The RTM serves as a general failure simulation platform supporting estimation of J-2X redline system effectiveness. A study to compare cavitation induced conditions with component level structural limit thresholds throughout the engine was performed using the RTM. Results provided insight into system level turbopump cavitation effects and redline system effectiveness in preventing structural limit violations. A need to better understand structural limits and redline system failure mitigation potential in the event of fuel side cavitation was indicated. This paper examines study results, efforts to mature J-2X turbopump cavitation models and structural limits, and issues with engine redline detection of cavitation and the use of vehicle-side abort triggers to augment the engine redline system.
First Stage Solid Propellant Multi Debris Thermal Analysis
NASA Technical Reports Server (NTRS)
Toleman, Benjamin M.
2011-01-01
The crew launch vehicle considered for the Constellation (Cx) Program utilizes a first stage solid rocket motor. If an abort is initiated in first stage flight the Crew Module (CM) will separate and be pulled away from the launch vehicle via a Launch Abort System (LAS) in order to safely and quickly carry the crew away from the malfunction launch vehicle. Having aborted the mission, the launch vehicle will likely be destroyed via a Flight Termination System (FTS) in order to prevent it from errantly traversing back over land and posing a risk to the public. The resulting launch vehicle debris field, composed primarily of first stage solid propellant, poses a threat to the CM. The harsh radiative thermal environment induced by surrounding burning propellant debris may lead to CM parachute failure. A methodology, detailed herein, has been developed to address this concern and quantify the risk of first stage propellant debris leading to radiative thermal demise of the CM parachutes. Utilizing basic thermal radiation principles, a software program was developed to calculate parachute temperature as a function of time for a given abort trajectory and debris piece trajectory set. Two test cases, considered worst-case aborts with regard to launch vehicle debris environments, were analyzed using the simulation: an abort declared at Mach 1 and an abort declared at maximum dynamic pressure (Max Q). For both cases, the resulting temperature profiles indicated that thermal limits for the parachutes were not exceeded. However, short duration close encounters by single debris pieces did have a significant effect on parachute temperature, with magnitudes on the order of 10 s of degrees Fahrenheit. Therefore while these two test cases did not indicate exceedance of thermal limits, in order to quantify the risk of parachute failure due to radiative effects from the abort environment, a more thorough probability-based analysis using the methodology demonstrated herein must be performed.
First Stage Solid Propellant Multiply Debris Thermal Analysis
NASA Technical Reports Server (NTRS)
Toleman, Benjamin M.
2011-01-01
Destruction of a solid rocket stage of a launch vehicle can create a thermal radiation hazard for an aborting crew module. This hazard was assessed for the Constellation Program (Cx) crew and launch vehicle concept. For this concept, if an abort was initiated in first stage flight, the Crew Module (CM) will separate and be pulled away from the malfunctioning launch vehicle via a Launch Abort System (LAS). Having aborted the mission, the launch vehicle will likely be destroyed via a Flight Termination System (FTS) in order to prevent it from errantly traversing back over land and posing a risk to the public. The resulting launch vehicle debris field, composed primarily of first stage solid propellant, poses a threat to the CM. The harsh radiative thermal environment, caused by surrounding burning propellant debris, may lead to CM parachute failure. A methodology, detailed herein, has been developed to address this concern and to quantify the risk of first stage propellant debris leading to the thermal demise of the CM parachutes. Utilizing basic thermal radiation principles, a software program was developed to calculate parachute temperature as a function of time for a given abort trajectory and debris piece trajectory set. Two test cases, considered worst case aborts with regard to launch vehicle debris environments, were analyzed using the simulation: an abort declared at Mach 1 and an abort declared at maximum dynamic pressure (Max Q). For both cases, the resulting temperature profiles indicated that thermal limits for the parachutes were not exceeded. However, short duration close encounters by single debris pieces did have a significant effect on parachute temperature. Therefore while these two test cases did not indicate exceedance of thermal limits, in order to quantify the risk of parachute failure due to radiative effects from the abort environment, a more thorough probability-based analysis using the methodology demonstrated herein must be performed.
Contingency Operations of Americas Next Moon Rocket, Ares V
NASA Technical Reports Server (NTRS)
Jaap, John; Richardson, Lea
2010-01-01
America has begun the development of a new space vehicle system which will enable humans to return to the moon and reach even farther destinations. The system is called Constellation: it has 2 earth-launch vehicles, Ares I and Ares V; a crew module, Orion; and a lander, Altair with descent and ascent stages. Ares V will launch an Earth Departure Stage (EDS) and Altair into low earth orbit. Ares I will launch the Orion crew module into low earth orbit where it will rendezvous and dock with the Altair and EDS "stack". After rendezvous, the stack will contain four complete rocket systems, each capable of independent operations. Of course this multiplicity of vehicles provides a multiplicity of opportunities for off-nominal behavior and multiple mitigation options for each. Contingency operations are complicated by the issues of crew safety and the possibility of debris from the very large components impacting the ground. This paper examines contingency operations of the EDS in low earth orbit, during the boost to translunar orbit, and after the translunar boost. Contingency operations under these conditions have not been a consideration since the Apollo era and analysis of the possible contingencies and mitigations will take some time to evolve. Since the vehicle has not been designed, much less built, it is not possible to evaluate contingencies from a root-cause basis or from a probability basis; rather they are discussed at an effects level (such as the reaction control system is consuming propellant at a high rate). Mitigations for the contingencies are based on the severity of the off-nominal condition, the time of occurrence, recovery options, options for alternate missions, crew safety, evaluation of the condition (forensics) and future prevention. Some proposed mitigations reflect innovation in thinking and make use of the multiplicity of on-orbit resources including the crew; example: Orion could do a "fly around" to allow the crew to determine the condition and cause of a partially separated payload shroud. Other mitigations are really alternate missions; example, an engine out on during ascent resulted in insufficient propellant for the lunar mission, but the on-orbit vehicle stack is otherwise perfect and can pursue an alternate mission, such as a high ballistic trajectory to test the high-speed atmospheric reentry of Orion. Evaluation and presentation of contingency operations at this early stage of the development of the Ares V rocket will improve the design of the vehicle and lay the groundwork for the exhaustive contingency planning which must be done after the vehicle is built as preparations for operations.
Earth Observations taken by the Expedition 39 Crew
2014-03-12
ISS039-E-000663 (12 March 2014) --- As in the case of this picture, when an astronaut in space uses an 800mm focal length, it is impossible to get the entire body of Houston, the nation's fourth most populous city, in one frame. This photo was taken by one of the Expedition 39 crew members from the International Space Station on March 12, 2014. The large lens and the clear spring like weather provide a better than usual aerial study of the city. The downtown business district is in the center of the frame. The Relaint Stadium complex, home to the Houston Livestock and Rodeo, currently in progress, can be seen in the upper right portion of the photo.
NASA Technical Reports Server (NTRS)
Lyles, Garry; Otte, Neil E.
2008-01-01
Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, NASA's Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions.' These personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. Currently, only three spacefaring nations have this distinction, including the United States, Russia, and, more recently, China. The U.S. National Space Policy of2006 directs that NASA provide the means to travel to space, and the NASA Appropriations Act of2005 provided the initial funding to begin in earnest to replace the Shuttle after the International Space Station construction is complete in 20 IO? These and other strategic goals and objectives are documented in NASA's 2006 Strategic Plan.3 In 2005, a team of NASA aerospace experts conducted the Exploration Systems Architecture Study, which recommended a two-vehicle approach to America's next space transportation system for missions to the International Space Station in the next decade and to explore the Moon and establish an outpost around the 2020 timeframe.4 Based on this extensive study, NASA selected the Ares I crew launch vehicle configuration and the heavy-lift Ares V cargo launch vehicle (fig 1). This paper will give an overview of NASA's approach to integrating the Ares I vehicle stack using capabilities and assets that are resident in Marshall's Engineering Directorate, working in partnership with other NASA Centers and the U.S. aerospace industry. It also will provide top-level details on the progress of the in-house design of the Ares I vehicle's upper stage element.
Ji, Eun-Kyu; Lee, Sang-Heon
2016-11-01
[Purpose] The purpose of this study was to investigate the effects of virtual reality training combined with modified constraint-induced movement therapy on upper extremity motor function recovery in acute stage stroke patients. [Subjects and Methods] Four acute stage stroke patients participated in the study. A multiple baseline single subject experimental design was utilized. Modified constraint-induced movement therapy was used according to the EXplaining PLastICITy after stroke protocol during baseline sessions. Virtual reality training with modified constraint-induced movement therapy was applied during treatment sessions. The Manual Function Test and the Box and Block Test were used to measure upper extremity function before every session. [Results] The subjects' upper extremity function improved during the intervention period. [Conclusion] Virtual reality training combined with modified constraint-induced movement is effective for upper extremity function recovery in acute stroke patients.
STS-103 crew return at building 990, Ellington Field
1999-12-29
Photographic documentation showing STS-103 crew return at bldg. 990, Ellington Field. Views include: Mission Specialist (MS) John M. Grunsfeld at podium (16048); MS Jean-Francois Clervoy at podium (16049); Grunsfeld signs autographs (16050); woman and child (16051); MS Claude Nicollier meets his Swiss-American fan club (16052); Clervoy holds child (16053); mission commander Curtis L. Brown signs autographs (16054, 16057); MS E. Michael Foale signs autographs (16055); MS and Payload Commander (PLC) Steven L. Smith kneels and holds child (16056); overall view of stage showing Brown at podium with crew seated behind him; from left to right: Nicollier, pilot Scott J. Kelly, Clervoy, Grunsfeld, Mr. George Abbey (JSC director), Foale and Smith (16058); Nicollier at podium (16059); Mr. George Abbey at the podium (16060): Foale ath the podium (16061); Kelly signs autographs (16062).
STS-62 Columbia/Breakfast, Suit-up, Depart O&C, Launch, On-Orbit, Landing
NASA Technical Reports Server (NTRS)
1994-01-01
Footage of various stages of the STS-62 Columbia launch is shown, including shots of the crew at breakfast, getting suited up, and departing to board the Orbiter. The launch is seen from many vantage points, as is the landing. On-orbit activities show the crew performing medical experiments, such as using the Lower Body Negative Pressure unit, and during a demonstration of the effects of microgravity using M&Ms and marshmallows. The Gulf of Mexico and a hurricane are seen from the Orbiter.
Crew Earth Observations (CEO) taken during Expedition Six
2003-02-01
ISS006-E-28016 (February 2003) --- The Coal Sack Nebula (bottom center), the Southern Cross (lower right), and the two prominent stars in the upper left, which are the two prominent stars of the southern constellation Centaurus, are visible in this view photographed by astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, on board the International Space Station (ISS).
2014-06-07
ISS040-E-008307 (7 June 2014) --- One of the members of the Expedition 40 crew aboard the International Space Station aimed a camera "around" the docked Russian Soyuz vehicle to record this night image of the United Arab Emirates. Dubai (center) and Abu Dhabi (left) are easily identified. The Straits of Hormuz are at right and the coast of Iran is barely visible in upper right.
Marshall Space Flight Center Digital Manufacturing
NASA Technical Reports Server (NTRS)
Arays, Edward; Phillips, Steven
2008-01-01
This presentation highlights the history of DELMIA at MSFC; provides an overview of the Constellation Program; examines the manufacturing of Ares 1 Upper Stage; explains the digital manufacturing implementation for Ares 1 Upper Stage; and, discusses manufacturing and development problems and challenges.
NASA Technical Reports Server (NTRS)
Kitchens, M. D.; Schnyer, A. D.
1977-01-01
Several design/development and operational approaches for STS upper stages are being pursued to realize maximum operational and economic benefits upon the introduction of the STS in the 1980s. The paper focuses special attention on safety operations, launch site operations and on-orbit operations.
NASA Technical Reports Server (NTRS)
1974-01-01
Future operational concepts for the space transportation system were studied in terms of space shuttle upper stage failure contingencies possible during deployment, retrieval, or space servicing of automated satellite programs. Problems anticipated during mission planning were isolated using a modified 'fault tree' technique, normally used in safety analyses. A comprehensive space servicing hazard analysis is presented which classifies possible failure modes under the catagories of catastrophic collision, failure to rendezvous and dock, servicing failure, and failure to undock. The failure contingencies defined are to be taken into account during design of the upper stage.
Elevated temperature forming method and preheater apparatus
Krajewski, Paul E; Hammar, Richard Harry; Singh, Jugraj; Cedar, Dennis; Friedman, Peter A; Luo, Yingbing
2013-06-11
An elevated temperature forming system in which a sheet metal workpiece is provided in a first stage position of a multi-stage pre-heater, is heated to a first stage temperature lower than a desired pre-heat temperature, is moved to a final stage position where it is heated to a desired final stage temperature, is transferred to a forming press, and is formed by the forming press. The preheater includes upper and lower platens that transfer heat into workpieces disposed between the platens. A shim spaces the upper platen from the lower platen by a distance greater than a thickness of the workpieces to be heated by the platens and less than a distance at which the upper platen would require an undesirably high input of energy to effectively heat the workpiece without being pressed into contact with the workpiece.
1989-05-08
STS030-152-066 (4-8 May 1989) --- The upper Texas and Louisiana Gulf Coast area was clearly represented in this large format frame photographed by the astronaut crew of the Earth-orbiting Space Shuttle Atlantis. The area covered stretches almost 300 miles from Aransas Pass, Texas to Cameron, Louisiana. The sharp detail of both the natural and cultural features noted throughout the scene is especially evident in the Houston area, where highways, major streets, airport runways and even some neighborhood lanes are easily seen. Other major areas seen are Austin, San Antonio and the Golden Triangle. An Aero Linhof camera was used to expose the frame.
NASA Technical Reports Server (NTRS)
Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl
2002-01-01
The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.
NASA Technical Reports Server (NTRS)
Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl
2002-01-01
The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2016-01-01
A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.
NASA Technical Reports Server (NTRS)
Santi, Louis M.; Butas, John P.; Aguilar, Robert B.; Sowers, Thomas S.
2008-01-01
The J-2X is an expendable liquid hydrogen (LH2)/liquid oxygen (LOX) gas generator cycle rocket engine that is currently being designed as the primary upper stage propulsion element for the new NASA Ares vehicle family. The J-2X engine will contain abort logic that functions as an integral component of the Ares vehicle abort system. This system is responsible for detecting and responding to conditions indicative of impending Loss of Mission (LOM), Loss of Vehicle (LOV), and/or catastrophic Loss of Crew (LOC) failure events. As an earth orbit ascent phase engine, the J-2X is a high power density propulsion element with non-negligible risk of fast propagation rate failures that can quickly lead to LOM, LOV, and/or LOC events. Aggressive reliability requirements for manned Ares missions and the risk of fast propagating J-2X failures dictate the need for on-engine abort condition monitoring and autonomous response capability as well as traditional abort agents such as the vehicle computer, flight crew, and ground control not located on the engine. This paper describes the baseline J-2X abort subsystem concept of operations, as well as the development process for this subsystem. A strategy that leverages heritage system experience and responds to an evolving engine design as well as J-2X specific test data to support abort system development is described. The utilization of performance and failure simulation models to support abort system sensor selection, failure detectability and discrimination studies, decision threshold definition, and abort system performance verification and validation is outlined. The basis for abort false positive and false negative performance constraints is described. Development challenges associated with information shortfalls in the design cycle, abort condition coverage and response assessment, engine-vehicle interface definition, and abort system performance verification and validation are also discussed.
Lithium Iron Phosphate Cell Performance Evaluations for Lunar Extravehicular Activities
NASA Technical Reports Server (NTRS)
Reid, Concha
2007-01-01
Lithium-ion battery cells are being evaluated for their ability to provide primary power and energy storage for NASA s future Exploration missions. These missions include the Orion Crew Exploration Vehicle, the Ares Crew Launch Vehicle Upper Stage, Extravehicular Activities (EVA, the advanced space suit), the Lunar Surface Ascent Module (LSAM), and the Lunar Precursor and Robotic Program (LPRP), among others. Each of these missions will have different battery requirements. Some missions may require high specific energy and high energy density, while others may require high specific power, wide operating temperature ranges, or a combination of several of these attributes. EVA is one type of mission that presents particular challenges for today s existing power sources. The Portable Life Support System (PLSS) for the advanced Lunar surface suit will be carried on an astronaut s back during eight hour long sorties, requiring a lightweight power source. Lunar sorties are also expected to occur during varying environmental conditions, requiring a power source that can operate over a wide range of temperatures. Concepts for Lunar EVAs include a primary power source for the PLSS that can recharge rapidly. A power source that can charge quickly could enable a lighter weight system that can be recharged while an astronaut is taking a short break. Preliminary results of Al23 Ml 26650 lithium iron phosphate cell performance evaluations for an advanced Lunar surface space suit application are discussed in this paper. These cells exhibit excellent recharge rate capability, however, their specific energy and energy density is lower than typical lithium-ion cell chemistries. The cells were evaluated for their ability to provide primary power in a lightweight battery system while operating at multiple temperatures.
STS-71 Shuttle Atlantis landing closeup
NASA Technical Reports Server (NTRS)
1995-01-01
KENNEDY SPACE CENTER, FLA. -- The Space Shuttle orbiter Atlantis makes a smooth touchdown on Runway 15 of the Shuttle Landing Facility, bringing an end to the historic STS-71 mission which featured the first docking between the Space Shuttle and the Russian Mir space station. The chase plane, the Shuttle Training Aircraft flown by Robert D. Cabana, head of the Astronaut Office, is in the upper left of photo. Main gear touchdown of Atlantis was at 10:54:34 a.m. EDT, on July 7, 1995. This was the first of seven scheduled Shuttle/Mir docking missions. The 10-day mission also set the record for having the most people who have flown in an orbiter during a mission: the five U.S. astronauts and two cosmonauts who were launched on Atlantis on June 27, and three space flyers who have been aboard Mir since March 16 and were returned to Earth in Atlantis. The STS-71 crew included Mission Commander Robert L. 'Hoot' Gibson, Pilot Charles J. Precourt, Payload Commander Dr. Ellen S. Baker, and Mission Specialists Bonnie J. Dunbar and Gregory J. Harbaugh. Also part of the STS-71 crew were two cosmonauts who comprise the Mir 19 crew -- Mission Commander Anatoly Y. Solovyev and Flight Engineer Nikolai M. Budarin. They transfered to Mir during the four days of docking operations, and remain there. They replaced the Mir 18 crew of U.S. astronaut and cosmonaut researcher Dr. Norman E. Thagard, and cosmonauts Vladimir N. Dezhurov, who served as mission commander, and Gennadiy M. Strekalov, who served as flight engineer. The Mir crew joined the American STS-71 crew members for the return to Earth on Atlantis.
Alcohol Alert: Alcohol's Damaging Effects on the Brain
... early stages of development, as researchers strive to design therapies that can help prevent alcohol’s harmful effects ... of postnatal hippocampal neurogenesis in rats. Journal of Comparative Neurology 124(3):319–335, 1965. (30) Crews, ...
1950-02-24
Bumper Wac liftoff at the Long Range Proving Ground located at Cape Canaveral, Florida. At White Sands, New Mexico, the German rocket team experimented with a two-stage rocket called Bumper Wac, which intended to provide data for upper atmospheric research. On February 24, 1950, the Bumper, which employed a V-2 as the first stage with a Wac Corporal upper stage, obtained a peak altitude of more than 240 miles.
NASA Technical Reports Server (NTRS)
Nolan, Sean; Neubek, Deb; Baxmann, C. J.
1988-01-01
The Manned Mars Explorer (MME) project responds to the fundamental problems of sending human beings to Mars in a mission scenario and schematic vehicle designs. The mission scenario targets an opposition class Venus inbound swingby for its trajectory with concentration on Phobos and/or Deimos as a staging base for initial and future Mars vicinity operations. Optional vehicles are presented as a comparison using nuclear electric power/propulsion technology. A Manned Planetary Vehicle and Crew Command Vehicle are used to accomplish the targeted mission. The Manned Planetary Vehicle utilizes the mature technology of chemical propulsion combined with an advanced aerobrake, tether and pressurized environment system. The Crew Command Vehicle is the workhorse of the mission performing many different functions including a manned Mars landing, and Phobos rendezvous.
Upper Airway Collapsibility (Pcrit) and Pharyngeal Dilator Muscle Activity are Sleep Stage Dependent
Carberry, Jayne C.; Jordan, Amy S.; White, David P.; Wellman, Andrew; Eckert, Danny J.
