First early Mesozoic amber in the Western Hemisphere
Litwin, R.J.; Ash, S.R.
1991-01-01
Detrital amber pebbles and granules have been discovered in Upper Triassic strata on the Colorado Plateau. Although amber previously has been reported from Pennsylvanian, Jurassic, Cretaceous, and Tertiary strata, we know of no other reported Triassic occurrence in North America or the Western Hemisphere. The new discovered occurrences of amber are at two localities in the lower part of the Petrified Forest Member of the Upper Triassic Chinle Formation in Petrified Forest National Park, Arizona. The paper coals and carbonaceous paper shales containing the amber also contain fossil palynomorph assemblages that indicate a late Carnian age for these occurrences. -Authors
NASA Astrophysics Data System (ADS)
Rasmussen, C.; Mundil, R.; Irmis, R. B.; Keller, C. B.; Giesler, D.; Gehrels, G. E.
2017-12-01
The Triassic is a critical period in Earth history that witnessed the origin of modern ecosystems and frequent climate fluctuations, as well as major environmental events such as flood basalt volcanism and bolide impacts. The Chinle Formation contains a primary non-marine archive for past ecosystems in North America due to its fossil richness and well-studied sedimentology. Moreover, within these highly fossiliferous strata, a biotic turnover has been reported that has been hypothesized to coincide with one or more of the aforementioned environmental events. Unfortunately, few radioisotopic ages have been published for the Late Triassic, limiting our ability for lithological and paleoenvironmental correlations. In addition, the superposition of the Chinle Formation remains illusive due to frequent lateral facies changes and discontinuous outcrops across the Colorado Plateau. The 520 m long core 1A of the Colorado Plateau Coring Project from Petrified Forest National Park (PFNP) (Arizona) provides, for the first time, a continuous section of these early Mesozoic sedimentary strata. Many of the sand- and siltstones from this continuous succession throughout most of the Upper Triassic Chinle Formation contain euhedral zircons suitable for U-Pb analyses. We analyzed >300 crystals each from 10 samples using LA-ICPMS; these results indicated abundant Late Triassic crystals that appear to be closely associated with the depositional age of the host rock. We then selected the youngest grains from these samples to obtain precise CA-TIMS U-Pb single zircon ages in order to constrain the maximum depositional ages (using quantitative methods) of these formations. We are able to revise the proposed time scale (based on outcrop samples) for Upper Triassic strata at PFNP and evaluate whether the biotic turnover observed within the Sonsela Member of these strata coincides with the Manicouagan bolide impact event. This revised chronostratigraphic framework allows intercalibration with the Newark astrochronostratigraphic polarity time scale and the correlation with other key non-marine and marine Late Triassic sections globally (e.g., Ischigualasto-Villa Uníon Basin, Argentina; Tethyan region, Europe) improving our understanding of paleoenvironmental and evolutionary changes during the Triassic.
NASA Astrophysics Data System (ADS)
Tanner, L. H.; Kyte, F. T.
2015-12-01
To date, elevated Ir levels in continental sediments proximal to the Triassic-Jurassic boundary (TJB) have been reported only from Upper Triassic strata of the Newark and Fundy basins, below the basal extrusive units of the Central Atlantic Magmatic Province. We report here the first occurrence of elevated Ir above the oldest volcanic units, as well as additional horizons of Ir enrichment from other basins of the Newark Supergroup. In the Fundy Basin (Nova Scotia, Canada), lacustrine sediments of the Scots Bay Member of the McCoy Brook Formation that directly overlie the North Mountain Basalt contain Ir up to 413 pg/g in fish-bearing strata very close to the palynological TJB. Higher in the formation the strata lack significant Ir enrichment. Similarly, sedimentary strata from between flows of North Mount Basalt show no Ir appreciable enrichment. The Deerfield Basin (Massachusetts) extension of the Hartford Basin contains only one CAMP extrusive unit, the Lower Jurassic Deerfield Basalt. Very modest Ir enrichment, up to 90 pg/g, occurs in the Fall River Beds of the Sugarloaf Formation, several meters below the basalt, and up to 70 pg/g in the Turners Falls Formation less than 2 meters above the basalt. The uppermost New Haven Formation (Upper Triassic) at the Silver Ridge locality (Guilford, CT) in the Hartford Basin contains abundant plant debris, but no evidence of elevated Ir. At the Clathopteris locality to the north (Holyoke, MA), potentially correlative strata that are fine grained and rich in plant remains have Ir enriched to 542 pg/g, an order of magnitude higher than in the coarser-grained strata in direct stratigraphic contact. The high-Ir beds also have elevated REEs relative to other Hartford Basin samples, although there is no evidence of HREE enrichment. We consider the basalts of the Central Atlantic Magmatic Province, widely accepted as the driver of Late Triassic extinctions, as the origin of the elevated Ir levels in the Newark Supergroup.
Till, A.B.; Harris, A.G.; Wardlaw, B.R.; Mullen, M.
2007-01-01
Reexamination of existing conodont collections from the central Alaska Range indicates that Upper Triassic marine slope and basin rocks range in age from at least as old as the late Carnian to the early middle Norian. The conodont assemblages typical of these rocks are generally cosmopolitan and do not define a distinct paleogeographic faunal realm. One collection, however, containsEpigondolella multidentata sensu Orchard 1991c, which appears to be restricted to western North American autochthonous rocks. Although paleogeographic relations cannot be determined with specificity, the present distribution of biofaces within the Upper Triassic sequence could not have been the result of simple accordion-style collapse of the Late Triassic margin.
NASA Astrophysics Data System (ADS)
Wang, Q.; Jiang, L.
2012-12-01
Craton is continental block that has been tectonically stable since at least Proterozoic. Some cratons, however, become unstable for some geodynamic reasons. The North China Craton (NCC) is an example. Structure geological, geochemical, and geophysical works have revealed that the NCC was destructed in Cretaceous and that lithosphere thickness beneath the eastern NCC were thinned by 120 km. The present study will focus on deformation of the western NCC, and to understand the effect of the Mesozoic destruction of the North China Craton (NCC). Structural partitioning of the Ordos Basin, which is located in the western NCC, from the eastern NCC occurred during the Mesozoic. Unlike the eastern NCC where many Cretaceous metamorphic core complexes developed, sedimentary cover of the NCC remains nearly horizontal and deformation is manifested by joint. We visited 216 sites of outcrops and got 1928 joints measurements, among which 270 from Jurassic sandstones, 1378 from the Upper Triassic sandstones, 124 from the Middle and Lower Triassic sandstones, and 156 from Paleozoic sandstones. In the interior of the Ordos Basin, joints developed quite well in the Triassic strata, while joints in the Jurassic stata developed weakly and no joint in the Cretaceous strata. The Mesozoic stratigraphic thickness are: 1000 meters for the Lower Triassic, the Middle Triassic sandstone with thickness of 800 meters, 3000 meters for the Upper Triassic, 4000 meters for the Jurassic, and 1100 meters for the Lower Cretaceous. The vertical difference in joint development might be related to the burying depth of the strata: the higher the strata, the smaller the lithostatic stress, and then the weaker the joint. Joints in all stratigraphic levels showed a similar strain direction with the sigma 1 (the maximum pressure stress) vertical and the sigma 3 (the minimum pressure stress) horizontal and running N-S. The unconformity below the Cretaceous further indicates that joints in Jurassic and Triassic strata were developed in the beginning of Cretaceous. It seems that the western NCC experienced only uplift that recorded a weak N-S extension and E-W compression during the Early Cretaceous when the NCC experienced destruction. Conclusions: 1. The Cretaceous uplift ceased the "natural test of mechanical property" of the strata in the Ordos Basin. The difference in burying depth of the strata caused the vertical difference in joints development. 2. Joints in the interior of the Ordos Basin indicate a N-S extension and E-W compression with the sigma 1 vertical in the Early Cretaceous, as implying a regional uplift in the western NCC during its Mesozoic destruction.
Weems, Robert E.; Culp, Michelle J.; Wings, Oliver
2007-01-01
Definitive criteria for distinguishing gastroliths from sedimentary clasts are lacking for many depositional settings, and many reported occurrences of gastroliths either cannot be verified or have been refuted. We discuss four occurrences of gastrolith-like stones (category 6 exoliths) not found within skeletal remains from the Upper Triassic Bull Run Formation of northern Virginia, USA. Despite their lack of obvious skeletal association, the most parsimonious explanation for several characteristics of these stones is their prolonged residence in the gastric mills of large animals. These characteristics include 1) typical gastrolith microscopic surface texture, 2) evidence of pervasive surface wear on many of these stones that has secondarily removed variable amounts of thick weathering rinds typically found on these stones, and 3) a width/length-ratio modal peak for these stones that is more strongly developed than in any population of fluvial or fanglomerate stones of any age found in this region. When taken together, these properties of the stones can be explained most parsimoniously by animal ingestion and gastric-mill abrasion. The size of these stones indicates the animals that swallowed them were large, and the best candidate is a prosauropod dinosaur, possibly an ancestor of the Early Jurassic gastrolith-producing prosauropod Massospondylus or Ammosaurus.Skeletal evidence for Upper Triassic prosauropods is lacking in the Newark Supergroup basins; footprints (Agrestipus hottoni and Eubrontes isp.) from the Bull Run Formation in the Culpeper basin previously ascribed to prosauropods are now known to be underprints (Brachychirotherium parvum) of an aetosaur and underprints (Kayentapus minor) of a ceratosaur. The absence of prosauropod skeletal remains or footprints in all but the uppermost (upper Rhaetian) Triassic rocks of the Newark Supergroup is puzzling because prosauropod remains are abundant elsewhere in the world in Upper Triassic (Carnian, Norian, and lower Rhaetian) continental strata. The apparent scarcity of prosauropods in Upper Triassic strata of the Newark Supergroup is interpreted as an artifact of ecological partitioning, created by the habitat range and dietary preferences of phytosaurs and by the preservational biases at that time within the lithofacies of the Newark Supergroup basins.
Blodgett, Robert B.; Sralla, Bryan
2008-01-01
A major angular unconformity separates carbonates and shales of the Upper Triassic Kamishak Formation from an underlying unnamed sequence of Permian agglomerate, volcaniclastic rocks (sandstone), and limestone near Puale Bay on the Alaska Peninsula. For the first time, we photographically document the angular unconformity in outcrop, as clearly exposed in a seacliff ~1.3 mi (2.1 km) west of Cape Kekurnoi in the Karluk C?4 and C?5 1:63,360-scale quadrangles. This unconformity is also documented by examination of core chips, ditch cuttings, and (or) open-hole electrical logs in two deep oil-and-gas-exploration wells (Humble Oil & Refining Co.?s Bear Creek No. 1 and Standard Oil Co. of California?s Grammer No. 1) drilled along the Alaska Peninsula southwest of Puale Bay. A third well (Richfield Oil Corp.?s Wide Bay Unit No. 1), south of and structurally on trend with the other two wells, probed deeply into the Paleozoic basement, but Triassic strata are absent, owing to either a major unconformity or a large fault. Here we briefly review current and newly acquired data on Permian and Triassic rocks of the Puale Bay-Becharof Lake-Wide Bay area on the basis of an examination of surface and subsurface materials. The resulting reinterpretation of the Permian and Triassic stratigraphy has important economic ramifications for oil and gas exploration on the Alaska Peninsula and in the Cook Inlet basin. We also present a history of petroleum exploration targeting Upper Triassic reservoirs in the region.
NASA Astrophysics Data System (ADS)
Mujal, Eudald; Fortuny, Josep; Pérez-Cano, Jordi; Dinarès-Turell, Jaume; Ibáñez-Insa, Jordi; Oms, Oriol; Vila, Isabel; Bolet, Arnau; Anadón, Pere
2017-12-01
The most severe biotic crisis on Earth history occurred during the Permian-Triassic (PT) transition around 252 Ma. Whereas in the marine realm such extinction event is well-constrained, in terrestrial settings it is still poorly known, mainly due to the lack of suitable complete sections. This is utterly the case along the Western Tethys region, located at Pangaea's equator, where terrestrial successions are typically build-up of red beds often characterised by a significant erosive gap at the base of the Triassic strata. Henceforth, documenting potentially complete terrestrial successions along the PT transition becomes fundamental. Here, we document the exceptional Coll de Terrers area from the Catalan Pyrenees (NE Iberian Peninsula), for which a multidisciplinary research is conducted along the PT transition. The red-bed succession, located in a long E-W extended narrow rift system known as Pyrenean Basin, resulted from a continuous sedimentary deposition evolving from meandering (lower Upper Red Unit) to playa-lake/ephemeral lacustrine (upper Upper Red Unit) and again to meandering settings (Buntsandstein facies). Sedimentary continuity is suggested by preliminary cyclostratigraphic analysis that warrants further analysis. Our combined sedimentological, mineralogical and geochemical data infer a humid-semiarid-humid climatic trend across the studied succession. The uppermost Permian strata, deposited under an orbitally controlled monsoonal regime, yields a relatively diverse ichnoassemblage mainly composed of tetrapod footprints and arthropod trace fossils. Such fossils indicate appropriate life conditions and water presence in levels that also display desiccation structures. These levels alternate with barren intervals formed under dry conditions, being thus indicative of strong seasonality. All these features are correlated with those reported elsewhere in Gondwana and Laurasia, and suggest that the Permian-Triassic boundary might be recorded somewhere around the Buntsandstein base. Consequently, Coll de Terrers and the whole Catalan Pyrenees become key regions to investigate in detail the Permian extinction event and the Triassic ecosystems recovery.
Hampton, B.A.; Ridgway, K.D.; O'Neill, J. M.; Gehrels, G.E.; Schmidt, J.; Blodgett, R.B.
2007-01-01
Mesozoic strata of the northwestern Talkeetna Mountains are located in a regional suture zone between the allochthonous Wrangellia composite terrane and the former Mesozoic continental margin of North America (i.e., the Yukon-Tanana terrane). New geologic mapping, measured stratigraphic sections, and provenance data define a distinct three-part stratigraphy for these strata. The lowermost unit is greater than 290 m thick and consists of Upper Triassic-Lower Jurassic mafic lavas, fossiliferous limestone, and a volcaniclastic unit that collectively we informally refer to as the Honolulu Pass formation. The uppermost 75 m of the Honolulu Pass formation represent a condensed stratigraphic interval that records limited sedimentation over a period of up to ca. 25 m.y. during Early Jurassic time. The contact between the Honolulu Pass formation and the overlying Upper Jurassic-Lower Cretaceous clastic marine strata of the Kahiltna assemblage represents a ca. 20 m.y. depositional hiatus that spans the Middle Jurassic and part of Late Jurassic time. The Kahiltna assemblage may to be up to 3000 m thick and contains detrital zircons that have a robust U-Pb peak probability age of 119.2 Ma (i.e., minimum crystallization age/maximum depositional age). These data suggest that the upper age of the Kahiltna assemblage may be a minimum of 10-15 m.y. younger than the previously reported upper age of Valanginian. Sandstone composition (Q-43% F-30% L-27%-Lv-71% Lm-18% Ls-11%) and U-Pb detrital zircon ages suggest that the Kahiltna assemblage received igneous detritus mainly from the active Chisana arc, remnant Chitina and Talkeetna arcs, and Permian-Triassic plutons (Alexander terrane) of the Wrangellia composite terrane. Other sources of detritus for the Kahiltna assemblage were Upper Triassic-Lower Jurassic plutons of the Taylor Mountains batholith and Devonian-Mississippian plutons; both of these source areas are part of the Yukon-Tanana terrane. The Kahiltna assemblage is overlain by previously unrecognized nonmarine strata informally referred to here as the Caribou Pass formation. This unit is at least 250 m thick and has been tentatively assigned an Albian-Cenomanian-to-younger age based on limited palynomorphs and fossil leaves. Sandstone composition (Q-65% F-9% L-26%-Lv-28% Lm-52% Ls-20%) from this unit suggests a quartz-rich metamorphic source terrane that we interpret as having been the Yukon-Tanana terrane. Collectively, provenance data indicate that there was a fundamental shift from mainly arc-related sediment derivation from sources located south of the study area during Jurassic-Early Cretaceous (Aptian) time (Kahiltna assemblage) to mainly continental margin-derived sediment from sources located north and east of the study area by Albian-Cenomanian time (Caribou Pass formation). We interpret the threepart stratigraphy defined for the northwestern Talkeetna Mountains to represent pre- (the Honolulu Pass formation), syn- (the Kahiltna assemblage), and post- (the Caribou Pass formation) collision of the Wrangellia composite terrane with the Mesozoic continental margin. A similar Mesozoic stratigraphy appears to exist in other parts of south-central and southwestern Alaska along the suture zone based on previous regional mapping studies. New geologic mapping utilizing the three-part stratigraphy interprets the northwestern Talkeetna Mountains as consisting of two northwest-verging thrust sheets. Our structural interpretation is that of more localized thrust-fault imbrication of the three-part stratigraphy in contrast to previous interpretations of nappe emplacement or terrane translation that require large-scale displacements. Copyright ?? 2007 The Geological Society of America.
Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado
Scott, Robert B.; Shroba, Ralph R.; Egger, Anne
2001-01-01
New 1:24,000-scale geologic map of the Rifle Falls 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Upper Cretaceous Iles Formation through Ordovician and Cambrian units. The Iles Formation includes the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale is divided into three members, an upper member, the Niobrara Member, and a lower member. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and the Entrada Sandstone are present. Below the Upper Jurassic Entrada Sandstone, the easternmost limit of the Lower Jurassic and Upper Triassic Glen Canyon Sandstone is recognized. Both the Upper Triassic Chinle Formation and the Lower Triassic(?) and Permian State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is divided into two members, the Schoolhouse Member and a lower member. All the exposures of the Middle Pennsylvanian Eagle Evaporite intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Middle and Lower Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group is divided into the Dyer Dolomite, which is broken into the Coffee Pot Member and the Broken Rib Member, and the Parting Formation. Ordovician through Cambrian units are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two is a large-offset, mid-Tertiary(?) Rifle Falls normal fault, that dips southward placing Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side and presumably was injected into older strata on the upthrown block creating a blister-like, steeply north-dipping sequence of Mississippian and older strata. Also, removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks that form distinctly different styles of compressive deformation called the Elk Park fold and fault complex at different parts of the toe of the slide. The major geologic hazard in the area consist of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Significant uranium and vanadium deposits were mined prior to 1980.
NASA Astrophysics Data System (ADS)
Geissman, J. W.; Gastaldo, R. A.; Neveling, J.; Makubalo, S.
2017-12-01
A multifaceted approach to understand the timing of interpreted environmental changes during the Late Permian to possibly Early Triassic (?) time in the Beaufort Group strata of the Karoo Basin includes work to establish robust magnetic polarity records for sections previously interpreted to encompass end-Permian extinction events. Demonstrating the preservation of an early-acquired remanence (RM) in Karoo strata is required for a robust magnetostratigraphy. Yet, this is challenging due to thermochemical effects related to the Early Jurassic (ca. 183 Ma) Karoo Large Igneous Province (LIP), and the NE to SW increase in burial diagenesis attending Cape Fold Belt tectonism. Documentation of a primary RM in these strata, which appears to be preserved in some areas, requires careful laboratory- and field-based assessment. We report data from 53 sites collected at the well-studied Bethulie section, Free State Province, in which several <2 m wide Karoo LIP dikes crop out. We obtained 7-10+ independent samples per individual horizon to assess ChRM uniformity. Strata well-removed from dikes yield both normal and reverse polarity ChRM. It is always the case that the first-removed RM is a NNW seeking, moderate to steep negative-inclination ChRM (normal polarity); NRM intensities are typically 1 to 5 mA/m. Sites BT15 and BT21, which are located in strata lying some 4 m below the often-cited "event bed" interval inferred to be the terrestrial expression of the Permian/Triassic boundary, is dominated by a well-defined reverse RM with a normal overprint RM unblocked below 400oC, implying elevated temperatures (i.e., 100 to 250oC+) for ca. 1 Ma (+/-). Contact tests are positive but complicated. Host strata collected in distances equal to or less than 1-2 dike widths from the intrusions have been thermally remagnetized and demonstrate high NRM intensities (> 50 mA/m). Collectively, we interpret these data to indicate that any ChRM, with the exception of those from host strata in baked contacts, that persists above Tlub of 425oC is pre-Karoo LIP in origin, and likely primary at the Bethulie locality.
NASA Astrophysics Data System (ADS)
Sudar, Milan N.; Kolar-Jurkovšek, Tea; Nestell, Galina P.; Jovanović, Divna; Jurkovšek, Bogdan; Williams, Jeremy; Brookfield, Michael; Stebbins, Alan
2018-04-01
Detail results of microfaunal, sedimentological and geochemical investigations are documented from a newly discovered section of the Permian-Triassic boundary (PTB) interval in the area of the town of Valjevo (northwestern Serbia). The presence of various and abundant microfossils (conodonts, foraminifers, and ostracodes) found in the Upper Permian "Bituminous limestone" Formation enabled a determination of the Changhsingian Hindeodus praeparvus conodont Zone. This paper is the first report of latest Permian strata from the region, as well as from all of Serbia, where the PTB interval sediments have been part of a complex/integrated study by means of biostratigraphy and geochemistry.
Alcober, Oscar A; Martinez, Ricardo N
2010-10-19
Herrerasauridae comprises a basal clade of dinosaurs best known from the Upper Triassic of Argentina and Brazil, which have yielded remains of Herrerasaurus ischigualastensis and Staurikosaurus pricei, respectively. Systematic opinion regarding the position of Herrerasauridae at the base of Dinosauria has varied. Here we describe a new herrerasaurid, Sanjuansaurus gordilloi gen. n., sp. n., based on a partial skeleton from Carnian-age strata of the the Upper Triassic Ischigualasto Formation of northwestern Argentina. The new taxon is diagnosed by numerous features, including long, band-shaped and posterolaterally oriented transverse process on the posterior cervical vertebrae; neural spines of the sixth to eighth dorsal vertebrae, at least, bearing acute anterior and posterior processes; scapula and coracoid with everted lateral margins of the glenoid; and short pubis (63% of the femoral length). Phylogenetic analysis placed Sanjuansaurus within a monophyletic Herrerasauridae, at the base of Theropoda and including Herrerasaurus and Staurikosaurus. The presence of Sanjuansaurus at the base of the Ischigualasto Formation, along with other dinosaurs such as Herrerasaurus, Eoraptor, Panphagia, and Chromogisaurus suggests that saurischian dinosaurs in southwestern Pangea were already widely diversified by the late Carnian rather than increasing in diversity across the Carnian-Norian boundary.
Stratigraphy and structure along the Pensacola Arch/Conecuh Embayment margin in northwest Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, J.G.
1993-03-01
Stratigraphic and structural analysis of deep borehole data along the Pensacola Arch/Conecuh Embayment margin in eastern Santa Rosa County, Florida reveals a northeast-trending basement normal fault that is downthrown to the northwest. The fault functioned as a border fault of a half-graben (or graben ) that developed during continental rifting of Pangea in the Late Triassic and Early Jurassic. The upthrown or horst block was a paleotopographic high that formed the southeastern boundary of the Middle to Late Jurassic Conecuh Embayment. A second, younger basement fault trends approximately perpendicular to the half-graben border fault. Late Triassic synrift continental sediments, depositedmore » on the downthrown block of the half-graben, pinch-out abruptly to the southeast pre-Mesozoic Suwannee Basin basement. The border fault is located approximately where the Triassic sedimentary wedge pinches out. Middle to Upper Jurassic drift-stage strata of the Conecuh embayment progressively onlap the post-rift unconformity toward the southeast. Upper Jurassic Smackover Formation carbonates and evaporites apparently overstep Triassic deposits and rest directly on Suwannee Basin quartzitic sandstone near their depositional limit at the Pensacola Arch. The Smackover Formation thins significantly toward the southeast in association with the Triassic pinch-out and half-graben border fault. The pinch-out trend of the Smackover Formation suggests a northeast-southwest orientation for the Triassic border fault and supports a horst-block origin for the Pensacola Arch.« less
NASA Astrophysics Data System (ADS)
Niedźwiedzki, Grzegorz; Soussi, Mohamed; Boukhalfa, Kamel; Gierliński, Gerard D.
2017-05-01
Three tetrapod track assemblages from the early-middle Mesozoic of southern Tunisia are reported. The strata exposed at the Tejra 2 clay-pit near the Medenine and Rehach site, located in the vicinity of Kirchaou, contain the first tetrapod tracks found in the Triassic of Tunisia. The Middle Jurassic (early Aalenian) dinosaur tracks are reported from the Mestaoua plain near Tataouine. In the Middle Triassic outcrop of the Tejra 2 clay-pit, tridactyl tracks of small and medium-sized dinosauromorphs, were discovered. These tracks represent the oldest evidence of dinosaur-lineage elements in the Triassic deposits of Tunisia. Similar tracks have been described from the Middle Triassic of Argentina, France and Morocco. An isolated set of the manus and pes of a quadrupedal tetrapod discovered in Late Triassic Rehach tracksite is referred to a therapsid tracemaker. The Middle Jurassic deposits of the Mestaoua plain reveal small and large tridactyl theropod dinosaur tracks (Theropoda track indet. A-C). Based on comparison with the abundant record of Triassic tetrapod ichnofossils from Europe and North America, the ichnofauna described here indicates the presence of a therapsid-dinosauromorph ichnoassociation (without typical Chirotheriidae tracks) in the Middle and Late Triassic, which sheds light on the dispersal of the Middle-Upper Triassic tetrapod ichnofaunas in this part of Gondwana. The reported Middle Jurassic ichnofauna show close similarities to dinosaur track assemblages from the Lower and Middle Jurassic of northwestern Africa, North America, Europe and also southeastern Asia. Sedimentological and lithostratigraphic data of each new tracksite have been defined on published data and new observations. Taken together, these discoveries present a tantalizing window into the evolutionary history of tetrapods from the Triassic and Jurassic of southern Tunisia. Given the limited early Mesozoic tetrapod record from the region, these discoveries are of both temporal and geographic significance.
Regional stratigraphy and petroleum potential, Ghadames basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emme, J.J.; Sunderland, B.L.
1991-03-01
The Ghadames basin in east-central Algeria extends over 65,000 km{sup 2} (25,000 mi{sup 2}), of which 90% is covered by dunes of the eastern Erg. This intracratonic basin consists of up to 6000 m (20,000 ft) of dominantly clastic Paleozoic through Mesozoic strata. The Ghadames basin is part of a larger, composite basin complex (Ilizzi-Ghadames-Triassic basins) where Paleozoic strata have been truncated during a Hercynian erosional event and subsequently overlain by a northward-thickening wedge of Mesozoic sediments. Major reservoir rocks include Triassic sandstones that produce oil, gas, and condensate in the western Ghadames basin, Siluro-Devonian sandstones that produce mostly oilmore » in the shallower Ilizzi basin to the south, and Cambro-Ordovician orthoquartzites that produce oil at Hassi Messaoud to the northwest. Organic shales of the Silurian and Middle-Upper Devonian are considered primary source rocks. Paleozoic shales and Triassic evaporite/red bed sequences act as seals for hydrocarbon accumulations. The central Ghadames basin is underexplored, with less than one wildcat well/1700 km{sup 2} (one well/420,000 ac). Recent Devonian and Triassic oil discoveries below 3500 m (11,500 ft) indicate that deep oil potential exists. Exploration to date has concentrated on structural traps. Subcrop and facies trends indicate that potential for giant stratigraphic or combination traps exists for both Siluro-Devonian and Triassic intervals. Modern seismic acquisition and processing techniques in high dune areas can be used to successfully identify critical unconformity-bound sequences with significant stratigraphic trap potential. Advances in seismic and drilling technology combined with creative exploration should result in major petroleum discoveries in the Ghadames basin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzolf, J.E.
1993-04-01
On the Colorado Plateau, lower Mesozoic stratigraphy is subdivided by regional unconformities into the Lower Triassic Moenkopi, Upper Triassic Chinle, Lower and Middle( ) Jurassic Glen Canyon, and Middle Jurassic lower San Rafael tectonosequences. Palinspastic reconstruction for Cenozoic extensional and mesozoic compressional deformations near the latitude of Las Vegas indicates the Moenkopi tectono-sequence constructed a passive-margin-like architecture of modest width overlapping folded. Thrust-faulted, and intruded Permian strata, with state boundaries fixed relative to the Colorado Plateau, comparison of the location of the Early Triassic shelf-slope break near latitude 36[degree] with the palinspastically restored location of the shelf-slope break in southeasternmore » Idaho implies strata of the Moenkopi tectonosequence in the Mesozoic marine province of northwest NV lay in western utah in the Early Triassic. This reconstruction: suggests that the Galconda and Last Chance faults are part of the same thrust system; aligns late Carnian paleovalleys of the chinle tectonosequence on the Colorado Plateau with a coeval northwest-trending paleovalley cut across the Star Pea, and the Norian Cottonwood paleovalley with the coeval Grass Valley delta; defines a narrow, northward deepening back-arc basin in which the Glen Canyon tectonosequence was deposited; aligns east-facing half grabens along the back side of the arc from the Cowhole Mountains to the Clan Alpine Range; projects the volcan-arc/back-arc transition from northwest Arizona to the east side of the Idaho batholith; and predicts the abrupt facies change from silicic volcanics to marine strata of the lower San Rafael sequence lay in western Utah. The paleogeographic was altered in the late Bathonian to Callovian by back-arc extension north of a line extending from Cedar City, UT to Mina, NV. The palinspastic reconstruction implies the Paleozoic was tectonically stacked at the close of the Paleozoic.« less
Weems, Robert E.; Tanner, Lawrence H.; Lucas, Spencer G.
2016-01-01
The Upper Permian? - Lower Jurassic Newark Supergroup of eastern North America has a strikingly uniform succession of lithologic units. This uniformity is seen regardless of whether these units are characterized on the basis of their lithostratigraphy, allostratigraphy, biostratigraphy, or chemostratigraphy. After deposition, these units were broken up tectonically and attacked erosionally; parts of them survive today only within localized, down-faulted areas. Many lines of evidence compellingly demonstrate that most or all of these remnant units once were physically continuous between remaining outcrops. It is needlessly confusing to give every remnant of each unit a different name in each area where it persists simply because it is now physically isolated by erosion from other portions of the same unit. Instead, these units should be defined within a regional lithostratigraphic framework that emphasizes their common origins and original stratigraphic continuity. To this end, the formation-level stratigraphy of the Newark Supergroup is reduced from 58 locally applied and locally defined formations to a succession of only 16 uniformly defined and regionally recognizable formations. In all cases the oldest name validly applied to each formation is given priority over more recently erected synonymous names, which are either abandoned or, in a few cases, changed in rank to a member of one of the formations recognized here. The Newark Supergroup is here organized into four regionally recognizable groups, each subdivided into regionally recognizable formations. In ascending order, the Upper Permian?-Middle Triassic Acadia Group (new name) includes the Honeycomb Point Formation, Chedabucto Formation, Economy Formation, and Evangeline Formation. This group is preserved only in the Canadian Fundy and Chedabucto basins. The Upper Triassic (Carnian-Norian) Chatham Group includes the Doswell Formation, Stockton Formation, Lockatong Formation, and Passaic Formation. The Upper Triassic-Lower Jurassic (upper Rhaetian-lower Hettangian) Meriden Group includes the Talcott Formation, Shuttle Meadow Formation, Holyoke Formation, East Berlin Formation, and Hampden Formation. The term "Agawam Group," previously proposed to encompass all Newark Supergroup strata above the highest basalt of the Meriden Group, is here abandoned and replaced with the name "Portland Group" for the same suite of strata. The Lower Jurassic (upper Hettangian-lower Sinemurian) Portland Group includes a lower Boonton Formation, an overlying Longmeadow Sandstone (here reinstated), and the Mount Toby Conglomerate, which laterally intertongues with both the Boonton Formation and the Longmeadow Sandstone.
Distributional patterns of Mawsoniidae (Sarcopterygii: Actinistia).
Miguel, Raphael; Gallo, Valéria; Morrone, Juan J
2014-03-01
Mawsoniidae are a fossil family of actinistian fish popularly known as coelacanths, which are found in continental and marine paleoenvironments. The taxon is considered monophyletic, including five valid genera (Axelrodichthys, Chinlea, Diplurus, Mawsonia and Parnaibaia) and 11 genera with some taxonomical controversy (Alcoveria, Changxingia, Garnbergia, Heptanema, Indocoelacanthus, Libys, Lualabaea, Megalocoelacanthus, Moenkopia, Rhipis and Trachymetopon). The genera restricted to the Northern Hemisphere (Diplurus and Chinlea) possess the oldest records (Late Triassic), whereas those found in the Southern Hemisphere (Mawsonia, Axelrodichthys, and Parnaibaia) extend from Late Jurassic to Late Cretaceous, especially in Brazil and Africa. We identified distributional patterns of Mawsoniidae, applying the panbiogeographical method of track analysis, and obtained three generalized tracks (GTs): GT1 (Northeastern Newark) in strata of the Newark Group (Upper Triassic); GT2 (Midwestern Gondwana) in the Lualaba Formation (Upper Jurassic); and GT3 (Itapecuru-Alcântara-Santana) in the Itapecuru-Alcântara-Santana formations (Lower Cretaceous). The origin of Mawsoniidae can be dated to at least Late Triassic of Pangaea. The tectonic events related to the breakup of Pangaea and Gondwana and the evolution of the oceans are suggested as the vicariant events modeling the distribution of this taxon throughout the Mesozoic.
Dumoulin, Julie A.; Burruss, Robert A.; Blome, Charles D.
2013-01-01
Complete penetration of the Otuk Formation in a continuous drill core (diamond-drill hole, DDH 927) from the Red Dog District illuminates the facies, age, depositional environment, source rock potential, and isotope stratigraphy of this unit in northwestern Alaska. The section, in the Wolverine Creek plate of the Endicott Mountains Allochthon (EMA), is ~82 meters (m) thick and appears structurally uncomplicated. Bedding dips are generally low and thicknesses recorded are close to true thicknesses. Preliminary synthesis of sedimentologic, paleontologic, and isotopic data suggests that the Otuk succession in DDH 927 is a largely complete, albeit condensed, marine Triassic section in conformable contact with marine Permian and Jurassic strata. The Otuk Formation in DDH 927 gradationally overlies gray siliceous mudstone of the Siksikpuk Formation (Permian, based on regional correlations) and underlies black organic-rich mudstone of the Kingak(?) Shale (Jurassic?, based on regional correlations). The informal shale, chert, and limestone members of the Otuk are recognized in DDH 927, but the Jurassic Blankenship Member is absent. The lower (shale) member consists of 28 m of black to light gray, silty shale with as much as 6.9 weight percent total organic carbon (TOC). Thin limy layers near the base of this member contain bivalve fragments (Claraia sp.?) consistent with an Early Triassic (Griesbachian-early Smithian) age. Gray radiolarian chert dominates the middle member (25 m thick) and yields radiolarians of Middle Triassic (Anisian and Ladinian) and Late Triassic (Carnian-late middle Norian) ages. Black to light gray silty shale, like that in the lower member, forms interbeds that range from a few millimeters to 7 centimeters in thickness through much of the middle member. A distinctive, 2.4-m-thick interval of black shale and calcareous radiolarite ~17 m above the base of the member has as much as 9.8 weight percent TOC, and a 1.9-m-thick interval of limy to cherty mudstone immediately above this contains radiolarians, foraminifers, conodonts, and halobiid bivalve fragments. The upper (limestone) member (29 m thick) is lime mudstone with monotid bivalves and late Norian radiolarians, overlain by gray chert that contains Rhaetian (latest Triassic) radiolarians; Rhaetian strata have not previously been documented in the Otuk. Rare gray to black shale interbeds in the upper member have as much as 3.4 weight percent TOC. At least 35 m of black mudstone overlies the limestone member; these strata lack interbeds of oil shale and chert that are characteristic of the Blankenship, and instead they resemble the Kingak Shale. Vitrinite reflectance values (2.45 and 2.47 percent Ro) from two samples of black shale in the chert member indicate that these rocks reached a high level of thermal maturity within the dry gas window. Regional correlations indicate that lithofacies in the Otuk Formation vary with both structural and geographic position. For example, the shale member of the Otuk in the Wolverine Creek plate includes more limy layers and less barite (as blades, nodules, and lenses) than equivalent strata in the structurally higher Red Dog plate of the EMA, but it has fewer limy layers than the shale member in the EMA ~450 kilometers (km) to the east at Tiglukpuk Creek. The limestone member of the Otuk is thicker in the Wolverine Creek plate than in the Red Dog plate and differs from this member in EMA sections to the east in containing an upper cherty interval that lacks monotids; a similar interval is seen at the top of the Otuk Formation ~125 km to the west (Lisburne Peninsula). Our observations are consistent with the interpretations of previous researchers that Otuk facies become more distal in higher structural positions and that within a given structural level more distal facies occur to the west. Recent paleogeographic reconstructions indicate that the Otuk accumulated at a relatively high paleolatitude with a bivalve fauna typical of the Boreal realm. A suite of δ13Corg (carbon isotopic composition of carbon) data (n=38) from the upper Siksikpuk Formation through the Otuk Formation and into the Kingak(?) Shale in DDH 927 shows a pattern of positive and negative excursions similar to those reported elsewhere in Triassic strata. In particular, a distinct negative excursion at the base of the Otuk (from ‒23.8 to ‒31.3‰ (permil, or parts per thousand)) likely correlates with a pronounced excursion that marks the Permian-Triassic boundary at many localities worldwide. Another feature of the Otuk δ13Corg record that may correlate globally is a series of negative and positive excursions in the lower member. At the top of the Otuk in DDH 927, the δ13Corg values are extremely low and may correlate with a negative excursion that is widely observed at the Triassic-Jurassic boundary.
NASA Astrophysics Data System (ADS)
Tuchkova, Marianna; Sokolov, Sergey; Verzhbitsky, Vladimir
2013-04-01
Triassic clastic deposits of Chukotka are represented by rhythmic intercalation of sandstones, siltstones and mudstones. During the Triassic, sedimentation was represented by continental slope progradation. Detrital zircons from Triassic sedimentary rocks were collected for constrain its paleogeographic links to source terranes. Zircons populations from three Chukotka's samples are very similar, and youngest zircon ages show peaks at 236-255 Ma (Miller et al., 2006). Lower Triassic sandstones from the Chaun subterrane do not contain the young population 235-265 Ma that is characteristic of the Upper Triassic rocks from the Anyui subterrane and Wrangel Island. The young zircon population is missing also from the coeval Sadlerochit Group (Alaska) and Blind Fiord Formation of the Sverdrup basin (Miller et al., 2006; Omma et al., 2011). Our data of Triassic sandstones of Wrangel island demonstrate detrital zircons ages dominated by Middle Triassic (227-245 Ma), Carboniferous (309-332 Ma) and Paleoproterozoic (1808-2500 Ma) ages. The new data on Chukotka show that populations of detrital zircons from Chukotka, the Sverdrup basin, and Alaska, the Sadlerochit Mountains included, demonstrate greater similarity than it was previously thought. Consequently, it may be assumed that they originate from a single source situated in the north. The data on zircon age of gabbro-dolerite magmatism in eastern Chukotka (252 Ma. Ledneva et al., 2011) and K-Ar ages obtained for sills and small intrusive bodies (Geodynamics…, 2006) in Lower Triassic deposits allow the local provenance. The presence of products of synchronous magmatism and shallow-water facies in the Lower Triassic sequences confirm this assumption. At the same time, coeval zircons appear only in the Upper Triassic strata. It is conceivable that the young zircon population originates from intrusive, not volcanic rocks, which were subjected to erosion only in the Late Triassic. In our opinion, the assumption of the local source with synchronous magmatism is consistent with the evolution of the petrological-mineralogical and geochemical compositions in the Triassic sandstones of Chukotka. Similar zircon peaks in Triassic rocks of northern Wrangel Island, Sverdrup basin, and Alaska indicate the same provenances for the Triassic periods. It is possible that all obtained data may indirectly support existence of the hypothetical "Hyperborean Platform" or Crockerland-Arctida microcontinent Work was supported by RBRR projects 11-05-00787, 11-05-00074, Scientific school # NSh-5177.2012.5, kontrakts 01/14/20/11; and we are extremely grateful to the TGS company for execution of a joint research project "Geological history of Wrangel Island".
Origin and tectonic evolution of upper Triassic Turbidites in the Indo-Burman ranges, West Myanmar
NASA Astrophysics Data System (ADS)
Yao, Wei; Ding, Lin; Cai, Fulong; Wang, Houqi; Xu, Qiang; Zaw, Than
2017-11-01
The Pane Chaung Formation is exposed in the Indo-Burman Ranges, and has been involved in collision between the Indian Plate and West Burma Block. However, controversies exist over the provenance and paleogeographic reconstruction of the Pane Chaung Formation. This study presents new petrographical and detrital zircon Usbnd Pb ages and Hf isotopic data from the Pane Chaung Formation in Rakhine Yoma and Chin Hills, west Myanmar. The depositional age of the Pane Chaung Formation is Late Triassic, indicated by the Carnian-Norian Halobia fossils and maximum depositional ages between 233.0 ± 2.5 Ma and 206.2 ± 1.8 Ma. Upper Triassic sandstones contain 290-200 Ma detrital zircons, εHf(t) values of - 6 to 11 and TDMC of 1.6 to 0.6 Ga, interpreted to be derived from West Papua region. The most abundant zircon age population of 750-450 Ma is derived from Pan-African orogenic belts in Australia. Zircons of 1250-900 Ma age were derived from the Grenvillian orogen in Australia. Archean zircons are interpreted to be derived from the Yilgarn and Pilbara cratons in Western Australia. Detrital zircon ages of the Pane Chaung Formation are distinct from similar aged strata in Indochina and Sibumasu, but comparable to NW Australia (Carnarvon Basin) and Greater India (Langjiexue Formation). It is suggested that the Pane Chaung Formation was deposited in a Late Triassic submarine fan along the northern margin of Australia.
Ward, P.D.; Garrison, G.H.; Haggart, J.W.; Kring, D.A.; Beattie, M.J.
2004-01-01
Stable isotope analyses of Late Triassic to earliest Jurassic strata from Kennecott Point in the Queen Charlotte Islands, British Columbia, Canada shows the presence of two distinct and different organic carbon isotope anomalies at the Norian/Rhaetian and Rhaetian/Hettangian (=Triassic/Jurassic) stage boundaries. At the older of these boundaries, which is marked by the disappearance of the bivalve Monotis, the isotope record shows a series of short-lived positive excursions toward heavier values. Strata approaching this boundary show evidence of increasing anoxia. At the higher boundary, marked by the disappearance of the last remaining Triassic ammonites and over 50 species of radiolarians, the isotopic pattern consists of a series of short duration negative anomalies. The two events, separated by the duration of the Rhaetian age, comprise the end-Triassic mass extinction. While there is no definitive evidence as to cause, the isotopic record does not appear similar to that of the impact-caused Cretaceous/Tertiary boundary extinction. ?? 2004 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lucas, S. G.; Tanner, L. H.; Geissman, J. W.; Hurley, L. L.; Kozur, H.; Heckert, A.; Kuerschner, W.; Weems, R.
2010-12-01
Strata of the Moenave Formation on and adjacent to the southern Colorado Plateau in Utah-Arizona, USA represent one of the best known and most stratigraphically continuous, complete and fossiliferous terrestrial sections across the Triassic-Jurassic boundary. We present here a synthesis of new biostratigraphic and magnetostratigraphic data collected from the Moenave Formation across the outcrop belt, which extends from the St. George area in southwestern Utah to the Tuba City area in northern Arizona. These include, palynomorphs, conchostracans and vertebrate fossils (including footprints) and a composite polarity record based on four magnetostratigraphic sections. Placement of the Triassic-Jurassic boundary in strata of the Moenave Formation has long been imprecise and debatable, but these new data (especially the conchostracan) allow us to place the Triassic-Jurassic boundary relatively precisely in the middle part of the Whitmore Point Member of the Moenave Formation. This placement supports the conclusion that terrestrial extinctions preceded marine extinctions across the Triassic-Jurassic boundary and likely were unrelated to CAMP volcanism.
Gehrels, G.E.; Stewart, John H.
1998-01-01
One hundred and eighty two individual detrital zircon grains from Cambrian through Permian miogeoclinal strata, Ordovician eugeoclinal rocks, and Triassic post-orogenic sediments in northwestern Sonora have been analyzed. During Cambrian, Devonian, Permian, and Triassic time, most zircons accumulating along this part of the Cordilleran margin were shed from 1.40-1.45 and 1.62-1.78 Ga igneous rocks that are widespread in the southwestern United States and northwestern Mexico. Zircons with ages of approximately 1.11 Ga are common in Cambrian strata and were apparently shed from granite bodies near the sample site. The sources of 225-280 Ma zircons in our Triassic sample are more problematic, as few igneous rocks of these ages are recognized in northwestern Mexico. Such sources may be present but unrecognized, or the grains could have been derived from igneous rocks of the appropriate ages to the northwest in the Mojave Desert region, to the east in Chihuahua and Coahuila, or to the south in accreted(?) arc-type terranes. Because the zircon grains in our Cambrian and Devonian to Triassic samples could have accumulated in proximity to basement rocks near their present position or in the Death Valley region of southern California, our data do not support or refute the existence of the Mojave-Sonora megashear. Ordovician strata of both miogeoclinal and eugeoclinal affinity are dominated by >1.77 Ga detrital zircons, which are considerably older than most basement rocks in the region. Zircon grains in the miogeoclinal sample were apparently derived from the Peace River arch area of northwestern Canada and transported southward by longshore currents. The eugeoclinal grains may also have come from the Peace River arch region, with southward transport by either sedimentary or tectonic processes, or they may have been shed from off-shelf slivers of continents (perhaps Antarctica?) removed from the Cordilleran margin during Neoproterozoic rifting. It is also possible that the Ordovician eugeoclinal strata are far traveled and exotic to North America.
Silberling, Norman J.; Nichols, K.M.
1982-01-01
Cephalopods and bivalves of the genus Daonella occur at certain levels throughout the Middle Triassic section in the Humboldt Range, northwestern Nevada. These fossiliferous strata are assigned to the Fossil Hill Member and upper member of the Prida Formation, which here forms the oldest part of the Star Peak Group. The distribution and abundance of fossils within the section is uneven, partly because of original depositional patterns within the dominantly calcareous succession and partly because of diagenetic secondary dolomitization and hydrothermal metamorphism in parts of the range.Lower and middle Anisian fossil localities are restricted to the northern part of the range and are scattered, so that only three demonstrably distinct stratigraphic levels are represented. Cephalopods from these localities are characteristic of the Caurus Zone and typify the lower and upper parts of the Hyatti Zone, a new zonal unit whose faunas have affinity with those from the older parts of the Varium Zone in Canada.The upper Anisian and lowermost Ladinian, as exposed in the vicinity of Fossil Hill in the southern part of the range, are extremely fossiliferous. Cephalopod and Daonella shells form a major component of many of the limestone interbeds in the calcareous fine-grained clastic section here. Stratigraphically controlled bedrock collections representing at least 20 successive levels have been made from the Fossil Hill area, which is the type locality for the Rotelliformis, Meeki, and Occidentalis Zones of the upper Anisian and the Subasperum Zone of the lower Ladinian. Above the Subasperum Zone fossils are again scarce; upper Ladinian faunas representing the Daonella lommeli beds occur at only a few places in the upper member of the Prida Formation.Although unevenly fossiliferous, the succession of Middle Triassic cephalopod and Daonella faunas in the Humboldt Range is one of the most complete of any known in the world. Newly collected faunas from this succession provide the basis for revising the classic monograph on Middle Triassic marine invertebrates of North America published in 1914 by J. P. Smith and based largely on stratigraphically uncontrolled collections from the Humboldt Range. Taxonomic treatment of these collections, old and new, from the Humboldt Range provides the documentation necessary to establish this Middle Triassic succession as a biostratigraphic standard of reference.Of the 68 species of ammonites described or discussed, 4 are from the lower Anisian, 20 from the middle Anisian, 39 from the upper Anisian, 4 from the lower Ladinian, and 1 from the upper Ladinian. A few additional ammonite species from other localities in Nevada are also treated in order to clarify their morphologic characteristics and stratigraphic occurrence. Other elements in the Middle Triassic molluscan faunas of the Humboldt Range comprise five species of nautiloids and three of coleoids from the middle and upper Anisian parts of the section. Eight more or less stratigraphically restricted species of Daonella occur in the upper Anisian and Ladinian.
National uranium resource evaluation: Newark Quadrangle, Pennsylvania and New Jersey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popper, G.H.P.; Martin, T.S.
1982-04-01
The Newark Quadrangle, Pennsylvania and New Jersey, was evaluated to a depth of 1500 m to identify geologic environments and delineate areas favorable for uranium deposits. Criteria used were those developed for the National Uranium Resource Evaluation program. Results of the investigation indicate that the Precambrian Reading Prong contains environments favorable for anatectic and allogenic uranium deposits. Two suites of rocks are favorable for anatectic-type concentrations: An alaskite-magnetite-gneiss association, and red granite and quartz monzonite. Allogenic uranium concentrations occur in rocks of the marble-skarn-serpentinite association. Environments favorable for peneconcordant sandstone-type uranium deposits occur in the upper one-third of the Catskillmore » Formation, the Mississippian-Pennsylvanian Mauch Chunk-Pottsville transition beds, and the upper half of the Triassic Stockton Formation. The Triassic Lockatong Formation contains environments favorable for carbonaceous shale-type uranium concentrations. The Ordovician Epler Formation and the Cretaceous-Tertiary strata of the Coastal Plain were not evaluated due to time restrictions and lack of outcroup. All other geologic environments are considered unfavorable for uranium deposits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Droser, M.L.; O'Connell, S.
The ichnofabric index method of ranking amount of bioturbation was used for the first time in conjunction with discrete trace fossils to examine shallow-water marine cores. Previous ichnological studies on cores have focused primarily on outer shelf and deep-sea discrete trace fossils. Upper Triassic cores examined in this study were recovered off northwest Australia during ODP Leg 122. These sediments were deposited in a shallow-water and continental shelf setting, which included swamp and prodelta environments. The most common lithology is siltstone with interbedded mudstone and sandstone. Sediments deposited in a swamp setting have rootlets and coal beds with an ichnologicalmore » record consisting primarily of mottled bedding rather than discrete trace fossils. Ichnofabric indices 1 through 5 were recorded. Marginal marine/lagoonal facies have a low trace fossil diversity with common Chondrites, Planolites, and Teichichnus. Recorded ichnofabric indices include 1, 2, and 3. Laminated mudstones and siltstones (ii1) are most common. Fully marine open shelf strata are thoroughly bioturbated (ii5 and ii6) with Thalassinoides, Zoophycos, Teichichnus, and Planolites. Wackestone and packstone occur in discrete uppermost Triassic intervals and have ii1 through ii6 represented. In part due to the drilling process, sandstones and reefal limestones were poorly recovered and ichnofabric is not well preserved. Physical sedimentary structures and lateral facies relationships can be difficult to discern in core. In shallow marine deposits, the distribution of ichnofabric indices and discrete trace fossils within these strata provide an additional important data base to evaluate depositional environments.« less
Spectroscopic Studies on Organic Matter from Triassic Reptile Bones, Upper Silesia, Poland
Surmik, Dawid; Boczarowski, Andrzej; Balin, Katarzyna; Dulski, Mateusz; Szade, Jacek; Kremer, Barbara; Pawlicki, Roman
2016-01-01
Fossil biomolecules from an endogenous source were previously identified in Cretaceous to Pleistocene fossilized bones, the evidence coming from molecular analyses. These findings, however, were called into question and an alternative hypothesis of the invasion of the bone by bacterial biofilm was proposed. Herewith we report a new finding of morphologically preserved blood-vessel-like structures enclosing organic molecules preserved in iron-oxide-mineralized vessel walls from the cortical region of nothosaurid and tanystropheid (aquatic and terrestrial diapsid reptiles) bones. These findings are from the Early/Middle Triassic boundary (Upper Roetian/Lowermost Muschelkalk) strata of Upper Silesia, Poland. Multiple spectroscopic analyses (FTIR, ToF-SIMS, and XPS) of the extracted "blood vessels" showed the presence of organic compounds, including fragments of various amino acids such as hydroxyproline and hydroxylysine as well as amides, that may suggest the presence of collagen protein residues. Because these amino acids are absent from most proteins other than collagen, we infer that the proteinaceous molecules may originate from endogenous collagen. The preservation of molecular signals of proteins within the "blood vessels" was most likely made possible through the process of early diagenetic iron oxide mineralization. This discovery provides the oldest evidence of in situ preservation of complex organic molecules in vertebrate remains in a marine environment. PMID:26977600
Spectroscopic Studies on Organic Matter from Triassic Reptile Bones, Upper Silesia, Poland.
Surmik, Dawid; Boczarowski, Andrzej; Balin, Katarzyna; Dulski, Mateusz; Szade, Jacek; Kremer, Barbara; Pawlicki, Roman
2016-01-01
Fossil biomolecules from an endogenous source were previously identified in Cretaceous to Pleistocene fossilized bones, the evidence coming from molecular analyses. These findings, however, were called into question and an alternative hypothesis of the invasion of the bone by bacterial biofilm was proposed. Herewith we report a new finding of morphologically preserved blood-vessel-like structures enclosing organic molecules preserved in iron-oxide-mineralized vessel walls from the cortical region of nothosaurid and tanystropheid (aquatic and terrestrial diapsid reptiles) bones. These findings are from the Early/Middle Triassic boundary (Upper Roetian/Lowermost Muschelkalk) strata of Upper Silesia, Poland. Multiple spectroscopic analyses (FTIR, ToF-SIMS, and XPS) of the extracted "blood vessels" showed the presence of organic compounds, including fragments of various amino acids such as hydroxyproline and hydroxylysine as well as amides, that may suggest the presence of collagen protein residues. Because these amino acids are absent from most proteins other than collagen, we infer that the proteinaceous molecules may originate from endogenous collagen. The preservation of molecular signals of proteins within the "blood vessels" was most likely made possible through the process of early diagenetic iron oxide mineralization. This discovery provides the oldest evidence of in situ preservation of complex organic molecules in vertebrate remains in a marine environment.
NASA Astrophysics Data System (ADS)
Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; McKenzie, R.; Alvarado, P. M.
2015-12-01
The Argentinian Andes define key examples of retroarc shortening and basin evolution above a zone of active subduction. The La Ramada fold-thrust belt (RFTB) in the High Andes provides insights into the relative influence and temporal records of diverse convergent margin processes (e.g. flat-slab subduction, convergent wedge dynamics, structural inversion). The RFTB contains Mesozoic extensional basin strata deformed by later Andean shortening. New detrital zircon U-Pb analyses of Mesozoic rift sediments reveal: (1) a dominant Permo-Triassic age signature (220-280 Ma) associated with proximal sources of effective basement (Choiyoi Group) during Triassic synrift deposition; (2) upsection younging of maximum depositional ages from Late Triassic through Early Cretaceous (230 to 100 Ma) with the increasing influence of western Andean arc sources; and (3) a significant Late Cretaceous influx of Paleozoic (~350-550 Ma) and Proterozoic (~650-1300 Ma) populations during the earliest shift from back-arc post-extensional subsidence to upper-plate shortening. The Cenozoic detrital record of the Manantiales foreland basin (between the Frontal Cordillera and Precordillera) records RFTB deformation prior to flat-slab subduction. A Permo-Triassic Choiyoi age signature dominates the Miocene succession, consistent with sources in the proximal Espinacito range. Subordinate Mesozoic (~80-250 Ma) to Proterozoic (~850-1800 Ma) U-Pb populations record exhumation of the Andean magmatic arc and recycling of different structural levels in the RFTB during thrusting/inversion of Mesozoic rift basin strata and subjacent Paleozoic units. Whereas maximum depositional ages of sampled Manantiales units cluster at 18-20 Ma, the Estancia Uspallata basin (~50 km to the south) shows consistent upsection younging of Cenozoic populations attributed to proximal volcanic centers. Ongoing work will apply low-temperature thermochronology to pinpoint basin accumulation histories and thrust timing.
Lucas, S.G.; Tanner, L.H.; Donohoo-Hurley, L.; Geissman, J.W.; Kozur, H.W.; Heckert, A.B.; Weems, R.E.
2011-01-01
Strata of the Moenave Formation on and adjacent to the southern Colorado Plateau in Utah-Arizona, U.S.A., represent one of the best known and most stratigraphically continuous, complete and fossiliferous terrestrial sections across the Triassic-Jurassic boundary. We present a synthesis of new biostratigraphic and magnetostratigraphic data collected from across the Moenave Formation outcrop belt, which extends from the St. George area in southwestern Utah to the Tuba City area in northern Arizona. These data include palynomorphs, conchostracans and vertebrate fossils (including footprints) and a composite polarity record based on four overlapping magnetostratigraphic sections. Placement of the Triassic-Jurassic boundary in strata of the Moenave Formation has long been imprecise and debatable, but these new data (especially the conchostracans) allow us to place the Triassic-Jurassic boundary relatively precisely in the middle part of the Whitmore Point Member of the Moenave Formation, stratigraphically well above the highest occurrence of crurotarsan body fossils or footprints. Correlation to marine sections based on this placement indicates that major terrestrial vertebrate extinctions preceded marine extinctions across the Triassic-Jurassic boundary and therefore were likely unrelated to the Central Atlantic Magmatic Province (CAMP) volcanism. ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Geissman, J. W.; Olsen, P. E.; Kent, D. V.; Irmis, R. B.; Gehrels, G. E.; Mundil, R.; Parker, W.; Bachmann, G. H.; Kurschner, W. M.; Sha, J.
2014-12-01
The Triassic Period was punctuated by two of the largest Phanerozoic mass-extinctions and witnessed the evolution of elements of the modern biota and the advent of the age of dinosaurs. A rich archive of biotic and environmental changes on land for the early Mesozoic is on the Colorado Plateau, which despite over 100 years of study still remains poorly calibrated in time and poorly registered to other global records. Over 15 years ago, a diverse team of scientists began to develop the concept of a multi-phase, long term Colorado Plateau Coring Project (CPCP). Planning involved two major meetings (DOSECC/NSFICDP supported in Fall, 2007, St. George, UT; and International Continental Drilling Program (ICDP) supported in Spring, 2009, Albuquerque, NM). The National Park Service embraced the concept of Phase One drilling at Petrified Forest National Park (PFNP) in northern Arizona, which exposes one of the most famous and best studied successions of the continental Triassic on Earth, and the Phase One target was decided. Most drilling operation costs were secured from ICDP in Summer, 2010. In late 2013, following more recent NSF support, the research team, utilizing Ruen Drilling Inc., drilled a continuous ~530 m core (60o plunge) through the entire section of Triassic strata (Chinle and Moenkopi fms.) in the north end and a ~240 m core (75o plunge) in lower Chinle and all Moenkopi strata at the south end of the PFNP. Our continuous sampling will place this record in a reliable quantitative and exportable time scale, as a reference section in which magnetostratigraphic, geochronologic, environmental, and paleontologic data are registered to a common thickness scale with unambiguous superposition using pristine samples. The cores are being scanned at the High Resolution X-ray Computed Tomography Facility at UT Austin. They will be transported to the LacCore National Lacustrine Core Facility at U Minnesota, where they will be split, imaged, and scanned for several properties, including XRF data. The core will then be transported to the Rutgers University for sampling. The planning team is contemplating Phase Two options (e.g., the Middle to Lower Triassic marine-influenced section west of the Colorado Plateau (St. George, Utah) area or the Upper Triassic to Lower Jurassic sequence in the Comb Ridge area (Bluff, Utah)).
The Late Triassic bivalve Monotis in accreted terranes of Alaska
Silberling, Norman J.; Grant-Mackie, J. A.; Nichols, K.M.
1997-01-01
Late Triassic bivalves of the genus Monotis occur in at least 16 of the lithotectonic terranes and subterranes that together comprise nearly all of Alaska, and they also occur in the Upper Yukon region of Alaska where Triassic strata are regarded as representing non-accretionary North America. On the basis of collections made thus far, 14 kinds of Monotis that differ at the species or subspecies level can be recognized from alaska. These are grouped into the subgenera Monotis (Monotis), M. (Pacimonotis), M. (Entomonotis), and M. (Eomonotis). In places, Monotis shells of one kind or another occur in rock-forming abundance. On the basis of superpositional data from Alaska, as well as from elsewhere in North America and Far Eastern Russia, at least four distince biostratigraphic levels can be discriminated utilizing Monotis species. Different species of M. (Eomonotis) characterize two middle Norian levels, both probably within the supper middle Norian Columbianus Ammonite Zone. Two additional levels are recognized in the lower upper Norian Cordilleranus Ammonite Zone utilizing species of M. (Monotis) or M. (Entomonotis), both of which subgenera are restricted to the late Norian. An attached-floating mode of life is commonly attributed to Monotis; thus, these bivalves would have been pseudoplanktonic surface dwellers that were sensitive to surface-water temperature and paleolatitude. Distinctly different kinds of Monotis occur at different paleolatitudes along the Pacific and Arctic margins of the North American craton inboard of the accreted terranes. Comparison between thse craton-bound Monotis faunas and those of the Alaskan terranes in southern Alaska south of the Denali fault were paleoequatorial in latitude during Late Triassic time. Among these terranes, the Alexander terrane was possibly in the southern hemisphere at that time. Terranes of northern Alaska, on the other hand, represent middle, possibly high-middle, northern paleolatitudes.
Geologic map of the Horse Mountain Quadrangle, Garfield County, Colorado
Perry, W.J.; Shroba, R.R.; Scott, R.B.; Maldonado, Florian
2003-01-01
New 1:24,000-scale geologic map of the Horse Mountain 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, summarizes available geologic information for the quadrangle. It provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Paleocene and early Eocene Wasatch Formation down through Ordovician and Cambrian units into Precambrian hornblende tonalite. The Wasatch Formation includes the Shire, Molina and Atwell Gulch Members which are mapped separately. The underlying Upper Cretaceous Mesaverde Group is subdivided into the Willams Fork and Iles Formations. The Cameo-Fairfield clinker zone within the Williams Fork Formation is mapped separately. The Iles Formation includes the Rollins Sandstone Member at the top, mapped separately, and the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale consists of four members, an upper member, the Niobrara Member, the Juana Lopez Member, and a lower member, undivided. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and Jurassic Entrada Sandstone are mapped separately. The Lower Jurassic and Upper Triassic Glen Canyon Sandstone is mapped with the Entrada in the Horse Mountain Quadrangle. The upper Triassic Chinle Formation and the Lower Permian and Triassic(?) State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is undivided. All the exposures of the Middle Pennsylvanian Eagle Valley Evaporite are diapiric, intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Lower and Middle Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group consists of the Dyer Dolomite and the underlying Parting Quartzite, undivided. Locally, the Lower Ordovician Manitou Formation is mapped separately beneath the Chaffee. Elsewhere, Ordovician through Cambrian units, the Manitou and Dotsero Formations, underlain by the Sawatch Quartzite, are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two are a complex of normal faults, the largest of which dips southward placing Chafee dolostone and Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side. Removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks and mass movement deposits consisting of a chaos of admixed Morrison and Dakota lithologies. The major geologic hazard in the area consists of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Abandoned coal mines are present along the north face of the Grand Hogback in the lower part of the Mesaverde Group
NASA Astrophysics Data System (ADS)
Li, Shun; Ding, Lin; Guilmette, Carl; Fu, Jiajun; Xu, Qiang; Yue, Yahui; Henrique-Pinto, Renato
2017-04-01
The Mesozoic strata, within the Bangong-Nujiang suture zone in central Tibet, recorded critical information about the subduction-accretion processes of the Bangong-Nujiang Ocean prior to the Lhasa-Qiangtang collision. This paper reports detailed field observations, petrographic descriptions, sandstone detrital zircon U-Pb ages and Hf isotopic analyses from an accretionary complex (preserved as Mugagangri Group) and the unconformably overlying Shamuluo Formation near Gaize. The youngest detrital zircon ages, together with other age constraints from literature, suggest that the Mugagangri Group was deposited during late Triassic-early Jurassic, while the Shamuluo Formation was deposited during late Jurassic-early Cretaceous. Based on the differences in lithology, age and provenance, the Mugagangri Group is subdivided into the upper, middle and lower subunits. These units are younging structurally downward/southward, consistent with models of progressive off-scrapping and accretion in a southward-facing subduction complex. The upper subunit, comprising mainly quartz-sandstone and siliceous mud/shale, was deposited in abyssal plain environment close to the Qiangtang passive margin during late Triassic, with sediments derived from the southern Qiangtang block. The middle and lower subunits comprise mainly lithic-quartz-sandstone and mud/shale, containing abundant ultramafic/ophiolitic fragments. The middle subunit, of late Triassic-early Jurassic age, records a transition in tectono-depositional setting from abyssal plain to trench-wedge basin, with sudden influx of sediments sourced from the central Qiangtang metamorphic belt and northern Qiangtang magmatic belt. The appearance of ultramafic/ophiolitic fragments in the middle subunit reflects the subduction initiation. The lower subunit was deposited in a trench-wedge basin during early Jurassic, with influx of Jurassic-aged zircons originating from the newly active southern Qiangtang magmatic arc. The lower subunit records the onset of arc magmatism related to the northward subduction of the Bangong-Nujiang Ocean. The Shamuluo Formation, comprising mainly lithic-feldspar-sandstone with limestone interlayers, was deposited in a post-collisional residual-sea or pre-collisional trench-slope basin, with sediments derived entirely from the Qiangtang block.
NASA Astrophysics Data System (ADS)
Jia, Zhihai; Zhang, Liwei; Hong, Tianqiu
2010-05-01
The lower Triassic is well preserved in Chaohu Region, Anhui Province, East China. It can be divided into Yinkeng Formation (80 meters thick, was formed during the Indian and early Smitian), Helongshan Formation (21 meters thick, was formed during the end Smithian) and Nanlinghu Formation (more than 157 meters thick, was formed during the Spathian) from bottom to top. It is mainly composed of carbonatites such as micrite limestones and nodular limestones, as well as shales and calcareous marls. The lower Triassic in this area has been well researched for more than a decade, and many fossils such as ammonites, bivalves, fishes, ichthyosaurus, conodonts, and ichnofossils have been found, but the microbiolites have been neglected. Microbiolites were mainly outcropped in the Helongshan Formaiton and the lower Nanlinghu Formation. In the lower Helongshan Formaiton, tens microbial mat layers and thin bedded calcareous marl layers formed cyclothems which have been named as nodular limstones. The thin-section observation of the microbial mats indicate that many films and thin-shell bivalve fragments deposited almost horizontally. In the upper Helongshan Formaiton, six microstromatolite bioherm layers were outcropped in the thin bedded calcareous marl layers. The diameter of the stromatolite column is about 2 millimeters, the bioherms are lenticular and no more than 3 centimeters thick in the central, their diameters change from 5 centimeters to 30 centimeters, calcareous marls were deposited around the bioherms, and many ammonoids, bivalves and burrows were found in such layers. The microfacies differentiation of the stromatolites such as the basement, reef core and the capping beds can be recognised clearly in thin sections. Several microstromatolite layers were outcropped in the micritic limestones with a stable thickness of 15 millimeters in the lower Nanlinghu Formation and the stromatolite column look like the ones in the Helongshan Formation. Few microbiolites have been found in the middle and upper Nanlinghu Formation. The macro fossil association of the lower Triassic in Chaohu region is quite different in different Formations. Ammonoids and bivalves can be found in the whole lower Triassic strata, and they are especially dominant in the Yinkeng Formation and lower Helongshan Formaiton, worms and borrowing animals can be found in the middle Helongshan Formation, fishes can be found in the uppermost Helongshan Formation and the lower Nanlinghu Formation, and the oldest ichthyosaurus in the world can be found in the upper Nanlinghu Formation. According to the changing characters of the fossil association in this area, it is indicated that the high-level ecosystem had been formed in this area in the late early Triassic, and the appearance of the microbiolites in the Helongshan Formation might be the milestone for the early Triassic recovery. Though the global recovery process after the Permian-Triassic mass extinction might be postponed to the end of the early Triassic, regional recovery process in Chaohu region might start at the end Smithian and actualized at the middle Spathian. The microbioilites might be the original impetus for the early Triassic recovery. Key words: microbiolites, early Triassic, regional recovery, Chaohu region Acknowledgments This work is supported by the grants from National Natural Science Fundation of China (No. 40902096 and No.J0830522) and the IGCP 572 program. * Corresponding author: zhihai.jia@gmail.com
NASA Astrophysics Data System (ADS)
Suarez, Celina A.; Knobbe, Todd K.; Crowley, James L.; Kirkland, James I.; Milner, Andrew R. C.
2017-10-01
The Late Triassic is a period of abrupt climate change associated with a disruption to the global carbon cycle usually ascribed to the emplacement of the Central Atlantic Magmatic Province (CAMP). Geochronologic, paleontologic, and geochemical studies have shown that the CAMP was likely the major factor for the end-Triassic extinction (ETE), however, difficulties correlating and dating terrestrial strata has left the nature of the terrestrial extinction in question. The lacustrine Whitmore Point Member (WPM) of the Moenave Formation is ideal for investigating these details because it is reported to be Late Triassic to Early Jurassic. However, currently there are conflicting age constraints between biostratigraphy and magnetostratigraphy. In this study we attempt to elucidate the ETE by incorporating C-isotope chemostratigraphy and detrital zircon geochronology. Detrital zircon geochronology suggests the upper part of the Dinosaur Canyon Member (DCM) is younger (201.33 ± 0.07/0.12/0.25 Ma) than the ETE (201.564 Ma) suggesting the ETE is in the middle to lower DCM, in agreement with track biostratigraphy (first occurrence of Eubrontes, Anomoepus, and Batrachopus). Meanwhile a distinct negative carbon isotope (NCIE) excursion (-5.5‰) occurs at the base of the WPM at Potter Canyon, AZ with a more subtle NCIE at the base of the WPM at Black Canyon, UT (-2.0‰) that may correlate to the initial NCIE at the ETE. However, the WPM NCIE is correlated to the preservation of organic C (relative %C) suggesting it may be either related to local lake productivity and biases in organic matter preservation or may be a negative CIE in the Jurassic Hettangian stage. With the addition of the detrital zircon data, we suggest the M2r reversal at the base of the WPM is a reversal in the Hettangian (the H24r, H25r, or H26r) and the ETE is within the DCM. Additional C-isotope analysis of the DCM is necessary to determine if the initial NCIE that is the hallmark of the ETE occurs in terrestrial strata in western Pangea. However, our WPM C-isotope record is the most complete C-isotope record from terrestrial strata of western Pangea to date and in addition to detrital zircon geochronology, magnetostratigraphy, and biostratigraphy, will be used to provide a framework for future chronologic and paleoclimatic studies.
NASA Astrophysics Data System (ADS)
Luo, M.; George, A. D.; Chen, Z.; Zhang, Y.
2013-12-01
New Early Triassic trace fossil assemblages are documented from the Susong and Tianshengqiao areas in South China to evaluate the mode and tempo of biotic recovery of epifaunal and infaunal organisms following the end-Permian mass extinction. The Susong succession is exposed in Anhui area of the Lower Yangtze region and comprises mudstone and carbonate facies that record overall shallowing from offshore to supratidal settings. The Tianshengqiao succession crops out in the Luoping area, Yuannan Province of the Upper Yangtze region, and consists of mixed carbonate and siliciclastic facies which were deposited in shallow marine to offshore settings. Bivalve and conodont biostratigraphy helps constrain the chronostratigraphic framework of the Lower Triassic successions in these two sections. Griesbachian to Dieneria ichnological records in both successions are characterized by low ichnodiversity, low ichnofabric indices (ii=1-2) and low bedding plane bioturbation indices (bpbi=1-2). Higher ii (ii= 3 and 4) corresponding to densely populated diminutive Skolithos in the Tianshengqiao succession suggest an opportunistic strategy during earliest Triassic deposition. Ichnological data from the Susong succession show an increase in ichnodiversity during the Smithian. A total of 12 ichnogenera including Arenicolites, Chondrites, Gyrochorte, Laevicyclus, Monocraterion, Palaeophycus, Phycodes, Plaolites, Thalassinoides, Treptichnus, Trichichnus and one problematic trace are identified. Ichnofabric indices (ii) and bpbi increase to moderate to high levels (ii = 4-5, bpbi= 3-5). Although complex traces such as Rhizocorallium are in Spathian strata in this section, the low levels of ichnodiversity, ichnofabric indices and diminutive Planolites suggest a decline in recovery. In the Tianshengqiao succession, ichnofabric indices exhibit a moderate to high value (ii= 3 to 5), however, only six ichnogenera are found and Planolites burrows are consistently small (average diameter at 3.7 mm) in the Smithian strata. These stressed ichnological parameters remain unchanged during the Spathian. Complex traces such as large Rhizocorallium and Thalassinoides and large sized Planolites (average diameter is 6.9 mm) did not appear until the Anisian. Ichnological results from both successions record the response of organisms to prolonged unfavorable environmental conditions although trace fossils from the Susong succession show evidences for recovery during the Smithian followed by a decline. This maybe resulted from a recognised temperature spike at the Smithian/Spathian boundary in South China and elsewhere. Ichnological data from the Tianshengqiao succession suggests a protracted recovery throughout the Early Triassic.
Weems, Robert E.; Lucas, Spencer G.
2015-01-01
Collections of Upper Triassic (Norian) conchostracans from the upper Cumnock and lower Sanford formations (North Carolina), Bull Run Formation (Virginia), Gettysburg Formation (Pennsylvania), Passaic Formation (New Jersey), Blomidon Formation (Nova Scotia), and Redonda Formation (New Mexico) have significantly expanded our knowledge of the Norian conchostracan faunas in these units. These collections show that the temporal and spatial distribution of Norian conchostracans in North America is more complex and more environmentally controlled than previously thought. The new collections require a revision and simplification of the published conchostracan zonation for this interval. The revised zonation, based almost entirely on evolution within the lineage of the conchostracan genus Shipingia, consists of five zones: the Shipingia weemsi-Euestheria buravasi zone (Lacian), the Shipingia mcdonaldi zone (lower Alaunian), the Shipingia hebaozhaiensis zone (upper Alaunian), the Shipingia olseni zone (lower and middle Sevatian), and the Shipingia gerbachmanni zone (upper Sevatian). A new species of Norian conchostracan, Wannerestheria kozuri, is described from the Groveton Member of the Bull Run Formation (Virginia). Two new members (Plum Run and Fairfield members) are named in the Gettysburg Formation (Gettysburg Basin, Maryland and Pennsylvania). The distribution of upper Carnian and Norian strata in the Fundy, Newark, Gettysburg, and Culpeper basins indicates that there was a significant, previously undetected tectonic reorganization within these basins that occurred around the Carnian-Norian boundary. The presence of an upper Norian-lower Rhaetian unconformity within the Newark Supergroup is reaffirmed. A re-evaluation of the conchostracan record from the Redonda Formation of the Chinle Group in New Mexico indicates that the four conchostracan-bearing lacustrine beds in this unit are part of only a single, consistently recognizable conchostracan zone, which we here designate as the Shipingia gerbachmanni zone.
NASA Astrophysics Data System (ADS)
Luo, Mao; George, Annette D.; Chen, Zhong-Qiang
2016-09-01
Biotic recovery following the end-Permian mass extinction was investigated using trace fossil and facies analysis of two Lower-Middle Triassic sections in South China. The Susong section (Lower Yangtze Sedimentary Province) comprises a range of carbonate and mudstone facies that record overall shallowing from offshore to intertidal settings. The Tianshengqiao section (Upper Yangtze Sedimentary Province) consists of mixed carbonate and siliciclastic facies deposited in shallow marine to offshore settings. Griesbachian to Dienerian ichnological records in both sections are characterized by low ichnodiversity, low ichnofabric indices (1-2) and low bedding plane bioturbation indices (1-2). Higher ichnofabric indices (3 and 4), corresponding to a dense population of diminutive ichnotaxon, in the Tianshengqiao section suggest opportunistic infaunal biotic activity during the earliest Triassic. Ichnological data from the Susong section show an increase in ichnodiversity during the late Smithian with 11 ichnogenera identified and increased ichnofabric indices of 4-5 and bedding plane bioturbation indices of 3-5. Although complex traces such as Rhizocorallium are present in Spathian-aged strata in this section, low ichnodiversity and ichnofabric indices and diminutive Planolites suggest a decline in recovery. In the Tianshengqiao section, ichnofabric indices are moderate to high (3-5) although only six ichnogenera are present and Planolites burrows are consistently small in Smithian and Spathian strata. Complex traces, such as large Rhizocorallium and Thalassinoides, and large Planolites, did not appear until the Anisian. Ichnological results from both sections record the response of organisms to unfavourable environmental conditions although the Susong section shows earlier recovery during the Smithian prior to latest Smithian-Spathian decline. This decline may have resulted from a resurgence of euxinic to anoxic marine environment in various regions of South China. Ichnological data from the Tianshengqiao section indicate protracted recovery throughout the Early Triassic as previously found elsewhere in South China. Comparison of the South China trace fossil records with global ichnological data show a diachronous pattern of recovery of trace makers and highlights the heterogeneous development of oxic facies on the marked variation in recovery rate.
Permian depositional history, Leach Mountains, northeastern Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martindale, S.G.
1993-04-01
The 4,000 m thick Permian sequence in the Leach Mountains consists of carbonate rock, chert, terrigenous clastic rock and phosphatic rock. These rocks, in ascending order, comprise the Third Fork Fm., Badger Gulch Fm., Trapper Creek Fm., Grandeur Fm., Meade Peak Phosphatic Shale Tongue of the Phosphoria Fm., Murdock Mountain Fm. and Gerster Limestone. This sequence disconformably overlain by Triassic strata. Initial Permian deposition, represented by the late Wolfcampian to early Leonardian Third Fork Fm., was on a slope, at a water depth of about 50 m. Subsequently, a shallowing trend occurred during the early Leonardian to late Leonardian withmore » deposition of the Badger Gulch, Trapper Creek and Grandeur Fms. The Trapper Creek and Grandeur Fms. were deposited on the shelf, in very shallow subtidal to supratidal environments. The shelf persisted through the remainder of the Permian. In the late leonardian, the Meade Peak Tongue was deposited in very shallow subtidal and intertidal environments. A supratidal environment was re-established in latest Leonardian( ) to early Guadalupian with deposition of the lower Murdock Mountain Fm. The upper Murdock Mountain Fm. was deposited in very shallow subtidal to supratidal environments. Later during the early Guadalupian, intertidal to shallow subtidal deposition of the Gerster Limestone occurred. Angular phosphatic pebbles that were derived from phosphatic strata at the top of the Gerster Limestone are contained in the Triassic basal conglomerate. These pebbles indicate that the last Permian event was probably emergence and erosion of the top of the Gerster Limestone.« less
NASA Astrophysics Data System (ADS)
Meyer, K. M.; Yu, M.; Lehrmann, D.; van de Schootbrugge, B.; Payne, J. L.
2013-01-01
Large δ13C excursions, anomalous carbonate precipitates, low diversity assemblages of small fossils, and evidence for marine euxinia in uppermost Permian and Lower Triassic strata bear more similarity to Neoproterozoic carbonates than to the remainders of the Permian and Triassic systems. Middle Triassic diversification of marine ecosystems coincided with the waning of anoxia and stabilization of the global carbon cycle, suggesting that environment-ecosystem linkages were important to biological recovery. However, the Earth system behavior responsible for these large δ13C excursions remains poorly constrained. Here we present a continuous Early Triassic δ13Corg record from south China and use it to test the extent to which Early Triassic excursions in δ13Ccarb record changes in the δ13C of marine dissolved inorganic carbon (DIC). Regression analysis demonstrates a significant positive correlation between δ13Corg and δ13Ccarb across multiple sections that span a paleoenvironmental gradient. Such a correlation is incompatible with diagenetic alteration because no likely mechanism will alter both δ13Corg and δ13Ccarb records in parallel and therefore strongly indicates a primary depositional origin. A simple explanation for this correlation is that a substantial portion of the preserved Corg was derived from the contemporaneous DIC pool, implying that the observed excursions reflect variation in the δ13C of the exogenic carbon reservoir (ocean, atmosphere, biomass). These findings support existing evidence that large δ13C excursions are primary and therefore strengthen the case that large-scale changes to the carbon cycle were mechanistically linked to the low diversity and small size of Early Triassic fossils. Associated sedimentary and biogeochemical phenomena further suggest that similar associations in Neoproterozoic and Cambrian strata may reflect the same underlying controls.
NASA Astrophysics Data System (ADS)
Pereira, M. F.; Ribeiro, C.; Gama, C.; Drost, K.; Chichorro, M.; Vilallonga, F.; Hofmann, M.; Linnemann, U.
2017-01-01
Laser ablation ICP-MS U-Pb analyses have been conducted on detrital zircon of Upper Triassic sandstone from the Alentejo and Algarve basins in southwest Iberia. The predominance of Neoproterozoic, Devonian, Paleoproterozoic and Carboniferous detrital zircon ages confirms previous studies that indicate the locus of the sediment source of the late Triassic Alentejo Basin in the pre-Mesozoic basement of the South Portuguese and Ossa-Morena zones. Suitable sources for the Upper Triassic Algarve sandstone are the Upper Devonian-Lower Carboniferous of the South Portuguese Zone (Phyllite-Quartzite and Tercenas formations) and the Meguma Terrane (present-day in Nova Scotia). Spatial variations of the sediment sources of both Upper Triassic basins suggest a more complex history of drainage than previously documented involving other source rocks located outside present-day Iberia. The two Triassic basins were isolated from each other with the detrital transport being controlled by two independent drainage systems. This study is important for the reconstruction of the late Triassic paleogeography in a place where, later, the opening of the Central Atlantic Ocean took place separating Europe from North America.
NASA Astrophysics Data System (ADS)
Tanner, L. H.; Kyte, F. T.; Richoz, S.
2014-12-01
Samples from strata spanning the Triassic-Jurassic boundary in the classic sections at Kuhjoch and Kendlbach were studied by NAA to determine Ir levels, and the results compared to previously determined carbon isotope stratigraphy. Ir concentrations in the Kössen Formation are very low (< 10 pg/g), well below average crustal levels until the top of the formation, reaching levels of ~15 pg/g, in the T-bed at the top of the Eiberg Member. The Tiefengraben Member (Kendlbach Formation) is enriched in Ir in general relative to the strata below. The shift to higher levels is abrupt at the base of the member. Concentrations of 60 to 80 pg/g are typical through the entire thickness of the Schattwald Beds and into the gray Tiefengraben, peaking at 145 pg/g. Above 560 cm from the Tiefengraben base, concentrations decline gradually from 50 pg/g to ~30 pg/g. The analyses from the Kendlbach section compare well with those from Kuhjoch, with the same order of magnitude difference in Ir concentration between the Kössen and Kendlbach formations. The same range of Ir values (60 to 80 pg/g) is seen in the lower 200 cm of the Tiefengraben Member, with a significant decline seen above 220 cm. In both sections, the initial increase in Ir corresponds to the initial carbon isotope excursion, considered the peak extinction horizon, but otherwise there is no clear correlation to the C-isotope data. The positive shift to background δ13C values is not accompanied by any noticeable change in Ir, however. There do appear (at least visually) to be smaller parallel shifts in both δ13C and Ir, but the shifts are of smaller magnitude. The difference between the Ir concentration in the Kössen and Kendlbach formations levels has a strong lithologic control; levels are very low carbonate versus elevated levels in siliclastics, but variations within the Kendlbach Formation are independent of lithology. Although there is no obvious evidence of volcanic input in the sections studied, we consider outgassing during eruptions of the Central Atlantic Magmatic Province, which is widely accepted as the driver of Late Triassic extinctions, a viable hypothesis to explain the origin of the slightly elevated Ir levels.
New Early Jurassic Tetrapod Assemblages Constrain Triassic-Jurassic Tetrapod Extinction Event
NASA Astrophysics Data System (ADS)
Olsen, P. E.; Shubin, N. H.; Anders, M. H.
1987-08-01
The discovery of the first definitively correlated earliest Jurassic (200 million years before present) tetrapod assemblage (Fundy basin, Newark Supergroup, Nova Scotia) allows reevaluation of the duration of the Triassic-Jurassic tetrapod extinction event. Present are tritheledont and mammal-like reptiles, prosauropod, theropod, and ornithischian dinosaurs, protosuchian and sphenosuchian crocodylomorphs, sphenodontids, and hybodont, semionotid, and palaeonisciform fishes. All of the families are known from Late Triassic and Jurassic strata from elsewhere; however, pollen and spore, radiometric, and geochemical correlation indicate an early Hettangian age for these assemblages. Because all ``typical Triassic'' forms are absent from these assemblages, most Triassic-Jurassic tetrapod extinctions occurred before this time and without the introduction of new families. As was previously suggested by studies of marine invertebrates, this pattern is consistent with a global extinction event at the Triassic-Jurassic boundary. The Manicouagan impact structure of Quebec provides dates broadly compatible with the Triassic-Jurassic boundary and, following the impact theory of mass extinctions, may be implicated in the cause.
Mankinen, Edward A.; Irwin, William P.
1990-01-01
Paleomagnetic studies of the Klamath Mountains, Blue Mountains, Sierra Nevada, and northwestern Nevada pertain mostly to Jurassic and Cretaceous rocks, but some data also are available for Permian and Triassic rocks of the region. Large vertical-axis rotations are indicated for rocks in many of the terranes, but few studies show statistically significant latitudinal displacements. The most complete paleomagnetic record is from the Eastern Klamath terrane, which shows large post-Triassic clockwise rotations and virtual cessation of rotation by Early Cretaceous time, when accretion to the continent was completed. Data from Permian strata of the Eastern Klamath terrane indicate no paleolatitude anomaly, in contrast to preliminary results from coeval strata of Hells Canyon in the Blue Mountains region, which are suggestive of some southward movement. If these Hells Canyon results are confirmed, some of the terranes in these two regions must have been traveling on separate plates during late Paleozoic time. Data from Triassic and younger strata in the Blue Mountains region indicate paleolatitudes that are concordant with North America. Results from Triassic rocks of the Koipato Formation in west-central Nevada also indicate southward transport, but when this movement ceased is unknown. The Nevadan orogeny may have occurred in the Sierra Nevada during Jurassic accretion of the ophiolitic and volcanic-arc terranes of that province to the continent, whereas what has been considered to be the same orogeny in the Klamath Mountains may have occurred before accretion. Using the concordance of observed and expected paleomagnetic directions as a guide, the allochthonous Sierra Nevada, Klamath Mountains, and Blue Mountains composite terranes seem to have accreted to the continent sequentially from south to north.
NASA Astrophysics Data System (ADS)
Tavakoli, Vahid; Naderi-Khujin, Mehrangiz; Seyedmehdi, Zahra
2018-04-01
Detailed sedimentological and geochemical records across the Permian-Triassic boundary (PTB) in five offshore wells of the central Persian Gulf served to interpret the end-Permian sea-level change in this region. A decrease in sea level at the PTB was established by petrographical and geochemical study of the boundary. Thin sections showed that Upper Permian strata are composed of dolomite with minor anhydrite, changing into limestone in Lower Triassic sediments. Brine dilution toward the boundary supports sea-level fall in the Permian-Triassic transition, reflected by a decrease in anhydrite content and a shallowing-upward trend from lagoonal to peritidal facies. Isotopic changes at the boundary are in favor of sea-level fall. Changes in both carbon (from about 4 to -1‰) and oxygen (from 2 to -5‰) stable isotopes show negative excursions. The shift in carbon isotope values is a global phenomenon and is interpreted as resulting from carbonate sediment interaction with 12C-rich waters at the end-Permian sea-level fall. However, the oxygen isotope shift is attributed to the effect of meteoric waters with negative oxygen isotope values. The increase in strontium isotope ratios is also consistent with the high rate of terrestrial input at the boundary. The effect of meteoric conditions during diagenesis is evident from vuggy and moldic porosities below the PTB. The following transgression at the base of the Triassic is evident from the presence of reworked fossils and intraclasts resulting from deposition from agitated water.
The Collyhurst Sandstone as a secondary storage unit for CCS in the East Irish Sea Basin (UK)
NASA Astrophysics Data System (ADS)
Gamboa, D.; Williams, J. D. O.; Kirk, K.; Gent, C. M. A.; Bentham, M.; Schofield, D. I.
2016-12-01
Carbon Capture and Storage (CCS) is key technology for low-carbon energy and industry. The UK hosts a large CO2 storage potential offshore with an estimated capacity of 78 Gt. The East Irish Sea Basin (EISB) is the key area for CCS in the western UK, with a CO2 storage potential of 1.7 Gt in hydrocarbon fields and in saline aquifers within the Triassic Sherwood Sandstone Formation. However, this theoretical storage capacity does not consider the secondary storage potential in the lower Permian Collyhurst Sandstone Formation. 3D seismic data were used to characterise the Collyhurst Sandstone Formation in the EISB. On the southern basin domain, numerous fault-bound blocks limit the lateral continuity of the sandstone strata, while on the northern domain the sandstones are intersected by less faults. The caprock for the Collyhurst sandstones is variable. The Manchester Marls predominate in the south, transitioning to the St. Bees evaporites towards the north. The evaporites in the EISB cause overburden faults to terminate or detach along Upper Permian strata, limiting the deformation of the underlying reservoir units. Five main storage closures have been identified in the Permian strata. In the southern and central area these are predominantly fault bounded, occurring at depths over 1000m. Despite the higher Collyhurst sandstone thickness in the southern IESB, the dolomitic nature of the caprock constitutes a storage risk in this area. Closures in the northern area are deeper (around 2000-2500m) and wider, reaching areas of 34Km2, and are overlain by evaporitic caprocks. The larger Collyhurst closures to the north underlie large Triassic fields with high storage potential. The spatial overlap favours storage plans including secondary storage units in the EISB. The results of this work also expand the understanding of prospective areas for CO2 sequestration in the East Irish Sea Basin in locations where the primary Sherwood Sandstone Formation is either too shallow, discontinuous or eroded.
NASA Astrophysics Data System (ADS)
Lawton, Timothy F.; Buck, Brenda J.
2006-10-01
Gypsum-bearing growth strata and sedimentary facies of the Moenkopi Formation on the crest and NE flank of the Castle Valley salt wall in the Paradox Basin record salt rise, evaporite exposure, and salt-withdrawal subsidence during the Early Triassic. Detrital gypsum and dolomite clasts derived from the middle Pennsylvanian Paradox Formation were deposited in strata within a few kilometers of the salt wall and indicate that salt rise rates roughly balanced sediment accumulation, resulting in long-term exposure of mobile evaporite. Deposition took place primarily in flood-basin or inland sabkha settings that alternated between shallow subaqueous and subaerial conditions in a hyperarid climate. Matrix-supported and clast-supported conglomerates with gypsum fragments represent debris-flow deposits and reworked debris-flow deposits, respectively, interbedded with flood-basin sandstone and siltstone during development of diapiric topography. Mudstone-rich flood-basin deposits with numerous stage I to III gypsic paleosols capped by eolian gypsum sand sheets accumulated during waning salt-withdrawal subsidence. Association of detrital gypsum, eolian gypsum, and gypsic paleosols suggests that the salt wall provided a common source for gypsum in the surrounding strata. This study documents a previously unrecognized salt weld with associated growth strata containing diapir-derived detritus and gypsic palesols that can be used to interpret halokinesis.
The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China.
Liu, Shan; Qi, Shihua; Luo, Zhaohui; Liu, Fangzhi; Ding, Yang; Huang, Huanfang; Chen, Zhihua; Cheng, Shenggao
2018-02-01
Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water-rock-hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water-rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T 2 g 3 ) and upper of Yongningzhen formation (T 1 yn 4 ). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.
Kammerer, Christian F.; Melo, Tomaz P.; Paes Neto, Voltaire D.; Ribeiro, Ana Maria; Da-Rosa, Átila A. S.; Schultz, Cesar L.; Soares, Marina Bento
2017-01-01
In this contribution we report the first occurrence of the enigmatic African probainognathian genus Aleodon in the Middle-early Late Triassic of several localities from the state of Rio Grande do Sul in southern Brazil. Aleodon is unusual among early probainognathians in having transversely-expanded postcanine teeth, similar to those of gomphodont cynognathians. This genus was previously known from the Manda Beds of Tanzania and the upper Omingonde Formation of Namibia. The Brazilian record of this genus is based upon multiple specimens representing different ontogenetic stages, including three that were previously referred to the sectorial-toothed probainognathian Chiniquodon theotonicus. We propose a new species of Aleodon (A. cromptoni sp. nov.) based on the specimens from Brazil. Additionally, we tentatively refer one specimen from the upper Omingonde Formation of Namibia to this new taxon, strengthening biostratigraphic correlations between these strata. Inclusion of A. cromptoni in a phylogenetic analysis of eucynodonts recovers it as the sister-taxon of A. brachyrhamphus within the family Chiniquodontidae. The discovery of numerous specimens of Aleodon among the supposedly monospecific Chiniquodon samples of Brazil raises concerns about chiniquodontid alpha taxonomy, particularly given the extremely broad geographic distribution of Chiniquodon. The discovery of Brazilian Aleodon and new records of the traversodontid Luangwa supports the hypothesis that at least two subzones can be recognized in the Dinodontosaurus Assemblage Zone. PMID:28614355
Litwin, R.J.; Ash, S.R.
1993-01-01
Paleontological evidence from the Upper Triassic Chatham Group in the three subbasins of the Deep River basin (North Carolina, USA) supports a significant revision of the ages assigned to most of this non-marine continental sedimentary sequence. This study confirms an early(?) or mid-Carnian age in the Sanford subbasin for the base of the Pekin Formation, the lowest unit of the Chatham Group. However, diagnostic late Carnian palynomorphs have been recovered from coals in the lower part of the Cumnock Formation in the Sanford subbasin, and from a sample of the Cumnock Formation equivalent in the Wadesboro subbasin. Plant megafossils and fossil verebrates from rocks in the Sanford subbasin also support a late Carnian age for the Cumnock Formation and its equivalents. The overlying Sanford Formation, which has not yet been dated paleontologically, probably includes beds of Norian age, as over 1000 m of strata may be present between the Cumnock Formation coals (dated here as late Carnian) and the top of the Sanford Formation. This chronostratigraphic interval appears similar to, but slightly longer than, that preserved in the Dan River-Danville and Davie County basins 100 km to the northwest. Our evidence, therefore, indicates that the Chatham Group was deposited over a much longer time interval [early(?) to mid-Carnian through early Norian] than previously was believed. ?? 1993.
Stratigraphy and structure of the Miners Mountain area, Wayne County, Utah
Luedke, Robert G.
1953-01-01
The Miners Mountain area includes about 85 square miles in Wayne County, south-central Utah. The area is semiarid and characterized by cliffs and deep canyons. Formations range in age from Permian to Upper Jurassic and have an aggregate thickness of about 3,500 feet. Permian formations are the buff Coconino sandstone and the overlying white, limy, shert-containing Kaibab limestone. Unconformably overlying the Kaihab is the lower Triassic Moenkopi formation of reddish-brown and yellow mudstone, siltstone, and sandstone; it contains the Sinbad limestone member (?) in the lower part. Thin, lenticular Shinarump conglomerate unconformably overlies the Moenkopi, but grades upward into the Upper Triassic Chinle formation of variegated mudstone with some interbedded sandstone and limestone lenses. Uncomformably overlying the Chinle are the Wingate sandstone, Kayenta formation, and Navajo sandstone of the Jurassic (?) Glen Canyon group, which consist of red to white sandstone. Only the lower part of the Carmel formation of the Upper Jurassic San Rafael group is exposed in the area; it consists of variegated siltstone, sandstone, limestone, and gypsum. The conspicuous structural feature in the area is the Teasdale anticline which trends northwest, is about 14 miles long, and is asymmetric with a steeper west flank. Bounding the anticline on the northeast and east is the Capitol Reef monocline, the northern part of the Waterpocket Fold. Strata in the area are broken by steeply-dipping normal faults with small displacements, except for the Teasdale fault which has a maximum displacement of over 1,000 feet. Jointing is prominent in some formations. The major orogenic movement in the area is believed to be late Upper Cretaceous to early Tertiary. Epeirogenic uplift occurred intermittently throughout Tertiary and perhaps Quaternary time.
Scholle, Peter A.; Wenkam, Chiye R.
1982-01-01
The COST Nos. G-1 and G-2 wells (fig. 1) are the second and third deep stratigraphic test wells drilled in the North Atlantic Outer Continental Shelf of the United States. COST No. G-1 was drilled in the Georges Bank basin to a total depth of 16,071 ft (4,898 m). G-1 bottomed in phyllite, slate, and metaquartzite overlain by weakly metamorphosed dolomite, all of Cambrian age. From approximately 15,600 to 12,400 ft (4,755 to 3,780 m) the strata are Upper Triassic(?), Lower Jurassic(?), and Middle Jurassic, predominantly red shales, sandstones, and conglomerates. Thin, gray Middle Jurassic beds of shale, sandstone, limestone, and dolomite occur from 12,400 to 9,900 ft (3,780 to 3,018 m). From 9,900 to 1,030 ft (3,018 to 314 m) are coarse-grained unconsolidated sands and loosely cemented sandstones, with beds of gray shale, lignite, and coal. The microfossils indicate the rocks are Upper Jurassic from 10,100 ft (3,078 m) up to 5,400 ft (1,646 m) and Cretaceous from that depth to 1,030 ft (314 m). No younger or shallower rocks were recovered in the drilling at the COST No. G-1 site, but an Eocene limestone is inferred to be disconformable over Santonian strata. The Jurassic strata of the COST No. G-1 well were deposited in shallow marine, marginal marine, and nonmarine environments, which changed to a dominantly shallow marine but still nearshore environment in the Cretaceous. The COST No. G-2 well was drilled 42 statute miles {68 km) east of the G-1 site, still within the Georges Bank basin, to a depth of 21,874 ft (6,667 m). The bottom 40 ft (12 m) of salt and anhydrite is overlain by approximately 7,000 ft {2,134 m) of Upper Triassic{?), Lower Jurassic{?) and Middle Jurassic dolomite, limestone, and interbedded anhydrite from 21,830 to 13,615 ft (6,654 to 4,153 m). From 13,500 to 9,700 ft (4,115 to 2,957 m) are Middle Jurassic limestones with interbedded sandstone. From 9,700 to 4,000 ft (2,957 to 1,219 m) are Upper Jurassic and Cretaceous interbedded sandstones and limestones overlain by Upper Cretaceous unconsolidated sands, sandstones, and calcareous shales. Pliocene, Miocene, Eocene, and Paleocene strata are disconformable over Santonian rocks; uppermost Cretaceous rocks are missing at this site, as at G-1. The sedimentary rocks in the COST No. G-2 well were deposited in somewhat deeper water, farther away from sources of terrigenous material than those at G-l, but still in marginal marine to shallow marine environments. Data from geophysical logs and examination of conventional cores, wellcuttings, and sidewall cores show that below 10,000 ft {3,048 m), the strata in both wells have moderate porosities {< 20 percent) and low to moderate permeabilities {< 100 mD) and are thus considered adequate to poor reservoir rocks. Above 10,000 ft (3,000 m) the porosities range from 16 to 39 percent, and the permeabilities are highly variable, ranging from 0.01 to 7,100 mD. Measurements of vitrinite reflectance, color alteration of visible organic matter, and various organic geochemical properties suggest that the Tertiary and Cretaceous strata of the COST Nos. G-1 and G-2 are not prospective for oil and gas. These sediments have not been buried deeply enough for hydrocarbon generation, and the kerogen and extractable organic matter in them are thermally immature. However, the Jurassic rocks at the G-1 site do contain small amounts of thermally mature gas-prone kerogens. The Jurassic rocks at COST No. G-2 are also gas-prone and are slightly richer in organic carbon and total extractable hydrocarbons than the G-1 rocks, but both sites have only poor to fair oil and gas source-rock potential.
NASA Technical Reports Server (NTRS)
Kyte, Frank T.
2005-01-01
We present new analyses that confirm Ir enrichment (up to 0.31 ng/g) in close proximity to the palynological Triassic-Jurassic boundary in strata near the top of the Blomidon Formation at Partridge Island, Nova Scotia. High Ir concentrations have been found in at least two samples within the uppermost 70 cm of the formation. Ratios of other PGEs and Au to Ir are generally higher by an order of magnitude than in ordinary chondrites. No impact-related materials have been identified at #is horizon in the Blomidon Formation, therefore we cannot confirm an extraterrestrial source for the anomalous Ir levels. We consider, however, the possibility that regional basaltic volcanism is a potential source for the Ir in these sediments. The elevated Ir concentrations are found in reduced, grey colored mudstones, so redox concentration is a possible explanation for the distribution of Ir in these strata.
Grantz, A.; Clark, D.L.; Phillips, R.L.; Srivastava, S.P.; Blome, C.D.; Gray, L.-B.; Haga, H.; Mamet, B.L.; McIntyre, D.J.; McNeil, D.H.; Mickey, M.B.; Mullen, M.W.; Murchey, B.I.; Ross, C.A.; Stevens, C.H.; Silberling, Norman J.; Wall, J.H.; Willard, D.A.
1998-01-01
Cores from Northwind Ridge, a high-standing continental fragment in the Chukchi borderland of the oceanic Amerasia basin, Arctic Ocean, contain representatives of every Phanerozoic system except the Silurian and Devonian systems. Cambrian and Ordovician shallow-water marine carbonates in Northwind Ridge are similar to basement rocks beneath the Sverdrup basin of the Canadian Arctic Archipelago. Upper Mississippian(?) to Permian shelf carbonate and spicularite and Triassic turbidite and shelf lutite resemble coeval strata in the Sverdrup basin and the western Arctic Alaska basin (Hanna trough). These resemblances indicate that Triassic and older strata in southern Northwind Ridge were attached to both Arctic Canada and Arctic Alaska prior to the rifting that created the Amerasia basin. Late Jurassic marine lutite in Northwind Ridge was structurally isolated from coeval strata in the Sverdrup and Arctic Alaska basins by rift shoulder and grabens, and is interpreted to be a riftogenic deposit. This lutite may be the oldest deposit in the Canada basin. A cape of late Cenomanian or Turonian rhyodacite air-fall ash that lacks terrigenous material shows that Northwind Ridge was structurally isolated from the adjacent continental margins by earliest Late Cretaceous time. Closing Amerasia basin by conjoining seafloor magnetic anomalies beneath the Canada basin or by uniting the pre-Jurassic strata of Northwind Ridge with kindred sections in the Sverdrup basin and Hanna trough yield simular tectonic reconstructions. Together with the orientation and age of rift-marine structures, these data suggest that: 1) prior to opening of the Amerasia basin, both northern Alaska and continental ridges of the Chukchi borderland were part of North America, 2) the extension that created the Amerasia basin formed rift-margin graben beginning in Early Jurassic time and new oceanic crust probably beginning in Late Jurassic or early Neocomian time. Reconstruction of the Amerasia basin on the basis of the stratigraphy of Northwind Ridge and sea-floor magnetic anomalies in the Canada basin accounts in a general way for the major crustal elements of the Americasia basin, including the highstanding ridges of the Chukchi borderland, and supports S.W. Carye's hypothesis that the Amerasia basin is the product of anticlockwise rotational rifting of Arctic Alaska from North America.
NASA Astrophysics Data System (ADS)
Viglietti, Pia A.; Smith, Roger M. H.; Angielczyk, Kenneth D.; Kammerer, Christian F.; Fröbisch, Jörg; Rubidge, Bruce S.
2016-01-01
The Dicynodon Assemblage Zone (DiAZ) of South Africa's Karoo Basin is one of the eight biostratigraphic zones of the Beaufort Group. It spans the uppermost Permian strata (Balfour, Teekloof, and Normandien formations) and traditionally has been considered to terminate with the disappearance of Dicynodon lacerticeps at the Permo-Triassic Boundary. We demonstrate that the three index fossils currently used to define the Dicynodon Assemblage Zone (Dicynodon lacerticeps, Theriognathus microps, and Procynosuchus delaharpeae) have first appearance datums (FADs) below its traditionally recognized lower boundary and have ranges mostly restricted to the lower portion of the biozone, well below the Permo-Triassic Boundary. We propose re-establishing Daptocephalus leoniceps as an index fossil for this stratigraphic interval, and reinstating the name Daptocephalus Assemblage Zone (DaAZ) for this unit. Furthermore, the FAD of Lystrosaurus maccaigi in the uppermost reaches of the biozone calls for the establishment of a two-fold subdivision of the current Dicynodon Assemblage Zone. The biostratigraphic utility of Da. leoniceps and other South African dicynodontoids outside of the Karoo Basin is limited due to basinal endemism at the species level and varying temporal ranges of dicynodontoids globally. Therefore, we recommend their use only for correlation within the Karoo Basin at this time. Revision of the stratigraphic ranges of all late Permian tetrapods does not reveal a significant change in faunal diversity between the lower and upper DaAZ. However, the last appearance datums of the abundant taxa Di. lacerticeps, T. microps, P. delaharpeae, and Diictodon feliceps occur below the three extinction phases associated with the end-Permian mass extinction event. Due to northward attenuation of the strata, however, the stratigraphic position of the extinction phases may need to be reconsidered.
NASA Astrophysics Data System (ADS)
Luo, Genming; Richoz, Sylvain; van de Schootbrugge, Bas; Algeo, Thomas J.; Xie, Shucheng; Ono, Shuhei; Summons, Roger E.
2018-06-01
The cause of the Triassic-Jurassic (Tr-J) boundary biotic crisis, one of the 'Big Five' mass extinctions of the Phanerozoic, remains controversial. In this study, we analyzed multiple sulfur-isotope compositions (δ33S, δ34S and δ36S) of pyrite and Spy/TOC ratios in two Tr-J successions (Mariental, Mingolsheim) from the European Epicontinental Seaway (EES) in order to better document ocean-redox variations during the Tr-J transition. Our results show that upper Rhaetian strata are characterized by 34S-enriched pyrite, low Spy/TOC ratios, and values of Δ33Spy (i.e., the deviation from the mass-dependent array) lower than that estimated for contemporaneous seawater sulfate, suggesting an oxic-suboxic depositional environment punctuated by brief anoxic events. The overlying Hettangian strata exhibit relatively 34S-depleted pyrite, high Δ33Spy, and Spy/TOC values, and the presence of green sulfur bacterial biomarkers indicate a shift toward to euxinic conditions. The local development of intense marine anoxia thus postdated the Tr-J mass extinction, which does not provide support for the hypothesis that euxinia was the main killing agent at the Tr-J transition. Sulfur and organic carbon isotopic records that reveal a water-depth gradient (i.e., more 34S-, 13C-depleted with depth) in combination with Spy/TOC data suggest that the earliest Jurassic EES was strongly stratified, with a chemocline located at shallow depths just below storm wave base. Shallow oceanic stratification may have been a factor for widespread deposition of black shales, a large positive shift in carbonate δ13C values, and a delay in the recovery of marine ecosystems following the Tr-J boundary crisis.
NASA Astrophysics Data System (ADS)
Tanner, Lawrence H.; Lucas, Spencer G.
2010-01-01
The stratigraphic section of the Upper Triassic-Lower Jurassic Whitmore Point Member of the Moenave Formation at Potter Canyon, Arizona, comprises c. 26 m of gray to black shales and red mudstones interbedded with mainly sheet-like siltstones and sandstones. These strata represent deposition from suspension and sheetflow processes in shallow, perennial meromictic to ephemeral lakes, and on dry mudflats of the terminal floodout of the northward-flowing Moenave stream system. The lakes were small, as indicated by the lack of shoreline features and limited evidence for deltas. Changes in base level, likely forced by climate change, drove the variations between mudflat and perennial lacustrine conditions. Lenticular sandstones that occur across the outcrop face in the same stratigraphic interval in the lower part of the sequence represent the bedload fill of channels incised into a coarsening-upward lacustrine sequence following a fall in base level. These sandstones are distinctive for the common presence of over-steepened bedding, dewatering structures, and less commonly, folding. Deformation of these sandstones is interpreted as aseismic due to the lack of features typically associated with seismicity, such as fault-graded bedding, diapirs, brecciated fabrics and clastic dikes. Rapid deposition of the sands on a fluid-rich substrate produced a reverse density gradient that destabilized, and potentially fluidized the underlying, finer-grained sediments. This destabilization allowed synsedimentary subsidence of most of the channel sands, accompanied by longitudinal rotation and/or ductile deformation of the sand bodies.
NASA Astrophysics Data System (ADS)
Gawlick, Hans-Jürgen; Djerić, Nevenka; Missoni, Sigrid; Bragin, Nikita Yu.; Lein, Richard; Sudar, Milan; Jovanović, Divna
2017-08-01
Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt) west of the Drina-Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje-Ljubiš-Visoka-Radoševo mélange) contains a mixture of blocks of 1) oceanic crust, 2) Middle and Upper Triassic ribbon radiolarites, and 3) open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1) the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2) the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange). We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A) on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef), B) between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef), and C) in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon). The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange) filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and slightly older carbonate-clastic mélange points to a deposition of the sedimentary ophiolitic mélange east of or on top of the Drina-Ivanjica unit.
NASA Astrophysics Data System (ADS)
Reat, Ellen J.; Fosdick, Julie C.
2016-04-01
New data from the Argentine Precordillera in the southern Central Andes document changes in depositional environment and sediment accumulation rates during Upper Cretaceous through Oligocene basin evolution, prior to the onset Miocene foredeep sedimentation. This work presents new sedimentology, detrital geochronology, and geologic mapping from a series of continental strata within this interval to resolve the timing of sedimentation, nature of depositional environments, and basin paleogeography at the nascent phase of Andean orogenic events, prior to the uplift and deformation of the Precordillera to the west. Five stratigraphic sections were measured across both limbs of the Huaco Anticline, detailing sedimentology of the terrestrial siliciclastic upper Patquía, Ciénaga del Río Huaco (CRH), Puesto la Flecha, Vallecito, and lower Cerro Morado formations. Paleocurrent data indicate a flow direction change from predominantly NE-SW in the upper Patquía and the lower CRH to SW-NE directed flow in the upper CRH, consistent with a large meandering river system and a potential rise in topography towards the west. This interpretation is further supported by pebble lag intervals and 1-3 meter scale trough cross-bedding in the CRH. The thinly laminated gypsum deposits and siltstones of the younger Puesto la Flecha Formation indicate an upsection transition into overbank and lacustrine sedimentation during semi-arid climatic conditions, before the onset of aeolian dune formation. New maximum depositional age results from detrital zircon U-Pb analysis indicate that the Puesto la Flecha Formation spans ~57 Myr (~92 to ~35 Ma) across a ~48 m thick interval without evidence for major erosion, indicating very low sedimentation rates. This time interval may represent distal foredeep or forebulge migration resultant from western lithospheric loading due to the onset of Andean deformation at this latitude. Detrital zircon U-Pb age spectra also indicate shifts in sediment routing pathways over time, consistent with a transition from local basement-sourced quartz-rich sediments during the Triassic-Cretaceous to increased volcanic and sedimentary lithics from the rising Andes in the west during Paleocene-Eocene time. We therefore interpret these changes in depositional character as representing a transition from a large fluvial system with craton-sourced sediments during the Triassic-Cretaceous CRH to low energy lacustrine and ephemeral playa environments with an increase in westerly derived sediments during the Paleocene-Eocene Puesto la Flecha, prior to the reported Oligocene onset of the Andean continental foredeep represented by the Vallecito Formation.
NASA Astrophysics Data System (ADS)
Whiteside, J. H.; Schaller, M. F.; Palmer, M.; Milton, J. A.; Olsen, P. E.
2016-12-01
Models of increasing atmospheric pCO2 predict an intensification of the hydrological cycle coupled with warming, with an implied amplification of the effects of orbitally forced precipitation fluctuations. Supporting evidence exists for the Pleistocene, however such evidence has not yet been developed from ancient Mesozoic warm intervals that serve as partial analogues for greenhouse worlds. This study presents lithological, soil carbonate, and compound-specific hydrogen isotopic data (δD) from plant wax n-alkanes data from Late Triassic and Early Jurassic (pCO2values >1,000 ppm) marine and non-marine records from eastern North America and England with a particular emphasis on the end-Triassic mass extinction. In eastern North American Pangean rift basins, variance in lake level expression of the climatic precession cycle from lithology and compound-specific δD appears temporally linked to CO2 based on the soil carbonate proxy from the same strata. Cyclicity variance is high during times of high CO2 ( 4000 ppm) during most of the Late Triassic, drops precipitously as CO2 declines below 2,500 ppm during most of the Rhaetian, and dramatically increases when massive atmospheric CO2 increases ( 5,000 - 6,000 ppm) associated with the Central Atlantic Magmatic Province (and end-Triassic extinction) drove insolation-paced increases in precipitation. Cyclicity variance drops again as CO2 declines (<2,000 ppm) during the Jurassic. Preliminary data suggest significant variability in leaf wax δD corresponding to other environmental changes across the extinction interval. In addition, 87Sr/86Sr in marine strata (Tackett et al., 2014) tracks CO2 with a dramatic decrease from 0.70795 to 0.70765 suggesting a mechanistic link through weathering. Analyses of continuous paralic to marine samples, now underway, from the end-Triassic extinction and Triassic-Jurassic boundary interval at St. Audrie's Bay (Bristol Channel Basin) will test the generality of this pattern, in an area far from the Central Atlantic Magmatic Province basalts themselves. References: Tackett, L.S. et al. 2014. Lethaia, 47(4):500
NASA Astrophysics Data System (ADS)
Tuchkova, M. I.; Sokolov, S.; Kravchenko-Berezhnoy, I. R.
2009-09-01
The study area is part of the Anyui subterrane of the Chukotka microplate, a key element in the evolution of the Amerasia Basin, located in Western Chukotka, Northeast Russia. The subterrane contains variably deformed, folded and cleaved rhythmic Triassic terrigenous deposits which represent the youngest stage of widespread marine deposition which form three different complexes: Lower-Middle Triassic, Upper Triassic (Carnian) and Upper Triassic (Norian). All of the complexes are represented by rhythmic interbeds of sandstone, siltstone and mudstone. Macrofaunas are not numerous, and in some cases deposits are dated by analogy to, or by their relationship with, other units dated with macrofaunas. The deposits are composed of pelagic sediments, low-density flows, high-density flows, and shelf facies associations suggesting that sedimentation was controlled by deltaic progradation on a continental shelf and subsequent submarine fan sedimentation at the base of the continental slope. Petrographic study of the mineral composition indicates that the sandstones are lithic arenites. Although the Triassic sandstones appear similar in outcrop and by classification, the constituent rock fragments are of diverse lithologies, and change in composition from lower grade metamorphic rocks in the Lower-Middle Triassic to higher grade metamorphic rocks in the Upper Triassic. This change suggests that the Triassic deposits represent an unroofing sequence as the source of the clastic material came from more deeply buried rocks with time.
Hudson, M.R.; Grauch, V.J.S.
2003-01-01
A sedimentary sequence penetrated in the lower part of the Grober-Fuqua #1 well in the southeastern Albuquerque Basin has previously been interpreted as either Triassic or Eocene in age. Paleomagnetic study of three specimens from two core fragments yielded a 54.5?? mean inclination of remanent magnetization relative to bedding. This inclination is like that expected in Tertiary time and is distinct from an expected low-angle Triassic inclination. Although the data are very few, when considered in combination with stratigraphic relations and the presence of a gravity low in this southeastern part of the basin, the paleomagnetic evidence favors a Tertiary age for strata in the lower part of the Grober-Fuqua #1 well.
Vertebrate biochronology of late Triassic red beds in New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, A.P.
1989-09-01
Four vertebrate biochrons can be recognized in Late Triassic strata of New Mexico: (A) Metoposaurus-Rutiodon-Desmatosuchus-Calyptosuchus-Placerias occurs in the Los Esteros member of the Santa Rosa formation near Lamy and is less well known from the lower Petrified Forest Member of the Chinle Formation near San Ysidro, at Mesa del Oro, near Fort Wingate, at Ojo Huelos, and in the Joyita hills. (B) Anaschisma-Belodon-Typothorax-Desmatosuchus-Paratypothorax occurs in the lower Bull Canyon formation in Bull Canyon and near Tucumcari, in the Trujillo Formation near Tucumcari, and possibly in the Travesser Formation of the Dry Cimarron valley, the Petrified Forest Member near Carthage, andmore » the Garita Creek formation near Lamy and Conchas Lake. (C) Anaschisma-Belodon-Typothorax occurs in the upper Bull Canyon formation in Bull Canyon, in the upper Petrified Forest Member near San Ysidro, at Ghost Ranch, near Albuquerque (Correo Sandstone Bed), and possibly in the Sloan Canyon Formation of the Dry Cimarron valley. (D) Anaschisma-new phytosaur, cf. Typothorax-new sphenosuchian, occurs in the Redonda Formation near Tucumcari. The biochronologic ranges of significant vertebrate taxa within New Mexico follow: metoposaurs - Metoposaurus (A-B ), Anaschisma (B-D); phytosuars - Rutiodon (A), Belodon (B-C), new taxon (D); aetosaurs - Calyptosuchus (A), Desmatosuchus (A-B), Paratypothorax (B), Typothorax (B-D ); rauisuchians - Postosuchus (A-B), Chatterjeea (B-C); sphenosuchians - new taxon 1 (A), Hesperosuchus (B), new taxon 2 (D); dinosaurs - ornithischians (B), Coelophysis (C), other theropods (B-C); therapsids - Placerias (A), Pseudotriconodon (C). Biochron A may be Carnian in age, whereas biochrons B-D are probably early to middle ( ) Norian.« less
Remote sensing and uranium exploration at Lisbon Valley, Utah
NASA Technical Reports Server (NTRS)
Conel, J. E.; Niesen, P. L.
1981-01-01
As part of the joint NASA-Geosat uranium test case program, aircraft-acquired multispectral scanner data are used to investigate the distribution of bleaching in Windgate sandstone exposed in Lisbon Valley anticline, Utah. It is noted that all of the large ore bodies contained in lower Chinle Triassic age or Cutler Permian age strata in this area lie beneath or closely adjacent to such bleached outcrops. The geographic coincidences reported here are seen as inviting renewed interest in speculation of a causal relation between occurrences of Mississippian-Pennsylvanian oil and gas in this area and of Triassic uranium accumulation and rock bleaching.
Sanwalka, Neha J; Khadilkar, Anuradha V; Mughal, M Zulf; Sayyad, Mehmood G; Khadilkar, Vaman V; Shirole, Shilpa C; Divate, Uma P; Bhandari, Dhanshari R
2010-01-01
Adequate intake of calcium is important for skeletal growth. Low calcium intake during childhood and adolescence may lead to decreased bone mass accrual thereby increasing the risk of osteoporotic fractures. Our aim was to study dietary calcium intake and sources of calcium in adolescents from lower and upper economic strata in Pune, India. We hypothesized that children from lower economic strata would have lower intakes of calcium, which would predominantly be derived from non-dairy sources. Two hundred male and female adolescents, from lower and upper economic stratum were studied. Semiquantitative food frequency questionnaire was used to evaluate intakes of calcium, phosphorus, oxalic acid, phytin, energy and protein. The median calcium intake was significantly different in all four groups, with maximum intake in the upper economic strata boys (893 mg, 689-1295) and lowest intake in lower economic strata girls (506 mg, 380-674). The median calcium intake in lower economic strata boys was 767 mg (585-1043) and that in upper economic strata girls was 764 mg (541-959). The main source of calcium was dairy products in upper economic strata adolescents while it was dark green leafy vegetables in lower economic strata adolescents. The median calcium intake was much lower in lower economic strata than in the upper economic strata both in boys and girls. Girls from both groups had less access to dairy products as compared to boys. Measures need to be taken to rectify low calcium intake in lower economic strata adolescents and to address gender inequality in distribution of dairy products in India.
Geologic map of Colorado National Monument and adjacent areas, Mesa County, Colorado
Scott, Robert B.; Harding, Anne E.; Hood, William C.; Cole, Rex D.; Livaccari, Richard F.; Johnson, James B.; Shroba, Ralph R.; Dickerson, Robert P.
2001-01-01
New 1:24,000-scale geologic mapping in the Colorado National Monument Quadrangle and adjacent areas, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of and data for the stratigraphy, structure, geologic hazards in the area from the Colorado River in Grand Valley onto the Uncompahgre Plateau. The plateau drops abruptly along northwest-trending structures toward the northeast 800 m to the Redlands area and the Colorado River in Grand Valley. In addition to common alluvial and colluvial deposits, surficial deposits include Holocene and late Pleistocene charcoal-bearing valley-fill deposits, late to middle Pleistocene river-gravel terrace deposits, Holocene to middle Pleistocene younger, intermediate, and old fan-alluvium deposits, late to middle Pleistocene local gravel deposits, Holocene to late Pleistocene rock-fall deposits, Holocene to middle Pleistocene young and old landslide deposits, Holocene to late Pleistocene sheetwash deposits and eolian deposits, and Holocene Cienga-type deposits. Only the lowest part of the Upper Cretaceous Mancos Shale is exposed in the map area near the Colorado River. The Upper and Lower? Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation form resistant dipslopes in the Grand Valley and a prominent ridge on the plateau. Less resistant strata of the Upper Jurassic Morrison Formation consisting of the Brushy Basin, Salt Wash, and Tidwell Members form slopes on the plateau and low areas below the mountain front of the plateau. The Middle Jurassic Wanakah Formation nomenclature replaces the previously used Summerville Formation. Because an upper part of the Middle Jurassic Entrada Formation is not obviously correlated with strata found elsewhere, it is therefore not formally named; however, the lower rounded cliff former Slickrock Member is clearly present. The Lower Jurassic silica-cemented Kayenta Formation forms the cap rock for the Lower Jurassic carbonate-cemented Wingate Sandstone, which forms the impressive cliffs of the monument. The Upper Triassic Chinle Formation was deposited on the eroded and weathered Middle Proterozoic meta-igneous gneiss, pegmatite dikes, and migmatitic gneiss. Structurally the area is deceptively challenging. Nearly flat-lying strata on the plateau are folded by northwest-trending fault-propagation folds into at least two S-shaped folds along the mountain front of the plateau. Strata under Grand Valley dip at about 6 degrees to the northeast. In the absence of local evidence, the uplifted plateau is attributed to Laramide deformation by dated analogous structures elsewhere in the Colorado Plateau. The major exposed fault records high-angle reverse relationships in the basement rocks but dissipates strain as a triangular zone of distributed microfractures and cataclastic flow into overlying Mesozoic strata that absorb the fault strain, leaving only folds. Evidence for younger, probably late Pliocene or early Pleistocene, uplift does exist at the antecedent Unaweep Canyon south and east of the map area. To what degree this younger deformation affected the map area is unknown. Several geologic hazards affect the area. Middle and late Pleistocene landslides involving the smectite-bearing Brushy Basin Member of the Morrison Formation are extensive on the plateau and common in the Redlands below the plateau. Expansive clay in the Brushy Basin and other strata create foundation stability problems for roads and homes. Flash floods create a serious hazard to people on foot in narrow canyons in the monument and to homes close to water courses downstream from narrow restrictions close to the monument boundary.
Basin evolution and structural reconstruction of northeastern Morocco and northwestern Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, S.
1995-08-01
The high plateau region of Morocco and northwestern Algeria contains a Permo-Triassic rift basin with over 8,000 meters of Paleozoic, Mesozoic and Tertiary sediments. The area exhibits many similarities to the prolific Triassic basins of neighboring Algeria. Previous impediments to exploration in the high plateau area focused on the inability to seismically image sub-salt, pre-Jurassic block faulted structures and the perceived lack of adequate source rocks. This study combined seismic and basin modelling techniques to decipher the pre-salt structures, interpret basin evolution, and access source rock potential. Large structural and stratigraphic features can now be discerned where Permo-Triassic block faultedmore » structures are overlain by thick Triassic-Jurassic mobile evaporate seals and sourced by underlying Paleozoic shales. Contrary to the last published reports, over 20 years ago, oil and gas generation appears to have been continuous in the Carboniferous since 350 ma. Migration directly from the Carboniferous shales to Triassic conglomerates is envisaged with adequate seals provided by the overlying Triassic-Jurassic evaporate sequence. An earlier rapid pulse of oil and gas generation between 300-340 ma from the Silurian source rocks was probably too early to have resulted in hydrocarbon accumulation in the primary Triassic targets but if reservoir is present in the Carboniferous section, then those strata may have been sourced by the Silurian shales.« less
NASA Astrophysics Data System (ADS)
Yager, Joyce A.; West, A. Joshua; Corsetti, Frank A.; Berelson, William M.; Rollins, Nick E.; Rosas, Silvia; Bottjer, David J.
2017-09-01
Changes in δ13Ccarb and δ13Corg from marine strata occur globally in association with the end-Triassic mass extinction and the emplacement of the Central Atlantic Magmatic Province (CAMP) during the break up of Pangea. As is typical in deep time, the timing and duration of these isotopic excursions has remained elusive, hampering attempts to link carbon cycle perturbations to specific processes. Here, we report δ13Ccarb and δ13Corg from Late Triassic and Early Jurassic strata near Levanto, Peru, where intercalated dated ash beds permit temporal calibration of the carbon isotope record. Both δ13Ccarb and δ13Corg exhibit a broad positive excursion through the latest Triassic into the earliest Jurassic. The first order positive excursion in δ13Corg is interrupted by a negative shift noted in many sections around the world coincident with the extinction horizon. Our data indicate that the negative excursion lasts 85 ± 25 kyrs, longer than inferred by previous studies based on cyclostratigraphy. A 260 ± 80 kyr positive δ13Corg shift follows, during which the first Jurassic ammonites appear. The overall excursion culminates in a return to pre-perturbation carbon isotopic values over the next 1090 ± 70 kyrs. Via chronologic, isotopic, and biostratigraphic correlation to other successions, we find that δ13Ccarb and δ13Corg return to pre-perturbation values as CAMP volcanism ceases and in association with the recovery of pelagic and benthic biota. However, the initiation of the carbon isotope excursion at Levanto predates the well-dated CAMP sills from North America, indicating that CAMP may have started earlier than thought based on these exposures, or that the onset of carbon cycle perturbations was not related to CAMP.
Geologic map of the Grand Junction Quadrangle, Mesa County, Colorado
Scott, Robert B.; Carrara, Paul E.; Hood, William C.; Murray, Kyle E.
2002-01-01
This 1:24,000-scale geologic map of the Grand Junction 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the junction of the Colorado River and the Gunnison River. Bedrock strata include the Upper Cretaceous Mancos Shale through the Lower Jurassic Wingate Sandstone units. Below the Mancos Shale, which floors the Grand Valley, the Upper and Lower(?)Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation hold up much of the resistant northeast- dipping monocline along the northeast side of the Uncompahgre uplift. The impressive sequence of Jurassic strata below include the Brushy Basin, Salt Wash, and Tidwell Members of the Upper Jurassic Morrison Formation, the Middle Jurassic Wanakah Formation and informal 'board beds' unit and Slick Rock Member of the Entrada Formation, and the Lower Jurassic Kayenta Formation and Wingate Sandstone. The Upper Triassic Chinle Formation and Early Proterozoic meta-igneous gneiss and migmatitic meta- sedimentary rocks, which are exposed in the Colorado National Monument quadrangle to the west, do not crop out here. The monoclinal dip slope of the northeastern margin of the Uncompahgre uplift is apparently a Laramide structural feature. Unlike the southwest-dipping, high-angle reverse faults in the Proterozoic basement and s-shaped fault- propagation folds in the overlying strata found in the Colorado National Monument 7.5' quadrangle along the front of the uplift to the west, the monocline in the map area is unbroken except at two localities. One locality displays a small asymmetrical graben that drops strata to the southwest. This faulted character of the structure dies out to the northwest into an asymmetric fault-propagation fold that also drops strata to the southwest. Probably both parts of this structure are underlain by a northeast-dipping high-angle reverse fault. The other locality displays a second similar asymmetric fold. No evidence of post-Laramide tilting or uplift exists here, but the antecedent Unaweep Canyon, only 30 km to the south-southwest of the map area, provides clear evidence of Late Cenozoic, if not Pleistocene, uplift. The major geologic hazards in the area include large landslides associated with the dip-slope-underlain, smectite-rich Brushy Basin Member of the Morrison Formation and overlying Dakota and Burro Canyon Formations. Active landslides affect the southern bank of the Colorado River where undercutting by the river and smectitic clays in the Mancos trigger landslides. The Wanakah, Morrison, and Dakota Formations and the Mancos Shale create a significant hazard to houses and other structures by containing expansive smectitic clay. In addition to seasonal spring floods associated with the Colorado and Gunnison Rivers, a serious flash flood hazard associated with sudden summer thunderstorms threatens the intermittent washes that drain the dip slope of the monocline.
NASA Astrophysics Data System (ADS)
Greene, Todd Jeremy
The Turpan-Hami basin is a major physiographic and geologic feature of northwest China, yet considerable uncertainty exists as to the timing of its inception, its late Paleozoic and Mesozoic tectonic history, and the relationship of its petroleum systems to those of the nearby Junggar basin. Mesozoic sedimentary fades, regional unconformities, sediment dispersal patterns, and sediment compositions within the Turpan-Hami and southern Junggar basins suggest that these basins were initially separated between Early Triassic and Early Jurassic time. Prior to separation, Upper Permian profundal lacustrine and fan-delta fades and Triassic coarse-grained braided-fluvial/alluvial fades were deposited across a contiguous Junggar-Turpan-Hami basin. Permian through Triassic fades were derived mainly from the Tian Shan to the south as indicated by northward-directed paleocurrent directions and geochemical provenance of granitoid cobbles. Lower through Middle Jurassic strata begin to reflect ponded coal-forming, lake-plain environments within the Turpan-Hami basin. A sharp change in sedimentary-lithic-rich Lower Jurassic sandstone followed by a return to lithic volcanic-rich Middle Jurassic sandstone points to the initial uplift and unroofing of the largely andesitic Bogda Shan range, which first shed its sedimentary cover as it emerged to become the partition between the Turpan-Hami and southern Junggar basins. In Turpan-Hami, source rock age is one of three major statistically significant discriminators of effective source rocks in the basin. A newly developed biomarker parameter appears to track conifer evolution and can distinguish Permian rocks and their correlative oils from Jurassic coals and mudrocks, and their derivative oils. Source fades is a second key control on petroleum occurrence and character. By erecting rock-to-oil correlation models, the biomarker parameters separate oil families into end-member groups: Group 1 oils---Lower/Middle Jurassic peatland/swamp fades, Group 2 oils---Lower/Middle Jurassic marginal lacustrine fades, and Group 3 oils---Upper Permian lacusbine fades. Burial history exercises a third major control on petroleum in the Turpan-Hami basin. While relatively uninterrupted deep burial in the Tabei Depression exhausted Upper Permian source rocks and brought Lower/Middle Jurassic rocks well into the oil generative window, Late Jurassic uplift in the Tainan Depression eroded much of the Lower/Middle Jurassic section and preserved Upper Permian sourced oils as biodegraded, relict, heavy oils.* *This dissertation includes a CD that is multimedia (contains text and other applications that are not available in a printed format). The CD requires the following applications: Adobe Acrobat, UNIX.
Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years.
Whiteside, Jessica H; Lindström, Sofie; Irmis, Randall B; Glasspool, Ian J; Schaller, Morgan F; Dunlavey, Maria; Nesbitt, Sterling J; Smith, Nathan D; Turner, Alan H
2015-06-30
A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ(13)Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.
Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years
NASA Astrophysics Data System (ADS)
Whiteside, Jessica H.; Lindström, Sofie; Irmis, Randall B.; Glasspool, Ian J.; Schaller, Morgan F.; Dunlavey, Maria; Nesbitt, Sterling J.; Smith, Nathan D.; Turner, Alan H.
2015-06-01
A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ13Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.
Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years
Whiteside, Jessica H.; Lindström, Sofie; Irmis, Randall B.; Glasspool, Ian J.; Schaller, Morgan F.; Dunlavey, Maria; Nesbitt, Sterling J.; Smith, Nathan D.; Turner, Alan H.
2015-01-01
A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10–15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ13Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic. PMID:26080428
Petroleum geology and resources of the West Siberian Basin, Russia
Ulmishek, Gregory F.
2003-01-01
The West Siberian basin is the largest petroleum basin in the world covering an area of about 2.2 million km2. The basin occupies a swampy plain between the Ural Mountains and the Yenisey River. On the north, the basin extends offshore into the southern Kara Sea. On the west, north, and east, the basin is surrounded by the Ural, Yenisey Ridge, and Turukhan-Igarka foldbelts that experienced major deformations during the Hercynian tectonic event and the Novaya Zemlya foldbelt that was deformed in early Cimmerian (Triassic) time. On the south, the folded Caledonian structures of the Central Kazakhstan and Altay-Sayan regions dip northward beneath the basin?s sedimentary cover. The basin is a relatively undeformed Mesozoic sag that overlies the Hercynian accreted terrane and the Early Triassic rift system. The basement is composed of foldbelts that were deformed in Late Carboniferous?Permian time during collision of the Siberian and Kazakhstan continents with the Russian craton. The basement also includes several microcontinental blocks with a relatively undeformed Paleozoic sedimentary sequence. The sedimentary succession of the basin is composed of Middle Triassic through Tertiary clastic rocks. The lower part of this succession is present only in the northern part of the basin; southward, progressively younger strata onlap the basement, so that in the southern areas the basement is overlain by Toarcian and younger rocks. The important stage in tectono-stratigraphic development of the basin was formation of a deep-water sea in Volgian?early Berriasian time. The sea covered more than one million km2 in the central basin area. Highly organic-rich siliceous shales of the Bazhenov Formation were deposited during this time in anoxic conditions on the sea bottom. Rocks of this formation have generated more than 80 percent of West Siberian oil reserves and probably a substantial part of its gas reserves. The deep-water basin was filled by prograding clastic clinoforms during Neocomian time. The clastic material was transported by a system of rivers dominantly from the eastern provenance. Sandstones within the Neocomian clinoforms contain the principal oil reservoirs. The thick continental Aptian?Cenomanian Pokur Formation above the Neocomian sequence contains giant gas reserves in the northern part of the basin. Three total petroleum systems are identified in the West Siberian basin. Volumes of discovered hydrocarbons in these systems are 144 billion barrels of oil and more than 1,300 trillion cubic feet of gas. The assessed mean undiscovered resources are 55.2 billion barrels of oil, 642.9 trillion cubic feet of gas, and 20.5 billion barrels of natural gas liquids. The largest known oil reserves are in the Bazhenov-Neocomian total petroleum system that includes Upper Jurassic and younger rocks of the central and southern parts of the basin. Oil reservoirs are mainly in Neocomian and Upper Jurassic clastic strata. Source rocks are organic-rich siliceous shales of the Bazhenov Formation. Most discovered reserves are in structural traps, but stratigraphic traps in the Neocomian clinoform sequence are pro-ductive and are expected to contain much of the undiscovered resources. Two assessment units are identified in this total petroleum system. The first assessment unit includes all conventional reservoirs in the stratigraphic interval from the Upper Jurassic to the Cenomanian. The second unit includes unconventional (or continuous), self-sourced, fractured reservoirs in the Bazhenov Formation. This unit was not assessed quantitatively. The Togur-Tyumen total petroleum system covers the same geographic area as the Bazhenov-Neocomian system, but it includes older, Lower?Middle Jurassic strata and weathered rocks at the top of the pre-Jurassic sequence. A Callovian regional shale seal of the Abalak and lower Vasyugan Formations separates the two systems. The Togur-Tyumen system is oil-prone; gas reserves are insignificant. The principal o
Some contrasting biostratigraphic links between the Baker and Olds Ferry Terranes, eastern Oregon
Nestell, Merlynd K.; Blome, Charles D.
2016-01-01
New stratigraphic and paleontologic data indicate that ophiolitic melange windows in the Olds Ferry terrane of eastern Oregon contain limestone blocks and chert that are somewhat different in age than those present in the adjacent Baker terrane melange. The melange windows in the Olds Ferry terrane occur as inliers in the flyschoid Early and Middle Jurassic age Weatherby Formation, which depositionally overlies the contact between the melange-rich Devonian to Upper Triassic rocks of the Baker terrane on the north, and Upper Triassic and Early Jurassic volcanic arc rocks of the Huntington Formation on the south. The Baker terrane and Huntington Formation represent fragments of a subduction complex and related volcanic island arc, whereas the Weatherby Formation consists of forearc basin sedimentary deposits. The tectonic blocks in the melange windows of the Weatherby Formation (in the Olds Ferry terrane) are dated by scarce biostratigraphic evidence as Upper Pennsylvanian to Lower Permian and Upper Triassic. In contrast, tectonic blocks of limestone in theBaker terrane yield mostly fusulinids and small foraminifers of Middle Pennsylvanian Moscovian age at one locality.Middle Permian (Guadalupian) Tethyan fusulinids and smaller foraminifers (neoschwagerinids and other Middle Permian genera) are present at a few other localities. Late Triassic conodonts and bryozoans are also present in a few of the Baker terrane tectonic blocks. These limestone blocks are generally embedded in Permian and Triassic radiolarian bearing chert or argillite. Based on conodont, radiolarian and fusulinid data, the age limits of the meange blocks in the Weatherby Formation range from Pennsylvanian to Late Triassic.
δ 13C evidence that high primary productivity delayed recovery from end-Permian mass extinction
NASA Astrophysics Data System (ADS)
Meyer, K. M.; Yu, M.; Jost, A. B.; Kelley, B. M.; Payne, J. L.
2011-02-01
Euxinia was widespread during and after the end-Permian mass extinction and is commonly cited as an explanation for delayed biotic recovery during Early Triassic time. This anoxic, sulfidic episode has been ascribed to both low- and high-productivity states in the marine water column, leaving the causes of euxinia and the mechanisms underlying delayed recovery poorly understood. Here we use isotopic analysis to examine the changing chemical structure of the water column through the recovery interval and thereby better constrain paleoproductivity. The δ 13C of limestones from 5 stratigraphic sections in south China displays a negative gradient of approximately 4‰ from shallow-to-deep water facies within the Lower Triassic. This intense gradient declines within Spathian and lowermost Middle Triassic strata, coincident with accelerated biotic recovery and carbon cycle stabilization. Model simulations show that high nutrient levels and a vigorous biological pump are required to sustain such a large gradient in δ 13C, indicating that Early Triassic ocean anoxia and delayed recovery of benthic animal ecosystems resulted from too much productivity rather than too little.
Craddock, William H.; Drake II, Ronald M.; Mars, John L.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven A.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2012-01-01
This report presents ten storage assessment units (SAUs) within the Powder River Basin of Wyoming, Montana, South Dakota, and Nebraska. The Powder River Basin contains a thick succession of sedimentary rocks that accumulated steadily throughout much of the Phanerozoic, and at least three stratigraphic packages contain strata that are suitable for CO2 storage. Pennsylvanian through Triassic siliciclastic strata contain two potential storage units: the Pennsylvanian and Permian Tensleep Sandstone and Minnelusa Formation, and the Triassic Crow Mountain Sandstone. Jurassic siliciclastic strata contain one potential storage unit: the lower part of the Sundance Formation. Cretaceous siliciclastic strata contain seven potential storage units: (1) the Fall River and Lakota Formations, (2) the Muddy Sandstone, (3) the Frontier Sandstone and Turner Sandy Member of the Carlile Shale, (4) the Sussex and Shannon Sandstone Members of Cody Shale, and (5) the Parkman, (6) Teapot, and (7) Teckla Sandstone Members of the Mesaverde Formation. For each SAU, we discuss the areal distribution of suitable CO2 reservoir rock. We also characterize the overlying sealing unit and describe the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net thickness, porosity, permeability, and groundwater salinity. Case-by-case strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are presented. Although assessment results are not contained in this report, the geologic information included herein will be employed to calculate the potential storage space in the various SAUs.
Jurassic faults of southwest Alabama and offshore areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mink, R.M.; Tew, B.H.; Bearden, B.L.
1991-03-01
Four fault groups affecting Jurassic strata occur in the southwest and offshore Alabama areas. They include the regional basement rift trend, the regional peripheral fault trend, the Mobile graben fault system, and the Lower Mobile Bay fault system. The regional basement system rift and regional peripheral fault trends are distinct and rim the inner margin of the eastern Gulf Coastal Plain. The regional basement rift trend is genetically related to the breakup of Pangea and the opening of the Gulf of Mexico in the Late Triassic-Early Jurassic. This fault trend is thought to have formed contemporaneously with deposition of Latemore » Triassic-Early Jurassic Eagle Mills Formation and to displace pre-Mesozoic rocks. The regional peripheral fault trend consists of a group of en echelon extensional faults that are parallel or subparallel to regional strike of Gulf Coastal Plain strata and correspond to the approximate updip limit of thick Louann Salt. Nondiapiric salt features are associated with the trend and maximum structural development is exhibited in the Haynesville-Smackover section. No hydrocarbon accumulations have been documented in the pre-Jurassic strata of southwest and offshore Alabama. Productive hydrocarbon reservoirs occur in Jurassic strata along the trends of the fault groups, suggesting a significant relationship between structural development in the Jurassic and hydrocarbon accumulation. Hydrocarbon traps are generally structural or contain a major structural component and include salt anticlines, faulted salt anticlines, and extensional fault traps. All of the major hydrocarbon accumulations are associated with movement of the Louann Salt along the regional peripheral fault trend, the Mobile graben fault system, or the Lower Mobile Bay fault system.« less
Ketner, Keith B.
2008-01-01
An area between the towns of Winnemucca and Battle Mountain in northwestern Nevada, termed the arkosic triangle, includes the type areas of the middle to upper Paleozoic Inskip Formation and Havallah sequence, the Upper Devonian to Mississippian Harmony Formation, the Sonoma orogeny, and the Golconda thrust. According to an extensive body of scientific literature, the Havallah sequence, a diverse assemblage of oceanic rocks, was obducted onto the continent during the latest Permian or earliest Triassic Sonoma orogeny by way of the Golconda thrust. This has been the most commonly accepted theory for half a century, often cited but rarely challenged. The tectonic roles of the Inskip and Harmony Formations have remained uncertain, and they have never been fully integrated into the accepted theory. New, and newly interpreted, data are incompatible with the accepted theory and force comprehensive stratigraphic and tectonic concepts that include the Inskip and Harmony Formations as follows: middle to upper Paleozoic strata, including the Inskip, Harmony, and Havallah, form an interrelated assemblage that was deposited in a single basin on an autochthonous sequence of Cambrian, Ordovician, and lowest Silurian strata of the outer miogeocline. Sediments composing the Upper Devonian to Permian sequence entered the basin from both sides, arkosic sands, gravel, limestone olistoliths, and other detrital components entered from the west, and quartz, quartzite, chert, and other clasts from the east. Tectonic activity was expressed as: (1) Devonian uplift and erosion of part of the outer miogeocline; (2) Late Devonian depression of the same area, forming a trough, probably fault-bounded, in which the Inskip, Harmony, and Havallah were deposited; (3) production of intraformational and extrabasinal conglomerates derived from the basinal rocks; and (4) folding or tilting of the east side of the depositional basin in the Pennsylvanian. These middle to upper Paleozoic deposits were compressed in the Jurassic, causing east-verging thrusts in the eastern part of the depositional basin (Golconda thrust) and west-verging thrusts and folds in the western part. Hypotheses involving a far-traveled allochthon that was obducted from an ocean or back-arc basin are incompatible with modern observations and concepts.
Exploring an analytic model of urban housing strata.
Park, J H
1992-07-01
An analytic model of urban housing strata is developed which utilizes housing structure type, housing tenure type, floor size, physical quality, residential area, and number of rooms to calculate a housing deficit for each housing characteristic. The housing norm is subtracted from the actual housing conditions. Each housing deficit value is weighted according to the priority of the 6 variables and then summed as the housing strata score. Negative scores are below the norm and positive ones above. The model is applied to empirical data for Seoul, Korea. The findings were that 66% of the family sample showed negative scores (unsatisfactory housing conditions). Scores range from -22 to =or+ 18. Morris and Winter's "housing adjustment model" is used to explain housing behavior when there is a gap between housing conditions and the norm. Housing behavior is analyzed with multiple regression analysis of housing strata, social strata, and family life stage variables. Findings indicate that the establishment stage in the family life cycle is more likely to be associated with upper housing strata. From the way the model is set up only those in the establishment, childbearing, and child-rearing stage could get a positive deficit housing score. Size of household is not statistically significant, but upper housing strata are reflective of families with 2.5 members. Those with 3-4.5 members may be in the upper middle housing strata. Those with 5 children are in the lower middle housing strata. Housing strata are significantly related to housing structure type, tenure type, and size and number of rooms. The high rise apartment is likely to be in the upper, the row house and multifamily house in the lower housing, and the single detached house is distributed through all 4 strata. Home ownership is highest in the upper strata. The proportion of housing with 18 pyong and 2 rooms is higher in the lower strata, while housing with 19-32 pyong (63-106 sq. ms) and 3 rooms is higher in the middle housing strata. Housing satisfaction is significantly explained by housing strata but not general social strata (r = .13). Propensity to move is explained by family life stage followed by housing strata.
NASA Astrophysics Data System (ADS)
El-Azabi, M. H.; El-Araby, A.
2005-01-01
The Middle Triassic-Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short period of rising sea-level with a relative increase in clastic supply. The Middle-Upper Jurassic sequence is represented by cycles of cross-bedded sandstone topped with thin mudstone that accumulated by northerly flowing braided-streams accompanying regional uplift of the Arabo-Nubian shield. It is succeeded by another regressive fluvial sequence of Early Cretaceous age due to a major eustatic sea-level fall. The Lower Cretaceous sequence is dominated by sandy braided-river deposits with minor overbank fines and basal debris flow conglomerate.
NASA Astrophysics Data System (ADS)
Veselovskiy, R. V.; Fetisova, A. M.; Balabanov, Y.
2017-12-01
One of the key challenges which are traditionally encountered in studying the paleomagnetism of terrigenous sedimentary strata is the necessity to allow for the effect of shallowing of paleomagnetic inclinations which takes place under the compaction of the sediment at the early stages of diagenesis and most clearly manifests itself in the case of midlatitude sedimentation. Traditionally, estimating the coefficient of inclination flattening (f) implies routine re-deposition experiments and studying their magnetic anisotropy (Kodama, 2012), which is not possible in every standard paleomagnetic laboratory. The Elongation-Inclination (E/I) statistical method for estimating the coefficient of inclination shallowing, which was recently suggested in (Tauxe and Kent, 2004), does not require the investigation of the rock material in a specially equipped laboratory but toughens the requirements on the paleomagnetic data and, primarily, regarding the volume of the data, which significantly restricts the possibilities of the post factum estimation and correction for inclination shallowing. We present the results of the paleomagnetic reinvestigation of the some key sections of the Upper Permian and Lower Triassic rocks located on the East European Platform. The obtained paleomagnetic data allowed us to estimate the coefficient of inclination shallowing by the E/I method and calculate a new P-Tr paleomagnetic pole for Europe. The absence of a statistically significant difference between the mean Siberian, European and North American Permian-Triassic paleomagnetic poles allow us to conclude that 252 Ma the configuration of the Earth's magnetic field was predominantly dipole. We believe that the assumption of the non-dipolarity of the geomagnetic field at the Permian-Triassic boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), arose due to the failure to take into account the effect of inclination shallowing in the paleomagnetic record of stable Europe (East European Platform and West European Basin). The studies were supported by the Russian Federation Government (project no. 14.Z50.31.0017) and Russian Foundation for Basic Research (project no. 15-05-06843a).
Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna.
Brayard, Arnaud; Krumenacker, L J; Botting, Joseph P; Jenks, James F; Bylund, Kevin G; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A; Thomazo, Christophe; Escarguel, Gilles
2017-02-01
In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.
Merewether, E.A.; Cobban, W.A.; Tillman, R.W.
2010-01-01
In the Bighorn Basin of north-central Wyoming and south-central Montana, the Frontier Formation of early Late Cretaceous age consists of siliciclastic, bentonitic, and carbonaceous beds that were deposited in marine, brackish-water, and continental environments. Most lithologic units are laterally discontinuous. The Frontier Formation conformably overlies the Mowry Shale and is conformably overlain by the Cody Shale. Molluscan fossils collected from outcrops of these formations and listed in this report are mainly of marine origin and of Cenomanian, Turonian, and Coniacian ages. The lower and thicker part of the Frontier in the Bighorn Basin is of Cenomanian age and laterally equivalent to the Belle Fourche Member of the Frontier in central Wyoming. Near the west edge of the basin, these basal strata are disconformably overlain by middle Turonian beds that are the age equivalent of the Emigrant Gap Member of the Frontier in central Wyoming. The middle Turonian beds are disconformably overlain by lower Coniacian strata. Cenomanian strata along the south and east margins of the basin are disconformably overlain by upper Turonian beds in the upper part of the Frontier, as well as in the lower part of the Cody; these are, in turn, conformably overlain by lower Coniacian strata. Thicknesses and ages of Cenomanian strata in the Bighorn Basin and adjoining regions are evidence of regional differential erosion and the presence of an uplift during the early Turonian centered in northwestern Wyoming, west of the basin, probably associated with a eustatic event. The truncated Cenomanian strata were buried by lower middle Turonian beds during a marine transgression and possibly during regional subsidence and a eustatic rise. An uplift in the late middle Turonian, centered in north-central Wyoming and possibly associated with a eustatic fall, caused the erosion of lower middle Turonian beds in southern and eastern areas of the basin as well as in an adjoining region of north-central Wyoming. Similarly, in east-central Wyoming and an adjacent area to the south, Cenomanian strata are disconformably overlain by upper middle and lower upper Turonian strata that probably reflect uplift and erosion in that region during the interim period of middle Turonian time. During later subsidence and a marine transgression, upper Turonian deposits buried Cenomanian beds in areas along the south and east margins of the Bighorn Basin and buried lower middle Turonian beds in much of northern Wyoming. Upper Turonian and lower Coniacian strata are apparently conformable in eastern and southern areas of the basin as well as near Riverton, Kaycee, and Casper in central Wyoming. Upper Turonian strata are absent on the west flank of the Bighorn Basin and in outcrops west of the basin, where middle Turonian beds are disconformably overlain by lower Coniacian beds . The conformable upper Turonian and lower Coniacian beds apparently transgressed an eroded middle Turonian surface in the region, but only Coniacian strata overlie middle Turonian beds on the west side of the basin and areas farther west. Coniacian strata onlap the truncated lower middle Turonian surface west of the basin, indicating a region that had higher elevation possibly resulting from tectonic uplift. In east-central Wyoming and an adjoining region to the south, upper middle Turonian and lower upper Turonian strata are disconformably overlain by lower and middle Coniacian beds. That region apparently was uplifted and eroded during the latest Turonian.
NASA Astrophysics Data System (ADS)
Rubert, Y.; Ramboz, C.; Le Nindre, Y. M.; Lerouge, C.; Lescanne, M.
2009-04-01
Studies of natural CO2 analogues bring key information on the factors governing the long term (>1My) stability/instability of future anthropogenic CO2 storages. The main objective of this work is to trace the deep-origin CO2 migrations in fractures in the Montmiral CO2 deep natural occurrence (Valence Basin, SE France). The final objective is to document the reservoir feeding and the possible leakages through overlying series. The CO2 reservoir is hosted within a horst controlled by a N-S fault network. From the Triassic to Eocene, the Montmiral area was part of the South-East Basin of France. This period is marked by the Tethysian extension phase (Triassic-Cretaceous) followed by the closure of the basin which culminated during the Pyrenean compressive phase (Eocene). Then, from the late Eocene, the Valence Basin was individualised in particular during the Oligocene E-W rifting affecting the West of Europe. Finally the eastern border of the Basin was overthrusted by Mesozoic formations during the Alpine orogenesis (Miocene). The Montmiral CO2 reservoir is intersected by the currently productive V.Mo.2 well, drilled through Miocene to Triassic sedimentary formations, and reaching the Palaeozoic substratum at a depth of 2771 meters. The CO2 is trapped below a depth of 2340 meters, at the base of sandy, evaporitic and calcareous formations (2340-2771m), Triassic to Sinemurian in age. These units are overlain by a 575 m-thick Domerian to Oxfordian marly sequence which seals the CO2 reservoir. Above these marls, calcareous strata (1792-1095 m), Oxfordian to Cretaceous in age, and sandy clayey formations (1095-0 m), Oligocene and Miocene in age, are deposited. The various stratigraphic levels from the Miocene to the basement were cored over a total length of ~100m. From bottom to top, three lithological units, which exhibit well characterised contrasted diagenetic evolution, record various stages and effects of the CO2 migration: - Lower unit: Palaeozoic metamorphic basement; - Middle unit: Triassic-Liassic reservoir; - Upper unit: late Jurassic to Cretaceous. The middle unit (reservoir) and the upper unit are separated by the thick, tight seal, Domerian to Oxfordian in age. The definition of these lithological units was made using combined petrographic techniques (cathodoluminescence CL, fluorescence, Raman spectroscopy, crushing tests), geochemical techniques (C and O isotopes) and microthermometry. Lower unit: Paleozoïc basement - In the metamorphic basement, aquo-carbonic and CO2-dominant fluids are trapped as primary fluid inclusions in hydrothermal barite and fluoroapatite, and as secondary fluid inclusions in extensionnal microcracks crosscutting metamorphic quartz. All these fluids, trapped in the two-phase stability field, indicate firstly a limited phase separation at 300°C and 400-500 bars evolving toward wider CO2-H2O unmixing at 200°C and 200 bars. Basinal saline brines (10 and 15-25 wt % eq. NaCl and 70
Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.
2015-01-01
The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.These observations indicate that two primary provenance areas provided detritus to the early Brookian foreland basin of the western Brooks Range: (1) local sources in the oceanic Angayucham terrane, which forms the upper plate of the orogen, and (2) a sedimentary source region outside of northern Alaska. Pre-Jurassic zircons and continental grain types suggest the latter detritus was derived from a thick succession of Triassic turbidites in the Russian Far East that were originally shed from source areas in the Uralian-Taimyr orogen and deposited in the South Anyui Ocean, interpreted here as an early Mesozoic remnant basin. Structural thickening and northward emplacement onto the continental margin of Chukotka during the Brookian structural event are proposed to have led to development of a highland source area located in eastern Chukotka, Wrangel Island, and Herald Arch region. The abundance of detritus from this source area in most of the samples argues that the Colville Basin and ancestral foreland basins were supplied by longitudinal sediment dispersal systems that extended eastward along the Brooks Range orogen and were tectonically recycled into the active foredeep as the thrust front propagated toward the foreland. Movement of clastic sedimentary material from eastern Chukotka, Wrangel Island, and Herald Arch into Brookian foreland basins in northern Alaska confirms the interpretations of previous workers that the Brookian deformational belt extends into the Russian Far East and demonstrates that the Arctic Alaska–Chukotka microplate was a unified geologic entity by the Early Cretaceous.
Tourtelot, Harry Allison; Tailleur, Irvin L.
1971-01-01
The Shublik Formation (Middle and Late Triassic) is widespread in the surface and subsurface of northern Alaska. Four stratigraphic sections along about 70 miles of the front of the northeastern Brooks Range east of the Canning giver were examined and sampled in detail in 1968. These sections and six-step spectrographic and carbon analyses of the samples combined with other data to provide a preliminary local description of the highly organic unit and of the paleoenvironments. Thicknesses measured between the overlying Kingak Shale of Jurassic age and the underlying Sadlerochit Formation of Permian and Triassic age range from 400 to more than 800 feet but the 400 feet, obtained from the most completely exposed section, may be closer to the real thickness across the region. The sections consist of organic-rich, phosphatic, and fossiliferous muddy, silty, or carbonate rocks. The general sequence consists, from the bottom up, of a lower unit of phosphatic siltstone, a middle unit of phosphatic carbonate rocks, and an upper unit of shale and carbonate rocks near the Canning River and shale, carbonate rocks, and sandstone to the east. Although previously designated a basal member of the Kingak Shale (Jurassic), the upper unit is here included with the Shublik on the basis of its regional lithologic relation. The minor element compositions of the samples of the Shublik Formation are consistent with their carbonaceous and phosphatic natures in that relatively large amounts of copper, molybdenum, nickel, vanadium and rare earths are present. The predominantly sandy rocks of the underlying Sadlerochit Formation (Permian and Triassic) have low contents of most minor elements. The compositions of samples of Kingak Shale have a wide range not readily explicable by the nature of the rock: an efflorescent sulfate salt contains 1,500 ppm nickel and 1,500 ppm zinc and large amounts of other metals derived from weathering of pyrite and leaching of local shale. The only recorded occurrence of silver and 300 ppm lead in gouge along a shear plane may be the result of metals introduced from an extraneous source. The deposits reflect a marine environment that deepened somewhat following deposition of the Sadlerochit Formation and then shoaled during deposition of the upper limestone-siltstone unit. This apparently resulted from a moderate transgression and regression of the sea with respect to a northwest-trending line between Barrow and the Brooks Range at the International Boundary. Nearer shore facies appear eastward. The phosphate in nodules, fossil molds and oolites, appears to have formed diagenetically within the uncompacted sediment.
Blome, C.D.; Reed, K.M.
1995-01-01
The Quinn River Formation, Black Rock terrane, Quinn River Crossing, is one of the few Nevadan sections of Permian and Triassic strata that are unaffected by Sonoman deformation. The formation consists of: 1) a basal tuff overlain by limestone and ferruginous dolomite, 2) interbedded radiolarian-bearing chert and argillite, 3) siltstone and carbonaceous shale, and 4) partly volcaniclastic rocks. All but the uppermost (barren) chert samples contain Late Permian radiolarian taxa. These radiolarians suggest that early Wordian conodonts reported from near the top of the chert and argillite unit are reworked. Poorly preserved Early(?) or Middle triassic radiolarians and Middle Triassic ammonites and pectenacid bivalves from the middle part of the volcaniclastic unit indicate the Early Triassic deposition cannot be documented at Quinn River. The ages of the Quinn River brachiopod, conodont, and radiolarian faunas resemble those of the Dekkas and Pit Formations, eastern Klamath terrane, northern California. The analogous Quinn River and eastern Klamath rock types and faunal ages, as well as similar hiatuses in their stratigraphic records, suggest that they may be lateral equivalents that formed in the same island-arc sedimentary basin. -from Authors
Houseknecht, David W.; Craddock, William H.; Lease, Richard O.
2016-02-12
Shallow cores collected in the 1980s on the Chukchi Shelf of western Arctic Alaska sampled pre-Cenozoic strata whose presence, age, and character are poorly known across the region. Five cores from the Herald Arch foreland contain Cenomanian to Coniacian strata, as documented by biostratigraphy, geochronology, and thermochronology. Shallow seismic reflection data collected during the 1970s and 1980s show that these Upper Cretaceous strata are truncated near the seafloor by subtle angular unconformities, including the Paleogene mid-Brookian unconformity in one core and the Pliocene-Pleistocene unconformity in four cores. Sedimentary structures and lithofacies suggest that Upper Cretaceous strata were deposited in a low accommodation setting that ranged from low-lying coastal plain (nonmarine) to muddy, shallow-marine environments near shore. These observations, together with sparse evidence from the adjacent western North Slope, suggest that Upper Cretaceous strata likely were deposited across all of Arctic Alaska.A sixth core from the Herald Arch contains lower Toarcian marine strata, indicated by biostratigraphy, truncated by a Neogene or younger unconformity. These Lower Jurassic strata evidently were deposited south of the arch, buried structurally to high levels of thermal maturity during the Early Cretaceous, and uplifted on the Herald thrust-fault system during the mid to Late Cretaceous. These interpretations are based on regional stratigraphy and apatite fission-track data reported in a complementary report and are corroborated by the presence of recycled palynomorphs of Early Jurassic age and high thermal maturity found in Upper Cretaceous strata in two of the foreland cores. This dataset provides evidence that uplift and exhumation of the Herald thrust belt provided sediment to the foreland during the Late Cretaceous.
Permian and Triassic microfloral assemblages from the Blue Nile Basin, central Ethiopia
NASA Astrophysics Data System (ADS)
Dawit, Enkurie L.
2014-11-01
Palynological investigation was carried out on surface samples from up to 400 m thick continental siliciclastic sediments, here referred to as “Fincha Sandstone”, in the Blue Nile Basin, central Ethiopia. One hundred sixty species were identified from 15 productive samples collected along a continuous road-cut exposure. Six informal palynological assemblage zones have been identified. These assemblage zones, in ascending order, are: “Central Ethiopian Permian Assemblage Zone - CEPAZ I”, earliest Permian (Asselian-Sakmarian); “CEPAZ II”, late Early Permian (Artinskian-Kungurian); CEPAZ III - Late Permian (Kazanian-Tatarian); “CETAZ IV”, Lower Triassic (Olenekian Induan); “CETAZ V”, Middle Triassic (Anisian Ladinian); “CETAZ VI”, Late Triassic (Carnian Norian). Tentative age ranges proposed herein are compared with faunally calibrated palynological zones in Gondwana. The overall composition and vertical distribution of miospores throughout the studied section reveals a wide variation both qualitatively and quantitatively. The high frequency of monosaccate pollen in CEPAZ I may reflect a Glossopterid-dominated upland flora in the earliest Permian. The succeeding zone is dominated by straite/taeniate disaccate pollen and polyplicates, suggesting a notable increase in diversity of glossopterids. The decline in the diversity of taeniate disaccate pollen and the concomitant rise in abundance of non-taeniate disaccates in CEPAZ III may suggest the decline in Glossopteris diversity, though no additional evidence is available to equate this change with End-Permian extinction. More diverse and dominant non-taeniate, disaccate, seed fern pollen assignable to FalcisporitesAlisporites in CETAZ IV may represent an earliest Triassic recovery flora. The introduction of new disaccate forms with thick, rigid sacci, such as Staurosaccites and Cuneatisporites, in CETAZ V and VI may indicate the emergence of new gymnospermous plants that might have favourably adapted to coastal plain wetland environments with the return of humid conditions in the Middle to early Late Triassic. The present data constitute the first paleontologically substantiated record for the existence of Permian strata in the Blue Nile Basin. The new results allow for the first time a reliable biostratigraphic subdivision of the central Ethiopia Karoo and its correlation with coeval strata of adjacent regions in Gondwana. From a phytogeographic point of view, the overall microfloral evidence is in support of the position of central Ethiopia occupying the northern part of the southern Gondwana palynofloral province. In view of palaeoecological and paleoclimatic conditions, the microfloral change from the base to the top of the studied section may indicate a response to shifting climatic belts from warm- and cool-temparate climate in the earliest Permian to progressively drier seasonal conditions at successively higher palaeolatitudes during the Late Permian to Middle Triassic.
NASA Astrophysics Data System (ADS)
Song, Peiping; Ding, Lin; Li, Zhenyu; Lippert, Peter C.; Yang, Tianshui; Zhao, Xixi; Fu, Jiajun; Yue, Yahui
2015-08-01
To better constrain the Late Triassic paleolatitude of the Qiangtang block and the closure of the Paleo-Tethys Ocean, a combined paleomagnetic and zircon U/Pb geochronological study has been conducted on the Upper Triassic Jiapila Formation volcanic rocks on the northern edge of the Qiangtang block of Central Tibet (34.1°N, 92.4°E). These rocks are dated to 204-213 Ma. Progressive thermal or alternating field demagnetization successfully isolated stable characteristic remanent magnetizations (ChRM) that pass both the fold and reversal tests, consistent with a primary magnetization. These are the first volcanic-based paleomagnetic results from pre-Cretaceous rocks of the Qiangtang block that appear to average secular variation well enough to yield a reliable paleolatitude estimate. Based on our new paleomagnetic data from Upper Triassic lavas, we conclude that the Late Triassic pole of the Qiangtang block was located at 64.0°N, 174.7°E, with A95 = 6.6 ° (N = 29). We compile published paleomagnetic data from the Qiangtang block to calculate a Late Triassic latitude for the Qiangtang block at 31.7 ± 3.0°N. The central Paleo-Tethys Ocean basin was located between the North China (NCB) and Tarim blocks to the north and the Qiangtang block to the south during Late Paleozoic-Early Mesozoic. A comparison of published Early Triassic paleopole from the Qiangtang block with the coeval paleopoles from the NCB and Tarim indicates that the Paleo-Tethys Ocean could not have closed during the Early Triassic and that its width was approximately ∼32-38° latitude (∼3500-4200 km). However, the comparison of our new combined Late Triassic paleomagnetic result with the Late Triassic poles of the NCB and Tarim, as well as numerous geological observations, indicates that the closure of the Paleo-Tethys Ocean at the longitude of the Qiangtang block most likely occurred during the Late Triassic.
Paleomagnetism and the assembly of the Mexican subcontinent.
NASA Astrophysics Data System (ADS)
Molina-Garza, R. S.
2008-05-01
The paleomagnetic database for Mexico is still small, but using available data and new results paleomagnetic data can be used to support the following hypothesis: (1) Jurassic anticlockwise rotation of the Chiapas massif and the Yucatan peninsula from a position in the northwest interior of the Golf of Mexico; (2) apparent stability of the Tampico and Coahuila blocks respect to North America for Late Triassic and Jurassic time, allowing for local vertical axis rotations attributed to Cenozoic deformation; (3) clockwise rotation of the Caborca block and the adjacent Jurassic continental arc, without significant north to south latitudinal displacement, between Middle Jurassic and Early Cretaceous time (which argues against the Mojave-Sonora megashear model); and, (4) the apparent accretion of the Guerrero terrane to mainland Mexico after clockwise rotation and transport from a more southern latitude. Paleomagnetic data for the southern Mexico block (SMB) are still difficult to incorporate in reconstructions of western equatorial Pangea. Paleomagnetic data for remagnetized Lower Permian strata and primary directions in igneous rocks of the SMB (crystalline terranes of Oaxaca and Acatlan) suggest stability with respect to North America, which is not consistent with reconstruction of South America closing the Golf region. Alternative explanations require a position for the SMB similar to its present location but at more westerly longitudes. We propose that terranes of the SMB reach their Mesozoic position through mechanisms of extrusion tectonics. Interpretation of Jurassic data for southern Mexico is hindered by incomplete knowledge of the North American APWP and rapid northward drift of the continent. Nonetheless, any model for the evolution of southern Mexico must consider that paleomagnetic data indicate internal deformation of Oaxaquia in pre-Cretaceous time. Paleomagnetic directions reported for Jurassic strata of the Tlaxiaco basin in Oaxaca are interpreted as secondary magnetizations, as they record the same inclination as remagnetized mid-Cretaceous carbonate rocks in the region. Thus previously inferred more northern latitudes for the SMB in Jurassic time are equivocal. The assembly of Mexico is thus the result of Lower Permian tectonics (during and following the Ouachita collision), Late Triassic-Middle Jurassic tectonics (during break-up of Pangea and opening of the Golf of Mexico); and Middle-Upper Cretaceous Cordilleran style terrane accretion.
Tethys- and Atlas-related deformations in the Triassic Basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, J.S.; Moore, S.R.; Quarles, A.I.
1995-08-01
Petroleum provinces of Algeria can be divided into Paleozoic and Mesozoic domains. Paleozoic basins are located on the Gondwanaland paleo-continent where the last significant tectonic episode is ascribed to the Late Paleozoic Hercynian Orogeny. Mesozoic basins are located on the south margin of the Neo-Tethyan seaway. These basins were subject to varying degrees of contractional deformation during the Cenozoic Atlas Orogeny. The Triassic Basin of Algeria is a Tethyan feature located above portions of the Paleozoic Oued M`ya and Ghadames Basins. Paleozoic strata are deeply truncated at the Hercynian Unconformity on a broad arch between the older basins. This ismore » interpreted to reflect rift margin rebound during Carboniferous time. Continental Lower Triassic sediments were deposited in a series of northeast trending basins which opened as the Neo-Tethys basin propagated from east to west between Africa and Europe. Middle Triassic marine transgression from the east resulted in evaporate deposition persisting through the Early Jurassic. Passive margin subsidence associated with carbonate marine deposition continued through the Early Cretaceous. Several zones of coeval wrench deformation cross the Atlas and adjoining regions. In the Triassic Basin, inversion occurred before the end of the Early Cretaceous. This episode created discrete uplifts, where major hydrocarbon accumulations have been discovered, along northeast trending lineaments. During the Eocene, the main phase of the Atlas Orogeny produced low amplitude folding of Jurassic and Cretaceous sediments. The folds detach within the Triassic-Jurassic evaporate interval. Many of these folds have been tested without success, as the deeper reservoirs do not show structural closure.« less
Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna
Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles
2017-01-01
In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage—the Paris Biota—from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200–million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era. PMID:28246643
Paleozoic and Mesozoic deformations in the central Sierra Nevada, California
Nokleberg, Warren J.; Kistler, Ronald Wayne
1980-01-01
Analysis of structural and stratigraphic data indicates that several periods of regional deformation, consisting of combined folding, faulting, cataclasis, and regional metamorphism, occurred throughout the central Sierra Nevada during Paleozoic and Mesozoic time. The oldest regional deformation occurred alono northward trends during the Devonian and Mississippian periods in most roof pendants containing lower Paleozoic metasedimentary rocks at the center and along the crest of the range. This deformation is expressed in some roof pendants by an angular unconformity separating older thrice-deformed from younger twice-deformed Paleozoic metasedimentary rocks. The first Mesozoic deformation, which consisted of uplift and erosion and was accompanied by the onset of Andean-type volcanism during the Permian and Triassic, is expressed by an angular unconformity in several roof pendants from the Saddlebag Lake to the Mount Morrison areas. This unconformity is defined by Permian and Triassic andesitic to rhyolitic metavolcanic rocks unconformably overlying more intensely deformed Pennsylvanian, Permian(?), and older metasedimentary rocks. A later regional deformation occurred during the Triassic along N. 20?_30? W. trends in Permian and Triassic metavolcanic rocks of the Saddlebag Lake and Mount Dana roof pendants, in upper Paleozoic rocks of the Pine Creek roof pendant, and in the Calaveras Formation of the western metamorphic belt; the roof pendants are crosscut by Upper Triassic granitic rocks of the Lee Vining intrusive epoch. A still later period of Early and Middle Jurassic regional deformation occurred along N. 30?-60? E. trends in upper Paleozoic rocks of the Calaveras Formation of the western metamorphic belt. A further period of deformation was the Late Jurassic Nevadan orogeny, which occurred along N. 20?_40? W. trends in Upper Jurassic rocks of the western metamorphic belt that are crosscut by Upper Jurassic granitic rocks of the Yosemite intrusive epoch. Structures of similar age occur in intensely deformed oceanic-lithospheric and syntectonic plutonic rocks of the lower Kings River area, in Jurassic metavolcanic rocks of the Ritter Range roof pendant, and in Triassic metasedimentary rocks of the Mineral King roof pendant. The final Mesozoic deformation occurred along N. 50?-80? W. trends in both high-country roof pendants and the lower Kings River area; structures of this generation are crosscut by relatively undeformed Upper Cretaceous granitic rocks of the Cathedral Range intrusive epoch.
NASA Astrophysics Data System (ADS)
Yezerski, D.; Greene, D. C.
2009-12-01
The Confusion Range is a topographically low mountain range in the Basin and Range of west-central Utah, located east of and in the hanging wall of the Snake Range core complex. Previous workers have used a gravity sliding model to interpret the Confusion Range as a large structural trough or synclinorium (e.g. Hose, 1977). Based on existing mapping (Hose, 1965; Hintze, 1974) and new field data, we use balanced and restored cross sections to reinterpret the structure of the Confusion Range as an east-vergent fold-and-thrust belt formed during the Sevier Orogeny. The Confusion Range consists of Cambro-Ordovician through Triassic strata, with predominantly thick-bedded, competent carbonate rocks in the lower Paleozoic (lPz) section and incompetent shales and thin-bedded carbonates in the upper Paleozoic (uPz) section. The contrasting mechanical behavior of these stratigraphic sections results in faulted folds within uPz carbonates above detachments in shale-rich units, deforming in response to ramp-flat thrust faulting of the underlying lPz units. East of the axis of the Conger Mountain (Mtn) syncline, we attribute the increase in structural elevation of lPz rocks to a subsurface thrust sheet consisting of lPz strata that advanced eastward via a high-angle ramp from a lower detachment in the Kanosh Shale to an upper detachment in the Pilot Shale. The doubling of lPz strata that resulted continues through the eastern Confusion Range where a series of small-displacement thrust faults comprising the Kings Canyon thrust system gently tilt strata to the west. In the Conger Range, west of the Conger Mtn syncline, our analysis focuses on reinterpreting the geometrically unlikely folding depicted in previous cross sections as more admissible, fault-cored, asymmetric, detached folding. In our interpretation, resistance created by a steeply-dipping thrust ramp in the lPz section west of Conger Mtn resulted in folding of uPz strata into an east-vergent anticline. Continued east-vergent contraction against the ramp resulted in the west-dipping limb of the anticline, consisting of Ely Limestone, developing into an overturned, west-vergent, synclinal backfold detached in the Chainman Shale. Further contraction exceeded the fold capacity of the detachment fold and resulted in the formation of the Browns Wash fault as an east-vergent thrust fault. The Browns Wash fault is a key component in the development of the present structural geometry, emplacing a west-vergent overturned syncline (detachment fold) in the hanging wall against an east-vergent overturned syncline (footwall syncline) in the footwall. Further west, underlying the western Conger Range and Buckskin Hills, lPz strata are exposed in what we interpret to be a ramp anticline overlying a subsurface thrust ramp. This interpretation implies a lateral ramp separating lPz rocks in the Buckskin Hills from uPz rocks exposed in the Knoll Hill anticline to the north. UPz and Mesozoic strata exposed to the west on the edge of Snake Valley were emplaced by a Tertiary west-dipping normal fault that truncated the west limb of the ramp anticline.
The Middle Triassic insect radiation revealed by isotopic age and iconic fossils from NW China
NASA Astrophysics Data System (ADS)
Zheng, Daran; Chang, Su-Chin; Wang, He; Fang, Yan; Wang, Jun; Feng, Chongqing; Xie, Guwei; Jarzembowski, Edmund A.; Zhang, Haichun; Wang, Bo
2017-04-01
Following the end-Permian mass extinction, the Triassic represented an important period witnessing the recovery and radiation of marine and terrestrial ecosystems. Terrestrial plants and vertebrates have been widely investigated; however the insects, the most diverse organisms on earth, remain enigmatic due to the rarity of Early-Middle Triassic fossils. Here we report new fossils from a Ladinian deposit dated at 238-237 Ma and a Carnian deposit in northwestern China, including the earliest definite caddisfly cases (Trichoptera) and water boatmen (Hemiptera), diverse polyphagan beetles (Coleoptera) and scorpionflies (Mecoptera). Our findings suggest that the Holometabola, comprising the majority of modern-day insect species, experienced an extraordinary diversification in the Middle Triassic and was already been dominant in some Middle and Late Triassic insect faunas, after the extinction of several ecologically dominant, Paleozoic insect groups in the latest Permian and earliest Triassic. This turnover is perhaps related to notable episodes of extreme warming and drying, leading to the eventual demise of coal-swamp ecosystems, evidenced by floral turnover during this interval. The forest revival during the Middle Triassic probably stimulated the rapid radiation and evolution of insects including some key aquatic lineages which built new associations that persist to the present day. Our results provide not only new insights into the early evolution of insect diversity and ecology, but also robust evidence for the view that the Triassic is the "Dawn of the Modern World". Besides, LA-ICP-MS U-Pb dating initially gave a late Ladinian age for the Tongchuan entomnfauna after the results: 237.41 ± 0.91 Ma and 238 ± 0.97 Ma. The age is in agreement with that of the marine Ladinian-Carnian boundary, representing a novel age constraint for the terrestrial strata near this boundary. This age can provide a calibration for marine and terrestrial correlation near Ladinian-Carnian boundary, and also for the correlation of the contemporaneous biotas.
Triassic structural and stratigraphic evolution of the Central German North Sea sector
NASA Astrophysics Data System (ADS)
Wolf, Marco; Jähne-Klingberg, Fabian
2017-04-01
The subsurface of the Central German North Sea sector is characterized by a complex sequence of tectonic events that span from the Permo-Carboniferous initiation of the Southern Permian Basin to the present day. The Triassic period is one of the most prominent stratigraphic intervals in this area due to alternating phases of relatively tectonic quiescence and intense tectonic activity with the development of grabens, salt-tectonics movements, various regional and local erosional events and strong local and regional changes in subsidence over time. The heterogeneous geological history led to complex structural and lithological patterns. The presented results are part of a comprehensive investigation of the Central German North Sea sector. It was carried out within the scope of the project TUNB (www.bgr.bund.de). The main goal was to enhance the understanding of the Triassic geological development in the area of interest due to detailed seismic interpretation of several hundred 2D seismic lines and as well 3D seismic data sets. A seismostratigraphic concept was used to interpret most formations of the Triassic resulting in a detailed subdivision of the Triassic unit. Depth and thickness maps for every stratigraphic unit and geological cross sections provided new insights regarding an overall basin evolution as well as the timing and mechanisms of rifting and salt-tectonics. New results concerning the evolution of the Keuper in the German North Sea and especially the Triassic evolution of the Horn Graben, as one of the major Triassic rift-structures in the North Sea, will be highlighted. We will show aspects of strong tectonic subsidence in the Horn Graben in the Lower Triassic. In parts of the study area, halotectonic movements started in the Upper Triassic, earlier than previously proposed. Besides mapping of regional seismic reflectors, distinct sedimentary features like fluvial channel systems of the Stuttgart formation (Middle Keuper) or subrosion-like structures along the major Upper Jurassic to Lower Cretaceous unconformity, which are related to erosion of Triassic evaporitic formations, will be shown.
NASA Astrophysics Data System (ADS)
Meijers, Maud J. M.; Smith, Brigitte; Kirscher, Uwe; Mensink, Marily; Sosson, Marc; Rolland, Yann; Grigoryan, Araik; Sahakyan, Lilit; Avagyan, Ara; Langereis, Cor; Müller, Carla
2015-03-01
The continental South Armenian Block - part of the Anatolide-Tauride South Armenian microplate - of Gondwana origin rifted from the African margin after the Triassic and collided with the Eurasian margin after the Late Cretaceous. During the Late Cretaceous, two northward dipping subduction zones were simultaneously active in the northern Neo-Tethys between the South Armenian Block in the south and the Eurasian margin in the north: oceanic subduction took place below the continental Eurasian margin and intra-oceanic subduction resulted in ophiolite obduction onto the South Armenian Block in the Late Cretaceous. The paleolatitude position of the South Armenian Block before its collision with Eurasia within paleogeographic reconstructions is poorly determined and limited to one study. This earlier study places the South Armenian Block at the African margin in the Early Jurassic. To reconstruct the paleolatitude history of the South Armenian Block, we sampled Upper Devonian-Permian and Cretaceous sedimentary rocks in Armenia. The sampled Paleozoic rocks have likely been remagnetized. Results from two out of three sites sampled in Upper Cretaceous strata pass fold tests and probably all three carry a primary paleomagnetic signal. The sampled sedimentary rocks were potentially affected by inclination shallowing. Therefore, two sites that consist of a large number of samples (> 100) were corrected for inclination shallowing using the elongation/inclination method. These are the first paleomagnetic data that quantify the South Armenian Block's position in the Tethys ocean between post-Triassic rifting from the African margin and post-Cretaceous collision with Eurasia. A locality sampled in Lower Campanian Eurasian margin sedimentary rocks and corrected for inclination shallowing, confirms that the corresponding paleolatitude falls on the Eurasian paleolatitude curve. The north-south distance between the South Armenian Block and the Eurasian margin just after Coniacian-Santonian ophiolite obduction was at most 1000 km.
NASA Astrophysics Data System (ADS)
Al-Aasm, I. S.; Coniglio, M.; Desrochers, A.
1995-12-01
Fibrous calcite veins are ubiquitous throughout the thinly bedded, organic-rich Upper Triassic marine mdrocks of the Queen Charlotte Islands and their lateral equivalents on Vancouver Island. These veins show variable and complex morphologies and can be grouped into several types: (a) simple; (b) anastomosing or composite; (c) boxwork; and (4) polygonal network oriented normal to bedding. Field, petrographic, and geochemical evidence suggest that vein opening, resulting from hydraulic fracturing due to elevated pore-fluid pressures, was an early phenomenon and occurred prior to significant compaction of the host sediments. Calcite fibers in the veins are up to 30 mm long and commonly oriented perpendicular to the wall but locally display conical structures. Fibrous calcites, with the exception of those in boxwork veins, are generally non-ferroan and dull to very weakly orange luminescent. The boxwork calcites are ferroan, zoned and show dull luminescence with some bright rims. δ18O values range from -8.2 to -21.6‰ (PDB) and δ13C values range from 2.0 to -4.4‰ (PDB). Although some variations are present among the different morphological types of calcite veins, oxygen and carbon isotopic values display important variations when compared geographically. The most depleted oxygen and carbon isotopic values are those of boxwork calcite and they are associated with areas where the effects of early Mesozoic plutonism were most severe. Precipitation of boxwork fibrous calcites is interpreted to have been related to hydrothermal discharge into unconsolidated host sediment, rather than to later burial. Although the hydrothermal influence on the formation of vein calcite is related to geological events specific to the Wrangellia Terrain, this study provides an alternative mechanism for the generation of fibrous calcite veins and demonstrates the local importance of hydrothermal input in the evolution of pore-water chemistry.
An application of sedimentation simulation in Tahe oilfield
NASA Astrophysics Data System (ADS)
Tingting, He; Lei, Zhao; Xin, Tan; Dongxu, He
2017-12-01
The braided river delta develops in Triassic low oil formation in the block 9 of Tahe oilfield, but its sedimentation evolution process is unclear. By using sedimentation simulation technology, sedimentation process and distribution of braided river delta are studied based on the geological parameters including sequence stratigraphic division, initial sedimentation environment, relative lake level change and accommodation change, source supply and sedimentary transport pattern. The simulation result shows that the error rate between strata thickness of simulation and actual strata thickness is small, and the single well analysis result of simulation is highly consistent with the actual analysis, which can prove that the model is reliable. The study area belongs to braided river delta retrogradation evolution process, which provides favorable basis for fine reservoir description and prediction.
Osmium isotope evidence for a large Late Triassic impact event
Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko
2013-01-01
Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio (187Os/188Osi) of ∼0.477 to unradiogenic values of ∼0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous–Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3–7.8 km in diameter) produced a global decrease in seawater 187Os/188Os ratios in the Late Triassic. PMID:24036603
NASA Astrophysics Data System (ADS)
Ferreira-Oliveira, Luis Gustavo; Rohn, Rosemarie
2010-03-01
Conchostracan fossils are abundant and relatively diversified in the Rio do Rasto Formation (Passa Dois Group, Paraná Basin, southern Brazil), but leaiids (' Leaia pruvosti' [Reed, F.R.C., 1929. Novos Phyllopodos Fósseis do Brasil. Boletim do Serviço Geológico e Mineralógico do Brasil 34, 2-16]) were previously found at only one locality of the formation in the northern Santa Catarina State. New specimens of the Family Leaiidae, collected from two outcrops in central Paraná State near the top of the formation, stimulated a revision of related taxa. Both the new and the previously known leaiids are herein assigned to Hemicycloleaia mitchelli [Etheridge Jr., R., 1892. On Leaia mitchelli Etheridge. Proceedings of the Linnean Society of New South Wales 7, 307-310] based on the presence of three carinae and subovate shape. This species was originally recorded in the upper Tatarian (Wuchiapingian, Late Permian) of Sydney Basin, eastern Australia and therefore corroborates the interpretation that the leaiid bearing strata of the Rio do Rasto Formation cannot be younger than Permian. H. mitchelli possibly was one of the most widespread, eurytopic and conservative Late Paleozoic conchostracans of Gondwana (although records from Africa, India and Antarctica must still be confirmed) and it was also found in the Tatarian of Russia. The sudden disappearance of leaiids after their apparent success is consistent with the hypothesis about the biotic crisis around the Permo-Triassic boundary.
NASA Astrophysics Data System (ADS)
Scholze, Frank; Wang, Xu; Kirscher, Uwe; Kraft, Johannes; Schneider, Jörg W.; Götz, Annette E.; Joachimski, Michael M.; Bachtadse, Valerian
2017-05-01
The Central European Basin is very suitable for high-resolution multistratigraphy of Late Permian to Early Triassic continental deposits. Here the well exposed continuous transition of the lithostratigraphic Zechstein and Buntsandstein Groups of Central Germany was studied for isotope-chemostratigraphy (δ13Corg, δ13Ccarb, δ18Ocarb), major and trace element geochemistry, magnetostratigraphy, palynology, and conchostracan biostratigraphy. The analysed material was obtained from both classical key sections (abandoned Nelben clay pit, Caaschwitz quarries, Thale railway cut, abandoned Heinebach clay pit) and a recent drill core section (Caaschwitz 6/2012) spanning the Permian-Triassic boundary. The Zechstein-Buntsandstein transition of Central Germany consists of a complex sedimentary facies comprising sabkha, playa lake, aeolian, and fluvial deposits of predominantly red-coloured siliciclastics and intercalations of lacustrine oolitic limestones. The new data on δ13Corg range from - 28.7 to - 21.7 ‰ showing multiple excursions. Most prominent negative shifts correlate with intercalations of oolites and grey-coloured clayey siltstones, while higher δ13Corg values correspond to an onset of palaeosol overprint. The δ13Ccarb values range from - 9.7 to - 1.3 ‰ with largest variations recorded in dolomitic nodules from the Zechstein Group. In contrast to sedimentary facies shifts across the Zechstein-Buntsandstein boundary, major element values used as a proxy (CIA, CIA*, CIA-K) for weathering conditions indicate climatic stability. Trace element data used for a geochemical characterization of the Late Permian to Early Triassic transition in Central Germany indicate a decrease in Rb contents at the Zechstein-Buntsandstein boundary. New palynological data obtained from the Caaschwitz quarry section reveal occurrences of Late Permian palynomorphs in the Lower Fulda Formation, while Early Triassic elements were recorded in the upper part of the Upper Fulda Formation. The present study confirms an onset of a normal-polarized magnetozone in the Upper Fulda Formation of the Caaschwitz quarry section supporting an interregional correlation of this crucial stratigraphic interval with the normal magnetic polarity of the basal Early Triassic known from marine sections in other regions. Based on a synthesis of the multistratigraphic data, the Permian-Triassic boundary is proposed to be placed in the lower part of the Upper Fulda Formation, which is biostratigraphically confirmed by the first occurrence date of the Early Triassic Euestheria gutta-Palaeolimnadiopsis vilujensis conchostracan fauna. Rare records of conchostracans reported from the siliciclastic deposits of the lower to middle Zechstein Group may point to its potential for further biostratigraphic subdivision of the Late Permian continental deposits.
Early Triassic wrinkle structures on land: stressed environments and oases for life
NASA Astrophysics Data System (ADS)
Chu, Daoliang; Tong, Jinnan; Song, Haijun; Benton, Michael J.; Bottjer, David J.; Song, Huyue; Tian, Li
2015-06-01
Wrinkle structures in rocks younger than the Permian-Triassic (P-Tr) extinction have been reported repeatedly in marine strata, but rarely mentioned in rocks recording land. Here, three newly studied terrestrial P-Tr boundary rock succession in North China have yielded diverse wrinkle structures. All of these wrinkles are preserved in barely bioturbated shore-shallow lacustrine siliciclastic deposits of the Liujiagou Formation. Conversely, both the lacustrine siliciclastic deposits of the underlying Sunjiagou Formation and the overlying Heshanggou Formation show rich bioturbation, but no wrinkle structures or other microbial-related structures. The occurrence of terrestrial wrinkle structures in the studied sections reflects abnormal hydrochemical and physical environments, presumably associated with the extinction of terrestrial organisms. Only very rare trace fossils occurred in the aftermath of the P-Tr extinction, but most of them were preserved together with the microbial mats. This suggests that microbial mats acted as potential oases for the surviving aquatic animals, as a source of food and oxygen. The new finds suggests that extreme environmental stresses were prevalent both in the sea and on land through most of the Early Triassic.
NASA Astrophysics Data System (ADS)
Whiteside, J. H.; Lindström, S.; Irmis, R. B.; Glasspool, I.; Schaller, M. F.; Dunlavey, M.; Nesbitt, S. J.; Smith, N. D.; Turner, A. H.
2015-12-01
The rarity and species-poor nature of early dinosaurs and their relatives at low paleolatitudes persisted for 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New environmental reconstructions from stable carbon isotope ratios of preserved organic matter (δ13Corg), atmospheric pCO2 data based on the δ13C of soil carbonate, palynological, and wildfire data from charcoal from early dinosaur-bearing strata at low paleolatitudes in western North America show that variations in δ13Corg and palynomorph ecotypes are tightly correlated, displaying large and high-frequency excursions. These variations occurred within an environment characterized by elevated and increasing atmospheric pCO2, pervasive wildfires, and rapidly fluctuating extreme climatic conditions. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions until the end-Triassic, the large-bodied, fast-growing tachymetabolic dinosaurian herbivores were not. We hypothesize that the greater resources required by the herbivores made it difficult from them to adapt to the unstable conditions at low paleolatitudes in the Late Triassic.
NASA Astrophysics Data System (ADS)
Li, Shun; Guilmette, Carl; Ding, Lin; Xu, Qiang; Fu, Jia-Jun; Yue, Ya-Hui
2017-10-01
The Bangong-Nujiang suture zone, separating the Lhasa and Qiangtang blocks of the Tibetan Plateau, is marked by remnants of the Bangong-Nujiang oceanic basin. In the Gaize area of central Tibet, Mesozoic sedimentary strata recording the evolution of the basin and subsequent collision between these two blocks include the Upper Triassic-Lower Jurassic turbidites of the Mugagangri Group, the Upper Jurassic-Lower Cretaceous sandstone-dominated Wuga and Shamuluo formations, and the Upper Cretaceous molasse deposits of the Jingzhushan Formation. The Shamuluo and Jingzhushan formations rest unconformably on the underlying Mugagangri Group and Wuga Formation, respectively. In this contribution, we analyze petrographic components of sandstones and U-Pb-Hf isotopic compositions of detrital zircons from the Wuga and Jingzhushan formations for the first time. Based on the youngest detrital zircon ages, the maximum depositional ages of the Wuga and Jingzhushan formations are suggested to be ∼147-150 Ma and ∼79-91 Ma, respectively. Petrographic and isotopic results indicate that sediments in the Wuga Formation were mainly sourced from the accretionary complex (preserved as the Mugagangri Group) in the north, while sediments in the Jingzhushan Formation have mixed sources from the Lhasa block, the Qiangtang block and the intervening suture zone. Provenance analysis, together with regional data, suggests that the Upper Jurassic-Lower Cretaceous Wuga and Shamuluo formations were deposited in a peripheral foreland basin and a residual-sea basin, respectively, in response to the Lhasa-Qiangtang collision, whereas the Upper Cretaceous Jingzhushan Formation reflects continental molasse deposition during the post-collisional stage. The development of the peripheral foreland basin evidenced by deposition of the Wuga Formation reveals that the age of the initial Lhasa-Qiangtang collision might be the latest Jurassic (∼150 Ma).
Weislogel, A.L.; Graham, S.A.; Chang, E.Z.; Wooden, J.L.; Gehrels, G.E.