2016-01-01
Study Objectives: An anatomically narrow/highly collapsible upper airway is the main cause of obstructive sleep apnea (OSA). Upper airway muscle activity contributes to airway patency and, like apnea severity, can be sleep stage dependent. Conversely, existing data derived from a small number of participants suggest that upper airway collapsibility, measured by the passive pharyngeal critical closing pressure (Pcrit) technique, is not sleep stage dependent. This study aimed to determine the effect of sleep stage on Pcrit and upper airway muscle activity in a larger cohort than previously tested. Methods: Pcrit and/or muscle data were obtained from 72 adults aged 20–64 y with and without OSA.Pcrit was determined via transient reductions in continuous positive airway pressure (CPAP) during N2, slow wave sleep (SWS) and rapid eye movement (REM) sleep. Genioglossus and tensor palatini muscle activities were measured: (1) awake with and without CPAP, (2) during stable sleep on CPAP, and (3) in response to the CPAP reductions used to quantify Pcrit. Results: Pcrit was 4.9 ± 1.4 cmH2O higher (more collapsible) during REM versus SWS (P = 0.012), 2.3 ± 0.6 cmH2O higher during REM versus N2 (P < 0.001), and 1.6 ± 0.7 cmH2O higher in N2 versus SWS (P = 0.048). Muscle activity decreased from wakefulness to sleep and from SWS to N2 to REM sleep for genioglossus but not for tensor palatini. Pharyngeal muscle activity increased by ∼50% by breath 5 following CPAP reductions. Conclusions: Upper airway collapsibility measured via the Pcrit technique and genioglossus muscle activity vary with sleep stage. These findings should be taken into account when performing and interpreting “passive” Pcrit measurements. Citation: Carberry JC, Jordan AS, White DP, Wellman A, Eckert DJ. Upper airway collapsibility (Pcrit) and pharyngeal dilator muscle activity are sleep stage dependent. SLEEP 2016;39(3):511–521. PMID:26612386
Prospective technologies and equipment for sanitary hygienic measures for life support systems
NASA Astrophysics Data System (ADS)
Shumilina, I. V.
Creation of optimal sanitary hygienic conditions is a prerequisite for good health and performance of crews on extended space missions. There is a rich assortment of associated means, methods and equipment developed and experimentally tested in orbital flights. However, over a one-year period a crew of three uses up about 800 kg of ground-supplied wet wipes and towels for personal needs. The degree of closure of life support systems for long-duration orbital flights should be maximized, particularly for interplanetary missions, which exclude any possibility of re-supply. Washing with regenerated water is the ultimate sanitary hygienic goal. That is why it is so important to design devices for crew bathing during long-term space missions. Investigations showed that regeneration of wash water (WW) using membrane processes (reverse osmosis, nanofiltration etc.), unlike sorption, would not require much additional expendables. A two-stage membrane recovery unit eliminated >85% of permeate from real WW with organic and inorganic selectivity of 82 95%. The two-stage WW recovery unit was tested with artificial and real WW containing detergents available for space crews. Investigations into the ways of doing laundry and drying along with which detergents will be the best fit for space flight are also planned. Testing of a technology for water extraction from used textiles using a conventional period of contact of 1 s or more, showed that the humidity of the outgoing air flow neared 100%. Issues related to designing the next generation of space life support systems should consider the benefits of integrating new sanitary hygienic technologies, equipment, and methods.
Progress on Ares First Stage Propulsion
NASA Technical Reports Server (NTRS)
Priskos, Alex S.; Tiller, Bruce
2008-01-01
The mission of the National Aeronautics and Space Administration (NASA) is not simply to maintain its current position with the International Space Station and other space exploration endeavors, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains. The Constellation Program will oversee the development of the crew capsule, launch vehicles, and other systems needed to achieve this mission. From this initiative will come two new launch vehicles: the Ares I and Ares V. The Ares I will be a human-rated vehicle, which will be used for crew transport; the Ares V, a cargo transport vehicle, will be the largest launch vehicle ever built. The Ares Projects team at Marshall Space Flight Center (MSFC) in Huntsville, Alabama is assigned with developing these two new vehicles. The Ares I vehicle will have an in-line, two-stage rocket configuration. The first stage will provide the thrust or propulsion component for the Ares rocket systems through the first two minutes of the mission. The First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low-Earth orbit. Building on the legacy of the Space Shuttle and other NASA space exploration initiatives, the propulsion for the Ares I First Stage will be a Shuttle-derived reusable solid rocket motor. Progress to date by the First Stage Team has been robust and on schedule. This paper provides an update on the design and development of the Ares First Stage Propulsion system.
NASA Technical Reports Server (NTRS)
Williams, Jonathan H.
2010-01-01
The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.
NASA Astrophysics Data System (ADS)
Williams, Jonathan Hunter
The Upper Stage Reaction Control System provides in-flight three-axis attitude control for the Ares I Upper Stage. The system design must accommodate rapid thruster firing to maintain proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted at Marshall Space Flight Center in 2009 were performed using a water-flow test article to better understand fluid characteristics of the Upper Stage Reaction Control System. A subset of the tests examined the waterhammer pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.
NASA Crew Launch Vehicle Approach Builds on Lessons from Past and Present Missions
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2006-01-01
The United States Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with a new human-rated system suitable for missions to the Moon and Mars. The Crew Exploration Vehicle (CEV) that the new Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station and be capable of carrying crews back to lunar orbit and of supporting missions to Mars orbit. NASA is using its extensive experience gained from past and ongoing launch vehicle programs to maximize the CLV system design approach, with the objective of reducing total lifecycle costs through operational efficiencies. To provide in-depth data for selecting this follow-on launch vehicle, the Exploration Systems Architecture Study was conducted during the summer of 2005, following the confirmation of the new NASA Administrator. A team of aerospace subject matter experts used technical, budget, and schedule objectives to analyze a number of potential launch systems, with a focus on human rating for exploration missions. The results showed that a variant of the Space Shuttle, utilizing the reusable Solid Rocket Booster as the first stage, along with a new upper stage that uses a derivative of the RS-25 Space Shuttle Main Engine to deliver 25 metric tons to low-Earth orbit, was the best choice to reduce the risks associated with fielding a new system in a timely manner. The CLV Project, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design, development, testing, and operation of this new human-rated system. The CLV Project works closely with the Space Shuttle Program to transition hardware, infrastructure, and workforce assets to the new launch system . leveraging a wealth of lessons learned from Shuttle operations. The CL V is being designed to reduce costs through a number of methods, ranging from validating requirements to conducting trades studies against the concept design. Innovations such as automated processing will build on lessons learned from the Shuttle, other launch systems, Department of Defense operations experience, and subscale flight tests such as the Delta Clipper-Experimental Advanced (DCXA) vehicle operations that utilized minimal touch labor, automated cryogen ic propellant loading , and an 8-hour turnaround for a cryogenic propulsion system. For the CLV, the results of hazard analyses are contributing to an integrated vehicle health monitoring system that will troubleshoot anomalies and determine which ones can be solved without human intervention. Such advances will help streamline the mission operations process for pilots and ground controllers alike. In fiscal year 2005, NASA invested approximately $4.5 billion of its $16 bill ion budget on the Space Shuttle. The ultimate goal of the CLV Project is to deliver a safe, reliable system designed to minimize lifecycle costs so that NASA's budget can be invested in missions of scientific discovery. Lessons learned from developing the CLV will be applied to the growth path for future systems, including a heavy lift launch vehicle.
Cosmonaut Aleksey Leonov joins belly dancer on stage at Folklife Festival
NASA Technical Reports Server (NTRS)
1974-01-01
Cosmonaut Aleksey A. Leonov, in one of the lighter moments of activity involving Soviet Cosmonauts and American Astronauts, joins a belly dancer on stage as several visitors to weekend activity at the site of San Antonio's HemisFair look on. Leonov is commander of the Soviet Apollo Soyuz Test Project (ASTP) crew. The Lebanese dancing was just one feature among many during the Texas Folklife Festival.
Subsystem Hazard Analysis Methodology for the Ares I Upper Stage Source Controlled Items
NASA Technical Reports Server (NTRS)
Mitchell, Michael S.; Winner, David R.
2010-01-01
This article describes processes involved in developing subsystem hazard analyses for Source Controlled Items (SCI), specific components, sub-assemblies, and/or piece parts, of the NASA ARES I Upper Stage (US) project. SCIs will be designed, developed and /or procured by Boeing as an end item or an off-the-shelf item. Objectives include explaining the methodology, tools, stakeholders and products involved in development of these hazard analyses. Progress made and further challenges in identifying potential subsystem hazards are also provided in an effort to assist the System Safety community in understanding one part of the ARES I Upper Stage project.
Multiple Removal of Spent Rocket Upper Stages with an Ion Beam Shepherd
NASA Astrophysics Data System (ADS)
Bombardelli, C.; Herrera-Montojo, J.; Gonzalo, J. L.
2013-08-01
Among the many advantages of the recently proposed ion beam shepherd (IBS) debris removal technique is the capability to deal with multiple targets in a single mission. A preliminary analysis is here conducted in order to estimate the cost in terms of spacecraft mass and total mission time to remove multiple large-size upper stages of the Zenit family. Zenit-2 upper stages are clustered at 71 degrees inclination around 850 km altitude in low Earth orbit. It is found that a removal of two targets per year is feasible with a modest size spacecraft. The most favorable combinations of targets are outlined.
Preliminary Performance Analyses of the Constellation Program ARES 1 Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Phillips, Mark; Hanson, John; Shmitt, Terri; Dukemand, Greg; Hays, Jim; Hill, Ashley; Garcia, Jessica
2007-01-01
By the time NASA's Exploration Systems Architecture Study (ESAS) report had been released to the public in December 2005, engineers at NASA's Marshall Space Flight Center had already initiated the first of a series of detailed design analysis cycles (DACs) for the Constellation Program Crew Launch Vehicle (CLV), which has been given the name Ares I. As a major component of the Constellation Architecture, the CLV's initial role will be to deliver crew and cargo aboard the newly conceived Crew Exploration Vehicle (CEV) to a staging orbit for eventual rendezvous with the International Space Station (ISS). However, the long-term goal and design focus of the CLV will be to provide launch services for a crewed CEV in support of lunar exploration missions. Key to the success of the CLV design effort and an integral part of each DAC is a detailed performance analysis tailored to assess nominal and dispersed performance of the vehicle, to determine performance sensitivities, and to generate design-driving dispersed trajectories. Results of these analyses provide valuable design information to the program for the current design as well as provide feedback to engineers on how to adjust the current design in order to maintain program goals. This paper presents a condensed subset of the CLV performance analyses performed during the CLV DAC-1 cycle. Deterministic studies include development of the CLV DAC-1 reference trajectories, identification of vehicle stage impact footprints, an assessment of launch window impacts to payload performance, and the computation of select CLV payload partials. Dispersion studies include definition of input uncertainties, Monte Carlo analysis of trajectory performance parameters based on input dispersions, assessment of CLV flight performance reserve (FPR), assessment of orbital insertion accuracy, and an assessment of bending load indicators due to dispersions in vehicle angle of attack and side slip angle. A short discussion of the various customers for the dispersion results, along with results and ramifications of each study, are also provided.
2012-08-03
CAPE CANAVERAL, Fla. -- This is an artist's conception of Space Exploration Technologies', or SpaceX, crewed Dragon capsule atop the company's Falcon 9 rocket under development for NASA's Commercial Crew Program, or CCP. The integrated system was selected for CCP's Commercial Crew Integrated Capability, or CCiCap, initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under a funded Space Act Agreement, or SAA, SpaceX will spend the next 21 months completing its design, conducting critical risk reduction testing on its spacecraft and launch vehicle, and showcasing how it would operate and manage missions from launch through orbit and landing, setting the stage for a future demonstration mission. To learn more about CCP, which is based at NASA's Kennedy Space Center in Florida and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Image credit: SpaceX
STS-81 crew on middeck preparing for re-entry
1997-02-14
STS081-308-032 (12-22 Jan. 1997) --- Astronaut Marsha S. Ivins appears almost lost among the bags of material to be brought back to Earth at the impending conclusion of the Space Shuttle Atlantis and Russia's Mir Space Station docking mission. Several partial pressure garments which were used for launch and will soon be donned for the entry phase are in upper left.
Earth observation taken by the Expedition 20 crew
2009-08-25
ISS020-E-034693 (25 Aug. 2009) --- Lake Erepecu and Rio Trombetas in Brazil are featured in this sun glint image photographed by an Expedition 20 crew member on the International Space Station. The 38 kilometers long Lake Erepecu runs parallel to the lower Rio (river) Trombetas which snakes along the lower half of this photograph. Waterbodies in the Amazon rainforest are often so dark they can be difficult to distinguish. In this image, however, the lake and river stand out from the uniform green of the forest in great detail as a result of sun glint on the water surface. Sun glint is light reflected off of a surface directly back towards the viewer, in this case a crew member onboard the space station. Soil color beneath the forest is red, as shown by airfield clearings near Porto Trombetas (upper left), a river port on the south side of the Trombetas River. The Trombetas flows into the Amazon River from the north about 800 kilometers from the Amazon mouth. Despite being so far from the sea, seagoing ore ships export most of Brazil?s bauxite from Porto Trombetas. Bauxite is the raw material formed in these tropical soils for the production of aluminum (the Trombetas bauxite mine is outside the upper margin of the image). Central Amazonia has many lakes like Erepecu?relatively straight, large waterbodies located just off the main axis of the large rivers. These lakes, as distinct from smaller floodplain lakes next to the large rivers, were created as rivers cut down during the repeated low global sea levels of the recent geological past (according to scientists, related to the ice ages of the last 1.7 million years). River water filled the valleys to form lakes during intervening periods of high sea level. Many larger rivers like the Trombetas and Amazon carried enough sediment to fill their immediate valleys?rivers flowing in unconsolidated sediment produce sinuous courses like those along the upper part of the image?but not enough to fill tributary valleys further from the axis of flow, so that lakes like Erepecu are formed.
Modular Approach to Launch Vehicle Design Based on a Common Core Element
NASA Technical Reports Server (NTRS)
Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike
2010-01-01
With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.
1971-09-30
S72-50438 (September 1972) --- These three astronauts are the prime crew members of the Apollo 17 lunar landing mission. They are Eugene A. Cernan (seated), commander; Ronald E. Evans (standing on right), command module pilot; and Harrison H. Schmitt, lunar module pilot. They are photographed with a Lunar Roving Vehicle (LRV) trainer. Cernan and Schmitt will use an LRV during their exploration of the Taurus-Littrow landing site. The Apollo 17 Saturn V space vehicle is in the background. This picture was taken at Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida. The Apollo 17 insignia is in the photo insert at upper left. The insignia, designed by artist Robert T. McCall in collaboration with the crewmen, is dominated by the image of Apollo, the Greek sun god.
NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status
NASA Technical Reports Server (NTRS)
Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.
2009-01-01
This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.
Testing and Functions of the J2X Gas Generator
NASA Technical Reports Server (NTRS)
Miller, Nicholas
2009-01-01
The Ares I, NASA s new solid rocket based crew launch vehicle, is a two stage in line rocket that has made its waytothe forefront of NASA s endeavors. The Ares I s Upper Stage (US) will be propelled by a J-2X engine which is fueled by liquid hydrogen and liquid oxygen. The J-2X is a variation based on two of its predecessor s, the J-2 and J-2S engines. ET50 is providing the design support for hardware required to run tests on the J-2X Gas Generator (GG) that increases the delivery pressure of the supplied combustion fuels that the engine burns. The test area will be running a series of tests using different lengths and curved segments of pipe and different sized nozzles to determine the configuration that best satisfies the thrust, heat, and stability requirements for the engine. I have had to research the configurations that are being tested and gain an understanding of the purpose of the tests. I then had to research the parts that would be used in the test configurations. I was taken to see parts similar to the ones used in the test configurations and was allowed to review drawings and dimensions used for those parts. My job over this summer has been to use the knowledge I have gained to design, model, and create drawings for the un-fabricated parts that are necessary for the J-2X Workhorse Gas Generator Phase IIcTest.
Space Launch Systems Block 1B Preliminary Navigation System Design
NASA Technical Reports Server (NTRS)
Oliver, T. Emerson; Park, Thomas; Anzalone, Evan; Smith, Austin; Strickland, Dennis; Patrick, Sean
2018-01-01
NASA is currently building the Space Launch Systems (SLS) Block 1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. In parallel, NASA is also designing the Block 1B launch vehicle. The Block 1B vehicle is an evolution of the Block 1 vehicle and extends the capability of the NASA launch vehicle. This evolution replaces the Interim Cryogenic Propulsive Stage (ICPS) with the Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability, increased robustness for manned missions, and the capability to execute more demanding missions so must the SLS Integrated Navigation System evolved to support those missions. This paper describes the preliminary navigation systems design for the SLS Block 1B vehicle. The evolution of the navigation hard-ware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1B vehicle navigation system is de-signed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. Additionally, the Block 1B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and robust algorithm design, including Fault Detection, Isolation, and Recovery (FDIR) logic.
The J-2X Fuel Turbopump - Design, Development, and Test
NASA Technical Reports Server (NTRS)
Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.
2011-01-01
Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.
Epidemiology of injuries and illnesses in America's Cup yacht racing.
Neville, V J; Molloy, J; Brooks, J H M; Speedy, D B; Atkinson, G
2006-04-01
To determine the incidence and severity of injuries and illnesses incurred by a professional America's Cup yacht racing crew during the preparation for and participation in the challenge for the 2003 America's Cup. A prospective study design was used over 74 weeks of sailing and training. All injuries and illnesses sustained by the 35 professional male crew members requiring medical treatment were recorded, including the diagnosis, nature, location, and mechanism of injury. The volume of sailing and training were recorded, and the severity of incidents were determined by the number of days absent from both sailing and training. In total, 220 injuries and 119 illnesses were recorded, with an overall incidence of 8.8 incidents/1000 sailing and training hours (injuries, 5.7; illnesses, 3.1). The upper limb was the most commonly injured body segment (40%), followed by the spine and neck (30%). The most common injuries were joint/ligament sprains (27%) and tendinopathies (20%). The incidence of injury was significantly higher in training (8.6) than sailing (2.2). The most common activity or mechanism of injury was non-specific overuse (24%), followed by impact with boat hardware (15%) and weight training (13%). "Grinders" had the highest overall injury incidence (7.7), and "bowmen" had the highest incidence of sailing injuries (3.2). Most of the illnesses were upper respiratory tract infections (40%). The data from this study suggest that America's Cup crew members are at a similar risk of injury to athletes in other non-collision team sports. Prudent allocation of preventive and therapeutic resources, such as comprehensive health and medical care, well designed conditioning and nutritional programmes, and appropriate management of recovery should be adopted by America's Cup teams in order to reduce the risk of injury and illness.
2014-05-29
HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., during its unveiling. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2014-05-29
HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., during its unveiling ceremony. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2014-05-29
HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., prior to its unveiling. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2014-05-29
HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., during its unveiling. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2014-05-29
HAWTHORNE, Calif. - HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., during its unveiling ceremony. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
Historic and Current Launcher Success Rates
NASA Technical Reports Server (NTRS)
Rust, Randy
2002-01-01
This presentation reviews historic and current space launcher success rates from all nations with a mature launcher industry. Data from the 1950's through present day is reviewed for possible trends such as when in the launch timeline a failure occurred, which stages had the highest failure rate, overall launcher reliability, a decade by decade look at launcher reliability, when in a launchers history did failures occur, and the reliability of United States human-rated launchers. This information is useful in determining where launcher reliability can be improved and where additional measures for crew survival (i.e., Crew Escape systems) will have the greatest emphasis
De Tobel, Jannick; Hillewig, Elke; Verstraete, Koenraad
2017-03-01
Established methods to stage development of third molars for forensic age estimation are based on the evaluation of radiographs, which show a 2D projection. It has not been investigated whether these methods require any adjustments in order to apply them to stage third molars on magnetic resonance imaging (MRI), which shows 3D information. To prospectively study root stage assessment of third molars in age estimation using 3 Tesla MRI and to compare this with panoramic radiographs, in order to provide considerations for converting 2D staging into 3D staging and to determine the decisive root. All third molars were evaluated in 52 healthy participants aged 14-26 years using MRI in three planes. Three staging methods were investigated by two observers. In sixteen of the participants, MRI findings were compared with findings on panoramic radiographs. Decisive roots were palatal in upper third molars and distal in lower third molars. Fifty-seven per cent of upper third molars were not assessable on the radiograph, while 96.9% were on MRI. Upper third molars were more difficult to evaluate on radiographs than on MRI (p < .001). Lower third molars were equally assessable on both imaging techniques (93.8% MRI, 98.4% radiograph), with no difference in level of difficulty (p = .375). Inter- and intra-observer agreement for evaluation was higher in MRI than in radiographs. In both imaging techniques lower third molars showed greater inter- and intra-observer agreement compared to upper third molars. MR images in the sagittal plane proved to be essential for staging. In age estimation, 3T MRI of third molars could be valuable. Some considerations are, however, necessary to transfer known staging methods to this 3D technique.
Ares V: Enabling Unprecedented Payloads for Space in the 21st Century
NASA Technical Reports Server (NTRS)
Creech, Steve
2010-01-01
Numerous technical and programmatic studies since the U.S. space program began in the 1960s has emphasized the need for a heavy lift capability for exploration beyond low Earth orbit (LEO). The Saturn V once embodied that capability until it was retired. Now the Ares V cargo launch vehicle (CaLV) promises to restore and improve on that capability, providing unprecedented opportunities for human and robotic exploration, science, national security and commercial uses. This paper provides an overview of the capabilities of Ares V, both as an opportunity for payloads of increased mass and/or volume, and as a means of reducing risk in the payload design process. The Ares V is part of NASA s Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and Altair lunar lander. This architecture is designed to carry out the national space policy goals of completing the International Space Station (ISS), retiring the Space Shuttle fleet, and expanding human exploration beyond LEO. The Ares V is designed to loft upper stages and/or cargo, such as the Altair lander, into LEO. The Ares I is designed to put Orion into LEO with a crew of up to four for rendezvous with the ISS or with the Ares V Earth departure stage for journeys to the Moon. While retaining the goals of heritage hardware and commonality, the Ares V configuration continues to be refined through a series of internal trades. The current reference configuration was recommended by the Ares Projects and approved by the Constellation Program during the Lunar Capabilities Concept Review (LCCR) June 2008. The reference configuration defines the Ares V as 381 feet (116m) tall with a gross lift-off mass (GLOM) of 8.1 million pounds (3,704.5 mT). Its first stage will generate 11 million pounds of sea-level liftoff thrust. It will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. It could also launch 123,100 pounds (55.8 mT) to Sun-Earth L2. Assessment of astronomy payload requirements since Spring 2008 has indicated that Ares V has the potential to support a range of payloads and missions. Some of these missions were impossible in the absence of Ares V s capabilities. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. A 2008 study by a National Research Council (NRC) panel, as well as analyses presented by astronomers and planetary scientists at two weekend conferences in 2008, support the position that Ares V has benefit to a broad range of planetary and astronomy missions. This early dialogue with Ares V engineers is permitting the greatest opportunity for payload/transportation/mission synergy and with the least financial impact to Ares V development. In addition, independent analyses suggest that Ares V has the opportunity to enable more cost-effective mission design. 1
1972-01-01
This image depicts a layout of the Skylab workshop 1-G trainer crew quarters. At left, in the sleep compartment, astronauts slept strapped to the walls of cubicles and showered at the center. Next right was the waste management area where wastes were processed and disposed. Upper right was the wardroom where astronauts prepared their meals and foods were stored. In the experiment operation area, upper left, against the far wall, was the lower-body negative-pressure device (Skylab Experiment M092) and the Ergometer for the vectorcardiogram experiment (Skylab Experiment M063). The trainers and mockups were useful in the developmental phase, while engineers and astronauts were still working out optimum designs. They provided much data applicable to the manufacture of the flight articles.
Earth Observations taken by the Expedition 11 crew
2005-05-28
ISS011-E-07380 (28 May 2005) --- The Port of Rotterdam, Netherlands, is featured in this image photographed by an Expedition 11 crewmember on the International Space Station (ISS). The Port of Rotterdam, also known as Europoort (Eurogate), has been an important trading center since approximately 1250 A.D. This image illustrates the close proximity of the Europoort with the surrounding cities of Hoek van Holland, Oostvoorne, Brielle, and agricultural fields to the south. The presence of the port and its seawalls interrupts southward-flowing coastal currents, leading to accumulation of sediment to the south (upper left of image). Numerous ship wakes are visible within the port complex itself and in the upper right of the image.
New York and New Jersey as seen from STS-58
NASA Technical Reports Server (NTRS)
1993-01-01
Fall colors in the northeast were captured by the STS-58 crew members. Long Island and the lower Hudson River dominate this scene. The maples and oaks of the Hudson Highlands are striking, and contrast with the many lakes and reservoirs north of the city. The New York metropolitan area in New York and New Jersey (including Jersey City and Newark) is easily seen in the foreground. Manhattan Island sits near the middle of the scene, but Central Park foliage is still fairly green. West Point can be seen near the upper right, on the west-pointing bend of the Hudson, and the Catskills are in the far upper left.
The potential value of employing a RLV-based ``pop-up'' trajectory approach for space access
NASA Astrophysics Data System (ADS)
Nielsen, Edward; O'Leary, Robert
1997-01-01
This paper presents the potential benefits of employing useful upper stages with planned reusable launch vehicle systems to increase payload performance to various earth orbits. It highlights these benefits through performance analysis on a generic vehicle/upper-stage combination (basing all estimates on realistic technology availability). A nominal 34,019 kg [75,000 lbm] dry mass RLV capable of orbiting 454 kg into a polar orbit by itself (SSTO) would be capable of orbiting 9500-10,000 kg into a polar orbit using a nominal upper stage released from a suborbital trajectory. The paper also emphasizes the technical and operational issues associated with actually executing a ``pop-up'' trajectory launch and deployment.
Acoustical and Intelligibility Test of the Vocera(Copyright) B3000 Communication Badge
NASA Technical Reports Server (NTRS)
Archer, Ronald; Litaker, Harry; Chu, Shao-Sheng R.; Simon, Cory; Romero, Andy; Moses, Haifa
2012-01-01
To communicate with each other or ground support, crew members on board the International Space Station (ISS) currently use the Audio Terminal Units (ATU), which are located in each ISS module. However, to use the ATU, crew members must stop their current activity, travel to a panel, and speak into a wall-mounted microphone, or use either a handheld microphone or a Crew Communication Headset that is connected to a panel. These actions unnecessarily may increase task times, lower productivity, create cable management issues, and thus increase crew frustration. Therefore, the Habitability and Human Factors and Human Interface Branches at the NASA Johnson Space Center (JSC) are currently investigating a commercial-off-the-shelf (COTS) wireless communication system, Vocera(C), as a near-term solution for ISS communication. The objectives of the acoustics and intelligibility testing of this system were to answer the following questions: 1. How intelligibly can a human hear the transmitted message from a Vocera(c) badge in three different noise environments (Baseline = 20 dB, US Lab Module = 58 dB, Russian Module = 70.6 dB)? 2. How accurate is the Vocera(C) badge at recognizing voice commands in three different noise environments? 3. What body location (chest, upper arm, or shoulder) is optimal for speech intelligibility and voice recognition accuracy of the Vocera(C) badge on a human in three different noise environments?
Ares V: Application to Solar System Scientific Exploration
NASA Technical Reports Server (NTRS)
Elliott, John; Spilker, Thomas; Reh, Kim; Smith, David; Woodcock, Gordon
2008-01-01
The development of the Ares V launch vehicle will provide levels of performance unseen since the days of Apollo. This capability, like the Saturn V before it, is being developed primarily for crewed lunar missions. However, the tremendous jump in performance offered by the Ares V launch system has tremendous potential for the furtherance of robotic solar system exploration missions as well. Preliminary performance assessments indicate that Ares V could deliver 5 times the payload to Mars as compared to the most capable US expendable launch vehicle available today. Beyond Mars, the outer planets offer a number of high-priority investigations with compelling science. Presently, missions to these destinations are only achievable using indirect flights with gravity assist trajectories and, in many cases, suffer from long flight times. An Ares V with an upper stage could capture these missions using direct flights with shorter interplanetary transfer times that would enable extensive in situ investigations and possibly the return of samples to Earth. This paper lays out an estimate of Ares V performance for moderate and high C3 missions, and goes on to discuss a range of revolutionary mission concepts that could be enabled by this significant in-crease in launch capability.
Crew Earth Observations (CEO) by Expedition Five Crew
2002-10-25
ISS005-E-18511 (25 October 2002) --- Mount Saint Helens, Washington, is featured in this image photographed by an Expedition 5 crewmember on the International Space Station (ISS). On May 18, 1980, Mount Saint Helens volcano erupted. A series of earthquakes preceded the eruption, triggering a collapse of the north side of the mountain into a massive landslide. This avalanche coincided with a huge explosion that destroyed over 270 square miles of forest in a few seconds, and sent a billowing cloud of ash and smoke 80,000 feet into the atmosphere. The crewmembers on the Station captured this detailed image of the volcanos summit caldera. In the center of the crater sits a lava dome that is 876 feet above the crater floor and is about 3,500 feet in diameter. The upper slopes of the 1980 blast zone begin at the gray colored region that extends north (upper left) from the summit of the volcano. The deeply incised valley to the left (west) is the uppermost reach of the South Fork of the Toutle River. Devastating mudslides buried the original Toutle River Valley to an average depth of 150 feet, but in places up to 600 feet. The dark green area south of the blast zone is the thickly forested region of the Gifford Pinchot National Forest.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers begin closing the gap between the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, a worker prepares the second and third stages of the Orbital Sciences Pegasus XL launch vehicle for mating. The Pegasus XL will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers begin mating the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-03
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (foreground) is ready to be mated to second and third stages in preparation for the launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers prepare to mate the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
Ares V: Game Changer for National Security Launch
NASA Technical Reports Server (NTRS)
Sumrall, Phil; Morris, Bruce
2009-01-01
NASA is designing the Ares V cargo launch vehicle to vastly expand exploration of the Moon begun in the Apollo program and enable the exploration of Mars and beyond. As the largest launcher in history, Ares V also represents a national asset offering unprecedented opportunities for new science, national security, and commercial missions of unmatched size and scope. The Ares V is the heavy-lift component of NASA's dual-launch architecture that will replace the current space shuttle fleet, complete the International Space Station, and establish a permanent human presence on the Moon as a stepping-stone to destinations beyond. During extensive independent and internal architecture and vehicle trade studies as part of the Exploration Systems Architecture Study (ESAS), NASA selected the Ares I crew launch vehicle and the Ares V to support future exploration. The smaller Ares I will launch the Orion crew exploration vehicle with four to six astronauts into orbit. The Ares V is designed to carry the Altair lunar lander into orbit, rendezvous with Orion, and send the mated spacecraft toward lunar orbit. The Ares V will be the largest and most powerful launch vehicle in history, providing unprecedented payload mass and volume to establish a permanent lunar outpost and explore significantly more of the lunar surface than was done during the Apollo missions. The Ares V consists of a Core Stage, two Reusable Solid Rocket Boosters (RSRBs), Earth Departure Stage (EDS), and a payload shroud. For lunar missions, the shroud would cover the Lunar Surface Access Module (LSAM). The Ares V Core Stage is 33 feet in diameter and 212 feet in length, making it the largest rocket stage ever built. It is the same diameter as the Saturn V first stage, the S-IC. However, its length is about the same as the combined length of the Saturn V first and second stages. The Core Stage uses a cluster of five Pratt & Whitney Rocketdyne RS-68B rocket engines, each supplying about 700,000 pounds of thrust. Its propellants are liquid hydrogen and liquid oxygen. The two solid rocket boosters provide about 3.5 million pounds of thrust at liftoff. These 5.5-segment boosters are derived from the 4-segment boosters now used on the Space Shuttle, and are similar to those used in the Ares I first stage. The EDS is powered by one J-2X engine. The J-2X, which has roughly 294,000 pounds of thrust, also powers the Ares I Upper Stage. It is derived from the J-2 that powered the Saturn V second and third stages. The EDS performs two functions. Its initial suborbital burns will place the lunar lander into a stable Earth orbit. After the Orion crew vehicle, launched separately on an Ares I, docks with the lander/EDS stack, EDS will ignite a second time to put the combined 65-metric ton vehicle into a lunar transfer orbit. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be approximately 381 feet tall and have a gross liftoff mass of 8.1 million pounds. The current point-of-departure design exceeds Saturn V s mass capability by approximately 40 percent. Using the current payload shroud design, Ares V can carry 315,000 pounds to 29-degree low Earth orbit (LEO) or 77,000 pounds to a geosynchronous orbit. Another unique aspect of the Ares V is the 33-foot-diameter payload shroud, which encloses approximately 30,400 cubic feet of usable volume. A larger hypothetical shroud for encapsulating larger payloads has been studied. While Ares V makes possible larger payload masses and volumes, it may alternately make possible more cost-effective mission design if the relevant payload communities are willing to consider an alternative to the existing approach that has driven them to employ complexity to solve current launch vehicle mass and volume constraints. By using Ares V s mass and volume capabilities as margin, payload designers stand to reduce development risk and cost. Significant progress has been made on the Ares V to support a plaed fiscal 2011 authority-to-proceed (ATP) milestone. The Ares V team is actively reaching out to external organizations during this early concept phase to ensure that the Ares V vehicle can be leveraged for national security, science, and commercial development needs. This presentation will discuss Ares V vehicle configuration, the path to the current concept, accomplishments to date, and potential payload utilization opportunities.
[Stages of development of flight medical expertise in Russia].
Chaplyuk, A L; Vovkodav, V S; Churilov, Yu K; Klepikov, A N
2015-07-01
Flight medical expertise (FME) in military aviation is one of the most important areas of medical support of flight crews manning, maintaining of aircrew health and flight safety. The authors analyse the main stages of development of this area of medical practice. The priority in creation of FME system belongs to our country. Domestic scientists, prominent organizers of military medicine and a large group of aviation physicians developed organizational and methodological basis for studying different impacts of flight factors on the health of flight personnel, development of criteria for admission to flight operations, principles of organization of the examination, implementation of effective methods of disease diagnosis. At the present stage FME development is determined by the needs of medical, technical and psycho-physiological support of supersonic aircraft, the need to adjust to the requirements of aircrew health, advanced diagnostics of the functional state and the search for means to improve the stability of his body to flight factors. The main principles of the FME remains the complexity of the study of the human body in terms of its professional and individual approach to a medical examination, a thorough clinical, clinical and physiological and psychological examinations, regular medical supervision of the health of flight crews.
2009-06-09
Engineers assemble the Soyuz TMA-14 spacecraft, escape tower and all three stages Monday, March 23, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)
2017-04-11
Musculoskeletal Complication; Recurrent Breast Carcinoma; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Therapy-Related Toxicity
FDG-PET/CT Limited to the Thorax and Upper Abdomen for Staging and Management of Lung Cancer.
Arens, Anne I J; Postema, Jan W A; Schreurs, Wendy M J; Lafeber, Albert; Hendrickx, Baudewijn W; Oyen, Wim J G; Vogel, Wouter V
2016-01-01
This study evaluates the diagnostic accuracy of [F-18]-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) of the chest/upper abdomen compared to the generally performed scan from head to upper thighs, for staging and management of (suspected) lung cancer in patients with no history of malignancy or complaints outside the thorax. FDG-PET/CT scans of 1059 patients with suspected or recently proven lung cancer, with no history of malignancy or complaints outside the thorax, were analysed in a retrospective multi-centre trial. Suspect FDG-avid lesions in the chest and upper abdomen, the head and neck area above the shoulder line and in the abdomen and pelvis below the caudal tip of the liver were noted. The impact of lesions detected in the head and neck area and abdomen and pelvis on additional diagnostic procedures, staging and treatment decisions was evaluated. The head and neck area revealed additional suspect lesions in 7.2%, and the abdomen and pelvis in 15.8% of patients. Imaging of the head and neck area and the abdomen and pelvic area showed additional lesions in 19.5%, inducing additional diagnostic procedures in 7.8%. This resulted in discovery of additional lesions considered malignant in 10.7%, changing patient management for lung cancer in 1.2%. In (suspected) lung cancer, PET/CT limited to the chest and upper abdomen resulted in correct staging in 98.7% of patients, which led to the identical management as full field of view PET in 98.8% of patients. High value of FDG-PET/CT for staging and correct patient management is already achieved with chest and upper abdomen. Findings in head and neck area and abdomen and pelvis generally induce investigations with limited or no impact on staging and treatment of NSCLC, and can be interpreted accordingly.
Maturation of enabling technologies for the next generation reignitable cryogenic upper stage
NASA Astrophysics Data System (ADS)
Mueller, Mark
Following the ESA decision in November 2008, a pre-development phase (Phase 1) of a future evolution of the Ariane 5 launcher (named Ariane 5 Midlife Evolution, A5ME) was started under Astrium Prime leadership. This upgraded version of the Ariane 5 launcher is based on an enhanced performance Upper Stage including the cryogenic re-ignitable VINCI engine. Thanks to this reignition capability, this new Upper Stage shall be "versatile" in the sense that it shall fulfil customer needs on a broader spectrum of orbits than the "standard" orbits (i.e. Geosynchronous Transfer Orbits, GTO) typically used for commercial telecommunications satellites. In order to meet the challenges of versatility, new technologies are currently being investigated. These technologies are mainly related -but not limited-to propellant management during the extended coasting phases with the related heat transfer into the tanks and the required multiple engine re-ignitions. Within the frame of the ESA Future Launchers Preparatory Programme (Period 2 Slice 1), the Cryogenic Upper Stage Technology project (CUST) aims to mature critical technologies to such a Technology Readiness Level (TRL) that they can be integrated into the baseline A5ME Upper Stage development schedule. In addition to A5ME application, these technologies can also be used on the future next generation European launcher. This paper shows the down-selection process implemented to identify the most crucial enabling technologies for a future versatile Upper Stage and gives a description of each technology finally selected for maturation in the frame of CUST. These include -amongst others-a Sandwich Common Bulkhead for the propellant tank, an external thermal insulation kit and various propellant management devices for the coasting phase. The paper also gives an overview on the related development and maturation plan including the tests to be conducted, as well as first results of the maturation activities themselves.
Structural Design and Analysis of the Upper Pressure Shell Section of a Composite Crew Module
NASA Technical Reports Server (NTRS)
Sleight, David W.; Paddock, David; Jeans, Jim W.; Hudeck, John D.
2008-01-01
This paper presents the results of the structural design and analysis of the upper pressure shell section of a carbon composite demonstration structure for the Composite Crew Module (CCM) Project. The project is managed by the NASA Engineering and Safety Center with participants from eight NASA Centers, the Air Force Research Laboratory, and multiple aerospace contractors including ATK/Swales, Northrop Grumman, Lockheed Martin, Collier Research Corporation, Genesis Engineering, and Janicki Industries. The paper discusses details of the upper pressure shell section design of the CCM and presents the structural analysis results using the HyperSizer structural sizing software and the MSC Nastran finite element analysis software. The HyperSizer results showed that the controlling load case driving most of the sizing in the upper pressure shell section was the internal pressure load case. The regions around the cutouts were controlled by internal pressure and the main parachute load cases. The global finite element analysis results showed that the majority of the elements of the CCM had a positive margin of safety with the exception of a few hot spots around the cutouts. These hot spots are currently being investigated with a more detailed analysis. Local finite element models of the Low Impact Docking System (LIDS) interface ring and the forward bay gussets with greater mesh fidelity were created for local sizing and analysis. The sizing of the LIDS interface ring was driven by the drogue parachute loads, Trans-Lunar Insertion (TLI) loads, and internal pressure. The drogue parachute loads controlled the sizing of the gusset cap on the drogue gusset and TLI loads controlled the sizing of the other five gusset caps. The main parachute loads controlled the sizing of the lower ends of the gusset caps on the main parachute fittings. The results showed that the gusset web/pressure shell and gusset web/gusset cap interfaces bonded using Pi-preform joints had local hot spots in the Pi-preform termination regions. These regions require a detailed three-dimensional analysis, which is currently being performed, to accurately address the load distribution near the Pi-preform termination in the upper and lower gusset caps.
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members get a look at the extended antenna (upper left) in the Inter Orbit Communication System Extended Facility, or ICS-EF. Standing next to a Japanese Aerospace Exploration Agency, or JAXA, technician (at center) are (from left) Mission Specialists Dave Wolf and Christopher Cassidy and Commander Mark Polansky. Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
Lessons Learned from Ares I Upper Stage Structures and Thermal Design
NASA Technical Reports Server (NTRS)
Ahmed, Rafiq
2012-01-01
The Ares 1 Upper Stage was part of the vehicle intended to succeed the Space Shuttle as the United States manned spaceflight vehicle. Although the Upper Stage project was cancelled, there were many lessons learned that are applicable to future vehicle design. Lessons learned that are briefly detailed in this Technical Memorandum are for specific technical areas such as tank design, common bulkhead design, thrust oscillation, control of flight and slosh loads, purge and hazardous gas system. In addition, lessons learned from a systems engineering and vehicle integration perspective are also included, such as computer aided design and engineering, scheduling, and data management. The need for detailed systems engineering in the early stages of a project is emphasized throughout this report. The intent is that future projects will be able to apply these lessons learned to keep costs down, schedules brief, and deliver products that perform to the expectations of their customers.
Gravity, chromosomes, and organized development in aseptically cultured plant cells
NASA Technical Reports Server (NTRS)
Krikorian, Abraham D.
1993-01-01
The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.
NASA Experience with Pogo in Human Spaceflight Vehicles
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.