2010-01-01
To test the idea that the voluminous upper Middle to Upper Triassic turbidite strata in the Songpan-Ganzi complex of central China archive a detrital record of Dabie ultrahigh-pressure (UHP) terrane unroofing, we report 2080 single detrital U-Pb zircon ages by sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis from 29 eastern Songpan-Ganzi complex sandstone samples. Low (<0.07) Th/U zircons, consistent with crystallization under UHP conditions, are rare in eastern Songpan-Ganzi complex zircon, and U-Pb ages of low Th/U zircons are incompatible with a Dabie terrane source. An unweighted pair group method with arithmetic mean nearest-neighbor analysis of Kolmogorov-Smirnov two-sample test results reveals that the eastern Songpan-Ganzi complex is not a single contiguous turbidite system but is instead composed of three subsidiary depocenters, each associated with distinct sediment sources. The northeastern depocenter contains zircon ages characterized by Paleozoic and bimodally distributed Precambrian zircon populations, which, together with south-to southeast-directed paleocurrent data, indicate derivation from the retro-side of the Qinling-Dabie (Q-D) collisional orogen wedge. In the central depocenter, the dominantly Paleozoic detrital zircon signature and south-to southwest-oriented paleocurrent indicators reflect a profusion of Paleozoic zircon grains. These data are interpreted to reflect an influx of material derived from erosion of Paleozoic supra-UHP rocks of the Dabie terrane in the eastern Qinling-Dabie orogen, which we speculate may have been enhanced by development of a monsoonal climate. This suggests that erosional unroofing played a significant role in the initial phase of UHP exhumation and likely influenced the petrotectonic and structural evolution of the Qinling-Dabie orogen, as evidenced by compressed Triassic isotherms/grads reported in the Huwan shear zone that bounds the Dabie terrane to the north. The central depocenter deposits reflect a later influx of bimodally distributed Precambrian zircon, signifying either a decrease in the influx of Paleozoic zircon grains due to stalled UHP exhumation and/or dilution of the same influx of Paleozoic zircons by spilling of Precambrian zircon from the northeastern depocenter into the central depocenter basin, perhaps due to infilling and bypass of sediment from the northern depocenter or due to initial collapse and constriction of the eastern Songpan-Ganzi complex basin. The southeastern depocenter of the eastern Songpan-Ganzi complex bears significant Paleozoic, Neoproterozoic, and Paleoproterozoic zircon populations derived from the South China block and Yidun arc complex, likely recording nascent uplift of the Longmenshan deformation belt due to impingement of the Yidun arc complex upon the western margin of the South China block. ?? 2010 Geological Society of America.
Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.
1978-01-01
The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic
The ophiolitic North Fork terrane in the Salmon River region, central Klamath Mountains, California
Ando, C.J.; Irwin, W.P.; Jones, D.L.; Saleeby, J.B.
1983-01-01
The North Fork terrane is an assemblage of ophiolitic and other oceanic volcanic and sedimentary rocks that has been internally imbricated and folded. The ophiolitic rocks form a north-trending belt through the central part of the region and consist of a disrupted sequence of homogeneous gabbro, diabase, massive to pillowed basalt, and interleaved tectonitic harzburgite. U-Pb zircon age data on a plagiogranite pod from the gabbroic unit indicate that at least this part of the igneous sequence is late Paleozoic in age.The ophiolitic belt is flanked on either side by mafic volcanic and volcaniclastic rocks, limestone, bedded chert, and argillite. Most of the chert is Triassic, including much of Late Triassic age, but chert with uncertain stratigraphic relations at one locality is Permian. The strata flanking the east side of the ophiolitic belt face eastward, and depositional contacts between units are for the most part preserved. The strata on the west side of the ophiolitic belt are more highly disrupted than those on the east side, contain chert-argillite melange, and have unproven stratigraphic relation to either the ophiolitic rocks or the eastern strata.Rocks of the North Fork terrane do not show widespread evidence of penetrative deformation at elevated temperatures, except an early tectonitic fabric in the harzburgite. Slip-fiber foliation in serpentinite, phacoidal foliation in chert and mafic rocks, scaly foliation in argillite, and mesoscopic folds in bedded chert are consistent with an interpretation of large-scale anti-formal folding of the terrane about a north-south hinge found along the ophiolitic belt, but other structural interpretations are tenable. The age of folding of North Fork rocks is constrained by the involvement of Triassic and younger cherts and crosscutting Late Jurassic plutons. Deformation in the North Fork terrane must have spanned a short period of time because the terrane is bounded structurally above and below by Middle or Late Jurassic thrust faults.The North Fork terrane appears to contain no arc volcanic rocks or arc-derived detritus, suggesting that it neither constituted the base for an arc nor was in a basinal setting adjacent to an arc sediment source. Details of the progressive accretion and evolutionary relationship of the North Fork to other terranes of the Klamath Mountains are not yet clear.
Castanera, Diego; Gasca, José Manuel; Canudo, José Ignacio
2015-01-01
Triassic vertebrate tracks are known from the beginning of the 19th century and have a worldwide distribution. Several Triassic track ichnoassemblages and ichnotaxa have a restricted stratigraphic range and are useful in biochronology and biostratigraphy. The record of Triassic tracks in the Iberian Peninsula has gone almost unnoticed although more than 25 localities have been described since 1897. In one of these localities, the naturalist Longinos Navás described the ichnotaxon Chirotherium ibericus in 1906.The vertebrate tracks are in two sandy slabs from the Anisian (Middle Triassic) of the Moncayo massif (Zaragoza, Spain). In a recent revision, new, previously undescribed vertebrate tracks have been identified. The tracks considered to be C. ibericus as well as other tracks with the same morphology from both slabs have been classified as Chirotherium barthii. The rest of the tracks have been assigned to Chirotheriidae indet., Rhynchosauroides isp. and undetermined material. This new identification of C. barthii at the Navás site adds new data to the Iberian record of this ichnotaxon, which is characterized by the small size of the tracks when compared with the main occurrences of this ichnotaxon elsewhere. As at the Navás tracksite, the Anisian C. barthii-Rhynchosauroides ichnoassemblage has been found in other coeval localities in Iberia and worldwide. This ichnoassemblage belongs to the upper Olenekian-lower Anisian interval according to previous biochronological proposals. Analysis of the Triassic Iberian record of tetrapod tracks is uneven in terms of abundance over time. From the earliest Triassic to the latest Lower Triassic the record is very scarce, with Rhynchosauroides being the only known ichnotaxon. Rhynchosauroides covers a wide temporal range and gives poor information for biochronology. The record from the uppermost Lower Triassic to the Middle Triassic is abundant. The highest ichnodiversity has been reported for the Anisian with an assemblage composed of Dicynodontipus, Procolophonichnium, Rhynchosauroides, Rotodactylus, Chirotherium, Isochirotherium, Coelurosaurichnus and Paratrisauropus. The Iberian track record from the Anisian is coherent with the global biochronology proposed for Triassic tetrapod tracks. Nevertheless, the scarcity of track occurrences during the late Olenekian and Ladinian prevents analysis of the corresponding biochrons. Finally, although the Iberian record for the Upper Triassic is not abundant, the presence of Eubrontes, Anchisauripus and probably Brachychirotherium is coherent with the global track biochronology as well. Thus, the Triassic track record in the Iberian Peninsula matches the expected record for this age on the basis of a global biochronological approach, supporting the idea that vertebrate Triassic tracks are a useful tool in biochronology. PMID:26137425
NASA Astrophysics Data System (ADS)
Lawton, T. F.; Molina-Garza, R. S.; Barboza-Gudiño, R.; Rogers, R. D.
2013-05-01
Major sediment dispersal systems on western Pangea evolved in concert with thermal uplift, rift and drift phases of the Gulf of Mexico Basin, and were influenced by development of a continental arc on Pangea's western margin. Existing literature and preliminary data from fieldwork, sandstone petrology and detrital zircon analysis reveal how major drainages in Mexico changed from Late Triassic through Late Jurassic time and offer predictions for the ultimate destinations of sand-rich detritus along the Gulf and paleo-Pacific margins. Late Triassic rivers drained away from and across the present site of the Gulf of Mexico, which was then the location of a major thermal dome, the Texas uplift of recent literature. These high-discharge rivers with relatively mature sediment composition fed a large-volume submarine fan system on the paleo-Pacific continental margin of Mexico. Predictably, detrital zircon age populations are diverse and record sources as far away as the Amazonian craton. This enormous fluvial system was cut off abruptly near the Triassic-Jurassic boundary by extensive reorganization of continental drainages. Early and Middle Jurassic drainage systems had local headwaters and deposited sediment in extensional basins associated with arc magmatism. Redbeds accumulated across northern and eastern Mexico and Chiapas in long, narrow basins whose locations and dimensions are recorded primarily by inverted antiformal massifs. The Jurassic continental successions overlie Upper Triassic strata and local subvolcanic plutons; they contain interbedded volcanic rocks and thus have been interpreted as part of the Nazas continental-margin arc. The detritus of these fluvial systems is volcanic-lithic; syndepositional grain ages are common in the detrital zircon populations, which are mixed with Oaxaquia-derived Permo-Triassic and Grenville age populations. By this time, interior Pangea no longer supplied sediment to the paleo-Pacific margin, possibly because the continental-margin arc blocked westward drainage and detritus was captured in rift basins. Latest Middle Jurassic fluvial systems formed as the Yucatan block rotated counterclockwise and the Gulf of Mexico began to open. Sediment dispersal, partly equivalent to salt deposition in the Gulf, was largely southward in southern Oaxaquia, but large-volume braided river systems on the Maya (Yucatan) block, represented by the Todos Santos Formation in Chiapas, evidently flowed northward along graben axes toward the western part of the Gulf of Mexico Basin. River systems of nuclear Mexico, or Oaxaquia, occupied a broad sedimentary basin west and south of a divide formed adjacent to the translating Maya block. Despite their big-river characteristics, these deposits contain mainly Grenville and Permo-Triassic grains derived from Oaxaquia basement and subordinate Early and Middle Jurassic grains derived from volcanic rocks and plutons of the arc. Early Late Jurassic (Oxfordian) marine flooding of the entire Gulf rim and nuclear Mexico, evidently resulting in part from marginal subsidence adjoining newly-formed oceanic crust, terminated fluvial deposition adjacent to the young Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Irmis, Randall; Olsen, Paul; Geissman, John; Gehrels, George; Kent, Dennis; Mundil, Roland; Rasmussen, Cornelia; Giesler, Dominique; Schaller, Morgan; Kürschner, Wolfram; Parker, William; Buhedma, Hesham
2017-04-01
The early Mesozoic is a critical time in earth history that saw the origin of modern ecosystems set against the back-drop of mass extinction and sudden climate events in a greenhouse world. Non-marine sedimentary strata in western North America preserve a rich archive of low latitude terrestrial ecosystem and environmental change during this time. Unfortunately, frequent lateral facies changes, discontinuous outcrops, and a lack of robust geochronologic constraints make lithostratigraphic and chronostratigraphic correlation difficult, and thus prevent full integration of these paleoenvironmental and paleontologic data into a regional and global context. The Colorado Plateau Coring Project (CPCP) seeks to remedy this situation by recovering a continuous cored record of early Mesozoic sedimentary rocks from the Colorado Plateau of the western United States. CPCP Phase 1 was initiated in 2013, with NSF- and ICDP-funded drilling of Triassic units in Petrified Forest National Park, northern Arizona, U.S.A. This phase recovered a 520 m core (1A) from the northern part of the park, and a 240 m core (2B) from the southern end of the park, comprising the entire Lower-Middle Triassic Moenkopi Formation, and most of the Upper Triassic Chinle Formation. Since the conclusion of drilling, the cores have been CT scanned at the University of Texas - Austin, and split, imaged, and scanned (e.g., XRF, gamma, and magnetic susceptibility) at the University of Minnesota LacCore facility. Subsequently, at the Rutgers University Core Repository, core 1A was comprehensively sampled for paleomagnetism, zircon geochronology, petrography, palynology, and soil carbonate stable isotopes. LA-ICPMS U-Pb zircon analyses are largely complete, and CA-TIMS U-Pb zircon, paleomagnetic, petrographic, and stable isotope analyses are on-going. Initial results reveal numerous horizons with a high proportion of Late Triassic-aged primary volcanic zircons, the age of which appears to be a close approximation of their host rock's depositional age, along with significant populations of early Paleozoic and Proterozoic zircons which will be used to identify provenance. Thermal demagnetization of paleomagnetic samples show that most Moenkopi and some fine-grained Chinle lithologies preserve a primary magnetization, and thus will allow the construction of a robust magnetostratigraphy for portions of the Triassic section. Soil carbonates are abundant throughout the cored section. All data will be integrated to construct an exportable chronostratigraphic framework that will allow us to test a number of major questions with global implications for understanding the early Mesozoic world, including: 1) do independent U-Pb ages support the accuracy of the Newark astronomically-calibrated geomagnetic polarity timescale? 2) is the mid-Late Triassic biotic turnover observable in the western US coincident with the Manicouagan bolide impact? and 3) are cyclical climate variations apparent in the cored record, and do they reflect variations in atmospheric CO2?
NASA Astrophysics Data System (ADS)
Collins, Dylan R.
In northwest Texas, upper Permian to lowermost Triassic hematite-cemented detrital sedimentary rocks, which include a small number of regionally extensive ash beds, were deposited during the time interval of the greatest mass extinction event sequences in Earth history. The magnetic polarity stratigraphy, as well as key rock magnetic properties, of the upper Whitehorse Group (WH) and Quartermaster formations (QM) at selected sections in the Palo Duro Basin, have been determined using thermal, and chemical demagnetization approaches and anisotropy of magnetic susceptibility, acquisition of isothermal remanent magnetization (IRM) and backfield demagnetization, and thermal demagnetization of three component IRM methods. Demagnetization results show that the WH/QM contains a primary/near-primary characteristic remanent magnetization at each level sampled and thus the magnetic polarity stratigraphy for each section can be compared with existing polarity time scales across the Permian-Triassic boundary. Estimated site mean directions yield a paleomagnetic pole for the latest Permian for North America of 57.8°N, 130.6°E from 38 sampled sites.
NASA Astrophysics Data System (ADS)
Barth, Andrew P.; Tosdal, R. M.; Wooden, J. L.
1990-11-01
Triassic magmatism in the southwest U.S. Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and we suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited data for associated Triassic(?) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic(?) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to alkalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, A.P.; Tosdal, R.M.; Wooden, J.L.
1990-11-10
Triassic magmatism in the southwest US Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and the authors suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited datamore » for associated Triassic ( ) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic( ) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to akalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.« less
NASA Astrophysics Data System (ADS)
Iqbal, Shahid; Wagreich, Michael; Jan, Irfanullah; Kürschner, Wolfram Michael; Gier, Susanne
2017-04-01
The Triassic-Jurassic boundary interval reveals a change from warm-arid to a warm and humid climate in the Tethyan domain. Sea-level reconstruction records across the European basins during this interval reveal an end-Triassic global regression event and is linked to the Central Atlantic Magmatic Province (CAMP) activity and Pangaea breakup. In the Tethyan Salt Range of Pakistan a succession of Upper Triassic dolomites/green-black mudstones (Kingriali Formation), overlying quartzose sandstone, mudstones, laterites and Lower Jurassic conglomerates/pebbly sandstones (Datta Formation) provides information on the palaeoclimatic evolution of the area. Preliminary palynological results from the mudstones indicate a Rhaetian age for the Kingriali Formation and a Hettangian age for the Datta Formation. X-ray diffraction (XRD) analysis of the mudstones (upper part of the Kingriali Formation) indicates the presence of mainly illite while kaolinite is a minor component. The kaolinite content, a reflection of the advanced stage of chemical weathering and hence warm-humid conditions, increases up-section in the overlying sandstone-mudstone succession. The overlying laterite-bauxite horizons lack illite/smectite and are entirely composed of kaolinite, boehmite and haematite. At places these kaolinite rich horizons are mined in the area (Western Salt Range). The bulk rock geochemistry of the succession confirms a similar trend. The Chemical Index of Alteration (CIA) displays an increasing trend from the Upper Triassic shales (CIA 75-80) through the overlying sandstones/mudstones-laterites to the overlying quartz rich sandstones and mudstones (CIA 90-97). The overall results for the succession reveal an increasing chemical maturity trend (increase in the intensity of chemical weathering) from Rhaetian to Hettangian thereby supporting a change from warm-arid to a warm-humid palaeoclimate, probably extreme greenhouse conditions.
Evolution of the Early Triassic marine depositional environment in the Croatian Dinarides
NASA Astrophysics Data System (ADS)
Aljinović, Dunja; Smirčić, Duje; Horacek, Micha; Richoz, Sylvain; Krystyn, Leopold; Kolar-Jurkovšek, Tea; Jurkovšek, Bogdan
2014-05-01
In the central part of the Dinarides in Croatia, the Early Triassic depositional sequence was investigated by means of litho-, bio- and chemostratigraphy at locality Plavno (ca. 1.000m thick). Conodont and δ13C-isotope analysis were a powerfull tool to determine stage and substage boundaries. The succession begins with the second conodont zone of the Griesbachian Isarcicella staeschei and I. isarcica with low δ13C-values and a steadily increase towards the Griesbachian-Dienerian boundary. Around that boundary a minor, short, negative excursion occurs. In the Dienerian the δ13C-values increase with a steepening of the slope towards the Dienerian-Smithian boundary. Around that boundary a maximum of +5o in shallow water carbonate occurs followed by a steep and continuous drop to low, often negative values in the Smithian. Just before the Smithian-Spathian boundary a steep rise to a second maximum is documented. It is followed by decline in the Spathian and a gentle increase to a rounded peak at the Spathian-Anisian boundary. In lithological sense Plavno succession has threefold division: 1) carbonates representing the oldest Early Triassic strata (early Griesbachian); 2) dominantly red clastics (shales, siltstones and sandstones) with intercalation of oncoid/ooid or bioclast rich grainstones (uppermost Griesbachian, Dienerian and Smithian) and 3) dominantly grey carbonaceous lime mudstones, marls and calcisiltites with ammonoids representing Spathian strata. In the oldest strata (Griesbachian) in macrocrystalline subhedral dolomites rare microspheres and foraminifers Earlandia and Cornuspira point to the stressful conditions related to the end Permian mass extinction. In the uppermost Griesbachian and Dienerian strata, within dominantly clastic deposition, rare coarse oncoliths with typical microbial cortices occur. Their presence fits to the interpretation of biotical-induced precipitation related to PTB extinction and can suggest still stressful condition. The Dienerian and Smithian are characterized by strong siliciclastic input and deposition of red shales, siltstones and sandstones with intercalation of oolithic and bioclastic grainstones. Hummocky-cross-strata witness the importance of storms. Presence of loadcasts and abundant casts of bivalve shells suggest quick deposition of terrigenous material and instant burying of epifauna during storms. Abundant trace fossils preserved in shales evidence intensive life activity in an overall shallow depositonal environment. During the Spathian deposition of lime mudstones and marls prevails. Two Spathian intervals bear ammonoid fauna suggest deposition in slightly deeper environment and a connection with the open sea testifying a transgression at the beginning of Spathian. Even in deeper environment storms play a significant role assuming deposition above storm wave base. The influence of storms in this deeper environment is recognized as accumulation of coarsegrained bioclastic lag at the base of storm beds, graded calcisiltites, gutter casts and hummocky-cross-stratified beds. Intense bioturbation suggest colonization by organisms between storms. Pending from nature and distribution of facies the Plavno sequence has been interpreted as epeiric ramp. An epeiric ramp is defined here as having a very low bathymetric slope (negligible in its inner regions), no grainy shoreface facies, water depths of tens of meters, a width of many hundreds of kilometers and depositional processes dominated by storms.
NASA Astrophysics Data System (ADS)
Sciscio, Lara; Bordy, Emese M.
2016-07-01
The Triassic-Jurassic boundary marks a global faunal turnover event that is generally considered as the third largest of five major biological crises in the Phanerozoic geological record of Earth. Determining the controlling factors of this event and their relative contributions to the biotic turnover associated with it is on-going globally. The Upper Triassic and Lower Jurassic rock record of southern Africa presents a unique opportunity for better constraining how and why the biosphere was affected at this time not only because the succession is richly fossiliferous, but also because it contains important palaeoenvironmental clues. Using mainly sedimentary geochemical proxies (i.e., major, trace and rare earth elements), our study is the first quantitative assessment of the palaeoclimatic conditions during the deposition of the Elliot Formation, a continental red bed succession that straddles the Triassic-Jurassic boundary in southern Africa. Employing clay mineralogy as well as the indices of chemical alteration and compositional variability, our results confirm earlier qualitative sedimentological studies and indicate that the deposition of the Upper Triassic and Lower Jurassic Elliot Formation occurred under increasingly dry environmental conditions that inhibited chemical weathering in this southern part of Pangea. Moreover, the study questions the universal validity of those studies that suggest a sudden increase in humidity for the Lower Jurassic record and supports predictions of long-term global warming after continental flood basalt emplacement.
Enomoto, Catherine B.; Rouse, William A.; Trippi, Michael H.; Higley, Debra K.
2016-04-11
Technically recoverable undiscovered hydrocarbon resources in continuous accumulations are present in Upper Devonian and Lower Mississippian strata in the Appalachian Basin Petroleum Province. The province includes parts of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, Kentucky, Tennessee, Georgia, and Alabama. The Upper Devonian and Lower Mississippian strata are part of the previously defined Devonian Shale-Middle and Upper Paleozoic Total Petroleum System (TPS) that extends from New York to Tennessee. This publication presents a revision to the extent of the Devonian Shale-Middle and Upper Paleozoic TPS. The most significant modification to the maximum extent of the Devonian Shale-Middle and Upper Paleozoic TPS is to the south and southwest, adding areas in Tennessee, Georgia, Alabama, and Mississippi where Devonian strata, including potential petroleum source rocks, are present in the subsurface up to the outcrop. The Middle to Upper Devonian Chattanooga Shale extends from southeastern Kentucky to Alabama and eastern Mississippi. Production from Devonian shale has been established in the Appalachian fold and thrust belt of northeastern Alabama. Exploratory drilling has encountered Middle to Upper Devonian strata containing organic-rich shale in west-central Alabama. The areas added to the TPS are located in the Valley and Ridge, Interior Low Plateaus, and Appalachian Plateaus physiographic provinces, including the portion of the Appalachian fold and thrust belt buried beneath Cretaceous and younger sediments that were deposited on the U.S. Gulf Coastal Plain.
NASA Astrophysics Data System (ADS)
Pietrek, Alexa; Kenkmann, Thomas
2016-07-01
We reassessed two drill cores of the Bunte Breccia deposits of the Ries crater, Germany. The objectives of our study were the documentation of evidence for water in the Bunte Breccia, the evaluation of how that water influenced the emplacement processes, and from which preimpact water reservoir it was derived. The Bunte Breccia in both cores can be structured into a basal layer composed mainly of local substrate material, overlain by texturally and compositionally diverse, crater-derived breccia units. The basal layer is composed of the youngest sediments (Tertiary clays and Upper Jurassic limestone) and has a razor-sharp boundary to the upper breccia units, which are composed of older rocks of Upper Jurassic to Upper Triassic age. Sparse material exchange occurred between the basal layer and the rest of the Bunte Breccia. Fluids predominantly came from the Tertiary and the Upper Triassic sandstone formation. In the basal layer, Tertiary clays were subjected to intense, ductile deformation, indicating saturation with water. This suggests that water was mixed into the matrix, creating a fluidized basal layer with a strong shear localization. In the upper units, Upper Triassic sandstones are intensely deformed by granular flow. The texture requires that the rocks were disaggregated into granular sand. Vaporization of pore water probably aided fragmentation of these rocks. In the Otting core, hot suevite (T > 600 °C) covered the Bunte Breccia shortly after its emplacement. Vertically oriented gas escape pipes in suevite partly emanate directly at the contact to the Bunte Breccia. They indicate that the Bunte Breccia contained a substantial amount of water in the upper part that was vaporized and escaped through these vents.
Arribas , Antonio; Tosdal, Richard M.
1994-01-01
The Betic Cordillera in southern Spain is a complex Alpine fold belt that resulted from the Cretaceous through Cenozoic collision of Africa with Europe. The region is illustrative of one of the characteristics of the Alpine-Mediterranean orogen: the occurrence over a limited area of mineral deposits with a wide variety of host rocks, mineralization ages, and styles. The metamorphic basement in the Betic zone is characterized by a nappe structure of superimposed tectonostratigraphic units and consists of lower Paleozoic to Lower Triassic clastic metasedimentary rocks. This is overlain by Middle to Upper Triassic platform carbonate rocks with abundant strata-bound F-Pb-Zn-(Ba) deposits (e.g., Sierra de Gador, Sierra Alhamilla). Cretaceous to Paleogene subduction-related compression in southeastern Spain was followed by Miocene postcollisional extension and resulted in the formation of the Almeria-Cartagena volcanic belt and widespread hydrothermal activity and associated polymetallic mineralization. Typical Miocene hydrothermal deposits include volcanic-hosted Au (e.g., Rodalquilar) and Ag-rich base metal (e.g., Cabo de Gata, Mazarron) deposits as well as complex polymetallic veins, mantos, and irregular replacement bodies which are hosted by Paleozoic and Mesozoic metamorphic rocks and Neogene sedimentary and volcanic rocks (e.g., Cartagena, Sierra Almagrera, Sierra del Aguilon, Loma de Bas).Lead isotope compositions were measured on sulfide samples from nine ore districts and from representative fresh samples of volcanic and basement rock types of the region. The results have been used to evaluate ore-forming processes in southeastern Spain with emphasis on the sources of metals. During a Late Triassic mineralizing event, Pb was leached from Paleozoic clastic metasedimentary rocks and incorporated in galena in strata-bound F-Pb-Zn-(Ba) deposits ( 206 Pb/ 204 Pb = 18.332 + or - 12, 207Pb/ 204 Pb = 15.672 + or - 12, 208 Pb/ 204 Pb = 38.523 + or - 46). The second episode of mineralization was essentially contemporaneous (late Miocene) throughout the region and did not involve remobilization of less radiogenic Triassic ore Pb. Lead isotope data indicate a dominantly Paleozoic metasedimentary source for polymetallic vein- and manto-type deposits that formed by hydrothermal circulation through the Betic basement, driven by Miocene intrusions ( 206 Pb/ 204 Pb = 18.747 + or - 20, 207 Pb/ 204Pb = 15.685 + or - 9, 208 /Pb/ 204 Pb = 39.026 + or - 37). Lead in Au-(Cu-Te-Sn) ores is isotopically indistinguishable from that of the calc-alkalic volcanic host ( 206 Pb/ 204 Pb = 18.860 + or - 9, 207 Pb/ 204 Pb = 15.686 + or - 8, 208 Pb/ 204 Pb = 38.940 + or - 27). In contrast, the Pb in volcanic-hosted Pb-Zn-Cu-(Ag-Au) veins was derived from Paleozoic metamorphic and Miocene volcanic rocks ( 206 Pb/ 204 Pb = 18.786 + or - 5, 207 Pb/ 204 Pb = 15.686 + or - 2, 208 Pb/ 204 Pb = 38.967 + or - 9).A comparison of the Pb isotope data from southeastern Spain with published data from selected Pb-Zn deposits in southern Europe (including Les Malines, L'Argentiere, and the Alpine, Iglesiente-Sulcis, and Montagne Noire districts) indicates the importance of a metasedimentary basement as a common source of ore Pb.
NASA Astrophysics Data System (ADS)
Kohút, Milan; Hofmann, Mandy; Havrila, Milan; Linnemann, Ulf; Havrila, Jakub
2018-01-01
The Late Triassic timescale, especially the Carnian-Norian boundary, is poorly constrained mainly due to a paucity of high-precision radio-isotopic ages that can be related accurately to contradictions between the biostratigraphic and magnetostratigraphic correlations. LA ICP-MS dating of detrital zircons from five samples of the Lunz Formation—the Upper Triassic siliciclastic sediments from the Western Carpathians (Slovakia)—provided a wide spectrum of ages that vary from Late Archaean (ca. 2582 Ma) to Triassic (ca. 216 Ma). These marine delta sediments represent a typical product of the "Carnian Crisis"—a major climate change and biotic turnover that occurred during the Carnian stage in the Tethys Ocean within the carbonate shelf and intrashelf basins in the Northern Calcareous Alps and the Western Carpathians. The supply of clastic material in the studied Lunz Formation was derived from several sources, especially: (i) from the recycled Variscan orogen; (ii) from the remote East European Platform; and (iii) from the contemporaneous Triassic volcanic sources. Syn-sedimentary volcanic zircons with a concordia age of 221.2 ± 1.6 Ma (calculated from 12 single analyses) represent the maximum age of deposition of the Lunz Formation, and demonstrate that the upper limit of the "Carnian Crisis" and/or the Carnian stage in the Alpine-Carpathians realm is younger than the current age of the Carnian-Norian boundary at ca. 227 Ma listed on the International Chronostratigraphic Chart (International Commission on Stratigraphy 2016/12 Edition).
NASA Astrophysics Data System (ADS)
Perez, Nicholas D.; Horton, Brian K.; Carlotto, Victor
2016-03-01
Structural, stratigraphic, and geochronologic constraints from the Eastern Cordillera in the central Andean plateau of southern Peru (14-15°S) demonstrate the existence and position of major pre-Andean structures that controlled the accumulation of Triassic synrift fill and guided subsequent Cenozoic deformation. The timing of initial clastic deposition of the Triassic Mitu Group is here constrained to ~ 242-233 Ma on the basis of detrital and volcanic zircon U-Pb geochronology. Regionally distinct provenance variations, as provided by U-Pb age populations from localized synrift accumulations, demonstrate Triassic erosion of multiple diagnostic sources from diverse rift-flank uplifts. Stratigraphic correlations suggest synchronous initiation of extensional basins containing the Mitu Group, in contrast with previous interpretations of southward rift propagation. Triassic motion along the NE-dipping San Anton normal fault accommodated up to 7 km of throw and hanging-wall deposition of a synrift Mitu succession > 2.5 km thick. The contrasting orientation of a non-reactivated Triassic normal fault suggests selective inversion of individual structures in the Eastern Cordillera was dependent on fault dip and strike. Selective preservation of a ~ 4 km thick succession of Carboniferous-Permian strata in the down-dropped San Anton hanging wall, beneath the synrift Mitu Group, suggests large-scale erosional removal in the uplifted footwall. Field and map observations identify additional pre-Andean thrust faults and folds attributed to poorly understood Paleozoic orogenic events preserved in the San Anton hanging wall. Selective thrust reactivation of normal and reverse faults during later compression largely guided Cenozoic deformation in the Eastern Cordillera. The resulting structural compartmentalization and across-strike variations in kinematics and deformation style highlight the influence of inherited Paleozoic structures and Triassic normal faults on the long-term history of convergent margin deformation in the Andes.
NASA Astrophysics Data System (ADS)
Diedrich, Cajus G.
2009-01-01
More than seventy-five vertebrate track-sites have been found in Central Europe in 243-246.5 m.y. old Triassic coastal intertidal to sabkha carbonates. In the western part of the very flat Triassic intracontinental Germanic Basin, the carbonate strata contain at least 22 laterally extensive track horizons (called megatracksites). In contrast, in the eastern part of the basin only six megatracksites extended to near the centre of the Basin during marine low stands. Marine ingression and the development of extensive coastal marine environments began during the Aegean (Anisian) stage. This incursion began in the region of the eastern Carpathian and Silesian gates and spread westward due to the development of a tectonically controlled intracratonic basin. The tectonic origin of this basin made it susceptible to tsunamis and submarine earthquakes, which constituted very dangerous hazards for coastal terrestrial and even marine reptiles. The shallow sea that spread across the Germanic Basin produced extensive tidal flats that at times formed extensive inter-peninsular bridges between the Rhenish and Bohemian Massifs. The presence of these inter-peninsular bridges explains the observed distribution and movement of reptiles along coastal Europe and the northern Tethys Seaway during the Middle Triassic epoch. Two small reptiles, probably Macrocnemus and Hescherleria, left millions of tracks and trackways known as Rhynchosauroides and Procolophonichnium in the Middle Triassic coastal intertidal zone. The great abundance of their tracks indicates that their trackmakers Macrocnemus and Hescherleria were permanent inhabitants of this environment. In sharp contrast, tracks of other large terrestrial reptiles are quite rare along the coastal margins of the Germanic Basin, for example the recently discovered archaeosaur tracks and trackways referable to Isochirotherium, which most probably were made by the carnivore Ticinosuchus. Smaller medium-sized predatory thecodont reptiles, possibly Euparkeria, probably made the Brachychirotherium trackways that have been found across much of Central Europe. Large lepidosaurs such as Tanystrophaeus probably hunted in the tidal ponds and channels, where they locally produced Synaptichnium tracks. Recently discovered tracks made by a basal prosauropod are the world's oldest record of this group of dinosaurs, occurring in beds that have an age of about 243.5 Ma. (Pelsonian substage). This shows that very large prosauropods existed much earlier than was previously believed. These prosauropod tracks, along with tracks of small bipedal dinosaurs found in the Alps and Eastern France, show that by the middle part of the Middle Triassic the radiation and diversification of dinosaurs was already in progress. In the Germanic Basin, aquatic-adapted paraxial swimming sauropterygians are not known to have left tracks, except for occasional subaquatic swimming scratch-mark "trackways" within the coastal tidal flat zone. Marine-adapted aquatic reptiles migrated into the Germanic Basin with increasing frequency in the upper part of the Middle Triassic, when the bathymetry of the Germanic Basin was at its deepest following a strong regression that occurred due to basin uplift in the middle part of the Middle Triassic. These large marine reptiles included Pistosaurus, the ichthyosaurs Cymbospondylus or Mixosaurus, and many placodonts such as Cyamodus, Placodus and Paraplacodus, which fed on macroalgae and seem to have been the Triassic sea cows of their day. The distribution of these reptiles was mainly controlled by tectonics, but eustatic changes in sea level also were important and produced widespread environmental changes across the tidal flats up until their disappearance in the Germanic Basin in the late Middle Triassic. The initial break-up of Pangaea already had started in Middle Triassic time, and this event had begun to drastically change environments all over Central Europe. It is very interesting that dinosaurs began to diversify at exactly this time, and it seems likely that this was a direct reaction to these environmental changes. It can be inferred that the earliest dinosaurs must have started to evolve in the late Early Triassic, because in Europe it can be demonstrated that at least two main dinosaur groups already were present and clearly differentiated by the middle part of the Middle Triassic, and all three of the major groups of dinosaurs (theropods, sauropods and ornithischians) had diversified and spread globally throughout terrestrial habitats by the end of the Triassic Period. Six new palaeogeographic maps, representing time intervals from the Aegean to the Illyrian (Anisian) stages, show these important environmental changes in detail and explain the direction and timing of terrestrial reptile exchanges between the Central Massif, Rhenish Massif, and Bohemian Massif, and also the direction and timing of marine reptile exchanges between the Alps of Central Pangaea and the ancient northern Tethys Ocean and Germanic Basin Sea.
NASA Astrophysics Data System (ADS)
Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair H. F.; Gerdes, Axel; Zulauf, Gernold
2014-05-01
We present new U-Pb zircon source age data for Upper Triassic sandstones of the Istanbul Terrane (S Eurasian margin) and also for Triassic sandstones of the Taurides (N Gondwana margin). The main aim is to detect and quantify the contribution of Triassic magmatism as detritus to either of these crustal blocks. This follows the recent discovery of a Triassic magmatic arc source for the Triassic sandstones of the Palaeotethyan Karakaya subduction-accretion complex (Ustaömer et al. 2013; this meeting). Carboniferous (Variscan) zircon grains also form a significant detrital population, plus several more minor populations. Six sandstone samples were studied, two from the İstanbul Terrane (Bakırlıkıran Formation of the Kocaeli Triassic Basin) and four from the Tauride Autochthon (latest Triassic Üzümdere Formation and Mid-Triassic Kasımlar Formations; Beyşehir region). Detrital zircon grains were dated by the laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) U-Pb method at Goethe University, Frankfurt. Our results do not reveal Triassic detritus in the Üzümdere Formation. The U-Pb age of the analysed zircon grains ranges from 267 Ma to 3.2 Ga. A small fraction of Palaeozoic zircons are Permian (267 to 296 Ma), whereas the remainder are Early Palaeozoic. Ordovician grains (4%) form two age clusters, one at ca. 450 Ma and the other at ca. 474 Ma. Cambrian-aged grains dominate the zircon population, while the second largest population is Ediacaran (576 to 642 Ma). Smaller populations occur at 909-997 Ma, 827-839 Ma, 1.8-2.0 Ga and 2.4-2.6 Ga. The sandstones of the Kasımlar Formation have similar zircon age cluster to those of the somewhat younger Üzümdere Formation, ranging from 239 Ma to 2.9 Ga. A few grains gave Anisian ages. Cambrian zircon grains are less pronounced than in the Kasımlar Formation compared to the Üzümdere Formation. The detrital zircon record of Tauride sandstones, therefore, not indicates significant contribution of Triassic or Carboniferous (Variscan) arc sources, in marked contrast to those of the Triassic Karakaya subduction complex. In comparison, the ages of the analysed zircons in the Upper Triassic sandstones of the Istanbul Terrane range from 294 Ma to 3.1 Ga. Triassic zircons are again absent, while Variscan-aged zircons (294 to 339 Ma) dominate the zircon population. Additional zircon populations are dated at 554 to 655 Ma, 0.9 to 1.2 Ga, 1.5 Ga, 1.65 Ga, 2.0 to 2.15 and 2.5 to 2.8 Ga. The Precambrian zircon age spectra are compatible with derivation from an Avalonian/Amazonian/Baltic crustal provenance. In summary, there is no evidence in either the Triassic sandstones of the İstanbul Terrane or of the Taurides of the Triassic magmatic arc source that dominates the Triassic Karakaya subduction-accretion complex. Where then was the source of the Karakaya arc detritus? A likely option is that the Karakaya subduction-accretion complex is an exotic terrane that was detached from a source magmatic arc and displaced to its present location, probably prior the initial deposition of the Early Jurassic cover sediments. This study was supported by TUBITAK, Project No: 111R015
Lindquist, Sandra J.
1999-01-01
The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.
NASA Astrophysics Data System (ADS)
Anfinson, Owen Anthony
More than 2300 detrital zircon uranium-lead (U-Pb) ages, 32 176Hf/177Hf (eHf) isotopic values, 37 apatite helium (AHe) ages, and 72 zircon helium (ZHe) ages represent the first in-depth geochronologic and thermochronologic study of Franklinian Basin strata in the Canadian Arctic and provide new insight on >500 M.y. of geologic history along the northern Laurentian margin (modern orientation). Detrital zircon U-Pb age data demonstrate that the Franklinian Basin succession is composed of strata with three distinctly different provenance signatures. Neoproterozoic and Lower Cambrian formations contain detrital zircon populations consistent with derivation from Archean to Paleoproterozoic gneisses and granites of the west Greenland--northeast Canadian Shield. Lower Silurian to Middle Devonian strata are primarily derived from foreland basin strata of the East Greenland Caledonides (Caledonian orogen). Middle Devonian to Upper Devonian strata also contain detrital zircon populations interpreted as being primarily northerly derived from the continental landmass responsible for the Ellesmerian Orogen (often referred to as Crockerland). U-Pb age data from basal turbidites of the Middle to Upper Devonian clastic succession suggest Crockerland contributed sediment to the northern Laurentian margin by early-Middle Devonian time and that prior to the Ellesmerian Orogeny Crockerland had a comparable geologic history to the northern Baltica Craton. Detrital zircon U-Pb ages in Upper Devonian strata suggest Crockerland became the dominant source by the end of Franklinian Basin sedimentation. Mean eHf values from Paleozoic detrital zircon derived from Crockerland suggest the zircons were primarily formed in either an island arc or continental arc built on accreted oceanic crust setting. ZHe cooling ages from Middle and Upper Devonian strata were not buried deeper than 7 km since deposition and suggest Crockerland was partially exhumed during the Caledonian Orogen. AHe cooling ages are partially reset since deposition and experienced varying burial histories depending on stratigraphic and geographic location within the basin. AHe ages from Middle Devonian strata from the western margin of the basin indicate episodes of exhumation associated with clastic influxes of sediment into the Sverdrup Basin during the Late Jurassic-Early Cretaceous and Late Cretaceous.
Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction
Thibodeau, Alyson M.; Ritterbush, Kathleen; Yager, Joyce A.; West, A. Joshua; Ibarra, Yadira; Bottjer, David J.; Berelson, William M.; Bergquist, Bridget A.; Corsetti, Frank A.
2016-01-01
The end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and release of CO2 and other volcanic volatiles has been implicated in the extinction. However, the timing of marine biotic recovery versus CAMP eruptions remains uncertain. Here we use Hg concentrations and isotopes as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic–Jurassic strata, Muller Canyon, Nevada, Hg levels rise in the extinction interval, peak before the appearance of the first Jurassic ammonite, remain above background in association with a depauperate fauna, and fall to pre-extinction levels during significant pelagic and benthic faunal recovery. Hg isotopes display no significant mass independent fractionation within the extinction and depauperate intervals, consistent with a volcanic origin for the Hg. The Hg and palaeontological evidence from the same archive indicate that significant biotic recovery did not begin until CAMP eruptions ceased. PMID:27048776
Evidence of photosymbiosis in Palaeozoic tabulate corals.
Zapalski, Mikolaj K
2014-01-22
Coral reefs form the most diverse of all marine ecosystems on the Earth. Corals are among their main components and owe their bioconstructing abilities to a symbiosis with algae (Symbiodinium). The coral-algae symbiosis had been traced back to the Triassic (ca 240 Ma). Modern reef-building corals (Scleractinia) appeared after the Permian-Triassic crisis; in the Palaeozoic, some of the main reef constructors were extinct tabulate corals. The calcium carbonate secreted by extant photosymbiotic corals bears characteristic isotope (C and O) signatures. The analysis of tabulate corals belonging to four orders (Favositida, Heliolitida, Syringoporida and Auloporida) from Silurian to Permian strata of Europe and Africa shows these characteristic carbon and oxygen stable isotope signatures. The δ(18)O to δ(13)C ratios in recent photosymbiotic scleractinians are very similar to those of Palaeozoic tabulates, thus providing strong evidence of such symbioses as early as the Middle Silurian (ca 430 Ma). Corals in Palaeozoic reefs used the same cellular mechanisms for carbonate secretion as recent reefs, and thus contributed to reef formation.
NASA Astrophysics Data System (ADS)
Peyrotty, Giovan; Peybernes, Camille; Ueda, Hayato; Martini, Rossana
2017-04-01
In comparison with the well-known Tethyan domain, Upper Triassic limestones from the Panthalassa Ocean are still poorly known. However, these carbonates represent a unique opportunity to have a more accurate view of the Panthalassa Ocean during the Triassic. Their study will allow comparison and correlation of biotic assemblages, biostratigraphy, diagenesis, and depositional settings of different Triassic localities from Tethyan and Panthalassic domains. Moreover, investigation of these carbonates will provide data for taxonomic revisions and helps to better constrain palaeobiogeographic models. One of the best targets for the study of these carbonates is Hokkaido Island (north of Japan). Indeed, this island is a part of the South-North continuity of Jurassic to Paleogene accretionary complexes, going from the Philippines to Sakhalin Island (Far East Russia). Jurassic and Cretaceous accretionary complexes of Japan and Philippines contain Triassic mid-oceanic seamount carbonates from the western Panthalassa Ocean (Onoue & Sano, 2007; Kiessling & Flügel, 2000). They have been accreted either as isolated limestone slabs or as clasts and boulders, and are associated with mudstones, cherts, breccias and basaltic rocks. Two major tectonic units forming Hokkaido Island and containing Triassic limestones have been accurately explored and extensively sampled: the Oshima Belt (west Hokkaido) a Jurassic accretionary complex, and the Cretaceous Sorachi-Yezo Belt (central Hokkaido). The Sorachi-Yezo Belt is composed of Cretaceous accretionary complexes in the east and of Cretaceous clastic basin sediments deposited on a Jurassic basement in the west (Ueda, 2016), both containing Triassic limestones. The origin of this belt is still matter of debate especially because of its western part which is not in continuity with any other accretionary complex known in the other islands of Japan and also due to the lack of data in this region. One of the main goals of this study is to investigate and characterise Triassic limestones, particularly from western part of Sorachi-Yezo, in order to provide new crucial data allowing us to define the origin of this belt. The comparison (i.e., biotic assemblages, preservation, diagnesis, associated lithologies) of the Triassic limestones in Oshima and Sorachi-Yezo belts might highlight differences in their depositional setting as well as in geodynamic evolution of the western part of Sorachi-Yezo Belt. REFERENCES Kiessling, W., & Flügel, E. 2000: Late Paleozoic and Late Triassic Limestones from North Palawan Block (Philippines): Microfacies and Paleogeographical Implications. Facies, 43, 39-78. Onoue, T., & Sano, H. 2007: Triassic mid-oceanic sedimentation in Panthalassa Ocean: Sambosan accretionary complex, Japan. Island Arc, 16(1), 173-190. Ueda H. 2016: Hokkaido in The Geology of Japan, Taira A. Ohara Y. Wallis S. Ishawatari A.Iryu Y. Geological Society, London, 203-223.
NASA Astrophysics Data System (ADS)
McDowell, Robin John
1997-01-01
The Tendoy Mountains contain the easternmost thin-skinned thrust sheets in the Cordilleran fold-thrust belt of southwestern Montana, and are in the zone of tectonic overlap between the Rocky Mountain foreland and the Cordilleran fold-thrust belt. The three frontal thrust sheets of the Tendoy Mountains are from north to south, the Armstead, McKenzie, and Tendoy sheets. Near the southeastern terminus of the Tendoy thrust sheet is a lateral ramp in which the Tendoy thrust climbs along strike from the Upper Mississippian Lombard Limestone to lower Cretaceous rocks. This ramp coincides with the southeastern side of the Paleozoic Snowcrest trough and projection of the range-flanking basement thrust of the Blacktail-Snowcrest uplift, suggesting either basement or stratigraphic control on location of the lateral ramp. Axes of major folds on the southern part of the Tendoy thrust sheet are parallel to the direction of thrust transport and to the trend of the Snowcrest Range. They are a result of: (1) Pre-thrust folding above basement faults; (2) Passive transportation of the folds from a down-plunge position; (3) Minor reactivation of basement faults; and (4) Emplacement of blind, sub-Tendoy, thin-skinned thrust faults. The Tendoy sheet also contains a major out-of-sequence thrust fault that formed in thick Upper Mississippian shales and created large, overturned, foreland-verging folds in Upper Mississippian to Triassic rocks. The out-of-sequence fault can be identified where stratigraphic section is omitted, and by a stratigraphic separation diagram that shows it cutting down section in the direction of transport. The prominent lateral ramp at the southern terminus of the Tendoy thrust sheet is a result of fault propagation through strata folded over the edge of the Blacktail-Snowcrest uplift.
Integrated geophysical study of the Triassic salt bodies' geometry and evolution in central Tunisia
NASA Astrophysics Data System (ADS)
Azaiez, Hajer; Amri, Dorra Tanfous; Gabtni, Hakim; Bedir, Mourad; Soussi, Mohamed
2008-01-01
A comprehensive study, integrating gravity, magnetic and seismic reflection data, has been used to resolve the complex Triassic salt body geometry and evolution in central Tunisia. Regional seismic lines across the study area show a detachment level in the Upper Triassic evaporites, associated with chaotic seismic facies below the Souinia, Majoura, and Mezzouna structures. The Jurassic and Lower Cretaceous seismic horizons display pinching-outs and onlapping around these structures. A stack-velocity section confirms the existence of a high-velocity body beneath the Souinia Mountain. Regional gravity and magnetic profiles in this area were elaborated from ETAP (the Tunisian Firm of Petroleum Activities) measure stations. These profiles were plotted following the same layout from the west (Souinia) to the east (Mezzouna), across the Majoura and Kharrouba mountains. They highlight associated gravity and magnetic negative anomalies. These gravity and magnetic data coupled to the reflection seismic data demonstrate that, in the Souinia, Majoura, and El Hafey zones, the Triassic salt reaches a salt pillow and a salt-dome stage, without piercing the cover. These stages are expressed by moderately low gravity anomalies. On the other hand, in the Mezzouna area (part of the North-South Axis), the Triassic salt had pierced its cover during the Upper Cretaceous and the Tertiary, reaching a more advanced stage as a salt diapir and salt wall. These stages express important low gravity and magnetic anomalies. These results confirm the model of Tanfous et al. (2005) of halokinetic movements by fault intrusions inducing, from the west to the east, structures at different stages of salt pillow, salt dome, and salt diapir.
NASA Astrophysics Data System (ADS)
Singh, Kamal Jeet; Murthy, Srikanta; Saxena, Anju; Shabbar, Husain
2017-03-01
The coal-bearing sequences of Barakar and Raniganj formations exposed in Bina and Jhingurdah open-cast collieries, respectively, are analysed for their macro- and miofloral content. The sediment successions primarily comprise of sandstones, shales, claystones and coal seams. In addition to the diverse glossopterid assemblage, four palynoassemblage zones, namely Zones I and II in Bina Colliery and Zones III and IV in Jhingurdah Colliery, have also been recorded in the present study. The megafossil assemblage from the Barakar strata of Bina Colliery comprises of three genera, namely Gangamopteris, Glossopteris and cf. Noeggerathiopsis. Palynoassemblage-I is characterised by the dominance of non-striate bisaccate pollen genus Scheuringipollenites and subdominance of striate bisaccate Faunipollenites and infers these strata to be of Early Permian (Artinskian) age (Lower Barakar Formation). The palynoassemblage has also yielded a large number of naked fossil spore tetrads, which is the first record of spore tetrads from any Artinskian strata in the world and has a significant bearing on the climatic conditions. The palynoassemblage-II is characterised with the dominance of Faunipollenites over Scheuringipollenites and is indicative of Kungurian age (Upper Barakar Formation). The megafossil assemblage from the Raniganj Formation of Jhingurdah Colliery comprises of five genera with 26 species representing four orders, viz., Equisetales, Cordaitales, Cycadales and Glossopteridales. The order Glossopteridales is highly diversified with 23 taxa and the genus Glossopteris, with 22 species, dominates the flora. The mioflora of this colliery is represented by two distinct palynoassemblages. The palynoassemblage-III is correlatable with the palynoflora of Early Permian (Artinskian) Lower Barakar Formation. The assemblage suggests the continuity of older biozones into the younger ones. The palynoassemblage-IV equates the beds with composition V: Striatopodocarpites-Faunipollenites-Gondisporites assemblage zone of Tiwari and Tripathi (1992) of Late Permian (Lopingian) Raniganj Formation in Damodar Basin. The FAD's of Alisporites, Klausipollenites, Falcisporites, Arcuatipollenites pellucidus and Playfordiaspora cancellosa palynotaxa in this assemblage enhance the end Permian level of the Jhingurdah Top seam, as these elements are the key species to mark the transition of Permian into the Lower Triassic.
Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland)
NASA Astrophysics Data System (ADS)
Guarnieri, Pierpaolo; Brethes, Anaïs.; Rasmussen, Thorkild M.
2017-04-01
The Triassic rift basin along the east Greenland margin described in this paper is represented by NE-SW trending basins and highs segmented by NW-SE trending transfer zones. Coarse-grained sediments along the eastern side of Jameson Land are shown to be hosted in half-graben structures belonging to the Carlsberg Fjord Basin that is bounded by NW dipping normal faults mapped and described after fieldwork in the Klitdal area in Liverpool Land. New aeromagnetic and electromagnetic data together with new drill cores allow the reinterpretation of available seismic lines showing the continuation of the Triassic rift basin toward the SW where it is buried under the Upper Triassic postrift sediments and the Jurassic successions of the Jameson Land Basin. The N-S trending Liverpool Land, interpreted as the boundary block of the Triassic basin, is shown to represent a structural high inherited from the Late Carboniferous tectonics and faulted during the Triassic rifting. The Carlsberg Fjord Basin and the Klitdal Fault System described in this paper should be seen as analogues to the Helgeland Basin in the Norwegian offshore that is bounded by the Ylvingen Fault Zone and to the Papa and West of Shetlands Basins that are bounded by the Spine Fault. The Triassic rift zone and transfer faults on both conjugate margins show a straightforward correlation with the trends of the initial spreading line and fracture zones of the northeast Atlantic indicating a possible inheritance of the Triassic rifting.
Parallel δ 13C and Conifer Physiognomic Trends Across the Triassic-Jurassic Boundary
NASA Astrophysics Data System (ADS)
Whiteside, J. H.; Olsen, P. E.; Sambrotto, R. N.; Cornet, B.
2003-12-01
The Triassic-Jurassic mass extinction event ( ˜200 Ma) had a profound effect on biotic evolution, and herein we describe trends in cheirolepidaceous conifer leaf physiognomy from the Pangean tropics (present northeastern USA) that at least broadly parallel a negative δ 13C excursion recorded in the same strata. The physiognomic changes appear at an abrupt (<10 ky) negative carbon isotope excursion (1) synchronous with a previously described palynological extinction level, fern spike, and Ir anomaly (2), and continue through a prolonged negative excursion, lasting 900 ky (through all three CAMP basaltic extrusive events), encompassing most of the Hettangian age. The physiognomic changes seen in the cheirolepidaceous conifer leafy shoot forms Brachyphyllum and Pagiophyllum through the δ 13C excursions include primarily the development of microphyllous leaves with thickened cuticle and sunken papillate stomata (3). These floral modifications are consistent with intense thermal stress plausibly due to very high atmospheric CO2 concentrations and corroborate McElwain's (4) thermal damage hypothesis for the Triassic-Jurassic transition that was originally based on different plant taxa from the higher Pangean latitudes in present Greenland and Sweden. Subsequently, a 2- to 5-fold increase in the area of leafy shoots in strata of latest Hettangian age suggest a return to lower thermal stress levels perhaps due to lower CO2, despite the fact that eastern North America continued to drift into more arid latitudes. The floral physiognomic changes associated with the negative δ 13C excursion and likely very elevated CO2 levels is in many ways a microcosm of the Mesozoic in which the dominance of cheiroleps apparently overlaps with the highest CO2 levels of the Mesozoic (5). References. (1) Whiteside JH, Olsen PE, Sambrotto RN. 2003. Geol. Soc. Amer. Abst. Prog. (in press). (2) Olsen PE et al., Science 296:1305-1307 (3) Cornet B. 1989. in Olsen PE, Schlische RW, Gore PJW, Internat. Geol. Cong., Guidebooks T351, p. 115. (4) McElwain JC, Beerling, DJ, Woodward FI. 1999. Science 285:1386. (5) Ekart D, Cerling TR, Montanez IP, Tabor NJ. 1999. Am. J. Sci. 299:805.
Hagstrum, Jonathan T.; Martínez, Margarita López; York, Derek
1993-01-01
Previously published paleomagnetic data for Upper Jurassic pillow lavas of the Vizcaino Peninsula indicate that they were deposited near a paleolatitude of 14°N or S. Whether or not this result implies northward transport with respect to the continental interior has been controversial due to the lack of reliable Jurassic reference poles for the North American plate. Available paleomagnetic data for nearby Upper Triassic pillow basalts and overlying pelagic sediments at Punta San Hipólito, however, fail a fold test indicating that these rocks were remagnetized post-folding. Indistinguishable in-situ paleomagnetic directions and perturbed 40Ar/39Ar age spectra for the Triassic and Jurassic pillow lavas are consistent with resetting of their magnetic and isotopic systems in the middle Cretaceous, probably during burial by the overlap Valle Formation (>10 km thick). Resetting apparently occurred post-deformation so the paleolatitude of remagnetization is unknown. High-coercivity directions from a few samples of the Triassic rocks might represent an older magnetization acquired during deposition at paleolatitudes near 6°N or S.
NASA Astrophysics Data System (ADS)
Ye, F.; Zhao, L., Sr.; Chen, Z. Q.; Wang, X.
2017-12-01
Calcium and carbon cycles are tightly related in the ocean, for example, through continental weathering and deposition of carbonate, thus, very important for exploring evolutions of marine environment during the earth history. The end-Permian mass extinction is the biggest biological disaster in the Phanerozoic and there are several studies talking about variations of calcium isotopes across the Permian-Triassic boundary (PTB). However, these studies are all from the Tethys regions (Payne et al., 2010; Hinojosa et al., 2012), while the Panthalassic Ocean is still unknown to people. Moreover, evolutions of the calcium isotopes during the Early to Late Triassic is also poorly studied (Blattler et al., 2012). Here, we studied an Uppermost Permian to Upper Triassic shallow water successions (Kamura section, Southwest Japan) in the Central Panthalassic Ocean. The Kamura section is far away from the continent without any clastic pollution, therefore, could preserved reliable δ44/40Cacarb signals. Conodont zonation and carbonate carbon isotope also provide precious time framework which is necessary for the explaining of the δ44/40Cacarb profile. In Kamura, δ44/40Cacarb and δ13Ccarb both exhibit negative excursions across the PTB, the δ44/40Cacarb value in the end-Permian is 1.0398‰ then abrupt decrease to the minimum value of 0.1524‰. CO2-driven global ocean acidification best explains the coincidence of the δ44/40Cacarb excursion with negative excursions in the δ13Ccarb of carbonates until the Early Smithian(N1a, N1b, N1c, P1, N2, P2). In the Middle and the Late Triassic, the δ44/40 Cacarb average approximately 1.1‰. During the Middle and Late Triassic, strong relationships between δ44/40Cacarb and δ13Ccarb are collapsed, indicating a normal pH values of the seawater in those time. The Siberian Trap volcanism probably played a significant role on the δ44/40Cacarb until the late Early Triassic. After that, δ44/40Cacarb was mostly controlled by carbonate flux.
NASA Astrophysics Data System (ADS)
Lozovsky, V. R.; Balabanov, Yu. P.; Karasev, E. V.; Novikov, I. V.; Ponomarenko, A. G.; Yaroshenko, O. P.
2016-07-01
The comprehensive analysis of the data obtained on terrestrial vertebrata, ostracods, entomologic fauna, megaflora, and microflora in deposits of the Vyaznikovian Horizon and Nedubrovo Member, as well as the paleomagnetic data measured in enclosing rocks, confirms heterogeneity of these deposits. Accordingly, it is necessary to distinguish these two stratons in the terminal Permian of the East European Platform. The combined sequence of Triassic-Permian boundary deposits in the Moscow Syneclise, which is considered to be the most complete sequence in the East European Platform, is as follows (from bottom upward): Vyatkian deposits; Vyaznikovian Horizon, including Sokovka and Zhukovo members; Nedubrovo Member (Upper Permian); Astashikha and Ryabi members of the Vokhmian Horizon (Lower Triassic). None of the sequences of Permian-Triassic boundary deposits known in the area of study characterizes this sequence in full volume. In the north, the Triassic deposits are underlain by the Nedubrovo Member; in the south (the Klyazma River basin), the sections are underlain by the Vyaznikovian Horizon. The Permian-Triassic boundary adopted in the General Stratigraphic Scale of Russia for continental deposits of the East European platform (the lower boundary of the Astashikha Member) is more ancient than the one adopted in the International Stratigraphic Chart. The same geological situation is observed in the German Basin and other localities where Triassic continental deposits are developed. The ways of solving this problem are discussed in this article.
Marine anoxia and delayed Earth system recovery after the end-Permian extinction
Lau, Kimberly V.; Maher, Kate; Altiner, Demir; Kelley, Brian M.; Kump, Lee R.; Lehrmann, Daniel J.; Silva-Tamayo, Juan Carlos; Weaver, Karrie L.; Yu, Meiyi; Payne, Jonathan L.
2016-01-01
Delayed Earth system recovery following the end-Permian mass extinction is often attributed to severe ocean anoxia. However, the extent and duration of Early Triassic anoxia remains poorly constrained. Here we use paired records of uranium concentrations ([U]) and 238U/235U isotopic compositions (δ238U) of Upper Permian−Upper Triassic marine limestones from China and Turkey to quantify variations in global seafloor redox conditions. We observe abrupt decreases in [U] and δ238U across the end-Permian extinction horizon, from ∼3 ppm and −0.15‰ to ∼0.3 ppm and −0.77‰, followed by a gradual return to preextinction values over the subsequent 5 million years. These trends imply a factor of 100 increase in the extent of seafloor anoxia and suggest the presence of a shallow oxygen minimum zone (OMZ) that inhibited the recovery of benthic animal diversity and marine ecosystem function. We hypothesize that in the Early Triassic oceans—characterized by prolonged shallow anoxia that may have impinged onto continental shelves—global biogeochemical cycles and marine ecosystem structure became more sensitive to variation in the position of the OMZ. Under this hypothesis, the Middle Triassic decline in bottom water anoxia, stabilization of biogeochemical cycles, and diversification of marine animals together reflect the development of a deeper and less extensive OMZ, which regulated Earth system recovery following the end-Permian catastrophe. PMID:26884155
Marine anoxia and delayed Earth system recovery after the end-Permian extinction.
Lau, Kimberly V; Maher, Kate; Altiner, Demir; Kelley, Brian M; Kump, Lee R; Lehrmann, Daniel J; Silva-Tamayo, Juan Carlos; Weaver, Karrie L; Yu, Meiyi; Payne, Jonathan L
2016-03-01
Delayed Earth system recovery following the end-Permian mass extinction is often attributed to severe ocean anoxia. However, the extent and duration of Early Triassic anoxia remains poorly constrained. Here we use paired records of uranium concentrations ([U]) and (238)U/(235)U isotopic compositions (δ(238)U) of Upper Permian-Upper Triassic marine limestones from China and Turkey to quantify variations in global seafloor redox conditions. We observe abrupt decreases in [U] and δ(238)U across the end-Permian extinction horizon, from ∼3 ppm and -0.15‰ to ∼0.3 ppm and -0.77‰, followed by a gradual return to preextinction values over the subsequent 5 million years. These trends imply a factor of 100 increase in the extent of seafloor anoxia and suggest the presence of a shallow oxygen minimum zone (OMZ) that inhibited the recovery of benthic animal diversity and marine ecosystem function. We hypothesize that in the Early Triassic oceans-characterized by prolonged shallow anoxia that may have impinged onto continental shelves-global biogeochemical cycles and marine ecosystem structure became more sensitive to variation in the position of the OMZ. Under this hypothesis, the Middle Triassic decline in bottom water anoxia, stabilization of biogeochemical cycles, and diversification of marine animals together reflect the development of a deeper and less extensive OMZ, which regulated Earth system recovery following the end-Permian catastrophe.
NASA Astrophysics Data System (ADS)
Foster, William J.; Sebe, Krisztina
2017-08-01
The recovery of benthic invertebrates following the late Permian mass extinction event is often described as occurring in the Middle Triassic associated with the return of Early Triassic Lazarus taxa, increased body sizes, platform margin metazoan reefs, and increased tiering. Most quantitative palaeoecological studies, however, are limited to the Early Triassic and the timing of the final phase of recovery is rarely quantified. Here, quantitative abundance data of benthic invertebrates were collected from the Middle Triassic (Anisian) succession of the Mecsek Mountains (Hungary), and analysed with univariate and multivariate statistics to investigate the timing of recovery following the late Permian mass extinction. These communities lived in a mixed siliciclastic-carbonate ramp setting on the western margin of the Palaeotethys Ocean. The new data presented here is combined with the previously studied Lower Triassic succession of the Aggtelek Karst (Hungary), which records deposition of comparable facies and in the same region of the Palaeotethys Ocean. The Middle Triassic benthic fauna can be characterised by three distinct ecological states. The first state is recorded in the Viganvár Limestone Formation representing mollusc-dominated communities restricted to above wave base, which are comparable to the lower and mid-Spathian Szin Marl Formation faunas. The second state is recorded in the Lapis Limestone Formation and records extensive bioturbation that is not limited to wave base and is comparable to the upper Spathian Szinpetri Limestone Formation. The third ecological state occurs in the Zuhánya Limestone Formation which was deposited in the Pelsonian Binodosus Zone, and has a more 'Palaeozoic' structure with sessile brachiopods dominating assemblages for the first time in the Mesozoic. The return of community-level characteristics to pre-extinction levels and the diversification of invertebrates suggests that the final stages of recovery and the radiation of the benthos in ramp settings following the late Permian mass extinction occurred in the upper Pelsonian Zuhánya Limestone Formation, approximately 8 million years after the extinction event.
NASA Astrophysics Data System (ADS)
Tekin, U. Kagan; Bedi, Yavuz; Okuyucu, Cengiz; Göncüoglu, M. Cemal; Sayit, Kaan
2016-12-01
The Mersin Ophiolitic Complex located in southern Turkey comprises two main structural units; the Mersin Mélange, and a well-developed ophiolite succession with its metamorphic sole. The Mersin Mélange is a sedimentary complex including blocks and tectonic slices of oceanic litosphere and continental crust in different sizes. Based on different fossil groups (Radiolaria, Conodonta, Foraminifera and Ammonoidea), the age of these blocks ranges from Early Carboniferous to early Late Cretaceous. Detailed fieldwork in the central part of the Mersin Mélange resulted in identification of a number of peculiar blocks of thick basaltic pillow-and massive lava sequences alternating with pelagic-clastic sediments and radiolarian cherts. The oldest ages obtained from the radiolarian assemblages from the pelagic sediments transitional to the volcano-sedimentary succession in some blocks are middle to late Late Anisian. These pelagic sediments are overlain by thick sandstones of latest Anisian to middle Early Ladinian age. In some blocks, sandstones are overlain by clastic and pelagic sediments with lower Upper to middle Upper Ladinian radiolarian fauna. Considering the litho- and biostratigraphical data from Middle Triassic successions in several blocks in the Mersin Mélange, it is concluded that they correspond mainly to the blocks/slices of the Beysehir-Hoyran Nappes, which were originated from the southern margin of the Neotethyan Izmir-Ankara Ocean. As the pre-Upper Anisian basic volcanics are geochemically evaluated as back-arc basalts, this new age finding suggest that a segment of the Izmir-Ankara branch of the Neotethys was already open prior to Middle Triassic and was the site of intraoceanic subduction.
NASA Astrophysics Data System (ADS)
Ilhan, I.; Coakley, B.
2016-12-01
A stratigraphic framework for offshore northwest of Alaska has been developed from multi-channel seismic reflection data and direct seismic-well ties to the late 80's Crackerjack and Popcorn exploration wells along the late Cretaceous middle Brookian unconformity. This unconformity is characterized by downlap, onlap, and bi-directional onlap of the overlying upper Brookian strata in high accommodation, and erosional incision of the underlying lower Brookian strata in low accommodation. This surface links multiple basins across the southwestern Chukchi Borderland, Arctic Ocean. The lower Brookian strata are characterized by pinch out basin geometry in which parallel-continuous reflectors show north-northeasterly progressive onlap of the younger strata onto a lower Cretaceous unconformity. These strata are subdivided into Aptian-Albian and Upper Cretaceous sections along a middle Cretaceous unconformity. The north-northeasterly thinning-by-onlap is consistent across hundreds of kilometers along the southwestern Chukchi Borderland. While this suggests a south-southwesterly regional source of sediment and transport from the Early Cretaceous Arctic Alaska-Chukotka orogens, pre-Brookian clinoform strata, underlying the lower Cretaceous unconformity angularly, have been observed for the first time in southeastern margin of the Chukchi Abyssal Plain. This suggests a change in sediment source and transport direction between the pre-Brookian and the lower Brookian strata. Although the mechanism for the accommodation is not well understood, we interpret the pre-Brookian strata as passive-margin slope deposits due to the fact that we have not observed any evidence for upper crustal tectonic deformation or syn-tectonic "growth" strata in the area. Thus, this implies that depositional history of the southwestern Chukchi Borderland post-dates the accommodation. This interpretation puts a new substantial constrain on the pre-Valanginian clockwise rotation of the Chukchi Borderland away from the East Siberian continental shelf, associated with the antecedent counter-clockwise rotation of the Arctic Alaska-Chukotka microplate away from the Canadian Arctic Islands and extensional deformation of the Amerasia Basin.
NASA Astrophysics Data System (ADS)
Horn, Bruno Ludovico Dihl; Goldberg, Karin; Schultz, Cesar Leandro
2018-01-01
Ephemeral rivers display a wide range of upper- and lower-flow regime structures due to great flow-velocity changes during the floods. The development of flow structures in these setting is yet to be understood, especially in the formation of thick, massive sandstones. The Upper Triassic of Southern Gondwana was marked by a climate with great seasonal changes, yet there is no description of river systems with seasonal characteristics in Southern Gondwana. This work aims to characterize a ephemeral alluvial system of the Upper Triassic of the Paraná Basin. The characteristics of the deposits are discussed in terms of depositional processes through comparison with similar deposits from literature, flow characteristics and depositional signatures compared to flume experiments. The alluvial system is divided in four facies associations: (1) channels with wanning fill, characterized by low width/thickness ratio, tabular bodies, scour-and-fill structures with upper- and lower-flow regime bedforms; (2) channels with massive fill, characterized by low w/t ratio, sheet-like bodies, scour-and-fill structures with massive sandstones; (3) proximal sheetfloods, characterized by moderate w/t ratio, sheet-like bodies with upper- and lower-flow regime bedforms and (4) distal sheetfloods, characterized by high w/t ratio, sheet-like bodies with lower-flow regime bedforms. Evidence for the seasonal reactivation of the riverine system includes the scarcity of well-developed macroforms and presence of in-channel mudstones, thick intraformational conglomerates, and the occurrence of well- and poorly-preserved vertebrate bones in the same beds. The predominantly massive sandstones indicate deposition from a hyperconcentrated flow during abrupt changes in flow speed, caused by de-confinement or channel avulsion, whereas turbulent portions of the flow formed the upper- and lower-flow regime bedforms after the deposition of the massive layers. The upper portion of the Candelária Sequence records a good example of strongly ephemeral alluvial systems, where the predominance of massive sandstones is a particular characteristic.
NASA Astrophysics Data System (ADS)
Pritchard, Adam C.; Nesbitt, Sterling J.
2017-10-01
The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda.
Nesbitt, Sterling J.
2017-01-01
The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda. PMID:29134065
Pritchard, Adam C; Nesbitt, Sterling J
2017-10-01
The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda.
Calaveras reversed: westward younging is indicated.
Bateman, P.C.; Harris, A.G.; Kistler, R.W.; Krauskopf, K.B.
1985-01-01
Samples of limestone collected from strata in the southern part of the western metamorphic belt of the Sierra Nevada, which traditionally have been assigned to the Calaveras Formation, have yielded Early Triassic conodonts, and samples of metavolcanic rock indicate an Early Jurassic Rb-Sr age. These ages, together with general westward younging of units rather than with eastward younging as has been assumed until recently by many workers, chiefly on the basis of sparse oservations of bedding facings. The rocks are strongly deformed, and the possibility that tectonism rather than stratigraphic succession accounts for the age pattern cannot be dismissed.-Authors
The Pangaean megamonsoon - evidence from the Upper Triassic Chinle Formation, Colorado Plateau
Dubiel, R.F.; Totman, Parrish J.; Parrish, J.M.; Good, S.C.
1991-01-01
The Chinle was deposited between about 5?? to 15??N paleolatitude in the western equatorial region of Pangaea, a key area for documenting the effects of the monsoonal climate. This study summarizes sedimentological and paleontologic data from the Chinle Formation on the Colorado Plateau and integrates that data with paleoclimatic models. The evidence for abundant moisture and seasonality attest to the reversal of equatorial flow and support the hypothesis that the Triassic Pangaean climate was dominated by monsoonal circulation. -from Authors
Restoration of marine ecosystems following the end-Permian mass extinction: pattern and dynamics
NASA Astrophysics Data System (ADS)
Chen, Z.
2013-12-01
Life came closest to complete annihilation during the end-Permian mass extinction (EPME). Pattern and cause of this great dying have long been disputed. Similarly, there is also some debate on the recovery rate and pattern of marine organisms in the aftermath of the EPME. Some clades recovered rapidly, within the first 1-3 Myr of the Triassic. For instance, foraminiferal recovery began 1 Myr into the Triassic and was not much affected by Early Triassic crises. Further, some earliest Triassic body and trace fossil assemblages are also more diverse than predicted. Others, ie. Brachiopods, corals etc., however, did not rebound until the Middle Triassic. In addition, although ammonoids recovered fast, reaching a higher diversity by the Smithian than in the Late Permian, much of this Early Triassic radiation was within a single group, the Ceratitina, and their morphological disparity did not expand until the end-Spathian. Here, I like to broaden the modern ecologic network model to explore the complete trophic structure of fossilized ecosystems during the Permian-Triassic transition as a means of assessing the recovery. During the Late Permian and Early Triassic, primary producers, forming the lowest trophic level, were microbes. The middle part of the food web comprises primary and meso-consumer trophic levels, the former dominated by microorganisms such as foraminifers, the latter by opportunistic communities (i.e. disaster taxa), benthic shelly communities, and reef-builders. They were often consumed by invertebrate and vertebrate predators, the top trophic level. Fossil record from South China shows that the post-extinction ecosystems were degraded to a low level and typified by primary producers or opportunistic consumers, which are represented by widespread microbialites or high-abundance, low-diversity communities. Except for some opportunists, primary consumers, namely foraminifers, rebounded in Smithian. Trace-makers recovered in Spathian, which also saw biodiversity increases of some clades. However, benthic communities were still of low diversity and high abundance and did not recover until middle-late Anisian when reef ecosystems have also constructed. The mid-Anisian ecosystems were characterized by the diverse reptile and fish faunas such as the Luoping biota from Yunnan, Southwest China, in which marine reptiles diversified as top predators. Thus, ecosystems were constructed step by step from low level to top trophic level through the Griesbachian to late Anisian, some 8-9 Myr after the crisis. Moreover, although some top predators also rebounded spoarically in Early Triassic, they constructed incomplete and unstable ecosystems, which could not develop sustainably and thus did not occur repetitedly in younger strata. The contrast between the extrinsic and intrinsic models exemplifies a wider debate about macroevolution -- whether the key driver is the physical environment or biotic interactions. Case studies on microbe-metazoan interactions in matground ecosystems reveal that microbial bloom seems to have set an agenda for metazoan diversification in Early Triassic, implying that intrinsic dynamics may have played a crucial role driving ecosystem's restoration following the EPME.
NASA Astrophysics Data System (ADS)
Colombi, Carina E.; Limarino, Carlos O.; Alcober, Oscar A.
2017-12-01
The Upper Triassic Ischigualasto Formation in NW Argentina was deposited in a fluvial system during the synrift filling of the extensional Ischigualasto-Villa Unión Basin. The expansive exposures of the fluvial architecture and paleosols provide a framework to reconstruct the paleoenvironmental evolution of this basin during the Upper Triassic using continental sequence stratigraphy. The Ischigualasto Formation deposition can be divided into seven sequential sedimentary stages: the 1) Bypass stage; 2) Confined low-accommodation stage; 3) Confined high accommodation stage; 4) Unstable-accommodation stage; 5) Unconfined high-accommodation stage; 6) Unconfined low-accommodation stage; and finally, 7) Unconfined high-accommodation stage. The sedimentary evolution of the Ischigualasto Formation was driven by different allogenic controls such as rises and falls in lake levels, local tectonism, subsidence, volcanism, and climate, which also produced modifications of the equilibrium profile of the fluvial systems. All of these factors result in different accommodations in central and flank areas of the basin, which led to different architectural configurations of channels and floodplains. Allogenic processes affected not only the sequence stratigraphy of the basin but also the vertebrate and plant taphocenosis. Therefore, the sequence stratigraphy can be used not only as a predictive tool related to fossil occurrence but also to understand the taphonomic history of the basin at each temporal interval.
Impacts of the Central Atlantic Magmatic Province on the Terrestrial Carbon Cycle in Western Pangea
NASA Astrophysics Data System (ADS)
Knobbe, T.; Suarez, C. A.
2014-12-01
Carbon isotope analysis of bulk organic and inorganic carbon preserved in the lacustrine deposits of the late Triassic to Jurassic Moenave Formation were analyzed to construct a carbon isotope chemostratigraphic profile of western Pangea. Negative carbon isotope excursions (NCIE) are characteristic of the Late Triassic and are attributed to the effects of the Central Atlantic Magmatic Province (CAMP) on climate and the global C-cycle. The aerial extent of the CAMP basalts is the largest in Earth's history spanning four continents with an area of ~ 7 x 106 km2 and a volume of 3 to 11 x 106 km3. Carbon isotope and paleontological evidence has shown that the end Triassic extinction is near synchronous to the CAMP and likely spurred on the extinction event as well as an increase in global temperatures of 2 - 2.5°C. Global correlations of NCIEs between marine and terrestrial strata provide a connection between the CAMP basalts and the end-Triassic extinction. Preliminary data collected at Potter Canyon, Arizona reveal a 5.5 ‰ decrease in δ13Corganic and a 2.75‰ decrease in δ13Ccarbonate in the lower portion of the Whitmore Point Member. These NCIEs indicate the global carbon cycle perturbation caused by the CAMP is recorded in lacustrine sediments of the Whitmore Point Member in southern Utah and northern Arizona. Additional samples collected at high sampling frequencies at other locations in the Whitmore Point Member will corroborate the terrestrial impacts of the CAMP perturbation at these locations across the region. Correlation of NCIES associated with the CAMP and any identified microfossils of the Whitmore Point Member will also illustrate the global effects of increased atmospheric CO2 on the terrestrial environment and biota.
The end-triassic mass extinction event
NASA Technical Reports Server (NTRS)
Hallam, A.
1988-01-01
The end-Triassic is the least studied of the five major episodes of mass extinction recognized in the Phanerozoic, and the Triassic-Jurassic boundary is not precisely defined in most parts of the world, with a paucity of good marine sections and an insufficiency of biostratigraphically valuable fossils. Despite these limitations it is clear that there was a significant episode of mass extinction, affecting many groups, in the Late Norian and the existing facts are consistent with it having taken place at the very end of the period. The best record globally comes from marine strata. There was an almost complete turnover of ammonites across the T-J boundary, with perhaps no more than one genus surviving. About half the bivalve genera and most of the species went extinct, as did many archaeogastropods. Many Paleozoic-dominant brachiopods also disappeared, as did the last of the conodonts. There was a major collapse and disappearance of the Alpine calcareous sponge. Among terrestrial biota, a significant extinction event involving tetrapods was recognized. With regard to possible environmental events that may be postulated to account for the extinctions, there is no evidence of any significant global change of climate at this time. The existence of the large Manicouagan crater in Quebec, dated as about late or end-Triassic, has led to the suggestion that an impact event might be implicated, but so far despite intensive search no unequivocal iridium anomaly or shocked quartz was discovered. On the other hand there is strong evidence for significant marine regression in many parts of the world. It is proposed therefore that the likeliest cause of the marine extinctions is severe reduction in habitat area caused either by regression of epicontinental seas, subsequent widespread anoxia during the succeeding transgression, or a combination of the two.
Milici, Robert C.; Mukhopadhyay, Abhijit; Warwick, Peter D.; Adhikari, S.; Landis, Edwin R.; Mukhopadhyay, S.K.; Ghose, Ajoy K.; Bose, L.K.
2003-01-01
The Geological Survey of India (GSI), Coal Wing, and the U.S. Geological Survey (USGS), Energy Resources Team, conducted a collaborative study of the potential for coking coal resources within the Sohagpur coalfield, Madhya Pradesh, India from 1995 to 2001. The coalfield is located within an extensional basin that contains Permian- and Triassic-age strata of the Gondwana Supergroup (Figs. 1 and 2). The purposes of the study were to perform a synthesis of previous work and. an integrated analysis of the basin of deposition with particular emphasis on the regional stratigraphy and depositional environments of the coal-bearing strata, the geologic structure of the basin, and the geochemistry of the coal in order to understand the geologic controls on the distribution of coking coals within the basin. The results of this study have been published previously (Mukhopadhyay and others, 2001a, b), and this paper provides a general overview of our findings.
Mankinen, Edward A.; Irwin, William P.; Gromme, C. Sherman
1989-01-01
Paleomagnetic study of Permian through Jurassic volcanic and sedimentary strata of the Eastern Klamath terrane has shown the remanent magnetization of many of these rocks to be prefolding and most likely primary. Similarities in magnetic declinations recorded by coeval strata over a broad area are consistent with the hypothesis that the terrane, in general, has behaved as a single rigid block. Paleomagnetic data indicate that the volcanic island arc represented by this terrane, the nucleus of the province, was facing toward the present southwest during late Paleozoic time, although its orientation during earlier periods is unknown. Whether the arc was separated from the North American craton by a small marginal basin or originated far offshore cannot be determined from paleomagnetic data. The declination anomalies for both Permian and Triassic strata are similar (average = 106° ± 12°), so we infer that clockwise rotation of the late Paleozoic arc did not begin until latest Triassic or earliest Jurassic time. The arc may have completed its initial rotation with respect to stable North America by Middle Jurassic time. After some retrograde motion, the arc was again facing west by the Late Jurassic, by which time some of the more westerly terranes of the province had become attached to the Eastern Klamath terrane. The composite Klamath Mountains terranes continued to rotate until the final 60° of clockwise rotation was nearly complete by the Early Cretaceous. Coincidence of the waning stages of rotation, at about 136 Ma, with the beginning of deposition of the basal Great Valley sequence onto the Klamath basement probably represents the completion of accretion of the Klamath Mountains terranes to the North American continent. Nearly all the rotation occurred while the Klamath Mountains terranes were part of a converging oceanic plate, with only about 20° of rotation in mid‐Tertiary time during Basin and Range extension. No data currently available show evidence for any significant latitudinal displacement of any Klamath Mountains terranes relative to cratonic North America.
Tysdal, Russell G.; Lindsey, David A.; Taggart, Joseph E.
2003-01-01
A unit of the Mesoproterozoic Apple Creek Formation of the Lemhi Range previously was correlated with part of the lower subunit of the Mesoproterozoic Yellowjacket Formation in the Salmon River Mountains. Strata currently assigned to the middle subunit of the Yellowjacket Formation lie conformably above the Apple Creek unit in the Salmon River Mountains, and are here renamed the banded siltite unit and reassigned to the Apple Creek Formation. Almost all of the banded siltite unit is preserved within the Salmon River Mountains, where it grades upward into clastic rocks that currently are assigned to the upper subunit of the Yellowjacket Formation and that here are reassigned to the Gunsight Formation. The banded siltite unit of the Apple Creek Formation is composed of a turbidite sequence, as recognized by previous workers. Uppermost strata of the unit were reworked by currents, possibly storm generated, and adjusted to a high water content by developing abundant soft-sediment deformation features. Basal strata of the overlying Gunsight Formation in the Salmon River Mountains display abundant hummocky crossbeds, storm-generated features deposited below fair-weather wave base, that are conformable above the storm-reworked deposits. The hummocky crossbedded strata grade upward into marine shoreface strata deposited above fair-weather wave base, which in turn are succeeded by fluvial strata. Hummocky and shoreface strata are absent from the Gunsight Formation in the Lemhi Range. The major thickness of the Gunsight Formation in both the Salmon River Mountains and the Lemhi Range is composed of fluvial rocks, transitional in the upper part into marine rocks of the Swauger Formation. The fluvial strata are mainly characterized by stacked sheets of metasandstone and coarse siltite; they are interpreted as deposits of braided rivers. The Poison Creek thrust fault of the Lemhi Range extends northwestward through the study area in the east-central part of the Salmon River Mountains. The Apple Creek and Gunsight Formations on the southwest side of the thrust fault were transported to the northeast as part of the Poison Creek thrust sheet. A segment of the thrust fault within the Gunsight Formation in the Salmon River Mountains subsequently underwent normal displacement. Along this segment, lower Gunsight strata on the southwest were juxtaposed against upper Gunsight and Swauger strata on the northeast.
NASA Astrophysics Data System (ADS)
Shafi Bhat, Mohd; Ray, Sanghamitra; Mohan Datta, Pradipendra
2017-04-01
The study is based on a large collection of vertebrate microfossils collected from the Upper Triassic Tiki Formation of the Rewa Gondwana basin of India, which is a mud-dominated fluvial succession. About 8600 kg of mudrocks from the Tiki Formation were screen washed to yield 1865 vertebrate microfossils, of which 67% are isolated teeth. Of these, there are about 450 well-preserved teeth, which are leaf-shaped, slightly recurved and have subtriangular crowns with expanded and asymmetric bases, and distinct denticles both on the posterior or anterior carinae. The morphology of these teeth suggests that these belong to Archosauriformes (Heckert, 2004; Irmis et al., 2007). Since the teeth were found isolated, without being associated with any other skeletal elements, it is not possible to ascertain their taxonomic position up to the generic and species level. However, based on their distinct dental attributes, twelve morphotypes are identified, of which five show similarity with the teeth of the basal saurischian dinosaurs. Principal Component and Canonical Variate analyses (PCA and CVA) are performed on these isolated teeth to evaluate the differentiation of the specimens based on the variance of their variables and to assess the consistency of identification by qualitative and quantitative methods (Hammer and Harper, 2006). PCA and CVA are applied to the variance-covariance matrix of the logarithmically transformed variables, the latter including six measured dimensions characterizing the different crown proportions. Since the first three principal components (PCs) account for more than 98% of the total variance, PC4 is discarded. Principal component scores are plotted on PC 1 and PC 2, and PC 2 and PC 3 to show the scatter of the archosauriform teeth examined. Although distinct clustering of specimens belonging to the different morphotypes is seen, there is considerable overlapping as represented by the convex hull polygons. The quantitative analyses show that many of the teeth collected from the Tiki Formation are similar to that of other known Late Triassic archosauriforms such as Protecovasaurus, Revueltosaurus, Pekinosaurus and Crosbysaurus Although more analyses are required for precise taxonomic identification, the current study highlights a large array of Late Triassic archosauriforms from India, which so far remained unknown. References: Hammer, O., Harper, D.A.T. 2006. Paleontological data analysis. Blackwell Publishing, Ltd., Malden, USA. Heckert, A.B. 2004. Late Triassic microvertebrates from the Upper Triassic Chinle Group (Otischalkian-Adamanian: Carnian), southwestern U.S.A.: New Mexico Museum of Natural History and Science Bulletin 27:1-170. Irmis, R.B., Parker, W.G., Nesbitt, S.J., Liu, J. 2007. Early ornithischian dinosaurs: the Triassic record. Historical Biology 19: 3-22.
Scott, Richard A.
1982-01-01
This study deals with 16 palynological samples from Arizona, New Mexico, and Utah, that represent six members of the Chinle Formation of Late Triassic age. The samples, in ascending sequence, show a gradual change in the spore-bisaccate ratio from a preponderance of spores to numerical dominance of bisaccate pollen grains. This change is interpreted to indicate a climatic trend toward increasing aridity. The trend is thought to represent the decreasing energy phase of the oldest of three depositional cycles posited by Lupe (1977, 1979). The late Karnian age indicated for the Chinle Formation by pollen and spores is based on material from the lower part of the formation, leaving open the possibility that the upper part of the Chinle may be younger.
Upheaval Dome, An Analogue Site for Gale Center
NASA Technical Reports Server (NTRS)
Conrad, P. G.; Eignebrode, J. L.
2011-01-01
We propose Upheaval Dome in southeastern Utah as an impact analogue site on Earth to Mars Science Laboratory candidate landing site Gale Crater. The genesis of Upheaval Dome was a mystery for some time--originally thought to be a salt dome. The 5 km crater was discovered to possess shocked quartz and other shock metamorphic features just a few years ago, compelling evidence that the crater was formed by impact, although the structural geology caused Shoemaker and Herkenhoff to speculate an impact origin some 25 years earlier. The lithology of the crater is sedimentary. The oldest rocks are exposed in the center of the dome, upper Permian sandstones, and progressively younger units are well exposed moving outward from the center. These are Triassic sandstones, siltstones and shales, which are intruded by clastic dikes. There are also other clay-rich strata down section, as is the case with Gale Crater. There is significant deformation in the center of the crater, with folding and steeply tilted beds, unlike the surrounding Canyonlands area, which is relatively undeformed. The rock units are well exposed at Upheaval Dome, and there are shatter cones, impactite fragments, shocked quartz grains and melt rocks present. The mineral shock features suggest that the grains were subjected to dynamic pressures> 10 GPa.
NASA Astrophysics Data System (ADS)
Olsen, P. E.; Mundil, R.; Kent, D.; Rasmussen, C.
2017-12-01
Two questions addressed by the CPCP are: 1) is Milankovitch-paced climate cyclicity recorded in the fluvial Late Triassic age Chinle Formation ( 227-202 Ma); and 2) do geochronological data from the Chinle support the Newark-Hartford astrochronological polarity time scale (1) (APTS). To these ends we examined the upper 157 m (stratigraphic thickness) of Petrified Forest National Park core 1A (Owl Rock, Petrified Forest, and upper Sonsela members), consisting mostly of massive red paleosols and less important fluvial sandstones. A linear age model tied to new U-Pb zircon CA ID-TIMS dates from core 1A, consistent with published data from outcrop (2), yields a duration of about 5 Myr for this interval. Magnetic susceptibility variations, interpreted as reflecting penecontemporaneous soil and sandstone redox conditions, show a clear 12 m cycle corresponding to a 400 kyr cycle based on Fourier analysis in both core and hole. Similar cyclicity is apparent in spectrophotometric data, largely reflecting hematite variability. Weak, higher frequency cycles are present consistent with 100 kyr variability. There is no interpretable 20 kyr signal. Such cyclicity is not an anticipated direct effect of Milankvitch insolation variations, but must reflect non-linear integration of variability that changes dramatically at the eccentricity-scale, brought about by the sedimentary and climate systems. Our results support a direct 405 kyr-level correlation between the fluvial medial Chinle and lacustrine Newark Basin section (middle Passaic Formation), consistent with new and published (3) paleomagnetic polarity stratigraphy from the Chinle, showing that the Milankovitch eccentricity cycles are recorded in lower accumulation rate fluvial systems. Our results also independently support the continuity of the Newark Basin section and corroborate the Newark-Hartford APTS, not allowing for a multi-million year hiatus in the Passaic Formation, as has been asserted (4). We anticipate further testing our hypothesis by integrating additional results from U-Pb zircon geochronology and rock magnetic analyses of core and outcrop of the Chinle Formation. 1 Kent+ 2017 Earth Sci Rev 166:153-180; 2 Ramezani+ 2011 GSA Bull 123:2142-2159; 3 Steiner & Lucas 2000 JGR 105:25,791-25,808; 4 Tanner & Lucas 2015 Stratigraphy 12:47-65.
Poppe, Lawrence J.; Popenoe, Peter; Poag, C. Wylie; Swift, B. Ann
1995-01-01
A Continental Offshore Stratigraphic Test (COST) well and six exploratory wells have been drilled in the south-east Georgia embayment. The oldest rocks penetrated are weakly metamorphosed Lower Ordovician quartz arenites and Silurian shales and argillites in the Transco 1005-1 well and Upper Devonian argillites in the COST GE-1 well. These marine strata, which are equivalent to the Tippecanoe sequence in Florida, underlie the post-rift unconformity and represent part of a disjunct fragment of Gondwana that was sutured to the North American craton during the late Palaeozoic Alleghanian orogeny. The Palaeozoic strata are unconformably overlain by interbedded non-marine Jurassic (Bajocian and younger) sandstones and shales and marginal marine Lower Cretaceous sandstones, calcareous shales and carbonates, which contain scattered beds of coal and evaporite. Together, these rocks are stratigraphically equivalent to the onshore Fort Pierce and Cotton Valley(?) Formations and rocks of the Lower Cretaceous Comanchean Provincial Series. The abundance of carbonates and evaporites in this interval, which reflects marine influences within the embayment, increases upwards, eastwards and southwards. The Upper Cretaceous part of the section is composed mainly of neritic calcareous shales and shaley limestones stratigraphically equivalent to the primarily marginal marine facies of the onshore Atkinson, Cape Fear and Middendorf Formations and Black Creek Group, and to limestones and shales of the Lawson Limestone and Peedee Formations. Cenozoic strata are primarily semiconsolidated marine carbonates. Palaeocene to middle Eocene strata are commonly cherty; middle Miocene to Pliocene strata are massive and locally phosphatic and glauconitic; Quaternary sediments are dominated by unconsolidated carbonate sands. The effects of eustatic changes and shifts in the palaeocirculation are recorded in the Upper Cretaceous and Tertiary strata.
NASA Astrophysics Data System (ADS)
Sayit, Kaan; Bedi, Yavuz; Tekin, U. Kagan; Göncüoglu, M. Cemal; Okuyucu, Cengiz
2017-01-01
The Mersin Mélange is a tectonostratigraphic unit within the allochthonous Mersin Ophiolitic Complex in the Taurides, southern Turkey. This chaotic structure consists of blocks and tectonic slices of diverse origins and ages set in a clastic matrix of Upper Cretaceous age. In this study, we examine two blocks at two different sections characterized by basaltic lava flows alternating with radiolarian-bearing pelagic sediments. The radiolarian assemblage extracted from the mudstone-chert alternation overlying the lavas yields an upper Anisian age (Middle Triassic). The immobile element geochemistry suggests that the lava flows are predominantly characterized by sub-alkaline basalts. All lavas display pronounced negative Nb anomalies largely coupled with normal mid-ocean basalt (N-MORB)-like high field strength element (HFSE) patterns. On the basis of geochemical modelling, the basalts appear to have dominantly derived from spinel-peridotite and pre-depleted spinel-peridotite sources, while some enriched compositions can be explained by contribution of garnet-facies melts from enriched domains. The overall geochemical characteristics suggest generation of these Middle Triassic lavas at an intra-oceanic back-arc basin within the northern branch of Neotethys. This finding is of significant importance, since these rocks may represent the presence of the oldest subduction zone found thus far from the Neotethyan branches. This, in turn, suggests that the rupturing of the Gondwanan lithosphere responsible for the opening of the northern branch of Neotethys should have occurred during the Lower Triassic or earlier.
Geochronology and Regional Correlation of Continental Permo-Triassic Sediments in West Texas
NASA Astrophysics Data System (ADS)
Mitchell, W.; Renne, P. R.; Mundil, R.; Chang, S.; Geissman, J. W.; Tabor, N. J.; Mack, G.
2011-12-01
Although many aspects of marine sections spanning the Permian-Triassic boundary (PTB) have been studied in great detail across a broad paleogeographic area, less is known about the timing, pace, and extent of environmental changes and extinctions across this boundary in continental environments, particularly along the Panthalassa margin. Extensive outcrops in the Ochoan Series of west Texas provide an opportunity to investigate the terrestrial record spanning the PTB. The presence of several silicic tuffs in these sections allows for precise radioisotopic dating using both U-Pb and 40Ar/39Ar techniques. Dated strata then serve as a calibration basis for paleomagnetic and lithostratigraphic studies and facilitate stratigraphic correlation across the few to hundreds of kilometers separating study sites. Depending on the possible correlations, as many as seven tuffs have been identified in this region, the ages of which are within about a million years of the chronometrically-defined PTB at the Meishan section in China at ca. 252 Ma. Data obtained thus far indicate that the PTB occurs within the Quartermaster/Dewey Lake Formation. With the aims of determining the number and ages of distinct tuffs found and facilitating a well-correlated regional stratigraphy among the studied sections, we present preliminary radioisotopic age determinations of, and correlations among, these tuffs using the zircon U-Pb system, 40Ar/39Ar dating where possible, as well as mineral chemistry. Our results include the first dated tuff in the Ochoan Series that lies within the Alibates Formation which underlies the Dewey Lake Fm. Other samples in progress from the various tuffs in the region, in combination with results from magneto- and chemostratigraphy, will significantly expand the areal coverage of these strata and lead towards a greatly improved chronostratigraphic framework.
NASA Astrophysics Data System (ADS)
Viglietti, Pia A.; Smith, Roger M. H.; Rubidge, Bruce S.