2008-01-01
An overview of more than 45 years of NASA human spaceflight experience is presented with respect to the thrust axis vibration response of liquid fueled rockets known as pogo. A coupled structure and propulsion system instability, pogo can result in the impairment of the astronaut crew, an unplanned engine shutdown, loss of mission, or structural failure. The NASA history begins with the Gemini Program and adaptation of the USAF Titan II ballistic missile as a spacecraft launch vehicle. It continues with the pogo experienced on several Apollo-Saturn flights in both the first and second stages of flight. The defining moment for NASA s subsequent treatment of pogo occurred with the near failure of the second stage on the ascent of the Apollo 13 mission. Since that time NASA has had a strict "no pogo" philosophy that was applied to the development of the Space Shuttle. The "no pogo" philosophy lead to the first vehicle designed to be pogo-free from the beginning and the first development of an engine with an integral pogo suppression system. Now, more than 30 years later, NASA is developing two new launch vehicles, the Ares I crew launch vehicle propelling the Orion crew excursion vehicle, and the Ares V cargo launch vehicle. A new generation of engineers must again exercise NASA s system engineering method for pogo mitigation during design, development and verification.
NASA Technical Reports Server (NTRS)
Barnett, Greg; Turpin, Jason; Nettles, Mindy
2015-01-01
This task is to hot-fire test an existing Space Launch Mission (SLM) injector that is applicable for all expander cycle engines being considered for the exploration upper stage. The work leverages investment made in FY 2013 that was used to additively manufacture three injectors (fig. 1) all by different vendors..
NASA Technical Reports Server (NTRS)
McNeal, Curtis I., Jr.; Anderson, William
1999-01-01
NASA's current focus on technology roadmaps as a tool for guiding investment decisions leads naturally to a discussion of NASA's roadmap for peroxide propulsion system development. NASA's new Second Generation Space Transportation System roadmap calls for an integrated Reusable Upper-Stage (RUS) engine technology demonstration in the FY03/FY04 time period. Preceding this integrated demonstration are several years of component developments and subsystem technology demonstrations. NASA and the Air Force took the first steps at developing focused upper stage technologies with the initiation of the Upper Stage Flight Experiment with Orbital Sciences in December 1997. A review of this program's peroxide propulsion development is a useful first step in establishing the peroxide propulsion pathway that could lead to a RUS demonstration in 2004.
Earth to Moon Transfer: Direct vs Via Libration Points (L1, L2)
NASA Technical Reports Server (NTRS)
Condon, Gerald L.; Wilson, Samuel W.
2004-01-01
For some three decades, the Apollo-style mission has served as a proven baseline technique for transporting flight crews to the Moon and back with expendable hardware. This approach provides an optimal design for expeditionary missions, emphasizing operational flexibility in terms of safely returning the crew in the event of a hardware failure. However, its application is limited essentially to low-latitude lunar sites, and it leaves much to be desired as a model for exploratory and evolutionary programs that employ reusable space-based hardware. This study compares the performance requirements for a lunar orbit rendezvous mission type with one using the cislunar libration point (L1) as a stopover and staging point for access to arbitrary sites on the lunar surface. For selected constraints and mission objectives, it contrasts the relative uniformity of performance cost when the L1 staging point is used with the wide variation of cost for the Apollo-style lunar orbit rendezvous.
Portrait - Apollo 9 - Prime Crew - Cape
1968-12-18
S68-56621 (18 Dec. 1968) --- These three astronauts are the prime crew of the Apollo 9 (Spacecraft 104/Lunar Module 3/Saturn 504) space mission. Left to right, are James A. McDivitt, commander; David R. Scott, command module pilot: and Russell L. Schweickart, lunar module pilot. The Apollo 9 launch is scheduled no earlier than February 28, 1969. In the background is the Apollo 8 space vehicle on Pad A, Launch Complex 39, Kennedy Space Center, which was launched on December 21, 1968. (Gaseous liquid oxygen is venting from the vehicles first [S-1C] stage during a countdown demonstration test). McDivitt holds a U.S. flag.
Heavy Lift for National Security: The Ares V
NASA Technical Reports Server (NTRS)
Sumrall, Phil
2009-01-01
The NASA Ares Projects Office is developing the launch vehicles to move the United States and humanity beyond low earth orbit. Ares I is a crewed vehicle, and Ares V is a heavy lift vehicle being designed to launch cargo into LEO and transfer cargo and crews to the Moon. This is a snapshot of development and capabilities. Ares V is early in the requirements formulation stage of development pending the outcome of the Review of U.S. Human Space Flight Plans Committee and White House action. The Ares V vehicle will be considered a national asset, creating unmatched opportunities for human exploration, science, national security, and space business.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-114 crew poses on an upper level of Launch Pad 39A during their tour. From left are Pilot James Kelly, Mission Commander Eileen Collins and Mission Specialists Charles Camarda, Soichi Noguchi, Andrew Thomas and Wendy Lawrence. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
Earth Observations taken by the Expedition Seven crew
2003-06-25
ISS007-E-08251 (25 June 2003) --- This photo featuring the San Francisco Bay area in California was photographed from the International Space Station (ISS) by astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer. The San Francisco Bay Bridge, Alcatraz Island, Golden Gate Bridge, and Golden Gate Park are visible at upper right. Stanford University and red salt ponds on the bay near Fremont at lower left.
STS-58 crewmembers participate in baseline data collection
1993-09-29
S93-45365 (29 Sept 1993) --- Payload specialist Martin J. Fettman, in an oscillating sled device in upper left, participates in a data collection project for neurovestibular functions. His responses to the sled's movements are recorded by a team of monitors in the foreground. The seven Spacelab Life Sciences (SLS-2) crew members devoted a full day to miscellaneous biomedical data collection in preparation for next month's two week mission aboard Columbia.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-114 crew poses on an upper level of Launch Pad 39A during their tour. From left are Pilot James Kelly, Mission Commander Eileen Collins and Mission Specialists Charles Camarda, Soichi Noguchi, Andrew Thomas and Wendy Lawrence. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
Evaluation of Neutral Body Posture on Shuttle Mission STS-57 (SPACEHAB-1). Revision
NASA Technical Reports Server (NTRS)
Mount, Frances E.; Whitmore, Mihriban; Stealey, Sheryl L.
2003-01-01
Research has shown that the space environment induces physiological changes in the human body, such as fluid shifts in the upper body and chest cavity, spinal lengthening, muscular atrophy, space motion sickness, cardiopulmonary deconditioning, and bone mass loss, as well as some changes in visual perception. These require a period of adaptation and can substantially affect both crew member performance and posture. These physiological effects, when work activities are conducted, have been known to impact the body's center of gravity, reach, flexibility, and dexterity. All these aspects of posture must be considered to safely and efficiently design space systems and hardware. NASA has documented its microgravity body posture in the Man-Systems Integration Standards (MSIS); the space community uses the MSIS posture to design workstations and tools for space application. However, the microgravity body posture should be further investigated for several reasons, including small sample size in previous studies, possible imprecision, and lack of detail. JSC undertook this study to investigate human body posture exhibited under microgravity conditions. STS-57 crew members were instructed to assume a relaxed posture that was not oriented to any work area or task. Crew members were asked to don shorts and tank tops and to be blindfolded while data were recorded. Video data were acquired once during the mission from each of the six crew members. No one crew member exhibited the typical NBP called out in the MSIS; one composite posture is not adequate. A range of postures may be more constructive for design purposes. Future evaluations should define precise posture requirements for workstation, glove box, maintenance, foot-restraint, and handhold activities.
Prototype Software for Future Spaceflight Tested at Mars Desert Research Station
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maaretn; Alena, Rick; Dowding, John; Garry, Brent; Scott, Mike; Tompkins, Paul; vanHoof, Ron; Verma, Vandi
2006-01-01
NASA scientists in MDRS Crew 49 (April 23-May 7, 2006) field tested and significantly extended a prototype monitoring and advising system that integrates power system telemetry with a voice commanding interface. A distributed, wireless network of functionally specialized agents interacted with the crew to provide alerts (e.g., impending shut-down of inverter due to low battery voltage), access md interpret historical data, and display troubleshooting procedures. In practical application during two weeks, the system generated speech over loudspeakers and headsets lo alert the crew about the need to investigate power system problems. The prototype system adapts the Brahms/Mobile Agents toolkit to receive data from the OneMeter (Brand Electronics) electric metering system deployed by Crew 47. A computer on the upper deck was connected to loudspeakers, four others were paired with wireless (Bluetooth) headsets that enabled crew members to interact with their personal agents from anywhere in the hab. Voice commands and inquiries included: 1. What is the {battery | generator} {volts | amps | volts and amps}? 2. What is the status of the {generator | inverter | battery | solar panel}? 3. What is the hab{itat} {power usage | volts | voltage | amps | volts and amps}? 4. What was the average hab{itat} {amps | volts | voltage} since <#> {AM | PM)? 5. When did the {generator | batteries} change status? 6. Tell {me I
Plant Atrium System for Food Production in NASA's Deep Space Habitat Tests
NASA Technical Reports Server (NTRS)
Massa, Gioia D.; Simpson, Morgan; Wheeler, Raymond M.; Newsham, Gerald; Stutte, Gary W.
2013-01-01
In preparation for future human exploration missions to space, NASA evaluates habitat concepts to assess integration issues, power requirements, crew operations, technology, and system performance. The concept of a Food Production System utilizes fresh foods, such as vegetables and small fruits, harvested on a continuous basis, to improve the crew's diet and quality of life. The system would need to fit conveniently into the habitat and not interfere with other components or operations. To test this concept, a plant growing "atrium" was designed to surround the lift between the lower and upper modules of the Deep Space Habitat and deployed at NASA Desert Research and Technology Studies (DRATS) test site in 2011 and at NASA Johnson Space Center in 2012. With this approach, no-utilized volume provided an area for vegetable growth. For the 2011 test, mizuna, lettuce, basil, radish and sweetpotato plants were grown in trays using commercially available red I blue LED light fixtures. Seedlings were transplanted into the atrium and cared for by the. crew. Plants were then harvested two weeks later following completion of the test. In 2012, mizuna, lettuce, and radish plants were grown similarly but under flat panel banks of white LEDs. In 2012, the crew went through plant harvesting, including sanitizing tlie leafy greens and radishes, which were then consumed. Each test demonstrated successful production of vegetables within a functional hab module. The round red I blue LEDs for the 2011 test lighting cast a purple light in the hab, and were less uniformly distributed over the plant trays. The white LED panels provided broad spectrum light with more uniform distribution. Post-test questionnaires showed that the crew enjoyed tending and consuming the plants and that the white LED light in 2012 provided welcome extra light for the main HAB AREA.
Earth Observations taken by the Expedition Seven crew
2003-06-14
ISS007-E-07388 (14 June 2003) --- Some of the deepest canyons in the world cut west to the Pacific from the high crest of the Andes Mountains in Peru. This view taken by an Expedition 7 crewmember onboard the International Space Station (ISS) provides a birds-eye view down the canyons of the Rio Camana (center left) and the Rio Ocona (upper right). The low early morning sun highlights the extreme topography created by rapidly uplifting mountains and powerful water erosion by water dropping nearly 10,000 feet in this view. At the edge of the image are the snowy flanks of Nevado Coropuna, the highest mountain in the Cordillera Occidental (6613 meters). The coastal city of Camana is visible in the upper left.
Progress photograph of sample experiments being conducted with lunar materia
1969-09-29
S69-53126 (30 Sept. 1969) --- A progress photograph of sample experiments being conducted in the Manned Spacecraft Center?s Lunar Receiving Laboratory with lunar material brought back to Earth by the crew of the Apollo 11 mission. Aseptic cultures of liverwort (Marchantia polymorpha) - a species of plant commonly found growing on rocks or in wooded areas - are shown in two rows of sample containers. Seven weeks or some 50 days prior to this photograph 0.22 grams of finely ground lunar material was added to each of the upper samples of cultures. The lower cultures were untreated, and a noted difference can be seen in the upper row and the lower one, both in color and size of the cultures.
Engine-Out Capabilities Assessment of Heavy Lift Launch Vehicles
NASA Technical Reports Server (NTRS)
Holladay, Jon; Baggett, Keithe; Thrasher, Chad; Bellamy, K. Scott; Feldman, Stuart
2012-01-01
Engine-out (EO) is a condition that might occur during flight due to the failure of one or more engines. Protection against this occurrence can be called engine-out capability (EOC) whereupon significantly improved loss of mission may occur, in addition to reduction in performance and increased cost. A standardized engine-out capability has not been studied exhaustively as it pertains to space launch systems. This work presents results for a specific vehicle design with specific engines, but also uniquely provides an approach to realizing the necessity of EOC for any launch vehicle system design. A derived top-level approach to engine-out philosophy for a heavy lift launch vehicle is given herein, based on an historical assessment of launch vehicle capabilities. The methodology itself is not intended to present a best path forward, but instead provides three parameters for assessment of a particular vehicle. Of the several parameters affected by this EOC, the three parameters of interest in this research are reliability (Loss of Mission (LOM) and Loss of Crew (LOC)), vehicle performance, and cost. The intent of this effort is to provide insight into the impacts of EO capability on these parameters. The effects of EOC on reliability, performance and cost are detailed, including how these important launch vehicle metrics can be combined to assess what could be considered overall launch vehicle affordability. In support of achieving the first critical milestone (Mission Concept Review) in the development of the Space Launch System (SLS), a team assessed two-stage, large-diameter vehicles that utilized liquid oxygen (LOX)-RP propellants in the First Stage and LOX/LH2 propellant in the Upper Stage. With multiple large thrust-class engines employed on the stages, engine-out capability could be a significant driver to mission success. It was determined that LOM results improve by a factor of five when assuming EOC for both Core Stage (CS) (first stage) and Upper Stage (US) EO, assuming a reference launch vehicle with 5 RP engines on the CS and 3 LOX/LH2 engines on the US. The benefit of adding both CS and US engine-out capability is significant. When adding EOC for either first or second stages, there is less than a 20% benefit. Performance analysis has shown that if the vehicle is not protected for EO during the first part of the flight and only protected in the later part of the flight, there is a diminishing performance penalty, as indicated by failures occurring in the first stage at different times. This work did not consider any options to abort. While adding an engine for EOC drives cost upward, the impact depends on the number of needed engines manufactured per year and the launch manifest. There is a significant cost savings if multiple flights occur within one year. Flying two flights per year would cost approximately $4,000 per pound less than the same configuration with one flight per year, assuming both CS and US EOC. The cost is within 15% of the cost of one flight per year with no engine-out capability for the same vehicle. This study can be extended to other launch vehicles. While the numbers given in this paper are specific to a certain vehicle configuration, the process requires only a high level of data to allow an analyst to draw conclusions. The weighting of each of the identified parameters will determine the optimization of each launch vehicle. The results of this engine-out assessment provide a means to understand this optimization while maintaining an unbiased perspective.
Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement
NASA Technical Reports Server (NTRS)
Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.
2007-01-01
The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.
Review of X-33 Hypersonic Aerodynamic and Aerothermodynamic Development
2000-09-01
proposed development of a fully reusable, rocket pow- ered, single-stage-to-orbit ( SSTO ) vehicle capa- ble of delivering 25,000 lbs (including crew...space at greatly reduced cost. The “Access-to-Space” study identified critical technologies that required development before a SSTO reusable launch
2009-06-09
The Soyuz TMA-14 spacecraft, escape tower, first, second and third stages are seen after final assembly Monday, March 23, 2009 at the Baikonur Cosmodrome in Kazakhstan. The Soyuz is scheduled to launch the crew of Expedition 19 and a spaceflight participant on March 26, 2009. Photo Credit: (NASA/Bill Ingalls)
Yoo, Won-Gyu
2015-01-01
[Purpose] The present study examined the effects of wearing rubber gloves on the activities of the forearm and shoulder muscles during two dishwashing stages. [Subjects] This study included 10 young females. [Methods] The participants performed two dishwashing stages (washing and rinsing) with and without rubber gloves. The activities of the wrist flexor and upper trapezius muscles were measured using wireless electromyography. [Results] During the washing stage, the activities of the wrist flexor and upper trapezius muscles were significantly greater without gloves than with gloves when performing the same tasks. However, during the rinsing stage, the activities of these muscles did not differ significantly according to the use of gloves. [Conclusion] Dishwashers should wear gloves during the washing stage to prevent wrist and shoulder pain. PMID:26311980
2011-12-01
NASA conducted a key stability test firing of the J-2X rocket engine on the A-2 Test Stand at Stennis Space Center on Dec. 1, marking another step forward in development of the upper-stage engine that will carry humans deeper into space than ever before. The J-2X will provide upper-stage power for NASA's new Space Launch System.
Orbit decay analysis of STS upper stage boosters
NASA Technical Reports Server (NTRS)
Graf, O. F., Jr.; Mueller, A. C.
1979-01-01
An orbit decay analysis of the space transportation system upper stage boosters is presented. An overview of the computer trajectory programs, DSTROB, algorithm is presented. Atmospheric drag and perturbation models are described. The development of launch windows, such that the transfer orbit will decay within two years, is discussed. A study of the lifetimes of geosynchronous transfer orbits is presented.
Testing of Selective Laser Melting Turbomachinery Applicable to Exploration Upper Stage
NASA Technical Reports Server (NTRS)
Calvert, Marty; Turpin, Jason; Nettles, Mindy
2015-01-01
This task is to design, fabricate, and spin test to failure a Ti6-4 hydrogen turbopump impeller that was built using the selective laser melting (SLM) fabrication process (fig. 1). The impeller is sized around upper stage engine requirements. In addition to the spin burst test, material testing will be performed on coupons that are built with the impeller.
Development and Testing of Carbon-Carbon Nozzle Extensions for Upper Stage Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Gradl, Paul R.; Greene, Sandra E.
2017-01-01
Carbon-carbon (C-C) composite nozzle extensions are of interest for use on a variety of launch vehicle upper stage engines and in-space propulsion systems. The C-C nozzle extension technology and test capabilities being developed are intended to support National Aeronautics and Space Administration (NASA) and Department of Defense (DOD) requirements, as well as those of the broader Commercial Space industry. For NASA, C-C nozzle extension technology development primarily supports the NASA Space Launch System (SLS) and NASA's Commercial Space partners. Marshall Space Flight Center (MSFC) efforts are aimed at both (a) further developing the technology and databases needed to enable the use of composite nozzle extensions on cryogenic upper stage engines, and (b) developing and demonstrating low-cost capabilities for testing and qualifying composite nozzle extensions. Recent, on-going, and potential future work supporting NASA, DOD, and Commercial Space needs will be discussed. Information to be presented will include (a) recent and on-going mechanical, thermal, and hot-fire testing, as well as (b) potential future efforts to further develop and qualify domestic C-C nozzle extension solutions for the various upper stage engines under development.
Advanced Spacecraft Designs in Support of Human Missions to Earth's Neighborhood
NASA Technical Reports Server (NTRS)
Fletcher, David
2002-01-01
NASA's strategic planning for technology investment draws on engineering studies of potential future missions. A number of hypothetical mission architectures have been studied. A recent study completed by The NASA/JSC Advanced Design Team addresses one such possible architecture strategy for missions to the moon. This conceptual study presents an overview of each of the spacecraft elements that would enable such missions. These elements include an orbiting lunar outpost at lunar L1 called the Gateway, a lunar transfer vehicle (LTV) which ferries a crew of four from the ISS to the Gateway, a lunar lander which ferries the crew from the Gateway to the lunar surface, and a one-way lunar habitat lander capable of supporting the crew for 30 days. Other supporting elements of this architecture discussed below include the LTV kickstage, a solar-electric propulsion (SEP) stage, and a logistics lander capable of re-supplying the 30-day habitat lander and bringing other payloads totaling 10.3 mt in support of surface mission activities. Launch vehicle infrastructure to low-earth orbit includes the Space Shuttle, which brings up the LTV and crew, and the Delta-IV Heavy expendable launch vehicle which launches the landers, kickstage, and SEP.
Orbiting Depot and Reusable Lander for Lunar Transportation
NASA Technical Reports Server (NTRS)
Petro, Andrew
2009-01-01
A document describes a conceptual transportation system that would support exploratory visits by humans to locations dispersed across the surface of the Moon and provide transport of humans and cargo to sustain one or more permanent Lunar outpost. The system architecture reflects requirements to (1) minimize the amount of vehicle hardware that must be expended while maintaining high performance margins and (2) take advantage of emerging capabilities to produce propellants on the Moon while also enabling efficient operation using propellants transported from Earth. The system would include reusable single- stage lander spacecraft and a depot in a low orbit around the Moon. Each lander would have descent, landing, and ascent capabilities. A crew-taxi version of the lander would carry a pressurized crew module; a cargo version could carry a variety of cargo containers. The depot would serve as a facility for storage and for refueling with propellants delivered from Earth or propellants produced on the Moon. The depot could receive propellants and cargo sent from Earth on a variety of spacecraft. The depot could provide power and orbit maintenance for crew vehicles from Earth and could serve as a safe haven for lunar crews pending transport back to Earth.
Natural Hazards of the Space Environment
NASA Technical Reports Server (NTRS)
Evans, Steven W.; Kross, Dennis A. (Technical Monitor)
2000-01-01
Spacecraft in Low Earth Orbit (LEO) are subject to numerous environmental hazards. Here I'll briefly discuss three environment factors that pose acute threats to the survival of spacecraft systems and crew: atmospheric drag, impacts by meteoroids and orbital debris, and ionizing radiation. Atmospheric drag continuously opposes the orbital motion of a satellite, causing the orbit to decay. This decay will lead to reentry if not countered by reboost maneuvers. Orbital debris is a by-product of man's activities in space, and consists of objects ranging in size from miniscule paint chips to spent rocket stages and dead satellites. Ionizing radiation experienced in LEO has several components: geomagnetically trapped protons and electrons (Van Allen belts); energetic solar particles; galactic cosmic rays; and albedo neutrons. These particles can have several types of prompt harmful effects on equipment and crew, from single-event upsets, latchup, and burnout of electronics, to lethal doses to crew.All three types of prompt threat show some dependence on the solar activity cycle. Atmospheric drag mitigation and large debris avoidance require propulsive maneuvers. M/OD and ionizing radiation require some form of shielding for crew and sensitive equipment. Limiting exposure time is a mitigation technique for ionizing radiation and meteor streams.
NASA's Space Launch System: Deep-Space Delivery for SmallSats
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Norris, George
2017-01-01
Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, an uncrewed test of the Orion spacecraft into distant retrograde orbit around the moon, accompanying Orion on SLS will be 13 small-satellite secondary payloads, which will deploy in cislunar space. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. The Space Launch System Program is working actively with the developers of the payloads toward vehicle integration. Following its first flight and potentially as early as its second, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO, and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from those on the first launch, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for small satellites. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018 and a discussion of future capabilities.
Haluska, Tana L.; Snyder, Daniel T.
2007-01-01
This report presents the parcel and inundation area geographic information system (GIS) layers for various surface-water stages. It also presents data tables containing the water stage, inundation area, and water volume relations developed from analysis of detailed land surface elevation derived from Light Detection and Ranging (LiDAR) data recently collected for the Wood River Valley at the northern margin of Agency Lake in Klamath County, Oregon. Former shoreline wetlands that have been cut off from Upper Klamath and Agency Lakes by dikes might in the future be reconnected to Upper Klamath and Agency Lakes by breaching the dikes. Issues of interest associated with restoring wetlands in this way include the area that will be inundated, the volume of water that may be stored, the change in wetland habitat, and the variation in these characteristics as surface-water stage is changed. Products from this analysis can assist water managers in assessing the effect of breaching dikes and changing surface-water stage. The study area is in the approximate former northern margins of Upper Klamath and Agency Lakes in the Wood River Valley.
Robonaut 2 - Preparing for Intra-Vehicular Mobility on the International Space Station
NASA Technical Reports Server (NTRS)
Badger, Julia; Diftler, Myron; Hulse, Aaron; Taylor, Ross
2013-01-01
Robonaut 2 (R2) has been undergoing experimental trials on board the International Space Station (ISS) for more than a year. This upper-body anthropomorphic robotic system shown in Figure 1 has been making steady progress after completing its initial checkout. R2 demonstrated free space motion, physically interacted with its human crew mates, manipulated interfaces on its task board and has even used its first tool. This steady growth in capability will lead R2 to its next watershed milestone. Developers are currently testing prototype robotic climbing appendages and a battery backpack in preparation of sending flight versions of both subsystems to the ISS in late 2013. Upon integration of its new components, R2 will be able to go mobile inside the space station with a twofold agenda. First, R2 will learn to maneuver in microgravity in the best possible laboratory for such a task. Second, it will start providing early payback to the ISS program by helping with intra-vehicular (IVA) maintenance tasks. The experience gained inside the ISS will be invaluable in reducing risk when R2 moves to its next stage and is deployed as an extra-vehicular (EVA) tool. Even on its current fixed base stanchion, R2 has already shown its capability of performing several maintenance tasks on the ISS. It has measured the air flow through one of the stations vents and provided previously unavailable real time flow data to ground operators. R2 has cleaned its first handrail, exciting some crew members that perhaps Saturday morning housekeeping on the station may someday become a task they can hand off to their robotic colleague. Other tasks, including using radio frequency identification (RFID) tools for inventory tasks or vacuuming air filters, have also been suggested and will be explored. Once mobile, R2 will take on these tasks and more to free up crew time for more important science and exploration pursuits. In addition to task exploration, research and testing is happening on orbit to prepare for R2 mobility operations. The current vision system in R2 s head is being used to identify and localize IVA handrails throughout the US Lab and ground control software is being updated and integrated in advance of supporting mobility operations.
Upper Stage Flight Experiment 10K Engine Design and Test Results
NASA Technical Reports Server (NTRS)
Ross, R.; Morgan, D.; Crockett, D.; Martinez, L.; Anderson, W.; McNeal, C.
2000-01-01
A 10,000 lbf thrust chamber was developed for the Upper Stage Flight Experiment (USFE). This thrust chamber uses hydrogen peroxide/JP-8 oxidizer/fuel combination. The thrust chamber comprises an oxidizer dome and manifold, catalyst bed assembly, fuel injector, and chamber/nozzle assembly. Testing of the engine was done at NASA's Stennis Space Center (SSC) to verify its performance and life for future upper stage or Reusable Launch Vehicle applications. Various combinations of silver screen catalyst beds, fuel injectors, and combustion chambers were tested. Results of the tests showed high C* efficiencies (97% - 100%) and vacuum specific impulses of 275 - 298 seconds. With fuel film cooling, heating rates were low enough that the silica/quartz phenolic throat experienced minimal erosion. Mission derived requirements were met, along with a perfect safety record.
NASA Technical Reports Server (NTRS)
Butt, Adam; Paseur, Lila F.; Pitts, Hank M.
2012-01-01
On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The best practices documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing. This will include detailed emphasis on task orders developed between NASA and Boeing that were used to direct specific work that needed to be accomplished. In summary, this paper attempts to capture key best practices that should be helpful in the development of future launch vehicle and spacecraft RCS designs.
Patwardhan, Manasi; Hernandez-Andrade, Edgar; Ahn, Hyunyoung; Korzeniewski, Steven J; Schwartz, Alyse; Hassan, Sonia S; Romero, Roberto
2015-01-01
To investigate dynamic changes in myometrial thickness during the third stage of labor. Myometrial thickness was measured using ultrasound at one-minute time intervals during the third stage of labor in the mid-region of the upper and lower uterine segments in 151 patients including: women with a long third stage of labor (n = 30), postpartum hemorrhage (n = 4), preterm delivery (n = 7) and clinical chorioamnionitis (n = 4). Differences between myometrial thickness of the uterine segments and as a function of time were evaluated. There was a significant linear increase in the mean myometrial thickness of the upper uterine segments, as well as a significant linear decrease in the mean myometrial thickness of the lower uterine segments until the expulsion of the placenta (p < 0.001). The ratio of the measurements of the upper to the lower uterine segments increased significantly as a function of time (p < 0.0001). In women with postpartum hemorrhage, preterm delivery, and clinical chorioamnionitis, an uncoordinated pattern among the uterine segments was observed. A well-coordinated activity between the upper and lower uterine segments is demonstrated in normal placental delivery. In some clinical conditions this pattern is not observed, increasing the time for placental delivery and the risk of postpartum hemorrhage. © 2015 S. Karger AG, Basel.
Patwardhan, Manasi; Hernandez-Andrade, Edgar; Ahn, Hyunyoung; Korzeniewski, Steven J; Schwartz, Alyse; Hassan, Sonia S; Romero, Roberto
2015-01-01
Objective To investigate dynamic changes in myometrial thickness during the third stage of labor. Methods Myometrial thickness was measured using ultrasound at one-minute time intervals during the third stage of labor in the mid-region of the upper and lower uterine segments in 151 patients including: women with a long third stage of labor (n=30), post-partum hemorrhage (n=4), preterm delivery (n=7) or clinical chorioamnionitis (n=4). Differences between uterine segments and as a function of time were evaluated. Results There was a significant linear increase in the mean myometrial thickness of the upper uterine segments, as well as a significant linear decrease in the mean myometrial thickness of the lower uterine segments until the expulsion of the placenta (p<0.001). The ratio of the measurements of the upper to the lower uterine segments increased significantly as a function of time (p<0.0001). In women with postpartum hemorrhage, preterm delivery and clinical chorioamnionitis, an uncoordinated pattern between the uterine segments was observed. Conclusion A well-coordinated activity between the upper and lower uterine segments is demonstrated in normal placental delivery. In some clinical conditions this pattern is not observed, increasing the time for placental delivery and the risk for post-partum hemorrhage. PMID:25634647
1972-01-01
This cutaway illustration shows the characteristics and basic elements of the Skylab Orbiter Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.
2014-09-04
ISS040-E-125332 (4 Sept. 2014) --- Palm Jumeirah, protruding off the Persian Gulf Coast of Dubai in the United Arab Emirates, is featured in this 800mm photograph, taken by one of the Expedition 40 crew members aboard the International Space Station. The municipality of Dubai is the largest city of the Persian Gulf emirate of the same name, and has built a global reputation for large-scale developments and architectural works. Among the most visible of these developments ? particularly from the perspective of crew members onboard the space station ? are three man-made archipelagos. The two Palm Islands (Palm Jumeirah and Palm Jebel Ali, which is not in this frame) appear as stylized palm trees when viewed from above. The World Islands evoke a rough map of the world from an air- or space-borne perspective. A very small part of the World Islands is seen in upper left corner.
Skylab Orbiter Workshop Illustration
NASA Technical Reports Server (NTRS)
1972-01-01
This cutaway illustration shows the characteristics and basic elements of the Skylab Orbiter Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.
Cutaway View of Skylab Orbital Workshop
NASA Technical Reports Server (NTRS)
1972-01-01
This illustration is a cutaway view of the Orbital Workshop (OWS) showing details of the living and working quarters. The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment . The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.
Assessment and Verification of SLS Block 1-B Exploration Upper Stage and Stage Disposal Performance
NASA Technical Reports Server (NTRS)
Patrick, Sean; Oliver, T. Emerson; Anzalone, Evan J.
2018-01-01
Delta-v allocation to correct for insertion errors caused by state uncertainty is one of the key performance requirements imposed on the SLS Navigation System. Additionally, SLS mission requirements include the need for the Exploration Up-per Stage (EUS) to be disposed of successfully. To assess these requirements, the SLS navigation team has developed and implemented a series of analysis methods. Here the authors detail the Delta-Delta-V approach to assessing delta-v allocation as well as the EUS disposal optimization approach.
NASA Astrophysics Data System (ADS)
Colombi, Carina E.; Limarino, Carlos O.; Alcober, Oscar A.
2017-12-01
The Upper Triassic Ischigualasto Formation in NW Argentina was deposited in a fluvial system during the synrift filling of the extensional Ischigualasto-Villa Unión Basin. The expansive exposures of the fluvial architecture and paleosols provide a framework to reconstruct the paleoenvironmental evolution of this basin during the Upper Triassic using continental sequence stratigraphy. The Ischigualasto Formation deposition can be divided into seven sequential sedimentary stages: the 1) Bypass stage; 2) Confined low-accommodation stage; 3) Confined high accommodation stage; 4) Unstable-accommodation stage; 5) Unconfined high-accommodation stage; 6) Unconfined low-accommodation stage; and finally, 7) Unconfined high-accommodation stage. The sedimentary evolution of the Ischigualasto Formation was driven by different allogenic controls such as rises and falls in lake levels, local tectonism, subsidence, volcanism, and climate, which also produced modifications of the equilibrium profile of the fluvial systems. All of these factors result in different accommodations in central and flank areas of the basin, which led to different architectural configurations of channels and floodplains. Allogenic processes affected not only the sequence stratigraphy of the basin but also the vertebrate and plant taphocenosis. Therefore, the sequence stratigraphy can be used not only as a predictive tool related to fossil occurrence but also to understand the taphonomic history of the basin at each temporal interval.
NASA Technical Reports Server (NTRS)
Davis, Daniel J.
2010-01-01
These presentation slides review the progress in the development of the Ares I upper stage. The development includes development of a manufacturing and processing assembly that will reduce the time required over 100 days, development of a weld tool that is a robotic tool that is the largest welder of its kind in the United States, development of avionics and software, and development of logisitics and operations systems.
A mechanism for upper airway stability during slow wave sleep.
McSharry, David G; Saboisky, Julian P; Deyoung, Pam; Matteis, Paul; Jordan, Amy S; Trinder, John; Smales, Erik; Hess, Lauren; Guo, Mengshuang; Malhotra, Atul
2013-04-01
The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Sleep laboratory. Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. SWS. Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS.
Eichelberger, Jennifer S.; Braaten, P. J.; Fuller, D. B.; Krampe, Matthew S.; Heist, Edward J.
2014-01-01
Spawning of the federally endangered Pallid Sturgeon Scaphirhynchus albus is known to occur in the upper Missouri River basin, but progeny from natural reproductive events have not been observed and recruitment to juvenile or adult life stages has not been documented in recent decades. Identification of Pallid Sturgeon progeny is confounded by the fact that Shovelnose Sturgeon S. platorynchus occurs throughout the entire range of Pallid Sturgeon and the two species are essentially indistinguishable (morphometrically and meristically) during early life stages. Moreover, free embryos of sympatric Paddlefish Polyodon spathula are very similar to the two sturgeon species. In this study, three single-nucleotide polymorphism (SNP) assays were employed to screen acipenseriform free embryos and larvae collected from the upper Missouri River basin in 2011, 2012, and 2013. A mitochondrial DNA SNP discriminates Paddlefish from sturgeon, and specific multilocus genotypes at two nuclear DNA SNPs occurred in 98.9% of wild adult Pallid Sturgeon but only in 3% of Shovelnose Sturgeon sampled in the upper Missouri River. Individuals identified as potential Pallid Sturgeon based on SNP genotypes were further analyzed at 19 microsatellite loci for species discrimination. Out of 1,423 free embryos collected over 3 years of sampling, 971 Paddlefish, 446 Shovelnose Sturgeon, and 6 Pallid Sturgeon were identified. Additionally, 249 Scaphirhynchus spp. benthic larvae were screened, but no Pallid Sturgeon were detected. These SNP markers provide an efficient method of screening acipenseriform early life stages for the presence of Pallid Sturgeon in the Missouri River basin. Detection of wild Pallid Sturgeon free embryos in the upper Missouri and Yellowstone rivers supports the hypothesis that the failure of wild Pallid Sturgeon to recruit to the juvenile life stage in the upper Missouri River basin is caused by early life stage mortality rather than by lack of successful spawning.
2016-04-20
ISS047e069406 (04/20/2016) ---Earth observation image taken by the Expedition 47 crew aboard the International Space Station. This is an oblique south-looking view of the main Bahama island chain. Cuba is across the entire top of the image, the Florida Peninsula on the right margin. In the Bahamas, the main Andros island is just distinguishable under cloud upper left of center. Under less cloud is the Abaco Islands in the foreground (middle of pic nearest camera left of center.)
NASA Technical Reports Server (NTRS)
Hamilton, Douglas; Kramer, Leonard; Mikatarian, Ron; Polk, James; Duncan, Michael; Koontz, Steven
2010-01-01
The models predict that, for low voltage exposures in the space suit, physiologically active current could be conducted across the crew member causing catastrophic hazards. Future work with Naval Health Research Center Detachment Directed Energy Bio-effects Laboratory is being proposed to analyze additional current paths across the human torso and upper limbs. These models may need to be verified with human studies.
NASA Technical Reports Server (NTRS)
Ware, George M.
1989-01-01
An investigation was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers from 1.6 to 4.5. The model had a low-aspect-ratio body with a flat undersurface. A center fin and two outboard fins were mounted on the aft portion of the upper body. The outboard fins were rolled outboard 40 deg from the vertical. Elevon surfaces made up the trailing edges of the outboard fins, and body flaps were located on the upper and lower aft fuselage. The center fin pivoted about its midchord for yaw control. The model was longitudinally stable about the design center-of-gravity position at 54 percent of the body length. The configuration with undeflected longitudinal controls trimmed near 0 deg angle of attack at Mach numbers from 1.6 to 3.0 where lift and lift-drag ratio were negative. Longitudinal trim was near the maximum lift-drag ratio (1.4) at Mach 4.5. The model was directionally stable over Mach number range except at angles of attack around 4 deg at M = 2.5. Pitch control deflection of more than -10 deg with either elevons or body flaps is needed to trim the model to angles of attack at which lift becomes positive. With increased control deflection, the lifting-body configuration should perform the assured crew return mission through the supersonic speed range.
Earth observation taken by the Expedition 20 crew
2009-07-25
ISS020-E-026195 (25 July 2009) --- Aorounga Impact Crater is featured in this image photographed by an Expedition 20 crew member on the International Space Station. Aorounga Impact Crater is located in the Sahara Desert of north-central Chad and is one of the best preserved impact structures in the world. According to scientists, the crater is thought to be middle or upper Devonian to lower Mississippian (approximately 345 ? 370 million years old) based on the age of the sedimentary rocks deformed by the impact. Spaceborne Imaging Radar (SIR) data collected in 1994 suggests that Aorounga is one of a set of three craters formed by the same impact event. The other two suggested impact structures are buried by sand deposits. The concentric ring structure of the Aorounga crater ? renamed Aorounga South in the multiple-crater interpretation of SIR data ? is clearly visible in this detailed photograph. The central highland, or peak, of the crater is surrounded by a small sand-filled trough; this in turn is surrounded by a larger circular trough. Linear rock ridges alternating with light orange sand deposits cross the image from upper left to lower right; these are called yardangs by geomorphologists. Yardangs form by wind erosion of exposed rock layers in a unidirectional wind field. The wind blows from the northeast at Aorounga, and sand dunes formed between the yardangs are actively migrating to the southwest.
Experimental Investigation of Rotating Menisci
NASA Astrophysics Data System (ADS)
Reichel, Yvonne; Dreyer, Michael E.
2014-07-01
In upper stages of spacecrafts, Propellant Management Devices (PMD's) can be used to position liquid propellant over the outlet in the absence of gravity. Centrifugal forces due to spin of the upper stage can drive the liquid away from the desired location resulting in malfunction of the stage. In this study, a simplified model consisting of two parallel, segmented and unsegmented disks and a central tube assembled at the center of the upper disk is analyzed experimentally during rotation in microgravity. For each drop tower experiment, the angular speed caused by a centrifugal stage in the drop capsule is kept constant. Steady-states for the menisci between the disks are observed for moderate rotation. For larger angular speeds, a stable shape of the free surfaces fail to sustain and the liquid is driven away. Additionally, tests were performed without rotation to quantify two effects: the removal of a metallic cylinder around the model to establish the liquid column and the determination of the the settling time from terrestrial to microgravity conditions.
2006-09-27
KENNEDY SPACE CENTER, FLA. - In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center, the solid rocket booster aft skirt designated for use on the first stage of the ARES I-1 launch vehicle is being prepared for its first test flight. Ares I is the vehicle being developed for launch of the crew exploration vehicle (CEV), named Orion. Ares I-1 is currently targeted for launch from Launch Pad 39B in 2009 using the SRB first stage and a simulated second stage and simulated CEV. Ares I ascent tests and Ares I orbital tests will also take place at Kennedy at later dates. Photo credit: NASA/Jack Pfaller
2006-09-27
KENNEDY SPACE CENTER, FLA. - In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center, workers examine some of the hardware inside the solid rocket booster aft skirt designated for use on the first stage of the ARES I-1 launch vehicle in its first test flight. Ares I is the vehicle being developed for launch of the crew exploration vehicle (CEV), named Orion. Ares I-1 is currently targeted for launch from Launch Pad 39B in 2009 using the SRB first stage and a simulated second stage and simulated CEV. Ares I ascent tests and Ares I orbital tests will also take place at Kennedy at later dates. Photo credit: NASA/Jack Pfaller
Gunen, H; Kizkin, O; Tahaoglu, C; Aktas, O
2001-02-01
Preoperative detection of non-small cell lung cancer (NSCLC) metastasis to the main carina and upper-lobe carina can alter the operative approach, preclude further staging procedures, and save many patients from thoracotomy. This study assessed whether bronchoscopic forceps biopsy of the normal-appearing main carina and upper-lobe carina (blind biopsy) ipsilateral to the primary NSCLC lesion improved the accuracy of cancer staging and helped guide the management of these patients. A prospective study of 52 patients was carried out at the SSK Süreyyapasa Center for Chest Disease and Cardiothoracic Surgery. Over a 6-month period, we bronchoscopically evaluated 52 consecutive NSCLC patients who were radiologically classified as operable. At least five blind forceps biopsy specimens were obtained from the main carina and/or upper-lobe carina during each patient's initial fiberoptic bronchoscopic examination. Biopsy specimens were collected from the main carina and upper-lobe carina in 51 and 17 patients, respectively. Initially, all patients were staged and evaluated for operability in standard fashion, without histologic assessment of the blind biopsy specimens. We then restaged the disease and reassessed the patients' operability in light of the biopsy findings. Metastasis was histologically diagnosed in seven patients (13.7%) who underwent main carina biopsy and in four patients (23.5%) who underwent upper-lobe carina biopsy. Cancer-positive blind biopsy results changed the status of 25% (6 of 24) of patients from operable to inoperable, and changed the surgical approach in 11.1% (2 of 18) of patients who ultimately did undergo surgery. We found no statistical relationship between metastasis to either carina and tumor type, stage of disease, visibility of the tumor on fiberoptic bronchoscopy, primary tumor location, T status, or N status (p > 0.05). A blind forceps biopsy of the main carina and upper-lobe carina ipsilateral to the lesion site should be done routinely at initial bronchoscopic examination of all radiologically operable patients with suspected lung cancer. This type of screening can save a significant number of NSCLC patients from inappropriate or unnecessary thoracotomy and further staging procedures with their associated morbidity and risk.