2018-02-01
Important palaeoenvironmental differences are identified during deposition of the latest Permian Daptocephalus Assemblage Zone (DaAZ) of the South African Beaufort Group (Karoo Supergoup), which is also divided into a Lower and Upper subzone. A lacustrine floodplain facies association showing evidence for higher water tables and subaqueous conditions on the floodplains is present in Lower DaAZ. The change to well-drained floodplain facies association in the Upper DaAZ is coincident with a faunal turnover as evidenced by the last appearance of the dicynodont Dicynodon lacerticeps, the therocephalian Theriognathus microps, the cynodont Procynosuchus delaharpeae, and first appearance of the dicynodont Lystrosaurus maccaigi within the Ripplemead member. Considering the well documented 3-phased extinction of Karoo tetrapods during the Permo-Triassic Mass Extinction (PTME), the facies transition between the Lower and Upper DaAZ represents earlier than previously documented palaeoenvironmental changes associated with the onset of this major global biotic crisis.
Preliminary Geologic Map of the Little Piute Mountains, California; a Digital Database
Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl; Phelps, Geoffrey A.
1997-01-01
Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).
Preliminary Geologic Map of the the Little Piute Mountains, San Bernardino County, California
Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl E.; Phelps, Geoffrey A.
1995-01-01
Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).
Climatically driven biogeographic provinces of Late Triassic tropical Pangea
Whiteside, Jessica H.; Grogan, Danielle S.; Olsen, Paul E.; Kent, Dennis V.
2011-01-01
Although continents were coalesced into the single landmass Pangea, Late Triassic terrestrial tetrapod assemblages are surprisingly provincial. In eastern North America, we show that assemblages dominated by traversodont cynodonts are restricted to a humid 6° equatorial swath that persisted for over 20 million years characterized by “semiprecessional” (approximately 10,000-y) climatic fluctuations reflected in stable carbon isotopes and sedimentary facies in lacustrine strata. More arid regions from 5–20°N preserve procolophonid-dominated faunal assemblages associated with a much stronger expression of approximately 20,000-y climatic cycles. In the absence of geographic barriers, we hypothesize that these variations in the climatic expression of astronomical forcing produced latitudinal climatic zones that sorted terrestrial vertebrate taxa, perhaps by excretory physiology, into distinct biogeographic provinces tracking latitude, not geographic position, as the proto-North American plate translated northward. Although the early Mesozoic is usually assumed to be characterized by globally distributed land animal communities due to of a lack of geographic barriers, strong provinciality was actually the norm, and nearly global communities were present only after times of massive ecological disruptions. PMID:21571639
Climatically driven biogeographic provinces of Late Triassic tropical Pangea.
Whiteside, Jessica H; Grogan, Danielle S; Olsen, Paul E; Kent, Dennis V
2011-05-31
Although continents were coalesced into the single landmass Pangea, Late Triassic terrestrial tetrapod assemblages are surprisingly provincial. In eastern North America, we show that assemblages dominated by traversodont cynodonts are restricted to a humid 6° equatorial swath that persisted for over 20 million years characterized by "semiprecessional" (approximately 10,000-y) climatic fluctuations reflected in stable carbon isotopes and sedimentary facies in lacustrine strata. More arid regions from 5-20 °N preserve procolophonid-dominated faunal assemblages associated with a much stronger expression of approximately 20,000-y climatic cycles. In the absence of geographic barriers, we hypothesize that these variations in the climatic expression of astronomical forcing produced latitudinal climatic zones that sorted terrestrial vertebrate taxa, perhaps by excretory physiology, into distinct biogeographic provinces tracking latitude, not geographic position, as the proto-North American plate translated northward. Although the early Mesozoic is usually assumed to be characterized by globally distributed land animal communities due to of a lack of geographic barriers, strong provinciality was actually the norm, and nearly global communities were present only after times of massive ecological disruptions.
The Paleotethys suture in Central Iran
NASA Astrophysics Data System (ADS)
Bagheri, S.; Stampfli, G. M.
2003-04-01
The Triassic rocks of the Nakhlak area have been used to justify the hypothesis of the rotation of the Central-East Iranian microplate, mainly based on paleomagnetic data. Davoudzadeh and his coworkers (1981) pointed out the existing contrast between the Nakhlakh succession and the time-equivalent lithostratigraphic units exposed in the surrounding regions and compared them with the Triassic rocks of the Aghdarband area on the southern edge of the Turan plate. We recently gathered evidences that this part of central Iran effectively belongs to the Northern Iranian Paleo-Tethys suture zone and related Variscan terrains of the Turan plate. This is the case for the northwestern part of central Iran, where the Anarak-Khur belt (Anarak schists and their thick Cretaceous-Paleocene sedimentary cover) presents all the elements of an orogenic zone such as dismembered ophiolites and silisiclastics, calcareous and volcanic cover which has been deformed and metamorphosed. This belt is separated to the northwest from the Alborz microcontinent by the Great Kavir fault and Cretaceous ophiolite mélanges. To the southeast it is bounded by the Biabanak fault and serpentinites and the Biabanak block, part of the central-east Iranian plate. The later zone is formed by Proterozoic metamorphic basement and marine sedimentary cover, nearly continuous from the Ordovician to the Triassic, at the uppermost part upper Triassic-lower Jurassic bauxites and silisiclastics are observed. Excepted the Ordovician angular unconformities and the boundary between lower Jurassic and younger layers, this sequence displays no significant main unconformities and can be attributed to the Cimmerian super-terrain. Thus, this sequences represents the classical evolution of the southern Paleo-Tethys passive margin, as found in the Alborz microcontinent or the Band-e Bayan zone of Afghanistan and is the witness of large scale duplication of the Paleo-Tethys suture zone through major Alpine strike-slip faults. Within the Anarak-Khur belt limit and to the northeast of the Nakhlak succession, the area of Godar-e Siah of Jandaq, remnants of the Eurasian active margin are found, represented by: 1- A lower Paleozoic to upper Devonian unit consisting mainly of metamorphosed rocks including ophiolitic rocks, pelagic sediments, flysch-like deposits and shallow-water limestones of Devonian age belonging to the Anarak and Kabudan areas. Folding and thrusting was pre-Carboniferous and all geochronological dating based on K/Ar for the Anarak and Kaboudan schists placed this metamorphic event between middle Devonian and Visean. 2- the main part of the lower Carboniferous unit consists of a volcano-sedimentary complex with intercalations of limestone containing Coral, Brachiopod and Foraminiferas. Pyroclastic deposits are followed by continental red beds containing a great variety of grain types, such as hypabyssal to several types of granitoid rock fragments derived from the arc, accompanied by pebbles of chert, fossiliferous carbonate and serpentinite recycled from the accretionary complex, pointing to a fore-arc environment of deposition. 3- The middle Carboniferous to Permian unit consists of coarse littoral conglomerate and sandstones derived from ophiolitic to felsic material with some platform limestones. They represent the final infill of the fore-arc basin and rest unconformably on both the metamorphites and Lower Carboniferous units. These tectono-stratigraphic units are similar to the western Hindu Kush sequences of Afghanistan and Tuarkyr in Turkmenistan and belong to the northern active margin of Paleo-Tethys. Therefore, the Anarak-Khur belt was part of the Variscan terranes located along this margin. Volcano-sedimentary strata with Conodont-bearing limestones of Permian to Triassic age have been found in direct contact with the Biabanak fault which, therefore, is most likely following and reactivating the Paleo-Tethys suture zone.
Facies analysis of Lofer cycles (Upper Triassic), in the Argolis Peninsula (Greece)
NASA Astrophysics Data System (ADS)
Pomoni-Papaioannou, F.
The Upper Triassic carbonate sediments of Argolis Peninsula are part of the Upper Triassic-Lower Jurassic extensive and thick neritic carbonate formations (Pantokrator facies) that formed at the passive Pelagonian margin and are considered as Dachstein-type platform carbonates. Facies analysis of the Upper Triassic "Lofer-type" lagoonal-peritidal cycles in the Dhidimi area, proved that cycles, although mostly incomplete, were regressive shallowing-upward. The ideal elementary cyclothems are meter-scale in thickness and begin with a subtidal bed (Member C), represented by a peloidal dolostone with megalodonts (wackestone or packstone), being followed by a stromatolitic intertidal dolomitic mudstone and/or fenestral intertidal dolomitic mudstone (Member B) that is overlain by dolocrete (terrestrial stromatolites or pisoidic dolomite) or a supratidal "soil conglomerate" in red micritic matrix (Member A). Lofer-cycle boundaries are defined at the erosional surfaces and accordingly the Lofer cyclothems are unconformity-bounded units. Due to common post-depositional truncation of the subtidal and intertidal facies, the supratidal members prevail, being developed, in places, directly upon subaerial exposure surfaces (erosionally reduced cyclothems). Peritidal layers are characterized by a well-expressed lamination, sheet cracks, tepee structures, fenestral pores and karst dissolution cavities. The studied lagoonal-peritidal cycles are considered to have been deposited in a tidal-flat setting (inner platform), repeatedly exposed under subaerial conditions, in the context of a broader tropical rimmed platform. Although the studied area was tectonically active due to rift-activity and the autocyclic processes should also be taken in consideration, the great lateral correlatability of cycles, the facies shifting and the widespread erosion that resulted in superposition of supratidal-pedogenic facies directly upon subtidal members (subaerial erosional unconformity), indicating a sea-level drop, reflect allocyclic control via high-frequency eustatic sea-level oscillation (orbital forcing). Sediment deposition occurred during low-stand system tract (LST), that probably continued also in the transgressive system tract (TST) and reflects an overall sea-level fall. Under these conditions dissolution and cement precipitation episodes, as well development of paleosols and karsts, were triggered, during a relatively less arid interval.
NASA Astrophysics Data System (ADS)
Echarfaoui, Hassan; Hafid, Mohamed; Salem, Abdallah Aı̈t; Abderrahmane, Aı̈t Fora
The review of the seismic reflection and well data from the coastal Abda Basin (western Morocco) shows that its Triassic and Jurassic sequences were deposited in a submeridean sag basin, whose eastern margin is characterised by progressive truncations and pinching out of these sequences against a prominent Palaeozoic high. The uplift of this latter is interpreted as a response to an Upper Triassic-Middle Jurassic local compressional event that controlled Triassic-Jurassic sedimentation within the Abda Basin. The present day 'West Meseta Flexure' is a surface expression of this uplift. To cite this article: H. Echarfaoui et al., C. R. Geoscience 334 (2002) 371-377.
NASA Astrophysics Data System (ADS)
Jones, Alan G.; Muller, Mark; Fullea, Javier; Vozar, Jan; Blake, Sarah; Delhaye, Robert; Farrell, Thomas
2013-04-01
IRETHERM (www.iretherm.ie) is an academic-government-industry, collaborative research project, funded by Science Foundation Ireland, with the overarching objective of developing a holistic understanding of Ireland's low-enthalpy geothermal energy potential through integrated modelling of new and existing geophysical and geological data. With the exception of Permo-Triassic basins in Northern Ireland, hosting geothermal aquifers of promising but currently poorly-defined potential, rocks with high primary porosity have not been identified elsewhere. Whether any major Irish shear zones/faults might host a geothermal aquifer at depth is also unknown, although clusters of warm-springs in the vicinity of two major shear zones are promising. IRETHERM's objectives over a four-year period are to: (i) Develop multi-parameter geophysical modelling and interpretation software tools that will enhance our ability to explore for and assess deep aquifers and granitic intrusions. (ii) Model and understand temperature variations in the upper-crust. Firstly, by building a 3-D model of crustal heat-production based on geochemical analysis of surface, borehole and mid- to lower-crustal xenolith samples. Secondly, by modelling, using a fully self-consistent 3-D approach, observed surface heat-flow variation as a function of variation in the structure and thermal properties of the crust and lithosphere, additionally constrained by surface elevation, geoid, gravity, seismic and magnetotelluric (MT) data. (iii) Test a strategic set of eight "type" geothermal targets with a systematic program of electromagnetic surveys (MT, CSEM) across ten target areas. During 2012, IRETHERM collected over 220 MT/AMT sites in the investigation of a range of different geothermal target types. Here we present preliminary electrical resistivity modelling results for each target investigated and discuss the implications of the models for geothermal energy potential: 1. Rathlin Basin The only sedimentary strata in Ireland known to provide reliable primary porosity, supporting deep hydrothermal aquifers, are found in the Triassic Sherwood Sandstone Group and in the upper-Permian, preserved in several basins in Northern Ireland. Our survey over the Rathlin Basin aims to map the geometry of these strata at depth and assess their porosity and permeability characteristics. 2. Kilbrook warm spring. Kilbrook warm spring is characterised by the warmest spring waters in Ireland (24.8°C) and highest Total Dissolved Solids concentration. Our high-resolution AMT survey over this occurrence aims to image the subsurface fluid conduit systems that bring these waters to surface. 3. Leinster and Galway granites Many of Ireland's exposed granites are associated with high radioactive element concentrations, high radiogenic heat production (HP) values and elevated surface heat-flow (SHF). Surveys over two of these granites - the Leinster granite (SHF: 80 mWm-2, HP: 2-3 µWm-3) and the Galway granite (SHF: 65-77 mWm-2, HP: 4-7 µWm-3) - aim to define the geometry, volume and local/regional heating effect of the granites and assess their suitability for energy provision using EGS. The models will also be assessed for indications of naturally occurring hydrothermal aquifers associated with either major faults that cross-cut the granites or the granite-country rock contacts.
NASA Astrophysics Data System (ADS)
Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.
2014-12-01
Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.
Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.
2014-01-01
Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.
An ictidosaur fossil from north america.
Chatterjee, S
1983-06-10
Teeth of a North American ictidosaur, Pachygenelus milleri, n. sp., found in the Upper Triassic Dockum Group of Texas, indicate that it is very similar to Pachygenelus monus of South Africa and Chaliminia musteloides of South America. The presence of a Gondwana element in the Northern Hemisphere attests to the ease of dispersal of the Late Triassic vertebrates through Pangea. Ictidosaurs are small, highly advanced, carnivorous cynodonts that display a mosaic of reptilian and mammalian features in the masticatory apparatus. They were contemporaneous with early mammals and probably closely related to them.
Age and tectonic setting of the Mesozoic McCoy Mountains Formation in western Arizona, USA
Spencer, J.E.; Richard, S.M.; Gehrels, G.E.; Gleason, J.D.; Dickinson, W.R.
2011-01-01
The McCoy Mountains Formation consists of Upper Jurassic to Upper Cretaceous siltstone, sandstone, and conglomerate exposed in an east-west-trending belt in southwestern Arizona and southeastern California. At least three different tectonic settings have been proposed for McCoy deposition, and multiple tectonic settings are likely over the ~80 m.y. age range of deposition. U-Pb isotopic analysis of 396 zircon sand grains from at or near the top of McCoy sections in the southern Little Harquahala, Granite Wash, New Water, and southern Plomosa Mountains, all in western Arizona, identifi ed only Jurassic or older zircons. A basaltic lava fl ow near the top of the section in the New Water Mountains yielded a U-Pb zircon date of 154.4 ?? 2.1 Ma. Geochemically similar lava fl ows and sills in the Granite Wash and southern Plomosa Mountains are inferred to be approximately the same age. We interpret these new analyses to indicate that Mesozoic clastic strata in these areas are Upper Jurassic and are broadly correlative with the lowermost McCoy Mountains Formation in the Dome Rock, McCoy, and Palen Mountains farther west. Six samples of numerous Upper Jurassic basaltic sills and lava fl ows in the McCoy Mountains Formation in the Granite Wash, New Water, and southern Plomosa Mountains yielded initial ??Nd values (at t = 150 Ma) of between +4 and +6. The geochemistry and geochronology of this igneous suite, and detrital-zircon geochronology of the sandstones, support the interpretation that the lower McCoy Mountains Formation was deposited during rifting within the western extension of the Sabinas-Chihuahua-Bisbee rift belt. Abundant 190-240 Ma zircon sand grains were derived from nearby, unidentifi ed Triassic magmatic-arc rocks in areas that were unaffected by younger Jurassic magmatism. A sandstone from the upper McCoy Mountains Formation in the Dome Rock Mountains (Arizona) yielded numerous 80-108 Ma zircon grains and almost no 190-240 Ma grains, revealing a major reorganization in sediment-dispersal pathways and/or modifi cation of source rocks that had occurred by ca. 80 Ma. ?? 2011 Geological Society of America.
Stratigraphy and depositional environments of Fox Hills Formation in Williston basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, D.J.
The Fox Hills Formation (Maestrichtian), representing part of a regressive wedge deposited during the withdrawal of the sea from the Western Interior at the close of the Cretaceous, consists of marginal marine strata transitional between the offshore deposits of the underlying Pierre Shale and the terrestrial deltaic and coastal deposits of the overlying Hell Creek Formation. An investigation of outcrops of the Fox Hills Formation along the western and southern flanks of the Williston basin and study of over 300 oil and gas well logs from the central part of the basin indicate that the formation can be divided bothmore » stratigraphically and areally. Stratigraphically, the Fox Hills can be divided into lower and upper sequences; the lower includes the Trail City and Timber Lake Members, and the upper sequence includes the Colgate Member in the west and the Iron Lightning and Linton Members in the east. Areally, the formation can be divided into a northeastern and western part, where the strata are 30-45 m thick and are dominated by the lower sequence, and into a southeastern area where both the lower and upper sequences are well developed in a section 80-130 m thick. Typically, the lower Fox Hills consists of upward-coarsening shoreface or delta-front sequences containing hummocky bedding and a limited suite of trace fossils, most notably Ophiomorpha. In the southeast, however, these strata are dominated by bar complexes, oriented northeast-southwest, composed of cross-bedded medium to very fine-grained sand with abundant trace and body fossils. The upper Fox Hills represents a variety of shoreface, deltaic, and channel environments. The strata of the Fox Hills Formation exhibit facies similar to those reported for Upper Cretaceous gas reservoirs in the northern Great Plains.« less
Tectonics and hydrocarbon potential of the Barents Megatrough
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturin, D.; Vinogradov, A.; Yunov, A.
1991-08-01
Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostlymore » terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.« less
NASA Astrophysics Data System (ADS)
Klitzke, Peter; Franke, Dieter; Blumenberg, Martin; Weniger, Philipp; Lutz, Rüdiger; Berglar, Kai; Ehrhardt, Axel
2017-04-01
The Norwegian Barents Sea, as the westernmost part of the Arctic Eurasian shelf, is located between the Proterozoic East-European Craton in the south and Cenozoic passive margins in the north and the west. This region has experienced multiple changes of the stress regime including Paleozoic continental collision, multi-stage late Paleozoic to Mesozoic rifting and Pliocene/Pleistocene uplift and erosion. Particularly the southwestern Barents Sea is in focus of academic as well as industry-driven studies since decades due to its hydrocarbon potential. This contributed to a comprehensive database and the corresponding petroleum systems are well understood. Opposed to that, potential petroleum systems of the northern Barents Sea are only poorly investigated. It is widely agreed that late Cenozoic uplift and erosion episodes were more pronounced to the north. As a consequence, potential Triassic source rocks are covered only locally by Jurassic strata but by a thin layer of Quaternary deposits. One objective of our Arctic activities is to shed new light on the evolution of potential petroleum systems in the northern Barents Sea. Therefore, geophysical and geological data were acquired southeast of Svalbard in the area of the Olga Basin in 2015. The obtained data include 1750 km of 2D multi-channel seismic lines, 350 km of wide angle seismic lines by means of sonobuoys, sediment echosounder data, multi-beam data and potential field data. First interpretation of the seismic profiles reveals a locally dense network of Triassic normal faults bordering the Olga basin and partly reaching as deep as to the acoustic basement. In particular, north of the Olga Basin this Triassic fault system seems to have experienced post-glacial reactivation as indicated by sediment echosounder data. Surface sediments were sampled by use of gravity and multi coring. Low concentrations of methane in the adsorbed fraction of hydrocarbon gases within the center of the Olga Basin imply that the Jurassic strata is impermeable and could act a potential seal for hydrocarbons. Elevated methane concentrations on the other hand have been determined at the basin edge where Jurassic sediments crop out and additionally, above a reactivated fault, which suggests that these faults are potential pathways for hydrocarbon escape.
Magnetostratigraphy of displaced Upper Cretaceous strata in southern California
NASA Astrophysics Data System (ADS)
Fry, J. Gilbert; Bottjer, David J.; Lund, Steve P.
1985-09-01
A magnetostratigraphic study of Upper Cretaceous marine strata from the Santa Ana Mountains in southern California has identified a Campanian reversed magnetozone. This reversed interval, corresponding to marine magnetic anomaly 33 34 (Chron 33r) of Campanian age, can be correlated with a Campanian reversed magnetozone that has been reported from strata of the Great Valley Sequence in central California. The Late Cretaceous paleolatitude of the Santa Ana Mountains is estimated from this study to be 26.6°N. This is significantly different from the region's expected Cretaceous paleolatitude of 43.8°N as part of the North American stable craton, and indicates that this region (part of the Peninsular Ranges terrane) was 1900 km farther south in Cretaceous time relative to the stable craton. *Present address: Mobil Oil Corp., P.O. Box 900, Dallas, Texas 75221
NASA Astrophysics Data System (ADS)
Tu, Chenyi; Chen, Zhong-Qiang; Retallack, Gregory J.; Huang, Yuangeng; Fang, Yuheng
2016-03-01
Microbially induced sedimentary structures (MISSs) are commonly present in siliciclastic shallow marine settings following the end-Permian mass extinction, but have been rarely reported in the post-extinction terrestrial ecosystems. Here, we present six types of well-preserved MISSs from the upper Sunjiagou Formation and lower Liujiagou Formation of Induan (Early Triassic) age in the Yiyang area, Henan Province, North China. These MISSs include: polygonal sand cracks, worm-like structures, wrinkle structures, sponge pore fabrics, gas domes, and leveled ripple marks. Microanalysis shows that these MISSs are characterized by thin clayey laminae and filamentous mica grains arranged parallel to bedding plane as well as oriented matrix supported quartz grains, which are indicative of biogenic origin. Facies analysis suggests that the MISS-hosting sediments were deposited in a fluvial sedimentary system during the Early Triassic, including lake delta, riverbeds/point bars, and flood plain paleoenvironments. Abundant MISSs from Yiyang indicate that microbes also proliferated in terrestrial ecosystems in the aftermath of the Permian-Triassic (P-Tr) biocrisis, like they behaved in marine ecosystems. Microbial blooms, together with dramatic loss of metazoans, may reflect environmental stress and degradation of terrestrial ecosystems or arid climate immediately after the severe Permian-Triassic ecologic crisis.
NASA Astrophysics Data System (ADS)
McKenzie, R.; Horton, B. K.; Fuentes, F.; Fosdick, J. C.; Capaldi, T.; Stockli, D. F.; Alvarado, P. M.
2015-12-01
Two distinct Paleozoic terranes known as Cuyania and Chilenia occupy the southern central Andes of Argentina and Chile. Because the proposed terrane boundaries coincide with major structural elements of the modern Andean system at 30-36°S, it is important to understand their origins and potential role in guiding later Andean deformation. The Cuyania terrane of western Argentina encompasses the Precordillera (PC) and a thick-skinned thrust block of the western Sierras Pampeanas, persisting southward to the San Rafael Basin (SRB). Although recently challenged, Cuyania has been long considered a piece of southern Laurentia that rifted away during the early Cambrian and collided with the Argentine margin during the Ordovician. Chilenia is situated west of Cuyania and includes the Frontal Cordillera (FC) and Andean magmatic arc. This less-studied terrane was potentially accreted during an enigmatic Devonian orogenic event. We present new detrital zircon U-Pb age data from siliciclastic sedimentary rocks that span the entire Paleozoic to Triassic from the FC, PC, and SRB. Cambrian rocks of the PC exhibit similar zircon age distributions with prominent ~1.4 and subordinate ~1.1 Ga populations, which are distinct from other Paleozoic strata. Plutonic rocks with these ages are common in southern Laurentia, whereas ~1.4 Ga zircons are uncommon in South American age distributions. This supports a Laurentian origin for Cuyania in isolation from Argentina during the Cambrian. Upper Paleozoic strata from the PC, FC, and SRB all yield similar age data suggesting shared provenance across the proposed Cuyania-Chilenia suture. Age distributions also notably lack Devonian-age grains. The regional paucity of Devonian plutonic rocks and detrital zircon casts doubt on a possible arc system between these terranes at this time, a key requisite for the mid-Paleozoic transfer and accretion of Chilenia to the Argentine margin. Collectively, these data question the precise boundaries of the Chilenia terrane.
NASA Astrophysics Data System (ADS)
Montes, Camilo; Guzman, Georgina; Bayona, German; Cardona, Agustin; Valencia, Victor; Jaramillo, Carlos
2010-10-01
A moderate amount of vertical-axis clockwise rotation of the Santa Marta massif (30°) explains as much as 115 km of extension (stretching of 1.75) along its trailing edge (Plato-San Jorge basin) and up to 56 km of simultaneous shortening with an angular shear of 0.57 along its leading edge (Perijá range). Extensional deformation is recorded in the 260 km-wide, fan-shaped Plato-San Jorge basin by a 2-8 km thick, shallowing-upward and almost entirely fine-grained, upper Eocene and younger sedimentary sequence. The simultaneous initiation of shortening in the Cesar-Ranchería basin is documented by Mesozoic strata placed on to lower Eocene syntectonic strata (Tabaco Formation and equivalents) along the northwest-verging, shallow dipping (9-12° to the southeast) and discrete Cerrejón thrust. First-order subsidence analysis in the Plato-San Jorge basin is consistent with crustal stretching values between 1.5 and 2, also predicted by the rigid-body rotation of the Santa Marta massif. The model predicts about 100 km of right-lateral displacement along the Oca fault and 45 km of left-lateral displacement along the Santa Marta-Bucaramanga fault. Clockwise rotation of a rigid Santa Marta massif, and simultaneous Paleogene opening of the Plato-San Jorge basin and emplacement of the Cerrejón thrust sheet would have resulted in the fragmentation of the Cordillera Central-Santa Marta massif province. New U/Pb ages (241 ± 3 Ma) on granitoid rocks from industry boreholes in the Plato-San Jorge basin confirm the presence of fragments of a now segmented, Late Permian to Early Triassic age, two-mica, granitic province that once spanned the Santa Marta massif to the northernmost Cordillera Central.
New Data on the Clevosaurus (Sphenodontia: Clevosauridae) from the Upper Triassic of Southern Brazil
Hsiou, Annie Schmaltz; De França, Marco Aurélio Gallo; Ferigolo, Jorge
2015-01-01
The sphenodontian fossil record in South America is well known from Mesozoic and Paleogene deposits of Argentinean Patagonia, mainly represented by opisthodontians, or taxa closely related to the modern Sphenodon. In contrast, the Brazilian fossil record is restricted to the Caturrita Formation, Late Triassic of Rio Grande do Sul, represented by several specimens of Clevosauridae, including Clevosaurus brasiliensis Bonaparte and Sues, 2006. Traditionally, Clevosauridae includes several Late Triassic to Early Jurassic taxa, such as Polysphenodon, Brachyrhinodon, and Clevosaurus, the latter well-represented by several species. The detailed description of the specimen MCN-PV 2852 allowed the first systematic revision of most Clevosaurus species. Within Clevosauridae, Polysphenodon is the most basal taxon, and an IterPCR analysis revealed Brachrhynodon as a possible Clevosaurus; C. petilus, C. wangi, and C. mcgilli as possibly distinct taxonomic entities; and the South African Clevosaurus sp. is not closely related to C. brasiliensis. These data indicate the need of a deep phylogenetic review of Clevosauridae, in order to discover synapomorphic characters among the diversity of these Triassic/Jurassic sphenodontians. PMID:26355294
NASA Astrophysics Data System (ADS)
Vliex, M.; Hagemann, H. W.; Püttmann, W.
1994-11-01
Thirty-seven coal samples of Upper Carboniferous and Lower Permian age from three boreholes in the Saar-Nahe Basin, Germany, have been studied by organic geochemical and coal petrological methods. The investigations were aimed at the recognition of floral changes in the Upper Carboniferous and Lower Permian strata. The results show that compositional changes in the extracts are only partly caused by variations in coalification. Specific aromatic hydrocarbons appear in Upper Westphalian D coal seams and increase in concentration up to the Rotliegendes. The dominant compound has been identified by mass spectrometry and NMR-spectroscopy as 5-methyl-10-(4-methylpentyl)-des- A-25-norarbora(ferna)-5,7,9-triene (MATH) and always occurs associated with 25-norarbora(ferna)-5,7,9-triene. Both compounds are thought to originate from isoarborinol, fernene-3β-ol, or fernenes. The strongly acidic conditions during deposition of the coals might have induced the 4,5-cleavage combined with a methyl-shift in an arborane/fernane-type pentacyclic precursor yielding the MATH. Based on petrological investigations, palynomorphs related to early Gymnospermopsida such as Pteridospermales and Coniferophytes ( Cordaitales and Coniferales) increased in abundance in the strata beginning with the Upper Westphalian D concomitant with the above mentioned biomarkers. The results suggest the arborane/fernane derivatives originate from the plant communities producing these palynomorphs.
NASA Astrophysics Data System (ADS)
Holzförster, Frank; Stollhofen, Harald; Stanistreet, Ian G.
1999-07-01
The dissected landscape of the Waterberg-Erongo area, central Namibia, exposes Karoo-equivalent strata deposited in basins that occur throughout sub-Saharan Africa. Although many are of economic interest, including coal-bearing strata, their depositional history is not well understood. This study of the Waterberg-Erongo area provides detailed lithostratigraphical data, which suggest sedimentation from the late Early Triassic to the Early Jurassic in a fault-bounded depository. Subsidence and sediment supply were controlled predominantly by the northeast-southwest trending Waterberg-Omaruru Fault Zone, which defines the northwestern margin of the depository. Facies development and thickness distribution of the Karoo strata in the Waterberg-Erongo area, perhaps the most continuous of any of the Karoo basins, indicate a northeastwardly-migrating depocentre alongside that fault, in response to major extensional movements in the early pre-South Atlantic rift zone. Periodic fault movements repeatedly caused basinward progradation of the alluvial facies, which are reflected by stacked fining-upward cycles in the lithological record. On a broader scale, the results of this study suggest that the northward propagation of the rift zone between Southern Africa and South America, was partially accommodated by transfer lineaments. Local depocentres developed along these lineaments, such as those in the Waterberg-Erongo area, with localised enhanced subsidence greater than that revealed in other Namibian onshore exposures, dominated by the rifting itself.
Rogala, James T.; Gray, Brian R.
2006-01-01
The Long Term Resource Monitoring Program (LTRMP) uses a stratified random sampling design to obtain water quality statistics within selected study reaches of the Upper Mississippi River System (UMRS). LTRMP sampling strata are based on aquatic area types generally found in large rivers (e.g., main channel, side channel, backwater, and impounded areas). For hydrologically well-mixed strata (i.e., main channel), variance associated with spatial scales smaller than the strata scale is a relatively minor issue for many water quality parameters. However, analysis of LTRMP water quality data has shown that within-strata variability at the strata scale is high in off-channel areas (i.e., backwaters). A portion of that variability may be associated with differences among individual backwater lakes (i.e., small and large backwater regions separated by channels) that cumulatively make up the backwater stratum. The objective of the statistical modeling presented here is to determine if differences among backwater lakes account for a large portion of the variance observed in the backwater stratum for selected parameters. If variance associated with backwater lakes is high, then inclusion of backwater lake effects within statistical models is warranted. Further, lakes themselves may represent natural experimental units where associations of interest to management may be estimated.
Anciet marble quarries in Lesvos island Greece
NASA Astrophysics Data System (ADS)
Mataragkas, M.; Mataragkas, D.
2009-04-01
ANCIENT MARBLE QUARRIES IN LESBOS ISLAND, GREECE Varti- Matarangas M.1 & Matarangas D. 1 Institute of Geological and Mining Exploration (IGME), Olympic Village, Entrance C, ACHARNAE 13677, GREECE myrsini@igme.gr , myrsini@otenet.g r A B S T R A C T Ten ancient marble quarries of Lesbos Island, most of them previously unknown, have been studied, in the frame of the research study on the ancient marble quarries in the Aegean Sea. In the present paper the geological, petrological and morphological features of the aforementioned quarries are examined. Concerning the six ancient quarries located in the areas of Tarti, Agia Paraskevi (Tsaf), Mageiras, Loutra, Latomi (Plomari) and Thermi, the authochthonous neopaleozoic unit constitutes their geological formation, while their hosting lithological formations are the included crystalline limestone lens like beds. In two ancient quarries in the areas Moria and Alyfanta, the geological formation is the authochthonous upper Triassic series and the hosting lithological formation the upper Triassic carbonate sequence, while in the areas of Akrasi-Abeliko and Karyni, the geological formation is the thrust Triassic unit and the lithological hosting formations are the included strongly deformed or not crystalline limestone lenticular beds. Furthermore, the petrographic features were also determined permitting the identification of the building stones that have been used.
NASA Astrophysics Data System (ADS)
Zakharov, Yu. D.; Biakov, A. S.; Richoz, S.; Horacek, M.
2015-01-01
This paper is dedicated to a global correlation of marine Permian-Triassic boundary layers on the basis of partially published and original data on the δ13Corg and δ13Ccarb values of the Suol section (Setorym River, South Verkhoyansk region). The section consists of six carbon isotopic intervals, which are easily distinguishable in the carbon isotopic curves for a series of Permian-Triassic reference sections of Eurasia and Northern America, including paleontologically described sections of Central Iran, Kashmir, and Southern China. This suggests that the Permian-Triassic boundary in the Suol section is close to the carbon isotopic minimum of interval IV. In light of new data, we suggest considering the upper part of the Late Permian Changhsingian Stage and the lower substage of the Early Triassic Induan Stage of Siberia in the volumes of the rank Otoceras concavum zone and the Tompophiceras pascoei and Wordieoceras decipiens zones, respectively. The O. concavum zone of the Verkhoyansk region probably corresponds to the Late Changhsingian Hypophiceras triviale zone of Greenland. The carbon isotopic intervals II, III, IV, and V in the Permian-Triassic boundary layers of the Verkhoyansk region traced in a series of the reference sections of Eurasia correspond, most likely, to intensification of volcanic activity at the end of the Late Changhsingian and to the first massive eruptions of Siberian traps at the end of the Changhsingian and the beginning of the Induan Stages. New data indicate the possible survival of ammonoids of the Otoceratoidea superfamily at the species level after mass extinction of organisms at the end of the Permian.
NASA Astrophysics Data System (ADS)
Zhang, D.; Yan, Y.; Huang, B.; Zhao, J.
2015-12-01
Paleomagnetic studies of the Indochina block, aiming to reconstruct the paleogeography, have been undertaken for several decades. Since the Indochina block is lack of reliable paleomagnetic data to constraint its paleo-positions during the Middle Permian to Upper Triassic, the paleogeography reconstruction is still in debate between different models reported. Here we present new paleomagnetic data of Middle Permian to Upper Triassic sediment rocks from the Indochina block in Thailand, and recalculate paleomagnetic data reported by different authors. We collected the Permian samples in 20 sites distributed in the central Thailand, and Triassic samples from the Huai Hin Lat and Nam Phong formations in 13 sites in the northern Thailand.The magnetic directions of the 11 sites of Permian limestones are not significantly clustered after tilt correction which implying a remagnetized result. Remarkably, in geographic coordinate, the 11 sites were distributed along a circle showing a similar inclination which is 22.9° implying the paleolatitude to be about 12°. Totally, 13 sites from the Huai Hin Lat formation are included in the calculation of the formation mean direction Dg/Ig = 21.4°/38.1°, kg = 19.5, α95 = 9.6° before and Ds/Is = 43.0°/48.0°, ks = 47.4, α95 = 6.1°, N = 13 after bedding correction. A pre-folding characteristic magnetization is suggested by the positive fold test result derived from the Huai Hin Lat formation, and thus implies a primary remanence of the Norian Stage Upper Triassic rocks. A new Nam Phong formation mean direction derived from 11 sites is Dg/Ig = 36.5°/31.3°, kg = 14.7, α95 = 12.3°before and Ds/Is = 36.4°/37.8°, ks = 68.5, α95 = 5.6°, N = 11 after bedding correction. The two formation mean directions correspond to the magnetic pole positions , Plat./Plon=48.7°N/165.9°E, A95=7.2° and Plat./Plon=55.2°N/178.0°E, A95=5.9°, respectively. A remarkable tectonic movement (~8° southward) of the Indochina block from the age of the Huai Hin Lat formation to the Nam Phong formation is suggested in this study, indicating the Indochina block locates in the west of the South China block at the Norian Age Late Triassic and moved to a new position which is quite near the present at the Rhaetian Age of Late Triassic to Early Jurassic.
NASA Astrophysics Data System (ADS)
Rogers, Raymond R.; Rogers, Kristina Curry; Munyikwa, Darlington; Terry, Rebecca C.; Singer, Bradley S.
2004-10-01
Karoo-equivalent rocks in the Tuli Basin of Zimbabwe are described, with a focus on the dinosaur-bearing Mpandi Formation, which correlates with the Elliot Formation (Late Triassic-Early Jurassic) in the main Karoo Basin. Isolated exposures of the Mpandi Formation along the banks of the Limpopo River consist of red silty claystones and siltstones that preserve root traces, small carbonate nodules, and hematite-coated prosauropod bones. These fine-grained facies accumulated on an ancient semi-arid floodplain. Widespread exposures of quartz-rich sandstone and siltstone representing the upper Mpandi Formation crop out on Sentinel Ranch. These strata preserve carbonate concretions and silicified root casts, and exhibit cross-bedding indicative of deposition via traction currents, presumably in stream channels. Prosauropod fossils are also preserved in the Sentinel Ranch exposures, with one particularly noteworthy site characterized by a nearly complete and articulated Massospondylus individual. An unconformity caps the Mpandi Formation in the study area, and this stratigraphically significant surface rests on a laterally-continuous zone of pervasive silicification interpreted as a silcrete. Morphologic, petrographic, and geochemical data indicate that the Mpandi silcrete formed by intensive leaching near the ground surface during prolonged hiatus. Chert clasts eroded from the silcrete are intercalated at the base of the overlying Samkoto Formation (equivalent to the Clarens Formation in the main Karoo Basin), which in turn is overlain by the Tuli basalts. These basalts, which are part of the Karoo Igneous Province, yield a new 40Ar/ 39Ar plateau age of 186.3 ± 1.2 Ma.
Cretaceous–Cenozoic burial and exhumation history of the Chukchi shelf, offshore Arctic Alaska
Craddock, William H.; Houseknecht, David W.
2016-01-01
Apatite fission track (AFT) and vitrinite reflectance data from five exploration wells and three seafloor cores illuminate the thermal history of the underexplored United States Chukchi shelf. On the northeastern shelf, Triassic strata in the Chevron 1 Diamond well record apatite annealing followed by cooling, possibly during the Triassic to Middle Jurassic, which is a thermal history likely related to Canada Basin rifting. Jurassic strata exhumed in the hanging wall of the frontal Herald Arch thrust fault record a history of probable Late Jurassic to Early Cretaceous structural burial in the Chukotka fold and thrust belt, followed by rapid exhumation to near-surface temperatures at 104 ± 30 Ma. This history of contractional tectonism is in good agreement with inherited fission track ages in low-thermal-maturity, Cretaceous–Cenozoic strata in the Chukchi foreland, providing complementary evidence for the timing of exhumation and suggesting a source-to-sink relationship. In the central Chukchi foreland, inverse modeling of reset AFT samples from the Shell 1 Klondike and Shell 1 Crackerjack wells reveals several tens of degrees of cooling from maximum paleo-temperatures, with maximum heating permissible at any time from about 100 to 50 Ma, and cooling persisting to as recent as 30 Ma. Similar histories are compatible with partially reset AFT samples from other Chukchi wells (Shell 1 Popcorn, Shell 1 Burger, and Chevron 1 Diamond) and are probable in light of regional geologic evidence. Given geologic context provided by regional seismic reflection data, we interpret these inverse models to reveal a Late Cretaceous episode of cyclical burial and erosion across the central Chukchi shelf, possibly partially overprinted by Cenozoic cooling related to decreasing surface temperatures. Regionally, we interpret this kinematic history to be reflective of moderate, transpressional deformation of the Chukchi shelf during the final phases of contractional tectonism in the Chukotkan orogen (lasting until ∼70 Ma), followed by renewed subsidence of the Chukchi shelf in the latest Cretaceous and Cenozoic. This history maintained modest thermal maturities at the base of the Brookian sequence across the Chukchi shelf, because large sediment volumes bypassed to adjacent depocenters. Therefore, the Chukchi shelf appears to be an area with the potential for widespread preservation of petroleum systems in the oil window.
Mancini, E.A.; Puckett, T.M.; Tew, B.H.
1996-01-01
Upper Cretaceous (Santonian-Maastrichtian stages) strata of the eastern US Gulf Coastal Plain represent a relatively complete section of marine to nonmarine mixed siliciclastic and carbonate sediments. This section includes three depositional sequences which display characteristic systems tracts and distinct physical defining surfaces. The marine lithofacies are rich in calcareous nannoplankton and planktonic foraminifera which can be used for biostratigraphic zonation. Integration of this zonation with the lithostratigraphy and sequence stratigraphy of these strata results in a framework that can be used for local and regional intrabasin correlation and potentially for global interbasin correlation. Only the synchronous maximum flooding surfaces of these depositional sequences, however, have chronostratigraphic significance. The sequence boundaries and initial flooding surfaces are diachronous, and their use for correlation can produce conflicting results. The availability of high resolution biostratigraphy is critical for global correlation of depositional sequences. ?? 1996 Academic Press Limited.
Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone
NASA Astrophysics Data System (ADS)
Surmik, Dawid; Rothschild, Bruce M.; Pawlicki, Roman
2017-04-01
Fossilized soft tissues, occasionally found together with skeletal remains, provide insights to the physiology and functional morphology of extinct organisms. Herein, we present unusual fossilized structures from the cortical region of bone identified in isolated skeletal remains of Middle Triassic nothosaurs from Upper Silesia, Poland. The ribbed or annuli-shaped structures have been found in a sample of partially demineralized coracoid and are interpreted as either giant red blood cells or as blood vessel walls. The most probable function is reinforcing the blood vessels from changes of nitrogen pressure in air-breathing diving reptiles. These structures seem to have been built of extensible muscle layers which prevent the vessel damage during rapid ascent. Such suspected function presented here is parsimonious with results of previous studies, which indicate rarity of the pathological modification of bones associated with decompression syndrome in Middle Triassic nothosaurs.
Geologic map of the Nelson quadrangle, Lewis and Clark County, Montana
Reynolds, Mitchell W.; Hays, William H.
2003-01-01
The geologic map of the Nelson quadrangle, scale 1:24,000, was prepared as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of an area in the geologically complex southern part of the Montana disturbed belt. In the Nelson area, rocks ranging in age from Middle Proterozoic through Cretaceous are exposed on three major thrust plates in which rocks have been telescoped eastward. Rocks within the thrust plates are folded and broken by thrust faults of smaller displacement than the major bounding thrust faults. Middle and Late Tertiary sedimentary and volcaniclastic rocks unconformably overlie the pre-Tertiary rocks. A major normal fault displaces rocks of the western half of the quadrangle down on the west with respect to strata of the eastern part. Alluvial and terrace gravels and local landslide deposits are present in valley bottoms and on canyon walls in the deeply dissected terrain. Different stratigraphic successions are exposed at different structural levels across the quadrangle. In the northeastern part, strata of the Middle Cambrian Flathead Sandstone, Wolsey Shale, and Meagher Limestone, the Middle and Upper Cambrian Pilgrim Formation and Park Shale undivided, the Devonian Maywood, Jefferson, and lower part of the Three Forks Formation, and Lower and Upper Mississippian rocks assigned to the upper part of the Three Forks Formation and the overlying Lodgepole and Mission Canyon Limestones are complexly folded and faulted. These deformed strata are overlain structurally in the east-central part of the quadrangle by a succession of strata including the Middle Proterozoic Greyson Formation and the Paleozoic succession from the Flathead Sandstone upward through the Lodgepole Limestone. In the east-central area, the Flathead Sandstone rests unconformably on the middle part of the Greyson Formation. The north edge, northwest quarter, and south half of the quadrangle are underlain by a succession of rocks that includes not only strata equivalent to those of the remainder of the quadrangle, but also the Middle Proterozoic Newland, Greyson, and Spokane Formations, Pennsylvanian and Upper Mississippian Amsden Formation and Big Snowy Group undivided, the Permian and Pennsylvanian Phosphoria and Quadrant Formations undivided, the Jurassic Ellis Group and Lower Cretaceous Kootenai Formation. Hornblende diorite sills and irregular bodies of probable Late Cretaceous age intrude Middle Proterozoic, Cambrian and Devonian strata. No equivalent intrusive rocks are present in structurally underlying successions of strata. In this main part of the quadrangle, the Flathead Sandstone cuts unconformably downward from south to north across the Spokane Formation into the upper middle part of the Greyson Formation. Tertiary (Miocene?) strata including sandstone, pebble and cobble conglomerate, and vitric crystal tuff underlie, but are poorly exposed, in the southeastern part of the quadrangle where they are overlain by late Tertiary and Quaternary gravel. The structural complexity of the quadrangle decreases from northeast to southwest across the quadrangle. At the lowest structural level (Avalanche Butte thrust plate) exposed in the canyon of Beaver Creek, lower and middle Paleozoic rocks are folded in northwest-trending east-inclined disharmonic anticlines and synclines that are overlain by recumbently folded and thrust faulted Devonian and Mississippian rocks. The Mississippian strata are imbricated adjacent to the recumbent folds. In the east-central part of the quadrangle, a structurally overlying thrust plate, likely equivalent to the Hogback Mountain thrust plate of the Hogback Mountain quadrangle adjacent to the east (Reynolds, 20xx), juxtaposes recumbently folded Middle Proterozoic and unconformably overlying lower Paleozoic rocks on the complexly folded and faulted rocks of the Avalanche Butte thrust plate. The highest structural plate, bounded below
Authigenic Carbonate Fans from Lower Jurassic Marine Shales (Alberta, Canada)
NASA Astrophysics Data System (ADS)
Martindale, R. C.; Them, T. R., II; Gill, B. C.; Knoll, A. H.
2016-12-01
Authigenic aragonite seafloor fans are a common occurrence in Archean and Paleoproterozoic carbonates, as well as Neoproterozoic cap carbonates. Similar carbonate fans are rare in Phanerozoic strata, with the exception of two mass extinction events; during the Permo-Triassic and Triassic-Jurassic boundaries, carbonate fans formed at the sediment-water interface and within the sediment, respectively. These crystal fans have been linked to carbon cycle perturbations at the end of the Permian and Triassic periods driven by rapid flood volcanism. The Early Jurassic Toarcian Ocean Anoxic Event (T-OAE) is also correlated with the emplacement of a large igneous province, but biological consequences were more modest. We have identified broadly comparable fibrous calcite layers (2-10 cm thick) in Pliensbachian-Toarcian cores from Alberta, Canada. This work focuses on the geochemical and petrographic description of these fans and surrounding sediment in the context of the T-OAE. At the macroscale, carbonates exhibit a fan-like (occasionally cone-in-cone) structure and displace the sediment around them as they grew. At the microscale, the carbonate crystals (pseudomorphs of aragonite) often initiate on condensed horizons or shells. Although they grow in multiple directions (growth within the sediment), the predominant crystal growth direction is towards the sediment-water interface. Resedimentation of broken fans is evidence that crystal growth was penecontemporaneous with sedimentation. The carbon isotope composition of the fans (transects up bladed crystals) and elemental abundances within the layers support shallow subsurface, microbially mediated growth. The resemblance of these Early Jurassic fibrous calcite layers to those found at the end-Triassic and their paucity in the Phanerozoic record suggest that analogous processes occurred at both events. Nevertheless, the Pliensbachian-Toarcian carbonate fans occur at multiple horizons and while some are within the T-OAE, others are significantly above and below the event. The formation of these authigenic layers cannot be driven exclusively by the geochemical and paleoenvironmental changes during the T-OAE. Therefore, a new model of formation for the Early Jurassic carbonate fans is required.
U-Pb dating of uranium deposits in collapse breccia pipes of the Grand Canyon region
Ludwig, K. R.; Simmons, K.R.
1992-01-01
Two major periods of uranium mineralization are indicated by U-Pb isotope dating of uranium ores from collapse breccia pipes in the Grand Canyon region, northern Arizona. The Hack 2 and 3, Kanab North, and EZ 1 and 2 orebodies apparently formed in the interval of 200 ?? 20 Ma, similar to ages inferred for strata-bound, Late Triassic-hosted uranium deposits in southern Utah and northern Arizona. Samples from the Grand Canyon and Pine Nut pipes, however, indicate a distinctly older age of about 260 Ma. The clustering in ages for a variety of uranium deposits at about the age of the lower part of the Chinle Formation (Late Triassic) suggests that uranium in these deposits may have been derived by leaching from volcanic ash in the Chinle and mobilized by ground-water movement. Pb isotope ratios of galenas in mineralized pipes are more radiogenic than those of sulfides from either uranium-poor pipes or occurrences away from pipes. Fluids which passed through the pipes had interacted with the Proterozoic basement, possibly through the vertical fractures which influenced the location and evolution of the pipes themselves. -from Authors
Magnetic Fe, Si, Al-Rich Impact Spherules from the P-T Boundary Layer at Graphite Peak, Antarctica
NASA Technical Reports Server (NTRS)
Petaev, M. I.; Jacobsen, S. B.; Basu, A. R.; Becker, L.
2004-01-01
The geological boundary between Triassic and Permian strata coincides with the greatest life extinction in the Earth's history. Although the cause of the extinction is still the subject of intense debates, recent discoveries in the P-T boundary layer of shocked quartz grains, fullerenes with the extraterrestrial noble gases, Fe metal nuggets, and chondritic meteorite fragments all point to a powerful collision of Earth with a celestial body in the late Permian. Here we report the discovery of magnetic Fe, Si, Al-rich impact spherules which accompany the chondritic meteorite fragments in some samples from the P-T boundary layer at Graphite Peak, Antarctica.
Hackley, Paul C.; Dennen, Kristin O.; Gesserman, Rachel M.; Ridgley, Jennie L.
2009-01-01
The Lower Cretaceous Pearsall Formation, a regionally occurring limestone and shale interval of 500-600-ft maximum thickness (Rose, 1986), is being evaluated as part of an ongoing U.S. Geological Survey (USGS) assessment of undiscovered hydrocarbon resources in onshore Lower Cretaceous strata of the northern Gulf of Mexico. The purpose of this report is to release preliminary vitrinite and bitumen reflectance, total organic carbon, and pyrolysis data for Pearsall Formation, Glen Rose Formation, Hosston Formation, Austin Group, and Eagle Ford Group samples from the Maverick Basin in south Texas in order to aid in the characterization of these strata in this area. The preliminary nature of this report and the data contained herein reflect that the assessment and characterization of these samples is a work currently in progress. Pearsall Formation subdivisions are, in ascending stratigraphic order, the Pine Island Shale, James Limestone, and Bexar Shale Members (Loucks, 2002). The Lower Cretaceous Glen Rose Formation is also part of the USGS Lower Cretaceous assessment and produces oil in the Maverick Basin (Loucks and Kerans, 2003). The Hosston Formation was assessed by the USGS for undiscovered oil and gas resources in 2006 (Dyman and Condon, 2006), but not in south Texas. The Upper Cretaceous Austin Group is being assessed as part of the USGS assessment of undiscovered hydrocarbon resources in the Upper Cretaceous strata of the northern Gulf of Mexico and, along with the Upper Cretaceous Eagle Ford Group, is considered to be an important source rock in the Smackover-Austin-Eagleford Total Petroleum System (Condon and Dyman, 2006). Both the Austin Group and the Eagle Ford Group are present in the Maverick Basin in south Texas (Rose, 1986).
Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata
NASA Astrophysics Data System (ADS)
Weibel, R.; Lindström, S.; Pedersen, G. K.; Johansson, L.; Dybkjær, K.; Whitehouse, M. J.; Boyce, A. J.; Leng, M. J.
2016-08-01
In a terrestrial Triassic-Jurassic boundary succession of southern Sweden, perfectly zoned sphaerosiderites are restricted to a specific sandy interval deposited during the end-Triassic event. Underlying and overlying this sand interval there are several other types of siderite micromorphologies, i.e. poorly zoned sphaerosiderite, spheroidal (ellipsoid) siderite, spherical siderite and rhombohedral siderite. Siderite overgrowths occur mainly as rhombohedral crystals on perfectly zoned sphaerosiderite and as radiating fibrous crystals on spheroidal siderite. Concretionary sparry, microspar and/or micritic siderite cement postdate all of these micromorphologies. The carbon isotope composition of the siderite measured by conventional mass spectrometry shows the characteristic broad span of data, probably as a result of multiple stages of microbial activity. SIMS (secondary ion mass spectrometry) revealed generally higher δ13C values for the concretionary cement than the perfectly zoned sphaerosiderite, spheroidal siderite and their overgrowths, which marks a change in the carbon source during burial. All the various siderite morphologies have almost identical oxygen isotope values reflecting the palaeo-groundwater composition. A pedogenic/freshwater origin is supported by the trace element compositions of varying Fe:Mn ratios and low Mg contents. Fluctuating groundwater is the most likely explanation for uniform repeated siderite zones of varying Fe:Mn ratios reflecting alternating physiochemical conditions and hostility to microbial life/activity. Bacterially mediated siderite precipitation likely incorporated Mn and other metal ions during conditions that are not favourable for the bacteria and continued with Fe-rich siderite precipitation as the physico-chemical conditions changed into optimal conditions again, reflecting the response to groundwater fluctuations.
The Early Mesozoic volcanic arc of western North America in northeastern Mexico
NASA Astrophysics Data System (ADS)
Barboza-Gudiño, José Rafael; Orozco-Esquivel, María Teresa; Gómez-Anguiano, Martín; Zavala-Monsiváis, Aurora
2008-02-01
Volcanic successions underlying clastic and carbonate marine rocks of the Oxfordian-Kimmeridgian Zuloaga Group in northeastern Mexico have been attributed to magmatic arcs of Permo-Triassic and Early Jurassic ages. This work provides stratigraphic, petrographic geochronological, and geochemical data to characterize pre-Oxfordian volcanic rocks outcropping in seven localities in northeastern Mexico. Field observations show that the volcanic units overlie Paleozoic metamorphic rocks (Granjeno schist) or Triassic marine strata (Zacatecas Formation) and intrude Triassic redbeds or are partly interbedded with Lower Jurassic redbeds (Huizachal Group). The volcanic rocks include rhyolitic and rhyodacitic domes and dikes, basaltic to andesitic lava flows and breccias, and andesitic to rhyolitic pyroclastic rocks, including breccias, lapilli, and ashflow tuffs that range from welded to unwelded. Lower-Middle Jurassic ages (U/Pb in zircon) have been reported from only two studied localities (Huizachal Valley, Sierra de Catorce), and other reported ages (Ar/Ar and K-Ar in whole-rock or feldspar) are often reset. This work reports a new U/Pb age in zircon that confirms a Lower Jurassic (193 Ma) age for volcanic rocks exposed in the Aramberri area. The major and trace element contents of samples from the seven localities are typical of calc-alkaline, subduction-related rocks. The new geochronological and geochemical data, coupled with the lithological features and stratigraphic positions, indicate volcanic rocks are part of a continental arc, similar to that represented by the Lower-Middle Jurassic Nazas Formation of Durango and northern Zacatecas. On that basis, the studied volcanic sequences are assigned to the Early Jurassic volcanic arc of western North America.
Mata, Scott A; Bottjer, David J
2009-11-01
Wrinkle structures are microbially mediated sedimentary structures that are a common feature of Proterozoic and earliest Phanerozoic siliciclastic seafloors on Earth and occur only rarely in post-Cambrian strata. These macroscopic microbially induced sedimentary structures are readily identifiable at the outcrop scale, and their recognition on other planetary bodies by landed missions may suggest the presence of past microbial life. Wrinkle structures of the Lower Triassic (Spathian) Virgin Limestone Member of the Moenkopi Formation in the western United States record an occurrence of widespread microbialite formation in the wake of the end-Permian mass extinction, the largest biotic crisis of the Phanerozoic. Wrinkle structures occur on proximal sandy tempestites deposited within the offshore transition. Storm layers appear to have been rapidly colonized by microbial mats and were subsequently buried by mud during fair-weather conditions. Wrinkle structures exhibit flat-topped crests and sinuous troughs, with associated mica grains oriented parallel to bedding, suggestive of trapping and binding activity. Although Lower Triassic wrinkle structures postdate the widespread occurrence of these features during the Proterozoic and Cambrian, they exhibit many of the same characteristics and environmental trends, which suggests a conservation of microbial formational and preservational processes in subtidal siliciclastic settings on Earth from the Precambrian into the Phanerozoic. In the search for extraterrestrial life, it may be these conservative characteristics that prove to be the most useful and robust for recognizing microbial features on other planetary bodies, and may add to an ever-growing foundation of knowledge for directing future explorations aimed at seeking out macroscopic microbial signatures.
NASA Astrophysics Data System (ADS)
Rožič, Boštjan; Jurkovšek, Tea Kolar; Rožič, Petra Žvab; Gale, Luka
2017-08-01
In the Alpine Realm the Early Jurassic is characterized by the disintegration and partial drowning of vast platform areas. In the eastern part of the Southern Alps (present-day NW Slovenia), the Julian Carbonate Platform and the adjacent, E-W extending Slovenian Basin underwent partial disintegration, drowning and deepening from the Pliensbachian on, whereas only nominal environmental changes developed on the large Dinaric (Friuli, Adriatic) Carbonate Platform to the south (structurally part of the Dinarides). These events, however, were preceded by an earlier - and as yet undocumented extensional event - that took place near the Triassic/Jurassic boundary. This paper provides evidence of an accelerated subsidence from four selected areas within the Slovenian Basin, which show a trend of eastwardly-decreasing deformation. In the westernmost (Mrzli vrh) section - the Upper Triassic platform-margin - massive dolomite is overlain by the earliest Jurassic toe-of-slope carbonate resediments and further, by basin-plain micritic limestone. Further east (Perbla and Liščak sections) the Triassic-Jurassic transition interval is marked by an increase in resedimented carbonates. We relate this to the increasing inclination and segmentation of the slope and adjacent basin floor. The easternmost (Mt. Porezen) area shows a rather monotonous, latest Triassic-Early Jurassic basinal sedimentation. However, changes in the thickness of the Hettangian-Pliensbachian Krikov Formation point to a tilting of tectonic blocks within the basin area. Lateral facies changes at the base of the formation indicate that the tilting occurred at and/or shortly after the Triassic/Jurassic boundary
NASA Astrophysics Data System (ADS)
Toljić, Marinko; Matenco, Liviu; ÄErić, Nevenka; Milivojević, Jelena; Gerzina, Nataša.; Stojadinović, Uros
2010-05-01
The Fru\\vska Gora Mountains in northern Serbia offers an unique opportunity to study the Cretaceous-Eocene evolution of the NE part of the Dinarides, which is largely covered elsewhere beneath the thick Miocene sediments of the Pannonian basin, deposited during the back-arc collapse associated with the subduction and roll-back recorded in the external Carpathians. The structural grain of the Fru\\vska Gora Mountains is the one of a large scale antiform, exposing a complex puzzle of highly deformed metamorphic rocks in its centre and Triassic-Miocene sequence of non-metamorphosed sediments, ophiolites and volcanics along its flanks. The metamorphic rocks were the target of structural investigations coupled with paleontological dating (conodonts, palynomorphs and radiolarians) in an effort to unravel the geodynamic evolution of an area thought to be located near the suture zone between the Tisza upper plate and the Adriatic lower plate, i.e. the Sava subduction zone of the Dinarides (e.g., Pamic, 2002; Schmid et al., 2008). The existence of this subduction zone was previously inferred here by local observations, such as metamorphosed Mesozoic sediments containing Middle Triassic conodonts (Đurđanović, 1971) or Early Cretaceous blue schists metamorphism (123±5 Ma, Milovanović et al., 1995). The metamorphic sequence is characterized by a Paleozoic age meta-sedimentary basement which contains palynomorphs of Upper Paleozoic - Carboniferous age and a meta-sedimentary and meta-volcanic sequence which contain a succession of contrasting metamorphosed lithologies such sandstones, black limestones, shallow water white limestones, basic volcanic sequences, deep nodular limestiones, radiolarites, meta-ophiolites and turbiditic sequences. The lower part of the sequence is contrastingly similar with the Triassic cover of the Drina-Ivanijca thrust sheet and its metamorphosed equivalent observed in the Kopaonik and Studenica series (Schefer et al., in press). This observation is supported by the newly found micro-fauna of Upper Triassic in age in the meta-sandstones associated with meta-volcanics on the SW slopes of the mountain. The upper part of the sequence display metamorphosed "flysh"-type of sequences and meta-basalts. In these deposits, slightly metamorphosed siliciclastics (lithic sandstones with volcanic-derived clasts) previously interpreted as Upper Jurassic mélange have proved to contain Upper Cretaceous palynomorphs. Among the rocks exposed in the metamorphic core of the mountains, the SW slope of Fru\\vska Gora offers the optimal locality for the study of the kinematic evolution. Here, four phases of folding have been mapped, being associated mainly with large-scale regional contraction. The first phase is characterized by isoclinal folding, with reconstructed SW vergence. The second generation of E-W oriented and coaxial folds is asymmetric and is up to metres in size, displaying a south vergence and has largely refolded the previous generation. The third event was responsible for the formation of upright folds, yet again E-W oriented, re-folding earlier structures. The first two phases of folding are associated with metamorphic conditions, while the third was apparently near the transition with the brittle domain. The relationship with a fourth folding event observed also in the non-metamorphosed clastic-carbonate rocks is rather uncertain, but is apparently associated with the present day antiformal structure of the Fuska Gora Mountains. Interestingly, the metamorphosed Triassic and Upper Cretaceous carbonatic-clastic sequence in the core of the antiform is in structural contact along the antiformal flanks with Lower-Middle Triassic and Upper Cretaceous-Paleogene sediments which display the same facies, but these are not metamorphosed. This demonstrates a large scale tectonic omission along the flanks of the Fru\\vska Gora antiform, 9-10km of rocks being removed by what we speculatively define as an extensional detachment exhuming the metamorphic core. This detachment has been subsequently folded into the present-day antiformal geometry of the Fru\\vska Gora Mountains. These findings demonstrate that the metamorphic and non-metamorphic Upper Cretaceous - Paleogene clastic-carbonate sediments belongs to the main Alpine Tethys (Sava) subduction zone of the Dinarides. The Paleozoic-Triassic metamorphic and non-metamorphic rocks belong to the distal Adriatic lower plate, or more precisely to the Jadar-Kopaonik composite thrust sheet (Schmid et al., 2008), while the layer of serpentinized peridotite found at their contact most probably belongs to the Western Vardar ophiolites obducted over the Adriatic plate during Late Jurassic - Earliest Cretaceous. The distal Jadar-Kopaonik composite unit was partly affected by strong contractional deformation and a Late Eocene greenschist facies metamorphism during the main phase of subduction and collision, similarly to what has been observed elsewhere in the Dinarides (Pamić, 2002; Schefer et al., in press). A Miocene phase of core-complex formation was responsible for the large tectonic omission observed, being probably followed by the formation of a wide open antiformal structure during the Pliocene-Quaternary inversion of the Pannonian basin.
Supradapedon revisited: geological explorations in the Triassic of southern Tanzania
da Rosa, Átila A.S.; Montefeltro, Felipe C.
2017-01-01
The upper Triassic deposits of the Selous Basin in south Tanzania have not been prospected for fossil tetrapods since the middle of last century, when Gordon M. Stockley collected two rhynchosaur bone fragments from the so called “Tunduru beds”. Here we present the results of a field trip conducted in July 2015 to the vicinities of Tunduru and Msamara, Ruvuma Region, Tanzania, in search for similar remains. Even if unsuccessful in terms of fossil discoveries, the geological mapping conducted during the trip improved our knowledge of the deposition systems of the southern margin of the Selous Basin during the Triassic, allowing tentative correlations to its central part and to neighbouring basins. Moreover, we reviewed the fossil material previously collected by Gordon M. Stockley, confirming that the remains correspond to a valid species, Supradapedon stockleyi, which was incorporated into a comprehensive phylogeny of rhynchosaurs and found to represent an Hyperodapedontinae with a set of mostly plesiomorphic traits for the group. Data gathered form the revision and phylogenetic placement of Su. stockleyi helps understanding the acquisition of the typical dental traits of Late Triassic rhynchosaurs, corroborating the potential of hyperodapedontines as index fossils of the Carnian-earliest Norian. PMID:29152419
NASA Astrophysics Data System (ADS)
Kollenz, Sebastian; Glasmacher, Ulrich A.; Rossello, Eduardo A.; Stockli, Daniel F.; Schad, Sabrina; Pereyra, Ricardo E.
2017-10-01
Passive continental margins are geo-archives that store information from the interplay of endogenous and exogenous forces related to continental rifting, post-breakup history, and climate changes. The recent South Atlantic passive continental margins (SAPCMs) in Brazil, Namibia, and South Africa are partly high-elevated margins ( 2000 m a.s.l.), and the recent N-S-trending SAPCM in Argentina and Uruguay is of low elevation. In Argentina, an exception in elevation is arising from the higher topography (> 1000 m a.s.l.) of the two NW-SE-trending mountain ranges Sierras Septentrionales and Sierras Australes. Precambrian metamorphic and intrusive rocks, and siliciclastic rocks of Ordovician to Permian age represent the geological evolution of both areas. The Sierras Australes have been deformed and metamorphosed (incipient - greenschist) during the Gondwanides Orogeny. The low-temperature thermochronological (LTT) data (< 240 °C) indicated that the Upper Jurassic to Lower Cretaceous opening of the South Atlantic has not completely thermally reset the surface rocks. The LTT archives apatite and zircon still revealed information on the pre- to post-orogenic history of the Gondwanides and the Mesozoic and Cenozoic South Atlantic geological evolution. Upper Carboniferous zircon (U-Th/He)-ages (ZHe) indicate the earliest cooling below 180 °C/1 Ma. Most of the ZHe-ages are of Upper Triassic to Jurassic age. The apatite fission-track ages (AFT) of Sierras Septentrionales and the eastern part of Sierras Australes indicate the South Atlantic rifting and, thereafter. AFT-ages of Middle to Upper Triassic on the western side of the Sierras Australes are in contrast, indicating a Triassic exhumation caused by the eastward thrusting along the Sauce Grande wrench. The corresponding t-T models report a complex subsidence and exhumation history with variable rates since the Ordovician. Based on the LTT-data and the numerical modelling we assume that the NW-SE-trending mountain ranges received their geographic NW-SE orientation during the syn- to post-orogenic history of the Gondwanides.
Kirschbaum, Mark A.; Hettinger, Robert D.
2004-01-01
Facies and sequence-stratigraphic analysis identifies six high-resolution sequences within upper Campanian strata across about 120 miles of the Book Cliffs in western Colorado and eastern Utah. The six sequences are named after prominent sandstone units and include, in ascending order, upper Sego sequence, Neslen sequence, Corcoran sequence, Buck Canyon/lower Cozzette sequence, upper Cozzette sequence, and Cozzette/Rollins sequence. A seventh sequence, the Bluecastle sequence, is present in the extreme western part of the study area. Facies analysis documents deepening- and shallowing- upward successions, parasequence stacking patterns, downlap in subsurface cross sections, facies dislocations, basinward shifts in facies, and truncation of strata.All six sequences display major incision into shoreface deposits of the Sego Sandstone and sandstones of the Corcoran and Cozzette Members of the Mount Garfield Formation. The incised surfaces represent sequence-boundary unconformities that allowed bypass of sediment to lowstand shorelines that are either attached to the older highstand shorelines or are detached from the older highstand shorelines and located southeast of the main study area. The sequence boundary unconformities represent valley incisions that were cut during successive lowstands of relative sea level. The overlying valley-fill deposits generally consist of tidally influenced strata deposited during an overall base level rise. Transgressive surfaces can be traced or projected over, or locally into, estuarine deposits above and landward of their associated shoreface deposits. Maximum flooding surfaces can be traced or projected landward from offshore strata into, or above, coastal-plain deposits. With the exception of the Cozzette/Rollins sequence, the majority of coal-bearing coastal-plain strata was deposited before maximum flooding and is therefore within the transgressive systems tracts. Maximum flooding was followed by strong progradation of parasequences and low preservation potential of coastal-plain strata within the highstand systems tract. The large incised valleys, lack of transgressive retrogradational parasequences, strong progradational nature of highstand parasequences, and low preservation of coastal-plain strata in the highstand systems tracts argue for relatively low accommodation space during deposition of the Sego, Corcoran, and Cozzette sequences. The Buck Canyon/Cozzette and Cozzette/Rollins sequences contrast with other sequences in that the preservation of retrogradational parasequences and the development of large estuaries coincident with maximum flooding indicate a relative increase in accommodation space during deposition of these strata. Following maximum flooding, the Buck Canyon/Cozzette sequence follows the pattern of the other sequences, but the Cozzette/Rollins sequence exhibits a contrasting offlapping pattern with development of offshore clinoforms that downlap and eventually parallel its maximum flooding surface. This highstand systems tract preserves a thick coal-bearing section where the Rollins Sandstone Member of the Mount Garfield Formation parasequences prograde out of the study area, stepping up as much as 800 ft stratigraphically over a distance of about 90 miles. This progradational stacking pattern indicates a higher accommodation space and increased sedimentation rate compared to the previous sequences.
NASA Astrophysics Data System (ADS)
Et-Touhami, M.; Et-Touhami, M.; Olsen, P. E.; Puffer, J.
2001-05-01
Previously very sparse biostratigraphic data suggested that the Early Mesozoic tholeiitic effusive and intrusive magmatism in the various basins of the Maghreb occurred over a long time (Ladinian-Hettangian). However, a detailed comparison of the stratigraphy underlying, interbedded with, and overlying the basalts in these basins shows not only remarkable similarities with each other, but also with sequences in the latest Triassic and earliest Jurassic of eastern North America. There, the sequences have been shown to be cyclical, controlled by Milankovitch-type climate cycles; the same seems to be true in at least part of the Maghreb. Thus, the Moroccan basins have cyclical sequences surrounding and interbedded with one or two basaltic units. In the Argana and Khemisset basins the Tr-J boundary is identified by palynology to be below the lowest basalt, and the remarkably close lithological similarity between the pre-basalt sequence in the other Moroccan basins and to the North American basins - especially the Fundy basin - suggests a tight correlation in time. Likewise, the strata above the lowest basalt in Morocco show a similar pattern to what is seen above the lowest basalt formation in eastern North America, as do the overlying sequences. Furthermore, geochemistry on basalts in the Argana, Bou Fekrane, Khemisset, and Iouawen basins indicate they are high-Ti quartz-normative tholeiites as are the Orange Mountain Basalt (Fundy basin) and the North Mountain Basalt (Newark basin). The remarkable lithostratigraphic similarity across the Maghreb of these strata suggest contemporaneous and synchronous eruption over a time span of less than 200 ky, based on Milankovitch calibration, and within a ~20 ky interval after the Triassic-Jurassic boundary. Differences with previous interpretations of the biostratigraphy can be rationalized as a result of: 1, an over-reliance on comparisons with northern European palynology; 2, over-interpretation of poorly preserved fossils; and 3, rarity of early Jurassic non-marine ostracode assemblages.
NASA Astrophysics Data System (ADS)
Liebermann, C.; Hall, R.; Gough, A.
2017-12-01
The island of Sumatra is situated at the southwestern margin of the Indonesian archipelago. Although it is the sixth largest island in the world, the geology of the Sumatra sedimentary basins and their underlying basement is relatively poorly understood in terms of their provenance. This work is a multi-proxy provenance study utilizing U-Pb detrital zircon dating by LA-ICP-MS combined with optical and Raman spectroscopy-based heavy mineral analysis. It will help to unravel the stratigraphy of Sumatra, contribute to paleogeographic reconstruction of western SE Asia, and aid a wider understanding of Sumatran petroleum plays. Thin section analyses, heavy mineral assemblages, and >3500 concordant U-Pb zircon ages, from samples acquired during two fieldwork seasons indicate a mixed provenance for Cenozoic sedimentary formations, including both local igneous sources and mature basement rocks. Characteristic Precambrian zircon age spectra are found in all analysed Cenozoic sedimentary strata. These can be correlated with zircon age populations found in Sumatran basement rocks; Neoproterozoic and Mesoproterozoic age groups are dominant (c. 500-600 Ma, c. 850-1000 Ma, c. 1050-1200 Ma). Paleoproterozoic to Archaean zircons occur as minor populations. The Phanerozoic age spectra of the Cenozoic formations are characterised by distinct Carboniferous, Permo-Triassic, and Jurassic-Cretaceous zircon populations. Permo-Triassic zircons are interpreted to come from granitoids in the Malay peninsula or Sumatra itself. Eocene to Lower Miocene strata are characterised by ultrastable heavy minerals such as zircon, tourmaline, and rutile, which together with garnet, suggest the principal sources were igneous and metamorphic basement rocks. Cenozoic zircons appear only from the Middle Miocene onwards. This change is interpreted to indicate a new contribution from a local volcanic arc, and is supported by the occurrence of unstable heavy minerals such as apatite and clinopyroxene, and the presence of volcanic quartz. The absence of an earlier volcanic contribution is surprising since subduction is widely considered to have been active from the Eocene.
Milankovitch Modulation of the Ecosystem Dynamics of Fossil Great Lakes
NASA Astrophysics Data System (ADS)
Whiteside, J. H.; Olsen, P. E.; Eglinton, T. I.; Cornet, B.; Huber, P.; McDonald, N. G.
2008-12-01
Triassic and Early Jurassic lacustrine deposits of eastern North American rift basins preserve a spectacular record of precession-related Milankovitch forcing in the Pangean tropics. The abundant and well-preserved fossil fish assemblages from these great lakes demonstrate a sequence of cyclical changes that track the permeating hierarchy of climatic cycles. To detail ecosystem processes correlating with succession of fish communities, we measured bulk δ13Corg through a 100 ky series of Early Jurassic climatic precession-forced lake level cycles in the lower Shuttle Meadow Formation of the Hartford rift basin, CT. The deep-water phase of one of these cycles, the Bluff Head bed, has produced thousands of articulated fish. We observe fluctuations in the bulk δ13Corg of the cyclical strata that reflect differing degrees of lake water stratification, nutrient levels, and relative proportion of algal vs. plant derived organic matter that trace fish community changes. We can exclude extrinsic changes in the global exchangeable reservoirs as an origin of this variability because molecule-level δ13C of n-alkanes of plant leaf waxes from the same strata show no such variability. While at higher taxonomic levels the fish communities responded largely by sorting of taxa by environmental forcing, at the species level the holostean genus Semionotus responded by in situ evolution, and ultimately extinction, of a species flock. Fluctuations at the higher frequency, climatic precessional scale are mirrored at lower frequency, eccentricity modulated, scales, all following the lake-level hierarchical pattern. Thus, lacustrine isotopic ratios amplify the Milankovitch climate signal that was already intensified by sequelae of the end-Triassic extinctions. The degree to which the ecological structure of modern lakes responds to similar environmental cyclicity is largely unknown, but we suspect similar patterns and processes within the Neogene history of the East African great lakes, which may be modified in the future by anthropogenic CO2-driven intensification of the hydrological cycle.
NASA Astrophysics Data System (ADS)
Viglietti, Pia A.; Frei, Dirk; Rubidge, Bruce S.; Smith, Roger M. H.
2018-07-01
Detrital zircon U-Pb age dating was used for provenance determination and maximum age of deposition for the Upper Permian (upper Teekloof and Balfour formations) and Lower Triassic (Katberg Formation) lithostratigraphic subdivisions of the Beaufort Group of South Africa's Karoo Basin. Ten samples were analysed using laser ablation - single collector - magnetic sectorfield - inductively coupled plasma - mass spectrometry (LA-SF-ICP-MS). The results reveal a dominant Late Carboniferous-Late Permian population (250 ± 5 Ma - 339 ± 5 Ma), a secondary Cambrian-Neoproterozoic (489 ± 5 Ma to 878 ± 24 Ma) population, a minor Mesoproterozoic (908 ± 24 Ma to 1308 ± 23) population, and minor occurrences of Devonian, Ordovician, Proterozoic and Archean zircon grains. Multiple lines of evidence (e.g. roundness and fragmentary nature of zircons, palaeo-current directions, and previous work), suggest the older zircon populations are related to sedimentary recycling in the Gondwanide Orogeny. The youngest and dominant population contain elongate euhedral grains interpreted to be directly derived from their protolith. Since zircons form in felsic igneous rocks, and no igneous rocks of Late Permian age occur in the Karoo Basin, these findings suggest significant input of volcanic material by ash falls. These results support sedimentological and palaeontological data for a Lopingian (Late Permian) age for the upper Beaufort Group, but contradict previous workers who retrieved Early Triassic dates from zircons in ashes for the Beaufort and Ecca Groups. Pb-loss not revealed by resolvable discordance on the concordia diagram, and metamictization of natural zircons are not factored into the conclusions of earlier workers.
Geologic map of the Glen Canyon Dam 30’ x 60’ quadrangle, Coconino County, northern Arizona
Billingsley, George H.; Priest, Susan S.
2013-01-01
The Glen Canyon Dam 30’ x 60’ quadrangle is characterized by nearly flat lying to gently dipping Paleozoic and Mesozoic sedimentary strata that overlie tilted Proterozoic strata or metasedimentary and igneous rocks similar to those exposed at the bottom of Grand Canyon southwest of the quadrangle. Mississippian to Permian rocks are exposed in the walls of Marble Canyon; Permian strata and minor outcrops of Triassic strata form the surface bedrock of House Rock Valley and Marble Plateau, southwestern quarter of the quadrangle. The Paleozoic strata exposed in Marble Canyon and Grand Canyon south of the map are likely present in the subsurface of the entire quadrangle but with unknown facies and thickness changes. The Mesozoic sedimentary rocks exposed along the Vermilion and Echo Cliffs once covered the entire quadrangle, but Cenozoic erosion has removed most of these rocks from House Rock Valley and Marble Plateau areas. Mesozoic strata remain over much of the northern and eastern portions of the quadrangle where resistant Jurassic sandstone units form prominent cliffs, escarpments, mesas, buttes, and much of the surface bedrock of the Paria, Kaibito, and Rainbow Plateaus. Jurassic rocks in the northeastern part of quadrangle are cut by a sub-Cretaceous regional unconformity that bevels the Entrada Sandstone and Morrison Formation from Cummings Mesa southward to White Mesa near Kaibito. Quaternary deposits, mainly eolian, mantle much of the Paria, Kaibito, and Rainbow Plateaus in the northern and northeastern portion of the quadrangle. Alluvial deposits are widely distributed over parts of House Rock Valley and Marble Plateau in the southwest quarter of the quadrangle. The east-dipping strata of the Echo Cliffs Monocline forms a general north-south structural boundary through the central part of the quadrangle, separating Marble and Paria Plateaus west of the monocline from the Kaibito Plateau east of the monocline. The Echo Cliffs Monocline continues north of the quadrangle into southern Utah. The gentle north- and northeast-dipping Mesozoic strata on the Kaibito and Rainbow Plateaus are partly interrupted by northwest-trending, broad-based, ill-defined synclines and anticlines. These broad-based structures form mesas and buttes near anticlinal crests and deeply incised drainages in synclinal valleys. The 1,300-ft-thick (396-m-thick) Navajo Sandstone erodes into a maze of tributary slot canyons in the northeastern part of the quadrangle. Mesozoic strata in the extreme northeast corner of the quadrangle dip gently southwest due to the influence of the Monument Upwarp in southeastern Utah and by an intrusive uplift (laccolith) that forms Navajo Mountain, a prominent 10,388 ft (3,166 m) landmark just northeast of the quadrangle.
NASA Astrophysics Data System (ADS)
Hofmann, Mandy; Voigt, Thomas; Bittner, Lucas; Gärtner, Andreas; Zieger, Johannes; Linnemann, Ulf
2018-04-01
The Saxonian-Bohemian Cretaceous Basin (Elbsandsteingebirge, E Germany and Czech Republic, Elbtal Group) comprises Upper Cretaceous sedimentary rocks from Upper Cenomanian to Santonian age. These sandstones were deposited in a narrow strait of the sea linking the northern Boreal shelf to the southern Tethyan areas. They were situated between the West Sudetic Island in the north and the Mid-European Island in the south. As known by former studies (e.g. Tröger, Geologie 6/7:717-730, 1964; Tröger, Geologie von Sachsen, Schweizerbart, 311-358, 2008; Voigt and Tröger, Proceedings of the 4th International Cretaceous Symposium, 275-290, 1996; Voigt, Dissertation, TU Bergakademie Freiberg, 1-130, 1995; Voigt, Zeitschrift der geologischen Wissenschaften 37(1-2): 15-39, 2009; Wilmsen et al., Freiberger Forschungshefte C540: 27-45, 2011) the main sedimentary input came from the north (Lausitz Block, southern West-Sudetic Island). A section of Turonian to Coniacian sandstones was sampled in the Elbsandsteingebirge near Schmilka (Elbtal Group, Saxony, Germany). The samples were analysed for their U-Pb age record of detrital zircon using LA-ICP-MS techniques. The results show main age clusters typical for the Bohemian Massif (local material) and are interpreted to reflect the erosion of uniform quartz-dominated sediments and basement rocks. Surprisingly, these rocks lack an expected Upper Proterozoic to Lower Palaeozoic age peak, which would be typical for the basement of the adjacent Lausitz Block (c. 540-c. 560 Ma). Therefore, the Lausitz Block basement must have been covered by younger sediments that acted as source rocks during deposition of the Elbtal Group. The sandstones of the Elbe valley (Elbtal Group, Schmilka section) represent the re-deposited sedimentary cover of the Lausitz Block in inverse order. This cover comprised Permian, Triassic, Jurassic and Lower Cretaceous deposits, which are eroded already today and cannot be investigated. Within the samples of the Elbtal Group (Schmilka section), the zircon age patterns change significantly towards the Lower Coniacian (topmost sample of the analysed section), where a major input of Meso- and Paleoproterozoic grains was obtained. Comparable ages are generally scarce in the working area. To have a reference for the detrital zircon age spectra of Triassic and Jurassic sediments of the area, two Upper Triassic und two Middle Jurassic clastic sediments of Germany were analysed. Surprisingly, the two Middle Jurassic (Dogger) sandstones from Bavaria and Lower Saxony showed similar detrital zircon age compositions as the Coniacian sediments on top of the Schmilka section (Elbe valley, Elbtal Group). In contrast, the two Upper Triassic sediments could be excluded as possible source rocks for the Upper Cretaceous sandstones of the Elbe valley (Schmilka section, Elbtal Group). The Meso- and Paleoproterozoic zircon age populations in the uppermost sandstone sample of the Schmilka section are assumed to originate from recycled Jurassic (Dogger) sandstones, resting on the Lausitz Block. These Middle Jurassic deposits were strongly influenced by a sedimentary input from the Scandinavian region (southern Baltica and North Sea Dome). The Turonian sandstones of the Schmilka section (samples below the topmost Coniacian sample) are interpreted to represent re-deposited Lower Cretaceous sediments resting on the Lausitz Block. A proposed synsedimentary uplift of about 5 km during the Upper Cretaceous along the Lausitz Fold (Lange et al., Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 159(1):123-132, 2008) would have caused erosion of the pre-existing sedimentary cover of the Lausitz Block followed by inverse accumulation of the detritus into the Cretaceous Basin (Elbe valley, Elbtal Group). The Permian and Triassic cover units of the Lausitz Block were not exposed during the Upper Cretaceous, but are assumed to have contributed to younger (post-Coniacian) sediments of the Elbtal Group, which were eroded during uppermost Cretaceous and lower Paleogene. Based on this study, the detrital zircon record of the Jurassic Dogger sandstones of Germany can be seen as "marker ages" for the European Cretaceous Basin inversion. This paper presents the first results of a case study with further investigations in other areas of Europe to follow.
Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang
2013-01-07
Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought.
Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang
2013-01-01
Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought. PMID:23118437
Ground-water resources of Olmsted Air Force Base, Middletown, Pennsylvania
Meisler, Harold; Longwill, Stanley Miller
1961-01-01
Olmsted Air Force Base is underlain by the Gettysburg shale of Triassic age. The Gettysburg shale at the Air Force Base consists of interbedded red sandstone, siltstone, and shale. The average strike of the strata is N. 43° E., and the strata dip to the northwest at an average angle of 26°. The transmissibility of known aquifers in the warehouse area of the Air Force Base is low. Therefore, wells in the warehouse area have low specific capacities and yield only small supplies of water. Wells on the main base, however, yield relatively large supplies of water because the transmissibilities of the aquifers are relatively high. Pumping tests in the warehouse area and the eastern area of the main base indicated the presence of impermeable boundaries in both areas. Pumping tests in the central and western parts of the main base revealed that the Susquehanna River probably is acting as a source of recharge (forms a recharge boundary) for wells in those areas. Data obtained during this investigation indicate that additional supplies of ground water for Olmsted Air Force Base could best be obtained from the western part of the main base.
Injury prevention counselling to improve safety practices by parents in Mexico.
Mock, Charles; Arreola-Risa, Carlos; Trevino-Perez, Rodolfo; Almazan-Saavedra, Victoria; Zozaya-Paz, Jaime E.; Gonzalez-Solis, Reynaldo; Simpson, Kate; Rodriguez-Romo, Laura; Hernandez-Torre, Martin H.
2003-01-01
OBJECTIVES: To evaluate the effectiveness of educational counselling programmes aimed at increasing parents' practice of childhood safety in Monterrey, Mexico, and to provide information aimed at helping to improve the effectiveness of future efforts in this field. METHODS: Three different counselling programmes were designed to meet the needs of the upper, middle and lower socioeconomic strata. Evaluation involved the use of baseline questionnaires on parents' existing safety-related practices for intervention and control groups and the administration of corresponding questionnaires after the programmes had been carried out. FINDINGS: Data were obtained on 1124 children before counselling took place and on 625 after it had been given. Overall safety scores (% safe responses) increased from 54% and 65% for the lower and upper socioeconomic strata, respectively, before counselling to 62% and 73% after counselling (P <0.001 for all groups). Improvements occurred both for activities that required caution and for activities that required the use of safety-related devices (e.g. helmets, car seats). However, scores for the use of such devices remained suboptimal even after counselling and there were wide discrepancies between the socioeconomic strata. The post-counselling scores for the use of safety-related devices were 55%, 38% and 19% for the upper, middle and lower socioeconomic strata, respectively. CONCLUSIONS: Brief educational interventions targeting parents' practice of childhood safety improved safe behaviours. Increased attention should be given to specific safety-related devices and to the safety of pedestrians. Educational efforts should be combined with other strategies for injury prevention, such as the use of legislation and the improvement of environmental conditions. PMID:14576891
McLean, Hugh James
1979-01-01
Upper Jurassic strata in the Black Hills area consist mainly of fossiliferous, tightly cemented, gently folded sandstone deposited in a shallow marine environment. Upper Cretaceous strata on Sanak Island are strongly deformed and show structural features of broken formations similar to those observed in the Franciscan assemblage of California. Rocks exposed on Sanak Island do not crop out on the peninsular mainland or on Unimak Island, and probably make up the acoustic and economic basement of nearby Sanak basin. Tertiary sedimentary rocks on the outermost part of the Alaska Peninsula consist of Oligocene, Miocene, and lower Pliocene volcaniclastic sandstone, siltstone, and conglomerate deposited in nonmarine and very shallow marine environments. Interbedded airfall and ash-flow tuff deposits indicate active volcanism during Oligocene time. Locally, Oligocene strata are intruded by quartz diorite plutons of probable Miocene age. Reservoir properties of Mesozoic and Tertiary rocks are generally poor due to alteration of chemically unstable volcanic rock fragments. Igneous intrusions have further reduced porosity and permeability by silicification of sandstone. Organic-rich source rocks for petroleum generation are not abundant in Neogene strata. Upper Jurassic rocks in the Black Hills area have total organic carbon contents of less than 0.5 percent. Deep sediment-filled basins on the Shumagin Shelf probably contain more source rocks than onshore correlatives, but reservoir quality is not likely to be better than in onshore outcrops. The absence of well-developed folds in most Tertiary rocks, both onshore and in nearby offshore basins, reduces the possibility of hydrocarbon entrapment in anticlines.
Tysdal, Russell G.
2000-01-01
The Yellowjacket Formation is restricted to the strata originally assigned to it by Ross (1934). The Yellowjacket, the conformably overlying Hoodoo Quartzite, and succeeding unnamed argillaceous quartzite unit form a genetically related sequence that lies in a structural block delimited on the northeast by the Iron Lake fault. Directly northeast of the fault, strata currently assigned by others to the lower subunit of the Yellowjacket are correlated with the Apple Creek Formation in the Lemhi Range. Mapping in the western part of the Lemhi Range shows that the Apple Creek Formation lies depositionally above the Big Creek Formation and that no rocks of the Yellowjacket-Hoodoo unnamed unit stratigraphic sequence are present. In contrast, in the area of the Yellowjacket mapped by Ross (1934) and the area directly northeast of the Iron Lake Fault, the Big Creek Formation is absent, even though it is 2,700 m thick in the Lemhi Range. These data indicate that the Iron Lake Fault juxtaposed the Yellowjacket-Hoodoo-unnamed unit sequence against non-Yellowjacket strata to the northeast. The Upper Cretaceous Slim Sam Formation of the Elkhorn Mountains area is revised. Strata of the lower part are correlated with the regionally recognized marine Telegraph Creek Formation and the overlying marine to marginal marine Eagle Sandstone. Only lower strata of the Eagle are present in the study area and they are preserved discontinously. The nonmarine volcanic and volcaniclastic rocks of the upper part of the Slim Sam as originally defined retain the name Slim Sam Formation. These rocks, mainly of sedimentary origin, are genetically related to the Elkhorn Mountains Volcanics. The lower contact of the Slim Sam (restricted) is unconformable above the Eagle Sandstone or more commonly above the Telegraph Creek Formation. The upper contact is conformable with the Elkhorn Mountains Volcanics.
NASA Astrophysics Data System (ADS)
Özgür, Nevzat; Ugurlu, Zehra; Memis, Ümit; Aydemir, Eda
2017-12-01
In this study, hydrogeological, hydrogeochemical and isotope geochemical features of Havran, Gönen and Ivrindi within the province capital of Balıkesir, Turkey were investigated in detail. The Early Triassic Karakaya formation in the study area of Havran forms the oldest rocks consisting of spilitic basalts, diabases, gabbros, mudstones, cherts and radiolarites. There are limestone blocks in this formation with intercalations with sandstones and with feldspar contents, quartzite, conglomerates and siltstones. Oligocene to Miocene granodiorite intrusions were generated in association with intensively volcanic events in the area. Between Upper Oligocene and Early Miocene, andesitic and dacitic pyroclastic rocks cropped out due to intensively volcanism. Later, conglomerates, sandstones, claystones, marls and limestones as lacustrine sediments formed from Middle to Upper Miocene in the study area. In the study area of Gönen, the Lower Triassic Karakaya formation consists of basalts, diabases, gabbros, mudstones, cherts and radiolarites and forms the basement rocks overlain by Upper Jurassic to Lower Cretaceous sandy limestones. Upper and Middle Miocene volcanics which can be considered intensive Biga Peninsula volcanos outcrop in the area. These andesitic lava flows are of black, gray and red color with intensive fissures. Neogene lacustrine sediments consist of conglomerates, sandstones, marl, claystone and clayey limestones. Upper Miocene to Pliocene rhyolitic pyroclastics and dacitic lava flows are the volcanic rocks which are overlain by Pliocene conglomerates, sandstones and claystones. In the study area of Ivrindi, the Çaldağ limestones are the oldest formation in Permian age. Çavdartepe metamorphic rocks are of Lower Triassic in which can be observed marbles sporadically. The Kınık formation consisting of conglomerates, sandstones, siltstones and limestones are of Lower Triassic age and display a lateral Stratigraphic progress with volcanic rocks. Upper Miocene to Pliocene Yürekli formation consists of dacites and rhyodacites. Upper Miocene to Pliocene Soma formation is composed of clayey limestone, marl, siltstone, intercalations of sandstone, agglomerate and andesitic gravels and blocks cemented by tuffs. Quaternary alluvium is the youngest formation. The samples of geothermal waters in the area of Havran can be considered as Na-Ca-(SO4)-HCO3, Na-(SO4)-HCO3 and Na-SO4 type waters. In comparison, the geothermal waters in Gönen are of Na-(SO4)-HCO3 and Na-HCO3 type waters. The geothermal waters of Ivrindi are considered as Na-Ca-HCO3 type waters. In the area, a groundwater sample is of Ca-Mg-HCO3 type water. The geothermal waters belong to the cations of Na+K>Ca>Mg in Havran, Gönen and Ivrindi and to the anions of SO4>HCO3>Cl in Havran, HCO3>SO4>Cl in Gönen and SO4>HCO3>Cl in Ivrindi. In the diagram of Na-K-Mg1/2, the geothermal waters in Havran, Gönen and Ivrindi of the province capital of Balıkesir can be classified as immature waters.
NASA Astrophysics Data System (ADS)
Olsen, Paul E.; Kent, Dennis V.; Et-Touhami, Mohammed; Puffer, John
Early Mesozoic tholeiitic flood basalts of the Central Atlantic Magmatic Province (CAMP) are interbedded throughout much of their extent with cyclical lacustrine strata, allowing Milankovitch calibration of the duration of the extrusive episode. This cyclostratigraphy extends from the Newark basin of the northeastern US, where it was first worked out, to Nova Scotia and Morocco and constrains the outcropping extrusive event to less than 600 ky in duration, beginning roughly 20 ky after the Triassic-Jurassic boundary, and to within one pollen and spore zone and one vertebrate biochron. Based principally on the well-known Newark astronomically calibrated magnetic polarity time scale with new additions from the Hartford basin, the rather large scatter in recent radiometric dates from across CAMP (>10 m.y. ), centering on about ˜200 m.y., is not likely to be real. Rather, the existing paleomagnetic data from both intrusive and extrusive rocks suggest emplacement of nearly all the CAMP within less than 3 m.y. of nearly entirely normal polarity. The very few examples of reversed magnetizations suggest that some CAMP activity probably occurred just prior to the Triassic-Jurassic boundary. Published paleomagnetic and 40Ar/39Ar data from the Clubhouse Crossroads Basalt are reviewed and with new paleomagnetic data suggest that alteration and possible core misorientation could be responsible for the apparent differences with the CAMP. The Clubhouse Crossroads Basalt at the base of the Coastal Plain of South Carolina and Georgia provides a link to the volumetrically massive volcanic wedge of seaward dipping reflectors present in the subsurface off the southeastern US that may be part of the same igneous event, suggesting that the CAMP marks the formation of the oldest Atlantic oceanic crust.
Nestell, Galina P.; Nestell, Merlynd K.; Ellwood, Brooks B.; Wardlaw, Bruce R.; Basu, Asish R.; Ghosh, Nilotpal; Phuong Lan, Luu Thi; Rowe, Harry D.; Hunt, Andrew G.; Tomkin, Jonathan H.; Ratcliffe, Kenneth T.
2015-01-01
The Permian–Triassic mass extinction is postulated to be related to the rapid volcanism that produced the Siberian flood basalt (Traps). Unrelated volcanic eruptions producing several episodes of ash falls synchronous with the Siberian Traps are found in South China and Australia. Such regional eruptions could have caused wildfires, burning of coal deposits, and the dispersion of coal fly ash. These eruptions introduced a major influx of carbon into the atmosphere and oceans that can be recognized in the wallstructure of foraminiferal tests present in survival populations in the boundary interval strata. Analysis of free specimens of foraminifers recovered from residues of conodont samples taken at aPermian–Triassic boundary section at Lung Cam in northern Vietnam has revealed the presence of a significant amount of elemental carbon, along with oxygen and silica, in their test wall structure, but an absence of calcium carbonate. These foraminifers, identified as Rectocornuspira kalhori, Cornuspira mahajeri, and Earlandia spp. and whose tests previously were considered to be calcareous, are confirmed to be agglutinated, and are now referred to as Ammodiscus kalhori and Hyperammina deformis. Measurement of the 207Pb/204Pb ratios in pyrite clusters attached to the foraminiferal tests confirmed that these tests inherited the Pb in their outer layer from carbon-contaminated seawater. We conclude that the source of the carbon could have been either global coal fly ash or forest fire-dispersed carbon, or a combination of both, that was dispersed into the Palaeo-Tethys Ocean immediately after the end-Permian extinction event.
NASA Astrophysics Data System (ADS)
Corsetti, F. A.; Thibodeau, A. M.; Ritterbush, K. A.; West, A. J.; Yager, J. A.; Ibarra, Y.; Bottjer, D. J.; Berelson, W.; Bergquist, B. A.
2015-12-01
Recent high-resolution age dating demonstrates that the end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and the release of CO2 and other volatiles to the atmosphere has been implicated in the extinction. Given the potentially massive release of CO2, ocean acidification is commonly considered a factor in the extinction and the collapse of shallow marine carbonate ecosystems. However, the timing of global marine biotic recovery versus the CAMP eruptions is more uncertain. Here, we use Hg concentrations and Hg/TOC ratios as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic-Jurassic strata, Muller Canyon, Nevada, Hg and Hg/TOC levels are low prior to the extinction, rise sharply in the extinction interval, peak just prior to the appearance of the first Jurassic ammonite, and remain above background in association with a depauperate (low diversity) earliest Jurassic fauna. The return of Hg to pre-extinction levels is associated with a significant pelagic and benthic faunal recovery. We conclude that significant biotic recovery did not begin until CAMP eruptions ceased. Furthermore, the initial benthic recovery in the Muller Canyon section involves the expansion of a siliceous sponge-dominated ecosystem across shallow marine environments, a feature now known from other sections around the world (e.g., Peru, Morocco, Austria, etc.). Carbonate dominated benthic ecosystems (heralded by the return of abundant corals and other skeletal carbonates) did not recover for ~1 million years following the last eruption of CAMP, longer than the typical duration considered for ocean acidification events, implying other factors may have played a role in carbonate ecosystem dynamics after the extinction.
NASA Astrophysics Data System (ADS)
Woods, Adam D.; Baud, Aymon
2008-09-01
The lower member of the Alwa Formation (Lower Olenekian), found within the Ba'id Exotic in the Oman Mountains (Sultanate of Oman), consists of ammonoid-bearing, pelagic limestones that were deposited on an isolated, drowned carbonate platform on the Neotethyan Gondwana margin. The strata contain a variety of unusual carbonate textures and features, including thrombolites, Frutexites-bearing microbialites that contain synsedimentary cements, matrix-free breccias surrounded by isopachous calcite cement, and fissures and cavities filled with large botryoidal cements. Thrombolites are found throughout the study interval, and occur as 0.5-1.0 m thick lenses or beds that contain laterally laterally-linked stromatactis cavities. The Frutexites-bearing microbialites occur less frequently, and also form lenses or beds, up to 30 cm thick; the microbialites may be laminated, and often developed on hardgrounds. In addition, the Frutexites-bearing microbialites also contain synsedimentary calcite cement crusts and botryoids (typically < 1 cm thick) that harbour layers or pockets of what appear to be bacterial sheaths and coccoids, and are indicative of biologically mediated precipitation of the cement bodies. Slumping following lithification led to fracturing of the limestone and the precipitation of large, botryoidal aragonite cements in fissures that cut across the primary fabric. Environmental conditions, specifically palaeoxygenation and the degree of calcium carbonate supersaturation, likely controlled whether the thrombolites (high level of calcium carbonate supersaturation associated with vertical mixing of water masses and dysoxic conditions) or Frutexites-bearing microbialites (low level of calcium carbonate supersaturation associated with anoxic conditions and deposition below a stable chemocline) formed. The results of this study point to continued environmental stress in the region during the Early Triassic that likely contributed to the uneven recovery from the Permian-Triassic mass extinction.
The origin and early evolution of dinosaurs.
Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E
2010-02-01
The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and Spondylosoma absconditum. The identification of dinosaur apomorphies is jeopardized by the incompleteness of skeletal remains attributed to most basal dinosauromorphs, the skulls and forelimbs of which are particularly poorly known. Nonetheless, Dinosauria can be diagnosed by a suite of derived traits, most of which are related to the anatomy of the pelvic girdle and limb. Some of these are connected to the acquisition of a fully erect bipedal gait, which has been traditionally suggested to represent a key adaptation that allowed, or even promoted, dinosaur radiation during Late Triassic times. Yet, contrary to the classical "competitive" models, dinosaurs did not gradually replace other terrestrial tetrapods over the Late Triassic. In fact, the radiation of the group comprises at least three landmark moments, separated by controversial (Carnian-Norian, Triassic-Jurassic) extinction events. These are mainly characterized by early diversification in Carnian times, a Norian increase in diversity and (especially) abundance, and the occupation of new niches from the Early Jurassic onwards. Dinosaurs arose from fully bipedal ancestors, the diet of which may have been carnivorous or omnivorous. Whereas the oldest dinosaurs were geographically restricted to south Pangea, including rare ornithischians and more abundant basal members of the saurischian lineage, the group achieved a nearly global distribution by the latest Triassic, especially with the radiation of saurischian groups such as "prosauropods" and coelophysoids.
A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea.
Martinez, Ricardo N; Sereno, Paul C; Alcober, Oscar A; Colombi, Carina E; Renne, Paul R; Montañez, Isabel P; Currie, Brian S
2011-01-14
Upper Triassic rocks in northwestern Argentina preserve the most complete record of dinosaurs before their rise to dominance in the Early Jurassic. Here, we describe a previously unidentified basal theropod, reassess its contemporary Eoraptor as a basal sauropodomorph, divide the faunal record of the Ischigualasto Formation with biozones, and bracket the formation with (40)Ar/(39)Ar ages. Some 230 million years ago in the Late Triassic (mid Carnian), the earliest dinosaurs were the dominant terrestrial carnivores and small herbivores in southwestern Pangaea. The extinction of nondinosaurian herbivores is sequential and is not linked to an increase in dinosaurian diversity, which weakens the predominant scenario for dinosaurian ascendancy as opportunistic replacement.
NASA Astrophysics Data System (ADS)
Čerňanský, Andrej; Klein, Nicole; Soták, Ján; Olšavský, Mário; Šurka, Juraj; Herich, Pavel
2018-02-01
An eosauropterygian skeleton found in the Middle Triassic (upper Anisian) Gutenstein Formation of the Fatric Unit (Demänovská dolina Valley, Low Tatra Mountains, Slovakia) represents the earliest known occurrence of marine tetrapods in the Western Carpathians. The specimen represents a partly articulated portion of the postcranial skeleton (nine dorsal vertebrae, coracoid, ribs, gastral ribs, pelvic girdle, femur and one zeugopodial element). It is assigned to the Pachypleurosauria, more precisely to the Serpianosaurus-Neusticosaurus clade based on the following combination of features: (1) small body size; (2) morphology of vertebrae, ribs and femur; (3) tripartite gastral ribs; and (4) microanatomy of the femur as revealed by μCT. Members of this clade were described from the epicontinental Germanic Basin and the Alpine Triassic (now southern Germany, Switzerland, Italy), and possibly from Spain. This finding shows that pachypleurosaur reptiles attained a broader geographical distribution during the Middle Triassic, with their geographical range reaching to the Central Western Carpathians. Pachypleurosaurs are often found in sediments formed in shallow, hypersaline carbonate-platform environments. The specimen found here occurs in a succession with vermicular limestones in a shallow subtidal zone and stromatolitic limestones in a peritidal zone, indicating that pachypleurosaurs inhabited hypersaline, restricted carbonate ramps in the Western Carpathians.
Aristov, Danil S; Zyła, Dagmara; Wegierek, Piotr
2013-01-01
A new representative of the family Chaulioditidae (Insecta, Grylloblattida), Chauliodites niedzwiedzkii sp. n., is described from the Upper Olenekian-Lower Anisian sediments of Pałęgi in Holy Cross Mountains, Poland. This is the first formal description of any fossil insect from Pałęgi area.
Browning, J.V.; Miller, K.G.; McLaughlin, P.P.; Edwards, L.E.; Kulpecz, A.A.; Powars, D.S.; Wade, B.S.; Feigenson, M.D.; Wright, J.D.
2009-01-01
The Eyreville core holes provide the first continuously cored record of postimpact sequences from within the deepest part of the central Chesapeake Bay impact crater. We analyzed the upper Eocene to Pliocene postimpact sediments from the Eyreville A and C core holes for lithology (semiquantitative measurements of grain size and composition), sequence stratigraphy, and chronostratigraphy. Age is based primarily on Sr isotope stratigraphy supplemented by biostratigraphy (dinocysts, nannofossils, and planktonic foraminifers); age resolution is approximately ??0.5 Ma for early Miocene sequences and approximately ??1.0 Ma for younger and older sequences. Eocene-lower Miocene sequences are subtle, upper middle to lower upper Miocene sequences are more clearly distinguished, and upper Miocene- Pliocene sequences display a distinct facies pattern within sequences. We recognize two upper Eocene, two Oligocene, nine Miocene, three Pliocene, and one Pleistocene sequence and correlate them with those in New Jersey and Delaware. The upper Eocene through Pleistocene strata at Eyreville record changes from: (1) rapidly deposited, extremely fi ne-grained Eocene strata that probably represent two sequences deposited in a deep (>200 m) basin; to (2) highly dissected Oligocene (two very thin sequences) to lower Miocene (three thin sequences) with a long hiatus; to (3) a thick, rapidly deposited (43-73 m/Ma), very fi ne-grained, biosiliceous middle Miocene (16.5-14 Ma) section divided into three sequences (V5-V3) deposited in middle neritic paleoenvironments; to (4) a 4.5-Ma-long hiatus (12.8-8.3 Ma); to (5) sandy, shelly upper Miocene to Pliocene strata (8.3-2.0 Ma) divided into six sequences deposited in shelf and shoreface environments; and, last, to (6) a sandy middle Pleistocene paralic sequence (~400 ka). The Eyreville cores thus record the fi lling of a deep impact-generated basin where the timing of sequence boundaries is heavily infl uenced by eustasy. ?? 2009 The Geological Society of America.
Stratigraphic and structural distribution of reservoirs in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefanescu, M.O.
1991-08-01
In Romania, there are reservoirs at different levels of the whole Cambrian-Pliocene interval, but only some of these levels have the favorable structural conditions to accumulate hydrocarbons in commercial quantities. These levels are the Devonian, Triassic, Middle Jurassic, Lower Cretaceous (locally including the uppermost Jurassic), Eocene, Oligocene-lower Miocene, middle and upper Miocene, and Pliocene. The productive reservoirs are represented either by carbonate rocks (in Devonian, Middle Triassic and uppermost Jurassic-Lower Cretaceous) or by detrital rocks (in Lower and Upper Triassic, Middle Jurassic, Eocene, Oligocene, Miocene, and Pliocene). From the structural point of view, the Romanian territory is characterized by themore » coexistence both of platforms (East European, Scythian, and Moesian platforms) and of the strongly tectonized orogenes (North Dobrogea and Carpathian orogenes). Each importance crust shortening was followed by the accumulation of post-tectonic covers, some of them being folded during subsequently tectonic movements. The youngest post-tectonic cover is common both for the platforms (foreland) and Carpathian orogene, representing the Carpathian foredeep. Producing reservoirs are present in the East European and Moesian platforms, in the outer Carpathian units (Tarcau and Marginal folds nappes) and in certain post-tectonic covers which fill the Carpathian foredeep and the Transylvanian and Pannonian basins. In the platforms, hydrocarbons accumulated both in calcareous and detrital reservoirs, whereas in the Carpathian units and in their reservoirs, whereas in the Carpathian units and in their post-tectonic covers, hydrocarbons accumulated only in detrital reservoirs.« less
NASA Astrophysics Data System (ADS)
Feng, Xueqian; Chen, Zhong-Qiang; Woods, Adam; Pei, Yu; Wu, Siqi; Fang, Yuheng; Luo, Mao; Xu, Yaling
2017-10-01
Two Anisian (Middle Triassic) marine ichnocoenoses are reported from the Boyun and Junmachang (JMC) sections located along the eastern and western margins of the Kamdian Continent, Yunnan Province, Southwest China, respectively. The Boyun ichnoassemblage is middle Anisian in age and is dominated by robust Rhizocorallium, while the JMC ichnoassemblage is of an early Anisian age and is characterized by the presence of Zoophycos. The ichnoassemblage horizons of the Boyun section represent an inner ramp environment, while the JMC section was likely situated in a mid-ramp setting near storm wave base as indicated by the presence of tempestites. The ichnofossil-bearing successions are usually highly bioturbated in both the Boyun (BI 3-5, BPBI 5) and JMC (BI 3-4, BPBI 3-4) sections. Three large, morphologically complicated ichnogenera: 1) Rhizocorallium; 2) Thalassinoides; and, 3) Zoophycos characterize the Anisian ichnocoenoses. Of these, Rhizocorallium has mean and maximum tube diameters up to 20.4 mm and 28 mm, respectively, while Thalassinoides mean and maximum tube diameters are 14.2 mm and 22 mm, respectively. Zoophycos is present in the early Anisian strata of the JMC section, and represents the oldest known occurrence of this ichnogenus following the latest Permian mass extinction. Similar to coeval ichnoassemblages elsewhere in the world, the Yunnan ichnocoenoses embrace a relatively low ichnodiversity, but their burrows usually penetrate deeply into the sediment, and include large and complex Rhizocorallium and Thalassinoides. All of these ichnologic features are indicative of recovery stage 4 after the latest Permian crisis. Anisian ichnoassemblages occur globally in six different habitat settings, and all show similar ecologic characteristics except for slightly different degrees of ichnotaxonomic richness, indicating that depositional environment is not a crucial factor shaping the recovery of the trace-makers, but may have an impact on their ichnodiversity. When compared with some important Early Triassic (mainly Spathian) ichnoassemblages worldwide, the Anisian ichnocoenoses examined for this study are slightly less diversified, and possess more or less the same maximum burrow sizes, but the penetration depth of burrows and the distribution of burrow sizes are much larger than those from the Early Triassic. It is worthy of note that the lower ichnodiversity of the Anisian ichnocoenoses may have resulted from intense bioturbation by deeper tiers, representing a taphonomic product that is totally unrelated to environmental stress. In addition, Anisian Rhizocorallium and Thalassinoides have much larger burrow sizes than the same ichnotaxa from the Lower Triassic, implying that ichnocoenoses may have recovered in Spathian, but did not stabilize until the Anisian.
Whidden, Katherine J.; Pitman, Janet K.; Pearson, Ofori N.; Paxton, Stanley T.; Kinney, Scott A.; Gianoutsos, Nicholas J.; Schenk, Christopher J.; Leathers-Miller, Heidi M.; Birdwell, Justin E.; Brownfield, Michael E.; Burke, Lauri A.; Dubiel, Russell F.; French, Katherine L.; Gaswirth, Stephanie B.; Haines, Seth S.; Le, Phuong A.; Marra, Kristen R.; Mercier, Tracey J.; Tennyson, Marilyn E.; Woodall, Cheryl A.
2018-06-22
Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 8.5 billion barrels of oil and 66 trillion cubic feet of gas in continuous accumulations in the Upper Cretaceous Eagle Ford Group and associated Cenomanian–Turonian strata in onshore lands of the U.S. Gulf Coast region, Texas.
Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina
Reid, Jeffrey C.; Milici, Robert C.
2008-01-01
This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data (%Ro) indicate levels of thermal maturity suitable for generation of hydrocarbons. The genetic potential of the source rocks in these Triassic basins is moderate to high and many source rock sections have at least some potential for hydrocarbon generation. Some data for the Cumnock Formation indicate a considerably higher source rock potential than the basin average, with S1 + S2 data in the mid-20 mg HC/g sample range, and some hydrocarbons have been generated. This implies that the genetic potential for all of these strata may have been higher prior to the igneous activity. However, the intergranular porosity and permeability of the Triassic strata are low, which makes fractured reservoirs more attractive as drilling targets. In some places, gravity and magnetic surveys that are used to locate buried intrusive rock may identify local thermal sources that have facilitated gas generation. Alternatively, awareness of the distribution of large intrusive igneous bodies at depth may direct exploration into other areas, where thermal maturation is less than the limits of hydrocarbon destruction. Areas prospective for natural gas also contain large surficial clay resources and any gas discovered could be used as fuel for local industries that produce clay products (principally brick), as well as fuel for other local industries.
NASA Astrophysics Data System (ADS)
Kohlhepp, Bernd; Lehmann, Robert; Seeber, Paul; Küsel, Kirsten; Trumbore, Susan E.; Totsche, Kai U.
2017-12-01
The quality of near-surface groundwater reservoirs is controlled, but also threatened, by manifold surface-subsurface interactions. Vulnerability studies typically evaluate the variable interplay of surface factors (land management, infiltration patterns) and subsurface factors (hydrostratigraphy, flow properties) in a thorough way, but disregard the resulting groundwater quality. Conversely, hydrogeochemical case studies that address the chemical evolution of groundwater often lack a comprehensive analysis of the structural buildup. In this study, we aim to reconstruct the actual spatial groundwater quality pattern from a synoptic analysis of the hydrostratigraphy, lithostratigraphy, pedology and land use in the Hainich Critical Zone Exploratory (Hainich CZE). This CZE represents a widely distributed yet scarcely described setting of thin-bedded mixed carbonate-siliciclastic strata in hillslope terrains. At the eastern Hainich low-mountain hillslope, bedrock is mainly formed by alternated marine sedimentary rocks of the Upper Muschelkalk (Middle Triassic) that partly host productive groundwater resources. Spatial patterns of the groundwater quality of a 5.4 km long well transect are derived by principal component analysis and hierarchical cluster analysis. Aquifer stratigraphy and geostructural links were deduced from lithological drill core analysis, mineralogical analysis, geophysical borehole logs and mapping data. Maps of preferential recharge zones and recharge potential were deduced from digital (soil) mapping, soil survey data and field measurements of soil hydraulic conductivities (Ks). By attributing spatially variable surface and subsurface conditions, we were able to reconstruct groundwater quality clusters that reflect the type of land management in their preferential recharge areas, aquifer hydraulic conditions and cross-formational exchange via caprock sinkholes or ascending flow. Generally, the aquifer configuration (spatial arrangement of strata, valley incision/outcrops) and related geostructural links (enhanced recharge areas, karst phenomena) control the role of surface factors (input quality and locations) vs. subsurface factors (water-rock interaction, cross-formational flow) for groundwater quality in the multi-layered aquifer system. Our investigation reveals general properties of alternating sequences in hillslope terrains that are prone to forming multi-layered aquifer systems. This synoptic analysis is fundamental and indispensable for a mechanistic understanding of ecological functioning, sustainable resource management and protection.
Onshore/ Offshore Geologic Assessment for Carbon Storage in the Southeastern United States
NASA Astrophysics Data System (ADS)
Knapp, C. C.; Knapp, J. H.; Brantley, D.; Lakshmi, V.; Almutairi, K.; Almayahi, D.; Akintunde, O. M.; Ollmann, J.
2017-12-01
Eighty percent of the world's energy relies on fossil fuels and under increasingly stricter national and international regulations on greenhouse gas emissions storage of CO2 in geologic repositories seems to be not only a feasible, but also and vital solution for near/ mid-term reduction of carbon emissions. We have evaluated the feasibility of CO2 storage in saline formations of the Eastern North American Margin (ENAM) including (1) the Jurassic/Triassic (J/TR) sandstones of the buried South Georgia Rift (SGR) basin, and (2) the Mesozoic and Cenozoic geologic formations along the Mid- and South Atlantic seaboard. These analyses have included integration of subsurface geophysical data (2- and 3-D seismic surveys) with core samples, well logs as well as uses of geological databases and geospatial analysis leading to CO2 injection simulation models. ENAM is a complex and regionally extensive mature Mesozoic passive margin rift system encompassing: (1) a large volume and regional extent of related magmatism known as the Central Atlantic Magmatic Province (CAMP), (2) a complete stratigraphic column that records the post-rift evolution in several basins, (3) preserved lithospheric-scale pre-rift structures including Paleozoic sutures, and (4) a wide range of geological, geochemical, and geophysical studies both onshore and offshore. While the target reservoirs onshore show heterogeneity and a highly complex geologic evolution they also show promising conditions for significant safe CO2 storage away from the underground acquifers. Our offshore study (the Southeast Offshore Storage Resource Assessment - SOSRA) is focused on the outer continental shelf from North Carolina to the southern tip of Florida. Three old exploration wells are available to provide additional constraints on the seismic reflection profiles. Two of these wells (TRANSCO 1005-1 and COST GE-1) penetrate the pre-rift Paleozoic sedimentary formations while the EXXON 564-1 well penetrates the post-rift unconformity into the Mesozoic rocks. Preliminary results from the southeast Georgia Embayment suggest that Mesozoic strata can be good reservoirs for CO2 storage while Paleozoic and Cenozoic strata can be good lower and, respectively, upper seals.
NASA Astrophysics Data System (ADS)
Adam, Ammar; Kaminski, Michael; Abdullatif, Osman
2017-04-01
This work reports the first discovery Earlandia foraminifera in the Triassic succession of the Middle East, within the Upper Khartam Member of the Khuff Formation. The study area is located in central Saudi Arabia where four outcrop localities were logged in detail for sedimentology and micropaleontology. More than 300 samples were collected for detailed sedimentological and micropaleontological analysis. Of these, only six samples recovered fossil Earlandia; these are dominantly observed in the interlaminated quartz-bearing recrystallized limestone lithofacies type. The Earlandia occur in associations with quartz grains, peloids, ooids, ostracods, bivalves, bryozoans, cephalopods, and stromatolites. The defined fossils of Earlandia are restricted to the lower fourth-order sequence of the Upper Khartam member; where non-skeletal grains (mostly oolitic grainstones) prevail. The skeletal grains along with the Earlandia occur as a thin (20 cm) transgressive lag. Furthermore, the regional occurrences of the Earlandia are consistent with the previously established high-frequency sequence stratigraphic scheme, therefore, the Earlandia could be used as a biomarker for regional biostratigraphic correlation and enhance the high-resolution sequence stratigraphic correlations of the Upper Khartam Member. Essentially, the detailed sedimentological and micropaleontological analysis (Earlandia foraminifera) indicates a plate-wide extensive shallow epeiric sea. The latter is gently dipping and sporadically connected to the open marine system.
Palynology of late Middle Pennsylvanian coal beds in the Appalachian Basin
Eble, C.F.
2002-01-01
Fossil spores and pollen have long been recognized as valuable tools for identifying and correlating coal beds. This paper describes the palynology of late Middle Pennsylvanian coal beds in the Appalachian Basin with emphasis on forms that assist both intra- and interbasinal coal bed correlation. Stratigraphically important palynomorphs that originate in late Middle Pennsylvanian strata include Torispora securis, Murospora kosankei, Triquitrites minutus, Cadiospora magna, Mooreisporites inusitatus, and Schopfites dimorphus. Taxa that terminate in the late Middle Pennsylvanian include Radiizonates difformis, Densosporites annulatus, Dictyotriletes bireticulatus, Vestispora magna, and Savitrisporites nux. Species of Lycospora, Cirratriradites, Vestispora, and Thymospora, as well as Granasporites medius, Triquitrites sculptilis, and T. securis and their respective ranges slightly higher, in earliest Late Pennsylvanian age strata. Late Middle Pennsylvanian and earliest Late Pennsylvanian strata in the Appalachian Basin correlate with the Radiizonates difformis (RD), Mooreisporites inusitatus (MI), Schopfites colchesterensis-S. dimorphus (CP), and Lycospora granulata-Granasporites medius (GM) spore assemblage zones of the Eastern Interior, or Illinois Basin. In the Western Interior Basin, these strata correlate with the middle-upper portion of the Torispora securis-Laevigatosporites globosus (SG) and lower half of the Thymospora pseudothiessenii-Schopfites dimorphus (PD) assemblage zones. In western Europe, late Middle Pennsylvanian and earliest Late Pennsylvanian strata correlate with the middle-upper portion of the Torispora securis-T. laevigata (SL) and the middle part of the Thymospora obscura-T. thiessenii (OT) spore assemblage zones. Allegheny Formation coal beds also correlate with the Torispora securis (X) and Thymospora obscura (XI) spore assemblages, which were developed for coal beds in Great Britain. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Finzel, E. S.
2017-07-01
Detrital zircon surface microtextures, geochronologic U-Pb data, and tectonic subsidence analysis from Upper Jurassic to Paleocene strata in the Black Hills of South Dakota reveal provenance variations in the distal portion of the Cordillera foreland basin in response to tectonic events along the outboard margin of western North America. During Late Jurassic to Early Cretaceous time, nonmarine strata record initially low rates of tectonic subsidence that facilitated widespread recycling of older foreland basin strata in eolian and fluvial systems that dispersed sediment to the northeast, with minimal sediment derived from the thrust belt. By middle Cretaceous time, marine inundation reflects increased subsidence rates coincident with a change to eastern sediment sources. Lowstand Albian fluvial systems in the Black Hills may have been linked to fluvial systems upstream in the midcontinent and downstream in the Bighorn Basin in Wyoming. During latest Cretaceous time, tectonic uplift in the study area reflects dynamic processes related to Laramide low-angle subduction that, relative to other basins to the west, was more influential due to the greater distance from the thrust load. Provenance data from Maastrichtian and lower Paleocene strata indicate a change back to western sources that included the Idaho-Montana batholith and exhumed Belt Supergroup. This study provides a significant contribution to the growing database that is refining the tectonics and continental-scale sediment dispersal patterns in North America during Late Jurassic-early Paleocene time. In addition, it demonstrates the merit of using detrital zircon grain shape and surface microtextures to aid in provenance interpretations.
Indigenous Precambrian petroleum revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, G.E.; Kaczor, M.J.; McArthur, R.E.
1980-10-01
Irrefutable evidence of fossil remains from Precambrian sediments and proved petroleum reserves in upper Proterozoic (Riphean-Vendian) strata of the Irkutsk basin, USSR, suggest that unmetamorphosed Precambrian sedimentary rocks should be a focus for hydrocarbon exploration. Since 1965, a dramatic increase in publications which document worldwide occurrences of Precambrian life forms discloses that, by the end of the Proterozoic, organic evolution had produced diversified assemblages of relatively highly developed macroorganisms and microorganisms. Some of these organisms have generated crude oil in the Nonesuch Shale of northern Michigan and kerogen in stromatolitic carbonate rocks in Africa Kerogen has been extracted from approx.more » 2300-m.y. old Transvaal (Africa) stromatolitic limestone containing coccoid and complex filamentous cyanophytes. Also, aromatic and aliphatic hydrocarbons have been obtained from the approx. 2800-m.y. old Bulawayan stromatolitic limestone of Rhodesia. Additional evidence indicates that commercial reserves of petroleum from Precambrian strata are possible. An oil discovery in Lower Cambrian rocks in 1962, at Markovo in the Irkutsk basin of the Siberian platform area, led to four noncommercial and eight commercial fields producing from Lower Cambrian and Upper Proterozoic strata.« less
Fournier, Valerie; Rosenheim, Jay A; Brodeur, Jacques; Johnson, Marshall W
2004-10-01
An important element in developing a management strategy for a new pest is the study of its seasonal dynamics and within-plant distribution. Here, we studied the mite Calacarus flagelliseta Fletchmann, De Moraes & Barbosa on papaya, Papaya carica L. (Caricaceae), in Hawaii to quantify 1) patterns of seasonal abundance, 2) its distribution across different vertical strata of the papaya canopy, and 3) shifts in its use of the upper versus the lower surfaces of papaya leaves. Nondestructive sampling conducted in two papaya plantings revealed that 1) populations of C. flagelliseta peak during the summer; 2) mites are most abundant in the middle and lower strata of the plant canopy, and least abundant on the youngest leaves found in the upper canopy; and 3) mites are found more predominantly on the upper leaf surfaces when overall population density peaks, suggesting that individuals move from the lower to the upper leaf surfaces when food resources on the lower leaf surface have been exploited by conspecifics. These results have significant implications for the development of sampling plans for C. flagelliseta in papaya.
NASA Astrophysics Data System (ADS)
Li, Mingsong; Zhang, Yang; Huang, Chunju; Ogg, James; Hinnov, Linda; Wang, Yongdong; Zou, Zhuoyan; Li, Liqin
2017-10-01
The time scale of the Late Triassic Epoch has a divergence of age models, especially for the durations of competing definitions for its Rhaetian Stage (uppermost Triassic). The astrochronology derived from relative depth of lacustrine-bearing clastic successions and astronomically tuned geomagnetic polarity time scale (APTS) of the Newark Supergroup of eastern North America provides a basis for the Late Triassic time scale. However, the Newark APTS has been challenged regarding its age scale and completeness; therefore an independent astronomical-tuned magnetic polarity zonation is required to verify the upper Newark APTS reference scale. We compiled a 6.5 million year (myr) APTS with magnetic stratigraphy from four sections of the lacustrine-fluvial, dinosaur-track-bearing Xujiahe Formation in the Sichuan Basin of South China that also has dating from detrital zircons and regional biostratigraphy. Variations in natural gamma-ray and magnetic susceptibility that reflect variable continental weathering in the source regions of the Xujiahe Formation are paced by Milankovitch cycles, especially the 100-kyr short eccentricity and 405-kyr long eccentricity. The cycle-tuned magnetostratigraphy of the Xujiahe Formation is compared directly via the magnetic-polarity zones to the depth ranks of the Newark Supergroup that are indicative of relative depths of lacustrine facies. The Sichuan APTS indicates that there is no significant hiatus between the sedimentary succession and the basalt flows at the top of the Newark Supergroup. The Sichuan APTS is compatible with the magnetostratigraphy from the candidate Global Boundary Stratotype Section and Point (GSSP) for the Norian-Rhaetian boundary interval at the Pignola-Abriola of South Italy, but does not extend downward to the proposed GSSP in Austria associated with the longer Rhaetian option. The earliest dinosaur tracks in China are from the middle of this Xujiahe Formation, therefore are implied to be middle Rhaetian in age. This Sichuan APTS helps to resolve the controversy about the completeness and reliability of the Newark-APTS, and can be used in the future to verify if isotopic excursions in organic carbon recorded in the Italian sections that are proposed as possible secondary markers for a base-Rhaetian definition are global in nature.
NASA Astrophysics Data System (ADS)
Martin, Silvana; Toffolo, Luca; Moroni, Marilena; Montorfano, Carlo; Secco, Luciano; Agnini, Claudia; Nimis, Paolo; Tumiati, Simone
2017-07-01
We present a minero-petrographic, geochemical and geochronological study of siderite orebodies from different localities of the Southern Alps (northern Italy). Siderite occurs as veins cutting the Variscan basement and the overlying Lower Permian volcano-sedimentary cover (Collio Fm.), and as both veins and conformable stratabound orebodies in the Upper Permian (Verrucano Lombardo and Bellerophon Fms.) and Lower Triassic (Servino and Werfen Fms.) sedimentary sequences of the Lombardian and the Venetian Alps. All types of deposits show similar major- and rare-earth (REE)-element patterns, suggesting a common iron-mineralizing event. The compositions of coexisting siderite, Fe-rich dolomite and calcite suggest formation from hydrothermal fluids at relatively high temperature conditions (≥ 250 °C). Geochemical modelling, supported by REE analyses and by literature and new δ13C and δ18O isotopic data, suggests that fluids responsible for the formation of siderite in the Variscan basement and in the overlying Lower Permian cover were derived from dominant fresh water, which leached Fe and C from volcanic rocks (mainly rhyolites/rhyodacites) and organic carbon-bearing continental sediments. On the basis of U-Th-Pb microchemical dating of uraninite associated with siderite in the Val Vedello and Novazza deposits (Lombardian Alps), the onset of hydrothermalism is constrained to 275 ± 13 Ma (Early-Mid Permian), i.e., it was virtually contemporaneous to the plutonism and the volcanic-sedimentary cycle reported in the same area (Orobic Basin). The youngest iron-mineralizing event is represented by siderite veins and conformable orebodies hosted in Lower Triassic shallow-marine carbonatic successions. In this case, the siderite-forming fluids contained a seawater component, interacted with the underlying Permian successions and eventually replaced the marine carbonates at temperatures of ≥ 250 °C. The absence of siderite in younger rocks suggests an Early Triassic upper limit for the iron pulse in the Southern Alps, which would thus predate the Middle Triassic magmatism. Based on the overlap between hydrothermalism, extensional tectonics and, in part, magmatism, the genesis of siderite in the Southern Alps may be related to plutonic activity and/or magmatic underplating occurring since the Permian in a geodynamic scenario preluding the opening of the Neo-Tethys.
Johnson, G.H.; Kruse, S.E.; Vaughn, A.W.; Lucey, J.K.; Hobbs, C. H.; Powars, D.S.
1998-01-01
Upper Cenozoic strata covering the Chesapeake Bay impact structure in southeastern Virginia record intermittent differential movement around its buried rim. Miocene strata in a graben detected by seismic surveys on the York River exhibit variable thickness and are deformed above the creater rim. Fan-like interformational and intraformational angular unconformities within Pliocene-Pleistocene strata, which strike parallel to the crater rim and dip 2-3?? away from the crater center, indicate that deformation and deposition were synchronous. Concentric, large-scale crossbedded, bioclastics and bodies of Pliocene age within ~20km of the buried crater rim formed on offshore shoals, presumably as subsiding listric slump blocks rotated near the crater rim.
Sobral, Gabriela; Sues, Hans-Dieter; Müller, Johannes
2015-01-01
The holotype and only known specimen of the enigmatic small reptile Elachistosuchus huenei Janensch, 1949 from the Upper Triassic (Norian) Arnstadt Formation of Saxony-Anhalt (Germany) is redescribed using μCT scans of the material. This re-examination revealed new information on the morphology of this taxon, including previously unknown parts of the skeleton such as the palate, braincase, and shoulder girdle. Elachistosuchus is diagnosed especially by the presence of the posterolateral process of the frontal, the extension of the maxillary tooth row to the posterior margin of the orbit, the free posterior process of the jugal, and the notched anterior margin of the interclavicle. Phylogenetic analyses using two recently published character-taxon matrices recovered conflicting results for the phylogenetic position of Elachistosuchus-either as an archosauromorph, as a lepidosauromorph or as a more basal, non-saurian diapsid. These different placements highlight the need of a thorough revision of critical taxa and new character sets used for inferring neodiapsid relationships.
Chapter 1: An overview of the petroleum geology of the Arctic
Spencer, A.M.; Embry, A.F.; Gautier, D.L.; Stoupakova, A.V.; Sorensen, K.
2011-01-01
Nine main petroleum provinces containing recoverable resources totalling 61 Bbbl liquids + 269 Bbbloe of gas are known in the Arctic. The three best known major provinces are: West Siberia-South Kara, Arctic Alaska and Timan-Pechora. They have been sourced principally from, respectively, Upper Jurassic, Triassic and Devonian marine source rocks and their hydrocarbons are reservoired principally in Cretaceous sandstones, Triassic sandstones and Palaeozoic carbonates. The remaining six provinces except for the Upper Cretaceous-Palaeogene petroleum system in the Mackenzie Delta have predominantly Mesozoic sources and Jurassic reservoirs. There are discoveries in 15% of the total area of sedimentary basins (c. 8 ?? 106 km2), dry wells in 10% of the area, seismic but no wells in 50% and no seismic in 25%. The United States Geological Survey estimate yet-to-find resources to total 90 Bbbl liquids + 279 Bbbloe gas, with four regions - South Kara Sea, Alaska, East Barents Sea, East Greenland - dominating. Russian estimates of South Kara Sea and East Barents Sea are equally positive. The large potential reflects primarily the large undrilled areas, thick basins and widespread source rocks. ?? 2011 The Geological Society of London.
2015-01-01
The holotype and only known specimen of the enigmatic small reptile Elachistosuchus huenei Janensch, 1949 from the Upper Triassic (Norian) Arnstadt Formation of Saxony-Anhalt (Germany) is redescribed using μCT scans of the material. This re-examination revealed new information on the morphology of this taxon, including previously unknown parts of the skeleton such as the palate, braincase, and shoulder girdle. Elachistosuchus is diagnosed especially by the presence of the posterolateral process of the frontal, the extension of the maxillary tooth row to the posterior margin of the orbit, the free posterior process of the jugal, and the notched anterior margin of the interclavicle. Phylogenetic analyses using two recently published character-taxon matrices recovered conflicting results for the phylogenetic position of Elachistosuchus–either as an archosauromorph, as a lepidosauromorph or as a more basal, non-saurian diapsid. These different placements highlight the need of a thorough revision of critical taxa and new character sets used for inferring neodiapsid relationships. PMID:26352985
Osteology of the Late Triassic aetosaur Scutarx deltatylus (Archosauria: Pseudosuchia)
2016-01-01
Aetosaurians are some of the most common fossils collected from the Upper Triassic Chinle Formation of Arizona, especially at the Petrified Forest National Park (PEFO). Aetosaurians collected from lower levels of the park include Desmatosuchus spurensis, Paratypothorax, Adamanasuchus eisenhardtae, Calyptosuchus wellesi, and Scutarx deltatylus. Four partial skeletons collected from the park between 2002 and 2009 represent the holotype and referred specimens of Scutarx deltatylus. These specimens include much of the carapace, as well as the vertebral column, and shoulder and pelvic girdles, and a new naming convention proposed for osteoderms descriptions better differentiates portions of the carapace and ventral armor. A partial skull from the holotype specimen represents the first aetosaur skull recovered and described from Arizona since the 1930s. The key morphological feature distinguishing Scutarx deltatylus is the presence of a prominent, triangular boss located in the posteromedial corner of the dorsal surface of the dorsal paramedian osteoderms. Scutarx deltatylus can be distinguished from closely related forms Calyptosuchus wellesi and Adamanasuchus eisenhardtae not only morphologically, but also stratigraphically. Thus, Scutarx deltatylus is potentially an index taxon for the upper part of the Adamanian biozone. PMID:27635359
Warwick, Peter D.; Johnson, Edward A.; Khan, Intizar H.
1998-01-01
Outcrop data from the Upper Paleocene to Middle Eocene Ghazij Formation of central Pakistan provide information about the depositional environments, source areas, and paleogeographic and tectonic settings along the northwestern margin of the Indian subcontinent during the closing of the Tethys Ocean. In this region, in the lower part of the exposed stratigraphic sequence, are various marine carbonate-shelf deposits (Jurassic to Upper Paleocene). Overlying these strata is the Ghazij, which consists of marine mudstone (lower part), paralic sandstone and mudstone (middle part), and terrestrial mudstone and conglomerate (upper part). Petrographic examination of sandstone samples from the middle and upper parts reveals that rock fragments of the underlying carbonate-shelf deposits are dominant; also present are volcanic rock fragments and chromite grains. Paleocurrent measurements from the middle and upper parts suggest that source areas were located northwest of the study area. We postulate that the source areas were uplifted by the collision of the subcontinent with a landmass during the final stages of the closing of the Tethys Ocean. Middle Eocene carbonate-shelf deposits that overlie the Ghazij record a return to marine conditions prior to the Miocene to Pleistocene sediment influx denoting the main collision with Eurasia.
Two stages of deformation and fluid migration in the central Brooks Range fold-and-thrust belt
Moore, Thomas E.; Potter, Christopher J.; O'Sullivan, Paul B.; Shelton, Kevin L.; Underwood, Michael B.
2004-01-01
We conclude that hydrocarbon generation from Triassic and Jurassic source strata and migration into stratigraphic traps occurred primarily by sedimentary burial principally at 100-90 Ma, between the times of the two major episodes of deformation. Subsequent sedimentary burial caused deep stratigraphic traps to become overmature, cracking oil to gas, and initiated some new hydrocarbon generation progressively higher in the section. Structural disruption of the traps in the early Tertiary released sequestered hydrocarbons. The hydrocarbons remigrated into newly formed structural traps, which formed at higher structural levels or were lost to the surface. Because of the generally high maturation of the Colville basin at the time of the deformation and remigration, most of the hydrocarbons available to fill traps were gas.
NASA Astrophysics Data System (ADS)
Zanchi, Andrea; Zanchetta, Stefano; Balini, Marco; Ghassemi, Mohammad Reza
2014-05-01
The Lower-Middle Triassic Aghdarband Basin, NE Iran, consists of a strongly deformed arc-related marine succession deposited along the southern margin of Eurasia (Turan domain) in a highly mobile tectonic context. The marine deposits are unconformably covered by Upper Triassic continental beds, marking the Cimmerian collision of Iran with Eurasia. The Aghdarband Basin is a key-area for the study of the Cimmerian events, as the Triassic units were severely folded and thrust short time after the collision and were unconformably covered by the gently deformed Middle Jurassic succession which seals the Cimmerian structures. The Triassic deposits form a north-verging thrust stack interacting with an important left-lateral strike-slip shear zone exposed in the northernmost part of the basin. Transpressional structures as strike-slip faults and vertical folds are here associated with high angle reverse faults forming intricate positive flower structures. Systematic asymmetry of major and parasitic folds, as well as their geometrical features indicate that they generated in a left-lateral transpressional regime roughly coeval to thrust imbrication to the south, as a consequence of a marked strain partitioning. Aim of this presentation is to describe in detail the deformational structures of the Aghdarband region, based on structural mapping and detailed original mesoscopic field analyses, resuming from the excellent work performed in the '70s by Ruttner (1991). Our work is focused on the pre mid-Jurassic structures which can be related to the final stages of the Cimmerian deformation resulting from the oblique collision of the Iranian microplate with the southern margin of Eurasia, the so-called Turan domain. We will finally discuss the kinematic significance of the Late Triassic oblique convergence zone of Aghdarband in the frame of strain partitioning in transpressional deformation. Structural weakness favouring strain partitioning can be related to inversion of syn-sedimentary faults active during the Triassic, resulting from the reactivation of previous Palaeozoic structural lineaments which characterize the Turan domain. A right-lateral reactivation of the main left-lateral fault zone followed during Neogene and Quaternary as a consequence of the Arabia collision to the south
NASA Astrophysics Data System (ADS)
McPhee, Blair W.; Choiniere, Jonah N.
2016-11-01
It has generally been held that the locomotory habits of sauropodomorph dinosaurs moved in a relatively linear evolutionary progression from bipedal through "semi-bipedal" to the fully quadrupedal gait of Sauropoda. However, there is now a growing appreciation of the range of locomotory strategies practiced amongst contemporaneous taxa of the latest Triassic and earliest Jurassic. Here we present on the anatomy of a hyper-robust basal sauropodomorph ilium from the Late Triassic-Early Jurassic Elliot Formation of South Africa. This element, in addition to highlighting the unexpected range of bauplan diversity throughout basal Sauropodomorpha, also has implications for our understanding of the relevance of "robusticity" to sauropodomorph evolution beyond generalized limb scaling relationships. Possibly representing a unique form of hindlimb stabilization during phases of bipedal locomotion, the autapomorphic morphology of this newly rediscovered ilium provides additional insight into the myriad ways in which basal Sauropodomorpha managed the inherited behavioural and biomechanical challenges of increasing body-size, hyper-herbivory, and a forelimb primarily adapted for use in a bipedal context.
NASA Astrophysics Data System (ADS)
Ajdanlijsky, George; Götz, Annette E.; Strasser, André
2018-04-01
Sedimentary facies and cycles of the Triassic continental-marine transition of NW Bulgaria are documented in detail from reference sections along the Iskar river gorge between the villages of Tserovo and Opletnya. The depositional environments evolved from anastomosing and meandering river systems in the Petrohan Terrigenous Group to mixed fluvial and tidal settings in the Svidol Formation, and to peritidal and shallow-marine conditions in the Opletnya Member of the Mogila Formation. For the first time, the palynostratigraphic data presented here allow for dating the transitional interval and for the precise identification of a major sequence boundary between the Petrohan Terrigenous Group and the Svidol Formation (Iskar Carbonate Group). This boundary most probably corresponds to the major sequence boundary Ol4 occurring in the upper Olenekian of the Tethyan realm and thus enables interregional correlation. The identification of regionally traceable sequence boundaries based on biostratigraphic age control is a first step towards a more accurate stratigraphic correlation and palaeogeographic interpretation of the Early to early Middle Triassic in NW Bulgaria.
Geologic map of the Basque-Cantabrian Basin and a new tectonic interpretation of the Basque Arc
NASA Astrophysics Data System (ADS)
Ábalos, B.
2016-11-01
A new printable 1/200.000 bedrock geological map of the onshore Basque-Cantabrian Basin is presented, aimed to contribute to future geologic developments in the central segment of the Pyrenean-Cantabrian Alpine orogenic system. It is accompanied in separate appendixes by a historic report on the precedent geological maps and by a compilation above 350 bibliographic citations of maps and academic reports (usually overlooked or ignored) that are central to this contribution. Structural scrutiny of the map permits to propose a new tectonic interpretation of the Basque Arc, implementing previously published partial reconstructions. It is presented as a printable 1/400.000 tectonic map. The Basque Arc consists of various thrust slices that can expose at the surface basement rocks (Palaeozoic to Lower Triassic) and their sedimentary cover (uppermost Triassic to Tertiary), from which they are detached by intervening (Upper Triassic) evaporites and associated rocks. The slice-bounding thrusts are in most cases reactivated normal faults active during Meso-Cenozoic sedimentation that can be readily related to basement discontinuities generated during the Hercynian orogeny.
NASA Astrophysics Data System (ADS)
Cavin, Lionel; Grădinaru, Eugen
2014-06-01
The Early Triassic witnessed the highest taxic diversity of coelacanths (or Actinistia), a clade with a single living genus today. This peak of diversity is accentuated here with the description of a new coelacanth discovered in the lower Spathian (Upper Olenekian, Lower Triassic) cropping out in the Tulcea Veche (Old Tulcea) promontory, in the city of Tulcea, in North Dobrogea, Romania. The bone remains were preserved in a block of limestone, which was chemically dissolved. The resulting 3D and matrix-free ossifications correspond mostly to elements of the skull and branchial apparatus. Posterior parietals, postparietal with associated prootic and basisphenoid allow a precise description of the neurocranium. Ossifications of the lower jaw, together with branchial and pectoral elements, complete the description of this coelacanth and support the coining of a new generic and specific name, Dobrogeria aegyssensis. A phylogenetic analysis of actinistians with the new species recovers clades which were found in most recent analyses, i.e. the Sasseniidae, the Laugiidae, the Coelacanthiformes, the Latimerioidei, the Mawsoniidae and the Latimeriidae, and identifies the new taxon as a non-latimerioid coelacanthiform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini; Paul Aharon; Donald A. Goddard
2006-05-26
The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface mapsmore » and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.« less
NASA Astrophysics Data System (ADS)
Zhang, Guijie; Zhang, Xiaolin; Hu, Dongping; Li, Dandan; Algeo, Thomas J.; Farquhar, James; Henderson, Charles M.; Qin, Liping; Shen, Megan; Shen, Danielle; Schoepfer, Shane D.; Chen, Kefan; Shen, Yanan
2017-02-01
The end-Permian mass extinction represents the most severe biotic crisis for the last 540 million years, and the marine ecosystem recovery from this extinction was protracted, spanning the entirety of the Early Triassic and possibly longer. Numerous studies from the low-latitude Paleotethys and high-latitude Boreal oceans have examined the possible link between ocean chemistry changes and the end-Permian mass extinction. However, redox chemistry changes in the Panthalassic Ocean, comprising ˜85-90% of the global ocean area, remain under debate. Here, we report multiple S-isotopic data of pyrite from Upper Permian-Lower Triassic deep-sea sediments of the Panthalassic Ocean, now present in outcrops of western Canada and Japan. We find a sulfur isotope signal of negative Δ33S with either positive δ34S or negative δ34S that implies mixing of sulfide sulfur with different δ34S before, during, and after the end-Permian mass extinction. The precise coincidence of the negative Δ33S anomaly with the extinction horizon in western Canada suggests that shoaling of H2S-rich waters may have driven the end-Permian mass extinction. Our data also imply episodic euxinia and oscillations between sulfidic and oxic conditions during the earliest Triassic, providing evidence of a causal link between incursion of sulfidic waters and the delayed recovery of the marine ecosystem.
Dyman, T.S.; Cobban, W.A.; Fox, J.E.; Hammond, R.H.; Nichols, D.J.; Perry, W.J.; Porter, K.W.; Rice, D.D.; Setterholm, D.R.; Shurr, G.W.; Tysdal, R.G.; Haley, J.C.; Campen, E.B.
1994-01-01
In Montana, Wyoming, North and South Dakota, and Minnesota, Cretaceous strata are preserved in the asymmetric Western Interior foreland basin. More than 5,200 m (17,000 ft) of Cretaceous strata are present in southwestern Montana, less than 300 m (1,000 ft) in eastern South Dakota. The asymmetry resulted from varying rates of subsidence due to tectonic and sediment loading. The strata consist primarily of sandstone, siltstone, mudstone, and shale. Conglomerate is locally abundant along the western margin, whereas carbonate is present in most areas of the eastern shelf. Sediment was deposited in both marine and nonmarine environments as the shoreline fluctuated during major tectonic and eustatic cycles.A discussion of Cretaceous strata from southwestern to east-central Montana, the Black Hills, eastern South Dakota, and southwestern Minnesota shows regional stratigraphy and facies relations, sequence, boundaries, and biostratigraphic and radiometric correlations. The thick Cretaceous strata in southwestern Montana typify nonmarine facies of the rapidly subsiding westernmost part of the basin. These strata include more than 3,000 m (10,000 ft) of synorogenic conglomerate of the Upper Cretaceous part of the Beaverhead Group. West of the Madison Range, sequence boundaries bracket the Kootenai (Aptian and Albian), the Blackleaf (Albian and Cenomanian), and the Frontier Formations (Cenomanian and Turonian); sequence boundaries are difficult to recognize because the rocks are dominantly non-marine. Cretaceous strata in east-central Montana (about 1,371 m; 4,500 ft thick) lie at the approximate depositional axis of the basin and are mostly marine terrigenous rocks. Chert-pebble zones in these rocks reflect stratigraphic breaks that may correlate with sequence boundaries to the east and west. Cretaceous rocks of the Black Hills region consist of a predominantly marine clastic sequence averaging approximately 1,524 m (5,000 ft) thick. The Cretaceous System in eastern South Dakota (457 to 610 m; 1,500 to 2,000 ft thick) consists of a marine shelf sequence dominated by shale and limestone. Major sequence boundaries in South Dakota are at the base of the Lower Cretaceous Lakota Formation, Fall River Sandstone, and Muddy Sandstone, and bracket the Upper Cretaceous Niobrara Formation.
Befus, K.S.; Hanson, R.E.; Miggins, D.P.; Breyer, J.A.; Busbey, A.B.
2009-01-01
Eocene intrusion of alkaline basaltic to trachyandesitic magmas into unlithified, Upper Cretaceous (Maastrichtian) to Eocene fluvial strata in part of the Trans-Pecos igneous province in West Texas produced an array of features recording both nonexplosive and explosive magma/wet-sediment interaction. Intrusive complexes with 40Ar/39Ar dates of ~ 47-46??Ma consist of coherent basalt, peperite, and disrupted sediment. Two of the complexes cutting Cretaceous strata contain masses of conglomerate derived from Eocene fluvial deposits that, at the onset of intrusive activity, would have been > 400-500??m above the present level of exposure. These intrusive complexes are inferred to be remnants of diatremes that fed maar volcanoes during an early stage of magmatism in this part of the Trans-Pecos province. Disrupted Cretaceous strata along diatreme margins record collapse of conduit walls during and after subsurface phreatomagmatic explosions. Eocene conglomerate slumped downward from higher levels during vent excavation. Coherent to pillowed basaltic intrusions emplaced at the close of explosive activity formed peperite within the conglomerate, within disrupted Cretaceous strata in the conduit walls, and within inferred remnants of the phreatomagmatic slurry that filled the vents during explosive volcanism. A younger series of intrusions with 40Ar/39Ar dates of ~ 42??Ma underwent nonexplosive interaction with Upper Cretaceous to Paleocene mud and sand. Dikes and sills show fluidal, billowed, quenched margins against the host strata, recording development of surface instabilities between magma and groundwater-rich sediment. Accentuation of billowed margins resulted in propagation of intrusive pillows into the adjacent sediment. More intense disruption and mingling of quenched magma with sediment locally produced fluidal and blocky peperite, but sufficient volumes of pore fluid were not heated rapidly enough to generate phreatomagmatic explosions. This work suggests that Trans-Pecos Texas may be an important locale for the study of subvolcanic phreatomagmatic processes and associated phenomena. Eocene intrusions in the study area underwent complex interactions with wet sediment at shallow levels beneath the surface in strata as old as Maastrichtian, which must have remained unlithified and rich in pore water for ~ 20-25??Ma. ?? 2009 Elsevier B.V. All rights reserved.
Contrasting cratonal provenances for upper Cretaceous Valle Group quartzite clasts, Baja California
Kimbrough, D.L.; Abbott, G.; Smith, D.P.; Mahoney, J.B.; Moore, Thomas E.; Gehrels, G.E.; Girty, G.H.; Cooper, John D.
2006-01-01
Late Cretaceous Valle Group forearcbasin deposits on the Vizcaino Peninsula of Baja California Sur are dominated by firstcycle arc-derived volcanic-plutonic detritus derived from the adjacent Peninsular Ranges batholith. Craton-derived quartzite clasts are a minor but ubiquitous component in Valle Group conglomerates. The source of these clasts has implications for tectonic reconstructions and sediment-dispersal paths along the paleo-North American margin. Three strongly contrasting types of quartzite are recognized based on petrology and detrital zircon U-Pb geochronology. The first type is ultramature quartz arenite with well-rounded, highly spherical zircon grains. Detrital zircon ages from this type are nearly all >1.8 Ga with age distributions that closely match the distinctive Middle-Late Ordovician Peace River arch detrital signature of the Cordilleran margin. This type has been previously recognized from prebatholithic rocks in northeast Baja California (San Felipe quartzite). A second quartzite type is subarkosic sandstone with strong affinity to southwestern North America; important features of the age spectra are ~1.0-1.2 Ga, 1.42 and 1.66 Ga peaks representing cratonal basement, 500-300 Ma grains interpreted as recycled Appalachian-derived grains, and 284- 232 Ma zircon potentially derived from the Early Permian-Middle Triassic east Mexico arc. This quartzite type could have been carried to the continental margin during Jurassic time as outboard equivalents of Colorado Plateau eolianites. The third quartzite type is quartz pebble conglomerate with significant ~900- 1400 Ma and ~450-650 Ma zircon components, as well as mid- and late Paleozoic grains. The source of this type of quartzite is more problematic but could match either upper Paleozoic strata in the Oaxaca terrane of southern Mexico or a southwestern North America source. The similarity of detrital 98 zircon spectra in all three Valle Group quartzite types to rocks of the adjacent Cordilleran margin support previous interpretations that Valle Group forearc basin sediments were deposited in proximity to rocks on the mainland of northwest Mexico and southwestern United States.
NASA Astrophysics Data System (ADS)
Mohn, G.; Etheve, N.; Frizon de Lamotte, D.; Roca, E.; Tugend, J.; Gómez-Romeu, J.
2017-12-01
Eastern Iberia preserves a complex succession of Mesozoic rifts partly or completely inverted during the Late Cretaceous and Cenozoic in relation with Africa-Eurasia convergence. Notably, the Valencia Trough, classically viewed as part of the Cenozoic West Mediterranean basins, preserves in its southwestern part a thick Mesozoic succession (locally »10km thick) over a highly thinned continental basement (locally only »3,5km thick). This sub-basin referred to as the Columbrets Basin, represents a Late Jurassic-Early Cretaceous hyper-extended rift basin weakly overprinted by subsequent events. Its initial configuration is well preserved allowing us to unravel its 3D architecture and tectono-stratigraphic evolution in the frame of the Mesozoic evolution of eastern Iberia. The Columbrets Basin benefits from an extensive dataset combining high resolution reflection seismic profiles, drill holes, refraction seismic data and Expanding Spread Profiles. Its Mesozoic architecture is controlled by interactions between extensional deformation and halokinesis involving the Upper Triassic salt. The thick uppermost Triassic to Cretaceous succession describes a general synclinal shape, progressively stretched and dismembered towards the basin borders. The SE-border of the basin is characterized by a large extensional detachment fault acting at crustal scale and interacting locally with the Upper Triassic décollement. This extensional structure accommodates the exhumation of the continental basement and part of the crustal thinning. Eventually our results highlight the complex interaction between extreme crustal thinning and occurrence of a pre-rift salt level for the deformation style and tectono-stratigraphic evolution of hyper-extended rift basins.
Palaeogeography of Late Triassic red-beds in Singapore and the Indosinian Orogeny
NASA Astrophysics Data System (ADS)
Oliver, Grahame; Prave, Anthony
2013-10-01
A red-bed facies of the Upper Triassic Jurong Formation has been logged on Sentosa Island, Singapore. An overall coarsening and thickening-upward pattern is well developed. The lower part of the section is dominated by purple-red, massive to finely laminated illite-smectite-kaolin-rich mudstones containing thin, discontinuous lenses of fine sandstone marked by low-angle lamination and small ripples. One dinosaur-like foot print has been discovered in a loose block of red mudstone. It is concluded that this is a lacustrine sequence and it is proposed to name the lake, Lake Sentosa. The upper part of the sequence consists of flat-laminated to trough cross-bedded medium-grained sandstone and granule to cobble conglomerates alternating with purple-red mudstone. The mudstone-sandstone packages are arranged in decametre-scale coarsening-upward cycles. The channelling and decimetre-scale cross-bedding characterising the sandstone and conglomeratic beds is evidence for deposition by flashy fluvial flood processes, possibly feeding into the lake as a fresh water delta. One possible dinosaur trackway in granule size conglomerate has been located. Detrital zircon U-Pb ages vary from 2.7 Ba to 209 Ma with significant populations at ˜245 Ma and 220 Ma. These ages throw light on the timing of the Indosinian Orogeny. The molasse red-beds of the Jurong Formation were deposited in a half graben formed in the hangingwall of the Bukit Timah Fault when central Peninsular Malaysia went into extension following the climax of the Indosinian Orogeny in the Late Triassic.
Geology of an Ordovician stratiform base-metal deposit in the Long Canyon Area, Blaine County, Idaho
Otto, B.R.; Zieg, G.A.
2003-01-01
In the Long Canyon area, Blaine County, Idaho, a strati-form base-metal-bearing gossan is exposed within a complexly folded and faulted sequence of Ordovician strata. The gossan horizon in graptolitic mudrock suggests preservation of bedded sulfides that were deposited by an Ordovician subaqueous hydrothermal system. Abrupt thickness changes and geochemi-cal zoning in the metal-bearing strata suggest that the gossan is near the source of the hydrothermal system. Ordovician sedimentary rocks at Long Canyon represent a coarsening-upward section that was deposited below wave base in a submarine depositional environment. The lowest exposed rocks represent deposition in a starved, euxinic basin and over-lying strata represent a prograding clastic wedge of terrigenous and calcareous detritus. The metalliferous strata are between these two types of strata. Strata at Long Canyon have been deformed by two periods of thrust faulting, at least three periods of normal faulting, and two periods of folding. Tertiary extensional faulting formed five subhorizontal structural plates. These low-angle fault-bounded plates truncate Sevier-age and possibly Antler-age thrust faults. The presence of gossan-bearing strata in the four upper plates suggests that there was only minor, although locally complex, stratigraphic displacement and rotation. The lack of correlative strata in the lowest plate suggests the displacement was greater than 2000 ft. The metalliferous strata were exposed to surface weathering, oxidation, and erosion prior to and during deposition of the Eocene Challis Volcanic Group. The orientations of erosional canyons formed during this early period of exposure were related to the orientations of Sevier-age thrust faults, and stream-channel gravel was deposited in the canyons. During this and subsequent intervals of exposure, sulfidic strata were oxi-dized to a minimum depth of 700 ft.
NASA Astrophysics Data System (ADS)
Fanka, Alongkot; Tsunogae, Toshiaki; Daorerk, Veerote; Tsutsumi, Yukiyasu; Takamura, Yusuke; Sutthirat, Chakkaphan
2018-05-01
Carboniferous biotite granite, Late Permian hornblende granite, and Triassic biotite-hornblende granite, all of which belong to the Eastern Granite Belt, expose in the Wang Nam Khiao area, Nakhon Ratchasima, northeastern Thailand. The Carboniferous biotite granite is dominated by quartz, K-feldspar, plagioclase, and biotite. The Late Permian hornblende granite contains dominant assemblages of plagioclase, quartz, K-feldspar, hornblende, and minor amount of biotite, while the Triassic biotite-hornblende granite consists of quartz, plagioclase, K-feldspar with small amounts of biotite, and hornblende. The REE patterns with steep decrease from light to heavy REE together with the LILE (e.g. K, Sr) enrichment and depletion of some particular HFSE (e.g. Nb, Ti) indicate low degree of partial melting. Mineral chemistry of biotite and hornblende in the granites reflects crystallization from hydrous calc-alkaline arc-derived magmas possibly formed by subduction. Amphibole-plagioclase thermometry and Al-in-hornblende barometry indicate that the Late Permian hornblende granite and the Triassic biotite-hornblende granite may have equilibrated at 3.0-5.8 kbar/700-820 °C and 2.0-3.2 kbar/600-750 °C, respectively, in the middle-upper crust (about 10-15 km depth). Zircon U-Pb geochronology of the Carboniferous biotite granite, Late Permian hornblende granite and Triassic biotite-hornblende granite yielded intrusion ages of 314.6-284.9 Ma, 253.4 Ma, and 237.8 Ma, respectively, which implies multiple episodes of arc-magmatism formed by Palaeo-Tethys subduction beneath Indochina Terrane during Late Carboniferous/Early Permian, Late Permian and Middle Triassic.
NASA Astrophysics Data System (ADS)
Schefer, Senecio; Egli, Daniel; Missoni, Sigrid; Bernoulli, Daniel; Fügenschuh, Bernhard; Gawlick, Hans-Jürgen; Jovanović, Divna; Krystyn, Leopold; Lein, Richard; Schmid, Stefan M.; Sudar, Milan N.
2010-04-01
Strongly deformed and metamorphosed sediments in the Studenica Valley and Kopaonik area in southern Serbia expose the easternmost occurrences of Triassic sediments in the Dinarides. In these areas, Upper Paleozoic terrigenous sediments are overlain by Lower Triassic siliciclastics and limestones and by Anisian shallow-water carbonates. A pronounced facies change to hemipelagic and distal turbiditic, cherty metalimestones (Kopaonik Formation) testifies a Late Anisian drowning of the former shallow-water carbonate shelf. Sedimentation of the Kopaonik Formation was contemporaneous with shallow-water carbonate production on nearby carbonate platforms that were the source areas of diluted turbidity currents reaching the depositional area of this formation. The Kopaonik Formation was dated by conodont faunas as Late Anisian to Norian and possibly extends into the Early Jurassic. It is therefore considered an equivalent of the grey Hallstatt facies of the Eastern Alps, the Western Carpathians, and the Albanides-Hellenides. The coeval carbonate platforms were generally situated in more proximal areas of the Adriatic margin, whereas the distal margin was dominated by hemipelagic/pelagic and distal turbiditic sedimentation, facing the evolving Neotethys Ocean to the east. A similar arrangement of Triassic facies belts can be recognized all along the evolving Meliata-Maliac-Vardar branch of Neotethys, which is in line with a ‘one-ocean-hypothesis’ for the Dinarides: all the ophiolites presently located southwest of the Drina-Ivanjica and Kopaonik thrust sheets are derived from an area to the east, and the Drina-Ivanjica and Kopaonik units emerge in tectonic windows from below this ophiolite nappe. On the base of the Triassic facies distribution we see neither argument for an independent Dinaridic Ocean nor evidence for isolated terranes or blocks.
Englund, K.J.; Thomas, R.E.
1997-01-01
Two contrasting concepts specifying the age and duration of the hiatus resulting from a mid-Carboniferous eustatic event in the eastern United States are based on different evidence. The original model indicated that the hiatus is at an unconformity in cratonic areas that was assumed to coincide with the Mississippian-Pennsylvanian boundary at the contact between the Mississippian Bluestone Formation and the Pennsylvanian Pocahontas Formation in the Appalachian foreland basin. This concept was adhered to exclusively until 1969 and continues to reappear in reports dealing with global correlations and division of the Carboniferous into the Mississippian and Pennsylvanian Systems. This division is at a major eustatic event that supposedly occurred at about 330 Ma in scattered parts of the world, including the Appalachian basin. An alternative concept, fully supported by geologic mapping and biostratigraphic studies, indicates that the unconformity and associated hiatus are much younger because they originate in the Appalachian foreland basin in the lower part (upper Namurian) of the Lower Pennsylvanian New River Formation, about 260 m above the Mississippian-Pennsylvanian boundary. The duration of this hiatus increases in a northwesterly direction onto the cratonic shelf because the unconformity progressively truncated the underlying Lower Pennsylvanian and Upper Mississippian successions. The westward onlap of Pennsylvanian strata onto the eroded surface resulted in a hiatus from the Early Mississippian (Tournaisian) to the Middle Pennsylvanian (Westphalian B). The systemic boundary, which is in a depositional continuous sequence of strata in the Appalachian foreland basin, was correlated biostratigraphically by Pfefferkorn and Gillespie in 1982 with Gothan's "Florensprung" (floral break) described in 1913 at the Namurian A-B boundary in the Upper Silesian basin. An intra-Namurian erosive event was noted also in the Upper Silesian basin by Havlena, who reported in 1982 that an intra-Namurian erosive contact occurs well above the Florensprung. The origin of the Florensprung in depositional continuous strata has been attributed to tectonism, environment, or climate. However, spherules found in depositional continuous strata near the Mississippian-Pennsylvanian boundary in the Appalachian basin indicate that the effect of an asteroid impact may be the underlying cause for the biodiversity noted at the systemic boundary.
Results of coal bed methane drilling, Mylan Park, Monongalia County, West Virginia
Ruppert, Leslie F.; Fedorko, Nick; Warwick, Peter D.; Grady, William C.; Crangle, Robert D.; Britton, James Q.
2004-01-01
The Department of Energy National Energy Technology Laboratory funded drilling of a borehole (39.64378 deg E , -80.04376 deg N) to evaluate the potential for coal bed methane and carbon dioxide sequestration at Mylan Park, Monongalia County, West Virginia. The drilling commenced on September 23, 2002 and was completed on November 14, 2002. The 2,525 ft deep hole contained 1,483.41 ft of Pennsylvanian coal-bearing strata, 739.67 feet of Mississippian strata, and 301.93 ft. of Devonian strata. The drill site was located directly over abandoned Pittsburgh and Sewickley coal mines. Coal cores from remaining mine pillars were cut and retrieved for desorption from both mines. In addition, coals were cored and desorbed from the Pittsburgh Roof, Little Pittsburgh, Elk Lick, Brush Creek, Upper Kittanning, Middle Kittanning, Clarion, Upper Mercer, Lower Mercer, and Quakertown coal beds. All coals are Pennsylvanian in age and are high-volatile-A bituminous in rank. A total of 34.75 ft of coal was desorbed over a maximum period of 662 days, although most of the coal was desorbed for about 275 days. This report is provided in Adobe Acrobat format. Appendix 3 is provided in Excel format.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saller, A.H.; Schlanger, S.O.
Two wells drilled along the margin of Enewetak Atoll penetrated approximately 1,000 m of upper eocene, Oligocene, and lower Miocene carbonates. STrontium isotope stratigraphy indicates relatively continuous deposition of carbonate from 40 Ma to 20 Ma. Depositional environments show a gradual basinward progradation of facies with slope carbonates passing upward into fore-reef, reef, back-reef, and lagoonal carbonates. Slope strata contain wackestones and packstones with submarine-cemented lithoclasts, coral, coralline algae fragments, benthic rotaline forams, planktonic forams, and echinoderm fragments. Fore-reef strata are dominantly packstones and boundstones containing large pieces of coral, abundant benthic forams, coralline algae fragments, stromatoporoids(.), and minor planktonicmore » forams. Reef and near-reef sediments include coralgal boundstones and grainstones with abundant benthic forams. Halimeda and miliolid forams are common in lagoonward parts of the back reef. Sponge borings, geopetal structures, and fractures are common in reef and fore-reef strata. Lagoonal strata are wackestones and packstones with common mollusks, coral, coralline algae, and benthic forams (rotaline and miliolid). Diagenesis has extensively altered strata near the atoll margin. Aragonite dissolution and calcite cements (radiaxial and cloudy prismatic are abundant in fore-reef, reef, and some back-reef strata). Petrographic and geochemical data indicate arogonite dissolution and calcite cementation in seawater at burial depths of 100 to 300 m. Dolomite occurs in slope and deeply buried reefal carbonates.« less
Oceanic front in the Greenhorn Sea (Late Middle through Late Cenomanian)
NASA Astrophysics Data System (ADS)
Fisher, C. G.; Hay, W. W.; Eicher, D. L.
1994-12-01
An abrupt lithofacies change between calcareous shale and noncalcareous shale occurs in strata deposited in the mid-Cretaceous Greenhorn Seaway in the southeastern corner of Montana. The facies were correlated lithostratigraphically using bentonites and calcarenites. The lithocorrelations were then refined using ammonites, foraminifera, and calcareous nannofossils. Twenty-five time slices were defined within the upper middle and lower upper Cenomanian strata. Biofacies analysis indicate that lithofacies changes record the boundary or oceanic front between two water masses with distinctly different paleoceanographic conditions. One water mass entered the seaway from the Arctic and the other from the Gulf of Mexico/Tethys. The microfauna and microflora permit interpretation of the environmental conditions in each water mass. At times when the front was near vertical, the two water masses were of the same density but of different temperatures and salinities.
Prehistory of Zodiac Dating: Three Strata of Upper Paleolithic Constellations
NASA Astrophysics Data System (ADS)
Gurshtein, Alex A.
A pattern of archaic proto-constellations is extracted from Aratus' "The Phaenomena" didactic poem list according to a size criterion elaborated earlier, and their symbolism is analyzed. As a result of this approach three celestial symbolical strata are discovered to be probably a reflection of the symbols for the Lower, the Middle and the Upper Worlds; the Under-World creatures have a water character, the Middle World ones are mostly anthropomorphic and flying beings are for the Upper World. The strata excerpted from Aratus' sky seems to be in agreement with the well-known Babylonian division into three god pathways for Ea (Enki), Anu and Enlil. There is a possibility of dating the pattern discovered because of precession's strong influence as far back as 16 thousand years, the result being supported by the comparison of different star group mean sizes. The archaic constellation pattern under consideration is a reasonable background of symbolical meanings for the first Zodiacal generation quartet (7.5 thousand years old) examined by the author previously. The enormous size of the Argo constellation (Ship of Argo and his Argonauts) as well as the large sizes of other southern constellations are explained as due to the existence of an accumulation zone near the South celestial pole. Some extra correlations between the reconstruction proposed and cultural data available are discussed. The paper is the second part of the investigation "On the Origin of the Zodiacal constellations" published in Vistas in Astronomy, vol.36, pp.171-190, 1993.
Distal facies variability within the Upper Triassic part of the Otuk Formation in northern Alaska
Whidden, Katherine J.; Dumoulin, Julie A.; Whalen, M.T.; Hutton, E.; Moore, Thomas; Gaswirth, Stephanie
2014-01-01
The Triassic-Jurassic Otuk Formation is a potentially important source rock in allochthonous structural positions in the northern foothills of the Brooks Range in the North Slope of Alaska. This study focuses on three localities of the Upper Triassic (Norian) limestone member, which form a present-day, 110-km-long, east-west transect in the central Brooks Range. All three sections are within the structurally lowest Endicott Mountain allochthon and are interpreted to have been deposited along a marine outer shelf with a ramp geometry.The uppermost limestone member of the Otuk was chosen for this study in order to better understand lateral and vertical variability within carbonate source rocks, to aid prediction of organic richness, and ultimately, to evaluate the potential for these units to act as continuous (or unconventional) reservoirs. At each locality, 1 to 4 m sections of the limestone member were measured and sampled in detail to capture fine-scale features. Hand sample and thin section descriptions reveal four major microfacies in the study area, and one diagenetically recrystallized microfacies. Microfacies 1 and 2 are interpreted to represent redeposition of material by downslope transport, whereas microfacies 3 and 4 have high total organic carbon (TOC) values and are classified as primary depositional organofacies. Microfacies 3 is interpreted to have been deposited under primarily high productivity conditions, with high concentrations of radiolarian tests. Microfacies 4 was deposited under the lowest relative-oxygen conditions, but abundant thin bivalve shells indicate that the sediment-water interface was probably not anoxic.The Otuk Formation is interpreted to have been deposited outboard of a southwest-facing ramp margin, with the location of the three limestone outcrops likely in relatively close proximity during deposition. All three sections have evidence of transported material, implying that the Triassic Alaskan Basin was not a low-energy, deep-water setting, but rather a dynamic system with intermittent, yet significant, downslope flow. Upwelling played an important role in the small-scale vertical variability in microfacies. The zone of upwelling and resultant oxygen-minimum zone may have migrated across the ramp during fourth- or fifth-order sea-level changes.
NASA Astrophysics Data System (ADS)
Chang, S.; Knight, K. B.; Renne, P. R.
2005-12-01
Magnetostratigraphy is potentially a powerful tool for deciphering the high resolution chronostratigraphy of events across the Permo-Triassic boundary, but few well-dated polarity reversals exist to serve as calibration. Red beds of the Dewey Lake Formation (DLF) of West Texas span three reversed polarity intervals (Steiner, 2001) in a section of the DLF at Caprock Canyons State Park, where two tuffs occur. Sanidine separated from these tuffs was analyzed by 40Ar/39Ar methods. Single crystal laser fusion 40Ar/39Ar analyses of 40 grains from the upper tuff yield a weighted mean age of 249.9 ± 2.4 Ma (2σ errors here and throughout). The clustering of single crystal data provides some assurance against xenocrystic contamination. Two age spectra from multigrain sanidine separates from the lower tuff yielded integrated ages of 248.9 ± 2.8 Ma and 249.7 ± 2.8 Ma and consistent plateau ages of 249.2 ± 2.4 Ma and 249.6 ± 2.4 Ma. Two age spectra from multigrain upper tuff sanidines lack strict plateaus but with overall flat age spectra, with integrated ages of 249.7 ± 2.8 Ma and 250.3 ± 2.8 Ma and plateau-like segments (>70% of 39Ar released) with ages of 249.9 ± 2.6 Ma and 249.9 ± 2.6 Ma, respectively. These results, compared with 40Ar/39Ar data (using the same FCs = 28.02 Ma standard calibration) from the GSSP section at Meishan, China, suggest that the Permo-Triassic boundary (249.8 Ma; recalculated from Renne et al., 1995) definitely occurs within the lower Dewey Lake Formation. The two tuffs, which bracket a normal to reverse geomagnetic polarity transition polarity (Steiner, 2001), have indistinguishable ages. The age of this Permo-Triassic polarity transition is thus best represented by the weighed average of their ages, ca. 249.7 Ma (based on accepted calibrations of the 40Ar/39Ar system). Further such constraints will facilitate high-resolution comparison of terrestrial and marine records across this critical time interval.
NASA Astrophysics Data System (ADS)
Hara, Hidetoshi; Kunii, Miyuki; Hisada, Ken-ichiro; Ueno, Katsumi; Kamata, Yoshihito; Srichan, Weerapan; Charusiri, Punya; Charoentitirat, Thasinee; Watarai, Megumi; Adachi, Yoshiko; Kurihara, Toshiyuki
2012-11-01
The provenance, source rock compositions, and sediment supply system for a convergence zone of the Paleo-Tethys were reconstructed based on the petrography and geochemistry of clastic rocks of the Inthanon Zone, northern Thailand. The clastic rocks are classified into two types based on field and microscopic observations, the modal composition of sandstone, and mineral compositions: (1) lithic sandstone and shale within mélange in a Permo-Triassic accretionary complex; and (2) Carboniferous quartzose sandstone and mudstone within the Sibumasu Block. Geochemical data indicate that the clastic rocks of the mélange were derived from continental island arc and continental margin settings, which correspond to felsic volcanic rocks within the Sukhothai Zone and quartz-rich fragments within the Indochina Block, respectively. The results of a mixing model indicate the source rocks were approximately 35% volcanic rocks of the Sukhothai Zone and 65% craton sandstone and upper continental crust of the Indochina Block. In contrast, Carboniferous quartzose sedimentary rocks within the Sibumasu Block originated from a continental margin, without a contribution from volcanic rocks. In terms of Paleo-Tethys subduction, a continental island arc in the Sukhothai Zone evolved in tandem with Late Permian-Triassic forearc basins and volcanic activity during the Middle-early Late Triassic. The accretionary complex formed contemporaneously with the evolution of continental island arc during the Permo-Triassic, supplied with sediment from the Sukhothai Zone and the Indochina Block.
Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen
2015-01-01
Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized ‘four-winged’ gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged ‘peltopleurid’ Peripeltopleurus, from the Middle Triassic (Ladinian, 235–242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the ‘cranial specialization–asymmetrical caudal fin–enlarged paired fins–scale reduction’ sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. PMID:25568155
Hoffman, Devin K; Heckert, Andrew B; Zanno, Lindsay E
2018-01-01
Aetosauria is a clade of heavily armored, quadrupedal omnivorous to herbivorous archosaurs known from the Late Triassic across what was the supercontinent of Pangea. Their abundance in many deposits relative to the paucity of other Triassic herbivores indicates that they were key components of Late Triassic ecosystems. However, their evolutionary relationships remain contentious due, in large part, to their extensive dermal armor, which often obstructs observation of internal skeletal anatomy and limits access to potentially informative characters. In an attempt to address this problem we reanalyzed the holotype of a recently described species of Coahomasuchus , C. chathamensis , from the Sanford sub-basin of North Carolina using computed tomography (CT). CT scans of the holotype specimen clarify preservation of the skeleton, revealing several articulated vertebrae and ribs, an isolated vertebra, left ulna, left scapula, and the right humerus, though none of the material resulted in updated phylogenetic scorings. Reexamination of aetosaur materials from the holotype locality also indicates that several isolated osteoderms and elements of the appendicular skeleton are newly referable. Based on these results, we update the Coahomasuchus chathamensis hypodigm and conduct a revised phylogenetic analysis with improved character scorings for Coahomasuchus and several other aetosaurs. Our study recovers Coahomasuchus in a polytomy with Aetosaurus and the Typothoracinae, in contrast with a recent analysis that recovered Coahomasuchus as a wild-card taxon.
Heckert, Andrew B.; Zanno, Lindsay E.
2018-01-01
Aetosauria is a clade of heavily armored, quadrupedal omnivorous to herbivorous archosaurs known from the Late Triassic across what was the supercontinent of Pangea. Their abundance in many deposits relative to the paucity of other Triassic herbivores indicates that they were key components of Late Triassic ecosystems. However, their evolutionary relationships remain contentious due, in large part, to their extensive dermal armor, which often obstructs observation of internal skeletal anatomy and limits access to potentially informative characters. In an attempt to address this problem we reanalyzed the holotype of a recently described species of Coahomasuchus, C. chathamensis, from the Sanford sub-basin of North Carolina using computed tomography (CT). CT scans of the holotype specimen clarify preservation of the skeleton, revealing several articulated vertebrae and ribs, an isolated vertebra, left ulna, left scapula, and the right humerus, though none of the material resulted in updated phylogenetic scorings. Reexamination of aetosaur materials from the holotype locality also indicates that several isolated osteoderms and elements of the appendicular skeleton are newly referable. Based on these results, we update the Coahomasuchus chathamensis hypodigm and conduct a revised phylogenetic analysis with improved character scorings for Coahomasuchus and several other aetosaurs. Our study recovers Coahomasuchus in a polytomy with Aetosaurus and the Typothoracinae, in contrast with a recent analysis that recovered Coahomasuchus as a wild-card taxon. PMID:29456892
Very low-grade metamorphic rocks in some representative districts in Tibet
NASA Astrophysics Data System (ADS)
Bi, X.; Mo, X.
2011-12-01
*Response author: Bi,Xianmei,bixm10@sina.com Very low grade metamorphic rocks are widely distributed in Tibet, providing an insight into deformation and metamorphism during the evolution of the Tibetan Plateau. Eighty five Samples of clay mineral-bearing rocks has been collected from various strata including D, P1, T1, T2, T3, J1, J3, K1, K2 and N strata in the Qiangtang terrane, the Gangdese, the Yarlung Zangbo suture and the Tethyan Himalaya. Analyses and refining of clay minerals in samples have been conducted in the Laboratory of X-ray Diffraction, Institute of Petroleum Exploration. Index of illite crystallinity (Ic) along with average thickness of crystal layers of illite, reflectivity of vitrinite and of clay mineral association have been employed as indicators of degree of very low-grade metamorphism. The scheme of classification[1,2] of very-low grade metamorphism based on clay mineral indexes ( mainly index of illite crystallinity) has been used in the present work, that is, low metamorphism (Ic<0.25), higher very-low grade metamorphism (Ic = 0.25-0.30), lower very-low grade metamorphism (Ic = 0.30-0.42) and diagenesis (Ic>0.42). The analytical results show interesting information. In the Qiangtang terrane, clay minerals in the Jurassic strata have indexes of illite crystalinity (Ic) 0.47-0.70, indicating higher diagenesis and in favor of petroleum-generation. However, index of illite crystalinity (Ic) for the Devonian is 0.23, indicating low metamorphism. Indexes of illite crystalinity (Ic) for the J-K strata in middle Gangdese are mostly 0.37-0.25 (very-low grade metamorphism) and a few 0.78-0.48 (diagenesis). Indexes of illite crystalinity (Ic) for the C-P strata in eastern Gangdese are mostly 0.25-0.42 (very-low grade metamorphism) and a few 0.20-0.25 (low metamorphism). The Mesozoic and Cenozoic magmatism and related mineralization are very strong in the Gangdese, which may affect in some extent on indexes of illite crystalinity. In Tethyan Himalaya, clay mineral-bearing rocks from P1, T1, T2, T3, J1 and J3 strata underwent low-very low grade metamorphism, having indexes of illite crystalinity (Ic) 0.12 for P1 stratum, 0.21 for T1 stratum and 0.22-0.33 for the strata from T2 to J3, whereas K1 and N strata underwent diagenesis, having Ic = 0.52 and 1.61, respectively. Metamorphic degree generally reduced from older strata to younger strata according to clay mineral indexes. The rocks affected by magmatism or by major faulting, however, were out of the general trend and increased their metamorphic degree by 0.1-0.3 units reduction of index of illite crystallinity. Rocks within Yarlung Zangbo suture show higher metamorphic degree than those in Tethyan Himalaya. For instance, while the late Triassic has 0.19 of index of illite crystallinity in the former (the Yarlung Zangbo suture), 0.27-0.33 of indexes of illite crystallinity in the latter. The early Cretaceous has 0.28 of index of illite crystallinity in the former, whereas 0.52 in the latter. However, the late Cretaceous Xigaze Group formed in a fore-arc environment was weakly metamorphosed, having Ic 0.7-1.6 and all falling into diagenesis field.
NASA Astrophysics Data System (ADS)
Irmis, R. B.; Olsen, P. E.; Parker, W.; Rasmussen, C.; Mundil, R.; Whiteside, J. H.
2017-12-01
The Chinle Formation of southwestern North America is a key paleontological archive of low paleolatitude non-marine ecosystems that existed during the Late Triassic hothouse world. These strata were deposited at 5-15°N latitude, and preserve extensive plant, invertebrate, and vertebrate fossil assemblages, including early dinosaurs; these organisms lived in an unpredictably fluctuating semi-arid to arid environment with very high atmospheric pCO2. Despite this well-studied fossil record, a full understanding of these ecosystems and their integration with other fossil assemblages globally has been hindered by a poor understanding of the Chinle Formation's age, duration, and sedimentation rates. Recently, the CPCP recovered a 520m continuous core through this formation from the northern portion of Petrified Forest National Park (PEFO) in northern Arizona, USA. This core has provided a plethora of new radioisotopic and magnetostratigraphic data from fresh, unweathered samples in unambiguous stratigraphic superposition. These constraints confirm that virtually all fossil-bearing horizons in Chinle outcrops in the vicinity of PEFO are Norian in age. Furthermore, they indicate that the palynomorph zone II and Adamanian vertebrate biozone are at least six million years long, whereas the overlying palynomorph zone III and Revueltian vertebrate biozone persisted for at least five million years, with the boundary between 216-214 Ma. This confirms that the rich late Adamanian-early Revueltian vertebrate fossil assemblages, where dinosaurs are exclusively rare, small-bodied carnivorous theropods, are contemporaneous with higher latitude assemblages in Europe, South America, and Africa where large-bodied herbivorous sauropodomorph dinosaurs are common. The age constraints also confirm that several palynomorph biostratigraphic ranges in the Chinle Formation differ from those of the same taxa in eastern North American (Newark Supergroup) and Europe. These data are consistent with the hypothesis that latitudinal differences in climate sorted the biota found across Pangaea during the Late Triassic Period.
NASA Astrophysics Data System (ADS)
Warsitzka, Michael; Kley, Jonas; Jähne-Klingberg, Fabian; Kukowski, Nina
2017-01-01
The formation of salt structures exerted a major influence on the evolution of subsidence and sedimentation patterns in the Glückstadt Graben, which is part of the Central European Basin System and comprises a post-Permian sediment thickness of up to 11 km. Driven by regional tectonics and differential loading, large salt diapirs, salt walls and salt pillows developed. The resulting salt flow significantly influenced sediment distribution in the peripheral sinks adjacent to the salt structures and overprinted the regional subsidence patterns. In this study, we investigate the geometric and temporal evolution of salt structures and subsidence patterns in the central Glückstadt Graben. Along a key geological cross section, the post-Permian strata were sequentially decompacted and restored in order to reconstruct the subsidence history of minibasins between the salt structures. The structural restoration reveals that subsidence of peripheral sinks and salt structure growth were initiated in Early to Middle Triassic time. From the Late Triassic to the Middle Jurassic, salt movement and salt structure growth never ceased, but were faster during periods of crustal extension. Following a phase from Late Jurassic to the end of the early Late Cretaceous, in which minor salt flow occurred, salt movement was renewed, particularly in the marginal parts of the Glückstadt Graben. Subsidence rates and tectonic subsidence derived from backstripping of 1D profiles reveal that especially the Early Triassic and Middle Keuper times were periods of regional extension. Three specific types of salt structures and adjacent peripheral sinks could be identified: (1) Graben centre salt walls possessing deep secondary peripheral sinks on the sides facing away from the basin centre, (2) platform salt walls, whose main peripheral sinks switched multiple times from one side of the salt wall to the other, and (3) Graben edge pillows, which show only one peripheral sink facing the basin centre.
Temperature and Oxygenation of the Shallow Tethys During the End-Triassic Extinction Event.
NASA Astrophysics Data System (ADS)
Petryshyn, V.; Lalonde, S.; Greene, S. E.; Sansjofre, P.; Ibarra, Y.; Corsetti, F. A.; Bottjer, D. J.; Tripati, A.
2016-12-01
The end-Triassic mass extinction is one of the most severe biotic crises in Earth's history. It has been hypothesized that the extinction was triggered by the rapid emplacement of the Central Atlantic Magmatic Province (CAMP), a large igneous province related to the initial rifting Pangaea 200 million years ago. A massive amount of CO2 and other volatiles were released into the atmosphere due to CAMP volcanism, causing global climate changes and mass extinction. In the uppermost Triassic strata of the Lilstock Formation, southwest United Kingdom, the extinction horizon is well-preserved and marked by a notable deposit of stromatolitic carbonate known as the Cotham Marble (CM). The CM was deposited in the shallow Tethys sea between the paleocontinents of Laurasia and Gondwana, though the specific paleoenvironment (e.g. open ocean vs. restricted basin/lagoon) is debated. The CM alternates between two facies: a fine continuous laminated (L) facies, and dendritic (D) structures that are passively infilled. Clumped isotope paleothermometry of the microbialites reveals a distinct difference between L and D microfacies, with L portions forming at 30.1 ±4.5°C, and D portions forming at 15.2 ±2.1°C, which may suggest restriction during the growth of L facies. High-precision trace element data from weak leaching of carbonate reveal rare earth element (REE) spectra broadly similar to modern seawater, with positive La anomalies, supra-chondritic Y/Ho ratios, and mild light-to-heavy REE enrichment. Y/Ho ratios are similar between the two microfacies, suggesting that changes in basinal restriction may not have actually been an important factor. Unlike modern oxic seawater, the CM displays true positive Ce anomalies that are pronounced in L microfacies and weak-to-absent in D microfacies. The REE data point to variable ambient redox conditions characterized by water column anoxia during growth of D facies and perhaps even stratification during the growth of the L facies.
NASA Astrophysics Data System (ADS)
Ritterbush, K. A.; Loyd, S. J.; Corsetti, F. A.; Bottjer, D. J.; Berelson, W.
2015-12-01
Tectonic, climate, and biotic changes across the Triassic-Jurassic transition appear to have resulted in a "carbonate gap" in the rock record of many shallow marine environments. Ecological state changes documented in near-shore settings in both Tethys and Panthassa show an earliest Jurassic switch to sponge-dominated biosiliceous sedimentation regimes. The Sunrise Formation exposed in the Gabbs Valley Range of Nevada (USA) records a peculiar juxtaposition of Hettangian carbonate-rich strata that contain demosponge spicules as the primary bioclast. It is unclear 1) why biocalcifiers were not recorded in higher abundance in this near-shore back-arc basin setting; 2) why carbonates formed following a biosiliceous regime; and 3) what the lithology indicates about post-extinction marine geochemical dynamics. Detailed sedimentological, paleontological, and geochemical analyses were applied to a 20-m thick sequence of limestone and chert in the Muller Canyon area, which is the Auxiliary Stratotype for the Triassic/Jurassic boundary. Concretion anatomy, bioclast microfacies, and oxygen and carbon isotopic signatures all indicate the Hettangian limestones are chiefly diagenetic concretions that all formed very shallowly, some essentially at the sediment-water interface. We infer that local bottom waters and/or pore waters were supersaturated with respect to calcium carbonate and that this contributed to widespread concretion sedimentation independent of biomineralization. Ecological incumbency of the demosponge meadows may have been supported by concurrent augmentation of marine silica concentration and this apparently proved inhospitable to re-colonization of benthic biocalcifying macrofauna. Together the biotic and lithologic consequences of the extinction represent million-year scale ecological restructuring and highlight early diagenetic precipitation as a major sink in long-term regional carbonate cycling. Perhaps the widespread 'carbonate gap' is actually a gap in calcifying macrofauna and the ocean managed to dump alkalinity as diagenetic carbonate.
NASA Astrophysics Data System (ADS)
Tanfous Amri, Dorra; Bédir, Mourad; Soussi, Mohamed; Azaiez, Hajer; Zitouni, Lahoussine; Hédi Inoubli, M.; Ben Boubaker, Kamel
2005-05-01
Seismic and sequence stratigraphy analyses, petroleum-well control and surface data studies of the Majoura-El Hfay region in the Central Atlas of Tunisia had led to identify and calibrate Jurassic seismic horizons. Seismic stratigraphic sections, seismic tectonics analyses, isochron and isopach mapping of Jurassic sequences show a differentiated structuring of platform and depocentre blocks limited by deep-seated NE-SW, north-south east-west and NW-SE faults intruded by Upper Triassic salt. The early salt migration seems to have started by the platform fracturing during the Lower Liassic rifting event. These movements are fossilized by thickness variations of Jurassic horizons, aggrading and retrograding onlap and toplap structures between subsiding rim-syncline gutters and high platform flanks intruded by salt pillows and domes. The salt migration is also attested by Middle and Upper Jurassic space depocentre migrations. Around the Majoura-El Hfay study blocks bounded by master faults, Triassic salt have pierced the Cretaceous and Tertiary sedimentary cover in a salt diapir extrusion and salt wall structures. To cite this article: D. Tanfous Amri et al., C. R. Geoscience 337 (2005).
Age and provenance of Triassic to Cenozoic sediments of West and Central Sarawak, Malaysia
NASA Astrophysics Data System (ADS)
Breitfeld, H. Tim; Galin, Thomson; Hall, Robert
2015-04-01
Sarawak is located on the northern edge of Sundaland in NW Borneo. West and Central Sarawak include parts of the Kuching and Sibu Zones. These contain remnants of several sedimentary basins with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic (Sadong Formation and its deep marine equivalent Kuching Formation). They were sourced by a Triassic (Carnian to Norian) volcanic arc and reworked Paleoproterozoic detritus derived from Cathaysialand. The Upper Jurassic to Cretaceous Pedawan Formation is interpreted as forearc basin fill with distinctive zircon populations indicating subduction beneath present-day West Sarawak which initiated in the Late Jurassic. Subsequent subduction until the early Late Cretaceous formed the Schwaner Mountains magmatic arc. After collision of SW Borneo and other microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension followed and were responsible for basin development on land in West Sarawak from the latest Cretaceous onwards, probably in a pull-apart setting. The first episode is associated with sediments of the Kayan Group, deposited in the Latest Cretaceous (Maastrichtian) to Eocene, and the second episode with Upper Eocene sediments of the Ketungau Basin. Zircon ages indicate volcanic activity throughout the Early Cenozoic in NW Borneo, and inherited zircon ages indicate reworking of Triassic and Cretaceous rocks. A large deep marine basin, the Rajang Basin, was north of the Lupar Line Fault in Central Sarawak (Sibu Zone) from the Late Cretaceous to the Late Eocene. Zircons from sediments of the Rajang Basin indicate they have similar ages and provenance to contemporaneous terrestrial sediments of the Kayan Group and Ketungau Basin to the south, suggesting a narrow steep continental Sundaland margin at the position of the Lupar Line, and a large-scale sedimentary connection between the terrestrial and deep marine basins in the Late Cretaceous to Late Eocene. A recent reconstruction for the proto-South China Sea proposed an isolated so-called Semitau terrane colliding with SW Borneo and Sundaland in the Late Eocene. Our data show that the area of the Kuching and Sibu Zones were connected with SW Borneo and Sundaland from the Cretaceous onwards. The Cretaceous and Cenozoic sedimentary basins were sourced by alternations of Schwaner Mountains and Malay Tin Belt rocks. Our new age and provenance data cannot be explained by an isolated Semitau terrane and a Late Eocene collision.
Pressure changes and their effects on the Cerro Prieto geothermal field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bermejo M, F.J.; Navarro O, F.X.; Esquer P, C.A.