2014-05-29
HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., near a suspended cargo-carrying Dragon spacecraft that flew a previous mission. The new spacecraft, the Dragon V2, is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle Endeavour's cargo bay in the grasp of the Remote Manipulator System (RMS). The free-flyer was re-captured by the six crew members on May 21, 1996. The crew has spent a portion of the early stages of the mission in various activities involving the Spartan 207 and the related Inflatable Antenna Experiment (IAE). The Spartan project is managed by NASA's Goddard Space Flight Center (GSFC) for NASA's Office of Space Science, Washington, D.C. GMT: 09:51:29.
Orion and SLS showcased at Michoud on This Week @NASA – January 29, 2016
2016-01-29
A Jan. 26 event at NASA’s Michoud Assembly Facility in New Orleans, marked recently completed work by technicians there to weld together the pressure vessel for the next Orion deep space crew module. The event also was an opportunity for NASA officials to thank employees and to show the progress on Orion and the core stage of the agency’s Space Launch System (SLS) rocket. The Orion pressure vessel will be shipped to Kennedy Space Center in Florida next month, where engineers will continue to prepare it for the first flight of the SLS rocket. Also, Space station One-year crew update, New color movie of Ceres and NASA Day of Remembrance!
Gałązkowski, Robert; Wołkowski, Władysław; Mikos, Marcin; Szajda, Sławomir; Wejnarski, Arkadiusz; Świeżewski, Stanisław Paweł
2015-01-01
In 2008, the Polish Medical Air Rescue started replacing its fleet with modern EC135 machines. To ensure the maximum possible safety of the missions performed both in the period of implementing the change and later on, the management prepared a strategy of training its crews to use the new type of helicopter. The analysis of incidents that occurred during 2006-2009 showed that both the human and the technical factors must be carefully considered. Moreover, a risk analysis was conducted to reduce the risk both during general crew training and in the course of particular flight operations. A four-stage strategy of training pilots and crew members was worked out by weighing up all the risks. The analysis of data from 2010 to 2013 confirmed that the risk connected with flying and with all the activities involved in direct support aircraft operations is under control and lowered to an acceptable level.
Rapid Contingency Simulation Modeling of the NASA Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Betts, Kevin M.; Rutherford, R. Chad; McDuffie, James; Johnson, Matthew D.
2007-01-01
The NASA Crew Launch Vehicle is a two-stage orbital launcher designed to meet NASA's current as well as future needs for human space flight. In order to free the designers to explore more possibilities during the design phase, a need exists for the ability to quickly perform simulation on both the baseline vehicle as well as the vehicle after proposed changes due to mission planning, vehicle configuration and avionics changes, proposed new guidance and control algorithms, and any other contingencies the designers may wish to consider. Further, after the vehicle is designed and built, the need will remain for such analysis in the event of future mission planning. An easily reconfigurable, modular, nonlinear six-degree-of-freedom simulation matching NASA Marshall's in-house high-fidelity simulator is created with the ability to quickly perform simulation and analysis of the Crew Launch Vehicle throughout the entire launch profile. Simulation results are presented and discussed, and an example comparison fly-off between two candidate controllers is presented.
Gałązkowski, Robert; Wołkowski, Władysław; Mikos, Marcin; Szajda, Sławomir; Wejnarski, Arkadiusz; Świeżewski, Stanisław Paweł
2015-01-01
In 2008, the Polish Medical Air Rescue started replacing its fleet with modern EC135 machines. To ensure the maximum possible safety of the missions performed both in the period of implementing the change and later on, the management prepared a strategy of training its crews to use the new type of helicopter. The analysis of incidents that occurred during 2006–2009 showed that both the human and the technical factors must be carefully considered. Moreover, a risk analysis was conducted to reduce the risk both during general crew training and in the course of particular flight operations. A four-stage strategy of training pilots and crew members was worked out by weighing up all the risks. The analysis of data from 2010 to 2013 confirmed that the risk connected with flying and with all the activities involved in direct support aircraft operations is under control and lowered to an acceptable level. PMID:26694009
Apollo 13 Guidance, Navigation, and Control Challenges
NASA Technical Reports Server (NTRS)
Goodman, John L.
2009-01-01
Combustion and rupture of a liquid oxygen tank during the Apollo 13 mission provides lessons and insights for future spacecraft designers and operations personnel who may never, during their careers, have participated in saving a vehicle and crew during a spacecraft emergency. Guidance, Navigation, and Control (GNC) challenges were the reestablishment of attitude control after the oxygen tank incident, re-establishment of a free return trajectory, resolution of a ground tracking conflict between the LM and the Saturn V S-IVB stage, Inertial Measurement Unit (IMU) alignments, maneuvering to burn attitudes, attitude control during burns, and performing manual GNC tasks with most vehicle systems powered down. Debris illuminated by the Sun and gaseous venting from the Service Module (SM) complicated crew attempts to identify stars and prevented execution of nominal IMU alignment procedures. Sightings on the Sun, Moon, and Earth were used instead. Near continuous communications with Mission Control enabled the crew to quickly perform time critical procedures. Overcoming these challenges required the modification of existing contingency procedures.
2012-08-03
Cape Canaveral, Fla. -- From left, Kennedy Space Center Director Robert Cabana, NASA Administrator Charlie Bolden and Commercial Crew Program CCP, Manager Ed Mango announce the newest partners of NASA's Commercial Crew Program from Operations Support Building 2 OSB II at Kennedy Space Center in Florida. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
2012-08-03
Cape Canaveral, Fla. -- NASA Administrator Charlie Bolden announces the newest partners of NASA's Commercial Crew Program CCP from Operations Support Building 2 OSB II at Kennedy Space Center in Florida. At left, is Kennedy Space Center Director Robert Cabana, and at right, is Commercial Crew Program CCP Manager Ed Mango. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
2012-08-03
Cape Canaveral, Fla. -- NASA Administrator Charlie Bolden announces the newest partners of NASA's Commercial Crew Program CCP from Operations Support Building 2 OSB II at Kennedy Space Center in Florida. At left, is Kennedy Space Center Director Robert Cabana and at right, is Commercial Crew Program CCP Manager Ed Mango. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
2012-08-03
Cape Canaveral, Fla. -- NASA Kennedy Space Center Director Bob Cabana discusses the Commercial Crew Program's CCP newest partnerships from the center's Operations Support Building 2 OSB II. To his right, is NASA Administrator Charlie Bolden, and to his far right, is Commercial Crew Program Manager Ed Mango. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
1975-07-03
CAPE CANAVERAL, Fla. – ASTP prime crewmen Donald Slayton, Thomas Stafford and Vance Brand pose with their Saturn IB launch vehicle following the Countdown Demonstration Test [CDDT], a step-by-step dress rehearsal for their July 15 launch. During the “wet” portion of the test, conducted yesterday, the stages of the launch vehicle were fueled as they will be on launch day. The fuels were off loaded and the terminal portion of the count repeated today with the astronauts aboard the vehicle. The first international crewed spaceflight was a joint U.S.-U.S.S.R. rendezvous and docking mission. The Apollo-Soyuz Test Project, or ASTP, took its name from the spacecraft employed: the American Apollo and the Soviet Soyuz. The three-man Apollo crew lifted off from Kennedy Space Center aboard a Saturn IB rocket on July 15, 1975, to link up with the Soyuz that had launched a few hours earlier. A cylindrical docking module served as an airlock between the two spacecraft for transfer of the crew members. Photo credit: NASA
The Ares I-1 Flight Test--Paving the Road for the Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Tinker, Michael L.; Tuma, Meg
2007-01-01
In accordance with the U.S. Vision for Space Exploration and the nation's desire to again send humans to explore beyond Earth orbit, NASA has been tasked to send human beings to the moon, Mars, and beyond. It has been 30 years since the United States last designed and built a human-rated launch vehicle. NASA is now building the Ares I crew launch vehicle, which will loft the Orion crew exploration vehicle into orbit, and the Ares V cargo launch vehicle, which will launch the Lunar Surface Access Module and Earth departure stage to rendezvous Orion for missions to the moon. NASA has marshaled unique resources from the government and private sectors to perform the technically and programmatically complex work of delivering astronauts to orbit early next decade, followed by heavy cargo late next decade. Our experiences with Saturn and the Shuttle have taught us the value of adhering to sound systems engineering, such as the "test as you fly" principle, while applying aerospace best practices and lessons learned. If we are to fly humans safely aboard a launch vehicle, we must employ a variety of methodologies to reduce the technical, schedule, and cost risks inherent in the complex business of space transportation. During the Saturn development effort, NASA conducted multiple demonstration and verification flight tests to prove technology in its operating environment before relying upon it for human spaceflight. Less testing on the integrated Shuttle system did not reduce cost or schedule. NASA plans a progressive series of demonstration (ascent), verification (orbital), and mission flight tests to supplement ground research and high-altitude subsystem testing with real-world data, factoring the results of each test into the next one. In this way, sophisticated analytical models and tools, many of which were not available during Saturn and Shuttle, will be calibrated and we will gain confidence in their predictions, as we gain hands-on experience in operating the first of two new launch vehicle systems. The Ares I-1 flight test vehicle (FTV) will incorporate a mix of flight and mockup hardware, reflecting a configuration similar in mass, weight, and shape (outer mold line or OML) to the operational vehicle. It will be powered by a four-segment reusable solid rocket booster (RSRB), which is currently in Shuttle inventory, and will be modified to include a fifth, inert segment that makes it approximately the same size and weight as the five segment RSRB, which will be available for the second flight test in 2012. The Ares I-1 vehicle configuration is shown. Each test flight has specific objectives appropriate to the design analysis cycle in progress. The Ares I-1 demonstration test, slated for April 2009, gives NASA its first opportunity to gather critical data about the flight dynamics of the integrated launch vehicle stack, understand how to control its roll during flight, and other characterize the severe stage separation environment that the upper stage will experience during future operational flights. NASA also will begin the process of modifying the launch infrastructure and fine-tuning ground and mission operational scenarios, as NASA transitions from the Shuttle to the Ares/Orion system.
Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu
2016-01-01
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions. PMID:27600710
Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu
2016-09-29
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.
NASA Astrophysics Data System (ADS)
Olivar, M. Pilar; Contreras, Tabit; Hulley, P. Alexander; Emelianov, Mikhail; López-Pérez, Cristina; Tuset, Víctor; Castellón, Arturo
2018-01-01
The vertical distributions of early developmental stages of oceanic fishes were investigated across the tropical and equatorial Atlantic, from oligotrophic waters close to the Brazilian coast to more productive waters close to the Mauritanian Upwelling Region. Stratification of the water column was observed throughout the study region. Fishes were caught with a MOCNESS-1 net with mouth area of 1 m2 at 11 stations. Each station was sampled both during the day and at night within a single 24-h period. The investigation covered both larvae and transforming stages from the surface to 800 m depth. Distribution patterns were analysed, and weighted mean depths for the larvae and transforming stages of each species were calculated for day and night conditions. Forty-seven different species were found. The highest number of species occurred in the three stations south of Cape Verde Islands, characterized by a mixture of South Atlantic Central Water (SACW) and Eastern North Atlantic Central Water (ENACW). There was a marked drop in species richness in the three stations closer to the African upwelling, dominated by ENACW. The highest abundances occurred in the families Myctophidae, Sternoptychidae, Gonostomatidae and Phosichthyidae. Day and night vertical distributions of larvae and transforming stages showed contrasting patterns, both in the depths of the main concentration layers in the water column, and in the diel migration patterns (where these were observed). Larvae generally showed a preference for the upper mixed layer (ca. 0-50 m) and upper thermocline (ca. 50-100 m), except for sternoptychids, which were also abundant in the lower thermocline layer (100-200 m) and even extended into the mesopelagic zone (down to 500 m). Transforming stages showed a more widespread distribution, with main concentrations in the mesopelagic zone (200-800 m). Larvae showed peak concentrations in the more illuminated and zooplankton-rich upper mixed layers during the day and a wider distribution through the upper 100 m during the night. For most species, transforming stages were concentrated in the mesopelagic layers both day and night, although in some species (Diaphus cf. vanhoeffeni and Vinciguerria nimbaria), the transforming stages displayed vertical migration into the upper 100 m at night, in a manner similar to their adult stages.
Infusing Training into the Documentation and Culture of Ares I Upper Stage Design and Manufacturing
NASA Technical Reports Server (NTRS)
Scott, David W.
2009-01-01
In roughly two years time, Marshall Space Flight Center's (MSFC) Mission Operations Laboratory (MOL) has incubated a personnel training and certification program for about 1000 learners and multiple phases of the Ares I Upper Stage (US) project. Previous MOL-developed training programs focused on about 100 learners with a focus on operations, and had enough full-time training staff to develop courseware and provide training administration. This paper discusses 1) how creation of a broad, structured training program unfolded as feedback from more narrowly defined tasks, 2) how training philosophy, development methods, and administration are being simplified and tailored so that many Upper Stage organizations can grow their own training yet maintain consistency, accountability, and traceability across the project, and 3) possibilities for interfacing with the production contractor's training system and staff.
Epidemiology of injuries and illnesses in America's Cup yacht racing
Neville, V J; Molloy, J; Brooks, J H M; Speedy, D B; Atkinson, G
2006-01-01
Objectives To determine the incidence and severity of injuries and illnesses incurred by a professional America's Cup yacht racing crew during the preparation for and participation in the challenge for the 2003 America's Cup. Methods A prospective study design was used over 74 weeks of sailing and training. All injuries and illnesses sustained by the 35 professional male crew members requiring medical treatment were recorded, including the diagnosis, nature, location, and mechanism of injury. The volume of sailing and training were recorded, and the severity of incidents were determined by the number of days absent from both sailing and training. Results In total, 220 injuries and 119 illnesses were recorded, with an overall incidence of 8.8 incidents/1000 sailing and training hours (injuries, 5.7; illnesses, 3.1). The upper limb was the most commonly injured body segment (40%), followed by the spine and neck (30%). The most common injuries were joint/ligament sprains (27%) and tendinopathies (20%). The incidence of injury was significantly higher in training (8.6) than sailing (2.2). The most common activity or mechanism of injury was non‐specific overuse (24%), followed by impact with boat hardware (15%) and weight training (13%). “Grinders” had the highest overall injury incidence (7.7), and “bowmen” had the highest incidence of sailing injuries (3.2). Most of the illnesses were upper respiratory tract infections (40%). Conclusions The data from this study suggest that America's Cup crew members are at a similar risk of injury to athletes in other non‐collision team sports. Prudent allocation of preventive and therapeutic resources, such as comprehensive health and medical care, well designed conditioning and nutritional programmes, and appropriate management of recovery should be adopted by America's Cup teams in order to reduce the risk of injury and illness. PMID:16556783
Wang, Yue; Yu, Lei; Fu, Jianming; Fang, Qiang
2014-04-01
In order to realize an individualized and specialized rehabilitation assessment of remoteness and intelligence, we set up a remote intelligent assessment system of upper limb movement function of post-stroke patients during rehabilitation. By using the remote rehabilitation training sensors and client data sampling software, we collected and uploaded the gesture data from a patient's forearm and upper arm during rehabilitation training to database of the server. Then a remote intelligent assessment system, which had been developed based on the extreme learning machine (ELM) algorithm and Brunnstrom stage assessment standard, was used to evaluate the gesture data. To evaluate the reliability of the proposed method, a group of 23 stroke patients, whose upper limb movement functions were in different recovery stages, and 4 healthy people, whose upper limb movement functions were normal, were recruited to finish the same training task. The results showed that, compared to that of the experienced rehabilitation expert who used the Brunnstrom stage standard table, the accuracy of the proposed remote Brunnstrom intelligent assessment system can reach a higher level, as 92.1%. The practical effects of surgery have proved that the proposed system could realize the intelligent assessment of upper limb movement function of post-stroke patients remotely, and it could also make the rehabilitation of the post-stroke patients at home or in a community care center possible.
Comparative evaluation of existing expendable upper stages for space shuttle
NASA Technical Reports Server (NTRS)
Weyers, V. J.; Sagerman, G. D.; Borsody, J.; Lubick, R. J.
1974-01-01
The use of existing expendable upper stages in the space shuttle during its early years of operation is evaluated. The Burner 2, Scout, Delta, Agena, Transtage, and Centaur were each studied under contract by their respective manufacturers to determine the extent and cost of the minimum modifications necessary to integrate the stage with the shuttle orbiter. A comparative economic analysis of thirty-five different families of these stages is discussed. Results show that the overall transportation system cost differences between many of the families are quite small. However, by considering several factors in addition to cost, it is possible to select one family as being representative of the capability of the minimum modification existing stage approach. The selected family meets all of the specified mission requirements during the early years of shuttle operation.
William J. Trush; Edward C. Connor; Knight Alan W.
1989-01-01
Riparian communities established along Elder Creek, a tributary of the upper South Fork Eel River, are bounded by two frequencies of periodic flooding. The upper limit for the riparian zone occurs at bankfull stage. The lower riparian limit is associated with a more frequent stage height, called the active channel, having an exceedance probability of 11 percent on a...
Propellant Management in Booster and Upper Stage Propulsion Systems
NASA Technical Reports Server (NTRS)
Fisher, Mark F.
1997-01-01
A summary review of some of the technical issues which surround the design of the propulsion systems for Booster and Upper Stage systems are presented. The work focuses on Propellant Geyser, Slosh, and Orientation. A brief description of the concern is given with graphics which help the reader to understand the physics of the situation. The most common solutions to these problems are given with there respective advantages and disadvantages.
ERIC Educational Resources Information Center
Subheyyin, Eid H.; Mawajdeh, Baker S.; Talhouni, Mansour H.; Rfou', Mohammad O.
2017-01-01
This study aimed at determining the most important national values that should be included in the textbooks of social studies for the upper-primary stage grades in Jordan; and then identifying the degree of their inclusion in those books. The study used a descriptive-analytical approach. A study tool which includes twelve national values was…
Inertial Upper Stage (IUS) software analysis
NASA Technical Reports Server (NTRS)
Grayson, W. L.; Nickel, C. E.; Rose, P. L.; Singh, R. P.
1979-01-01
The Inertial Upper Stage (IUS) System, an extension of the Space Transportation System (STS) operating regime to include higher orbits, orbital plane changes, geosynchronous orbits, and interplanetary trajectories is presented. The IUS software design, the IUS software interfaces with other systems, and the cost effectiveness in software verification are described. Tasks of the IUS discussed include: (1) design analysis; (2) validation requirements analysis; (3) interface analysis; and (4) requirements analysis.