1981-01-01
Continuous extraction of the water-steam mixture at the field has been increasing to fulfill the steam requirements of the power plant. As a result, pressure declines have been observed in the producing strata in all of the wells, as well as in the geothermal reservoir as a whole. Anomalous behavior that has been observed in the wells' hydraulic columns in most cases is due to the interconnection of the various strata penetrated by the well. When this occurs, unbalanced hydraulic pressures cause the movement of fluids between the strata. As an example of this hydraulic imbalance causing the flow ofmore » fluids from an upper to a lower zone, well Nuevo Leon 1 where this effect occurs between regions 600 m apart was chosen.« less
NASA Astrophysics Data System (ADS)
Márton, Emö; Madzin, Jozef; Bučová, Jana; Grabowski, Jacek; Plašienka, Dušan; Aubrecht, Roman
2017-04-01
The Hronic (Choč) units form the highest cover nappe system of the Central Western Carpathians which was emplaced over the Fatric (Krížna) nappe system during the Late Cretaceous. The Permian (red beds and lava flows) and Triassic (sediments) rocks, the main targets of our study, were affected only by diagenetic or very low-grade, burial-related recrystallization and were tilted and transported together. The pre-late Cretaceous sequence is overlapped by Paleogene mainly flysch sequences. Three laboratories (Bratislava, Budapest and Warsaw) were involved in standard paleomagnetic processing and AMS measurements of the samples, while Curie-points were determined in Budapest. The site/locality mean paleomagnetic directions obtained were significantly different from the local direction of the present Earth magnetic field, indicating the long term stability of the paleomagnetic signal. The magnetic fabrics varied from un-oriented to dominantly schistose with well-defined lineations. The latter were normally subhorizontal, although subvertical maxima also occurred among the Triassic sediments. Shallow inclinations, after tilt corrections, suggest near-equatorial position for most of the Permian and Lower Triassic, while around 20°N for the Middle-Upper Triassic localities. The paleomagnetic declinations are interpreted in terms of CW tectonic rotations, which are normally larger for the Permian than for the Triassic samples, although there are some differences within the same age groups. This may be attributed to differential movements during nappe emplacement or subsequent tectonic disturbances. For two localities from the Paleogene cover sequence of the Hronic units, close to the main sampling area (Low Tatra Mts) of the present study documented fairly large CCW rotations, thus obtained additional evidence for the general CCW rotation of the Central Western Carpathians during the Cenozoic. Thus, we conclude that the Cenozoic CCW rotation was pre-dated by large CW rotations, probably connected to the nappe emplacement. In addition, a pre-Jurassic moderate CW rotation is inferred from the difference in declinations between Triassic and Permian palaeomagnetic declinations. Acknowledgement: This work was financially supported by the Slovak Research and Development Agency under the contract No. APVV-0212-12 and by the Hungarian Scientific Research Fund OTKA K105245.
NASA Astrophysics Data System (ADS)
Ben Chelbi, Mohamed; Melki, Fetheddine; Zargouni, Fouad
2006-05-01
30 km southwest of Tunis, two thin flaky 'Triassic' intrusions underline the two flanks of the Atlasic anticline of Bir Afou. These evaporites are interbedded within the Clansayesian shales, and are under and overlain by glauconitic conglomeratic contacts. The 'Triassic' flakes, topic of our study, are sourced from the Bir Afou Triassic mass after a rapid pouring out during Late Aptian extensional tectonics. This structure corresponds, for us, to a 'salt glacier', similar to that one described at Ben Gasseur by Vila and al. [J.M. Vila, M. Ben Youssef, M. Chikhaoui, M. Ghanmi, Bull. Soc. géol. France 167 (1996) 235-246], which was subsequently folded during Lower Eocene times. Middle and Upper Eocene transgressive formations unconformably deposited on top of the Aptian anticlinal hinge. The major Late Miocene compressive phase is responsible for the present structures and that are superimposed onto the pre-existing 'salt glacier'. This salifereous system extends the 'salt glacier' domain towards the eastern part of the Tunisian Atlas. To cite this article: M. Ben Chelbi et al., C. R. Geoscience 338 (2006).
Wildfires in the Triassic of Gondwana Paraná Basin
NASA Astrophysics Data System (ADS)
Cardoso, Daiane dos Santos; Mizusaki, Ana Maria Pimentel; Guerra-Sommer, Margot; Menegat, Rualdo; Barili, Rosalia; Jasper, André; Uhl, Dieter
2018-03-01
This first report of wildfires from an association of facies containing a Dicroidium flora is made from the Upper Triassic (Carnian age) in the southern part of the Paraná Basin (Santa Maria Supersequence, Rio Grande do Sul state). The geographical extension of the Dicroidium plant assemblage is augmented in Brazilian Gondwana. Field work followed by organic petrography (inertinite reflectance), scanning electron microscopy (SEM) and field emission gun scanning electron microscopy (FEG-SEM), revealed charcoal presence in a section located in Pinheiro Machado town. Macroscopic charcoal is represented by three-dimensional wood specimens assigned to gymnosperms, with coniferous affinities and by flattened, thin, elongated remains corresponding to rachises of Dicroidium. Average reflectance values between 2.80 and 6.61 %Ro measured in the macroscopic charcoals evidence high temperature burning processes, involving fires both in the crown and in the crown-surface interface. The occurrence of charcoal in distinct and subsequent facies of the studied section indicates wildfires, which affected hinterland, meso-xerophyllous coniferous assemblages and marginal hygro-mesophyllous Dicroidium-like assemblages. The integration of results from the charcoal analyses is consistent with an atmospheric oxygen content higher than 18.5% and fuel enough to generate wildfires during the Triassic of Gondwana.
The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record.
Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D
2015-01-01
We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian-Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.
The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record
Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D.
2015-01-01
We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record. PMID:26083612
NASA Astrophysics Data System (ADS)
Geissman, J. W.; McIntosh, J.; Buhedma, H. M. A.
2017-12-01
Despite the fact that the Triassic Period (ca. 251.9-201.3 Ma) is bound by two of Earth's largest mass extinctions, experienced giant bolide impacts and eruption of three large igneous provinces, and witnessed evolution of the main components of modern tetrapod communities, the time interval has sparse geochronologic calibration. The US NSF- and ICDP-funded coring of Phase 1 of the CPCP was completed in 2013, with the recovery of two major cores (6.35 cm diameter: 1A, 518m length and 2B, 253m; 31km apart) from the Petrified Forest National Park spanning the Chinle and Moenkopi fms. Core 1A has been fully sampled, with specimens obtained either by drilling or by extraction of core fragments and packing in ceramic boxes. Specimens are subjected to progressive thermal demagnetization or a combination of alternating field (AF) followed by thermal treatment. In several cases, specimens were extracted from each core segment to test for internal consistency. Chinle hematitic mudstones and siltstones have NRM intensities between 130 to 0.5 mA/m, with bulk susceptibilities from 2 x 10-2 to 5 x 10-5 SI units. More indurated hematitic siltstones/ medium sandstones of the Moenkopi Fm have NRM intensities and bulk susceptibilities that are far less variable (NRM: 9.0 to 1.2 mA/m, MS: 3.0 X 10-4 and 0.5 x 10-5 SI vol). Thermal demagnetization typically isolates magnetizations of N declination and shallow inclination (interpreted as normal polarity) and antipodes (reverse) (image), a polarity stratigraphy is being compiled for much of the section. Response is typically more interpretable for very hematitic Chinle mudstone sections and most Moenkopi rocks. Coarser grained, less hematitic Chinle strata rarely yield interpretable results, likely due to coarse-grained detrital magnetite, and it is likely that these intervals will not yield robust polarity information. Some core segments yield well-resolved magnetizations that are inconsistent with a Triassic field and we suspect occasional core reorientation inaccuracies. For core segments yielding magnetizations resembling a Triassic magnetic field, anisotropy of magnetic susceptibility data show a well-developed depositional fabric. IRM acquisition and backfield demagnetization data demonstrate both hematite and magnetite as magnetic phases.
NASA Astrophysics Data System (ADS)
Barber, D. E.; Stockli, D. F.; Koshnaw, R. I.; Horton, B. K.; Tamar-Agha, M. Y.; Kendall, J. J.
2014-12-01
The NW Zagros orogen is the result of the multistage collisional history associated with Late Cretaceous-Cenozoic convergence of the Arabian and Eurasian continents and final closure of Neotethys. Siliciclastic strata preserved within a ~400 km segment of the NW Zagros fold-thrust belt and foreland basin in the Iraqi Kurdistan Region (IKR) provide a widespread record of exhumation and sedimentation. As a means of assessing NW Zagros foreland basin evolution and chronostratigraphy, we present coupled detrital zircon (DZ) U-Pb and (U-Th)/He geo-thermochronometric data of Upper Cretaceous to Pliocene siliciclastic strata from the Duhok, Erbil, and Suleimaniyah provinces of IKR. LA-ICP-MS U-Pb age analyses reveal that the foreland basin fill in IKR in general was dominantly derived from Pan-African/Arabian-Nubian, Peri-Gondwandan, Eurasian, and Cretaceous volcanic arc terrenes. However, the provenance of these strata varies systematically along strike and through time, with an overall increase in complexity upsection. DZ age distribution of Paleocene-Eocene strata is dominated by a ~95 Ma grain age population, likely sourced from the Late Cretaceous Hassanbag-Bitlis volcanic arc complex along the northern margin of Arabia. In contrast, DZ U-Pb age distributions of Neogene strata show a major contribution derived from various Eurasian (e.g., Iranian, Tauride, Pontide; ~45, 150, 300 Ma) and Pan-African (~550, 950 Ma) sources. The introduction of Eurasian DZ ages at the Paleogene-Neogene transition likely records the onset of Arabian-Eurasian collision. Along strike to the southeast, the DZ U-Pb spectra of Neogene strata show a decreased percentage of Pan-African, Peri-Gondwandan, Tauride, and Ordovician ages, coupled with a dramatic increase in 40-50 Ma DZ ages that correspond to Urumieh-Dokhtar magmatic rocks in Iran. Combined with paleocurrent data, this suggests that Neogene sediments were transported longitudinally southeastward through an unbroken foreland basin system and progressively diluted downstream by detritus shed from the Iranian Plateau. Combined (U-Th)/He dating of DZ grains derived from the Hassanbag-Bitlis complex documents a major tectonothermal event at ~75 Ma, corresponding to the timing of proto-Zagros uplift and initial basin development in IKR.
Cenozoic stratigraphy of the Sahara, Northern Africa
Swezey, Christopher S.
2009-01-01
This paper presents an overview of the Cenozoic stratigraphic record in the Sahara, and shows that the strata display some remarkably similar characteristics across much of the region. In fact, some lithologies of certain ages are exceptionally widespread and persistent, and many of the changes from one lithology to another appear to have been relatively synchronous across the Sahara. The general stratigraphic succession is that of a transition from early Cenozoic carbonate strata to late Cenozoic siliciclastic strata. This transition in lithology coincides with a long-term eustatic fall in sea level since the middle Cretaceous and with a global climate transition from a Late Cretaceous–Early Eocene “warm mode” to a Late Eocene–Quaternary “cool mode”. Much of the shorter-term stratigraphic variability in the Sahara (and even the regional unconformities) also can be correlated with specific changes in sea level, climate, and tectonic activity during the Cenozoic. Specifically, Paleocene and Eocene carbonate strata and phosphate are suggestive of a warm and humid climate, whereas latest Eocene evaporitic strata (and an end-Eocene regional unconformity) are correlated with a eustatic fall in sea level, the build-up of ice in Antarctica, and the appearance of relatively arid climates in the Sahara. The absence of Oligocene strata throughout much of the Sahara is attributed to the effects of generally low eustatic sea level during the Oligocene and tectonic uplift in certain areas during the Late Eocene and Oligocene. Miocene sandstone and conglomerate are attributed to the effects of continued tectonic uplift around the Sahara, generally low eustatic sea level, and enough rainfall to support the development of extensive fluvial systems. Middle–Upper Miocene carbonate strata accumulated in northern Libya in response to a eustatic rise in sea level, whereas Upper Miocene mudstone accumulated along the south side of the Atlas Mountains because uplift of the mountains blocked fluvial access to the Mediterranean Sea. Uppermost Miocene evaporites (and an end-Miocene regional unconformity) in the northern Sahara are correlated with the Messinian desiccation of the Mediterranean Sea. Abundant and widespread Pliocene paleosols are attributed to the onset of relatively arid climate conditions and (or) greater variability of climate conditions, and the appearance of persistent and widespread eolian sediments in the Sahara is coincident with the major glaciation in the northern hemisphere during the Pliocene.
Merewether, E.A.; Cobban, W.A.; Obradovich, J.D.
2011-01-01
Lithological and paleontological studies of outcrops of Upper Cretaceous formations were conducted at 12 localities in eastern Wyoming, central Colorado, and northeastern New Mexico. The sequence extends upward from the top of the Mowry Shale, or age-equivalent rocks, through the Graneros Shale, Greenhorn Limestone, Carlile Shale, Niobrara Formation, Pierre Shale, and Fox Hills Sandstone, or age-equivalent formations, to the top of the Laramie Formation, or laterally equivalent formations. The strata are mainly siliciclastic and calcareous, with thicknesses ranging from about 3,300 ft in northeastern New Mexico to as much as 13,500 ft in eastern Wyoming. Deposition was mainly in marine environments and molluscan fossils of Cenomanian through Maastrichtian ages are common. Radiometric ages were determined from beds of bentonite that are associated with fossil zones. The Upper Cretaceous formations at the 12 study localities are herein divided into three informal time-stratigraphic units based on fossil content and contact relations with adjacent strata. The basal unit in most places extends from the base of the Graneros to the top of the Niobrara, generally to the horizon of the fossil Scaphites hippocrepis, and spans a period of about 14 million years. The middle unit generally extends from the top of the Niobrara to the approximate middle of the Pierre, the horizon of the fossil Baculites gregoryensis, and represents a period of about 5 million years. The upper unit includes strata between the middle of the Pierre and the top of the Upper Cretaceous Series, which is the top of the Laramie Formation or of laterally equivalent formations; it represents a period of deposition of as much as 11 million years. Comparisons of the collections of fossils from each outcrop with the complete sequence of Upper Cretaceous index fossils can indicate disconformable contacts and lacunae. Widespread disconformities have been found within the Carlile Shale and between the Carlile Shale and the Niobrara Formation. Less extensive disconformities are within the Greenhorn Formation, the Niobrara Formation, and the Pierre Shale.
Geologic framework of lower Cook Inlet, Alaska
Fisher, M.A.; Magoon, L.B.
1978-01-01
Three seismic reflectors are present throughout the lower Cook Inlet basin and can be correlated with onshore geologic features. The reflections come from unconformities at the base of the Tertiary sequence, at the base of Upper Cretaceous rocks, and near the base of Upper Jurassic strata. A contour map of the deepest horizon shows that Mesozoic rocks are formed into a northeast-trending syncline. Along the southeast flank of the basin, the northwest-dipping Mesozoic rocks are truncated at the base of Tertiary rocks. The Augustine-Seldovia arch trends across the basin axis between Augustine Island and Seldovia. Tertiary rocks thin onto the arch from the north and south. Numerous anticlines, smaller in structural relief and breadth than the Augustine-Seldovia arch, trend northeast parallel with the basin, and intersect the arch at oblique angles. The stratigraphic record shows four cycles of sedimentation and tectonism that are bounded by three regional unconformities in lower Cook Inlet and by four thrust faults and the modern Benioff zone in flysch rocks of the Kenai Peninsula and the Gulf of Alaska. The four cycles of sedimentation are, from oldest to youngest, the early Mesozoic, late Mesozoic, early Cenozoic, and late Cenozoic. Data on organic geochemistry of the rocks from one well suggest that Middle Jurassic strata may be a source of hydrocarbons. Seismic data show that structural traps are formed by northeast-trending anticlines and by structures formed at the intersections of these anticlines with the transbasin arch. Stratigraphic traps may be formed beneath the unconformity at the base of Tertiary strata and beneath unconformities within Mesozoic strata.
Stratigraphy of lower to middle Paleozoic rocks of northern Nevada and the Antler orogeny
Ketner, Keith B.
2013-01-01
Commonly accepted concepts concerning the lower Paleozoic stratigraphy of northern Nevada are based on the assumption that the deep-water aspects of Ordovician to Devonian siliceous strata are due to their origin in a distant oceanic environment, and their presence where we find them is due to tectonic emplacement by the Roberts Mountains thrust. The concept adopted here is based on the assumption that their deep-water aspects are the result of sea-level rise in the Cambrian, and all of the Paleozoic strata in northern Nevada are indigenous to that area. The lower part of the Cambrian consists mainly of shallow-water cross-bedded sands derived from the craton. The upper part of the Cambrian, and part of the Ordovician, consists mainly of deep-water carbonate clastics carried by turbidity currents from the carbonate shelf in eastern Nevada, newly constructed as a result of sea-level rise. Ordovician to mid-Devonian strata are relatively deep-water siliceous deposits, which are the western facies assemblage. The basal contact of this assemblage on autochthonous Cambrian rocks is exposed in three mountain ranges and is clearly depositional in all three. The western facies assemblage can be divided into distinct stratigraphic units of regional extent. Many stratigraphic details can be explained simply by known changes in sea level. Upper Devonian to Mississippian strata are locally and westerly derived orogenic clastic beds deposited disconformably on the western facies assemblage. This disconformity, clearly exposed in 10 mountain ranges, indicates regional uplift and erosion of the western facies assemblage and absence of local deformation. The disconformity represents the Antler orogeny.
Thermal Maturity of Pennsylvanian Coals and Coaly Shales, Eastern Shelf and Fort Worth Basin, Texas
Hackley, Paul C.; Guevara, Edgar H.; Hentz, Tucker F.; Hook, Robert W.
2007-01-01
The U.S. Geological Survey and the Texas Bureau of Economic Geology are engaged in an ongoing collaborative study to characterize the organic composition and thermal maturity of Upper Paleozoic coal-bearing strata from the Eastern Shelf of the Midland basin and from the Fort Worth basin, north-central Texas. Data derived from this study will have application to a better understanding of the potential for coalbed gas resources in the region. This is an important effort in that unconventional resources such as coalbed gas are expected to satisfy an increasingly greater component of United States and world natural gas demand in coming decades. In addition, successful coalbed gas production from equivalent strata in the Kerr basin of southern Texas and from equivalent strata elsewhere in the United States suggests that a closer examination of the potential for coalbed gas resources in north-central Texas is warranted. This report presents thermal maturity data for shallow (<2,000 ft; <610 m) coal and coaly shale cuttings, core, and outcrop samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups from the Eastern Shelf of the Midland basin. Data for Lower Pennsylvanian Atoka Group strata from deeper wells (5,400 ft; 1,645 m) in the western part of the Fort Worth basin also are included herein. The data indicate that the maturity of some Pennsylvanian coal and coaly shale samples is sufficient to support thermogenic coalbed gas generation on the Eastern Shelf and in the western Fort Worth basin.
Marine Jurassic lithostratigraphy of Thailand
NASA Astrophysics Data System (ADS)
Meesook, A.; Grant-Mackie, J. A.
Marine Jurassic rocks of Thailand are well-exposed in the Mae Sot and Umphang areas and less extensively near Mae Hong Son, Kanchanaburi, Chumphon and Nakhon Si Thammarat, in the north, west, and south respectively. They are generally underlain unconformably by Triassic and overlain by Quaternary strata. Based mainly on five measured sections, fourteen new lithostratigraphic units are established: (in ascending order) Pa Lan, Mai Hung and Kong Mu Formations of the Huai Pong Group in the Mae Hong Son area; Khun Huai, Doi Yot and Pha De Formations of the Hua Fai Group in the Mae Sot area; Klo Tho, Ta Sue Kho, Pu Khloe Khi and Lu Kloc Tu Formations of the Umphang Group in the Umphang area; and the Khao Lak Formation in the Chumphon area. Mudstone, siltstone, sandstone, limestone and marl are the dominant lithologies. Mudstones, siltstones and sandstones are widespread; limestones are confined to the Mae Sot, Umphang, Kanchanaburi and Mae Hong Son areas; marls are found only in Mae Sot. The sequences are approximately 900 m thick in Mae Sot and 450 m thick in Umphang and are rather thinner in the other areas, particularly in the south. Based on ammonites, with additional data from bivalves and foraminifera, the marine Jurassic is largely Toarcian-Aalenian plus some Bajocian. Late Jurassic ages given previously for strata in the Mae Sot and Umphang areas have not been confirmed.
NASA Astrophysics Data System (ADS)
Wang, Zhongwei; Wang, Jian; Fu, Xiugen; Zhan, Wangzhong; Armstrong-Altrin, John S.; Yu, Fei; Feng, Xinglei; Song, Chunyan; Zeng, Shengqiang
2018-07-01
The Qiangtang Basin is the largest Mesozoic marine basin in the Tibetan Plateau. The Upper Triassic black mudstones are among the most significant hydrocarbon source rocks in this basin. Here, we present geochemical data for the Upper Triassic black mudstones to determine their paleoenvironment conditions, provenance, and tectonic setting. To achieve these, 30 black mudstones formed in various sedimentary environments were collected from the Zangxiahe, Zana, and Bagong formations. The results show that the total REE concentrations of mudstones from these formations range from 169 to 214 ppm, 204 to 220 ppm, and 141 to 194 ppm, respectively. All samples have chondrite-normalized REE patterns with enrichment of LREE, depletion of HREE and negative Eu and Ce anomalies. Specifically, mudstones from the Bagong Formation exhibit higher negative Eu anomalies and lower REE contents than those from the Zangxiahe and Zana formations. Mudstones from the Zangxiahe and Zana formations with low Sr/Ba and Sr/Cu ratios indicate the humid climate, whereas the high Sr/Ba and Sr/Cu ratios of rocks from the Bagong Formation suggest the arid climate. The low U/Th, (Cu + Mo)/Zn, V/Cr and Ni/Co ratios of rocks from the Zangxiahe, Zana, and Bagong formations are indicators of oxidized conditions. The bivariate diagrams (TiO2 vs. Al2O3, TiO2 vs. Zr, La/Th vs. Hf, and Co/Th vs. La/Sc) reveal that mudstones from the Zangxiahe and Zana formations were potentially derived from intermediate igneous rocks, whereas mudstones from the Bagong Formation were probably sourced from felsic igneous rocks. Their source rocks are mostly deposited in the collisional setting. REE of mudstones from the Zangxiahe, Zana, and Bagong formations were possibly originated from terrigenous detritus, with minor non-terrigenous contributions into the Zana samples. The REE contents of these mudstones are controlled mainly by terrigenous detrital minerals, rather than by the paleoclimate, paleoredox conditions, or organic matter. However, calcite minerals could dilute REE. Therefore, the REE contents of the Bagong Formation mudstones are significant lower than those of the Zangxiahe and Zana formations mudstones.
NASA Astrophysics Data System (ADS)
Broughton, Paul L.
2013-01-01
The sub-Cretaceous paleotopography underlying giant Lower Cretaceous Athabasca oil sands, northern Alberta, has an orthogonal lattice pattern of troughs up to 50 km long and 100 m deep between pairs of cross-cutting lineaments. These structures are interpreted to have been inherited from a similar pattern of dissolution collapse-subsidence troughs in the underlying Middle Devonian salt beds. Removal of more than 100 m of halite salt fragmented the overlying Upper Devonian strata into fault blocks and collapse breccias that subsided into the underlying dissolution troughs. The unusually low 1:2 to 1:3 thickness ratios of halite salts to the overlying strata resulted in the Upper Devonian strata collapse-subsidence into underlying salt dissolution troughs being more cataclysmic during the first phase of salt removal. The second phase of slower but complete salt removal between the earlier troughs resulted in a more gradual subsidence of the overlying strata. This obliterated the earlier pattern of giant cross-cutting dissolution troughs bounded by major lineaments. The collapse breccia fabrics underlying the earlier troughs differ from those from areas between the troughs. Collapse breccias underlying the large troughs often have crushed fabrics distributed in zones that rapidly pinched out between fault blocks. Breccias between troughs developed as giant mosaics of detached carbonate blocks that formed breccia pipe complexes. Multiple sinkholes up to 100 m deep aligned along multi-km linear valley trends that dissected the sub-Cretaceous paleotopography. These sinkhole trends formed orthogonal patterns inherited from underlying lattice of NW-SE and NE-SW salt structured lineaments. These cross-cutting sinkhole trends have a smaller 5 km scale reticulate pattern similar to the giant 50 km scale pattern of collapse-subsidence troughs. Other sinkholes developed as lower McMurray strata sagged when underlying Devonian fault blocks and breccia pipes differentially subsided.
Geology and hydrocarbon potential of the Hamada and Murzuq basins in western Libya
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirmani, K.U.; Elhaj, F.
1988-08-01
The Hamada and Murzuq intracratonic basins of western Libya form a continuation of the Saharan basin which stretches from Algeria eastward into Tunisia and Libya. The tectonics and sedimentology of this region have been greatly influenced by the Caledonian and Hercynian orogenies. Northwest- and northeast-trending faults are characteristic of the broad, shallow basins. The Cambrian-Ordovician sediments are fluvial to shallow marine. The Silurian constitutes a complete sedimentary cycle, ranging from deep marine shales to shallow marine and deltaic sediments. The Devonian occupies a unique position between two major orogenies. The Mesozoic strata are relatively thin. The Triassic consists of well-developedmore » continental sands, whereas the Jurassic and Cretaceous sediments are mainly lagoonal dolomites, evaporites, and shales. Silurian shales are the primary source rock in the area. The quality of the source rock appears to be better in the deeper part of the basin than on its periphery. The Paleozoic has the best hydrocarbon potential. Hydrocarbons have also been encountered in the Triassic and Carboniferous. In the Hamada basin, the best-known field is the El Hamra, with reserves estimated at 155 million bbl from the Devonian. Significant accumulations of oil have been found in the Silurian. Tlacsin and Tigi are two fields with Silurian production. In the Murzuq basin the Cambrian-Ordovician has the best production capability. However, substantial reserves need to be established before developing any field in this basin. Large areas still remain unexplored in western Libya.« less
NASA Astrophysics Data System (ADS)
Bejaoui, Hamida; Aïfa, Tahar; Melki, Fetheddine; Zargouni, Fouad
2017-10-01
This paper resolves the structural complexity of Cenozoic sedimentary basins in northeastern Tunisia. These basins trend NE-SW to ∼ E-W, and are bordered by old fracture networks. Detailed descriptions of the structural features in outcrop and in subsurface data suggest that the El Alia-Teboursouk Fault zone in the Bizerte area evolved through a series of tectonic events. Cross sections, lithostratigraphic correlations, and interpretation of seismic profiles through the basins show evidence for: (i) a Triassic until Jurassic-Early Cretaceous rifting phase that induced lateral variations of facies and strata thicknesses; (ii) a set of faults oriented NE-SW, NW-SE, N-S, and E-W that guided sediment accumulation in pull-apart basins, which were subject to compressive and transpressive deformation during Eocene (Lutetian-Priabonian), Miocene (Tortonian), and Pliocene-Quaternary; and (iii) NNW-SSE to NS contractional events that occurred during the Late Pliocene. Part of the latest phase has been the formation of different synsedimentary folded structures with significant subsidence inversion. Such events have been responsible for the reactivation of inherited faults, and the intrusion of Triassic evaporites, ensuring the role of a slip layer. The combined effects of the different paleoconstraints and halokinetic movements are at the origin of the evolution of these pull-apart basins. The subsurface data suggest that an important fault displacement occurred during the Mesozoic-Cenozoic. The patterns of sediment accumulation in the different basins reflect a high activity of deep ancient faults.
Secondary migration and leakage of methane from a major tight-gas system
NASA Astrophysics Data System (ADS)
Wood, James M.; Sanei, Hamed
2016-11-01
Tight-gas and shale-gas systems can undergo significant depressurization during basin uplift and erosion of overburden due primarily to the natural leakage of hydrocarbon fluids. To date, geologic factors governing hydrocarbon leakage from such systems are poorly documented and understood. Here we show, in a study of produced natural gas from 1,907 petroleum wells drilled into a Triassic tight-gas system in western Canada, that hydrocarbon fluid loss is focused along distinct curvilinear pathways controlled by stratigraphic trends with superior matrix permeability and likely also structural trends with enhanced fracture permeability. Natural gas along these pathways is preferentially enriched in methane because of selective secondary migration and phase separation processes. The leakage and secondary migration of thermogenic methane to surficial strata is part of an ongoing carbon cycle in which organic carbon in the deep sedimentary basin transforms into methane, and ultimately reaches the near-surface groundwater and atmosphere.
Secondary migration and leakage of methane from a major tight-gas system
Wood, James M.; Sanei, Hamed
2016-01-01
Tight-gas and shale-gas systems can undergo significant depressurization during basin uplift and erosion of overburden due primarily to the natural leakage of hydrocarbon fluids. To date, geologic factors governing hydrocarbon leakage from such systems are poorly documented and understood. Here we show, in a study of produced natural gas from 1,907 petroleum wells drilled into a Triassic tight-gas system in western Canada, that hydrocarbon fluid loss is focused along distinct curvilinear pathways controlled by stratigraphic trends with superior matrix permeability and likely also structural trends with enhanced fracture permeability. Natural gas along these pathways is preferentially enriched in methane because of selective secondary migration and phase separation processes. The leakage and secondary migration of thermogenic methane to surficial strata is part of an ongoing carbon cycle in which organic carbon in the deep sedimentary basin transforms into methane, and ultimately reaches the near-surface groundwater and atmosphere. PMID:27874012
NASA Astrophysics Data System (ADS)
Parcerisa, D.; Casas, L.; Franke, C.; Gomez-Gras, D.; Lacasa, G.; Nunez, J. A.; Thiry, M.
2010-05-01
Massif paleoalteration profiles (≥ 200 m) occur in the upper parts of the Montseny-Guilleries High (NE Catalan Coastal Ranges). The profiles consist of hard albitized-chloritized-hematized facies in the lower part and softer kaolinized-hematized facies in the upper part of the section. Preliminary paleomagnetic data show Triassic ages for both, the albitized and the kaolinized parts, and point to a surficial formation altered under oxidising conditions. Similar paleoalteration profiles have already been described and dated to Triassic ages elsewhere in Europe [Schmitt, 1992; Ricordel et al., 2007; Parcerisa et al., 2009]. These Permian-Triassic alterations are following a succession of different mineral transformations from the top to the base of the profile: 1) Red facies are defined by an increase in the amount and size of haematite crystals leading to the red colour of the rocks. The increase on haematite content is pervasively affecting the whole rock and is accompanied by the kaolinitization of the feldspars. 2) Pink facies: here, the granite shows an uniform pink colouration, which is mainly due to the albitization of the primary Ca-bearing plagioclases, accompanied by a precipitation of minute haematite, sericite, and calcite crystals inside the albite. Additionally primary biotite is fully chloritized. The pink granites are much more resistant to the present-day weathering than the "unaltered" facies at the base of the profile. 3) Spotted facies is characterized by a partial alteration of the rock, which caused a pink-screened aspect to the rock. The alteration developed along the fractures and is less well developed or absent in the non-fractured zones. In the pink-screened facies, the plagioclases are partially albitized and contain numerous hematite inclusions. Biotites are usually almost entirely chloritized. 4) Unaltered facies: These granites are coloured white to greyish, containing plagioclase and K-feldspar that do not show any trace of albitization. Biotites are not or weakly chloritized. However, these "unaltered" (or primary) granites are strongly weathered into granite boulders embedded in grus by the present-day climatic conditions. The maturest paleoprofiles occur at the northern part of the Catalan Coastal Ranges (i.e. the Montseny-Guilleries High) where the Variscan basement remained exposed during Triassic times. Towards the South the profiles progressively disappear and Triassic sediments acquire their maximum thickness here. The alteration profiles are related with the Permo-Triassic paleosurface still outcroping on wide areas [Gómez-Gras and Ferrer, 1999]. They are partially covered by Triassic fluvial sandstones (Buntsandstein facies) in the South [Gómez-Gras, 1993] and by Palaeocene alluvial conglomerates in the West [Anadón et al., 1979]. The Triassic paleosurface shows a remarkable stability successively outcropping during Mesozoic and Tertiary times, the pre-Tertiary exhumation and even the present day weathering affected very little these albitized profiles. The hardness and thus preservation of the Triassic paleosurface is mainly related to the albitization. The albitized granites are entirely lacking anorthitic plagioclase, which is much more sensitive to chemo-mechanical weathering. Development of albite and additional chloritization of the primary biotite crystals render the rocks much more resistant to weathering and erosion. This stability is particularly well expressed in case of the Montseny-Guilleries High, which is limited by a high fault scarp at the south-eastern margin. The albitized top of the scarp shows remarkably hard fresh rocks, whereas the base of the scarp (formed of primary, non-albitized facies) is deeply weathered into gruss. This is causing much smother landscape reliefs in the valleys and thalwegs. Since a long time the remarkable persistence of the Triassic paleosurface expressed in the Paleozoic massifs has been highlighted by geomorphologists. Only recently we could draw the link of the paleosurface preservation to its albitisation [Battiau-Queney, 1996; Widdowson, 1997]. Anadón, P., Colombo, F., Esteban, M., Marzo, M., Robles, S., Santanach, P., Solé-Sugrañes, L.., 1979. Evolución tectonostratigráfica de los Catalánides. Acta Geológica Hispánica, 14: 242-270. Battiau-Queney Y., 1996, A tentative classification of paleoweathering formations based on geomorphological criteria. Geomorphology, 16, p. 87-102. Gómez-Gras, D., 1993. El Permotrias de la Cordillera Costero Catalana: facies y petrologia sedimentaria (Parte I). Boletin Geologico y Minero, 104(2): 115-161. Gómez-Gras, D., Ferrer, C., 1999. Caracterización petrológica de perfiles de meteorización antiguos desarrollados en granitos tardihercínicos de la Cordillera Costero Catalana. Revista de la Sociedad Geológica de España, 12(2): 281-299. Parcerisa, D., Thiry, M., Schmitt, J.M., 2009. Albitisation related to the Triassic unconformity in igneous rocks of the Morvan Massif (France). International Journal of Earth Sciences (Geol Rundsch). DOI 10.1007/s00531-008-0405-1 Ricordel, C., Parcerisa, D., Thiry, M., Moreau, M.G., Gómez-Gras, D., 2007. Triassic magnetic overprints related to albitization in granites from the Morvan massif (France). Palaeogeography, Palaeoclimatology, Palaeoecology, 251: 268-282. Schmitt J.M., 1992, Triassic albitization in southern France : an unusual mineralogical record from a major continental paleosurface. in : Mineralogical and geochemical records of paleoweathering, IGCP 317, Schmitt J.M., Gall Q., (eds), E.N.S.M.P. Mém. Sc. de la Terre, 18, p. 115-132. Widdowson M., 1997, The geomorphological and geological importance of palaeosurfaces. in: Widdowson M. (ed.), Palaeosurfaces: recognition, reconstruction and palaeoenvironmental interpretation. Geol. Soc. Special Publ., 120, p. 1-12.
NASA Astrophysics Data System (ADS)
Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.; Spakman, W.
2017-12-01
A positive wave speed anomaly interpreted as the Cocos slab stretches from the uppermost mantle at the Middle America trench in the west, to the lowermost mantle below the Atlantic in the east. The length and continuity of this slab indicates long-lived, uninterrupted eastward subduction of the attached Cocos Plate and its predecessor, the Farallon Plate. The geological record of Mexico contains Triassic to present day evidence of subduction, of which the post-Late Cretaceous phase is of continental margin-style. Interpretations of the pre-Upper Cretaceous subduction-related rock assemblages are under debate, and vary from far-travelled exotic intra-oceanic island arc character to in-situ extended continental margin origin. We present new paleomagnetic data that show that Triassic, Jurassic and Cretaceous subduction-related rocks from the Vizcaíno Peninsula and the Guerrero terrane have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. The entire Triassic-present day subduction record, and hence, reconstructed trench location, can therefore be linked to the Cocos slab, which provides control on longitudinal plate motion of North America since the time of Pangea. Compared to the latest state of the art mantle frames, in which longitudes are essentially unconstrained for pre-Cretaceous times, our reconstructed absolute position of North America requires a significant westward longitudinal shift for Mesozoic times.
Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen
2015-01-01
Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized 'four-winged' gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged 'peltopleurid' Peripeltopleurus, from the Middle Triassic (Ladinian, 235-242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the 'cranial specialization-asymmetrical caudal fin-enlarged paired fins-scale reduction' sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saller, A.H.; Schlanger, S.O.
Two wells drilled along the margin of Enewetak Atoll penetrated approximately 1000 m of upper Eocene, Oligocene, and lower Miocene carbonates. Strontium isotope stratigraphy indicates relatively continuous deposition of carbonate from 40 Ma to 20 Ma. Depositional environments show a gradual basinward progradation of facies with slope carbonates passing upward into fore-reef, reef, back-reef, and lagoonal carbonates. Slope strata contain wackestones and packstones with submarine-cemented lithoclasts, coral, coralline algae fragments, benthic rotaline forams, planktonic forams, and echinoderm fragments. Fore-reef strata are dominantly packstones and boundstones containing large pieces of coral, abundant benthic forams, coralline algae fragments, stromatoporoids( ), and minormore » planktonic forams. Reef and near-reef sediments include coralgal boundstones and grainstones with abundant benthic forams. Halimeda and miliolid forams are common in lagoonward parts of the back reef. Sponge borings, geopetal structures, and fractures are common in reef and fore-reef strata. Lagoonal strata are wackestones and packstones with common mollusks, coral, coralline algae, and benthic forams (rotaline and miliolid). Diagenesis has extensively altered strata near the atoll margin. Aragonite dissolution and calcite cements (radiaxial and cloudy prismatic) are abundant in fore-reef, reef, and some back-reef strata. Petrographic and geochemical data indicate aragonite dissolution and calcite cementation in seawater at burial depths of 100 to 300 m. Dolomite occurs in slope and deeply buried reefal carbonates. Most dolomitization occurred at burial depths of more than 1000 m in cool marine waters circulating through the atoll. lagoonal strata are not significantly altered by marine diagenesis and still contain abundant primary aragonite and magnesium calcite.« less
NASA Astrophysics Data System (ADS)
Geissman, J. W.
2013-12-01
We celebrate the 50th anniversary of the publication of the Vine-Matthews/Morley-Larochelle hypothesis (Vine and Matthews, Nature, 1963, v. 199, #4897, p. 947-949), which integrated marine magnetic anomaly data with a rapidly evolving terrestrial-based geomagnetic polarity time scale (GPTS). The five decades of research since 1963 have witnessed the expansion and refinement of the GPTS, to the point where ages of magnetochron boundaries, in particular in the Cenozoic, can be estimated with uncertainties better than 0.1%. This has come about by integrating high precision geochronology, cyclostratigraphy at different time scales, and magnetic polarity data of increased quality, allowing extension of the GPTS back into the Paleozoic. The definition of a high resolution GPTS across time intervals of major events in Earth history has been of particular interest, as a specific magnetochron boundary correlated across several localities represents a singular global datum. A prime example is the end Permian, when some 80 percent of genus-level extinctions and a range of 75 to 96 percent species- level extinctions took place in the marine environment, depending upon clade. Much our understanding of the Permian-Triassic boundary (PTB) is based on relatively slowly deposited marine sequences in Europe and Asia, yet a growing body of observations from continental sequences demonstrates a similar extinction event and new polarity data from some of these sequences are critical to refining the GPTS across the PTB and testing synchronicity of marine and terrestrial events. The data show that the end-Permian ecological crisis and the conodont calibrated biostratigraphic PTB both followed a key polarity reversal between a short interval (subchron) of reverse polarity to a considerably longer (chron) of normal polarity. Central European Basin strata (continental Permian and epicontinental Triassic) yield high-quality magnetic polarity stratigraphic records (Szurlies et al., 2003; Szurlies, 2007; and Szurlies, 2013, in press). In combination with cyclostratigraphic records, the normal polarity chron, with both the end-Permian crisis and the biostratigraphic PTB, is estimated to be ~0.7 Ma in duration, with the ecological crisis some 0.2 Ma after the reversal. The author and colleagues are currently refining the magnetic polarity stratigraphy across the PTB contained in strata of the Ochoan/Induan Dewey Lake Formation exposed in west Texas (USA) and in strata of the Beaufort Group of the central Karoo Basin (South Africa). The hematitic siltstones and mudstones of the Dewey Lake Formation yield magnetizations of high quality and are not remagnetized, thus providing an unambiguous polarity record, including what we infer as the R-N transition immediately before the PTB. A continuous core (~150 m) through the entire Dewey Lake Formation from southeast New Mexico will be available for polarity study in early September, 2013. In the Karoo Basin, a nearly continuously exposed 225 +/- m thick section (over 100 distinct sites) near Lootsberg Pass is dominated by non-hematitic siltstone but fine grained sandstone and carbonate concretions in mudstone intervals have been also sampled. At present, it remains unclear whether the Beaufort Group strata in this part of the central Karoo Basin retain a primary magnetization, as the likelihood of remagnetization by ca. 184 +/- Ma mafic sills of the Karoo Large Igneous Province remains a concern.
NASA Astrophysics Data System (ADS)
Bayona, G.; Montes, C.; Jaramillo, C.; Ojeda, G.; Cardona, A.; Pardo, A.; Lamus, F.
2007-05-01
In the Rancheria basin (RB) and Guasare area (GA), Maastrichtian-Paleocene synorogenic strata overlie the Aptian-Campanian carbonate platform. Nowadays, RB is bounded to the west by metamorphic-and-igneous cored Santa Marta massif, where Upper Cretaceous strata overlie unconformably pre-Cretaceous rocks. The eastern boundary of the RB is the Perija range that includes volcaniclastic and sedimentary rocks of Jurassic and Cretaceous age in the hanging-wall of a NW-verging, low-angle dipping thrust belt. The GA is on the eastern foothills of the Perija range and corresponds to the western boundary of the Maracaibo basin. Strata architecture, seismic reflectors, gravity, provenance, and paleocurrent analyses carried out in those basins constrain the timing and style of uplift of Santa Marta massif and Perija range, which are linked with tectonism along the southern Caribbean plate. Maastrichtian-Paleocene strata thicken eastward up to 2.2 km in the RB, and this succession includes (in stratigraphic order): foram-rich calcareous mudstone, oyster-pelecypod rich carbonate-siliciclastic strata, coal- bearing mudstones and feldspar-lithic-rich fluvial sandstones. Internal disconformities and truncations of seismic reflectors are identified to the west of the RB, but there are not major thrust faults at this part of the basin to explain such unconformities and truncations. In Early Paleocene, carbonates developed better to the west of the RB, whereas mixed carbonate-siliciclastic deposition continued toward the east of the RB. In early Late Paleocene, influx of terrigenous material (key grains=metamorphic, microcline and garnet fragments) derived from the Santa Marta massif increased to the west, but to the east of the RB and GA carbonate-siliciclastic and carbonate deposition continued, respectively. In mid-Late Paleocene, diachronous eastward advance of paralic/deltaic environments, tropical humid climate, and high subsidence rates favored production and preservation of peat in RB and GA. In the late Late Paleocene, inversion along a buried graben system under the Perija range explain supply toward RB and GA of micritic, volcanic, and sedimentary rock fragments, and the record of a thinner Upper Paleocene strata in the GA than in the RB. Tectonic subsidence in the RB was mainly related to pivoting of the Santa Marta massif as result of collision of the Maracaibo continental sub-plate with the southern margin of the Caribbean oceanic plate. This model explains the generation of accommodation space in the RB without faulting, denudation of upper crustal material of the Santa Marta massif, early capture of terrigenous detritus in the RB that favored carbonate deposition in the GA, the mechanism of initial inversion of the Perija range, and the present positive gravity anomaly under the Santa Marta massif.
Gaswirth, Stephanie B.; Lillis, Paul G.; Pollastro, Richard M.; Anna, Lawrence O.
2010-01-01
Two of the total petroleum systems (TPS) defined as part of the U.S. Geological Survey (USGS) assessment of the Williston Basin contain Mississippian Madison Group strata: 1) the Bakken-Lodgepole TPS, which includes the Lodgepole Formation; and 2) the Madison TPS, which includes the Mission Canyon, Charles, and Spearfish formations. The Bakken-Lodgepole TPS is defined as the area in which oil generated from the upper and lower shales of the Upper Devonian-Lower Mississippian Bakken Formation has accumulated in reservoirs in the Three Forks, Bakken, and Lodgepole formations. Two conventional assessment units (AU) have been identified within the Bakken-Lodgepole TPS, including one in the Bakken Formation and another in the Waulsortian mound reservoirs of the lower Lodgepole Formation. Lodgepole Formation Waulsortian mound oil production has been restricted to a small part of Stark County, North Dakota. Reservoirs are sealed by middle and upper Lodgepole Formation tight argillaceous limestones. Several nonproductive mounds and mound-like structures have also been identified in the Lodgepole Formation. Productivity correlates closely with the oil window of the Bakken Formation shales, and also indicates the likelihood of limited lateral migration of Bakken Formation oil into Lodgepole Formation reservoirs in North Dakota and Montana. Such considerations limit the estimated mean of undiscovered, technically recoverable resources to 8 million barrels of oil (MMBO) for the Lodgepole Formation conventional reservoirs. The Madison TPS is defined as the area where oil generated from Mission Canyon and Charles formation source rocks has accumulated in reservoirs of the Mission Canyon and Charles formations and in reservoirs within the Triassic Spearfish Formation. One continuous reservoir AU, the Mission Canyon-Charles AU, was defined within the Madison TPS; its boundary coincides with the TPS boundary. There is extensive conventional production throughout the AU on major structures and in stratigraphic-structural traps. The largest fields are on the Little Knife, Billings Nose, and Nesson anticlines. Recent studies show that Madison Group oils were generated from organic-rich Mission Canyon Formation and Ratcliffe Interval carbonates adjacent to the reservoirs. Seals were formed by overlying or lateral evaporites or tight carbonates. Based on available geologic and production data, the undiscovered oil resources for conventional reservoirs in the Mission Canyon-Charles AU were estimated to have a mean of 45 MMBO.
Synchronism of the Siberian Traps and the Permian-Triassic boundary
Campbell, I.H.; Czamanske, G.K.; Fedorenko, V.A.; Hill, R.I.; Stepanov, V.
1992-01-01
Uranium-lead ages from an ion probe were taken for zircons from the ore-bearing Noril'sk I intrusion that is comagmatic with, and intrusive to, the Siberian Traps. These values match, within an experimental error of ??4 million years, the dates for zircons extracted from a tuff at the Permian-Triassic (P-Tr) boundary. The results are consistent with the hypothesis that the P-Tr extinction was caused by the Siberian basaltic flood volcanism. It is likely that the eruption of these magmas was accompanied by the injection of large amounts of sulfur dioxide into the upper atmosphere, which may have led to global cooling and to expansion of the polar ice cap. The P-Tr extinction event may have been caused by a combination of acid rain and global cooling as well as rapid and extreme changes in sea level resulting from expansion of the polar ice cap.
NASA Astrophysics Data System (ADS)
Mader, Nadine K.; Redfern, Jonathan; El Ouataoui, Majid
2017-06-01
Upper Triassic continental clastics (TAGI: Trias Argilo-Greseux Inferieur) in the Essaouira Basin are largely restricted to the subsurface, which has limited analysis of the depositional environments and led to speculation on potential provenance of the fluvial systems. Facies analysis of core from the Meskala Field onshore Essaouira Basin is compared with tentatively time-equivalent deposits exposed in extensive outcrops in the Argana Valley, to propose a process orientated model for local versus regional sediment distribution patterns in the continuously evolving Moroccan Atlantic rift during Carnian to Norian times. The study aims to unravel the climatic overprint and improve the understanding of paleo-climatic variations along the Moroccan Atlantic margin to previously recognised Upper Triassic pluvial events. In the Essaouira Basin, four facies associations representing a progressive evolution from proximal to distal facies belts in a continental rift were established. Early ephemeral braided river systems are succeeded by a wet aeolian sandflat environment with a strong arid climatic overprint (FA1). This is followed by the onset of perennial fluvial deposits with extensive floodplain fines (FA2), accompanied by a distinct shift in fluvial style, suggesting increase in discharge and related humidity, either locally or in the catchment area. The fluvial facies transitions to a shallow lacustrine or playa lake delta environment (FA3), which exhibits cyclical abandonment. The delta is progressively overlain by a terminal playa with extensive, mottled mudstones (FA4), interpreted to present a return from cyclical humid-arid conditions to prevailing aridity in the basin. In terms of regional distribution and sediment source provenance, paleocurrent data from Carnian to Norian deposits (T5 to T8 member) in the Argana Valley suggest paleoflow focused towards the S and SW, not directed towards the Meskala area in the NW as previously suggested. A major depo-centre for fluvial sediments is instead located in the southern Argana Valley, possibly the Souss Basin. To effectively source the reservoir sandstones found in the Meskala Field, a more local provenance area has hence to be envisaged. Despite this, the direct comparison of the genetic evolution of sedimentary sequences in the Argana Valley and Essaouira Basin shows a similar progression from dominantly arid ephemeral depositional environments to humid perennial sedimentation, returning to prominent arid conditions. This suggests climatic control in both regions, where an enhanced humid signal drives perennial fluvial flow in otherwise arid dominated sequences. On a regional scale, this is suggested to record the impact of strong Triassic pluvial events previously recognised in other basins along the Central Atlantic margin during the Carnian to Norian periods.
Wang, Chun-Yong; Zeng, Rong-Sheng; Mooney, W.D.; Hacker, B.R.
2000-01-01
We present a new crustal cross section through the east-west trending ultrahigh-pressure (UHP) Dabie Shan orogenic belt, east central China, based on a 400-km-long seismic refraction profile. Data from our profile reveal that the cratonal blocks north and south of the orogen are composed of 35-km-thick crust consisting of three layers (upper, middle, and lower crust) with average seismic velocities of 6.0±0.2 km/s, 6.5±0.1 km/s, and 6.8±0.1 km/s. The crust reaches a maximum thickness of 41.5 km beneath the northern margin of the orogen, and thus the present-day root beneath the orogen is only 6.5 km thick. The upper mantle velocity is 8.0±0.1 km/s. Modeling of shear wave data indicate that Poisson's ratio increases from 0.24±0.02 in the upper crust to 0.27±0.03 in the lower crust. This result is consistent with a dominantly felsic upper crustal composition and a mafic lower crustal composition within the amphibolite or granulite metamorphic facies. Our seismic model indicates that eclogite, which is abundant in surface exposures within the orogen, is not a volumetrically significant component in the middle or lower crust. Much of the Triassic structure associated with the formation of the UHP rocks of the Dabie Shan has been obscured by post-Triassic igneous activity, extension and large-offset strike-slip faulting. Nevertheless, we can identify a high-velocity (6.3 km/s) zone in the upper (<5 km depth) crustal core of the orogen which we interpret as a zone of ultrahigh-pressure rocks, a north dipping suture, and an apparent Moho offset that marks a likely active strike-slip fault.
A new marine reptile from the Triassic of China, with a highly specialized feeding adaptation.
Cheng, Long; Chen, Xiao-Hong; Shang, Qing-Hua; Wu, Xiao-Chun
2014-03-01
The Luoping fauna (Anisian, Middle Triassic) is probably the oldest of Triassic faunas in Guizhou-Yunnan area, China. The reptilian assemblage is comprised of ichthyosaurs, a number of sauropterygians (pachypleurosaur-like forms), saurosphargids, protorosaurs, and archosauriforms. Here, we report on a peculiar reptile, newly found in this fauna. Its dentition is fence or comb-like and bears more than 175 pleurodont teeth in each ramus of the upper and lower jaws, tooth crown is needle-like distally and blade-shaped proximally; its rostrum strongly bends downward and the anterior end of its mandible expands both dorsally and ventrally to form a shovel-headed structure; and its ungual phalanges are hoof-shaped. The specializations of the jaws and dentition indicate that the reptile may have been adapted to a way of bottom-filter feeding in water. It is obvious that such delicate teeth are not strong enough to catch prey, but were probably used as a barrier to filter microorganisms or benthic invertebrates such as sea worms. These were collected by the specialized jaws, which may have functioned as a shovel or pushdozer (the mandible) and a grasper or scratcher (the rostrum). Our preliminary analysis suggests that the new reptile might be more closely related to the Sauropterygia than to other marine reptiles.
A new marine reptile from the Triassic of China, with a highly specialized feeding adaptation
NASA Astrophysics Data System (ADS)
Cheng, Long; Chen, Xiao-Hong; Shang, Qing-Hua; Wu, Xiao-Chun
2014-03-01
The Luoping fauna (Anisian, Middle Triassic) is probably the oldest of Triassic faunas in Guizhou-Yunnan area, China. The reptilian assemblage is comprised of ichthyosaurs, a number of sauropterygians (pachypleurosaur-like forms), saurosphargids, protorosaurs, and archosauriforms. Here, we report on a peculiar reptile, newly found in this fauna. Its dentition is fence or comb-like and bears more than 175 pleurodont teeth in each ramus of the upper and lower jaws, tooth crown is needle-like distally and blade-shaped proximally; its rostrum strongly bends downward and the anterior end of its mandible expands both dorsally and ventrally to form a shovel-headed structure; and its ungual phalanges are hoof-shaped. The specializations of the jaws and dentition indicate that the reptile may have been adapted to a way of bottom-filter feeding in water. It is obvious that such delicate teeth are not strong enough to catch prey, but were probably used as a barrier to filter microorganisms or benthic invertebrates such as sea worms. These were collected by the specialized jaws, which may have functioned as a shovel or pushdozer (the mandible) and a grasper or scratcher (the rostrum). Our preliminary analysis suggests that the new reptile might be more closely related to the Sauropterygia than to other marine reptiles.
NASA Astrophysics Data System (ADS)
Zhang, Chaokai; Li, Xianghui; Mattern, Frank; Mao, Guozheng; Zeng, Qinggao; Xu, Wenli
2015-11-01
Over thirty stratigraphic sections of the Himalaya orogen Upper Triassic Langjiexue Group in southern Tibet, China, were studied to interpret the environments and lithofacies. The facies associations channel (A), lobe (B), levee-interchannel (C), and basin plain (D) with nine facies (A1-3, B1-3, and C1-3) were distinguished. They form six architectural elements: channel-interchannel, overbank-levee, crevasse-splay, outer fan-lobe, fan-fringe, and basin plain. Taking into account the facies analysis, (sub-) deposystem correlation, paleocurrent dispersal pattern, and restoration of primary stratal width, the Langjiexue Group displays the architecture of a coalescing submarine fan-dominated deep sea deposystem, measuring about 400-500 km × 600-700 km in size or even more, one of the largest pre-Cenozoic submarine fans ever reported. Subdivisionally, four fans, lacking inner fans, could have coalesced laterally within the submarine fan deposystem, and at least six submarine fan developments were vertically succeeded by mid- to outer-fan deposits with progradational to retrogradational successions. According to the range of 30-70% of sandstone content, the fan deposystem is mud- and sand-rich, suggesting a medium-far (over 400-600 km) transport of sediment from the source area.
Phillips, R.L.
2003-01-01
A 178-m-thick stratigraphic section exposed along the lower Colville River in northern Alaska, near Ocean Point, represents the uppermost part of a 1500 m Upper Cretaceous stratigraphic section. Strata exposed at Ocean Point are assigned to the Prince Creek and Schrader Bluff formations. Three major depositional environments are identified consisting, in ascending order, of floodplain, interdistributary-bay, and shallow-marine shelf. Nonmarine strata, comprising the lower 140 m of this section, consist of fluvial distributaries, overbank sediments, tephra beds, organic-rich beds, and vertebrate remains. Tephras yield isotopic ages between 68 and 72.9 Ma, generally consistent with paleontologic ages of late Campanian-Maastrichtian determined from dinosaur remains, pollen, foraminifers, and ostracodes. Meandering low-energy rivers on a low-gradient, low-relief floodplain carried a suspended-sediment load. The rivers formed multistoried channel deposits (channels to 10 m deep) as well as solitary channel deposits (channels 2-5 m deep). Extensive overbank deposits resulting from episodic flooding formed fining-upward strata on the floodplain. The fining-upward strata are interbedded with tephra and beds of organic-rich sediment. Vertical-accretion deposits containing abundant roots indicate a sheet flood origin for many beds. Vertebrate and nonmarine invertebrate fossils along with plant debris were locally concentrated in the floodplain sediment. Deciduous conifers as well as abundant wetland plants, such as ferns, horsetails, and mosses, covered the coastal plain. Dinosaur skeletal remains have been found concentrated in floodplain sediments in organic-rich bone beds and as isolated bones in fluvial channel deposits in at least nine separate horizons within a 100-m-thick interval. Arenaceous foraminifers in some organic-rich beds and shallow fluvial distributaries indicate a lower coastal plain environment with marginal marine (bay) influence. Marginal marine strata representing interdistributary bay deposits overlie the nonmarine beds and comprise about 15 m of section. Extensive vegetated sand flats, shoals, and shallow channels overlain by shallow bay deposits (less than 7 m deep), containing storm-generated strata characterize the marginal marine beds. Abundant bioturbation and roots characterize the stratigraphic lowest bay deposits; bioturbated sediment, pelecypods, barnacles, and benthic microfossils are found in the overlying bay storm deposits. The sediments abruptly change upward from hummocky cross-stratified bay deposits to a muddy marsh deposit containing shallow organic-rich channels to prograding nonmarine to marginal marine beds. Transgressive, abundantly fossiliferous shallow-marine strata more than 13 m thick comprise the uppermost exposures at Ocean Point. The marine beds overlie nonmarine and bay strata and represent an environment dominated episodically by storms. The age of the marginal marine and marine beds is late Maastrichtian based on pollen. ?? 2003 Elsevier Ltd. All rights reserved.
Upper Cretaceous molluscan record along a transect from Virden, New Mexico, to Del Rio, Texas
Cobban, W.A.; Hook, S.C.; McKinney, K.C.
2008-01-01
Updated age assignments and new collections of molluscan fossils from lower Cenomanian through upper Campanian strata in Texas permit a much refined biostratigraphic correlation with the rocks of New Mexico and the Western Interior. Generic names of many Late Cretaceous ammonites and inoceramid bivalves from Texas are updated to permit this correlation. Strata correlated in the west-to-east transect include the lower Cenomanian Beartooth Quartzite and Sarten Sandstone of southwest New Mexico, and the Eagle Mountains Formation, Del Rio Clay, Buda Limestone, and. basal beds of the Chispa Summit, Ojinaga, and Boquillas Formations of the Texas-Mexico border area. Middle Cenomanian strata are lacking in southwestern New Mexico but are present in the lower parts of the Chispa Summit and Boquillas Formations in southwest Texas. Upper Cenomanian and lower Turonian rocks are present at many localities in New Mexico and Texas in the Mancos Shale and Chispa Summit, Ojinaga, and Boquillas Formations. Middle Turonian and younger rocks seem to be entirely nonmarine in southwestern New Mexico, but they are marine in the Rio Grande area in the Chispa. Summit, Ojinaga, and Boquillas Formations. The upper part of the Chispa Summit and Boquillas contain late Turonian fossils. Rocks of Coniacian and Santonian age are present high in the Chispa Summit, Ojinaga, and Boquillas Formations, and in the lower part of the Austin. The San Carlos, Aguja, Pen, and Austin Formations contain fossils of Campanian age. Fossils representing at least 38 Upper Cretaceous ammonite zones are present along the transect. Collections made in recent years in southwestern New Mexico and at Sierra de Cristo Rey just west of downtown El Paso, Texas, have been well treated and do not need revision. Taxonomic names and zonations published in the pre-1970 literature on the Rio Grande area of Texas have been updated. New fossil collections from the Big Bend National Park, Texas, allow for a much refined correlation in the central part of the transect in Texas. Middle Turonian-Campanian zonation in southwest Texas is based mainly on ammonites of the Family Collignoniceratidae, as opposed to the scaphitid and baculitid ammonites that are especially abundant farther north in the Western Interior.
Vertical heterogeneity in predation pressure in a temperate forest canopy
Aikens, Kathleen R.; Buddle, Christopher M.
2013-01-01
The forest canopy offers a vertical gradient across which variation in predation pressure implies variation in refuge quality for arthropods. Direct and indirect experimental approaches were combined to assess whether canopy strata differ in ability to offer refuge to various arthropod groups. Vertical heterogeneity in impact of avian predators was quantified using exclosure cages in the understory, lower, mid, and upper canopy of a north-temperate deciduous forest near Montreal, Quebec. Bait trials were completed in the same strata to investigate the effects of invertebrate predators. Exclusion of birds yielded higher arthropod densities across all strata, although treatment effects were small for some taxa. Observed gradients in predation pressure were similar for both birds and invertebrate predators; the highest predation pressure was observed in the understory and decreased with height. Our findings support a view of the forest canopy that is heterogeneous with respect to arthropod refuge from natural enemies. PMID:24010017
Geology of Devils Tower National Monument, Wyoming
Robinson, Charles Sherwood
1956-01-01
Devils Tower is a steep-sided mass of igneous rock that rises above the surrounding hills and the valley of the Belle Fourche River in Crook County, Wyo. It is composed of a crystalline rock, classified as phonolite porphyry, that when fresh is gray but which weathers to green or brown. Vertical joints divide the rock mass into polygonal columns that extend from just above the base to the top of the Tower. The hills in the vicinity and at the base of the Tower are composed of red, yellow, green, or gray sedimentary rocks that consist of sandstone, shale, or gypsum. These rocks, in aggregate about 400 feet thick, include, from oldest to youngest, the upper part of the Spearfish formation, of Triassic age, the Gypsum Spring formation, of Middle Jurassic age, and the Sundance formation, of Late Jurassic age. The Sundance formation consists of the Stockade Beaver shale member, the Hulett sandstone member, the Lak member, and the Redwater shale member. The formations have been only slightly deformed by faulting and folding. Within 2,000 to 3.000 feet of the Tower, the strata for the most part dip at 3 deg - 5 deg towards the Tower. Beyond this distance, they dip at 2 deg - 5 deg from the Tower. The Tower is believed to have been formed by the intrusion of magma into the sedimentary rocks, and the shape of the igneous mass formed by the cooled magma is believed to have been essentially the same as the Tower today. Devils Tower owes its impressiveness to its resistance to erosion as compared with the surrounding sedimentary rocks, and to the contrast of the somber color of the igneous column to the brightly colored bands of sedimentary rocks.
Moore, Thomas E.; Wallace, W.K.; Mull, C.G.; Adams, K.E.; Plafker, G.; Nokleberg, W.J.
1997-01-01
Geologic mapping of the Trans-Alaska Crustal Transect (TACT) project along the Dalton Highway in northern Alaska indicates that the Endicott Mountains allochthon and the Hammond terrane compose a combined allochthon that was thrust northward at least 90 km in the Early Cretaceous. The basal thrust of the combined allochthon climbs up section in the hanging wall from a ductile shear zone, in the south through lower Paleozoic rocks of the Hammond terrane and into Upper Devonian rocks of the Endicott Mountains allochthon at the Mount Doonerak antiform, culminating in Early Cretaceous shale in the northern foothills of the Brooks Range. Footwall rocks north of the Mount Doonerak antiform are everywhere parautochthonous Permian and Triassic shale of the North Slope terrane rather than Jurassic and Lower Cretaceous strata of the Colville Basin as shown in most other tectonic models of the central Brooks Range. Stratigraphic and structural relations suggest that this thrust was the basal detachment for Early Cretaceous deformation. Younger structures, such as the Tertiary Mount Doonerak antiform, deform the Early Cretaceous structures and are cored by thrusts that root at a depth of about 10 to 30 km along a deeper detachment than the Early Cretaceous detachment. The Brooks Range, therefore, exposes (1) an Early Cretaceous thin-skinned deformational belt developed during arc-continent collision and (2) a mainly Tertiary thick-skinned orogen that is probably the northward continuation of the Rocky Mountains erogenic belt. A down-to-the-south zone of both ductile and brittle normal faulting along the southern margin of the Brooks Range probably formed in the mid-Cretaceous by extensional exhumation of the Early Cretaceous contractional deformation. copyright. Published in 1997 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Donohoo-Hurley, L. L.; Geissman, J. W.; Lucas, S. G.; Roy, M.
2006-12-01
Paleomagnetic data from rocks exposed on and off the Colorado Plateau provide poles that young westward during the Late Triassic (to about 52^{O} E longitude) and young eastward during the Early Jurassic. This pattern has been used to posit the existence of a J-1 cusp in the North American APW path at the Triassic- Jurassic boundary (TJB), at about 199.6 Ma. Considerable debate has focused on the morphology and placement of the J-1 cusp due to poorly exposed and/or incompletely sampled sections, debates about the magnitude of Colorado Plateau rotation, and disagreements regarding stratigraphic relationships. Red beds of the Whitmore Point (~25 m of mostly lacustrine deposits) and Dinosaur Canyon (~55 m of hematitic fluvial sandstones and siltstones) members of the Moenave Formation (MF) are inferred to have been deposited across the TJB based on palynostratigraphy and vertebrate biostratigraphy. Two previously unsampled sections (Leeds and Warner Valley) of the MF are well exposed near St. George, Utah, and located in the transition zone that defines the western boundary of the Colorado Plateau. Preliminary data from samples collected from the Whitmore Point and Dinosaur Canyon members yield exclusively normal polarity magnetizations, which is consistent with previous studies and the normal polarity TJB magnetozone. Thermal demagnetization response suggests that the remanence is carried mainly in hematite. The degree of hematite pigmentation varies in both sections, and several Leeds sites show a weak overprint component that unblocks by 400^{O}-450^{O} C, with a higher unblocking temperature components, consistent with an Early Triassic Late Jurassic age that fully unblock around 670^{O}-680^{O} C. Individual beds (treated as specific sites) in part of the Dinosaur Canyon Member yield site mean directions with declinations between about 020 and 030, and may define the easternmost position (i.e. 60-50^{O} E latitude) of the NAMAPW path and thus the approximate the TJB. This interpretation is consistent with recent biostratigraphic arguments that the TJB lies in the upper part of the Dinosaur Canyon Member. The Whitmore Point Member yields more north-directed declinations, suggesting an earliest Jurassic (post-cusp) age. It is likely that more complete data from these and related sections will provide a further refinement of the stratigraphic placement of the TJB and the geometry of the J-1 cusp.
NASA Technical Reports Server (NTRS)
Heubeck, C.; Lowe, D. R.
1994-01-01
The 3.22-3.10 Ga old Moodies Group, uppermost unit of the Swaziland Supergroup in the Barberton Greenstone Belt (BGB), is the oldest exposed, well-preserved quartz-rich sedimentary sequence on earth. It is preserved in structurally separate blocks in a heavily deformed fold-and-thrust belt. North of the Inyoka Fault, Moodies strata reach up to 3700 m in thickness. Detailed mapping, correlation of measured sections, and systematic analysis of paleocurrents show that the lower Moodies Group north of the Inyoka Fault forms a deepening- and fining-upward sequence from a basal alluvial conglomerate through braided fluvial, tidal, and deltaic sandstones to offshore sandy shelf deposits. The basal conglomerate and overlying fluvial facies were derived from the north and include abundant detritus eroded from underlying Fig Tree Group dacitic volcanic rocks. Shoreline-parallel transport and extensive reworking dominate overlying deltaic, tidal, and marine facies. The lithologies and arrangement of Moodies Group facies, sandstone petrology, the unconformable relationship between Moodies strata and older deformed rocks, presence of at least one syndepositional normal fault, and presence of basaltic flow rocks and airfall fall tuffs interbedded with the terrestrial strata collectively suggest that the lower Moodies Group was deposited in one or more intramontane basins in an extensional setting. Thinner Moodies sections south of the Inyoka Fault, generally less than 1000 m thick, may be correlative with the basal Moodies Group north of the Inyoka Fault and were probably deposited in separate basins. A northerly derived, southward-thinning fan-delta conglomerate in the upper part of the Moodies Group in the central BGB overlies lower strata with an angular unconformity. This and associated upper Moodies conglomerates mark the beginning of basin shortening by south- to southeast-directed thrust faulting along the northern margin of the BGB and suggest that the upper Moodies Group was deposited in a foreland basin. Timing, orientation, and style of shortening suggest that this deformation eventually incorporated most of the BGB into a major fold-and-thrust belt.
Dumoulin, Julie A.; Bradley, Dwight C.; Harris, Anita G.; Repetski, John E.
1999-01-01
Deep-water facies, chiefly hemipelagic deposits and turbidites, of Cambrian through Devonian age are widely exposed in the Medfra and Mt. McKinley quadrangles. These strata include the upper part of the Telsitna Formation (Middle-Upper Ordovician) and the Paradise Fork Formation (Lower Silurian-Lower Devonian) in the Nixon Fork terrane, the East Fork Hills Formation (Upper Cambrian-Lower Devonian) in the East Fork subterrane of the Minchumina terrane, and the chert and argillite unit (Ordovician) and the argillite and quartzite unit (Silurian- Devonian? and possibly older) in the Telida subterrane of the Minchumina terrane.In the western part of the study area (Medfra quadrangle), both hemipelagic deposits and turbidites are largely calcareous and were derived from the Nixon Fork carbonate platform. East- ern exposures (Mt. McKinley quadrangle; eastern part of the Telida subterrane) contain much less carbonate; hemipelagic strata are mostly chert, and turbidites contain abundant rounded quartz and lesser plagioclase and potassium feldspar. Deep-water facies in the Medfra quadrangle correlate well with rocks of the Dillinger terrane exposed to the south (McGrath quadrangle), but coeval strata in the Mt. McKinley quadrangle are compositionally similar to rocks to the northeast (Livengood quadrangle). Petrographic data thus suggest that the Telida subterranes presently defined is an artificial construct made up of two distinct sequences of disparate provenance.Restoration of 90 and 150 km of dextral strike-slip on the Iditarod and Farewell faults, respectively, aligns the deep-water strata of the Minchumina and Dillinger terranes in a position east of the Nixon Fork carbonate platform. This restoration supports the interpretation that lower Paleozoic rocks in the Nixon Fork and Dillinger terranes, and in the western part of the Minchumina terrane (East Fork subterrane and western part of the Telida subterrane), formed along a single continental margin. Rocks in the eastern part of the Telida subterrane are compositionally distinct from those to the west and may have had a different origin and history.
NASA Astrophysics Data System (ADS)
Mayrhofer, Susanne; Lukeneder, Alexander
2010-05-01
The Upper Triassic in general, and the Carnian stage in detail was devastated by one of the most severe ecological crisis of the Mesozoic Era, the Carnian Crisis (= Carnian Pluvial Event), when the carbonate platforms demised and with them most of the reef-builders disappeared. The Orthoceltites assemblage (ammonoids, cephalopods) was formed in the Carnian Crisis, now located at the boundary from Kartoz and Kasimlar Formation (Anatolia, Turkey), can act as proxy for the environmental activities and biotic crisis in the Carnian time. It has to be noted that the ultimate cause of this drastic Mesozoic crisis is still under comprehensive discussion. The main investigation topics of the project are the palaeoecologic, palaeobiogeographic, litho-, cyclo- and magnetostratigraphic development of the Upper Triassic (Carnian) ammonoid mass-occurrence at the Asagiyaylabel section in Anatolia (Turkey), formed during the Carnian Crisis. This area is a key section within the Taurids and has a connecting and intermediate position. Situated on the western end of the Cimmerian System at that time it shows connection to both, the Neo-Tethys and the Palaeo-Tethys Oceans. New insights into the taxonomy and the palaeoecology of the investigated ammonoids and associated macro- and microfossils are expected. The abundant ammonoid Orthoceltites, at least 200 000 000 !!! specimens, is assumed to be a new species. Further topics of investigation are the original position and environmental conditions of the sedimentation area at the Asagiyaylabel section, located in the Taurids. The formation of the ammonoid beds is either autochthonous or allochthonous (transported). Expected 3D modelling results will be essential to reach geodynamic, palaeooceanographic and palaeobiological conclusions. This further leads to the question of the original water depths during the formation of ammonoid mass occurrences. As a multitasking project, one aim is to underline a crucial fact in working within different sciences as the Structural Processes Group at the Departments of Geodynamic and Sedimentology (University of Vienna) and the Geometric Modelling and Industrial Geometry group (3D technology at the Vienna University of Technology). Interdisciplinary collaboration with other scientists is essential in modern times. Statistical analysis of the orientation and relative position (e.g. imbrication) of the ammonoid shells can hint to current or transport directions. 3D modelling of calcite-cement distribution (representing geopedal structures) and post-diagenetic calcite-veins displacing several ammonoids will complete the geometrical reconstruction and shed light on the biostratinomic and additional diagentic processes. The combination in analysing different fossil groups with additional analysis of istotopic, magnetostratigraphic, cyclostratigraphic and geochemical features will help to extract details of the Upper Triassic history around one of the most severe crisis in the Mesozoic time, the Carnian Crisis. Investigations, undertaken at sections (e.g. Asagiyaylabel) possessing this time interval, can work as proxy for the major Upper Triassic Tethyan crisis. Environmental changes as displayed by the sea level and climate can become more obvious and the ‘motor' behind the demise better understood.
Myrow, P.M.; Strauss, J.V.; Creveling, J.R.; Sicard, K.R.; Ripperdan, R.; Sandberg, C.A.; Hartenfels, S.
2011-01-01
New carbon isotopic data from upper Famennian deposits in the western United States reveal two previously unrecognized major positive isotopic excursions. The first is an abrupt ~. 3??? positive excursion, herein referred to as ALFIE (A Late Famennian Isotopic Excursion), recorded in two sections of the Pinyon Peak Limestone of north-central Utah. Integration of detailed chemostratigraphic and biostratigraphic data suggests that ALFIE is the Laurentian record of the Dasberg Event, which has been linked to transgression in Europe and Morocco. Sedimentological data from the Chaffee Group of western Colorado also record transgression at a similar biostratigraphic position, with a shift from restricted to open-marine lithofacies. ALFIE is not evident in chemostratigraphic data from age-equivalent strata in Germany studied herein and in southern Europe, either because it is a uniquely North American phenomenon, or because the German sections are too condensed relative to those in Laurentia. A second positive carbon isotopic excursion from the upper Chaffee Group of Colorado is recorded in transgressive strata deposited directly above a previously unrecognized paleokarst interval. The age of this excursion, and the duration of the associated paleokarst hiatus, are not well constrained, although the events occurred sometime after the Late Famennian Middle expansa Zone. The high positive values recorded in this excursion are consistent with those associated with the youngest Famennian Middle to Late praesulcata Hangenberg Isotopic Excursion in Europe, the isotopic expression of the Hangenberg Event, which included mass extinction, widespread black shale deposition, and a glacio-eustatic fall and rise. If correct, this would considerably revise the age of the Upper Chaffee Group strata of western Colorado. ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Caillaud, Alexis; Blanpied, Christian; Delvaux, Damien
2017-08-01
The intracratonic Congo Basin, located in the Democratic Republic of Congo (DRC), is the largest sedimentary basin of Africa. The Jurassic strata outcrop along its eastern margin, south of Kisangani (formerly Stanleyville). In the last century, the Upper Jurassic Stanleyville Group was described as a lacustrine series containing a thin basal marine limestone designed as the ;Lime Fine; beds. Since the proposal of this early model, the depositional environment of the Stanleyville Group, and especially the possible marine incursion, has been debated, but without re-examining the existing cores, outcrop samples and historical fossils from the type location near Kisangani that are available at the Royal Museum for Central Africa (MRAC/KMMA, Tervuren, Belgium). In order to refine the former sedimentology, a series of nine exploration cores drilled in the Kisangani sub-basin have been described. This study aims at integrating sedimentary facies in existing sedimentary models and to discuss the hypothesis of the presence of Kimmeridgian marine deposits along the Congo River near Kisangani, a region which lies in the middle of the African continent. Eight facies have been identified, which permit a reinterpretation of the depositional environment and paleogeography of the Stanleyville Group. The base of the Stanleyville Group is interpreted to represent a conglomeratic fluvial succession, which filled an inherited Triassic paleotopography. Above these conglomerates, a transition to a typically lacustrine system is interpreted, which includes: (1) a basal profundal, sublittoral (brown to dark fine-grained siltstones with microbial carbonates, i.e., the ;Lime Fine; beds) and littoral lacustrine series; covered by (2) a sublittoral to profundal interval (brown to dark organic-rich, fine-grained siltstones), which corresponds to the maximum extent of the paleo-lake; and, finally (3) a shallow lacustrine series (greenish calcareous siltstones and sandstones with red siltstones). Unlike what has been proposed, the ;Lime Fine; beds are interpreted herein to be of lacustrine origin, rather than representing a Kimmeridgian marine transgression. We conclude that a Jurassic marine transgression did not, in fact, occur in the eastern region of the Congo Basin.
Evans, K.V.; Aleinikoff, J.N.; Obradovich, J.D.; Fanning, C.M.
2000-01-01
New sensitive high resolution ion microprobe (SHRIMP) U-Pb zircon analyses from two tuffs and a felsic flow in the middle and upper Belt Supergroup of northwestern Montana significantly refine the age of sedimentation for this very thick (15-20 km) Middle Proterozoic stratigraphic sequence. In ascending stratigraphic order, the results are (1) 1454 ?? 9 Ma for a tuff in the upper part of the Helena Formation at Logan Pass, Glacier National Park; (2) 1443 ?? 7 Ma for a regionally restricted porphyritic rhyolite to quartz latite flow of the Purcell Lava in the Yaak River region; and (3) 1401 ?? 6 Ma for a tuff in the very thin transition zone between the Bonner Quartzite and Libby Formation, west of the town of Libby. Combining these ages with those previously published by other workers for ca. 1470-Ma sills in the lower Belt in Montana and Canada indicates that all but the uppermost Belt strata (about 1700 m) were deposited over a period of about 70 million years, considerably reducing the time span from longstanding estimates ranging from 250 to 600 million years. Calculated sediment accumulation rates between dated samples indicates rapid, but not unreasonable, values for early Belt strata, with decreasing rates through time. These ages also suggest the inadequacy of previously published paleomagnetic data to resolve Belt Supergroup chronology at an appropriate level of accuracy.
NASA Astrophysics Data System (ADS)
Fetisova, A. M.; Veselovskiy, R. V.; Scholze, F.; Balabanov, Yu. P.
2018-01-01
The results of detailed paleomagnetic studies in seven Upper Permian and Lower Triassic reference sections of East Europe (Middle Volga and Orenburg region) and Central Germany are presented. For each section, the coefficient of inclination shallowing f (King, 1955) is estimated by the Elongation-Inclination (E-I) method (Tauxe and Kent, 2004) and is found to vary from 0.4 to 0.9. The paleomagnetic directions, corrected for the inclination shallowing, are used to calculate the new Late Permian-Early Triassic paleomagnetic pole for the East European Platform (N = 7, PLat = 52.1°, PLong = 155.8°, A95 = 6.6°). Based on this pole, the geocentric axial dipole hypothesis close to the Paleozoic/Mesozoic boundary is tested by the single plate method. The absence of the statistically significant distinction between the obtained pole and the average Permian-Triassic (P-Tr) paleomagnetic pole of the Siberian Platform and the coeval pole of the North American Platform corrected for the opening of the Atlantic (Shatsillo et al., 2006) is interpreted by us as evidence that 250 Ma the configuration of the magnetic field of the Earth was predominantly dipolar; i.e., the contribution of nondipole components was at most 10% of the main magnetic field. In our opinion, the hypothesis of the nondipolity of the geomagnetic field at the P-Tr boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), resulted from disregarding the effect of inclination shallowing in the paleomagnetic determinations from sedimentary rocks of "stable" Europe (the East European platform and West European plate).
Poppe, L.J.; Popenoe, P.; Poag, C.W.; Swift, B.A.
1995-01-01
A Continental Offshore Stratigraphic Test (COST) well and six exploratory wells have been drilled in the south-east Georgia embayment. The oldest rocks penetrated are weakly metamorphosed Lower Ordovician quartz arenites and Silurian shales and argillites in the Transco 1005-1 well and Upper Devonian argillites in the COST GE-1 well. The Palaeozoic strata are unconformably overlain by interbedded non-marine Jurassic sandstones and shales and marginal marine Lower Cretaceous rocks. Together, these rocks are stratigraphically equivalent to the onshore Fort Pierce and Cotton Valley(?) Formations and rocks of the Lower Cretaceous Comanchean Provincial Series. The Upper Cretaceous part of the section is composed mainly of neritic calcareous shales and shaley limestones stratigraphically equivalent to the primarily marginal marine facies of the onshore Atkinson, Cape Fear and Middendorf Formations and Black Creek Group, and to limestones and shales of the Lawson Limestone and Peedee Formations. Cenozoic strata are also described. -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lofgren, D.L.; Hotton, C.L.; Runkel, A.C.
1990-09-01
Dinosaur teeth from Paleocene channel fills have been interpreted as indicating dinosaur survival into the Paleocene. However, enormous potential for reworking exists because these records are restricted to large channel fills that are deeply incised into Cretaceous strata. Identification of reworked fossils is usually equivocal. This problem is illustrated by the Black Spring Coulee channel fill, a dinosaur-bearing Paleocene deposit in the upper Hell Creek Formation of eastern Montana. In this example, the reworked nature of well-preserved dinosaur bones is apparent only after detailed sedimentological and palynological analysis. Because of the potential for reworking, dinosaur remains derived from Paleocene fluvialmore » deposits should not be assigned a Paleocene age unless the (1) are found in floodplain deposits, (2) are articulated, (3) are in channels that do not incise Cretaceous strata, or (4) are demonstrably reworked from Paleocene deposits. To date, reports of Paleocene dinosaurs do not fulfill any of these criteria. Thus, the proposal that dinosaurs persisted into the Paleocene remains unsubstantiated.« less
Geologic Map of the Clark Peak Quadrangle, Jackson and Larimer Counties, Colorado
Kellogg, Karl S.; Ruleman, Chester A.; Shroba, Ralph R.; Braddock, William A.
2008-01-01
The Clark Peak quadrangle encompasses the southern end of the Medicine Bow Mountains and the northernmost end of the Mummy Range. The Continental Divide traverses the map area and Highway 14 cross the Divide at Cameron Pass, in the southeastern corner of the map. Approximately the eastern half of the map, and a few areas to the west, are underlain by Early Proterozoic plutonic and metamorphic rocks. Most of these basement rocks are part of the ~1,715 Ma Rawah batholith, composed mostly of pinkish, massive to moderately foliated monzogranite and granodiorite intruded by numerous, large pegmatite- aplite bodies. The metamorphic rocks, many of which form large inclusions in the granitic rocks of the Rawah batholith, include biotite-hornblende gneiss, hornblende gneiss, amphibolite, and biotite schist. The crystalline basement rocks are thrust westward along the Medicine Bow thrust over a sequence of sedimentary rocks as old as the Upper Permian Satanka Shale. The Satanka Shale, Middle and Lower Triassic Chugwater group, and a thin sandstone tentatively correlated with the Lower Jurassic and Upper Triassic Jelm Formation are combined as one map unit. This undivided unit is overlain sequentially upward by the Upper Jurassic Sundance Formation, Upper Jurassic Morrison Formation, Lower Cretaceous Dakota Group, Upper and Lower Cretaceous Benton Group, Upper Cretaceous Niobrara Formation, and the Eocene and Paleocene Coalmont Formation. The Late Cretaceous to early Eocene Medicine Bow thrust is folded in places, and several back thrusts produced a complicated thrust pattern in the south part of the map. Early Oligocene magmatism produced rhyolite tuff, dacite and basalt flows, and intermediate dikes and small stocks. A 40Ar/39Ar date on sanidine from one rhyolite tuff is ~28.5 Ma; a similar whole-rock date on a trachybasalt is ~29.6 Ma. A very coarse, unsorted probably pre-Quaternary ridge-top diamicton crops out in the southern part of the quadrangle. Numerous glacial deposits (mostly of Pinedale age), rock glaciers, block-slope deposits, landslide deposits, talus deposits, fan deposits, colluvium, and alluvium comprise the surficial deposits of the map area.
Staff - Nina T. Harun | Alaska Division of Geological & Geophysical Surveys
mapping of the Upper Jurassic Naknek Formation in a footwall syncline associated with the Bruin Bay fault Ivishak Formation in the northeastern Brooks Range, Alaska: University of Alaska Fairbanks, M.S. thesis Triassic Ivishak Formation in the Sadlerochit Mountains, northeastern Alaska: Alaska Division of Geological
Geologic map of the Winslow 30’ × 60’ quadrangle, Coconino and Navajo Counties, northern Arizona
Billingsley, George H.; Block, Debra L.; Redsteer, Margaret Hiza
2013-01-01
The Winslow 30’ × 60’ quadrangle encompasses approximately 5,018 km2 (1,960 mi2) within Coconino and Navajo Counties of northern Arizona. It is characterized by gently dipping Paleozoic and Mesozoic strata that dip 1° to 2° northeastward in the southwestern part of the quadrangle and become nearly flat-lying in the northeastern part of the quadrangle. In the northeastern part, a shallow Cenozoic erosional basin developed about 20 million years ago, which subsequently was filled with flat-lying Miocene and Pliocene lacustrine sediments of the Bidahochi Formation, as well as associated volcanic rocks of the Hopi Buttes Volcanic Field. The lacustrine sediments and volcanic rocks unconformably overlie Triassic, Jurassic, and Cretaceous strata. Beginning about early Pliocene time, the Little Colorado River and its tributaries began to remove large volumes of Paleozoic and Mesozoic bedrock from the map area. This erosional development has continued through Pleistocene and Holocene time. Fluvial sediments accumulated episodically throughout this erosional cycle, as indicated by isolated Pliocene(?) and Pleistocene Little Colorado River terrace-gravel deposits on Tucker Mesa and Toltec Divide west of Winslow and younger terrace-gravel deposits along the margins of the Little Colorado River Valley. These gravel deposits suggest that the ancestral Little Colorado River and its valley has eroded and migrated northeastward toward its present location and largely parallels the strike of the Chinle Formation. Today, the Little Colorado River meanders within a 5-km (3-mi) wide valley between Winslow and Leupp, where soft strata of the Chinle Formation is mostly covered by an unknown thickness of Holocene flood-plain deposits. In modern times, the Little Colorado River channel has changed its position as much as a 1.5 km (1 mi) during flood events, but for much of the year the channel is a dry river bed. Surficial alluvial and eolian deposits cover extensive parts of the bedrock outcrops over the entire Winslow quadrangle.
Schwab, M.; Ratschbacher, L.; Siebel, W.; McWilliams, M.; Minaev, V.; Lutkov, V.; Chen, F.; Stanek, K.; Nelson, B.; Frisch, W.; Wooden, J.L.
2004-01-01
Magmatic rocks and depositional setting of associated volcaniclastic strata along a north-south traverse spanning the southern Tien Shan and eastern Pamirs of Kyrgyzstan and Tajikistan constrain the tectonics of the Pamirs and Tibet. The northern Pamirs and northwestern Tibet contain the north facing Kunlun suture, the south facing Jinsha suture, and the intervening Carboniferous to Triassic Karakul-Mazar subduction accretion system; the latter is correlated with the Songpan-Garze-Hoh Xi system of Tibet. The Kunlun arc is a composite early Paleozoic to late Paleozoic-Triassic arc. Arc formation in the Pamirs is characterized by ???370-320 Ma volcanism that probably continued until the Triassic. The cryptic Tanymas suture of the southern northern Pamirs is part of the Jinsha suture. A massive ??????227 Ma batholith stitches the Karakul-Mazar complex in the Pamirs. There are striking similarities between the Qiangtang block in the Pamirs and Tibet. Like Tibet, the regional structure of the Pamirs is an anticlinorium that includes the Muskol and Sares domes. Like Tibet, the metamorphic rocks in these domes are equivalents to the Karakul-Mazar-Songpan-Garze system. Granitoids intruding the Qiangtang block yield ???200-230 Ma ages in the Pamirs and in central Tibet. The stratigraphy of the eastern Pshart area in the Pamirs is similar to the Bangong-Nujiang suture zone in the Amdo region of eastern central Tibet, but a Triassic ocean basin sequence is preserved in the Pamirs. Arc-type granitoids that intruded into the eastern Pshart oceanic-basin-arc sequence (???190-160 Ma) and granitoids that cut the southern Qiangtang block (???170-160 Ma) constitute the Rushan-Pshart arc. Cretaceous plutons that intruded the central and southern Pamirs record a long-lasting magmatic history. Their zircons and those from late Miocene xenoliths show that the most distinct magmatic events were Cambro-Ordovician (???410-575 Ma), Triassic (???210-250 Ma; likely due to subduction along the Jinsha suture), Middle Jurassic (???147-195 Ma; subduction along Rushan-Pshart suture), and mainly Cretaceous. Middle and Late Cretaceous magmatism may reflect arc activity in Asia prior to the accretion of the Karakoram block and flat-slab subduction along the Shyok suture north of the Kohistan-Ladakh arc, respectively. Before India and Asia collided, the Pamir region from the Indus-Yarlung to the Jinsha suture was an Andean-style plate margin. Our analysis suggests a relatively simple crustal structure for the Pamirs and Tibet. From the Kunlun arc in the north to the southern Qiangtang block in the south the Pamirs and Tibet likely have a dominantly sedimentary crust, characterized by Karakul-Mazar-Songpan-Garze accretionary wedge rocks. The crust south of the southern Qiangtang block is likely of granodioritic composition, reflecting long-lived subduction, arc formation, and Cretaceous-Cenozoic underthrusting. Copyright 2004 by the American Geophysical Union.
Paleozoic and mesozoic evolution of East-Central California
Stevens, C.H.; Stone, P.; Dunne, G.C.; Greene, D.C.; Walker, J.D.; Swanson, B.J.
1997-01-01
East-central California, which encompasses an area located on the westernmost part of sialic North America, contains a well-preserved record of Paleozoic and Mesozoic tectonic events that reflect the evolving nature of the Cordilleran plate margin to the west. After the plate margin was formed by continental rifting in the Neoproterozoic, sediments comprising the Cordilleran miogeocline began to accumulate on the subsiding passive margin. In east-central California, sedimentation did not keep pace with subsidence, resulting in backstepping of a series of successive carbonate platforms throughout the early and middle Paleozoic. This phase of miogeoclinal development was brought to a close by the Late Devonian-Early Mississippian Antler orogeny, during the final phase of which oceanic rocks were emplaced onto the continental margin. Subsequent Late Mississippian-Pennsylvanian faulting and apparent reorientation of the carbonate platform margin are interpreted to have been associated with truncation of the continental plate on a sinistral transform fault zone. In the Early Permian, contractional deformation in east-central California led to the development of a narrow, uplifted thrust belt flanked by marine basins in which thick sequences of deep-water strata accumulated. A second episode of contractional deformation in late Early Permian to earliest Triassic time widened and further uplifted the thrust belt and produced the recently identified Inyo Crest thrust, which here is correlated with the regionally significant Last Chance thrust. In the Late Permian, about the time of the second contractional episode, extensional faulting created shallow sedimentary basins in the southern Inyo Mountains. In the El Paso Mountains to the south, deformation and plutonism record the onset of subduction and arc magmatism in late Early Permian to earliest Triassic time along this part of the margin. Tectonism had ceased in most of east-central California by middle to late Early Triassic time, and marine sediment deposited on the subsiding continental shelf overlapped the previously deformed Permian rocks. Renewed contractional deformation, probably in the Middle Triassic, is interpreted to be associated with emplacement of the Golconda allochthon onto the margin of the continent. This event, which is identified with certainty in the Sierra Nevada, also may have significantly affected rocks in the White and Inyo Mountains to the east. Subduction and arc magmatism that created most of the Sierra Nevada batholith began in the Late Triassic and lasted through the remainder of the Mesozoic. During this time, the East Sierran thrust system (ESTS) developed as a narrow zone of intense, predominantly E-vergent contractional deformation along the eastern margin of the growing batholith. Activity on the ESTS took place over an extended part of Mesozoic time, both before and after intrusion of voluminous Middle Jurassic plutons, and is interpreted to have been mechanically linked to emplacement of the batholith. Deformation on the ESTS and magmatism in the Sierra Nevada both ended prior to the close of the Cretaceous.
NASA Astrophysics Data System (ADS)
Zhao, V.; Cohen, H.; Cecil, R.; Heermance, R. V., III
2016-12-01
The San Andreas Fault (SAF) in southern California has created a dynamic plate-boundary that has controlled basin depocenters, fluvial systems, and range uplift since the early Miocene. From 11-5 Ma, dextral slip was localized along the San Gabriel Fault (SGF) north of Los Angeles. Slip was transferred onto the SAF in the Late Miocene or Early Pliocene, but the timing and landscape implications of this tectonic reorganization are not well constrained. We use detrital zircon (DZ) geochronology from the Ridge Basin, located at the nexus of the SGF and SAF, to determine the provenance of stratigraphy during this fault reorganization. We present data from two samples (n=187) from Middle to Upper Miocene Ridge Route Formation (RRF) and four samples (n=483) from Pliocene Hungry Valley Formation (HVF) of Ridge Basin Group. All Ridge Basin samples have peaks at ca. 1.7 Ga, though the relative proportion of Precambrian grains decreases upsection. RRF samples have two dominant Mesozoic peaks at ca. 150 Ma and at ca. 80 Ma. HVF has peak ages of 145-135 Ma and ca. 77 Ma. HVF samples also have Triassic peaks at 235-220 Ma, which is absent in the RRF. To evaluate the provenance of these samples, modern sands were collected from five major drainages in the San Gabriel (SGM, n=181), the San Bernardino Mountains (SBM, n=258) and a rock sample from the Middle Miocene Crowder Formation (n=99) between the ranges. DZ spectra of the RRF is dissimilar to that of modern rivers draining the SGM, although we acknowledge that a more proximal source from the western Transverse Ranges or Sierra Pelona is possible. The source for HVF is more problematic, in that the DZ spectra of the HVF is unlike that of all modern rivers and Crowder Formation. Triassic zircons combined with the presence of unique volcanic clasts suggest a source from the Granite Mountain area in the Mojave Desert. The differences in DZ spectra between RRF and HVF suggests that the transfer of slip from the SGF to the SAF in the early Pliocene caused a major drainage reorganization that opened up the HVF to sediment input from the Mojave region to the north. While the Ridge Basin was likely adjacent to the SBM during the Miocene, the DZ data suggest that the SBM were low lying and did not contribute sediment to HVF. This study constrains the paleogeography and potential sources for Ridge Basin strata.
Robinson, J.; Beck, R.; Gnos, E.; Vincent, R.K.
2000-01-01
The remote Waziristan region of northwestern Pakistan includes outcrops of the India-Asia suture zone. The excellent exposure of the Waziristan ophiolite and associated sedimentary lithosomes and their inaccessibility made the use of Landsat Thematic Mapper (TM) data desirable in this study. Landsat TM data were used to create a spectral ratio image of bands 3/4, 5/4, and 7/5, displayed as red, green, and blue, respectively, and a principal component analysis image of bands 4, 5, and 7 (RGB). These images were interpreted in the context of available geologic maps, limited field work, and biostratigraphic, lithostratigraphic, and radiometric data. They were used to create a coherent geologic map of Waziristan and cross section of the area that document five tectonic units in the region and provide a new and more detailed tectonic history for the region. The lowest unit is comprised of Indian shelf sediments that were thrust under the Waziristan ophiolite. The ophiolite has been tectonically shuffled and consists of two separate tectonic units. The top thrust sheet is a nappe comprised of distal Triassic to Lower Cretaceous Neotethyan sediments that were underthrust during the Late Cretaceous by the ophiolite riding on Indian shelf strata. The uppermost unit contains unconformable Tertiary and younger strata. The thrust sheets show that the Waziristan ophiolite was obducted during Late Cretaceous time and imply that the Paleocene and Eocene deformation represents collision of India with the Kabul block and/or Asia.
Steeply-dipping extension fractures in the Newark basin, New Jersey
Herman, G.C.
2009-01-01
Late Triassic and Early Jurassic bedrock in the Newark basin is pervasively fractured as a result of Mesozoic rifting of the east-central North American continental margin. Tectonic rifting imparted systematic sets of steeply-dipping, en ??chelon, Mode I, extension fractures in basin strata including ordinary joints and veins. These fractures are arranged in transitional-tensional arrays resembling normal dip-slip shear zones. They contributed to crustal stretching, sagging, and eventual faulting of basin rift deposits. Extension fractures display progressive linkage and spatial clustering that probably controlled incipient fault growth. They cluster into three prominent strike groups correlated to early, intermediate, and late-stage tectonic events reflecting about 50- 60?? of counterclockwise rotation of incremental stretching directions. Finite strain analyses show that extension fractures allowed the stretching of basin strata by a few percent, and these fractures impart stratigraphic dips up to a few degrees in directions opposing fracture dips. Fracture groups display three-dimensional spatial variability but consistent geometric relations. Younger fractures locally cut across and terminate against older fractures having more complex vein-cement morphologies and bed-normal folds from stratigraphic compaction. A fourth, youngest group of extension fractures occur sporadically and strike about E-W in obliquely inverted crustal blocks. A geometric analysis of overlapping fracture sets shows how fracture groups result from incremental rotation of an extending tectonic plate, and that old fractures can reactivate with oblique slip components in the contemporary, compressive stress regime. ?? 2008 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Carpentier, Cédric; Hadouth, Suhail; Bouaziz, Samir; Lathuilière, Bernard; Rubino, Jean-Loup
2016-05-01
Aims of this paper are to propose a geodynamic and sequential framework for the late Triassic and early Jurassic of and south Tunisia and to evidence the impact of local tectonics on the stratigraphic architecture. Facies of the Upper Triassic to Lower Jurassic of Southern Tunisia have been interpreted in terms of depositional environments. A sequential framework and correlation schemes are proposed for outcrops and subsurface transects. Nineteen middle frequency sequences inserted in three and a half low frequency transgression/regression cycles were evidenced. Despite some datation uncertainties and the unknown durations of Lower Jurassic cycles, middle frequency sequences appear to be controlled by eustasy. In contrast the tectonics acted as an important control on low frequency cycles. The Carnian flooding was certainly favored by the last stages of a rifting episode which started during the Permian. The regression accompanied by the formation of stacked angular unconformities and the deposition of lowstand deposits during the late Carnian and Norian occured during the uplift and tilting of the northern basin margins. The transpressional activity of the Jeffara fault system generated the uplift of the Tebaga of Medenine high from the late Carnian and led to the Rhaetian regional angular Sidi Stout Unconformity. Facies analysis and well-log correlations permitted to evidence that Rhaetian to Lower Jurassic Messaoudi dolomites correspond to brecciated dolomites present on the Sidi Stout unconformity in the North Dahar area. The Early-cimmerian compressional event is a possible origin for the global uplift of the northern African margin and Western Europe during the late Carnian and the Norian. During the Rhaetian and the early Jurassic a new episode of normal faulting occured during the third low frequency flooding. This tectonosedimentary evolution ranges within the general geodynamic framework of the north Gondwana margin controlled by the opening of both Neotethys and Atlantic oceans.
Viscous-sludge sample collector
Not Available
1979-01-01
A vertical core sample collection system for viscous sludge is disclosed. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.
Viscous sludge sample collector
Beitel, George A [Richland, WA
1983-01-01
A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.
Karklins, O.L.
1984-01-01
The Lexington Limestone and the Clays Ferry Formation of Kentucky contain an abundant and diversified fossil invertebrate fauna. This report is concerned with the trepostome and cystoporate bryozoans that constitute a major part of that fauna. The Lexington Limestone, largely a biofragmental fossiliferous limestone, rests disconformably on the Tyrone Limestone (Middle Ordovician). The Clays Ferry Formation consists of approximately equal amounts of biofragmentallimestone and shale, and it overlies conformably, or intertongues with, the upper part of the Lexington Limestone. The Clays Ferry Formation is overlain by the Garrard Siltstone (Upper Ordovician) in central Kentucky and intertongues with the Kope Formation (Upper Ordovician) in northern Kentucky. The MiddleUpper Ordovician boundary falls within the upper part of the Lexington Limestone and laterally equivalent strata of the Clays Ferry Formation. The Lexington Limestone has been divided into 12 members, consisting of calcarenites, calcisiltites, calcilutites, nodular limestones, and shales in various amounts, that intertongue complexly. Because of the great abundance of bryozoans this study is generally limited to bryozoans recovered from, in ascending order, the Grier Limestone Member, the Perryville Limestone Member, the Brannon Member, the Tanglewood Limestone Member, and the Millersburg Member of the Lexington Limestone and from the Clays Ferry Formation and its Point Pleasant Tongue. The trepostome and cystoporate bryozoans discussed are referred to 36 species belonging to 22 genera. The trepostome component includes 29 species belonging to 16 genera: Amplexopora, Atactoporella, Balticopora, Batostoma, Cyphotrypa, Dekayia, Eridotrypa, Hetero-_ trypa, Homotrypa, Homotrypella, Mesotrypa, Parvohallopora, Peronopora, Prasopora, Stigmatella, and Tarphophragma, a new genus. Five of the trepostome species are new: Balticopora arcuatilis, Cyphotrypa switzeriensis, Dekayia epetrima, Eridotrypa sadievillensis, and Homotrypa cressmani. The cystoporate bryozoans include 7 species belonging to 6 genera: Acanthoceramoporella, Ceramophylla, Ceramoporella, Constellaria, Crepipora, and Papillalunaria. One cystoporate species is new: Acanthoceramoporella valliensis. The trepostome and cystoporate fauna on the generic level is, with few exceptions, cosmopolitan. Five genera, Eridotrypa, Parvohallopora, Heterotrypa, Constellaria, and Peronopora, dominate the fauna, comprising about 77 percent of the thin-sectioned specimens. On the species level the fauna is endemic to the Ordovician of eastern North America and is biostratigraphically restricted to strata of late Blackriveran Stage (Middle Ordovician) to early Maysvillian Stage (middle Late Ordovician). In Kentucky the species of this fauna are restricted to strata between the base of the Lexington Limestone (Kirkfieldian Stage, Middle Ordovician) and the top of the Clays Ferry Formation and its lateral equivalent the Kope Formation (Edenian Stage, lower Upper Ordovician), with few species ranging into strata of early Maysvillian Stage (middle Late Ordovician) in adjacent areas of Indiana and Ohio. On the basis of the known geographic distribution of the various species, the fauna in Kentucky consists of an intermingling of immigrant and endemic species. The immigrant component (11 species) is generally limited to the lower half of the Lexington-Clays Ferry depositional sequence and permits the establishment of a degree of biostratigraphic equivalence with outcrop areas in Minnesota-Iowa and New York. On the species level the fauna in Kentucky is dominated by four: Constellaria teres, Heterotrypa foliacea, Parvohallopora nodulosa, and Eridotrypa mutabilis, in decreasing relative abundance. The first three species are restricted to the upper part of the Lexington Limestone and the Clays Ferry Formation. Eridotrypa mutabilis is restricted to the middle part of the Lexington Limestone and the lower half of the Clays Fer
The significance of salt reconstruction for basin modeling results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johansen, H.; Blomvik, V.; Bonnell, L.
1996-12-31
Salt structures can play a major role in the temperature history as well as in the formation of hydrocarbon traps. Salt movement through time is therefore an important process to incorporate into basin models. Based on this need, a new model for geologic reconstruction of salt geometries was incorporated into the BMT{trademark} basin modeling system. The reconstruction model is based on two basic mechanisms: (1) The ability to change lithology for a polygon (a sub-domain in the cross section) at a given time (litho-switching) and (2) the ability to inflate/deflate mass in polygons. Litho-switching is used where salt diapirs penetratemore » overlaying strata. Inflation/deflation is used to change the shape of a salt polygon. By inflating/deflating parts of polygons, it is possible to restore the salt layer step by step back to original form. The advantage of this approach is its applicability to geological problems that cannot be addressed by many basin modeling systems. To test the approach, we have reconstructed a cross-section from the Central Graben of the North Sea using two different geological models. One model assumes that synforms developed on the surface during Triassic deposition. These synforms were later preserved as sediment {open_quotes}pods{close_quotes}. The other geological model assumes that the salt movement was passively related to eastward basin subsidence, with salt upwelling between rafted Triassic blocks. The test indicate that the approach is versatile and can be used to evaluate the thermal consequences of a number of geologic models of salt movement.« less
The significance of salt reconstruction for basin modeling results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johansen, H.; Blomvik, V.; Bonnell, L.
1996-01-01
Salt structures can play a major role in the temperature history as well as in the formation of hydrocarbon traps. Salt movement through time is therefore an important process to incorporate into basin models. Based on this need, a new model for geologic reconstruction of salt geometries was incorporated into the BMT[trademark] basin modeling system. The reconstruction model is based on two basic mechanisms: (1) The ability to change lithology for a polygon (a sub-domain in the cross section) at a given time (litho-switching) and (2) the ability to inflate/deflate mass in polygons. Litho-switching is used where salt diapirs penetratemore » overlaying strata. Inflation/deflation is used to change the shape of a salt polygon. By inflating/deflating parts of polygons, it is possible to restore the salt layer step by step back to original form. The advantage of this approach is its applicability to geological problems that cannot be addressed by many basin modeling systems. To test the approach, we have reconstructed a cross-section from the Central Graben of the North Sea using two different geological models. One model assumes that synforms developed on the surface during Triassic deposition. These synforms were later preserved as sediment [open quotes]pods[close quotes]. The other geological model assumes that the salt movement was passively related to eastward basin subsidence, with salt upwelling between rafted Triassic blocks. The test indicate that the approach is versatile and can be used to evaluate the thermal consequences of a number of geologic models of salt movement.« less
Lunar and Planetary Science XXXV: Impact-Related Deposits
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Impact-Related Deposits" included:Evidence for a Lightning-Strike Origin of the Edeowie Glass; 57Fe M ssbauer Spectroscopy of Fulgurites: Implications for Chemical Reduction; Ca-Metasomatism in Crystalline Target Rocks from the Charlevoix Structure, Quebec, Canada: Evidence for Impact-related Hydrothermal Activity; Magnetic Investigations of Breccia Veins and Basement Rocks from Roter Kamm Crater and Surrounding Region, Namibia; Petrologic Complexities of the Manicouagan Melt Sheet: Implications for 40Ar-39Ar Geochronology; Laser Argon Dating of Melt Breccias from the Siljan Impact Structure, Sweden: Implications for Possible Relationship to Late Devonian Extinction Events; Lunar Impact Crater, India: Occurrence of a Basaltic Suevite?; Age of the Lunar Impact Crater, India: First Results from Fission Track Dating; The Fluidized Chicxulub Ejecta Blanket, Mexico: Implications for Mars; Low Velocity Ejection of Boulders from Small Lunar Craters: Ground Truth for Asteroid Surfaces; Ejecta and Secondary Crater Distributions of Tycho Crater: Effects of an Oblique Impact; Potassium Isotope Systematics of Crystalline Lunar Spherules from Apollo 16; Late Paleocene Spherules from the North Sea: Probable Sea Floor Precipitates: A Silverpit Provenance Unproven; A Lithological Investigation of Marine Strata from the Triassic-Jurassic Boundary Interval, Queen Charlotte Islands, British Columbia, Including a Search for Shocked Quartz; Triassic Cratered Cobbles: Shock Effects or Tectonic Pressure?; Regional Variations of Trace Element Composition Within the Australasian Tektite Strewn Field; Cretaceous-Tertiary Boundary Microtektite-bearing Sands and Tsunami Beds, Alabama Gulf Coastal Plain; Sand Lobes on Stewart Island as Probable Impact-Tsunami Deposits; Distal Impact Ejecta, Uppermost Eocene, Texas Coastal Plain; and Continental Impact Debris in the Eltanin Impact Layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, J.H.; Nelson, K.D.; Arnow, J.A.
1985-01-01
New COCORP profiling on the Georgia coastal plain indicates that the Triassic/Early Jurassic South Georgia basin is a composite feature, which includes several large half-grabens separated by intervening regions where the Triassic/Early Jurassic section is much thinner. Two half-grabens imaged on the profiles have apparent widths of 125 and 40 km, and at their deepest points contain about 5 km of basin fill. Both basins are bounded on their south flanks by major normal faults that dip moderately steeply toward the north, and are disrupted internally by subsidiary normal faults within the basin fill sequences. The orientation of the mainmore » basin-bounding faults suggests that they might have reactivated Paleozoic south-vergent structures formed on the south side of the Alleghenian suture. Evolution of the South Georgia basin appears to follow a model of initial, rapid rifting followed by flexural subsidence. The major episode of normal faulting, and hence extension, within the South Georgia basin occurred prior to extrusion of an areally extensive sequence of Early Jurassic basalt flows. This sequence is traceable across most of the width of the South Georgia basin in western Georgia, and may extend as far east as offshore South Carolina. Jurassic strata above the basalt horizon are notably less faulted and accumulated within a broadly subsiding basin that thins both to the north and south. The occurrence of the basalt relatively late in the rift sequence supports the hypothesis that the southeastern US may have been a major area of incipient spreading after Pangea had begun to separate.« less
NASA Astrophysics Data System (ADS)
Ridgway, K. D.; Bahlburg, H.; Childress, L. B.; Cowan, E. A.; Forwick, M.; Moy, C. M.; Müller, J.; Ribeiro, F.; Gupta, S.; Gulick, S. P.; Jaeger, J. M.
2013-12-01
The marine sedimentary record of Miocene to Pleistocene tectonics and glaciation is well preserved along the southern Alaska convergent margin. This margin is well suited for linking proximal to distal sediment transport processes because sediment is being generated by glacial erosion in the highest coastal mountain range on earth and subsequently being transported to the Aleutian subduction zone. We will discuss the sedimentary record from two end members of this system: (1) the proximal marine record now exposed onshore in the high peaks of the coastal ranges, and (2) the offshore distal record preserved in the Surveyor submarine fan system that was cored during the 2013 IODP Expedition 341. Onshore the Miocene non-glacial strata are represented by the Poul Creek Fm. This unit is 2000 m thick and in its upper part consists of mudstone, thin sandstone beds (10-30 cm thick), and thick bedded (1-2 m) highly bioturbated green sandstone beds that contain hummocky stratification. We interpret this unit as being deposited mainly in marine shelf environments. A gradational contact between the Poul Creek and the overlying upper Miocene-Pleistocene Yakataga Formation is marked by a transition to mudstone, thick bedded sandstone and glacial diamictite. This transition to glacial dominated deposition is interpreted to have occurred around 5 Ma based on previous studies. The onshore glacimarine strata are 5 km thick and grade up section from submarine fan to marine shelf strata. In the distal submarine fan record at IODP Site U1417, the upper Miocene strata in the lower part of the Site consist of 340 m of highly bioturbated gray to green mud interbedded with coarse sand and sandy diamict. These coarse-grained units are lithic rich with mainly sedimentary, volcanic, and coal clasts. We interpret these units as being derived from coal-bearing sedimentary strata exposed in the onshore thrust belt. These facies are interbedded with diatom ooze; we interpret this combination of facies as representing deposition of coarse-grained detritus originating from sedimentary gravity flows followed by longer periods of hemipelagic deposition. The first clear record of glacial sediment input in the distal submarine fan environment is late Pliocene - early Pleistocene muddy diamict beds that probably are the products of ice-rafting. This unit is about 30 m in thickness. The overlying 260 m of the core are mainly dark gray mud with thin beds of volcanic ash and sand/silt beds. Lonestones are common and are mainly argillite and metasiltstone clasts suggesting at least a component of sediment derivation from onshore metamorphosed parts of the Mesozoic accretionary prism. In general, the overall Neogene sedimentary record in both the proximal and distal marine settings appears to be similar but requires a sediment link between the proximal strata deposited on the Yakutat microplate and the Surveyor fan system deposited on the Pacific Plate.
Sedimentary structures and textures of Rio Orinoco channel sands, Venezuela and Colombia
McKee, Edwin Dinwiddie
1989-01-01
Most sedimentary structures represented in sand bodies of the Rio Orinoco are tabular-planar cross-strata which, together with some wedge-planar cross-strata, are the products of sand-wave deposition. Locally, in areas of river meander where point bars characteristically form, trough structures forming festoon patterns are numerous. At a few localities, sets of nearly horizontal strata occur between tabular-planar sets and are interpreted to be the deposits of very fast currents of the upper flow regime; elsewhere, uncommon lenses and beds of silt, clay, or organic matter consisting of leaves and twigs, seem to be the result of quiet-water settling through gravity. By far the most common grain size represented in the tabular-planar and wedge-planar cross-strata of the sandwave deposits is medium sand (? - ? millimeter) as determined by screen analyses. Many samples, however, also contain moderate quantities of coarse or very coarse sand. Eolian dunes on top of the sand-wave deposits are dominantly fine grained. The river channel sands were determined to be largely moderately well sorted, although in some places they were mostly well sorted, and in others, mostly moderately sorted.
Eble, C.F.; Greb, S.F.; Williams, D.A.
2001-01-01
The Western Kentucky Coal Field is the southern tip of the Eastern Interior, or Illinois Basin. Pennsylvanian rocks in this area, which include conglomerate, sandstone, shale, limestone and coal, were deposited primarily in coastal-deltaic settings at a time when western Kentucky was located close to the equator. This paper discusses temporal changes in regional sedimentation patterns and coal-forming floras of Lower and Middle Pennsylvanian strata in the Western Kentucky Coal Field. Lower Pennsylvanian strata of the Caseyville Formation are characterized by paleovalley-filling sedimentation patterns and extabasinal quartz pebbles. Caseyville Formation coals are characterized thin and discontinuous and were strongly influenced by subsidence within underlying paleovalleys, and the dissected lower Pennsylvanian paleotopography. Caseyville coals are commonly dominated by Lycospora, but can also have variable palynofloras, which probably reflects variable edaphic conditions and edge effects within small, patchy paleomires. Tradewater Formation strata show increased marine influences and tidal-estuarine sedimentation, especially in the middle and upper parts. Coal beds in the lower part of the Tradewater typically are thin and discontinuous, although some economically important beds are present. Coals become thicker, more abundant and more laterally persistent towards the top of the formation. Palynologically, lower and middle Tradewater Formation coals are dominated by Lycospora, but begin to show increased amounts of tree fern spores. Middle and upper Tradewater coals are thicker and more continuous, and contain high percentages of tree fern spores. In addition, cordaite pollen is locally abundant in this interval. Carbondale and Shelburn (Desmoinesian) strata are much more laterally continuous, and occur within classic cyclothems that can be traced across the coal field. Cyclothems have long been interpreted as being eustatically driven, and glacio-eustacy controlled not only sedimentation but also the formation of Desmoinesian paleomires. Palynologically, Carbondale and Shelburn coals are either dominated by Lycospora or have heterogeneous palynofloras. Palynologic and coal-quality data suggest that hydrologic base level may have been the primary control on Desmoinesian paleomires, rather than paleoclimate, as the coals display rheotrophic, rather than ombrotrophic characteristics. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Dong-Xun; Zhang, Yi-Chun; Shen, Shu-Zhong
2018-02-01
A major discrepancy for the age of the Selong Group from middle Cisuralian (Early Permian) to Changhsingian resulted from previous reports of Sakmarian, Kungurian and Guadalupian (Middle Permian) conodonts and Lopingian (Late Permian) brachiopods. Recently, Cisuralian and Guadalupian conodonts were reported again from the Selong Group and the basal part of the Kangshare Formation at the Selong section, but the age discrepancy remains. We present our conodont materials based on large samples collected from the Selong Group and our interpretation based on identifications using a sample population approach. Three conodont zones are recognized in our re-investigation of the upper part of the Selong Group. They include the Vjalovognathus sp., the Mesogondolella hendersoni, and the M. sheni zones, in ascending order. These zones are overlain by the basal Triassic Hindeodus parvus Zone and the Otoceras woodwardi Zone. Our reassessment of conodonts reported by previous studies from Selong and nearby sections suggest that all specimens consistently point to a Lopingian age; the upper part of the Selong Group is latest Changhsingian in age based on the presence of Clarkina orchardi and Mesogondolella sheni. Previously reported early Cisuralian and Guadalupian conodonts are misidentified using a form species concept. A hiatus may be present at the erosional surface between the Selong Group and the Waagenites Bed of the basal part of the Kangshare Formation. However, the hiatus is minimal because conodont and brachiopod assemblages above and below this surface are very similar, and it results from a latest Changhsingian transgression just before the extinction that follows a global latest Changhsingian regression. There is a distinct rapid end-Permian mass extinction at Selong within the Waagenites Bed, as indicated by the disappearances of all benthic brachiopods, rugose corals and Permian bryozoans. The burst of Clarkina species in the Waagenites Bed and throughout the entire Lower Triassic at Selong is interpreted as a southward migration of equatorial conodont animals associated with the rapid global warming beginning at the end of the Permian. The cool- or cold-water species of Mesogondolella, in the upper part of the Selong Group and the basal part of the Kangshare Formation, are representative of the uppermost Permian in the bipolar/bi-temperate cold-water province and are not reworked from the underlying Selong Group or any other unknown Cisuralian or Guadalupian deposits.
Geology of the Ulugh Muztagh area, northern Tibet
Burchfiel, B.C.; Molnar, P.; Zhao, Ziyun; Liang, K'uangyi; Wang, Shuji; Huang, Minmin; Sutter, J.
1989-01-01
Within the Ulugh Muztagh area, north central Tibet, an east-west-trending ophiolitic melange marks a suture that apparently was formed during a late Triassic or slightly younger collision between a continental fragment to the south and the rest of Asia. The southern continental fragment carries a thick sequence of upper Triassic sandstone, but the contact between the sandstone and the ophiolitic melange is covered by a younger redbed sequence of unknown age. A suite of 2-mica, tourmaline-bearing leucogranite plutons and dikes intruded the Triassic sandstone at shallow crustal levels 10.5 to 8.4 Ma. These rocks range from granite to tonalite in composition, are geochemically very similar to slightly older High Himalayan leucogranite and are interpreted to have been derived by the partial melting of crustal material. We interpret this to mean that crustal thickening began in this part of the Tibetan plateau at least by 10.5 Ma. Welded rhyolitic tuff rests on a conglomerate that consists of abundant debris from the Ulugh Muztagh intrusive rocks and has yielded Ar Ar ages of about 4 Ma. The tuffs are geochemically identical to the intrusive rocks suggesting that crustal thickening may have continued to 4 Ma. Crustal thickening probably occurred by distributed crustal shortening similar to shortening now occurring north of Ulugh Muztagh along the northern margin of the Tibetan Plateau. ?? 1989.
Reconnaissance geologic map of the Hyampom 15' quadrangle, Trinity County, California
Irwin, William P.
2010-01-01
The Hyampom 15' quadrangle lies west of the Hayfork 15' quadrangle in the southern part of the Klamath Mountains geologic province of northern California. It spans parts of four generally northwest-trending tectono- stratigraphic terranes of the Klamath Mountains, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, a small part of the Pickett Peak terrane of the Coast Range province. Remnants of the Cretaceous Great Valley overlap sequence that once covered much of the pre-Cretaceous bedrock of the quadrangle are now found only as a few small patches in the northeast corner of the quadrangle. Fluvial and lacustrine deposits of the mid-Tertiary Weaverville Formation crop out in the vicinity of the village of Hyampom. The Eastern Hayfork terrane is a broken formation and m-lange of volcanic and sedimentary rocks that include blocks of chert and limestone. The chert has not been sampled; however, chert from the same terrane in the Hayfork quadrangle contains radiolarians of Permian and Triassic ages, but none clearly of Jurassic age. Limestone at two localities contains late Paleozoic foraminifers. Some of the limestone from the Eastern Klamath terrane in the Hayfork quadrangle contains faunas of Tethyan affinity. The Western Hayfork terrane is part of an andesitic volcanic arc that was accreted to the western edge of the Eastern Hayfork terrane. It consists mainly of metavolcaniclastic andesitic agglomerate and tuff, as well as argillite and chert, and it includes the dioritic Ironside Mountain batholith that intruded during Middle Jurassic time (about 170 Ma). This intrusive body provides the principal constraint on the age of the terrane. The Rattlesnake Creek terrane is a melange consisting mostly of highly dismembered ophiolite. It includes slabs of serpentinized ultramafic rock, basaltic volcanic rocks, radiolarian chert of Triassic and Jurassic ages, limestone containing Late Triassic conodonts and Permian or Triassic foraminifers, and small exotic(?) plutons. The plutons probably are similar to ones to the southeast beyond the quadrangle boundary that yielded isotopic ages ranging from 193 Ma to 207 Ma. The Rattlesnake Creek terrane contains several areas of well- bedded sedimentary rocks (rcs) that somewhat resemble the Galice(?) Formation and may be inliers of the Western Jurassic terrane. The Western Jurassic terrane in the Hyampom quadrangle appears to consist only of a narrow tectonic sliver of slaty to semischistose detrital sedimentary rocks of the Late Jurassic Galice(?) Formation. The isotopic age of metamorphism of the rocks is about 150 Ma, which probably indicates when the terrane was accreted to the Rattlesnake Creek terrane. The Pickett Peak terrane, which is the most westerly of the succession of terranes in the Hyampom quadrangle, is the accreted eastern margin of the Coast Ranges province. It mainly consists of semischistose and schistose metagraywacke of the South Fork Mountain Schist and locally contains the blueschist-facies mineral lawsonite. Isotopic analysis indicates a metamorphic age of 120 to 115 Ma. During the Cretaceous period, much of the southern fringe of the Klamath Mountains was onlapped by sedimentary strata of the Great Valley sequence. However, much of the onlapping Cretaceous strata has since been eroded away, and in the Hyampom quadrangle only a few small remnants are found in the northeast corner near Big Bar. Near the west edge of the quadrangle, in the vicinity of the village of Hyampom, weakly consolidated fluvial and lacustrine rocks and coaly deposits of Oligocene and (or) Miocene age are present. These rocks are similar to the Weaverville Formation that occurs in separate sedimentary basins to the east in the Weaverville and Hayfork 15? quadrangles. This map of the Hyampom 15' quadrangle is a digital version of U.S. Geological Survey Miscellaneous Field Stu
Plant taphonomy in incised valleys: Implications for interpreting paleoclimate from fossil plants
Demko, T.M.; Dubiel, R.F.; Parrish, Judith T.
1998-01-01
Paleoclimatic interpretations of the Upper Triassic Chinle Formation (Colorado Plateau) based on plants conflict with those based on the sedimentary rocks. The plants are suggestive of a humid, equable climate, whereas the rocks are more consistent with deposition under highly seasonal precipitation and ground-water conditions. Fossil plant assemblages are limited to the lower members of the Chinle Formation, which were deposited within incised valleys that were cut into underlying Lower to Middle Triassic and older rocks. In contrast, the upper members of the formation, which were deposited across the fluvial plain after the incised valleys were filled, have few preserved fossil plants. The taphonomic characteristics of the plant fossil assemblages, within the stratigraphic and hydrologic context of the incised valley-fill sequence, explain the vertical and lateral distribution of these assemblages. The depositional, hydrological, and near-surface geochemical conditions were more conducive to preservation of the plants. Fossil plant assemblages in fully terrestrial incised-valley fills should be taphonomically biased toward riparian wetland environments. If those assemblages are used to interpret paleoclimate, the paleoclimatic interpretations will also be biased. The bias may be particularly strong in climates such as those during deposition of the Chinle Formation, when the riparian wetlands may reflect local hydrologic conditions rather than regional climate, and should be taken into account when using these types of plant assemblages in paleoclimatic interpretations.
NASA Astrophysics Data System (ADS)
Beniest, Anouk; van Gelder, Inge; Matenco, Liviu; Willingshofer, Ernst; Gruic, Andrea; Tomljenovic, Bruno
2013-04-01
Quantifying the kinematics of the Miocene extension in the Pannonian Basin is of critical importance for understanding the evolution of Adria-Europe collision in particular in the transitional zone from the Alps (Adria the upper plate) to the Dinarides (Adria the lower plate). Recent studies have demonstrated that large-scale extensional unroofing and core-complex formation affected the Europe-Adria contact in the Dinarides during Miocene times. The relationship between this extensional exhumation of Adriatic units and the roughly coeval Miocene extension affecting the Alpine-derived units during their E-ward extrusion into the intra-Carpathians ALCAPA block and the formation of the Pannonian basin is still unknown. One key area situated in the transitional zone is the Medvednica Mountains of Croatia, an area that benefits from already existing and extensive petrological and structural studies. The area of the Medvednica Mountains has been targeted by the means of a field kinematic analysis complemented by low-temperature thermochronology, metamorphic petrology and sedimentological observations. The results demonstrate that two units, reflecting distinct Adriatic paleogeographical positions, make up the structural geometry of the mountains. The upper unit contains Paleozoic mostly fine clastic sequence metamorphosed in sub-greenschist facies, overlain by a proximal Adriatic facies consisting of Triassic shallow water carbonates. The lower unit is made up by a volcanic sequence overlain by gradual deepening Triassic carbonates metamorphosed in greenschist facies that bears a strong resemblance to the Triassic break-up volcanism and subsequent sedimentation affecting the distal Adriatic units observed elsewhere in the Jadar-Kopaonik unit of the Dinarides. The strong contrast between the Middle-Upper Triassic facies suggests large scale thrusting during Cretaceous nappe stacking. Subsequently, the studied area has been affected by significant extensional deformation creating the present-day turtleback geometry. This resulted in the formation of brittle normal faults in both units, locally tilted by the uplift of the mountain core, which indicate mostly NE-SW extension. The lower unit is affected by a pervasive deformation characterized by a wide mylonitic shear zone with stretching lineations indicating consistently top-NE to E sense of shear. The present-day structural geometry of the mountains was established during the Pliocene-Quaternary inversion. The exact ages of nappe-stacking and subsequent extensional exhumation will be clarified by the upcoming low-temperature thermochronology and absolute age dating study. However, available results demonstrate that the extensional geometry and sense of shear is typical for the Miocene extensional exhumation and basin formation that affected the Adria-Europe contact elsewhere in the Dinarids, e.g. Kozara-Prosara-Motajica and Fruska Gora extensional structures. By comparing similar extensional features observed in for instance the Rechnitz and Pohorje extensional structures, the combined study potentially demonstrates that the Miocene mechanism of extension and sense of shear is structurally coherent at the scale of the entire Dinaridic and Alpine margins.
NASA Astrophysics Data System (ADS)
Tye, A. R.; Niemi, N. A.
2016-12-01
The Greater Caucasus (GC) mountain range is composed of thrust sheets of Paleozoic (Pz) - Mesozoic (Mz) flysch. Crystalline basement is exposed in the western part of the range, but not in the eastern. Detrital zircon ages from Eocene - recent foreland strata to the south of the western GC in Georgia suggest sediment sourcing from GC basement or Pz strata since Eocene time, requiring significant exhumation prior to or coincident with the onset of Arabia-Eurasia collision 30 Ma. We sampled foreland basin sedimentary rocks and modern river sands whose catchment areas together span the potential source rocks exposed in the western Greater Caucasus (GC) in Georgia. We find that GC basement rocks and lower Pz strata contain a diagnostic 450 Ma zircon population that is absent from the upper Pz and Mz sedimentary strata that are exposed throughout most of the range. These 450 Ma zircons are from an unknown source with an age distinct from the Hercynian ( 300 Ma) and Pan-African ( 600 Ma) orogens. Despite their absence in late Pz and Mz strata, the 450 Ma zircons are prevalent in Eocene - recent foreland basin deposits, whose ages were determined biostratigraphically [1]. Paleocurrent directions also indicate a GC source for Eocene strata [2], necessitating early Cenozoic exposure of GC basement or Pz strata. Exposing GC basement or Pz strata during Eocene time requires erosional removal of >3500 m of Mesozoic and late Paleozoic strata [1]. The detrital zircon age observations suggest that erosional removal of these strata took place prior to the initiation of the Arabia-Eurasia collision at 30 Ma and well before the ongoing episode of rapid GC exhumation and erosion from 5 Ma - present. Foreland basin detrital zircon ages also reveal a lack of input from Late Cretaceous to Paleogene volcanism of the Adjara-Trialet zone. This finding is consistent with the existence of a Paleogene ocean basin between the Greater Caucasus and Lesser Caucasus wide enough to prevent transport of sand sized sediments from one side to the other. References[1] Gamkrelidze, P. D., & I. R. Kakhazdze (1959), K-38-VII, Min. Geol. Min. Prot. USSR. [2] Vincent, S. J., et al. (2007). Terra Nova, 19(2), 160-166. [3] Avdeev, B., & Niemi, N. A. (2011). Tectonics, 30(2), TC2009[4] Nalivkin, D. V. (1976). Geologic Map of the Caucasus, 1:500000.
Tetrapod tracks in Permo-Triassic eolian beds of southern Brazil (Paraná Basin).
Francischini, Heitor; Dentzien-Dias, Paula; Lucas, Spencer G; Schultz, Cesar L
2018-01-01
Tetrapod tracks in eolianites are widespread in the fossil record since the late Paleozoic. Among these ichnofaunas, the ichnogenus Chelichnus is the most representative of the Permian tetrapod ichnological record of eolian deposits of Europe, North America and South America, where the Chelichnus Ichnofacies often occurs. In this contribution, we describe five sets of tracks (one of which is preserved in cross-section), representing the first occurrence of Dicynodontipus and Chelichnus in the "Pirambóia Formation" of southern Brazil. This unit represents a humid desert in southwestern Pangea and its lower and upper contacts lead us to consider its age as Lopingian-Induan. The five sets of tracks studied were compared with several ichnotaxa and body fossils with appendicular elements preserved, allowing us to attribute these tracks to dicynodonts and other indeterminate therapsids. Even though the "Pirambóia Formation" track record is sparse and sub-optimally preserved, it is an important key to better understand the occupation of arid environments by tetrapods across the Permo-Triassic boundary.
NASA Astrophysics Data System (ADS)
Dekayir, Abdelilah; Danot, Michel; Allali, Nabil
2002-09-01
Triassic basalt of the Middle Atlas has been subject to metamorphic transformation then weathering. Occurrence in both metabasalt and saprolite of ubiquitous clay minerals, such as smectite and mixed layers chlorite-smectite, makes it difficult to distinguish between the two alteration facies and explains the interest of complementary sources of information. In the Bhallil weathering profile, petrographical and mineralogical analyses of primary igneous minerals and their alteration products coupled with Fe oxidation state determination in clay fractions allow to identify three alteration facies: ( i) metamorphic basalt, where iron occurs mainly as the ferrous form; ( ii) the lower part of saprolite, where iron is partially oxidized to its ferric form; ( iii) the upper part of saprolite, where iron is completely oxidized. To cite this article: A. Dekayir et al., C. R. Geoscience 334 (2002) 877-884.
Allain, Ronan
2016-01-01
Melanorosaurus is a genus of basal sauropodomorph that currently includes two species from Southern Africa. In this paper, we redescribe the holotype femur of Melanorosaurus thabanensis from the Elliot Formation of Lesotho, as well as associated remains. The stratigraphic position of this taxon is reviewed, and it is clear that it comes from the Lower Elliot Formation being, therefore, Late Triassic in age, and not Early Jurassic as originally described. The knowledge of the anatomy of the basal sauropodomorph of Thabana Morena is enhanced by the description of six new skeletal elements from the type locality. The femur and the ilium from Thabana Morena are diagnostic and characterized by unusual proportions. The first phylogenetic analysis including both this specimen and Melanorosaurus is conducted. This analysis leads to the conclusion that the femur described in the original publication of Melanorosaurus thabanensis can no longer be referred to Melanorosaurus. For these reasons, we hereby create Meroktenos gen. nov. to encompass Meroktenos thabanensis comb. nov. PMID:26855874
Eoff, Jennifer D.
2014-01-01
New data from detailed measured sections permit a comprehensive revision of the sedimentary facies of the Furongian (upper Cambrian; Jiangshanian and Sunwaptan stages) Tunnel City Group (Lone Rock Formation and Mazomanie Formation) of Wisconsin and Minnesota. Heterogeneous sandstones, comprising seven lithofacies along a depositional transect from shoreface to transitional-offshore environments, record sedimentation in a storm-dominated, shallow-marine epicontinental sea. The origin of glauconite in the Birkmose Member and Reno Member of the Lone Rock Formation was unclear, but its formation and preserved distribution are linked to inferred depositional energy rather than just net sedimentation rate. Flat-pebble conglomerate, abundant in lower Paleozoic strata, was associated with the formation of a condensed section during cratonic flooding. Hummocky cross-stratification was a valuable tool used to infer depositional settings and relative paleobathymetry, and the model describing formation of this bedform is expanded to address flow types dominant during its genesis, in particular the importance of an early unidirectional component of combined flow. The depositional model developed here for the Lone Rock Formation and Mazomanie Formation is broadly applicable to other strata common to the early Paleozoic that document sedimentation along flooded cratonic interiors or shallow shelves.
Study on Strata Behavior Regularity of 1301 Face in Thick Bedrock of Wei - qiang Coal Mine
NASA Astrophysics Data System (ADS)
Gu, Shuancheng; Yao, Boyu
2017-09-01
In order to ensure the safe and efficient production of the thick bedrock face, the rule of the strata behavior of the thick bedrock face is discussed through the observation of the strata pressure of the 1301 first mining face in Wei qiang coal mine. The initial face is to press the average distance of 50.75m, the periodic weighting is to press the average distance of 12.1m; during the normal mining period, although the upper roof can not be broken at the same time, but the pressure step is basically the same; the working face for the first weighting and periodical weighting is more obvious to the change of pressure step change, when the pressure of the working face is coming, the stent force increased significantly, but there are still part of the stent work resistance exceeds the rated working resistance, low stability, still need to strengthen management.
NASA Astrophysics Data System (ADS)
Dhraief, Wissem; Dhahri, Ferid; Chalwati, Imen; Boukadi, Noureddine
2017-04-01
The objective and the main contribution of this issue are dedicated to using subsurface data to delineate a basin beneath the Gulf of Tunis and its neighbouring areas, and to investigate the potential of this area in terms of hydrocarbon resources. Available well data provided information about the subsurface geology beneath the Gulf of Tunis. 2D seismic data allowed delineation of the basin shape, strata geometries, and some potential promising subsurface structures in terms of hydrocarbon accumulation. Together with lithostratigraphic data obtained from drilled wells, seismic data permitted the construction of isochron and isobath maps of Upper Cretaceous-Neogene strata. Structural and lithostratigraphic interpretations indicate that the area is tectonically complex, and they highlight the tectonic control of strata deposition during the Cretaceous and Neogene. Tectonic activity related to the geodynamic evolution of the northern African margin appears to have been responsible for several thickness and facies variations, and to have played a significant role in the establishment and evolution of petroleum systems in northeastern Tunisia. As for petroleum systems in the basin, the Cretaceous series of the Bahloul, Mouelha and Fahdene formations are acknowledged to be the main source rocks. In addition, potential reservoirs (Fractured Abiod and Bou Dabbous carbonated formations) sealed by shaly and marly formations (Haria and Souar formations respectively) show favourable geometries of trap structures (anticlines, tilted blocks, unconformities, etc.) which make this area adequate for hydrocarbon accumulations.
Ridgley, Jennie L.; Light, Thomas D.
1983-01-01
The Chama River Canyon Wilderness and Roadless Area have a moderate to high potential for the presence of small deposits of copper with associated uranium and silver. These deposits, as yet undetected, would occur in the Permian Cutler Formation and in the lower part of the Triassic Chinle Formation, rock units that are, for the most part, present only in the subsurface. The presence of these deposits is inferred because such deposits occur in rocks of equivalent age in adjacent areas. Gypsum, of probable minable quality and quantity, occurs throughout the area. Oil and gas are possibly present in Pennsylvanian strata in the subsurface, although no drilling in the study area has tested this hypothesis. Other commodities, including noncopper-related uranium, kaolinite, chromium, vanadium, manganese, and bitumen, although present locally in anomalous concentrations, do not appear to constitute potential resources for these commodities.
The Oldest Jurassic Dinosaur: A Basal Neotheropod from the Hettangian of Great Britain.
Martill, David M; Vidovic, Steven U; Howells, Cindy; Nudds, John R
2016-01-01
Approximately 40% of a skeleton including cranial and postcranial remains representing a new genus and species of basal neotheropod dinosaur is described. It was collected from fallen blocks from a sea cliff that exposes Late Triassic and Early Jurassic marine and quasi marine strata on the south Wales coast near the city of Cardiff. Matrix comparisons indicate that the specimen is from the lithological Jurassic part of the sequence, below the first occurrence of the index ammonite Psiloceras planorbis and above the last occurrence of the Rhaetian conodont Chirodella verecunda. Associated fauna of echinoderms and bivalves indicate that the specimen had drifted out to sea, presumably from the nearby Welsh Massif and associated islands (St David's Archipelago). Its occurrence close to the base of the Blue Lias Formation (Lower Jurassic, Hettangian) makes it the oldest known Jurassic dinosaur and it represents the first dinosaur skeleton from the Jurassic of Wales. A cladistic analysis indicates basal neotheropodan affinities, but the specimen retains plesiomorphic characters which it shares with Tawa and Daemonosaurus.
Robinson, J.W.; McCabea, P.J.
1997-01-01
Excellent three-dimensional exposures of the Upper Jurassic Salt Wash Sandstone Member of the Morrison Formation in the Henry Mountains area of southern Utah allow measurement of the thickness and width of fluvial sandstone and shale bodies from extensive photomosaics. The Salt Wash Sandstone Member is composed of fluvial channel fill, abandoned channel fill, and overbank/flood-plain strata that were deposited on a broad alluvial plain of low-sinuosity, sandy, braided streams flowing northeast. A hierarchy of sandstone and shale bodies in the Salt Wash Sandstone Member includes, in ascending order, trough cross-bedding, fining-upward units/mudstone intraclast conglomerates, singlestory sandstone bodies/basal conglomerate, abandoned channel fill, multistory sandstone bodies, and overbank/flood-plain heterolithic strata. Trough cross-beds have an average width:thickness ratio (W:T) of 8.5:1 in the lower interval of the Salt Wash Sandstone Member and 10.4:1 in the upper interval. Fining-upward units are 0.5-3.0 m thick and 3-11 m wide. Single-story sandstone bodies in the upper interval are wider and thicker than their counterparts in the lower interval, based on average W:T, linear regression analysis, and cumulative relative frequency graphs. Multistory sandstone bodies are composed of two to eight stories, range up to 30 m thick and over 1500 m wide (W:T > 50:1), and are also larger in the upper interval. Heterolithic units between sandstone bodies include abandoned channel fill (W:T = 33:1) and overbank/flood-plain deposits (W:T = 70:1). Understanding W:T ratios from the component parts of an ancient, sandy, braided stream deposit can be applied in several ways to similar strata in other basins; for example, to (1) determine the width of a unit when only the thickness is known, (2) create correlation guidelines and maximum correlation lengths, (3) aid in interpreting the controls on fluvial architecture, and (4) place additional constraints on input variables to stratigraphie and fluid-flow modeling. The usefulness of these types of data demonstrates the need to develop more data sets from other depositional environments.
NASA Astrophysics Data System (ADS)
Liu, Jun; Hu, Shi-Xue; Rieppel, Olivier; Jiang, Da-Yong; Benton, Michael J.; Kelley, Neil P.; Aitchison, Jonathan C.; Zhou, Chang-Yong; Wen, Wen; Huang, Jin-Yuan; Xie, Tao; Lv, Tao
2014-11-01
The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic.
Liu, Jun; Hu, Shi-Xue; Rieppel, Olivier; Jiang, Da-Yong; Benton, Michael J; Kelley, Neil P; Aitchison, Jonathan C; Zhou, Chang-Yong; Wen, Wen; Huang, Jin-Yuan; Xie, Tao; Lv, Tao
2014-11-27
The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic.
Racheboeuf, Patrick R.; Moore, Thomas E.; Blodgett, Robert B.
2004-01-01
Newly discovered fossil localities in coarse-grained deposits of the Pennsylvanian and Permian Antler overlap assemblage in the southern Shoshone Range, north-central Nevada have yielded a low-diversity assemblage consisting chiefly of a new species of chonetoidean brachiopod: Dyoros (Lissosia) nevadaensis nov. sp. The subgenus Dyoros (Lissosia), is known from Leonardian and lower Guadalupian strata in North America, mainly in Texas. The coarse-grained lithology of the host strata, their unconformable relation on deformed lower Paleozoic rocks, and the Leonardian and(or) lower Guadalupian age indicated by Dyoros (Lissosia) provide evidence that host strata are younger than strata of the Antler overlap assemblage in nearby areas of the southern Shoshone Range and suggest that an unconformity of local extent may be present within the overlap assemblage. The fossil age ranges and lithologic data suggest that the host strata may be correlative with the Guadalupian Edna Mountain Formation, an unconformity-bounded unit that forms the upper part of the Antler sequence in the Battle Mountain area to the north. This correlation suggests that the unconformity beneath these strata may have regional extent in north-central Nevada. The origin of the inferred regional unconformity is unknown and may have resulted from relative changes of sea level or regional extensional or contractional tectonism in the area of the former Antler highlands, which forms the substrate for the Antler overlap assemblage. ?? 2004 Elsevier SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Zaw, Khin
The granitoid rocks in Burma extend over a distance of 1450 km from Putao, Kachin State in the north, through Mogok, Kyaukse, Yamethin and Pyinmana in the Mandalay Division, to Tavoy and Mergui areas, Tenasserim Division, in the south. The Burmese granitoids can be subdivided into three N-S trending, major belts viz. western granitoid belt, central graniotoid belt and eastern granitoid belt. The Upper Cretaceous-Lower Eocene western belt granitoids are characterized by high-level intrusions associated with porphyry Cu(Au) related, younger volcanics; these plutonic and volcanic rocks are thought to have been emplaced as a magmatic-volcanic arc (inner magmatic-volcanic arc) above an east-dipping, but westwardly migrating, subduction zone related to the prolonged plate convergence which occurred during Upper Mesozoic and Cenozoic. The central granitoid belt is characterized by mesozonal, Mostly Upper Cretaceous to Lower Eocene plutons associated with abundant pegmalites and aplites, numerous vein-type W-Sn deposits and rare co-magmatic volcanics. The country rocks are structurally deformed, metamorphic rocks of greenschist to upper amphibolite facies ranging in age as early as Upper Precambrian to Upper Paleozoic and locally of fossiliferous, metaclastic rocks (Mid Jurassic to Lower Cretaceous). Available K/Ar radiometric data indicate significant and possibly widespread thermal disturbances in the central granitoid belt during the Tertiary (mostly Miocence). In this study, the distribution, lithological, textural and structural characteristics of the central belt granitoids are reviewed, and their mineralogical, petrological, and geochemical features are presented. A brief description of W-Sn ore veins associated with these granitoid plutons is also reported. Present geological, petrological and geochemical evidences demonstrate that the W-Sn related, central belt granitoids are mostly granodiorite and granite which are commonly transformed into granitoid gneisses. These central belt granitoids were formed from a calc-alkaline magma derived from a source of continental, sialic materials. Highly potassiccharacters and high initial Sr 87/Sr 86 ratios (0.717±0.002) and Rb/Sr ratios (0.40-33.10) with an average value of 6.70, further corroborate their derivation from a well established continental, sialic basement. Although future chemical and isotopic investigations would be desirable, none of the present evidence argues the interpretation that the granitoid magma was generated by the re-melting of the regionally metamorphosed country rocks. The close association of W-Sn bearing quartz veins and the granitoid rocks also suggests that the metals were derived from the same crustal sources as their host granitoids. The central belt granitoids are considered to have been emplaced during the continent-arc collision of inferred Upper Triassic-Jurassic magmatic-volcanic arc with the continental foreland to the east at the early stage of westward migration of the east-dipping subduction zone to the west. The W-Sn related, central belt granitoids of Upper Mesozoic-Lower Eocene are notably different from those of mainly Triassic granitoids from northern Thailand and Permo-Triassic granites of the Malay Peninsula, and thus the central belt granitoids were emplaced in a uniquely distinct geologic and tetonic setting in the SE Asian region. Major element data for the central belt granitoids, which are associated with W-Sn mineralization lie within the field of Sn-mineralizing granites from New England in Na-K-Ca plot (Juniper and Kleeman, J. Geochem. Explor.11, 321-333, 1979), but largely outside the field on SiO 2CaO +_MgO + FeONa 2O + K 2O + Al 2O 3 plot. Trace element abundances of the central belt granitoid rocks suggest that the Sn content of the granitoids alone should be used with great caution to discriminate the W-Sn bearing (mineralized) granitoid plutons from the W-Sn poor (barren) plutons in search for the W-Sn deposits in Burma, but trace element data show the tendency for granitoid plutons which bear W-Sn mineralization to be comparatively more enriched in Be, Bi, Cu, Mo, Pb, Sn, Y, and Zn, but less depleted in Ba and Zr than those plutons in which no W-Sn occurrences are recorded. The eastern belt granitoids are still largely unknown but characterized by medium to coarsely porphyritic textures and country rocks of regionally metamorphosed, turbiditic sediments of Chaung Magyi Group (Upper Precambrian). This eastern granitoid belt lies immediately to the north of mostly Triassic granitoids in northern Thailand, and the Sn-W bearing, mesozonal, Permo-Triassic, Main Range granitoids in the western part of the Malay Peninsula. The latter granitoid swere considered to have been emplaced during continental collision, but geologic and tectonic information for the eastern belt grantoids in Burma are still incomplete to confirm this contention. Alternatively, present available geologic evidences cannot rule out the possibility that the eastern belt granitoids were emplaced in a continental margin above an eastward subducting ocean floor during the Lower Paleozoic. According to the criteria given by Chappell and White ( Pacific Geol.8, 173-174, 1974), the porphyry Cu(Au)-related, western granitoid belt plutons have I-type characteristics, whereas the W-Sn related, central granitoid belt contains both the hornblende-bearing I-type granitoids as older intrusive phases and the W-Sn bearing, S-type granitoids as younger plutonic phases. The eastern belt granitoids cannot be classified as being of either I- or S-type, as petrochemical data are still lacking.
Stevens, C.H.; Stone, P.; Miller, J.S.
2005-01-01
Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left-lateral displacement along this fault zone. If this model is correct, the Mojave-Sonora megashear played a direct role in the Pennsylvanian truncation of the continental margin, and any younger displacement on this fault has been relatively small. ?? 2005 Geological Society of America.
Spatial biostratigraphy of NW Pakistan
NASA Astrophysics Data System (ADS)
Shafique, Naseer Ahmed
2001-07-01
Mesozoic to Cenozoic biostratigraphy of NW Pakistan has been conducted in order to document the temporal and spatial relationship between different marine strata with the help of remote sensing and Geographic Information Systems (GIS). These relationships were then used to help distinguish different tectonostratigraphic units in the Waziristan and the Kurram areas located at the northwestern margin of the Indo-Pakistani craton. Extensive biostratigraphic work in the Waziristan and Kurram areas enabled to distinguish five tectonostratigraphic units and two significant unconformities in the study area. Different foraminiferal zones from Early Jurassic to Middle Eocenewere developed, although due to random samples these zones are not continuous in the sedimentary record. However continuous biozonation from the Late Paleocene P4 to the Early Eocene P9 (Bolli, 1985) biozone was observed. It is observed that the Santonian stage is generally missing in the sedimentary sequence, and it is only found in the olistoliths. This implies that during the Campanian stage there was instability in the shelf due to ophiolite obduction, which caused the displacement of the Santonian strata. The absence of Early Paleocene (Zone P1--P3) microfauna is suggested by rapid subsidence of the NW Indian shelf beginning in the early Paleocene. Moreover, index fossils for the Palpha, P1a, b, c, d, P2 and P3 biozones are absent in the melange of the Thal area suggesting regional uplift during the Paleocene. The presence of Planorotalites pseudomenardii P4 zone microfauna above the unconformable Upper Cretaceous Kahi melange strata suggest the India-Asia collision age between 58 Ma--56 Ma. Foraminiferal biostratigraphy of upper Cretaceous olistoliths was conducted from the Mughal Kot gorge, Baluchistan, Pakistan in order to reveal the depositional history of Late Santonian aged (Dicarinella asymmetrica zone) olistoliths and associated upper Cretaceous to early Tertiary Indo-Pakistani shelf strata. These olistoliths are embedded in uppermost Campanian strata of the Mughal Kot Formation. Similar olistostromes are found at approximately the same stratigraphic level across a broad region of NW Pakistan. These olistostromes are similar in age to radiometrically constrained deformation in the Zhob and Waziristan ophiolites 50 and 90 km to the west and northwest respectively and may record incipient underthrusting of the NW Indo Pakistani craton beneath oceanic crust now in Waziristan and northern Baluchistan. This Campanian event precedes stratigraphically constrained Paleocene and Early Eocene deformation in Parachinar, Orakzai and the Attock-Cherat Ranges, which is interpreted as the collision of NW Indo-Pakistan with Asia and the Kabul Block. A turbiditic depositional environment of the Mughal Kot Formation was developed due to the regional collapse of the NW Indo-Pakistani shelf margin during the Late Campanian (G. calcarata zone ˜80--74 Ma), possibly as a result of ophiolite obduction as the Indo-Pakistani plate moved beneath Tethyan oceanic crust.
Structural implications of an offset Early Cretaceous shoreline in northern California
Jones, D.L.; Irwin, W.P.
1971-01-01
Recognition of a nonmarine to marine transition in sedimentary rocks at Glade Creek and Big Bar in the southern Klamath Mountains permits reconstruction of the approximate position of a north-trending Early Cretaceous (Valanginian) shoreline. At the southern end of the Klamath Mountains, the shoreline is displaced 60 mi or more to the east by a west-northwest-trending fault zone. South of this fault zone the shoreline is buried at a much lower level beneath late Cenozoic rocks in the Great Valley. This large displacement probably is the result of differential movement along a system of left-lateral tear faults in the upper plate of the Coast Range thrust. The westward bulge of the Klamath arc also may have resulted from this faulting, as the amount and direction of the bulge is comparable with the displacement of the Valanginian shoreline.Basal clastic strata at both Glade Creek and Big Bar contain abundant fresh-water or brackish-water clams, many of which consist of unabraded paired valves. These are conformably overlain by Valanginian marine strata containing Buchia crassicollis solida.The position of the Valanginian shoreline beneath the Great Valley cannot be directly observed because it is buried by thick late Cenozoic deposits. However, its approximate westernmost limit must lie between the outcrop belt of marine strata on the west side of the valley and drill holes to basement on the east side, in which equivalent strata are absent.Franciscan rocks containing Valanginian fossils occur 10 mi southwest of Glade Creek, but these are deep-water marine eugeosynclinal rocks that were deposited far to the west of the shoreline. The deformation responsible for the displacement of the Valanginian shoreline and juxtaposition of the Franciscan rocks and Klamath Mountain basement rocks involved eastward under-thrusting of the Franciscan beneath the Coast Range thrust contemporaneous with differential movement along tear faults within the upper plate.
Analysis of gob gas venthole production performances for strata gas control in longwall mining.
Karacan, C Özgen
2015-10-01
Longwall mining of coal seams affects a large area of overburden by deforming it and creating stress-relief fractures, as well as bedding plane separations, as the mining face progresses. Stress-relief fractures and bedding plane separations are recognized as major pathways for gas migration from gas-bearing strata into sealed and active areas of the mines. In order for strata gas not to enter and inundate the ventilation system of a mine, gob gas ventholes (GGVs) can be used as a methane control measure. The aim of this paper is to analyze production performances of GGVs drilled over a longwall panel. These boreholes were drilled to control methane emissions from the Pratt group of coals due to stress-relief fracturing and bedding plane separations into a longwall mine operating in the Mary Lee/Blue Creek coal seam of the Upper Pottsville Formation in the Black Warrior Basin, Alabama. During the course of the study, Pratt coal's reservoir properties were integrated with production data of the GGVs. These data were analyzed by using material balance techniques to estimate radius of influence of GGVs, gas-in-place and coal pressures, as well as their variations during mining. The results show that the GGVs drilled to extract gas from the stress-relief zone of the Pratt coal interval is highly effective in removing gas from the Upper Pottsville Formation. The radii of influence of the GGVs were in the order of 330-380 m, exceeding the widths of the panels, due to bedding plane separations and stress relieved by fracturing. Material balance analyses indicated that the initial pressure of the Pratt coals, which was around 648 KPa when longwall mining started, decreased to approximately 150 KPa as the result of strata fracturing and production of released gas. Approximately 70% of the initial gas-in-place within the area of influence of the GGVs was captured during a period of one year.
Effects of fine sediment on fish populations
Russ Thurow; Jack King
1991-01-01
To describe conditions in natural redds of steelhead trout (Oncorhynchus mykiss), we evaluated the particle size distribution of egg pockets, redd pits and tailspills, artificially constructed redds, and undisturbed substrate outside redds. Egg pockets were located in upper strata an average of 14.9 cm below the substrate surface. Egg pockets contained fewer fines (...
A Definition of Gender Role Conflict among Black Professional Fathers
ERIC Educational Resources Information Center
Robinson, Ora
2011-01-01
There is very little literature that depicts the parental role of Black professional fathers positively or that samples Black participants from the upper economic strata. The purpose of this study is to gain insight into how Black professional fathers experience or perceive gender role conflict and identify clinical implications. Grounded in…
Hansen, V.L.; Dusel-Bacon, C.
1998-01-01
The Yukon-Tanana terrane, the largest tectonostratigraphic terrane in the northern North American Cordillera, is polygenetic and not a single terrane. Lineated and foliated (L-S) tectonites, which characterize the Yukon-Tanana terrane, record multiple deformations and formed at different times. We document the polyphase history recorded by L-S tectonites within the Yukon-Tanana upland, east-central Alaska. These upland tectonites compose a heterogeneous assemblage of deformed igneous and metamorphic rocks that form the Alaskan part of what has been called the Yukon-Tanana composite terrane. We build on previous kinematic data and establish the three-dimensional architecture of the upland tectonites through kinematic and structural analysis of more than 250 oriented samples, including quartz c-axis fabric analysis of 39 samples. Through this study we distinguish allochthonous tectonites from parautochthonous tectonites within the Yukon-Tanana upland. The upland tectonites define a regionally coherent stacking order: from bottom to top, they are lower plate North American parautochthonous attenuated continental margin; continentally derived marginal-basin strata; and upper plate ocean-basin and island-arc rocks, including some continental basement rocks. We delineate three major deformation events in time, space, and structural level across the upland from the United States-Canada border to Fairbanks, Alaska: (1) pre-Early Jurassic (>212 Ma) northeast-directed, apparent margin-normal contraction that affected oceanic rocks; (2) late Early to early Middle Jurassic (>188-185 Ma) northwest-directed, apparent margin-parallel contraction and imbrication that resulted in juxtaposition of the allochthonous tectonites with parautochthonous continental rocks; and (3) Early Cretaceous (135-110 Ma) southeast-directed crustal extension that resulted in exposure of the structurally deepest, parautochthonous continental rocks. The oldest event represents deformation within a west-dipping (present coordinates) Permian-Triassic subduction zone. The second event records Early to Middle Jurassic collision of the arc and subduction complex with North American crust, and the third event reflects mid-Cretaceous southeast-directed crustal extension. Events one and two can be recognized and correlated through southern Yukon, even though this region was affected by mid-Cretaceous dextral shear along steep northwest-striking faults. Our data support a model of crustal assembly originally proposed by D. Tempelman-Kluit in which previously deformed allochthonous rocks were thrust over parautochthonous rocks of the attenuated North American margin in Middle Jurassic time. Approximately 50 m.y. after tectonic accretion, east-central Alaska was dissected by crustal extension, exposing overthrust parautochthonous strata.
The Bowland Basin, NW England: Base metal mineralisation and its relationship to basin evolution
NASA Astrophysics Data System (ADS)
Gaunt, Jonathan Mark
The Bowland Basin of NW England is a Carboniferous half graben. The Basin was initiated in the Devonian and actively extended during the Carboniferous until the late Westphalian. From the late Westphalian to the early Permian the Bowland Basin underwent inversion in response to Hercynian collision tectonics. Renewed subsidence commenced in the Permian and continued until inversion in the Cenozoic. The sedimentary succession of the Bowland Basin is dominated by Carboniferous strata, but some Permo-Triassic strata are present. The basal sedimentary succession may be comprised of Devonian to early Dinantian syn-rift clastics. The main Dinantian succession is comprised of interbedded limestones, calcareous mudstones and clastic strata. The Dinantian strata include the Waulsortian-facies Clitheroe Limestone and the Limekiln Wood Limestone, both of which host mineralisation. The overlying Namurian is comprised of shales and sandstones. The diagenetic history of the Limekiln Wood Limestone and Waulsortian-facies Clitheroe Limestone in the Cow Ark-Marl Hill Moor district is a function of changes in the burial environment during the Carboniferous. Both exhibit a pre-basin inversion diagenetic sequence that changes with time from shallow to moderate burial depth cements. Late Carbonifeous basin inversion resulted in the formation of tectonic stylolites. Tectonic stylolitisation was postdated by dolomitisation and silicification. Dolomitisation and silicification are suggested to have taken place in the deep burial environment. The base metal mineralisation studied in this work comes from the Cow Ark- Marl Hill Moor district, which is sited on the present basin inversion axis. Mineralisation occurs as four distinct episodes (Period 1, Period 2, Period 3 and Post-Period 3) within a complex multigeneration vein suite. The vein suite, which postdates tectonic stylolitisation and hence end-Carboniferous basin inversion, is comprised of calcite, baroque dolomite, baroque ankerite and siderite. The veins, which are often spatially associated with faults, exhibit a variety of morphologies, and are largely hosted by hydraulic shear fractures. Compositional variations between the different vein carbonates occur with time and the calcites, baroque dolomites, baroque ankerites and siderites are interpreted to have had several different fluid sources. Fluids precipitating siderite, baroque dolomite and baroque ankerite may have been produced by clay mineral transformations and decarboxylation of organic matter within the calcareous strata. The multiple vein calcite generations belong to three MnO:FeO compositional classes, each occupying a specific paragenetic position. The trend from ferroan to manganoan calcite with time may be a consequence of calcite-forming fluids being derived from successively shallower depths within the sedimentary succession, or of increased permeation by meteoric fluids. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Yokelson, Intan; Gehrels, George E.; Pecha, Mark; Giesler, Dominique; White, Chelsi; McClelland, William C.
2015-10-01
The Gravina belt consists of Upper Jurassic through Lower Cretaceous marine clastic strata and mafic-intermediate volcanic rocks that occur along the western flank of the Coast Mountains in southeast Alaska and coastal British Columbia. This report presents U-Pb ages and Hf isotope determinations of detrital zircons that have been recovered from samples collected from various stratigraphic levels and from along the length of the belt. The results support previous interpretations that strata in the western portion of the Gravina belt accumulated along the inboard margin of the Alexander-Wrangellia terrane and in a back-arc position with respect to the western Coast Mountains batholith. Our results are also consistent with previous suggestions that eastern strata accumulated along the western margin of the inboard Stikine, Yukon-Tanana, and Taku terranes and in a fore-arc position with respect to the eastern Coast Mountains batholith. The history of juxtaposition of western and eastern assemblages is obscured by subsequent plutonism, deformation, and metamorphism within the Coast Mountains orogen, but may have occurred along an Early Cretaceous sinistral transform system. Our results are inconsistent with models in which an east-facing subduction zone existed along the inboard margin of the Alexander-Wrangellia terrane during Late Jurassic-Early Cretaceous time.
NASA Astrophysics Data System (ADS)
Bonnel, C.; Huyghe, D.; Nivière, B.; Messager, G.; Dhont, D.; Fasentieux, B.; Hervouët, Y.; Xavier, J.-P.
2012-04-01
Intramontane basins constitute potential good recorders of orogenic systems deformation history through the documentation of their remnant sedimentary filling and observation of syntectonic growth strata. In this work, we focus on the Neuquén basin, located on the eastern flank of the Andes between 32°S and 41°S latitude. It has been structured since the late Triassic, first as back arc basin and as compressive foreland basin since the upper Cretaceous. Most of the sedimentary filling is composed of Mesozoic sediments, which have been importantly studied because of their hydrocarbon potential. On the contrary, Cenozoic tectonic and sedimentologic evolutions remain poorly documented in regard to the Mesozoic. The structural inheritance is very important and strongly influences the deformation and shortening rates from the North to the South of the basin. Thus, the northern part exhibits a classical configuration from the western high Andes, to younger fold and thrust belts and piggy-back basins to the East. On the contrary, no fold and thrust belt exist in the southern part of the basin and the deformation is restricted to the internal domain. Nevertheless, contemporaneous intramontane basins (the Agua Amarga to the North and the Collon Cura basin to the South) existed in these two parts of the basin and seem to have followed a similar evolution despite of a different structural context. To the North, the partial closing of the Agua Amarga basin by the growth of the Chuihuidos anticlines during the Miocene is characterised by the deposition of a fining upward continental sequence of ~250 m thick, from lacustrine environment at the base to alluvial and fluviatile environments in the upper part of the section. In the Collon Cura, the sedimentary filling, due to the rising of the Piedra del Aguila basement massif, reach at maximum 500 m and consist in fluvial tuffaceous material in the lower part to paleosoils and coarse conglomeratic fluvial deposits in the upper part. To the North, excavation of the Agua Amarga basin happened after regressive erosion on the external flank of the Chuihuidos anticlines and generated the deposition of an alluvial fan of 50 km length and maximum thickness of 140 m. Concerning the South, the paleolandscape conditioned the deposition of a very long (~ 20 km) but very narrow (few tens of kilometres) alluvial fan. The excavation is the consequence of the elevation cessation of the Piedra del Aguila basement.
Pyroclastic Activity at Home Plate in Gusev Crater, Mars
NASA Technical Reports Server (NTRS)
Squyres, S. W.; Aharonson, O.; Clark, B. S.; Cohen, B.; Crumpler, L.; deSouza, P. A.; Farrand, W. H.; Gellert, R.; Grant, J.; Grotzinger, J. P.;
2007-01-01
Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit is overlain by a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, while the upper unit may represent eolian reworking of the same pyroclastic materials.
Pyroclastic activity at home plate in Gusev crater, Mars
Squyres, S. W.; Aharonson, O.; Clark, B. C.; Cohen, B. A.; Crumpler, L.; de Souza, P.A.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Grotzinger, J.P.; Haldemann, A.F.C.; Johnson, J. R.; Klingelhofer, G.; Lewis, K.W.; Li, R.; McCoy, T.; McEwen, A.S.; McSween, H.Y.; Ming, D. W.; Moore, Johnnie N.; Morris, R.V.; Parker, T.J.; Rice, J. W.; Ruff, S.; Schmidt, M.; Schroder, C.; Soderblom, L.A.; Yen, A.
2007-01-01
Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.
Liu, Jun; Hu, Shi-xue; Rieppel, Olivier; Jiang, Da-yong; Benton, Michael J.; Kelley, Neil P.; Aitchison, Jonathan C.; Zhou, Chang-yong; Wen, Wen; Huang, Jin-yuan; Xie, Tao; Lv, Tao
2014-01-01
The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic. PMID:25429609
NASA Astrophysics Data System (ADS)
Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng
2018-03-01
The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a relatively strong tectonic reactivation took place along the Late Palaeozoic Bogda rift belt accompanied by relatively large-scale magmatism. The distinct basement structure between the eastern and western Bogda rift could be the structure basis of difference uplift in the Bogda area during the Mesozoic Era. The Early to Middle Jurassic episodic uplift of Eastern Bogda Mountains perhaps was related to the post-collisional convergence of the Qiangtang Block from late Badaowan to early Sangonghe, the closure of the western Mongol-Okhotsk Ocean at the Early-Middle Jurassic boundary and the tectonic accretion at the south Asian margin of Pamir Block during late Middle Jurassic times.
NASA Astrophysics Data System (ADS)
Schenk, Oliver; Shtukert, Olga; Bishop, Andrew; Kornpihl, Kristijan; Milne, Graham
2014-05-01
The Nordkapp Basin, Barents Sea, is an intra-continental syn-rift basin containing many complex salt structures. The salt is late-Carboniferous to Early Permian in age, with regional extension in the Triassic initiating the salt movement resulting in formation of sub- and mini-basins with significant subsidence (especially in the northeastern part of the basin). Subsequent tectonic phases allowed growth and distortion of salt diapirs that were later affected by uplift and erosion during Tertiary resulting in the formation of salt-related traps in Triassic and Lower Jurassic strata. During Plio-Pleistocene, glacial erosion removed additional Mesozoic and Cenozoic strata. This basin is regarded as a frontier salt province. A small hydrocarbon discovery (Pandora well) in the southwestern part of the basin points to the presence several functioning petroleum systems. The primary play type is related to salt traps below overhangs. Such structures are however, very difficult to image with conventional seismic techniques due to i) generation of multiples from sea floor and top of shallow salt bodies and ii) seismic shadow zones within the salt (possibly resulting from shale and carbonate stringers) which cause severe diffractions so that prospective areas adjacent to the salt remain elusive. Arctic exploration is expensive and the ability to focus on the highest potential targets is essential. A unique solution to this challenging subsurface Arctic environment was developed by integrating petroleum system modeling with full azimuth broadband seismic acquisition and processing. This integrated approach allows intelligent location of seismic surveys over structures which have the maximum chance of success of hydrocarbon charge. Petroleum system modeling was conducted for four seismic sections. Salt was reconstructed according to the diapiric evolution presented in Nilsen et al. (1995) and Koyi et al. (1995). Episodes of major erosion were assigned to Tertiary (tectonic) and Pleistocene (glacial). The models have been thermally calibrated. Consideration of Pleistocene glacial/interglacial cycles was required for thermal calibration as well as to better understand and predict the hydrocarbon phase behavior. References: Koyi, H., Talbot, C.J., Tørudbakken, B.O., 1993, Salt diapirs of the southwest Nordkapp Basin: analogue modelling, Tectonophysics, Volume 228, Issues 3-4, Pages 167-187. Nilsen, K.T., Vendeville, B.C., Johansen, J.-T., 1995, Influence of regional tectonics on halokinesis in the Nordkapp Basin, Barents Sea. In: Jackson, M.P.A., Roberts, D.G., Snelson, S. (eds), Salt tectonics, a global perspective, AAPG Memoir 65, 413-436.
Repetski, J.E.; Narkiewicz, M.
1996-01-01
Limestone and dolostone samples were collected from sites within and adjacent to ore zones in the Trzebionka mine, Silesia-Cracow zinc-lead mining district, southern Poland, to assess the level of thermal alteration of the enclosed conodonts, via the color alteration index (CAI) technique, and to study any surface alteration effects on these microfossils. Additional conodont sampling from stratigraphic levels correlative with the horizons being mined in the Trzebionka mine was accomplished at four surface and two borehole localities in the district, to compare the CAI and surface alteration effects at these, commercially non-mineralized, localities with those effects in the mine. Data show that: 1. The overall background thermal level of the Triassic strata studied, presumably due to only shallow burial, is very low: CAI = 1; in the range of 50 to 80??C. 2. CAI values in the ore zones in the Trzebionka mine are slightly higher than this regional background: 1+ to 1.5 (in the range ???50 to 90??C minimum heating over geologic time of about 0.1 to more than 1 m. y.). This implies that heating "events" of higher temperatures affecting the conodonts, including the passage of the local ore-bearing solutions, were of rather short duration(s), on the order of about 1,000 to 50,000 years. CAI data from the Trzebionka Mine is consistent with temperature data from fluid inclusions, indicating ore-bearing fluid temperatures in the 100 to 138??C range, and the scenario that these fluids were resident in these strata for a geologically short period. 3. Conodonts from both surface and subsurface samples rarely show surface corrosion effects, but tend to show apatite overgrowths. These overgrowths vary in degree of development, but are consistent for each morphological type of conodont element, and qualitatively are consistent in each sample observed. 4. Ichthyoliths (fish teeth, spines, and scales), found in most of the samples, do not exhibit either mineral overgrowths or apparent corrosion effects to the extent seen in the conodont elements. 5. Ichthyoliths show color alteration effects that are consistent within-sample but which are very different from the CAI values of conodonts in the same sample. The color alteration of the fish teeth might be of value as a thermal maturation index in the future, if and when calibrated through controlled laboratory experimental testing, but at present cannot and should not be used as equivalent to conodont CAI.
NASA Astrophysics Data System (ADS)
Philipp, Sonja L.; Reyer, Dorothea; Afsar, Filiz; Bauer, Johanna F.; Meier, Silke; Reinecker, John
2015-04-01
In geothermal reservoirs, similar to other tight reservoirs, fluid flow may be intensely affected by fracture systems, in particular those associated with fault zones. When active (slipping) the fault core, that is, the inner part of a fault zone, which commonly consists of breccia or gouge, can suddenly develop high permeability. Fault cores of inactive fault zones, however, may have low permeabilities and even act as flow barriers. In the outer part of a fault zone, the damage zone, permeability depends mainly on the fracture properties, that is, the geometry (orientation, aperture, density, connectivity, etc.) of the fault-associated fracture system. Mineral vein networks in damage zones of deeply eroded fault zones in palaeogeothermal fields demonstrate their permeability. In geothermal exploration, particularly for hydrothermal reservoirs, the orientation of fault zones in relation to the current stress field as well as their internal structure, in particular the properties of the associated fracture system, must be known as accurately as possible for wellpath planning and reservoir engineering. Here we present results of detailed field studies and numerical models of fault zones and associated fracture systems in palaeogeo¬thermal fields and host rocks for geothermal reservoirs from various stratigraphies, lithologies and tectonic settings: (1) 74 fault zones in three coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (2) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); and (3) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone and limestone) in the Upper Rhine Graben shoulders. Whereas (1) represent palaeogeothermal fields with mineral veins, (2) and (3) are outcrop analogues of reservoir horizons from geothermal exploration. In the study areas of palaeo¬geothermal fields in the Bristol Channel (1), all mineral veins, most of which are extension fractures, are of calcite. They are clearly associated with the faults and indicate that geothermal water was transported along the then-active faults into the host rocks with evidence of injection as hydrofractures. Layers with contrasting mechanical properties (in particular, stiffnesses), however, acted as stress barriers and lead to fracture arrest. Along some faults, veins propagated through the barriers along faults to shallower levels. In the Northwest German Basin (2) there are pronounced differences between normal-fault zones in carbonate and clastic rocks. Only in carbonate rocks clear damage zones occur, characterized by increased fracture frequencies and high amounts of fractures with large apertures. On the Upper Rhine Graben shoulders (3) damage zones in Triassic Muschelkalk limestones are well developed; fault cores are narrow and comprise breccia, clay smear, host rock lenses and mineralization. A large fault zone in Triassic Bunter sandstone shows a clearly developed fault core with fault gouge, slip zones, deformation bands and host rock lenses, a transition zone with mostly disturbed layering and highest fracture frequency, and a damage zone. The latter damage zone is compared to the damage zone of a large Bunter sandstone fault zone currently explored for geothermal energy production. The numerical models focus on stress field development, fracture propagation and associated permeability changes. These studies contribute to the understanding of the hydromechanical behaviour of fault zones and related fluid transport in fractured reservoirs complementing predictions based on geophysical measurements. Eventually we aim at classifying and quantifying fracture system properties in fault zones to improve exploration and exploitation of geothermal reservoirs. Acknowledgements The authors appreciate the support of 'Niedersächsisches Ministerium für Wissen¬schaft und Kultur' and 'Baker Hughes' within the gebo research project (http://www.gebo-nds.de), the Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMU; FKZ: 0325302, AuGE) and the Deutsche Forschungsgemeinschaft. GeoEnergy GmbH, Karlsruhe, is thanked for explorational data.
NASA Astrophysics Data System (ADS)
Grazia Ciaccio, Maria; Improta, Luigi; Patacca, Etta; Scandone, Paolo; Villani, Fabio
2010-05-01
The 2009 L'Aquila seismic sequence activated a complex, about 40 km long, NW-trending and SW-dipping normal fault system, consisting of three main faults arranged in right-lateral en-echelon geometry. While the northern sector of the epicentral area was extensively investigated by oil companies, only a few scattered, poor-quality commercial seismic profiles are available in the central and southern sector. In this study we interpret subsurface commercial data from the northern sector, which is the area where is located the source of the strong Mw5.4 aftershock occurred on the 9th April 2009. Our primary goals are: (1) to define a reliable framework of the upper crust structure, (2) to investigate how the intense aftershock activity, the bulk of which is clustered in the 5-10 km depth range, relates to the Quaternary extensional faults present in the area. The investigated area lies between the western termination of the W-E trending Gran Sasso thrust system to the south, the SW-NE trending Mt. Sibillini thrust front (Ancona-Anzio Line Auctt.) to the north and west, and by the NNW-SSE trending, SW-dipping Mt. Gorzano normal fault to the east. In this area only middle-upper Miocene deposits are exposed (Laga Flysch and underlying Cerrogna Marl), but commercial wells have revealed the presence of a Triassic-Miocene sedimentary succession identical to the well known Umbria-Marche stratigraphic sequence. We have analyzed several confidential seismic reflection profiles, mostly provided by ENI oil company. Seismic lines are tied to two public wells, 5766 m and 2541 m deep. Quality of the reflection imaging is highly variable. A few good quality stack sections contain interpretable signal down to 4.5-5.5 s TWT, corresponding to depths exceeding 10-12 km and thus allowing crustal imaging at seismogenic depths. Key-reflectors for the interpretation correspond to: (1) the top of the Miocene Cerrogna marls, (2) the top of the Upper Albian-Oligocene Scaglia Group, (3) the Aptian-Albian Fucoid Marl horizon, (4) the top of the upper Jurassic "Calcari ad Aptici" Formation, (5) the top of the upper Triassic dolomites plus evaporites of the Burano Formation. Strong but discontinuous deep reflectors can be reasonably attributed to the Paleozoic-Trassic clastic sequence underlying the evaporites. Neogene compression is responsible for a system of NNW-SSE trending fault-propagation folds which have often grown on top of popup-like structures. Extensional features include shallow-seated low-angle faults, likely related to gravitational readjustments on top of compressional features, and younger NNW-SSE trending high-angle faults. The major high-angle fault in the investigated area is represented by the Mt. Gorzano Fault, a regional structure the surface trace of which is at least 20 km long. The Mt. Gorzano Fault is a listric fault that dips around 60° in the first 2 s TWT and flattens at greater depths until it becomes sub-horizontal at about 5 s TWT, i.e. at a depth averaging 12 kilometers. Depth converted sections, calibrated by well data, indicate that the bulk of the aftershock activity is confined between the Triassic dolomites plus evaporites and the underlying Paleozoic-Triassic terrigenous deposits, without affecting the overlying carbonates. Events alignment revealed by accurate Double-Difference relative locations suggests that the Mw5.4 aftershock activated a 12 km-long segment of the Mt. Gorzano Fault at depths ranging from 5 to 10-12 kilometers. Aftershocks cluster in the hanging-wall of the deep portion of the fault recognized in the stack sections, whose geometry is consistent with the fault plane highlighted by earthquakes alignment.
NASA Astrophysics Data System (ADS)
Echaurren, A.; Folguera, A.; Gianni, G.; Orts, D.; Tassara, A.; Encinas, A.; Giménez, M.; Valencia, V.
2016-05-01
The North Patagonian fold-thrust belt (41°-44° S) is characterized by a low topography, reduced crustal thickness and a broad lateral development determined by a broken foreland system in the retroarc zone. This particular structural system has not been fully addressed in terms of the age and mechanisms that built this orogenic segment. Here, new field and seismic evidence of syntectonic strata constrain the timing of the main deformational stages, evaluating the prevailing crustal regime for the different mountain domains through time. Growth strata and progressive unconformities, controlled by extensional or compressive structures, were recognized in volcanic and sedimentary rocks from the cordilleran to the extra-Andean domain. These data were used to construct a balanced cross section, whose deep structure was investigated through a thermomechanical model that characterizes the upper plate rheology. Our results indicate two main compressive stages, interrupted by an extensional relaxation period. The first contractional stage in the mid-Cretaceous inverted Jurassic-Lower Cretaceous half graben systems, reactivating the western Cañadón Asfalto rift border ~ 500 km away from the trench, at a time of arc foreland expansion. For this stage, available thermochronological data reveal forearc cooling episodes, and global tectonic reconstructions indicate mid-ocean ridge collisions against the western edge of an upper plate with rapid trenchward displacement. Widespread synextensional volcanism is recognized throughout the Paleogene during plate reorganization; retroarc Paleocene--Eocene flare up activity is interpreted as product of a slab rollback, and fore-to-retroarc Oligocene slab/asthenospheric derived products as an expression of enhanced extension. The second stage of mountain growth occurred in Miocene time associated with Nazca Plate subduction, reaching nearly the same amplitude than the first compressive stage. Extensional weakening of the upper plate predating the described contractional stages appears as a necessary condition for abnormal lateral propagation of deformation.
William Maclure's Wernerian Appalachians
Lessing, P.
1999-01-01
William Maclure (1763-1840), a geologist of Scottish ancestry, was also a man of many other talents and interests including educator, philanthropist, world traveler, prolific writer, patron of science, businessman, bibliophile, and social reformer. He produced the first American printing of a geological map of the United States in 1809 and followed this with four other editions identified as 1811, 1817A, 1817B, and 1817C. All were well received and reproduced by others at least 15 times, as recently as 1989. Maclure has been called 'Father of American Geology,' a title he rightly deserves, primarily for these maps, but also for the first cross sections through the Appalachians, many other geological articles, and substantial donations of specimens, books, and funds to many learned institutions, including the Academy of Natural Sciences of Philadelphia. Maclure's delineation of Appalachian geology followed Werner's geognostic classification of strata using Primary, Transition, Secondary, and Alluvial, but with modifications and considerable doubt concerning their Neptunian origin. He added 'Rock Salt' on his 1809 map as a line on the western edge of the Appalachians and 'Old Red Sand Stone' on the 1811 map for the basins later identified as Triassic. In his later articles, Maclure noted several times that 'trap' or basalt was an igneous rock and not an aqueous precipitate. He further stated that the Secondary and Transition strata are aggregates from the disintegration of the older Primitive rocks. He came to the conclusion near the end of his life that organic remains indicate '...that nature began with the most simple, and gradually proceeded to the more complicated and perfect.'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, M.A.; Ochs, S.
1990-01-01
Deposition was partly controlled by paleotopographic relief of underlying Permian strata. Triassic Black Dragon sediments filled lowlands on an erosion surface (unconformity) cut into the Permian White Rim Sandstone and Kaibab Limestone. The Black Dragon Member consists of four distinct facies containing a wide variety of sedimentary structures that characterize both fluvial and tidal environments. The facies are: (1) a Chert Pebble Conglomerate (CPC) facies, characterized by calcite-cemented channel-fills of nodular and banded chert pebbles; (2) an Interbedded Sandstone, Siltstone, and Shale (SSS) facies, containing oscillation ripples and flaser bedding; (3) a large-scale Trough Cross-Stratified Sandstone (TXS) facies, consisting ofmore » 6.6-13.1 ft (2-4 m) thick sets of fine- to medium-grained sandstone; and (4) an Oolitic and Algal Limestone (OAL) facies, with cross-stratified oolitic beds, fenestral fabric, and laminated algal rip-up clasts. The CPC facies and the TXS facies were deposited by braided streams when the shoreline lay west of the San Rafael Swell. Rivers drained off and eroded localized Permian highlands, located most likely within a 62 mi (100 km) distance to the south and southeast of the study area. The SSS facies which constitutes the bulk of the Black Dragon Member, and the OAL facies are inter- and supratidal deposits formed during relative sea level highstands, when the shoreline lay within or east of the San Rafael Swell. A decrease in continent-derived sand supply and a corresponding increase in carbonate production within the OAL facies characterizes the end of Black Dragon deposition and the gradation into the overlying Sinbad Limestone Member.« less
NASA Astrophysics Data System (ADS)
Moreno, F.; George, S. W. M.; Williams, L. A.; Horton, B. K.; Garzione, C. N.
2015-12-01
The Andes Mountains exert critical controls on the climate, hydrology, and biodiversity of South America. The Bagua Basin, a low elevation (400-600 m) intermontane basin in northern Peru, offers a unique opportunity to study the ecological, climatic, and structural evolution of the western topographic boundary of the Amazonian foreland. Situated between the Marañon fold-thrust belt of the Western Cordillera and basement block uplifts of the Eastern Cordillera, the Bagua region contains a protracted, semi-continuous record of Triassic through Pleistocene sedimentation. Whereas Triassic-Cretaceous marine deposits were potentially related to extension and regional thermal subsidence, a Paleocene-Eocene shift to shallow marine and fluvial systems marks the onset of foreland basin conditions. Oligocene-Miocene sedimentation corresponds to a braided-meandering fluvial system with exceptional development of paleosols. In this study, we use new detrital zircon U-Pb geochronologic and oxygen stable isotopic datasets to establish a chronology of pre-Andean and Andean processes within the Bagua Basin. Detrital zircon geochronology provides constraints on when the Western and Eastern cordilleras shed sediments into the basin. Syndepositional zircons within Eocene, Oligocene and Miocene strata provide key age control for a previously poorly constrained depositional chronology. Preliminary results suggest a dramatic provenance shift in which Paleocene deposits contain almost exclusively cratonic populations (500-1600 Ma) whereas Eocene deposits show a mix of syndepositional zircons from the magmatic arc, recycled Mesozoic zircons, and cratonic zircon populations. Oxygen stable isotopes (δ18O) of carbonate nodules from Neogene paleosols will help elucidate when the Eastern Cordillera became an orographic barrier intercepting moisture from the Amazon basin to the east. Together, these records will help uncover the history of tectonics and climate interaction in tropical South America.
Patterns of Gondwana plant colonisation anddiversification
NASA Astrophysics Data System (ADS)
Anderson, J. M.; Anderson, H. M.; Archangelsky, S.; Bamford, M.; Chandra, S.; Dettmann, M.; Hill, R.; McLoughlin, S.; Rösler, O.
Charting the broad patterns of vascular plant evolution for Gondwana againstthe major global environmental shifts and events is attempted here for the first time. This is based on the analysis of the major vascular plant-bearing formations of the southern continents (plus India) correlated against the standard geological time-scale. Australia, followed closely by South America, are shown to yield by far the most complete sequences of productive strata. Ten seminal turnover pulses in the unfolding evolutionary picture are identified and seen to be linked to continental drift, climate change and mass global extinctions. The rise of vascular plants along the tropical belt, for instance, followed closely after the end-Ordovician warming and extinction. Equally remarkable is that the Late Devonian extinction may have caused both the terrestrialisation of the vertebrates and the origin of the true gymnosperms. The end-Permian extinction, closure of Iapetus, together with warming, appears to have set in motion an unparalleled, explosive, gymnosperm radiation; whilst the Late Triassic extinction dramatically curtailed it. It is suggested that the latitudinal diversity gradient clearly recognised today, where species richness increases towards the tropics, may have been partly reversed during phases of Hot House climate. Evidence hints at this being particularly so at the heyday of the gymnosperms in the Late Triassic super-Hot House world. As for the origin of terrestrial, vascular, plant life, the angiosperms seem closely linked to a phase of marked shift from Ice House to Hot House. Insect and tetrapod evolutionary patterns are discussed in the context of the plants providing the base of the ever-changing ecosystems. Intimate co-evolution is often evident. This isn't always the case, for example the non-linkage between the dominant, giant, long-necked, herbivorous sauropod dinosaurs and the dramatic radiation of the flowering plants in the Mid Cretaceous.
Detrital Record of Phanerozoic Tectonics in Iran: Evidence From U-Pb Zircon Geochronology
NASA Astrophysics Data System (ADS)
Horton, B. K.; Gillis, R. J.; Stockli, D. F.; Hassanzadeh, J.; Axen, G. J.; Grove, M.
2004-12-01
Ion-microprobe U-Pb ages of 91 detrital zircon grains supplement ongoing investigations of the tectonic history of Iran, a critical region bridging the gap between the Alpine and Himalayan orogenic belts. These data improve understanding of the distribution of continental blocks during a complex history of Late Proterozoic (Pan-African) crustal growth, Paleozoic passive-margin sedimentation, early Mesozoic collision with Eurasia, and Cenozoic collision with Arabia. U-Pb analyses of detrital zircon grains from four sandstone samples (two Lower Cambrian, one uppermost Triassic-Lower Jurassic, one Neogene) collected from the Alborz mountains of northern Iran reveal a spectrum of ages ranging from 50 to 2900 Ma. Most analyses yield concordant to moderately discordant ages. The Lower Cambrian Lalun and Barut sandstones yield age distribution peaks at approximately 550-650, 1000, and 2500 Ma, consistent with a Gondwanan source area presently to the south and west in parts of Iran and the Arabian-Nubian shield (Saudi Arabia and northwestern Africa). The uppermost Triassic-Lower Jurassic Shemshak Formation exhibits a broad range of U-Pb ages, including peaks of approximately 200-260, 330, 430, 600, and 1900 Ma, requiring a Eurasian source area presently to the north and east in the Turan plate (Turkmenistan and southwestern Asia). Neogene strata display both the youngest and oldest ages (approximately 50 and 2900 Ma) of any samples, a result of substantial sedimentary recycling of older Phanerozoic cover rocks. Because the youngest zircon ages for three of the four samples are indistinguishable from their stratigraphic (depositional) ages, these data suggest rapid exhumation and help constrain the termination age of Late Proterozoic-Early Cambrian (Pan-African) orogenesis and the timing of the Iran-Eurasia collision.
NASA Astrophysics Data System (ADS)
Martz, J. W.
2016-12-01
The Triassic was one of the most critical intervals in terrestrial vertebrate history, during which both adaptive radiation and extinction played roles in shaping the future of Mesozoic ecosystems. In recent years, it has become increasingly clear that the transition from the globally diverse ecosystems of the Triassic to the more uniformly dinosaur-dominated ecosystems of the later Mesozoic was complex, involving a variety of environmental changes on both local and global levels. The Adamanian-Revueltian faunal turnover is a putative faunal turnover event identified in the Upper Triassic Chinle Formation of the western United States which involved a decline in diversity among crocodylian-line archosaurs and the extinction of several taxa coincident with the appearance or increase in abundance of other taxa. Careful lithostratigraphic and biostratigraphic work in Petrified Forest National Park in northern Arizona has identified the stratigraphic horizon at which this turnover is likely to have occurred, and sedimentology and improved radioisotopic calibration indicates that the turnover was early Alaunian (middle Norian) and at least roughly coincident with both the Manicouagan bolide impact and an abrupt shift towards a more arid climate in the western United States. However, testing the reality of the turnover and its coincidence with particular environmental changes requires the application of statistical methods highly dependent on the sample sizes and stratigraphic distribution of vertebrate fossils. The problem is exacerbated by the fact that for some vertebrates, the turnover is characterized by changes in abundance rather than range termination, which is more difficult to evaluate statistically, and that some fossils can only be assigned to higher taxa. Moreover, radioisotopic calibration of the putative turnover horizon is coarse, suggesting that correlating faunal turnovers to distant events is more difficult than correlating them to local environmental changes when the former requires both stratigraphic and radioisotopic precision.
NASA Astrophysics Data System (ADS)
Zeigler, K. E.; Geissman, J. W.
2006-12-01
The Chama Basin of north-central New Mexico and the Zuni Mountains of central New Mexico contain several excellent outcrop exposures of the Upper Triassic Chinle Group. The Shinarump, Salitral and Poleo formations, which comprise the lower half of the Chinle Group, encompass the Carnian to early Norian stages of the Late Triassic, based on vertebrate biostratigraphy. Each of these units was sampled with a ~3m sampling interval at three localities in the Chama Basin and one locality in the Zuni Mountains. Sites spanning the gradational Shinarump/Salitral Formation contact yielded an in situ grand mean of D = 352.9°, I = 49.3°, α95 = 20.1°, k = 38.7. Sites in the El Cerrito Bed of the medial Salitral Formation yielded an in situ grand mean of D = 177.4°, I = 10.7°, α95 = 15.6°, k = 63.5. The Youngsville Member of the Salitral Formation and the Poleo Formation are exclusively of reverse polarity, with an in situ grand mean of D = 188.3°, I = 16.8°, α95 = 19.4°, k = 23.4 and D = 182.7°, I = -0.3°, α95 = 5.3°, k = 36.5 respectively. In general, the lower Chinle Group tends to be dominantly reversed polarity. The Shinarump Formation is noted for intense color mottling and the local occurrence of copper and uranium mineralization. The lower member of the Salitral Formation, the Piedra Lumbre Member, is often very mottled, with colors ranging from whites and yellows through reds, purples and blues that reflect intense pedogenic alteration of the sediments. The Youngsville Member is nearly uniformly brick red in color. However, several specimens from different sites in the Shinarump and both members of the Salitral Formation yielded incoherent magnetizations, suggesting that pedogenic alteration may have erased any original Late Triassic magnetization.
NASA Astrophysics Data System (ADS)
Luo, Genming; Huang, Junhuang; Xie, Shucheng; Wignall, Paul B.; Tang, Xinyan; Huang, Xianyu; Yin, Hongfu
2010-06-01
This paper investigates kerogen carbon isotopes, the difference between carbonate and kerogen carbon isotopes (Δ13Ccarb-kero = δ 13Ccarb - δ 13Ckero) and the difference between carbonate and n-C19 alkane compound-specific carbon isotopes (Δ13Ccarb- n-C19 = δ 13Ccarb - δ 13C n-C19) during the Permian-Triassic transition at Meishan, South China. The results show that kerogen carbon isotopes underwent both gradual and sharp shifts in beds 23-25 and 26-29, respectively. The differences between carbonate and organic carbon isotopes, both the Δ13Ccarb-kero and Δ13Ccarb- n-C19, which are mainly affected by CO2-fixing enzyme and pCO2, oscillated frequently during the Permian-Triassic transition. Both the variations of Δ13Ccarb- n-C19 and Δ13Ccarb-kero coupled with the alternation between cyanobacteria and green sulfur bacteria indicated by biomarkers. The episodic low values of Δ13Ccarb- n-C19 corresponded to episodic blooms of green sulfur bacteria, while the episodic high values of Δ13Ccarb- n-C19 corresponded to episodic blooms of cyanobacteria. The relationships between the variation of carbon isotopes and biota show that the microbes which flourished after the extinction of macroorganism affected the carbon isotope fractionation greatly. Combining the carbon isotope compositions and the pattern of size variation of the conodont Neogondolella, this paper supposes that anoxia of the photic zone at bed 24 was episodic and it would be caused by the degradation of terrigenous organic matters by sulfate reducing bacteria in the upper water column. Considered together with results from previous research, the high resolution variation of the biogeochemistry presents the sequence of the important geo-events during the Permian-Triassic crisis.
NASA Astrophysics Data System (ADS)
Brühwiler, Thomas; Goudemand, Nicolas; Galfetti, Thomas; Bucher, Hugo; Baud, Aymon; Ware, David; Hermann, Elke; Hochuli, Peter A.; Martini, Rossanna
2009-12-01
The Lower Triassic sedimentary and carbonate/organic carbon isotope records from the Tulong area (South Tibet) are documented in their integrality for the first time. New age control is provided by ammonoid and conodont biostratigraphy. The basal Triassic series consists of Griesbachian dolomitic limestones, similar to the Kathwai Member in the Salt Range (Pakistan) and to the Otoceras Beds in Spiti (India). The overlying thin-bedded limestones of Dienerian age strongly resemble the Lower Ceratite Limestone of the Salt Range. They are followed by a thick series of dark green, silty shales of Dienerian-early Smithian age without fauna that strikingly resemble the Ceratite Marls of the Salt Range. This interval is overlain by thin-bedded, light grey fossil-rich limestones of middle to late Smithian age, resembling the Upper Ceratite Limestone of the Salt Range. These are followed by a shale interval of early Spathian age that has no direct counterpart in other Tethyan sections. Carbonate production resumes during the late early and middle Spathian with the deposition of red, bioclastic nodular limestone ("Ammonitico Rosso" type facies). Apart from its colour this facies is similar to the one of the Niti Limestone in Spiti and of the Spathian nodular limestone in Guangxi (South China). As in other Tethyan localities such as Spiti, the early-middle Anisian part of the Tulong section is strongly condensed and is characterized by grey, thin-bedded limestones with phosphatized ammonoids. As for many other Tethyan localities the carbon isotope record from Tulong is characterized by a late Griesbachian-Dienerian positive δ13C carb excursion (2‰), and a very prominent positive excursion (5‰) at the Smithian-Spathian boundary, thus confirming the well-documented perturbations of the global carbon cycle following the Permian-Triassic mass extinction event.