Briefings Set for Launch of Next "Great Observatory" in Space
NASA Astrophysics Data System (ADS)
1999-06-01
NASA's next Space Shuttle flight will provide astronomers with a new look at the universe and make history with NASA's first female mission commander. Reporters can get an overview of the mission at a series of briefings July 7. The briefings will begin at 9 a.m. EDT at NASA's Johnson Space Center in Houston. The five-day flight is scheduled for launch no earlier than July 20. STS-93 will be led by U.S. Air Force Colonel Eileen Collins, the first woman to command an American space mission. The flight's primary objective will be to deploy the Chandra X-Ray Observatory, the third of NASA's Great Observatories. Collins and her crew of four will carry Chandra, the heaviest payload ever deployed from the shuttle, into orbit and deploy it approximately seven hours after launch. An upper stage will carry the observatory to its final orbit, more than one-third of the way to the Moon. Chandra will allow scientists to obtain unprecedented X-ray images of exploding stars, black holes and other exotic environments to help them understand the structure and evolution of the universe. The first two briefings will provide an overview of mission operations and science to be conducted by Chandra. The NASA Television Video File will follow at noon. The crew press conference will begin at 2 p.m. EDT. The briefings will be carried live on NASA Television, with question-and-answer capability for reporters covering the event from participating NASA centers. NASA Television is available on transponder 9C of the GE-2 satellite at 85 degrees West longitude, vertical polarization, frequency 3880 MHz, audio of 6.8 MHz. Media planning to attend the briefings must notify the Johnson Space Center newsroom by June 28 to ensure proper badging. Each reporter's name, affiliation and country of citizenship should be faxed to the newsroom at 281/483-2000. IMPORTANT NOTE: Reporters can schedule in-person or telephone interviews STS-93 crew. These interviews will begin at about 3:15 p.m. EDT. Media wishing to participate must make their request to the Johnson Space Center Newsroom by June 28. STS-93 PREFLIGHT BRIEFINGS July 7, 1999 9 a.m. EDT Mission Overview Bryan Austin, STS-93 Lead Flight Director, Johnson Space Center Fred Wojtalik, Chandra Program Manager, Marshall Space Flight Center, Huntsville, AL Ken Ledbetter, Director, Mission and Payload Development Division, NASA Headquarters, Washington, DC 10:30 a.m. EDT Chandra Science Briefing Dr. Ed Weiler, Associate Administrator, Office of Space Science, NASA Headquarters Dr. Alan Bunner, Chandra Program Scientist, NASA Headquarters Dr. Martin Weisskopf, Chandra Project Scientist, Marshall Space Flight Center Dr. Harvey Tananbaum, Director, Chandra X-Ray Center, Cambridge, MA Dr. Kimberly Weaver, Astrophysicist, Goddard Space Flight Center, Greenbelt, MD Noon EDT NASA TV Video File 2 p.m. EDT STS-93 Crew Press Conference Eileen M. Collins, Mission Commander Jeffrey S. Ashby, Pilot Catherine G. Coleman, Mission Specialist -1 Steven A. Hawley, Mission Specialist-2 Michel Tognini, Mission Specialist-3 3:15 p.m. EDT STS-93 Crew Round Robins (not televised)
1991-05-06
STS039-151-175 (28 April-6 May 1991) --- Large format (five-inch) frame of part of the greater Houston metropolitan area photographed from the Earth-orbiting Space Shuttle Discovery. (Hold photo vertically with Galveston at bottom so that north will be at top.) Heavier than normal spring rains emphasize the several bodies of water in the area. Thanks to Sun angle, the interstate highways, Houston's belt and loop systems and even city streets, farm-to-market roads and airport runways are easily observed in the frame. NASA and Clear Lake City, work and home areas of the seven Discovery astronaut crew members, are easily spotted near upper Galveston Bay in bottom (south portion) of the frame. Houston's central business district and the Harris County Domed Stadium are seen in the upper left quadrant.
Steelhead Supplementation in Idaho Rivers : 2001 Project Progress Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrne, Alan
In 2001, Idaho Department of Fish and Game (IDFG) continued an assessment of the Sawtooth Hatchery steelhead Oncorhynchus mykiss stock to reestablish natural populations in Beaver and Frenchman creeks in the upper Salmon River. Crews stocked both streams with 20 pair of hatchery adults, and I estimated the potential smolt production from the 2000 adult outplants. n the Red River drainage, IDFG stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 to assess which life stage produces more progeny when the adults return to spawn. In 2001, IDFG operated the Red River weir to trap adults that returnedmore » from these stockings, but none were caught from either group. Wild steelhead populations in the Lochsa and Selway river drainages were assessed and the chinook salmon Oncorhynchus tshawytscha escapement was enumerated in Fish Creek. I estimated that 75 wild adult steelhead and 122 adult chinook salmon returned to Fish Creek in 2001. I estimated that slightly more than 30,000 juvenile steelhead migrated out of Fish Creek. This is the largest number of steelhead to migrate out of Fish Creek in a single year since I began estimating the yearly migration in 1994. Juvenile steelhead densities in Lochsa and Selway tributaries were somewhat higher in 2001 than those observed in 2000. Crews from IDFG collected over 4,800 fin samples from wild steelhead in 74 streams of the Clearwater, Snake, and Salmon river drainages and from five hatchery stocks during the summer of 2000 for a DNA analysis to assess Idaho's steelhead stock structure. The DNA analysis was subcontracted to Dr. Jennifer Nielsen, Alaska Biological Science Center, Anchorage. Her lab developed protocols to use for the analysis in 2001 and is continuing to analyze the samples. Dr. Nielsen plans to have the complete set of wild and hatchery stocks analyzed in 2002.« less
Life Cycle Systems Engineering Approach to NASA's 2nd Generation Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Thomas, Dale; Smith, Charles; Safie, Fayssal; Kittredge, Sheryl
2002-01-01
The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd- generation system by 2 orders of magnitude - equivalent to a crew risk of 1 -in- 10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. Given a candidate architecture that possesses credible physical processes and realistic technology assumptions, the next set of analyses address the system's functionality across the spread of operational scenarios characterized by the design reference missions. The safety/reliability and cost/economics associated with operating the system will also be modeled and analyzed to answer the questions "How safe is it?" and "How much will it cost to acquire and operate?" The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.
2016-01-01
A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.
Montorselli, Niccolò Brachetti; Lombardini, Carolina; Magagnotti, Natascia; Marchi, Enrico; Neri, Francesco; Picchi, Gianni; Spinelli, Raffaele
2010-11-01
The study compared the performance of four different logging crews with respect to productivity, organization and safety. To this purpose, the authors developed a data collection method capable of providing a quantitative analysis of risk-taking behavior. Four crews were tested under the same working conditions, representative of close-to-nature alpine forestry. Motor-manual working methods were applied, since these methods are still prevalent in the specific study area, despite the growing popularity of mechanical processors. Crews from public companies showed a significantly lower frequency of risk-taking behavior. The best safety performance was offered by the only (public) crew that had been administered formal safety training. The study seems to deny the common prejudice that safety practice is inversely proportional to productivity. Instead, productivity is increased by introducing more efficient working methods and equipment. The quantitative analysis of risk-taking behavior developed in this study can be applied to a number of industrial fields besides forestry. Characterizing risk-taking behavior for a given case may eventually lead to the development of custom-made training programmes, which may address problem areas while avoiding that the message is weakened by the inclusion of redundant information. In the specific case of logging crews in the central Alps, the study suggests that current training courses may be weak on ergonomics, and advocates a staged training programme, focusing first on accident reduction and then expanding to the prevention of chronic illness. 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dhoble, Abhishek S.; Pullammanappallil, Pratap C.
2014-10-01
Waste treatment and management for manned long term exploratory missions to moon will be a challenge due to longer mission duration. The present study investigated appropriate digester technologies that could be used on the base. The effect of stirring, operation temperature, organic loading rate and reactor design on the methane production rate and methane yield was studied. For the same duration of digestion, the unmixed digester produced 20-50% more methane than mixed system. Two-stage design which separated the soluble components from the solids and treated them separately had more rapid kinetics than one stage system, producing the target methane potential in one-half the retention time than the one stage system. The two stage system degraded 6% more solids than the single stage system. The two stage design formed the basis of a prototype digester sized for a four-person crew during one year exploratory lunar mission.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2009-01-01
This paper summarizes Phase I and II analysis results from NASA's recent Mars DRA 5.0 study which re-examined mission, payload and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal rocket (NTR) propulsion was again identified as the preferred in-space transportation system over chemical/aerobrake because of its higher specific impulse (I(sub sp)) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit (IMLEO) which is important for reducing the number of Ares-V heavy lift launches and overall mission cost. DRA 5.0 features a long surface stay (approximately 500 days) split mission using separate cargo and crewed Mars transfer vehicles (MTVs). All vehicles utilize a common core propulsion stage with three 25 klbf composite fuel NERVA-derived NTR engines (T(sub ex) approximately 2650 - 2700 K, p(sub ch) approximately 1000 psia, epsilon approximately 300:1, I(sub sp) approximately 900 - 910 s, engine thrust-toweight ratio approximately 3.43) to perform all primary mission maneuvers. Two cargo flights, utilizing 1-way minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crewed MTV during the next mission opportunity (approximately 26 months later). The cargo payload elements aerocapture (AC) into Mars orbit and are enclosed within a large triconicshaped aeroshell which functions as payload shroud during launch, then as an aerobrake and thermal protection system during Mars orbit capture and subsequent entry, descent and landing (EDL) on Mars. The all propulsive crewed MTV is a 0-gE vehicle design that utilizes a fast conjunction trajectory that allows approximately 6-7 month 1-way transit times to and from Mars. Four 12.5 kW(sub e) per 125 square meter rectangular photovoltaic arrays provide the crewed MTV with approximately 50 kW(sub e) of electrical power in Mars orbit for crew life support and spacecraft subsystem needs. Vehicle assembly involves autonomous Earth orbit rendezvous and docking between the propulsion stages, in-line propellant tanks and payload elements. Nine Ares-V launches -- five for the two cargo MTVs and four for the crewed MTV -- deliver the key components for the three MTVs. Details on mission, payload, engine and vehicle characteristics and requirements are presented and the results of key trade studies are discussed.
Augmentation of blood circulation to the fingers by warming distant body areas
NASA Technical Reports Server (NTRS)
Koscheyev, V. S.; Leon, G. R.; Paul, S.; Tranchida, D.; Linder, I. V.
2000-01-01
Future activities in space will require greater periods of time in extreme environments in which the body periphery will be vulnerable to chilling. Maintaining the hands and fingers in comfortable conditions enhances finger flexibility and dexterity, and thus effects better work performance. We have evaluated the efficacy of promoting heat transfer and release by the extremities by increasing the blood flow to the periphery from more distant parts of the body. The experimental garment paradigm developed by the investigators was used to manipulate the temperature of different body areas. Six subjects, two females and four males, were evaluated in a stage-1 baseline condition, with the inlet temperature of the circulating water in the liquid cooling/warming garment (LCWG) at 33 degrees C. At stage 2 the total LCWG water inlet temperature was cooled to 8 degrees C, and at stage 3 the inlet water temperature in specific segments of the LCWG was warmed (according to protocol) to 45 degrees C, while the inlet temperature in the rest of the LCWG was maintained at 8 degrees C. The following four body-area-warming conditions were studied in separate sessions: (1) head, (2) upper torso/arm, (3) upper torso/arm/head, and (4) legs/feet. Skin temperature, heat flux and blood perfusion of the fingers, and subjective perception of thermal sensations and overall physical comfort were assessed. Finger temperature (T(fing)) analyses showed a statistically significant condition x stage interaction. Post-hoc comparisons (T(fing)) indicated that at stage 3, the upper torso/arm/head warming condition was significantly different from the head, upper torso/arm and legs/feet conditions, showing an increase in T(fing). There was a significant increase in blood perfusion in the fingers at stage 3 in all conditions. Subjective perception of hand warmth, and overall physical comfort level significantly increased in the stage 3 upper torso/arm/head condition. The findings indicate that physiological methods to enhance heat transfer by the blood to the periphery within protective clothing provide an additional tool for increasing total and local human comfort in extreme environments.
A Mechanism for Upper Airway Stability during Slow Wave Sleep
McSharry, David G.; Saboisky, Julian P.; DeYoung, Pam; Matteis, Paul; Jordan, Amy S.; Trinder, John; Smales, Erik; Hess, Lauren; Guo, Mengshuang; Malhotra, Atul
2013-01-01
Study Objectives: The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. Design: The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Setting: Sleep laboratory. Participants: Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. Intervention: SWS. Measurement and Results: Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Conclusion: Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS. Citation: McSharry DG; Saboisky JP; DeYoung P; Matteis P; Jordan AS; Trinder J; Smales E; Hess L; Guo M; Malhotra A. A mechanism for upper airway stability during slow wave sleep. SLEEP 2013;36(4):555-563. PMID:23565001
Main-belt asteroid exploration - Mission options for the 1990s
NASA Technical Reports Server (NTRS)
Yen, Chen-Wan L.
1989-01-01
An extensive investigation of the ways to rendezvous with diverse groups of asteroids residing between 2.0 and 5.0 AU is made, and the extent of achievable missions using the STS upper-stage launch vehicles (IUS 2-Stage/Star-48 or NASA Centaur) is examined. With judicious use of earth, Mars, and Jupiter gravity assists, rendezvous with some asteroids in all regions of space is possible. It is also shown that the STS upper stages are capable of carrying out missions beyond a single rendezvous, namely with several flybys and/or multiple rendezvous.
2009-05-21
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, the Ares I-X frustum is being mated to the forward skirt and forward skirt extension to complete the forward assembly. The assembly will be moved to the Vehicle Assembly Building for stacking operations. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Troy Cryder
2009-05-21
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, the Ares I-X frustum is being mated to the forward skirt and forward skirt extension to complete the forward assembly. The assembly will be moved to the Vehicle Assembly Building for stacking operations. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Troy Cryder
2009-05-21
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, the Ares I-X frustum is being mated to the forward skirt and forward skirt extension to complete the forward assembly. The assembly will be moved to the Vehicle Assembly Building for stacking operations. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Troy Cryder
Cross-cultural issues in CRM training
NASA Technical Reports Server (NTRS)
Merritt, A.; Helmreich, R. L. (Principal Investigator)
1995-01-01
The author presents six stages of intercultural awareness and relates them to cockpit resource management training. A case study examines cultural differences between South American and United States flight crews and the problems that can occur when pilots minimize differences. Differences in leadership styles are highlighted and strategies for training South American pilots are provided.
Battery Systems for X-38 Crew Return Vehicle (CRV) and Deorbit Propulsion Stage (DPS)
NASA Technical Reports Server (NTRS)
Darcy, Eric
1998-01-01
A 28V 32 Ah cell Li/MnO2 and a 28V NiMH battery systems for the Deorbit Propulsion Stage (DPS) and the X-38 Crew Return Vehicle (CRV) are developed in Friwo-Silforkraft, Germany with the following objectives and approach: Provide safe battery designs for lowest volume and cost, and within schedule; Take advantage of less complex requests for V201 vs OPS CRV to simplify design and reduce cost; Use only existing commercial cell designs as building blocks for larger battery; Derive battery designs from the ASTRO-SPAS design which is the largest lithium battery design with Shuttle flight experience; Place maximum amount of battery energy on DPS; DPS battery is non rechargeable; and CRV batteries are rechargeable. This paper contains the following sections: a brief introduction on CRV requirements, CRV advantages over Soyuz, and X-38 programs; Battery objectives and approach; Battery requirements and groundrules (performance, on-orbit operation, etc); Design trades, solutions, redundancy plan, and margins; Envelope, size, and mass; Interfaces (structural, electrical & thermal); and Deviation from OPS CRV.
1950-01-01
Dr. von Braun stands beside a model of the upper stage (Earth-returnable stage) of the three-stage launch vehicle built for the series of the motion picture productions of space flight produced by Walt Disney in the mid-1950's.
A Composite Diagnosis of Synoptic-Scale Extratropical Cyclone Development over the United States
NASA Technical Reports Server (NTRS)
Rolfson, Donald M.; Smith, Phillip J.
1996-01-01
This paper presents a composite diagnosis of synoptic-scale forcing mechanisms associated with extratropical cyclone evolution. Drawn from 12 cyclone cases that occurred over the continental United States during the cool season months, the diagnosis provides a 'climatology' of development mechanisms for difference categories of cyclone evolution ranging from cyclone weakening through three stages of cyclone intensification. Computational results were obtained using an 'extended' form of the Zwack-Okossi equation applied to routine upper-air and surface data analyzed on a 230 km x 230 km grid. Results show that cyclonic vorticity advection, which maximizes in the upper troposphere, was the primary contributor to cyclone development regardless of the stage of development. A second consistent contributor to development was latent heat release. Horizontal temperature advection, often acknowledged as a development mechanism, was found to contribute to development only during more intense stages. During weakening and weaker development stages, temperature advection opposed development, as the warm-air advection invariably found at upper levels was dominated by cold air advection in the lower half of the troposphere. In the more intense stages, development was moderated by dry-adiabatic cooling associated with the ascending vertical motions.
Application of Diagnostic Analysis Tools to the Ares I Thrust Vector Control System
NASA Technical Reports Server (NTRS)
Maul, William A.; Melcher, Kevin J.; Chicatelli, Amy K.; Johnson, Stephen B.
2010-01-01
The NASA Ares I Crew Launch Vehicle is being designed to support missions to the International Space Station (ISS), to the Moon, and beyond. The Ares I is undergoing design and development utilizing commercial-off-the-shelf tools and hardware when applicable, along with cutting edge launch technologies and state-of-the-art design and development. In support of the vehicle s design and development, the Ares Functional Fault Analysis group was tasked to develop an Ares Vehicle Diagnostic Model (AVDM) and to demonstrate the capability of that model to support failure-related analyses and design integration. One important component of the AVDM is the Upper Stage (US) Thrust Vector Control (TVC) diagnostic model-a representation of the failure space of the US TVC subsystem. This paper first presents an overview of the AVDM, its development approach, and the software used to implement the model and conduct diagnostic analysis. It then uses the US TVC diagnostic model to illustrate details of the development, implementation, analysis, and verification processes. Finally, the paper describes how the AVDM model can impact both design and ground operations, and how some of these impacts are being realized during discussions of US TVC diagnostic analyses with US TVC designers.
Astronaut Story Musgrave during STS-6 EVA
1983-04-07
STS006-45-124 (7 April 1983) --- Astronaut F. Story Musgrave, STS-6 mission specialist, translates down the Earth-orbiting space shuttle Challenger’s payload bay door hinge line with a bag of latch tools. This photograph is among the first five still frames that recorded the April 7 extravehicular activity (EVA) of Dr. Musgrave and Donald H. Peterson, the flight’s other mission specialist. It was photographed with a handheld 70mm camera from inside the cabin by one of two crew members who remained on the flight deck during the EVA. Dr. Musgrave’s task here was to evaluate the techniques required to move along the payload bay’s edge with tools. In the lower left foreground are three canisters containing three getaway special (GAS) experiments. Part of the starboard wind and orbital maneuvering system (OMS) pod are seen back dropped against the blackness of space. The gold-foil protected object partially out of frame on the right is the airborne support equipment for the now vacated inertial upper stage (IUS) which aided the deployment of the tracking and data relay satellite on the flight’s first day. Astronauts Paul J. Weitz, command and Karol J. Bobko, pilot, remained inside the Challenger during the EVA. Photo credit: NASA
Endeavour SRMS / OBSS during Survey OPS
2010-02-09
S130-E-005338 (8 Feb. 2010) --- Backdropped by the South China Sea and the Gulf of Tonkin, the Tranquility node in space shuttle Endeavour’s payload bay, vertical stabilizer, orbital maneuvering system (OMS) pods and a shadow-covered docking mechanism are featured in this image photographed by the STS-130 crew from an aft flight deck window. Hainan Island can be seen between the South China Sea (bottom) and Gulf of Tonkin (top). The Leizhou Peninsula of the Chinese mainland is on the upper right.
Earth observations of a sunrise / sunset taken during the Expedition Three mission
2001-11-04
ISS003-E-7559 (4 November 2001) --- Pictured near Earth's horizon, Hurricane Michelle made landfall on Cuba a few hours later on November 4, 2001, with sustained winds of 135 miles per hour. The eye can be seen in the upper right quadrant of this oblique view. The most signficant impact was in the Matanzas province near Pinar del Rio. This scene was captured by one of the Expedition Three crew members aboard the International Space Station (ISS)using a digital still camera.
2014-06-20
ISS040-E-016422 (20 June 2014) --- One of the Expedition 40 crew members aboard the International Space Station used a 28mm focal length to record this long stretch of California's Pacific Coast on June 20, 2014. Guadalupe Island and the surrounding von Karman cloud vortices over the Pacific can be seen just above frame center. San Diego is visible in upper left and the Los Angeles Basin is just to the left of center frame. Much of the Mojave Desert is visible in bottom frame.
1976-10-01
should he made for either ixiternal storage or a means of voiding the urinal in a storage container in the compartment’. Development of-Adequate...upper temperature ranges fu- critical components of the M60 tank under desert storage and operational conditions. He found that the Wet Bulb Globe...five-gallon cans on the outside turret bustle racks. If buttoned-up operations for extended periods of time are envisioned, a built-in water storage
View of HST as it approaches Endeavour, taken from aft flight deck window
1993-12-04
STS061-53-026 (4 Dec 1993) --- One of the Space Shuttle Endeavour's aft flight deck windows frames this view of the Hubble Space Telescope (HST) as it approaches the Endeavour. Backdropped against western Australia, the Remote Manipulator System (RMS) arm awaits the arrival of the telescope. Once berthed in Endeavour's cargo bay, HST underwent five days of servicing provided by four space walking crew members. Shark Bay (upper left) and Perth (lower left) are visible in the frame.
STS-106 orbiter Atlantis rolls over to the VAB
NASA Technical Reports Server (NTRS)
2000-01-01
Viewed from an upper level in the Vehicle Assembly Building (VAB), the orbiter Atlantis waits in the transfer aisle after its move from the Orbiter Processing Facility. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.
2007-10-11
Live video from the Soyuz TMA-11 spacecraft of the International Space Station is shown on the screen in the upper right in the Russian Mission Control Center in Korolev, outside Moscow, Friday, Oct. 12, 2007. Expedition 16 Commander Peggy Whitson, Soyuz Commander and Flight Engineer Yuri Malenchenko and Malaysian spaceflight participant Sheikh Muszaphar Shukor docked their Soyuz TMA-11 spacecraft to the ISS at 10:50 a.m. EDT, October 12. The crew launched on Wednesday from the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Bill Ingalls)
Sunrise view taken by the STS-109 crew
2002-03-10
STS109-345-032 (1-12 March 2002) --- One of the astronauts aboard the Space Shuttle Columbia photographed this west-looking view featuring the profile of the atmosphere and the setting sun. The shuttle was located over the Java Sea to the south of Kalimantan (Borneo) in Indonesia when this image was acquired. Visible to the right of the setting sun are cloud tops from some thunderstorms. The sun's reflection (bright spot over the setting sun) can be seen off the upper layers of the earth's atmosphere.
Validating Human Performance Models of the Future Orion Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
Wong, Douglas T.; Walters, Brett; Fairey, Lisa
2010-01-01
NASA's Orion Crew Exploration Vehicle (CEV) will provide transportation for crew and cargo to and from destinations in support of the Constellation Architecture Design Reference Missions. Discrete Event Simulation (DES) is one of the design methods NASA employs for crew performance of the CEV. During the early development of the CEV, NASA and its prime Orion contractor Lockheed Martin (LM) strived to seek an effective low-cost method for developing and validating human performance DES models. This paper focuses on the method developed while creating a DES model for the CEV Rendezvous, Proximity Operations, and Docking (RPOD) task to the International Space Station. Our approach to validation was to attack the problem from several fronts. First, we began the development of the model early in the CEV design stage. Second, we adhered strictly to M&S development standards. Third, we involved the stakeholders, NASA astronauts, subject matter experts, and NASA's modeling and simulation development community throughout. Fourth, we applied standard and easy-to-conduct methods to ensure the model's accuracy. Lastly, we reviewed the data from an earlier human-in-the-loop RPOD simulation that had different objectives, which provided us an additional means to estimate the model's confidence level. The results revealed that a majority of the DES model was a reasonable representation of the current CEV design.
Ares I-X Flight Test - On the Fast Track to the Future
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Robinson, Kimberly F.
2008-01-01
In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately130,OOO feet and through maximum dynamic pressure ("Max Q") of approximately 800 pounds per square foot. Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by an integrated vehicle CDR in March 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008.
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)
2006-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)
Earth Observations taken by the Expedition 22 Crew
2009-12-03
ISS022-E-005807 (3 Dec. 2009) --- Cloud formations and sunglint near Italy are featured in this image photographed by an Expedition 22 crew member on the International Space Station. This view depicts the Calabria region of southern Italy ? the toe of Italy?s ?boot? ? outlined by the Ionian and Tyrrhenian Seas to the southeast and northwest respectively. The water surfaces present a mirror-like appearance due to sunglint. This phenomenon is caused by sunlight reflecting off the water surface directly back towards the crew member aboard the space station. The ISS was located over northwestern Romania, approximately 1,040 kilometers to the northeast of Calabria, when this image was taken. The Calabrian peninsula appears shortened and distorted due to the high viewing angle from the station. Such imagery is termed oblique, indicating that the view is not looking directly downwards towards Earth?s surface from the ISS (known as a nadir view). This highly oblique view also highlights two distinct cloud patterns over the Calabrian interior. Patchy, highly textured cumulus clouds are present at lower altitudes, while grey altostratus clouds are elongated by prevailing winds at higher altitudes. The Strait of Messina, just visible at upper right, marks the boundary between the coastlines of Italy and the island of Sicily.
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul B.; Eppler, Dean B.; Kennedy, Kriss J.; Lewis, Ruthan.; Sullivan, Thomas A.
2016-04-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting research objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support staging of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken including rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective Crew Transportation/Provide ability to transport at least four crew to cislunar space Heavy Launch Capability/Provide beyond LEO launch capabilities to include crew, co-manisfested payloads, and large cargo In-Space Propulsion/Provide in-sapce propulsion capabilities to send crew and cargo on Mars-class mission durations and distances Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication Science/Enable science community objectives Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture Deep Space Habitation/Provide beyond LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: .NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas
2016-07-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken in-cluding rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective • Crew Transportation/Provide ability to transport at least four crew to cislunar space • Heavy Launch Capability/Provide beyond-LEO launch capabilities to include crew, co-manisfested pay-loads, and large cargo • In-Space Propulsion/Provide in-space propulsion capabilities to send crew and cargo on Mars-class mission durations and distances • Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication • Science/Enable science community objectives • Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations • In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture • Deep Space Habitation/Provide beyond-LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy • Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Growing a Training System and Culture for the Ares I Upper Stage Project
NASA Technical Reports Server (NTRS)
Scott, David W.
2009-01-01
In roughly two years time, Marshall Space Flight Center s (MSFC) Mission Operations Laboratory (MOL) has incubated a personnel training and certification program for about 1000 learners and multiple phases of the Ares I Upper Stage (US) project. Previous MOL-developed training programs focused on about 100 learners with a focus on operations, and had enough full-time training staff to develop courseware and provide training administration. This paper discusses 1) the basics of MOL's training philosophy, 2) how creation of a broad, structured training program unfolded as feedback from more narrowly defined tasks, 3) how training philosophy, development methods, and administration are being simplified and tailored so that many Upper Stage organizations can "grow their own" training yet maintain consistency, accountability, and traceability across the project, 4) interfacing with the production contractor's training system and staff, and 5) reaping training value from existing materials and events.
1990-07-08
The STS-40 patch makes a contemporary statement focusing on human beings living and working in space. Against a background of the universe, seven silver stars, interspersed about the orbital path of Columbia, represent the seven crew members. The orbiter's flight path forms a double-helix, designed to represent the DNA molecule common to all living creatures. In the words of a crew spokesman, ...(the helix) affirms the ceaseless expansion of human life and American involvement in space while simultaneously emphasizing the medical and biological studies to which this flight is dedicated. Above Columbia, the phrase Spacelab Life Sciences 1 defines both the Shuttle mission and its payload. Leonardo Da Vinci's Vitruvian man, silhouetted against the blue darkness of the heavens, is in the upper center portion of the patch. With one foot on Earth and arms extended to touch Shuttle's orbit, the crew feels, he serves as a powerful embodiment of the extension of human inquiry from the boundaries of Earth to the limitless laboratory of space. Sturdily poised amid the stars, he serves to link scentists on Earth to the scientists in space asserting the harmony of efforts which produce meaningful scientific spaceflight missions. A brilliant red and yellow Earth limb (center) links Earth to space as it radiates from a native American symbol for the sun. At the frontier of space, the traditional symbol for the sun vividly links America's past to America's future, the crew states. Beneath the orbiting Shuttle, darkness of night rests peacefully over the United States. Drawn by artist Sean Collins, the STS 40 Space Shuttle patch was designed by the crewmembers for the flight.
NASA Technical Reports Server (NTRS)
1990-01-01
The STS-40 patch makes a contemporary statement focusing on human beings living and working in space. Against a background of the universe, seven silver stars, interspersed about the orbital path of Columbia, represent the seven crew members. The orbiter's flight path forms a double-helix, designed to represent the DNA molecule common to all living creatures. In the words of a crew spokesman, ...(the helix) affirms the ceaseless expansion of human life and American involvement in space while simultaneously emphasizing the medical and biological studies to which this flight is dedicated. Above Columbia, the phrase Spacelab Life Sciences 1 defines both the Shuttle mission and its payload. Leonardo Da Vinci's Vitruvian man, silhouetted against the blue darkness of the heavens, is in the upper center portion of the patch. With one foot on Earth and arms extended to touch Shuttle's orbit, the crew feels, he serves as a powerful embodiment of the extension of human inquiry from the boundaries of Earth to the limitless laboratory of space. Sturdily poised amid the stars, he serves to link scentists on Earth to the scientists in space asserting the harmony of efforts which produce meaningful scientific spaceflight missions. A brilliant red and yellow Earth limb (center) links Earth to space as it radiates from a native American symbol for the sun. At the frontier of space, the traditional symbol for the sun vividly links America's past to America's future, the crew states. Beneath the orbiting Shuttle, darkness of night rests peacefully over the United States. Drawn by artist Sean Collins, the STS 40 Space Shuttle patch was designed by the crewmembers for the flight.
ICPSU Install onto Mobile Launcher
2018-03-16
A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher
2018-03-16
A crane and rigging lines are used to install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up on the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher - Preps for Lift
2018-03-15
Construction workers with JP Donovan assist with preparations to lift and install the Interim Cryogenic Propulsion Stage Umbilical on the tower of the mobile launcher at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher
2018-03-16
Construction workers with JP Donovan install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher
2018-03-16
A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher - Preps for Lift
2018-03-15
The mobile launcher (ML) tower is lit up before early morning sunrise at NASA's Kennedy Space Center in Florida. Preparations are underway to lift and install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level on the tower. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
The Malemute development program. [rocket upper stage engine design
NASA Technical Reports Server (NTRS)
Bolster, W. J.; Hoekstra, P. W.
1976-01-01
The Malemute vehicle systems are two-stage systems based on utilizing a new high performance upper stage motor with two existing military boosters. The Malmute development program is described relative to program structure, preliminary design, vehicle subsystems, and the Malemute motor. Two vehicle systems, the Nike-Malemute and Terrier-Malemute, were developed which are capable of transporting comparatively large diameter (16 in.) 200-lb payloads to altitudes of 500 and 700 km, respectively. These vehicles provide relatively low-cost transportation with two-stage reliability and launch simplicity. Flight tests of both vehicle systems revealed their performance capabilities, with the Terrier-Malemute system involving a unique Malemute motor spin sensitivity problem. It is suggested that the vehicles can be successfully flown by lowering the burnout spin rate.
Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight
NASA Technical Reports Server (NTRS)
Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.
2011-01-01
The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (p<0.05). Bench press total work was also significantly impaired, although maximal isometric force and power were not significantly affected. No changes were noted for measurements of central activation or force steadiness. Results for ISS crew were not analyzed due to the current small sample size. DISCUSSION: Significant reductions in lower body muscle performance metrics were observed in returning Shuttle crew and these adaptations are likely contributors to impaired functional tasks that are ambulatory in nature (See abstract Functional Task Test: 1). Interestingly, no significant changes in central activation capacity were detected. Therefore, impairments in muscle function in response to short-duration space flight are likely myocellular rather than neuromotor in nature.
STS-40 Columbia, Orbiter Vehicle (OV) 102, crew insignia
1990-05-01
STS40-S-001 (May 1990) --- The STS-40 patch makes a contemporary statement focusing on human beings living and working in space. Against a background of the universe, seven silver stars, interspersed about the Orbital path of the space shuttle Columbia, represent the seven crew members. The orbiter's flight path forms a double-helix, designed to represent the DNA molecule common to all living creatures. In the words of a crew spokesman, "...(the helix) affirms the ceaseless expansion of human life and American involvement in space while simultaneously emphasizing the medical and biological studies to which this flight is dedicated." Above Columbia, the phrase "Spacelab Life Sciences 1" defines both the shuttle mission and its payload. Leonardo Da Vinci's Vitruvian man, silhouetted against the blue darkness of the heavens, is in the upper center portion of the patch. With one foot on Earth and arms extended to touch shuttle's orbit, the crew feels, he serves as a powerful embodiment of the extension of human inquiry from the boundaries of Earth to the limitless laboratory of space. Sturdily poised amid the stars, he serves to link scentists on Earth to the scientists in space asserting the harmony of efforts which produce meaningful scientific spaceflight missions. A brilliant red and yellow Earth limb (center) links Earth to space as it radiates from a native American symbol for the sun. At the frontier of space, the traditional symbol for the sun vividly links America's past to America's future, the crew states. Beneath the orbiting space shuttle, darkness of night rests peacefully over the United States. Drawn by artist Sean Collins, the STS-40 space shuttle patch was designed by the crew members for the flight. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
Mission Success of U.S. Launch Vehicle Flights from a Propulsion Stage-Based Perspective: 1980-2015
NASA Technical Reports Server (NTRS)
Go, Susie; Lawrence, Scott L.; Mathias, Donovan L.; Powell, Ryann
2017-01-01
This report documents a study of the historical safety and reliability trends of U.S. space launch vehicles from 1980 to 2015. The launch data history is examined to determine whether propulsion technology choices drove launch system risk and is used to understand how different propulsion system failures manifested into different failure scenarios. The historical data is processed by launch vehicle stage, where a stage is limited by definition to a single propulsion technology, either liquid or solid. Results are aggregated in terms of failure trends and manifestations as a functions of different propulsion stages. Failure manifestations are analyzed in order to understand the types and frequencies of accident environments in which an abort system for a crewed vehicle would be required to operate.
RODRÍGUEZ-NIEDENFÜHR, M.; BURTON, G. J.; DEU, J.; SAÑUDO, J. R.
2001-01-01
A total of 112 human embryos (224 upper limbs) between stages 12 and 23 of development were examined. It was observed that formation of the arterial system in the upper limb takes place as a dual process. An initial capillary plexus appears from the dorsal aorta during stage 12 and develops at the same rate as the limb. At stage 13, the capillary plexus begins a maturation process involving the enlargement and differentiation of selected parts. This remodelling process starts in the aorta and continues in a proximal to distal sequence. By stage 15 the differentiation has reached the subclavian and axillary arteries, by stage 17 it has reached the brachial artery as far as the elbow, by stage 18 it has reached the forearm arteries except for the distal part of the radial, and finally by stage 21 the whole arterial pattern is present in its definitive morphology. This differentiation process parallels the development of the skeletal system chronologically. A number of arterial variations were observed, and classified as follows: superficial brachial (7.7%), accessory brachial (0.6%), brachioradial (14%), superficial brachioulnar (4.7%), superficial brachioulnoradial (0.7%), palmar pattern of the median (18.7%) and superficial brachiomedian (0.7%) arteries. They were observed in embryos belonging to stages 17–23 and were not related to a specific stage of development. Statistical comparison with the rates of variations reported in adults did not show significant differences. It is suggested that the variations arise through the persistence, enlargement and differentiation of parts of the initial network which would normally remain as capillaries or even regress. PMID:11693301
Jabłonowski, Zbigniew; Kędzierski, Robert; Sosnowski, Marek
2011-01-01
Tumors originating from transitional epithelium of the renal pelvis and ureter are infrequent. Their course is asymptomatic at early stages of the disease, and diagnosis and institution of appropriate treatment delayed. The aim of the study is to assess the results of treatment in patients with upper urinary tract transitional cell carcinomas (UUT-TCC). Fifteen patients treated in 2005-2010 for UUT-TCC were qualified for the retrospective study. Clinical symptoms, diagnostic methods, tumor location, clinical stage and histopathological characteristics of the tumors were assessed. Then, the instituted treatment and its results were analyzed. The average follow-up period was 51 month (range 6-65), UUT-TCC accounted for 6.7% of renal tumors treated. Concurrent treated vesical tumors were observed in 4 (26.7%) patients. Primary UUT-TCC was diagnosed in 10 (66.7%) patients. Radical surgery was performed in 10 (66.7%) patients, whereas 5 (33.3%) underwent sparing operations. Macroscopic hematuria was the predominant clinical symptom. In most cases T2-T3 clinical stage (60.0%) and high-grade (66.7%) were observed. Development of an upper urinary tract tumor after treatment of a vesical tumor was noted in 4 (26.7%) patients. During the follow-up period, urinary bladder carcinomas were diagnosed in 5 (33.3%) patients with primary upper urinary tract tumors. Nephroureterectomy remains the standard treatment for UUT-TCC. Organ-sparing surgery is possible in selected patients with low clinical stage and low grade tumors. Patients treated for urinary bladder carcinomas require regular monitoring of the upper urinary tract.
Transport and Use of a Centaur Second Stage in Space
NASA Technical Reports Server (NTRS)
Strong, James M.; Morgowicz, Bernard; Drucker, Eric; Tompkins, Paul D.; Kennedy, Brian; Barber, Robert D,; Luzod, Louie T.; Kennedy, Brian Michael; Luzod, Louie T.
2010-01-01
As nations continue to explore space, the desire to reduce costs will continue to grow. As a method of cost reduction, transporting and/or use of launch system components as integral components of missions may become more commonplace in the future. There have been numerous scenarios written for using launch vehicle components (primarily space shuttle used external tanks) as part of flight missions or future habitats. Future studies for possible uses of launch vehicle upper stages might include asteroid diverter using gravity orbital perturbation, orbiting station component, raw material at an outpost, and kinetic impactor. The LCROSS (Lunar CRater Observation and Sensing Satellite) mission was conceived as a low-cost means of determining whether water exists at the polar regions of the moon. Manifested as a secondary payload with the LRO (Lunar Reconnaissance Orbiter) spacecraft aboard an Atlas V launch vehicle, LCROSS guided its spent Centaur Earth Departure Upper Stage (EDUS) into the lunar crater Cabeu's, as a kinetic impactor. This paper describes some of the challenges that the LCROSS project encountered in planning, designing, launching with and carrying the Centaur upper stage to the moon.
Space Station Astronauts Make Safe Landing on This Week @NASA – September 11, 2015
2015-09-11
Aboard the International Space Station, the Expedition 45 crew – including new Commander Scott Kelly and Kjell Lindgren of NASA, said goodbye to Gennady Padalka of the Russian Federal Space Agency, Andreas Mogensen of ESA (European Space Agency) and Aidyn Aimbetov of the Kazakh Space Agency (Kazcosmos) as the trio climbed aboard their Soyuz spacecraft for the return trip to Earth. The Soyuz landed safely in Kazakhstan on Sept. 11 Eastern time, Sept. 12 in Kazakhstan -- closing out a 168-day mission for Padalka and an 8-day stay on the station for Mogensen and Aimbetov. Also, First Orion crew module segments welded, SLS Launch Vehicle Stage Adapter, New Ceres imagery, New Horizons update, 9/11 tribute and National Preparedness Month!
SSC-20170608-Journey Band Member Tours Stennis
2017-06-08
Ross Valory, bass guitar player with the Rock and Roll Hall of Fame band Journey, visited NASA’s Stennis Space Center on June 8. Valory, along with several members of their crew, toured various facilities at Stennis including the B-2 Test Stand which will be used to test the core stage for NASA’s Space Launch System or SLS. The SLS is a powerful, advanced launch vehicle for a new era of human exploration beyond Earth’s orbit. With its unprecedented power and capabilities, SLS will launch crews of up to four astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations eventually including Mars. During the tour, Valory made this short video about America’s journey to Mars.
Spacecraft Design Considerations for Piloted Reentry and Landing
NASA Technical Reports Server (NTRS)
Stroud, Kenneth J.; Klaus, David M.
2006-01-01
With the end of the Space Shuttle era anticipated in this decade and the requirements for the Crew Exploration Vehicle (CEV) now being defined, an opportune window exists for incorporating 'lessons learned' from relevant aircraft and space flight experience into the early stages of designing the next generation of human spacecraft. This includes addressing not only the technological and overall mission challenges, but also taking into account the comprehensive effects that space flight has on the pilot, all of which must be balanced to ensure the safety of the crew. This manuscript presents a unique and timely overview of a multitude of competing, often unrelated, requirements and constraints governing spacecraft design that must be collectively considered in order to ensure the success of future space exploration missions.
The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle Endeavour's cargo bay in the grasp of the Remote Manipulator System (RMS). The Spacehab module can be seen in the foreground. The free-flyer was re-captured by the six crew members on May 21, 1996. The crew has spent a portion of the early stages of the mission in various activities involving the Spartan 207 and the related Inflatable Antenna Experiment (IAE). The Spartan project is managed by NASA's Goddard Space Flight Center (GSFC) for NASA's Office of Space Science, Washington, D.C. GMT: 09:51:50.
Tissue expansion in the treatment of giant congenital melanocytic nevi of the upper extremity
Ma, Tengxiao; Fan, Ke; Li, Lei; Xie, Feng; Li, Hao; Chou, Haiyan; Zhang, Zhengwen
2017-01-01
Abstract The aim of our study was to use tissue expansion for the treatment of giant congenital melanocytic nevi of the upper extremity and examine potential advantages over traditional techniques. There were 3 stages in the treatment of giant congenital melanocytic nevi of the upper extremities using tissue expansion: first, the expander was inserted into the subcutaneous pocket; second, the expander was removed, lesions were excised, and the wound of the upper extremity was placed into the pocket to delay healing; third, the residual lesion was excised and the pedicle was removed. The pedicle flap was then unfolded to resurface the wound. During the period between June 2007 and December 2015, there were 11 patients with giant congenital melanocytic nevi of the upper extremities who underwent reconstruction at our department with skin expansion. Few complications were noted in each stage of treatment. The functional and aesthetic results were observed and discussed in this study. Optimal aesthetic and functional results were obtained using tissue expansion to reconstruct the upper extremities due to the giant congenital melanocytic nevi. PMID:28353563