Stumpf, Sebastian; Ansorge, Jörg; Pfaff, Cathrin; Kriwet, Jürgen
2017-01-01
ABSTRACT A new genus and species of pycnodontiform fishes, Grimmenodon aureum, from marginal marine, marine-brackish lower Toarcian (Harpoceras exaratum ammonite subzone) clay deposits of Grimmen in northeastern Germany is described. The single specimen represents a diagnostic left prearticular dentition characterized by unique tooth arrangement and ornamentation patterns. Grimmenodon aureum, gen. et sp. nov., is the second unambiguously identified pycnodontiform species from the Early Jurassic, in addition to Eomesodon liassicus from the early Lower Jurassic of western Europe. We also report an indeterminate pycnodontiform tooth crown from the upper Pliensbachian (Pleuroceras apyrenum ammonite subzone) of the same site. The material expands the Early Jurassic range of pycnodontiforms significantly northwards and confirms their presence before and immediately following the onset of the Toarcian Oceanic Anoxic Event (T-OAE) in the marginal marine ecosystems south of the Fennoscandian Shield. Moreover, the new records indicate that the Early Jurassic diversity of pycnodontiform fishes was greater than previously assumed and probably equaled that of the Late Triassic. Therefore, it is hypothesized that the Triassic-Jurassic mass extinction event did not affect pycnodontiform fishes significantly. Micro-computed tomography was used to study the internal anatomy of the prearticular of Grimmenodon aureum, gen. et sp. nov. Our results show that no replacement teeth were formed within the tooth-bearing bone but rather were added posteriorly to functional teeth. http://zoobank.org/urn:lsid:zoobank.org:pub:A56BDE9C-40C4-4CFA-9C2E-F5FA35A66F2 Citation for this article: Stumpf, S., J. Ansorge, C. Pfaff, and J. Kriwet. 2017. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: Evidence from a new genus and species, Grimmenodon aureum. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1344679. PMID:29170576
Stumpf, Sebastian; Ansorge, Jörg; Pfaff, Cathrin; Kriwet, Jürgen
2017-07-04
A new genus and species of pycnodontiform fishes, Grimmenodon aureum , from marginal marine, marine-brackish lower Toarcian ( Harpoceras exaratum ammonite subzone) clay deposits of Grimmen in northeastern Germany is described. The single specimen represents a diagnostic left prearticular dentition characterized by unique tooth arrangement and ornamentation patterns. Grimmenodon aureum , gen. et sp. nov., is the second unambiguously identified pycnodontiform species from the Early Jurassic, in addition to Eomesodon liassicus from the early Lower Jurassic of western Europe. We also report an indeterminate pycnodontiform tooth crown from the upper Pliensbachian ( Pleuroceras apyrenum ammonite subzone) of the same site. The material expands the Early Jurassic range of pycnodontiforms significantly northwards and confirms their presence before and immediately following the onset of the Toarcian Oceanic Anoxic Event (T-OAE) in the marginal marine ecosystems south of the Fennoscandian Shield. Moreover, the new records indicate that the Early Jurassic diversity of pycnodontiform fishes was greater than previously assumed and probably equaled that of the Late Triassic. Therefore, it is hypothesized that the Triassic-Jurassic mass extinction event did not affect pycnodontiform fishes significantly. Micro-computed tomography was used to study the internal anatomy of the prearticular of Grimmenodon aureum , gen. et sp. nov. Our results show that no replacement teeth were formed within the tooth-bearing bone but rather were added posteriorly to functional teeth. http://zoobank.org/urn:lsid:zoobank.org:pub:A56BDE9C-40C4-4CFA-9C2E-F5FA35A66F2 Citation for this article: Stumpf, S., J. Ansorge, C. Pfaff, and J. Kriwet. 2017. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: Evidence from a new genus and species, Grimmenodon aureum . Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1344679.
Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale
NASA Astrophysics Data System (ADS)
Lin, Senhu
2017-04-01
Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.
ERIC Educational Resources Information Center
Sanchez Fajardo, Jose Antonio
2016-01-01
The geographical proximity and socioeconomic dependence on the United States brought about a deep-rooted anglicization of the Cuban Spanish lexis and social strata, especially throughout the Neocolonial period (1902-1959). This study is based on the revision of a renowned newspaper of that time, "Diario de la Marina," and the…
School Performance and Poverty: The Mediating Role of Executive Functions
ERIC Educational Resources Information Center
Korzeniowski, C.; Cupani, M.; Ison, M.; Difabio, H.
2016-01-01
Introduction: This study aims at analyzing whether EFs may predict the SP of children from different low socioeconomic strata, having controlled the effects of age and socioeconomic status (SES). Method: The sample included 178 Argentine children of both genders (52% boys), between 6 and 10 years of age, belonging to the upper-low SES (41%),…
Upland forest vegetation of the Ozark Mountains in Northwestern Arkansas
Steven L. Stephenson; Harold S. Adams; Cynthia D. Huebner
2007-01-01
Quantitative data on structure and composition of all strata of vegetation were collected from 20 study sites in the Boston Mountains Subsection of the Ozark Mountains of northwestern Arkansas in June 2004. All study sites were located at upper slope or ridgetop positions and occurred at elevations > 457 m. Oaks (Quercus spp.) were dominants in...
NASA Astrophysics Data System (ADS)
Eltom, Hassan A.; Gonzalez, Luis A.; Hasiotis, Stephen T.; Rankey, Eugene C.; Cantrell, Dave L.
2018-02-01
Carbon isotope data (δ13C) can provide an essential means for refining paleogeographic and paleo-oceanographic reconstructions, and interpreting stratigraphic architecture within complex carbonate strata. Although the primary controls on global δ13C signatures of marine carbonates are well understood, understanding their latitudinal and regional variability is poor. To better constrain the nature and applications of δ13C stratigraphy, this study: 1) presents a new high-resolution δ13C stratigraphic curve from Middle to Upper Jurassic carbonates in the upper Tuwaiq Mountain, Hanifa, and lower Jubaila formations in central Saudi Arabia; 2) explores their latitudinal and regional variability; and 3) discusses their implications for stratigraphic correlations. Analysis of δ13C data identified six mappable units with distinct δ13C signatures (units 1-6) between up-dip and down-dip sections, and one unit (unit 7) that occurs only in the down-dip section of the study succession. δ13C data from the upper Tuwaiq Mountain Formation and the lower Hanifa Formation (units 1, 2), which represent Upper Callovian to Middle Oxfordian strata, and record two broad positive δ13C excursions. In the upper part of the Hanifa Formation (units 3-6, Early Oxfordian-Late Kimmeridgian), δ13C values decreased upward to unit 7, which showed a broad positive δ13C excursion. Isotopic data suggest similar δ13C trends between the southern margin of the Tethys Ocean (Arabian Plate; low latitude, represented by the study succession) and northern Tethys oceans (high latitude), despite variations in paleoclimatic, paleogeographic, and paleoceanographic conditions. Variations in the δ13C signal in this succession can be attributed to the burial of organic matter and marine circulation at the time of deposition. Our study uses δ13C signatures to provide independent data for chronostratigraphic constraints which help in stratigraphic correlations within heterogeneous carbonate successions.
NASA Astrophysics Data System (ADS)
Hubbard, Stephen; Kostic, Svetlana; Englert, Rebecca; Coutts, Daniel; Covault, Jacob
2017-04-01
Recent bathymetric observations of fjord prodeltas in British Columbia, Canada, reveal evidence for multi-phase channel erosion and deposition. These processes are interpreted to be related to the upstream migration of upper-flow-regime bedforms, namely cyclic steps. We integrate data from high-resolution bathymetric surveys and monitoring to inform morphodynamic numerical models of turbidity currents and associated bedforms in the Squamish prodelta. These models are applied to the interpretation of upper-flow-regime bedforms, including cyclic steps, antidunes, and/or transitional bedforms, in Late Cretaceous submarine conduit strata of the Nanaimo Group at Gabriola Island, British Columbia. In the Squamish prodelta, as bedforms migrate, >90% of the deposits are reworked, making morphology- and facies-based recognition challenging. Sedimentary bodies are 5-30 m long, 0.5-2 m thick and <30 m wide. The Nanaimo Group comprises scour fills of similar scale composed of structureless sandstone, with laminated siltstone locally overlying basal erosion surfaces. Backset stratification is locally observed; packages of 2-4 backset beds, each of which are up to 60 cm thick and up to 15 m long (along dip), commonly share composite basal erosion surfaces. Numerous scour fills are recognized over thin sections (<4 m), indicating limited aggradation and preservation of the bedforms. Preliminary morphodynamic numerical modeling indicates that Squamish and Nanaimo bedforms could be transitional upper-flow-regime bedforms between cyclic steps and antidunes. It is likely that cyclic steps and related upper-flow-regime bedforms are common in strata deposited on high gradient submarine slopes. Evidence for updip-migrating cyclic step and related deposits inform a revised interpretation of a high gradient setting dominated by supercritical flow, or alternating supercritical and subcritical flow in the Nanaimo Group. Integrating direct observations, morphodynamic numerical modeling, and outcrop characterization better constrains fundamental processes that operate in deep-water depositional systems; our analyses aims to further deduce the stratigraphy and preservation potential of upper flow-regime bedforms.
Tetrapod tracks in Permo–Triassic eolian beds of southern Brazil (Paraná Basin)
Dentzien-Dias, Paula; Lucas, Spencer G.; Schultz, Cesar L.
2018-01-01
Tetrapod tracks in eolianites are widespread in the fossil record since the late Paleozoic. Among these ichnofaunas, the ichnogenus Chelichnus is the most representative of the Permian tetrapod ichnological record of eolian deposits of Europe, North America and South America, where the Chelichnus Ichnofacies often occurs. In this contribution, we describe five sets of tracks (one of which is preserved in cross-section), representing the first occurrence of Dicynodontipus and Chelichnus in the “Pirambóia Formation” of southern Brazil. This unit represents a humid desert in southwestern Pangea and its lower and upper contacts lead us to consider its age as Lopingian–Induan. The five sets of tracks studied were compared with several ichnotaxa and body fossils with appendicular elements preserved, allowing us to attribute these tracks to dicynodonts and other indeterminate therapsids. Even though the “Pirambóia Formation” track record is sparse and sub-optimally preserved, it is an important key to better understand the occupation of arid environments by tetrapods across the Permo–Triassic boundary. PMID:29796341
Mereweather, E.A.
1980-01-01
The sedimentary rocks of early Late Cretaceous age in Weston County, Wyo., on the east flank of the Powder River Basin, are assigned, in ascending order, to the Belle Fourche Shale, Greenhorn Formation, and Carlile Shale. In Johnson County, on the west flank of the basin, the lower Upper Cretaceous strata are included in the Frontier Formation and the overlying Cody Shale. The Frontier Formation and some of the laterally equivalent strata in the Rocky Mountain region contain major resources of oil and gas. These rocks also include commercial deposits of bentonite. Outcrop sections, borehole logs, and core studies of the lower Upper Cretaceous rocks near Osage, in Weston County, and Kaycee, in Johnson County, supplement comparative studies of the fossils in the formations. Fossils of Cenomanian, Turonian, and Coniacian Age are abundant at these localities and form sequences of species which can be used for the zonation and correlation of strata throughout the region. The Belle Fourche Shale near Osage is about 115 m (meters) thick and consists mainly of noncalcareous shale, which was deposited in offshore-marine environments during Cenomanian time. These strata are overlain by calcareous shale and limestone of the Greenhorn Formation. In this area, the Greenhorn is about 85 m thick and accumulated in offshore, open-marine environments during the Cenomanian and early Turonian. The Carlile Shale overlies the Greenhorn and is composed of, from oldest to youngest, the Pool Creek Member, Turner Sandy Member, and Sage Breaks Member. In boreholes, the Pool Creek Member is about 23 m thick and consists largely of shale. The member was deposited in offshoremarine environments in Turonian time. These rocks are disconformably overlain by the Turner Sandy Member, a sequence about 50 m thick of interstratified shale, siltstone, and sandstone. The Turner accumulated during the Turonian in several shallow-marine environments. Conformably overlying the Turner is the slightly calcareous shale of the Sage Breaks Member, which is about 91 m thick. The Sage Breaks was deposited mostly during Coniacian time in offshore-marine environments. In Johnson County, the Frontier Formation consists of the Belle Fourche Member and the overlying Wall Creek Member, and is overlain by the Sage Breaks Member of the Cody Shale. Near Kaycee, the Belle Fourche Member is about 225 m thick and is composed mostly of interstratified shale, siltstone, and sandstone. These strata are mainly of Cenomanian age and were deposited largely in shallow-marine environments. In this area, the Belle Fourche Member is disconformably overlain by the Wall Creek Member, which is about 30 m thick and grades from interlaminated shale and siltstone at the base of the member to sandstone at the top. The Wall Creek accumulated during Turonian time in shallowmarine environments. These beds are overlain by the Sage Breaks Member of the Cody. Near Kaycee, the Sage Breaks is about 65 m thick and consists mainly of shale which was deposited in offshoremarine environments during Turonian and Coniacian time. Lower Upper Cretaceous formations on the east side of the Powder River Basin can be compared with strata of the same age on the west side of the basin. The Belle Fourche Shale at Osage is represented near Kaycee by most of the Belle Fourche Member of the Frontier. The Greenhorn at Osage contrasts with beds of similar age in the Belle Fourche at Kaycee. An upper part of the Greenhorn Formation, the Pool Creek Member of the Carlile Shale, and the basal beds of the Turner Sandy Member of the Carlile, in Weston County, are represented by a disconformity at the base of the Wall Creek Member of the Frontier in southern Johnson County. A middle part of the Turner in the vicinity of Osage is the same age as the Wall Creek Member near Kaycee. A sequence of beds in the upper part of the Turner and in the overlying Sage Breaks in Weston County is the same age as most of the Sage Breaks M
Lau, Kimberly V.; Maher, Kate; Brown, Shaun T.; ...
2017-11-01
The geological calcium cycle is linked to the geological carbon cycle through the weathering and burial of carbonate rocks. As a result, calcium (Ca) isotope ratios ( 44 Ca/ 40 Ca, expressed as δ 44/40 Ca) can help to constrain ancient carbon cycle dynamics if Ca cycle behavior can be reconstructed. But, the δ 44/40 Ca of carbonate rocks is influenced not only by the δ 44/40 Ca of seawater but also by diagenetic processes and fractionation associated with carbonate precipitation. In this study, we investigate the dominant controls on carbonate δ 44/40 Ca in Upper Permian to Middle Triassicmore » limestones (ca. 253 to 244 Ma) from south China and Turkey. This time interval is ideal for assessing controls on Ca isotope ratios in carbonate rocks because fluctuations in seawater δ 44/40 Ca may be expected based on several large carbon isotope (δ 13 C) excursions ranging from -2 to + 8‰. Parallel negative δ 13 C and δ 44/40 Ca excursions were previously identified across the end-Permian extinction horizon. Here, we find a second negative excursion in δ 44/40 Ca of ~ 0.2‰ within Lower Triassic strata in both south China and Turkey; however, this excursion is not synchronous between regions and thus cannot be interpreted to reflect secular change in the δ 44/40 Ca of global seawater. Additionally, δ 44/40 Ca values from Turkey are consistently 0.3‰ lower than contemporaneous samples from south China, providing further support for local or regional influences. By measuring δ 44/40 Ca and Sr concentrations ([Sr]) in two stratigraphic sections located at opposite margins of the Paleo-Tethys Ocean, we can determine whether the data represent global conditions (e.g., secular variations in the δ 44/40 Ca of seawater) versus local controls (e.g., original mineralogy or diagenetic alteration). The [Sr] and δ 44/40 Ca data from this study are best described statistically by a log-linear correlation that also exists in many previously published datasets of various geological ages. By using a model of early marine diagenetic water-rock interaction, we illustrate that this general correlation can be explained by the chemical evolution of bulk carbonate sediment samples with different initial mineralogical compositions that subsequently underwent recrystallization. Although early diagenetic resetting and carbonate mineralogy strongly influence the carbonate δ 44/40 Ca values, the relationship between [Sr] and δ 44/40 Ca holds potential for reconstructing first-order secular changes in seawater δ 44/40 Ca composition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Kimberly V.; Maher, Kate; Brown, Shaun T.
The geological calcium cycle is linked to the geological carbon cycle through the weathering and burial of carbonate rocks. As a result, calcium (Ca) isotope ratios ( 44 Ca/ 40 Ca, expressed as δ 44/40 Ca) can help to constrain ancient carbon cycle dynamics if Ca cycle behavior can be reconstructed. But, the δ 44/40 Ca of carbonate rocks is influenced not only by the δ 44/40 Ca of seawater but also by diagenetic processes and fractionation associated with carbonate precipitation. In this study, we investigate the dominant controls on carbonate δ 44/40 Ca in Upper Permian to Middle Triassicmore » limestones (ca. 253 to 244 Ma) from south China and Turkey. This time interval is ideal for assessing controls on Ca isotope ratios in carbonate rocks because fluctuations in seawater δ 44/40 Ca may be expected based on several large carbon isotope (δ 13 C) excursions ranging from -2 to + 8‰. Parallel negative δ 13 C and δ 44/40 Ca excursions were previously identified across the end-Permian extinction horizon. Here, we find a second negative excursion in δ 44/40 Ca of ~ 0.2‰ within Lower Triassic strata in both south China and Turkey; however, this excursion is not synchronous between regions and thus cannot be interpreted to reflect secular change in the δ 44/40 Ca of global seawater. Additionally, δ 44/40 Ca values from Turkey are consistently 0.3‰ lower than contemporaneous samples from south China, providing further support for local or regional influences. By measuring δ 44/40 Ca and Sr concentrations ([Sr]) in two stratigraphic sections located at opposite margins of the Paleo-Tethys Ocean, we can determine whether the data represent global conditions (e.g., secular variations in the δ 44/40 Ca of seawater) versus local controls (e.g., original mineralogy or diagenetic alteration). The [Sr] and δ 44/40 Ca data from this study are best described statistically by a log-linear correlation that also exists in many previously published datasets of various geological ages. By using a model of early marine diagenetic water-rock interaction, we illustrate that this general correlation can be explained by the chemical evolution of bulk carbonate sediment samples with different initial mineralogical compositions that subsequently underwent recrystallization. Although early diagenetic resetting and carbonate mineralogy strongly influence the carbonate δ 44/40 Ca values, the relationship between [Sr] and δ 44/40 Ca holds potential for reconstructing first-order secular changes in seawater δ 44/40 Ca composition.« less
An Intracratonic Record of North American Tectonics
NASA Astrophysics Data System (ADS)
Lovell, Thomas Rudolph
Investigating how continents change throughout geologic time provides insight into the underlying plate tectonic process that shapes our world. Researchers aiming to understand plate tectonics typically investigate records exposed at plate margins, as these areas contain direct structural and stratigraphic information relating to tectonic plate interaction. However, these margins are also susceptible to destruction, as orogenic processes tend to punctuate records of plate tectonics. In contrast, intracratonic basins are long-lived depressions located inside cratons, shielded from the destructive forces associated with the plate tectonic process. The ability of cratonic basins to preserve sedimentological records for extended periods of geologic time makes them candidates for recording long term changes in continents driven by tectonics and eustacy. This research utilizes an intracratonic basin to better understand how the North American continent has changed throughout Phanerozoic time. This research resolves geochronologic, thermochronologic, and sedimentologic changes throughout Phanerozoic time (>500 Ma) within the intracratonic Illinois Basin detrital record. Core and outcrop sampling provide the bulk of material upon which detrital zircon geochronologic, detrital apatite thermochronologic, and thin section petrographic analyses were performed. Geochronologic evidence presented in Chapters 2 and 3 reveal the Precambrian - Cretaceous strata of the intracratonic Illinois Basin yield three detrital zircon U-Pb age assemblages. Lower Paleozoic strata yield ages corresponding to predominantly cratonic sources (Archean - Mesoproterozoic). In contrast, Middle - Upper Paleozoic strata have a dominant Appalachian orogen (Neoproterozoic - Paleozoic) signal. Cretaceous strata yield similar ages to underlying Upper Paleozoic strata. We conclude that changes in the provenance of Illinois Basin strata result from eustatic events and tectonic forcings. This evidence demonstrates that changes in the detrital record of the Illinois Basin coincide with well-documented, major tectonic and eustatic events that altered and shaped North American plate margins. Chapter 4 presents 24 apatite (U-Th)/He (AHe) ages (3 - 423 Ma) taken from subsurface Cambrian and Pennsylvanian sandstones in the Illinois Basin. Time-temperature simulations used to reproduce these ages predict a basin thermal history with a maximum temperature of 170°C in post-Pennsylvanian time followed by Mesozoic cooling at 0.3°C/Myr. These thermal simulations suggest 3 km of additional post-Pennsylvanian burial (assuming 30°C/km geotherm) followed by subsequent Mesozoic - Cenozoic removal. This burial-exhumation history is concurrent with Late Mesozoic tectoniceustatic fluctuations, including Atlantic and Gulf of Mexico opening, rejuvenation of the Appalachian region, and Gulf of Mexico sediment influx, and the Cretaceous high sea level stand. The Geochronologic and thermochronologic evidence presented in the following chapters suggests the Illinois Basin potentially contains a more robust record of North American tectonics than previously thought. These observations provide a new perspective on the utility of intracratonic basins in understanding long term changes to continental bodies.
NASA Astrophysics Data System (ADS)
Sleveland, Arve; Planke, Sverre; Zuchuat, Valentin; Franeck, Franziska; Svensen, Henrik; Midtkandal, Ivar; Hammer, Øyvind; Twitchett, Richard; Deltadalen Study Group
2017-04-01
The Siberian Traps voluminous igneous activity is considered a likely trigger for the Permian-Triassic global extinction event. However, documented evidence of the Siberian Traps environmental effects decreases away from the centre of volcanic activity in north-central Russia. Previous research on the Permian-Triassic boundary (PTB) mostly relies on field observations, and resolution has thus depended on outcrop quality. This study reports on two 90 m cored sedimentary successions intersecting the PTB in Deltadalen, Svalbard, providing high-quality material to a comprehensive documentation of the stratigraphic interval. Sequence stratigraphic concepts are utilised to help constrain the Permian-Triassic basin development models in Svalbard and the high-Arctic region. The cored sections are calibrated with outcrop data from near the drill site. One core has been systematically described and scanned using 500-μm and 200-μm resolution XRF, hyperspectral imagery and microfocus CT (latter only on selected core sections). The base of both cores represents the upper 15 m of the Permian Kapp Starostin Formation, which is dominated by green glauconitic sandstones with spiculitic cherts, and exhibit various degrees of bioturbation. The Kapp Starostin Formation is in turn sharply overlain by 2 m of heavily reworked sand- and mudstones, extensively bioturbated, representing the base of the lower Triassic Vikinghøgda Formation. These bioturbated units are conformably overlain by 9 m of ash-bearing laminated black shale where signs of biological activity both on micro- and macro-scale are limited, and is thus interpreted to have recorded the Permian-Triassic extinction interval. Descriptive sedimentology and sequence stratigraphic concepts reveal the onset of relative sea level rise at the Vikinghøgda Formation base. The disappearance of bioturbation and extensive presence of pyrite in the overlying laminated black shale of the Vikinghøgda Formation suggest near anoxic conditions. The maximum flooding surface is recorded 6 m above the base of the Vikinghøgda Formation, in the middle of the laminated black shale and indicates that the lower ash-layers are tied to igneous activity at a time of relatively high sea level. The remaining succession above the laminated black shale is an overall aggradational interval of interbedded clay- and siltstones of the Vikinghøgda Formation, marking the return of biological activity at its base. The Vikinghøgda Formation includes 18 preserved zircon-bearing ash-layers, providing an opportunity for accurate U/Pb dating. Detailed cyclostratigraphic analyses of the laminated black shale suggest a sedimentation rate of approximately 0.5 cm/kyr, and provides thus, together with the U/Pb zircon ages, a great tool for high-resolution documentation of the PTB interval.
NASA Astrophysics Data System (ADS)
Baublitz, C. B.; Henderson, B. H.; Pachon, J. E.; Galvis, B. R.
2014-12-01
Colombia has strict economic divisions, which may be represented by six strata assigned by the National Planning Department. These are assigned by housing conditions and are arranged such that the divisions with subpar living conditions (strata levels one through three) may receive support from those with better than acceptable living conditions (strata levels five and six). Notably, division three no longer receives aid, and division four neither contributes to this system nor receives support. About ten percent of the population is in the upper three strata, while the remaining populace experiences subpar living conditions. Bogotá, DC has poor air quality that sometimes puts sensitive populations at risk due to particulate matter (PM). The local environmental agency has developed seven strategies to reduce air pollution, predominantly by regulating fixed and mobile sources, for the promotion of public health. Preliminary mapping of results indicates there may be higher concentrations of pollutants in areas whose residents are of a lower socioeconomic status (SES). Because it's more difficult for impoverished people to miss work or afford healthcare, higher exposure could have more significance for the city's overall health burden. The aim of this project is to determine the effective impactful regulatory strategy for the benefit of public health as a result of emission reductions. This will be done by using CMAQ results and BenMAP with information for long-term relative risk estimates for PM to find premature mortality rates per source type and location, segregated by strata division. A statistical regression will define the correspondence between health impact and SES. The benefit per reduction will be given in premature mortalities avoided per ton of PM emissions reduced per source type. For each of seven proposed regulatory strategies, this project provides results in mortalities avoided per ton of emissions of PM reduced per source type. It also compares these results against the strata divisions to analyze the correspondence between SES and exposure to air pollution. Because there are many industrial facilities close to residential areas of the lower three strata, it's predicted that fixed sources are the main contributor to health impacts for citizens of a lower SES.
Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies.
Maguire, Dorothy Y; Robert, Katleen; Brochu, Kristen; Larrivée, Maxim; Buddle, Christopher M; Wheeler, Terry A
2014-02-01
Forest canopies support high arthropod biodiversity, but in temperate canopies, little is known about the spatial distribution of these arthropods. This is an important first step toward understanding ecological roles of insects in temperate canopies. The objective of this study was to assess differences in the species composition of two dominant and diverse taxa (Diptera and Coleoptera) along a vertical gradient in temperate deciduous forest canopies. Five sugar maple trees from each of three deciduous forest sites in southern Quebec were sampled using a combination of window and trunk traps placed in three vertical strata (understory, mid-canopy, and upper-canopy) for three sampling periods throughout the summer. Coleoptera species richness and abundance did not differ between canopy heights, but more specimens and species of Diptera were collected in the upper-canopy. Community composition of Coleoptera and Diptera varied significantly by trap height. Window traps collected more specimens and species of Coleoptera than trunk traps, although both trap types should be used to maximize representation of the entire Coleoptera community. There were no differences in abundance, diversity, or composition of Diptera collected between trap types. Our data confirm the relevance of sampling all strata in a forest when studying canopy arthropod biodiversity.
Martz, Jeffrey W.; Parker, William G.
2010-01-01
Background Recent revisions to the Sonsela Member of the Chinle Formation in Petrified Forest National Park have presented a three-part lithostratigraphic model based on unconventional correlations of sandstone beds. As a vertebrate faunal transition is recorded within this stratigraphic interval, these correlations, and the purported existence of a depositional hiatus (the Tr-4 unconformity) at about the same level, must be carefully re-examined. Methodology/Principal Findings Our investigations demonstrate the neglected necessity of walking out contacts and mapping when constructing lithostratigraphic models, and providing UTM coordinates and labeled photographs for all measured sections. We correct correlation errors within the Sonsela Member, demonstrate that there are multiple Flattops One sandstones, all of which are higher than the traditional Sonsela sandstone bed, that the Sonsela sandstone bed and Rainbow Forest Bed are equivalent, that the Rainbow Forest Bed is higher than the sandstones at the base of Blue Mesa and Agate Mesa, that strata formerly assigned to the Jim Camp Wash beds occur at two stratigraphic levels, and that there are multiple persistent silcrete horizons within the Sonsela Member. Conclusions/Significance We present a revised five-part model for the Sonsela Member. The units from lowest to highest are: the Camp Butte beds, Lot's Wife beds, Jasper Forest bed (the Sonsela sandstone)/Rainbow Forest Bed, Jim Camp Wash beds, and Martha's Butte beds (including the Flattops One sandstones). Although there are numerous degradational/aggradational cycles within the Chinle Formation, a single unconformable horizon within or at the base of the Sonsela Member that can be traced across the entire western United States (the “Tr-4 unconformity”) probably does not exist. The shift from relatively humid and poorly-drained to arid and well-drained climatic conditions began during deposition of the Sonsela Member (low in the Jim Camp Wash beds), well after the Carnian-Norian transition. PMID:20174475
Dillon, William P.; Schlee, J.S.; Klitgord, Kim D.
1988-01-01
The continental margin of eastern North America was initiated when West Africa and North America were rifted apart in Triassic-Early Jurassic time. Cooling of the crust and its thinning by rifting and extension caused subsidence. Variation in amounts of subsidence led to formation of five basins. These are listed from south to north. (1) The Blake Plateau Basin, the southernmost, is the widest basin and the one in which the rift-stage basement took longest to form. Carbonate platform deposition was active and persisted until the end of Early Cretaceous. In Late Cretaceous, deposition slowed while subsidence persisted, so a deep water platform was formed. Since the Paleocene the region has undergone erosion. (2) The Carolina Trough is narrow and has relatively thin basement, on the basis of gravity modeling. The two basins with thin basement, the Carolina Trough and Scotian Basin, also show many salt diapirs indicating considerable deposition of salt during their early evolution. In the Carolina Trough, subsidence of a large block of strata above the flowing salt has resulted in a major, active normal fault on the landward side of the basin. (3) The Baltimore Canyon Trough has an extremely thick sedimentary section; synrift and postrift sediments exceed 18 km in thickness. A Jurassic reef is well developed on the basin's seaward side, but post-Jurassic deposition was mainly non-carbonate. In general the conversion from carbonate to terrigenous deposition, characteristics of North American Basins, occurred progressively earlier toward the north. (4) The Georges Bank Basin has a complicated deep structure of sub-basins filled with thick synrift deposits. This may have resulted from some shearing that occurred at this offset of the continental margin. Postrift sediments apparently are thin compared to other basins-only about 8 km. (5) The Scotian Basin, off Canada, contains Jurassic carbonate rocks, sandstone, shale and coal covered by deltaic deposits and Upper Cretaceous deeper water chalk and shale. ?? 1988.
NASA Astrophysics Data System (ADS)
Yui, T. F.; Maki, K.; Lan, C. Y.; Hirata, T.; Chu, H. T.; Kon, Y.; Yokoyama, T. D.; Jahn, B. M.; Ernst, W. G.
2012-05-01
Taiwan formed during the Plio-Pleistocene collision of Eurasia with the outboard Luzon arc. Its pre-Tertiary basement, the Tananao metamorphic complex, consists of the western Tailuko belt and the eastern Yuli belt. These circum-Pacific belts have been correlated with the high-temperature/low-pressure (HT/LP) Ryoke belt and the high-pressure/low-temperature (HP/LT) Sanbagawa belt of Japan, respectively. To test this correlation and to reveal the architecture and plate-tectonic history of the Tananao metamorphic basement, detrital zircons were separated from 7 metasedimentary rock samples for U-Pb dating by LA-ICPMS techniques. Results of the present study, coupled with previous data, show that (1) the Tailuko belt consists of a Late Jurassic to earliest Cretaceous accretionary complex sutured against a Permian-Early Jurassic marble ± metabasaltic terrane, invaded in the north by scattered Late Cretaceous granitic plutons; the latter as well as minor Upper Cretaceous cover strata probably formed in a circum-Pacific forearc; (2) the Yuli belt is a mid- to Late Cretaceous accretionary complex containing HP thrust sheets that were emplaced attending the Late Cenozoic Eurasian plate-Luzon arc collision; (3) these two Late Mesozoic belts are not coeval, and in part were overprinted by low-grade metamorphism during the Plio-Pleistocene collision; (4) accreted clastic sediments of the Tailuko belt contain mainly Phanerozoic detrital zircons, indicating that terrigenous sediments were mainly sourced from western Cathaysia, whereas in contrast, clastic rocks of the Yuli accretionary complex contain a significant amount of Paleoproterozoic and distinctive Neoproterozoic zircons, probably derived from the North China craton and the Yangtze block ± eastern Cathaysia, as a result of continent uplift/exhumation after the Permo-Triassic South China-North China collision; and (5) the Late Jurassic-Late Cretaceous formation of the Tananao basement complex precludes the possibility that the early Yanshanian (Early Jurassic) granitoids in southern China represent a landward arc contemporaneous with the later, outboard Tananao accretionary event.
NASA Astrophysics Data System (ADS)
Hutny, M. K.; Steiner, M. B.
2001-12-01
The J-1 cusp marks a dramatic ~ 180° change in the apparent motion of the magnetic pole with respect to North America. The cusp is defined by a sequence of poles: Chinle - Moenave - Kayenta. The Moenave pole (Ekstrand and Butler, 1989), which forms the point of the cusp, was obtained primarily from the lower member (Dinosaur Canyon) of the three-member Moenave Formation. We present new paleomagnetic data from the upper two members (Whitmore Point and Springdale Sandstone) of the formation. The Vermillion Cliffs in southern Utah present excellent exposures of the Moenave Formation. At this location, the Moenave rests uncomformably on the Late Triassic Chinle Group, although to the southeast it overlies it in a conformable manner. The Moenave is seemingly conformably overlain by the Kayenta Formation. Our study identified six polarity intervals in 100 meters of section. A preliminary paleopole from the Whitmore Point Member falls within the 95% confidence limits of the Dinosaur Canyon pole (Ekstrand and Butler, 1989), as does our pole from the top Springdale Sandstone member. If the apparent polar wander does indeed represent motion of the North American continent, then the reversal in direction implied by the J-1 cusp takes place after the deposition of the Springdale Sandstone, and either before or during the deposition of the lower Kayenta Formation. No directions intermediate between the Moenave and Kayenta directions were observed up through the uppermost Moenave strata. Within the Moenave, the lack of discernable change in magnetic direction between the three members suggests continuous deposition. This result is consistent with the observed mutually interfingering nature of the Whitmore Point and Springdale Sandstone. The sudden change in magnetic direction between the top of the Moenave and the Kayenta suggests the possibility of an unconformity between the two formations, and/or rapid continental motion following the turnaround.
NASA Astrophysics Data System (ADS)
Geissman, J. W.; Chi, C. T.
2015-12-01
New paleomagnetic data from Upper Permian to Lower Triassic volcanic rocks sampled in NW Vietnam provide more quantitative constraints on the paleogeographic setting of crustal elements that comprise the Song Da Terrane, east of the Song Ma suture, between the South China block (SCB) and north Indochina. These include results from 12 sites (125 samples) from basalts of the Vien Nam Formation, exposed at Hoa Binh Dam; eight sites (74 samples) from basalts of the Cam Thuy Formation near Thuan Chau; and 19 sites (198 samples) from andesites and basalts of the Vien Nam Formation near Quynh Nhai. The collection is limited by the quality of exposures and quantity of independent flows. Most sites yield interpretable magnetizations in progressive demagnetization, and the response implies that characteristic remanent magnetization (ChRM) components are carried by low-titanium magnetite or hematite, or a combination of both; these are isolated from secondary components. Rock magnetic data and petrography support the retention of an early-acquired thermoremanent magnetization in most sites. The Vien Nam Formation mafic volcanic rocks yield a grand mean, in geographic coordinates, of D=33.8o, I=-28.4o ( a95 = 9.5o, k =30.3, N=9 accepted sites), and a pole position at Lat=41.1N, Long=239.8E and a paleolatitude at ~15o S during the Late Permian to Early Triassic. Permian basalts of the Cam Thuy Formation provide a grand mean, corrected for structural tilt, of D=216.1o, I=+10.5o, a95=8.9o, k=107.8, and N= 4, with a pole position at Lat=45.6N, Long=226.8E. Volcanic rocks at the Quynh Nhai locality likely yield the most robust paleofield determination, as the data set is of dual polarity and passes a reversal test. The tilt corrected grand mean (normal polarity) is D=48.3o, I=-10.0o, a95=8.0o, k=27.7, N = 13, and this in turn yields an inferred paleomagnetic pole at Lat=35.7N, Long=217.4E, and a paleolatitude of 5.1oS for the late Permian. Compared with the Late Permian-Early Triassic SCB apparent polar wander path, the data show that volcanic crustal elements of northwest Vietnam, east of the Song Ma suture zone, have been close to, but not unequivocally a coherent part of the SCB, since the Late Permian. Development of the parallel NW-SE striking Song Ma and Song Chay orogenic belts did not involve the closure of wide (> 500 km) ocean basins.
Time-scale calibration by U-Pb geochronology: Examples from the Triassic Period
NASA Astrophysics Data System (ADS)
Mundil, R.
2009-05-01
U-Pb zircon geochronology, pioneered by Tom Krogh, is a cornerstone for the calibration of the time scale. Before Krogh's innovations, U-Pb geochronology was essentially limited by laboratory blank Pb (typically hundreds of nanograms) inherent in the then existing zircon dissolution and purification methods. The introduction of high pressure HF dissolution combined with miniature ion exchange columns (1) reduced the blank by orders of magnitude and allowed mass-spectrometric analyses of minute amounts of material (picograms of Pb and U). Krogh also recognized the need for minimizing the effects of Pb loss, and the introduction of the air-abrasion technique was the method of choice for two decades (2), until the development of the combined annealing and chemical abrasion technique resulted in essentially closed system zircons (3). These are the prerequisite for obtaining precise (permil-level) and accurate radio-isotopic ages of individual zircons contained in primary volcanic ash deposits, which are primary targets for the calibration of the time scale if they occur within fossil bearing sediments. A prime example is the calibration of the Triassic time scale which improved significantly using these techniques. The ages for the base and the top of the Triassic are constrained by U-Pb ages to 252.3 (4) and 201.5 Ma (5), respectively. These dates also constrain the ages of major extinction events at the Permian-Triassic and Triassic-Jurassic boundaries, and are statistically indistinguishable from ages obtained for the Siberian Traps and volcanic products from the Central Atlantic Magmatic Province, respectively, suggesting a causal link. Ages for these continental volcanics, however, are mostly from the K-Ar (40Ar/39Ar) system which requires accounting and correcting for a systematic bias of ca 1 % between U-Pb and 40Ar/39Ar isotopic ages (the 40Ar/39Ar ages being younger) (6). Robust U-Pb age constraints also exist for the Induan- Olenekian boundary (251.2 Ma, (7)) and the Early-Middle Triassic (Olenekian-Anisian) boundary (247.2 Ma, (8, 9)), resulting in a surprisingly short duration of the Early Triassic which has implications for the timing of biotic recovery and major changes in ocean chemistry during this time. Furthermore, the Anisian-Ladinian boundary is constrained to 242.0 Ma by new U-Pb and 40Ar/39Ar ages. Radio-isotopic ages for the Late Triassic are scarce and the only reliable and biostratigraphically controlled age is from an upper Carnian tuff dated to 230.9 Ma (10), yielding a duration of more than 35 Ma for the Late Triassic. The resulting time-scale is at odds with the most recent compilation (11) but arguably more accurate because it is entirely based on U-Pb analyses applied to closed-system zircons with uncertainties at the permil level or better. 1. T. E. Krogh, Geochimica et Cosmochimica Acta 37, 485 (1973); 2. T. E. Krogh, Geochimica et Cosmochimica Acta 46, 637 (1982); 3. J. M. Mattinson, Chemical Geology 220, 47 (2005); 4. R. Mundil, K. R. Ludwig, I. Metcalfe, P. R. Renne, Science 305, 1760 (2004); 5. U. Schaltegger, J. Guex, A. Bartolini, B. Schoene, M. Ovtcharova, Earth and Planetary Science Letters 267, 266 (2008); 6. R. Mundil, P. R. Renne, K. K. Min, K. R. Ludwig, in Eos Trans. AGU, Fall Meet. Suppl. (2006), vol. 87(52), pp. V21A-0543; 7. T. Galfetti et al., Earth and Planetary Science Letters 258, 593 (2007). 8. M. Ovtcharova et al., Earth and Planetary Science Letters 243, 463 (2006). 9. J. Ramezani et al., Earth and Planetary Science Letters 256, 244 (2007). 10. S. Furin et al., Geology 34, 1009 (2006); 11. J. G. Ogg, in A Geologic Time Scale 2004 F. M. Gradstein, J. G. Ogg, A. G. Smith, Eds. (University Press, Cambridge, 2004) pp. 271-306.
Permian-triassic paleogeography and stratigraphy of the west Netherlands basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speksnijder, A.
1993-09-01
During the Permian, the present West Netherlands basin (WNB) was situated at the southernmost margin of the southern Permian basin (SPB). The thickness of Rotilegende sandstones therefore is very much reduced in the WNB. The relatively thin deposits of the Fringe Zechstein in the WNB, however, also contrast strongly in sedimentary facies with thick evaporite/carbonate alternations in the main SPB to the north, although the classic cyclicity of Zechstein deposition still can be recognized. The Fringe Zechstein sediments are mainly siliciclastic and interfinger with both carbonates and anhydrites toward the evaporite basin. End members are thin clay layers that constitutemore » potential seals to underlying Rotliegende reservoirs and relatively thick sandstones (over 100 m net sand) in the western part of the WNB. Nevertheless, favorable reservoir/seal configurations in the Fringe Zechstein seem to be sparse because only minor hydrocarbon occurrences have been proven in the area to date. The situation is dramatically different for the Triassic in the WNB. The [open quotes]Bunter[close quotes] gas play comprises thick Fringe Buntsandstein sandstones (up to 250 m), vertically sealed by carbonates and anhydritic clays of the Muschelkalk and Keuper formations. The Bunter sandstones are largely of the same age as the classic Volpriehausen, Detfurth, and Hardegsen alluvial sand/shale alternations recognized elsewhere, but the upper onlapping transgressive sands and silts correlate with evaporitic clays of the Roet basin to the north. A total volume of 65 x 10[sup 9]m[sup 3] of gas has so far been found in the Triassic Bunter sandstones of the WNB.« less
NASA Astrophysics Data System (ADS)
Fernandez, Naiara; Duffy, Oliver B.; Hudec, Michael R.; Jackson, Christopher A.-L.; Dooley, Tim P.; Jackson, Martin P. A.; Burg, George
2017-04-01
The SE Precaspian Basin is characterized by an assemblage of Upper Permian to Triassic minibasins. A recently acquired borehole-constrained 3D reflection dataset reveals the existence of abundant intrasalt reflection packages lying in between the Permo-Triassic minibasins. We propose that most of the mapped intrasalt reflection packages in the study area are minibasins originally deposited on top of salt that were later incorporated into salt by encasement processes. This makes the SE Precaspian Basin a new example of a salt province populated by encased minibasins, which until now had been mainly described from the Gulf of Mexico. Identifying salt-encased sediment packages in the study area has been crucial, not only because they provide a new exploration target, but also because they can play a key role on improving seismic imaging of adjacent or deeper stratigraphic sections. Another remarkable feature observed in the seismic dataset is the widespread occurrence of distinct seismic sequences in the Permo-Triassic minibasins. Bowl- and wedge-shaped seismic sequences define discrete periods of vertical and asymmetric minibasin subsidence. In the absence of shortening, the bowl-to-wedge transition is typically associated with the timing of basal welding and subsequent rotation of the minibasins. Timing of minibasin welding has important implications when addressing the likelihood of suprasalt reservoir charging. We performed a set of 2D numerical simulations aimed at investigating what drives the tilting of minibasins and how it relates to welding. A key observation from the numerical models is that the bowl-to-wedge transition can predate the time of basal welding.
Origin and structural development of the LaSalle Arch, Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawless, P.N.
1990-05-01
The LaSalle arch is a basement high separating the Louisiana and Mississippi interior salt basins. Using reflection seismic data, an area located on the southern end of the LaSalle arch was shown to be composed of relict Paleozoic continental crust that was left behind and partially rifted during the breakup of Pangea during the Triassic. Rifting preferentially occurred to the north of a Paleozoic thrust fault nose, and crustal extension took place in a northeast-southwest direction. The LaSalle arch, as seen in post-Triassic stratigraphy, formed by a two-part process. The western limb developed syndepositionally due to differential subsidence, and themore » eastern limb developed due to relative regional tilting to the east after deposition of the Claibornian Sparta Formation. The LaSalle arch acted as only a minor impediment to sediment transport with a very low relief except during the Tayloran Stage of the Upper Cretaceous. A single truncational unconformity in post-Triassic stratigraphy is present in the Taylora Demopolis Formation, indicating a period of relatively major uplift by the LaSalle arch. This contrast, with the Sabine arch in eastern Texas; the Sabine arch experienced uplift during the Eagle Fordian and Sabinian stages. A recently proposed hypothesis calling for overthrusting in the Western Cordillera as the mechanism for uplift on the Sabine arch cannot explain movement of the LaSalle arch because horizontal stress would predict synchronous uplift of basement highs. A more satisfactory uplift mechanism calls upon lateral heat flow from the mantle as the driving force for uplift.« less
Dubiel, Russell F.
1983-01-01
Closely spaced measured stratigraphic sections of the lower part of the Late Triassic Chinle Formation in the White Canyon area of southeastern Utah depict a fluvial-deltaic-lacustrine depositional sequence that hosts uranium deposits in basal fluvial sandstones. The basal Shinarump Member consists of predominantly trough-crossbedded, coarse-grained sandstone and minor gray, carbonaceous mudstone and is interpreted as a valley-fill sequence overlain by deposits of a braided stream system. The overlying Monitor Butte Member is composed of cyclic- and foreset-bedded siltstone, sandstone, and mudstone and is interpreted as a succession of low-energy fluvial, deltaic and orqanicrich, lacustrine-marsh sediments. The overlying Moss Back Member is composed of a laterally extensive, coarse- to medium-grained, conglomeratic sandstone and is interpreted as a braided-stream system that flowed north to northwest. The entire sequence was deposited in response to changes in local base level associated with a large lake that lay to the west. Isopachs of lithofacies indicate distinct lacustrine basins and a correspondence between these facies and modern structural synclines. Facies changes and coincidence of isopach thicks suggest that structural synclines were active in the Late Triassic and influenced the pattern of sediment distribution within the basins. Uranium mineralization appears to be related to certain low-energy depositional environments in that uranium is localized in fluvial sandstones that lie beneath organic-rich lacustrine-marsh mudstones and carbonaceous delta-front sediments. The reducing environment preserved in these facies may have played an important role in the localization of uranium.
Mesozoic black shales, source mixing and carbon isotopes
NASA Astrophysics Data System (ADS)
Suan, Guillaume
2016-04-01
Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.
NASA Astrophysics Data System (ADS)
Diedrich, Cajus G.
2010-05-01
Nine Middle Triassic paleogeographical maps comprising the uppermost Upper Bunter, Lower to Middle Muschelkalk and Upper Muschelkalk to Lower Keuper time frame (Diedrich 2008b) show the marine ingression and regression cycle of the Middle Triassic Germanic Basin (Diedrich 2010c). For bathymetrical and palaeoenvironmental interpretations especially reptiles and their footprints are used. This Germanic Basin as analogon for the Arabian Gulf (Knaust 1997), north of the Tethys, was under marine and finally terrestrial influenced sediments in a time frame (after Kozur and Bachmann 2008) between 247.2 My (Myophoria Fm, Aegean, Lower Anisian) to 237.9 My (Grabfeld Fm, Longobardian, Lower Ladinian). In a duration of 9.3 My the Germanic Basin was filled up mainly with marine carbonates and at the end by siliciclastics influenced by the northern Tethys through the Silesian, Carpathian and later the Burgundian Gates which connected the Germanic Basin to the Northern Tethys. With the marine ingression from the East via the Silesian Gate (Poland) a ten to hundred kilometers extended intertidal flat to sabkha facies belt surrounded first only the central and then the Western Germanic Basin (Winterswijk, Netherlands). Those intertidal zones were used mainly by two different small reptiles as their primary habitat. Hereby they left Millions of the small tom medium sized footprints of the ichnogenera Rhynchosauroides and Procolophonichnium (Diedrich 2005, 2008a). Larger terrestrial and beach and sabkha adapted reptiles were Tanystrophaeus antiquus and unknown archosaurs, which are recorded only by their footprints. At the beginning of the ingression at the uppermost Bunter a shallow marine invertebrate fauna and coastal reptiles appeared in the Germanic Basin which must have originated mainly from the Northern Tethys. Especially all marine reptiles immigrated from the Tethys which is proven not only by assamblaged Tethyan cephalopod Ceratite species (cf. Diedrich 2008a). The coastal intertidal zones appeared with mud cracked biolaminate and sabkha dolomites ("Biolaminate and Sabkha facies") and expanded further west and south within the Lower Muschelkalk Winterswijk Fm (Aegean/Bithynian boundary), Osnabrück Fm, and Jena Fm (Bithynian to Pelsonian) (Diedrich and Trostheide 2007, Diedrich 2008a). The intertidal zones changed their extensions several times in the Lower Muschalkalk due to the less eustatically and more tectonically controlled very shallow relief cratonic basin morphology and were more stable in the western part of the flat carbonate ramp basin (Winterswijk, Netherlands) and in coastal zones in general. In the Germanic Basin centre (Rüdersdorf to Gogolin, Germany/Poland) the conditions were all that time under very shallow carbonate sand barr (Oolithtic, Terebratula or Shell bioclastic facies) or shallow subtidal ("Wellenkalk facies") conditions, whereas even extended seagrass meadows in shallow carbonate facies types are indirectly proven by invertebrate communities, especially snails. Those algae attracted especially placodontids which were the "Triassic seacows" feeding on such algae (Diedrich, 2010a), which immigrated with Paraplacodus, Placodus and Cyamodus already with the first Lower Muschelkalk ingression sequence. Also other reptiles such as nothosaurs Nothosaurus (small species), Cymatosaurus, the pachypleurosaurids Dactylosaurus, Neusticosaurus or Serpianosaurus must have originated from the tethys and were shallow marine and even lagoonary adapted paraxial swimming smaller marine reptiles. This "Lower Muschelkalk" time was highly tectonically active represented by several seismic layers (slumps, sigmoidal shocked layers, etc.) (cf. Schwarz 1975, Rüffer 1996, Knaust 2000, Diedrich 2008a), which were also reaching the intertidal beach zones, possibly even with tsunamite hazard events (Diedrich 2008b, 2009b). Such tsunamis or quick floodings due to storm events must have had hazardous impacts on marine reptiles or fishes, and the beach inhabiting terrestrial reptiles, which could have been killed by high amounts which explains the presence of many skeletons, bonebeds, and footprint preservations in the Germanic Basin biolaminate and lagoonal facies. With a high seismic peak during the Middle Muschelkalk Karlstadt Fm (Pelsonian/Illyrian boundary) in the intertidal zones up to 19 tectonically shocked biolaminate layers (locality Bernburg, Central Germany, Diedrich 2009b) prove the beginning of the Alpine tectonics and its raise (fold belt structure: Müller et al. 1964), but also the opening of the Carpathian Gate (graben structure: Szulc 1998), from which the epicenters were estimated by two main slickenside directions. Those can be found all over the Germanic Basin "Lower Muschelkalk" sediments (Szulc 1998, Föhlisch 2007, Diedrich 2009b). This time period of the Pelsonian/Illyrian boundary gave even such extended intertidal zones, that reptiles left Millions of tracks all over those biolaminate facies types, allowing those to migrate and distribute East (Bohemian Island) - West (Rhenisch Massif, London-Brabant Massif) due to "intertidal flat bridges". Therefore chirotherid archosaur trackmakers left Chirotherium, Isochirotherium and Brachychirotherium trackways quite abundantly not anymore in the typical Bunter red sandstone facies; now they appeared in the new environments, the intertidal biolaminates such as well documented at Bernburg (Central Germany, Diedrich 2009b), but also on other Middle Triassic coast east of the Massif Central (Demathieu 1985) or the Alps (e.g. Avanzini 2002). The only surviving marine reptiles were smaller lagoonal adapted pachypleurosaurs such as the common Anarosaurus and smaller sized Nothosaurus. Placodontids disappeared with the loss of the palaeoenvironment of the macroalgae meadows and seem to have migrated to the Carpathian gate and northern Tethys, where those habitats were still present. The dramatical habitat change with terrestrial territory loss, and marginal marine beach zone extensions seem to be also the reason for the beginning of the dinosaur raise in the world. Within the Middle Muschelkalk Heilbronn and Diemel Formations a massive sea level fall caused a new extension of intertidal zones and sabkhas, but also halite and gypsum evaporates ("Domolite-evaporate facies") in the basin center including the southern Germanic Basin branch (region Tübingen/Stuttgart, Southwestern Germany). The "Middle Muschelkalk" shallow relief and lagoon to intertidal dominated period changed again drastically within a new tectonic active "Upper Muschelkalk" time and strong "ingression" of the northern Tethys into the Germanic Basin within the Illyrian time (Bad Sulza Fm, Trochitenkalk Fm). A shallow marine, with shallow water carbonates filled Germanic Basin developed again, but this time with different consequences onto the former coastal zones, in which intertidal biolaminated and sabkhas disappeared as a result of steeper coastal morphologies. Whereas in the first ingression a shallow marine reptile fauna was present (Nothosaur-Pachypleurosaur taphocoenosis, Lower Bad Sulza Fm, Diedrich in prep.). The fauna changed with the main transgression within the Upper Bad Sulza Fm to a Placodontid-Pistosaur taphocoenosis with more open marine adapted forms (Diedrich in prep.). At those time also crinoid bioherms developed massively all over the central and southern Germanic Basin in front of the costs at the "steeper coast margins" (which were still hot high angled), as a "crinoid belt" (e.g. Aigner and Bachmann 1991), which was responsible for massive crinoidal limestones (= "Trochitenkalk facies"). In this period again "Triassic seacows" seem to have populated well the entire Germanic Basin, and here again seagrass meadow areas documented by benthic invertebrate palaeocommunities (Diedrich 2009a, 2010a). The marine macroplants must have built extended meadows on the shallow marine and oxygen-rich seafloor conditions of the "Tonplatten facies" on which many different invertebrates settled in- or epifaunistic. This tectonical deepening controlled situation continued with the Meißner Fm and aequivalent Formations and its cephalopod Ceratite rich "Tonplatten facies", whereas the "maximum flooding" (if the term can be used here in a cratonic and tectonically controlled basin: cf. definition of marine cycles in: Aigner and Bachmann 1991) was in the compressus biozone (ceratite biozone, middle Meißner Fm, Anisian/Ladinian boundary, cf. Diedrich 2009a). The high stand is underlined by now full adapted marine reptiles such as nothosaurs (Nothosaurus mirabilis, Simosaurus gaillardodti), pistosaurs (Pistosaurus longaevus) and especially the open marine ichtyosaurs (Shastasaurus, Mixosaurus, Omphtalmosaurus) support the full marine and highest water level conditions. The "regression" or better suggested here "basin uplifting" started in the upper Meißner Fm with a reducing carbonate sedimentation which was overtaken slowly by terrestrial sediments already within the Warburg/Erfurt Formations (Fassanian/Longobardian boundary, Lower Ladinian). The fresh water and clay mineral influence caused a reduction of the marine benthic community biodiversity and the development of brackish lagoons, in which some invertebrate faunas and dominantly small marine reptiles pachypleurosaurs lived. At that time all placodontid reptiles disappeared, which must have been the chain reaction of the macroalgae loss and environmental changes. A change of terrestrial influence and periodic marine influence is documented in repeating intercalated massive dolomites (Alberti-Bed, Anthraconit-Bed and others) and clay layers of the Lower Keuper Erfurt and especially Grabfeld Fm (Longobardian). In this final period the Lower Keuper Germanic Basin was less and less marine influenced, finally dominated at that time on the limnic influenced costs by large amphibians such as Mastodonsaurus, Gerrhothorax or Plagiosuchus, which were found especially at southern German and Central german sites (Schoch and Wild 1999, Diedrich 2010b), including the famous southern German "Grenzbonebed" (Fassanian/Longobardian boundary) (Reif 1982, Hagdorn 1990). This bonebed already contains a strongly reduced marine reptile fauna with pachypleurosaurs and giant lagoon-adapted nothosaurs (N. giganteus, S. gaillardoti) and few marine hypersaline adapted shells such as Costatoria costata (cf. Hagdorn et al. 2009). The absence of cephalopod ceratites and rare nautilid presence are the last proves for the periodic restricted lagoon situations- being comparable in its facies and reptile fauna to the lagoon of the Northern Tethys Monte San Giorgio, Switzerland/Italy (e.g. De Zanche and Farabegoli 1988, Furrer 1995) to which the Germanic Basin was connected through the Burgundian Gate, France. The marine influence and marine sediment fill of the Germanic Basin stopped finally at the beginning of the Middle Keuper (lower Upper Triassic), diachronously more earlier in northern Germany (Warburg/Erfurt Fm, cf.: Kozur and Bachmann 2008, Diedrich 2010b) as in southern Germany (cf. Hagdorn et al. 2009) indicating a periodic marine influence from the Northern Tethys through the Burgundian Gate. At the final tectonical stage (last seismits in the Grabfeld Fm, Longobardian: cf. Bachmann and Aref 2005) no intertidal flats nor biolamnintes developed anymore in a low relief Germanic Basin morphology, which reason can be explained be the carbonate reduction, strong terrigenous clay input, and brakish-lagoonary conditions, in which cyanobacterial mats of the low-relief intertidal zones could not develop. References Aigner, T. and Bachmann, G.H. 1991. Sequence Stratigraphy of the German Muschelkalk. In: Hagdorn, H. and Seilacher, A. (Eds.): Muschelkalk. Schöntaler Symposium. 15-18. Goldschneck-Verlag, Stuttgart. Avanzini, M. 2002. Dinosauromorph tracks from the Middle Triassic (Anisian) of the Southern Alps (Valle di Non-Italy). Bolletino della Società Paleontologica Italiana, 41 (1), 37-40. Bachmann, G.H. and Aref, M.A.M., 2005. A seismite in Triassic gypsum deposits (Grabfeld Formation, Ladinian), Southwest Germany. Sedimentary Geology 180, 75-89. De Zanche, V. and Farabegoli, E. 1988. Anisian paleogeographic evolution in the Central-Western Southern Alps. Memoirs Scientifique Geologique 40, 399-411. Demathieu, G.R. 1985. Trace fossil assemblages in Middle Triassic marginal marine deposits, eastern border of the Massif Central, France. Societe Economie Paléontologie et Mineralogie, Special Publications, 35, 53-66. Diedrich, C. 2005. Actuopalaeontological trackway experiments with Iguana on intertidal flat carbonates of the Arabian Gulf - a comparison to fossil Rhynchosauroides tracks of Triassic carbonate tidal flat megatracksites in the European Germanic Basin. Senckenbergiana maritime, 35 (2), 203-220. Diedrich, C. 2008a. Millions of reptile tracks - Early to Middle Triassic carbonate tidal flat migration bridges of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 410-423. Diedrich, C. 2008b. Palaeogeographic evolution of the marine Middle Triassic marine Germanic Basin changements - with emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea. Global and Planetary Change, 65 (2009), 27-55. Diedrich, C. 2009a. The vertebrates of the Anisian/Ladinian boundary (Middle Triassic) from Bissendorf (NW Germany) and their contribution to the anatomy, palaeoecology, and palaeobiogeography of the Germanic Basin reptiles. Palaeogeography, Palaeoclimatology, Palaeoecology, 273 (2009), 1-16. Diedrich, C. 2009b. Die Saurierspuren-Grabung im basalen Mittleren Muschelkalk (Anis, Mitteltrias) von Bernburg (Sachsen-Anhalt). Archäologie in Sachsen-Anhalt, Sonderband 2009, 1-62. Diedrich, 2010a. Palaeoecology of Placodus gigas (Reptilia) and other placodontids - macroalgae feeder of the Middle Triassic in the Germanic Basin of Central Europe and comparison to convergent developed sirenia. Palaeogeography, Palaeoclimatology, Palaeoecology, (in review). Diedrich, 2010b. The vertebrate fauna of the Lower Ladinian (Middle Triassic) from Lamerden (Germany) and contribution to the palaeoecology, anatomy and palaeogeography of the Germanic Basin reptiles. Palaeogeography, Palaeoclimatology, Palaeoecology, (in review). Diedrich, 2010c. The palaeogeographic reconstructions of the Middle Triassic tectonical controlled carbonatic Germanic Basin of Central Europe - a northern Tethys connected cratonic marine Basin - coastal basin margin mappings by the use of reptile footprint rich intertidal and sabkha environments. Abstract, Fifth International Conference on the Geology of the Tethys Realm, Quena-Luxor,Egypt), 3-5. Diedrich, in prep. The shallow marine fish and sauropterygian reptile vertebrate fauna of the Germanic Basin from the atavus/pulcher Bonebeds in the Bad Sulza Fm (Illyrian, Middle Triassic) of Bad Sulza (Central Germany). Diedrich, C. and Trostheide, F. 2007. Auf den Spuren der terresten Muschelkalksaurier und aquatischen Sauropterygier vom obersten Röt bis zum Mittleren Muschelkalk (Unter-/Mitteltrias) von Sachsen-Anhalt. Abhandlungen und Berichte für Naturkunde, 30, 5-56. Föhlisch, K. 2007. Überlieferungen seismischer Aktivität im Unteren Muschelkalk. Beiträge zur Geologie Thüringens, N.F. 14, 55-83. Furrer, H. 1995. The Kalkschieferzone (Upper Meride estone Ladinian) near Meride (Canton Ticino, Southern Switzerland) and the evolution of a Middle Triassic intraplatform basin. Eclogae geolicae Helvetiae, 88(3), 827-852. Hagdorn, H. 1990. Das Muschelkalk/Keuper-Bonebed von Crailsheim. In: Weidert, W. K. (Ed.), Klassische Fundstellen der Paläontologie, Band 2. 78-88. Goldschneck-Verlag, Stuttgart. Hagdorn, H., E. Nitsch, Aigner, T. and Simon, T. 2009. Field guide 6th international Triassic field workshop (Pan-European Correlation of the Triassic) Triassic of Southwest Germany. September 7-11, 2009, www.stratigraphie.de/perm-trias_workshops.html, 1-72. Knaust, D. 1997. Die Karbonatrampe am SE-Rand des Persischen Golfes (Vereinigte Arabische Emirate) - rezentes Analogon für den Unteren Muschelkalk der Germanischen Trias? Greifswalder Geowissenschaftliche Beiträge, 5, 101-123. Knaust, D. 2000. Signatures of tectonically controlled sedimentation in Lower Muschelkalk carbonates (Middle Triassic) of the Germanic Basin. Zentralblatt für Geologie und Paläontologie, I, 1998 (9-10), 893-924. Kozur, H.W. and Bachmann, G.H. 2008. Updated correlation of the Germanic Triassic with the Tethyan scale and assigned numeric ages. Berichte der Geologischen Bundesanstalt Wien, 76, 53-58. Reif, W.E. 1982. Muschelkal/Keuper bone-beds (Middle Triassic, SW-Germany) - storm condensation in a regressive cycle. In: Einsele, G. and Seilacher, A. (Eds.), Cyclic and Event Stratification. 299-325. Springer-Verlag, Berlin-Heidelberg-New York. Müller, W. et al., 1964. Vulkanogene Lagen aus der Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio in den Tessiner Kalkalpen. Eclogae geolicae Helvetiae, 57(2), 431-450. Rüffer, T. 1996. Seismite im Unteren Muschelkalk westlich von Halle (Saale). Hallesches Jahrbuch für Geowissenschaften, B 18, 119-130. Schoch, R. and Wild, R. 1999. Die Wirbeltiere des Muschelkalks unter besonderer Berücksichtigung Süddeutschlands. In: Hauschke, N. and Wilde, V. (Eds.), Trias eine ganz andere Welt. Europa im frühen Erdmittelalter. 331-342. Pfeil-Verlag, München. Schwarz, U. 1975. Sedimentary structures and facies analysis of shallow marine carbonates (Lower Muschelkalk, Middle Triassic, SW-Germany). Contributions to Sedimentology, 3, 1-100. Szulc, J. 1998. Anisian-Carnian evolution of the Germanic Basin and its eustatic, tectonic and climate controls. Zentralblatt für Geologie und Paläontologie, I, 7-8, 813-852.
Phanerozoic Rifting Phases And Mineral Deposits
NASA Astrophysics Data System (ADS)
Hassaan, Mahmoud
2016-04-01
In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely connected with NW,WNW and N-S faults genetically related to volcano-hydrothermal activity associated the Red Sea rifting. At Sherm EL-Sheikh hydrothermal manganese deposit occurs in Oligocene clastics within fault zone. Four iron-manganese-barite mineralization in Esh-Elmellaha plateau are controlled by faults trending NW,NE and nearly E-W intersecting Miocene carbonate rocks. Barite exists disseminated in the ores and as a vein in NW fault. In Shalatee - Halaib district 24 manganese deposits and barite veins with sulphide patches occur within Miocene carbonates distributed along two NW fault planes,trending 240°and 310° and occur in granite and basalt . Uranium -lead-zinc sulfide mineralization occur in Late Proterozoic granite, Late Cretaceous sandstones, and chiefly in Miocene clastic-carbonate-evaporate rocks. The occurrences of uranium- lead-zinc and iron-manganese-barite mineralization have the characteristic features of hypogene cavity filling and replacement deposits correlated with Miocene- Recent Aden volcanic rocks rifting. In western Saudi Arabia barite-lead-zinc mineralization occurs at Lat. 25° 45' and 25° 50'N hosted by Tertiary sediments in limestone nearby basaltic flows and NE-SW fault system. The mineralized hot brines in the Red Sea deeps considered by the author a part of this province. The author considers the constant rifting phases of Pangea and then progressive fragmentation of Western Gondwana during the Late Carboniferous-Lias, Late Jurassic-Early Aptian, Late Aptian - Albian and Late Eocene-Early Miocene and Oligocene-Miocene, responsible for formation of the mineral deposits constituting the M provinces. During these events, rifting, magmatism and hydrothermal activities took place in different peri-continental margins.
Structure and Evolution of the Central Andes of Peru
NASA Astrophysics Data System (ADS)
Gonzalez, L.; Pfiffner, O. A.
2009-04-01
Three major units make up the Andes in Peru: (1) The Western Cordillera consists of the Cretaceous Coastal Batholith intruding Jurassic to Cretaceous volcaniclastics (Casma group) in the west, and a fold-and-thrust belt of Mesozoic sediments in the east. Eocene and Miocene volcanics (Calipuy group and equivalents) overly all of these rock types. (2) The Central Highland contains a folded Paleozoic-Mesozoic sedimentary sequence overlain by thick Quaternary deposits. A major fault puts Neoproterozoic basement rocks of the Eastern Cordillera next to these units. (3) In the Eastern Cordillera, Late Paleozoic clastic successions unconformably overly folded Early Paleozoic sediments and a Neoproterozoic basement in the east. Permian (locally Triassic) granitoids intruded these units and were affected by folding and thrusting. In the core of the Eastern Cordillera, Early Cretaceous overly Early or Late Paleozoic strata. To the west, a thrust belt of Paleozoic to Cenozoic strata forms the transition to the foreland of the Brasilian shield. The most external part of this thrust belt involves Pliocene sediments and is referred to as Subandine zone. The Coastal Batholith is internally undeformed. The adjacent fold-and-thrust belt to the east is characterized by tight, nearly isoclinal upright folds with amplitudes of up to 1000 m. At the surface only Cretaceous rocks are observed. Using balancing techniques, a detachment horizon at the base of the Lowermost Cretaceous (Goyallarisquizga group - Oyon Formation) can be proposed. Further east, folds are more open, asymmetric and east verging, Jurassic sediments appear in the cores of the anticlines. The abrupt change in style from upright tight folding in the west to more open folding in the east is explained by a primary difference in the depositional sequence, most probably associated with synsedimentary faulting. The overlying volcanics of the Calipuy group and equivalents are, in turn, only slightly folded. In the Northern part of the Western Cordillera, near Huaraz, a vertical fault puts a Late Miocene to Early Pliocene batholith (Cordillera Blanca) in direct contact to Miocene volcanics (Calipuy group, Cordillera Negra). The structure of the Central Highlands is characterized by relatively open folds in the Paleozoic to Mesozoic strata. Overlying Quaternary deposits are tilted and locally even folded. Eocene to Miocene undeformed granitoids intrude these structures. A swarm of NNW-SSE striking and steeply dipping faults separate the Eastern Cordillera from the Highlands. Some of these faults suggest block faulting. However, near Huancayo a clear indication of strike-slip motion could be found. The Neoproterozoic basement rocks and the Early Paleozoic sediments are unconformably overlain by Late Paleozoic sediments which in turn are folded. Within the Subandine zone, the structural style is characterized by east directed imbricate thrusting. The thrust faults cut down into the crystalline basement going west, suggesting a detachment within upper crustal crystalline basement rocks. In the Central Peruvian Andes, compressional deformation events progressed from west to east. Early Cretaceous plutons of the coast batholith intruded folded Jurassic to Early Cretaceous volcaniclastic rocks of the Casma group and suggest an Early Cretaceous phase of shortening in the Pacific coastal area of the Western Cordillera (referred to as Mochica phase in the literature). Within the Western Cordillera, a major phase of pre-Eocene erosion removed a substantial amount of the tight upright folds. The youngest strata folded are of Late Cretaceous to Early Paleocene age (Red Beds). The overlying volcanics are slightly younger (middle Eocene) and bracket the tight folding, referred to as Inca phase, to Late Paleocene to Early Eocene times. This is corroborated by Eocene to Miocene granitic intrusions in the adjacent fold-and-thrust belt. Still younger deformations, referred to as Quechua Phase, produced gentle folds within the Eocene volcanics. Vertical motions in the Cordillera Blanca juxtaposed a Late Miocene-Pliocene batholith to Late Miocene volcanics. These movements are post-Pleistonce in age and still active. In the Central High Zone, even Pleistocene deposits were tilted and locally folded. Timing of the steeply dipping faults bordering the Eastern Cordillera is more difficult to assess. Cretaceous strata in tectonic contact with Neoproterozoic basement indicate a Cenozoic age. But within the fold-and-thrust belt of the Subandine zone in the east, youngest strata affected by thrusting are progressively younger toward the east. They suggest thrust propagation ranging from Oligocene to Pliocene age. These young thrust faults were responsible for the uplift of the Central Highland to their present elevation.
NASA Astrophysics Data System (ADS)
Mahmoud, Salah El-Din Ragab
Numerous nomenclature problems surround the Campanian and Maastrichtian strata of the Rio Grande Embayment. Sellards et al. (1932) and Stephenson et al. (1942) placed the Upson Clay and San Miguel Formation in the Taylor Group (Campanian). These workers assigned the overlying Olmos Coal and the Escondido Formation to the Navarro Group (Maastrichtian). Pessagno (1969, p. 90--91) tentatively included the Upson Clay, the San Miguel Formation, the Olmos Coal, and the Escondido Formation in the Navarro Group, but noted that these strata are lithologically dissimilar to those of the type Navarro Group in Navarro County (northeast Texas). He (ibid, p. 91) suggested that "---Future workers should consider the possibility of excluding the entire sequence from the Navarro Group. It is perhaps more closely related to the Difunta Group of Mexico or deserves a group name of its own." Pessagno (1967; 1969, p. 91--92) utilized planktonic foraminiferal biostratigraphic data to determine (1) that the Upson Clay and San Miguel Formation are assignable to the lower Maastrichtian and (2) that the Escondido Formation is assignable to the upper Maastrichtian. The present investigation attempts to build on the chronostratigraphic framework established by Pessagno (1967, 1969). Palynology is used for the first time in this report to generate biostratigraphic, chronostratigraphic, and paleoecological data for the Maastrichtian strata in the study area. New palynological data, integrated with existing planktonic foraminifera and megafossils, indicate that San Miguel Formation and Olmos Coal are of Maastrichtian age. Tying results with seismic data results in dating interpreted sequence boundaries to be within the time interval of 83 and 63 MA. Five seismic facies are delineated and a rate of sediment supply higher than the rate of subsidence during a prolonged progradational episode is suggested in the study area. Three-dimensional seismic data are interpreted in terms of the structure and hydrocarbon potential. Analysis of structural elements indicates northwest-southeast compressional forces resulting from sediment loading. Parasequence-level mapping was carried out and paleogeographic and depositional history was inferred and used in interpreting systems tracts. The study on San Miguel Formation by Weise (1980) was revisited using sequence stratigraphic techniques.
Brocher, T.M.
2005-01-01
Compressional-wave (sonic) and density logs from 119 oil test wells provide knowledge of the physical properties and impedance contrasts within urban sedimentary basins in northern California, which is needed to better understand basin amplification. These wire-line logs provide estimates of sonic velocities and densities for primarily Upper Cretaceous to Pliocene clastic rocks between 0.1 - and 5.6-km depth to an average depth of 1.8 km. Regional differences in the sonic velocities and densities in these basins largely 1reflect variations in the lithology, depth of burial, porosity, and grain size of the strata, but not necessarily formation age. For example, Miocene basin filling strata west of the Calaveras Fault exhibit higher sonic velocities and densities than older but finer-grained and/or higher-porosity rocks of the Upper Cretaceous Great Valley Sequence. As another example, hard Eocene sandstones west of the San Andreas Fault have much higher impedances than Eocene strata, mainly higher-porosity sandstones and shales, located to the east of this fault, and approach those expected for Franciscan Complex basement rocks. Basement penetrations define large impedence contrasts at the sediment/basement contact along the margins of several basins, where Quaternary, Pliocene, and even Miocene deposits directly overlie Franciscan or Salinian basement rocks at depths as much as 1.7 km. In contrast, in the deepest, geographic centers of the basins, such logs exhibit only a modest impedance contrast at the sediment/basement contact at depths exceeding 2 km. Prominent (up to 1 km/sec) and thick (up to several hundred meters) velocity and density reversals in the logs refute the common assumption that velocities and densities increase monotonically with depth.
Stratigraphy of the Neogene Sahabi units in the Sirt Basin, northeast Libya
NASA Astrophysics Data System (ADS)
El-Shawaihdi, M. H.; Mozley, P. S.; Boaz, N. T.; Salloum, F.; Pavlakis, P.; Muftah, A.; Triantaphyllou, M.
2016-06-01
A revision of the nomenclature of lithostratigraphic units of Neogene strata at As Sahabi, northeast Libya, is presented, based on new fieldwork conducted during 2006-2008. The Sahabi units are correlated across the Ajdabya Sheet (NH 34-6) in northeastern Libya. Major conclusions are: (1) Miocene (Langhian through Messinian) strata are predominantly carbonate and should be referred to as formation "M"; (2) A local unconformity of Miocene (early Messinian) age overlies strata of the formation "M"; (3) This unconformity is overlain by Messinian gypsiferous sand and mud (formerly formation "P" and partially member "T"), which are designated as the "lower member" (gypsiferous) of the Sahabi Formation; (4) The "lower member" is overlain by sand and mud of late Messinian age (formerly partially member "T" and members "U1", "UD", and "U2") in a generally fining-upwards sequence, and are designated as the "upper member" (non-gypsiferous) of the Sahabi Formation; (5) The latest Miocene sand and mud of the "upper member" are capped by an unconformity that is correlated with the regression and desiccation of the Mediterranean Sea during the Messinian Salinity Crisis and with Eosahabi Channel cutting; (6) The unconformity is overlain by Pliocene medium, coarse, and pebbly sands, which are referred to as the Qarat Weddah Formation (formerly Garet Uedda Formation); (7) The Pliocene sands of Qarat Weddah Formation are overlain by carbonate soil (calcrete) of Late Pliocene age, which is referred to as formation "Z" (formerly member "Z"). The major outcome of this study is a revised stratigraphic description and nomenclature of the Sahabi units that helps to provide a formal and unified context for understanding paleontological discoveries in northeastern Libya, which will serve to facilitate a broader correlation of the Sahabi units with their equivalents elsewhere in Africa and in Europe and Asia.
Stratigraphy and depositional environments of Fox Hills Formation (Late Cretaceous), Williston basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, D.J.
The Fox Hills Formation (Late Cretaceous, Maestrichtian) was investigated where it crops out along the southern flank of the Williston basin and in the subsurface over the central portion of the basin, using 300 well logs. The formation is conformable and gradational with the underlying Pierre formation and can be either conformable or unconformable with the overlying Hell Creek Formation. The Fox Hills Formation is younger, thicker, and stratigraphically more complex to the east and is comprised of marginal marine sediments deposited during the final Cretaceous regression. To the west, the Fox Hills Formation is an upward-coarsening unit generally 30more » to 45 m thick and usually contains three members: from the base, Trail City, Timber Lake, and Colgate. The lower Fox Hills (Trail City, Timber Lake) is generally dominated by hummocky bedding and contains a variety of trace fossils, most notably Ophiomorpha. The upper Fox Hills (Colgate), where present, is characterized by cross-bedding. To the east, including the type area, the section is generally 80 to 100 m thick and contains four members: from the base, Trail City, Timber Lake, Iron Lightning (Colgate and Bullhead lithofacies), and Linton. In contrast to the section in the west, this section is as much as three times thicker, contains abundant body fossils, generally lacks hummocky bedding, and contains the Bullhead and Linton strata. In the west, the strata represent lower shoreface deposits, predominantly of storm origin (lower Fox Hills), overlain by upper shoreface and fluvial deposits (upper Fox Hills). In the east, the lower Fox Hills contains deposits of the lower shoreface (Trail City) and a barrier bar complex (Timber Lake), overlain by the deltaic deposits of the upper Fox Hills (Iron Lightning, Linton).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsharahan, A.S.; Whittle, G.L.
1995-08-01
Deposition of Jurassic epeiric shelf carbonates and evaporates were controlled by epeirogenic movement and sea level fluctuations which formed an excellent combination of source rocks, reservoirs and seats in Abu Dhabi. At the end of the Triassic, a relative drop in sea level, caused by eustatic sea level lowering in conjunction with minor tectonic uplift, resulted in non-deposition or erosion. In the Toarcian, deposition of carbonates and terrigenous, clastics produced the Marrat Formation. In the mid-Aalenian, a drop in sea level eroded much of the Marrat and some of the Triassic in offshore U.A.E. The deposition of the Hamlah Formationmore » followed, under neritic, well-oxygenated conditions. The Middle Jurassic was characterized by widespread, normal marine shelf carbonates which formed the cyclic Izhara and Araej formations (reservoirs). In the Upper Jurassic, the carbonate shelf became differentiated into a broad shelf with a kerogen-rich intrashelf basin, formed in response to a eustatic rise coupled with epeirogenic downwarping and marine flooding. The intrashelf basin fill of muddy carbonate sediments constitutes the Diyab Formation and its onshore equivalent, the Dukhan Formation (source rocks). In the late Upper Jurassic, the climate became more arid and cyclic deposition of carbonates and evaporates prevailed, forming alternating peritidal anhydrite, dolomite and limestone in the Arab Formation (reservoir). Arid conditions continued into the Tithonian, fostering the extensive anhydrite of the Hith Formation (seal) in a sabkha/lagoonal setting on the shallow peritidal platform, the final regressive supratidal stage of this major depositional cycle.« less
Conodonts of the western Paleozoic and Triassic belt, Klamath Mountains, California and Oregon
Irwin, William P.; Wardlaw, Bruce R.; Kaplan, T.A.
1983-01-01
Conodonts were extracted from 32 samples of limestone and 5 samples of chert obtained from the Western Paleozoic and Triassic belt of the Klamath Mountains province. Triassic conodonts were found in 17 samples, and late Paleozoic conodonts in 7 samples. Conodonts of the remaining 13 samples cannot be dated more closely than early or middle Paleozoic through Triassic. The late Paleozoic conodonts are restricted to the North Fork and Hayfork terranes. The Hayfork terrane also contains Early, Middle, and Late Triassic conodonts; mostly Neogondolella. Conodonts from samples of the Rattlesnake Creek terrane and the northern undivided part of the belt are all Late Triassic and are generally Epigondolella. The conodont data support the concept that many of the limestone bodies are olistoliths or tectonic blocks in melange. Color alteration of the conodonts indicates that the rocks of the Western Paleozoic and Triassic belt have been heated to temperatures between 300 degrees and 500 degrees C during regional tectonism.
ERIC Educational Resources Information Center
McMillion, Martin B.
In a previous study by the investigator, it was determined that the lowest socioeconomic strata of pupils valued leadership significantly higher than did the upper socioeconomic group. This follow-up study attempted to determine whether pupils with similar connotations of leadership were more likely to be democratic leaders or autocratic leaders,…
Brian S. Hughett; Wayne K. Clatterbuck
2014-01-01
Differences in composition, structure, and growth under canopy gaps created by the mortality of a single stem were analyzed using analysis of variance under two scenarios, with stem removed or with stem left as a standing snag. There were no significant differences in composition and structure of large diameter residual stems within upper canopy strata. Some...
Tectonics of the IndoBurma Oblique Subduction Zone
NASA Astrophysics Data System (ADS)
Steckler, M. S.; Seeber, L.; Akhter, S. H.; Betka, P. M.; Cai, Y.; Grall, C.; Mondal, D. R.; Gahalaut, V. K.; Gaherty, J. B.; Maung Maung, P.; Ni, J.; Persaud, P.; Sandvol, E. A.; Tun, S. T.
2016-12-01
The Ganges-Brahmaputra Delta (GBD) is obliquely colliding with the IndoBurma subduction zone. Most of the 42 mm/y of arc-parallel motion is absorbed in a set of dextral to dextral-convergent faults, the Sagaing, Kabaw and Churachandpur-Mao Faults. The 13-17 mm/y of convergence with the delta has built a 250-km wide active accretionary prism. The upper part of the 19-km sediment thickness consists of a shallowing-up stack of prograding strata that has shifted the shelf edge 3-400 km since the Himalayan orogeny at 50 Ma. The upper 3-5 km sandy shelf to fluvial strata are deformed into a broad fold and thrust belt above an overpressured décollement. It forms a flat shallow roof thrust in the frontal accretionary prism. The structure of the deeper part of the accretionary prism, which must transfer the incoming sediments to the upper plate, is unknown. GPS indicates the downdip end of the megathrust locked zone is 25 km at 92.5°E. The deformation front, marked by nascent detachment folds above the shallow décollement reaches the megacity of Dhaka in the middle of the GBD. The seismogenic potential of this portion of the prism is unknown. Arc volcanism in Myanmar, 500 km east of the deformation front, is sparse. Limited geochemical data on the arc volcanics are consistent with hot slab conditions. One possibility is that the deep GBD slab and basement are metamorphosed and dewatered early in the subduction process whereby most of the fluids are transferred to the growing prism by buoyancy driven migration or accretion of fluid-rich strata. Since it is entirely subaerial this little-studied region crossing Bangladesh, India and Myanmar provides an opportunity for a detailed multidisciplinary geophysical and geological investigation. It has the potential to highlight the role of fluids in subduction zones, the tectonics of extreme accretion and their seismic hazards, and the interplay between driving and resistance forces of a subduction zone during a soft collision.
NASA Astrophysics Data System (ADS)
Bagheri, Sasan; Stampfli, Gérard M.
2008-04-01
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian-Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician-Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block. The "Variscan accretionary complex" is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/ 39Ar ages are obtained as 333-320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian-Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/ 39Ar radiometric ages of 163-156 Ma. The "Variscan" accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280-230 Ma 40Ar/ 39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U-Pb age for the trondhjemite-rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block. The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian-Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak. One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak-Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak-Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.
[Comparative study of height and age at menarche according to the socioeconomic level in Venezuela].
López Contreras, M; Tovar Escobar, G; Farid Coupal, N; Landaeta Jiménez, M; Méndez Castellano, H
1981-12-01
This is a retrospective study based on growth and development data published in Venezuela by various authors in the period 1936-1978. The data on height for males of the middle and high socioeconomic strata show growth curves which are very similar to the standards for British children. Likewise, the girls of the same socioeconomic condition follow the British standards, but only up to about 10-12 years of age. After that age, the girls studied by the Venezuelan authors, show a pattern of early maturation with a corresponding lower adult height compared with their British counterparts. There were differences in the growth curves according to the socioeconomic strata. These differences were more marked in the girls data. A secular increase for height was discerned, from the published data, in all socioeconomic strata and in both sexes. The data on sexual maturation showed a tendency for progressively early menarche in Venezuelan girls. These changes in growth in height and age of menarche were more notorious and came about at an earlier age in the upper socioeconomic strata. They were less marked, not constant, and came about later in the lower socioeconomic groups. The secular changes in height and sexual maturation apparent from these data, could be explained by an improvement in the environmental conditions, especially nutrition and hygiene of the population, and also be genetic heterosis from European immigration and with improvement in communications.
Lin, Xueju; Kennedy, David; Fredrickson, Jim; Bjornstad, Bruce; Konopka, Allan
2012-02-01
Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington state (USA) was investigated by analysing 21 samples recovered from depths of 9-52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analysed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (operational taxonomic units at the 97% identity level) respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (> 700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (c. 90%) of Proteobacteria. The bacterial community in the oxic sediments contained not only members of nine well-recognized phyla but also an unusually high proportion of three candidate divisions (GAL15, NC10 and SPAM). Additionally, 13 novel phylogenetic orders were identified within the Deltaproteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Late Mesozoic tectonics of the Southern-Thai Peninsula: from transpression to basins opening
NASA Astrophysics Data System (ADS)
Sautter, Benjamin; Pubellier, Manuel; Menier, David
2015-04-01
The petroleum basins of the Southern Thailand Peninsula are poorly known and their final geometry is controlled by the Tertiary stress variations applied on pre-existing Paleozoic and Mesozoic basement structures. From the end of Mesozoic times, the arrival of Indian plate was accomodated by transpressionnal deformation along the Western Margin of Sunda Plate. Evidences of this strain are the motions along several regional strike Slip Faults (Sagaing, Three Pagodas, Mae Ping, Red River, Ranong and Klong Marui Faults) as well as compressional features (folds and thrusts) evidenced onshore. Due to changes in the boundary forces, these structures were reactivated during the Tertiary, leading to the opening of basins in this part of Sundaland. We present a structural analysis based on geomorphology, fieldwork and seismic interpretation of the Southern Thai Peninsula with emphasis on the deformation's style onshore from Ranong to Satun and offshore from Eastern Mergui to Songhkla. By analyzing morphostructures and drainage anomalies from Digital Elevation Model (SRTM and ASTER), we highlight a predominance of N-S structures in the Southern Thai Peninsula: both in the granitic belt and in the sedimentary cover. The Triassic-Jurassic (Indosinian) post-collision granitic belt is intensely fractured, with 2 penetrative directions: N140 and N50. On both sides, the sedimentary units appear folded at a large wavelength (~20km). On most of the studied outcrops, Triassic to Early Cretaceous series are gently tilted and weakly fractured whereas the Paleozoic ones shows intense fracturation and steep dipping beds. Moreover, all the Paleozoic stratas display a constant N-S S1 which does not appear in the Mezosoic sediments. Althought most of the post-Mesozoic sediments do not crop out due to thick vegetal cover, several Tertiary basins can be easily seen from seismic data both onshore and offshore. These data suggest that rifting started in the Eocene and was accommodated by large crust-scale Low Angle Normal Faults reactivating basement fabrics including intrusive edges and folds hinges. We propose a tectonic scenario for the southern Thai Peninsula according to which the northward motion of giant morphostructures (the Wharton Ridge followed by the Indian Plate) induced first right-lateral transpressionnal tectonics at the End of the Mesozoics. This system is illustrated by the 2 sets of fractures of the Indosinian Belt, the large-scale folds of Early Cretaceous Strata and the strike slip motions of the Ranong and Klong Marui Faults. Following the path of Indian Plate, a collapse of this hot and thin crust occurred accommodated via LANF's along the granitic belts and the sedimentary basement morpho-structures.
Frederiksen, N.O.
1998-01-01
Strata comprising most of the upper Paleocene in eastern North America are divided into two new pollen zones, the Carya and Platycarya platycaryoides Interval Zones. Pollen data have proven to be important for correlations between Alabama-western Georgia and eastern Mississippi and between the eastern Gulf Coast and Virginia. Migration of tropical plant taxa from the Caribbean to the Gulf Coast began at least 4 m.y. before the end of the Paleocene. The Terminal Paleocene Extinction Event, accompanied by a distinct pulse of plant immigration from Europe, began several hundred thousand years before the end of the Paleocene.
NASA Astrophysics Data System (ADS)
Wintsch, R. P.; Yi, D.; Yi, K.; Wang, Q. F.; Wang, G. H.
2014-12-01
The orthogneisses in the core of the Xuelong Shan block are surrounded by ductile and then brittle fault rocks. This lens-shape block is in fault contact with Triassic marbles on the eastern margin and Jurassic-Cretaceous mudstones on the western margin. The rocks in the core of the Xuelong Shan block contain multiply foliated feldspathic orthogneisses with local amphibolites, largely overprinted by protomylonitic deformation. Foliation strengthens to the east to become mylonites and ultramylonites, with a 30 m wide zone of loosely cemented fault breccia adjacent to brittlely faulted Triassic marbles. In contrast, the rocks to the west are dominated by brittle deformation, with mylonites becoming cataclasites and then breccias facing the mudstones to the east. Well-foliated phyllonites are locally present within the cataclasites. Early S1 gneissosity striking ENE are recognized only in the interior protomylonite. In the east, the dominate mylonitic S2 foliation strikes 340° with a moderate dip to the east, and an L2 mineral stretching lineation plunges gently north. However, in the west S2 cleavage is transposed into a NNW trending schistosity that dips steeply to the ENE, with down-dip mineral stretching lineations. Whole rock chemistry indicates a granitic to granodioritic protolith for all the rocks including the ultramylonites, but also suggests the progressive loss of alkalis with increasing deformation. Trace element compositions show these rocks lie in the volcanic arc/syn-collisional granite field. U-Pb SHRIMP ages show an Early Triassic age for these granite, with possible Middle Permian inheritance in some cores. These ages are consistent with the period of the closure of the northern Paleo-Tethys ocean. Metamorphic rim ages of ~ 30 Ma record a small amount of zircon dissolution/precipitation probably associated with the Oligocene ductile deformation that produced the upper greenschist facies mylonites. These results support the geologic history of the ASRRSZ based on data obtained in the southern Diancang Shan block. Permian granitoids were intruded and ductily deformed in the Early Triassic. The left lateral shearing that brought these blocks to the surface was delayed until the Neogene extrusion of the Indochina block.
Paleomagnetism of the Late Triassic Hound Island Volcanics: Revisited
Haeussler, Peter J.; Coe, Robert S.; Onstott, T.C.
1992-01-01
The collision and accretion of the Alexander terrane profoundly influenced the geologic history of Alaska and western Canada; however, the terrane's displacement history is only poorly constrained by sparse paleomagnetic studies. We studied the paleomagnetism of the Hound Island Volcanics in order to evaluate the location of the Alexander terrane in Late Triassic time. We collected 618 samples at 102 sites in and near the Keku Strait, Alaska, from the Late Triassic Hound Island Volcanics, the Permian Pybus Formation, and 23-Ma gabbroic intrusions. We found three components of magnetization in the Hound Island Volcanics. The high-temperature component (component A) resides in hematite and magnetite and was found only in highly oxidized lava flows in a geographically restricted area. We think it is primary, or acquired soon after eruption of the lavas, principally because the directions pass a fold test. The paleolatitude indicated by this component (19.2° ± 10.3°) is similar to those determined for various portions of Wrangellia, consistent with the geologic interpretation that the Alexander terrane was with the Wrangellia terrane in Late Triassic time. We found two overprint directions in the Hound Island Volcanics. Component B was acquired 23 m.y. ago due to intrusion of gabbroic dikes and sills. This interpretation is indicated by the similarity of upper-hemisphere directions in the Hound Island Volcanics to those in the gabbro. Component C, found in both the Hound Island Volcanics and the Permian Pybus Formation, is oriented northeast and down, fails a regional fold test, and was acquired after regional deformation around 90 to 100 Ma. This overprint direction yields a paleolatitude similar to, but slightly higher than, slightly older rocks from the Coast Plutonic Complex, suggesting that the Alexander terrane was displaced 17° in early Late Cretaceous time. The occurrence of these two separate overprinting events provides a satisfying explanation of the earlier puzzling results from the Hound Island Volcanics (Hillhouse and Grommé, 1980). Finally, great-circle analysis of the paleomagnetic data from the Pybus Formation suggests the Alexander terrane may have been in the northern hemisphere in Permian time.
NASA Astrophysics Data System (ADS)
Jenisch, Alan Gregory; Lehn, Ilana; Gallego, Oscar Florencio; Monferran, Mateo Daniel; Horodyski, Rodrigo Scalise; Faccini, Ubiratan Ferrucio
2017-12-01
Due to the chitino-phosphatic nature of Spinicaudata conchostracan exoskeletons, their carapaces exhibit a low preservational potential compared to other bivalve groups. However, the recent studies point towards the increased tolerance of the carapace against the physical processes. Due to this peculiar characteristic, conchostracan carapace have been utilized as precise temporal markers in estimating stratigraphic and taphonomic parameters. The same characteristic also makes the spinicaudatans useful in evaluating the depositional processes and environments. The present work aims at providing a paleoenvironmental and stratigraphic analysis of conchostracans (Spinicaudata) from the Triassic-Jurassic of the Paraná Basin (Santa Maria and Caturrita formations) in terms of the sedimentary facies analysis, depositional system characterization, and analysis of the taphonomic signatures of the fossiliferous horizons within these formations. The results from the taphonomic study delineates the presence of 4 distinct fossil assemblages based on the causative mechanism and fundamental characteristics of the fossil concentrations: two taphonomic assemblages in the laminated mudstone beds deposited from the decanting fine-grained sediments in floodplains; the sandstone beds with plane parallel laminations and dune- and ripple-cross-stratifications deposited from the flooding-related overflow in the floodplains; and the association of laminated mudstone and massive sandstone beds deposited as the river mouth bars. The results show that the taphonomic signatures, e.g., closed valves, may indicate the various patterns of autochthony and allochthony. In the fine-grained floodplain assemblages, the high degree of preservation can be attributed to autochthony in the conchostracans, whereas the preservational condition of floodplain sandstone sheet and mouth bar assemblages point toward parautochthony and even allochthony. Therefore, the preservational quality of conchostracan exoskeletons is likely a function of parameters, e.g., the transport duration, the distance from life position, and the magnitude of events causing their final burial. Within the observed species, the recognition of Eustheria minuta in the stratigraphic level of the Passo das Tropas creek corroborates an age for these deposits between the late Middle Triassic and early Upper Triassic. The presence of a new form, likely related to the family Fushunograptidae in sediments from the Caturrita Formation, suggests a Jurassic age for these deposits.
Unroofing history of Late Paleozoic magmatic arcs within the ``Turan Plate'' (Tuarkyr, Turkmenistan)
NASA Astrophysics Data System (ADS)
Garzanti, E.; Gaetani, M.
2002-07-01
Stratigraphic, sedimentologic and petrographic data collected on the Kizilkaya sedimentary succession (Western Turkmenistan) demonstrate that the "Turan Plate" consists in fact of an amalgamation of Late Paleozoic to Triassic continental microblocks separated by ocean sutures. In the Kizilkaya area, an ophiolitic sequence including pyroxenite, gabbro, pillow basalt and chert, interpreted as the oceanic crust of a back-arc or intra-arc basin, is tectonically juxtaposed against volcaniclastic redbeds documenting penecontemporaneous felsic arc magmatism (Amanbulak Group). A collisional event took place around ?mid-Carboniferous times, when oceanic rocks underwent greenschist-facies metamorphism and a thick volcaniclastic wedge, with pyroclastic rocks interbedded in the lower part, accumulated (Kizilkaya Formation). The climax of orogenic activity is testified by arid fanglomerates shed from the rapid unroofing of a continental arc sequence, including Middle-Upper Devonian back-reef carbonates and cherts, and the underlying metamorphic and granitoid basement rocks (Yashmu Formation). After a short period of relative quiescence, renewed tectonic activity is indicated by a conglomeratic sequence documenting erosion of a sedimentary and metasedimentary succession including chert, sandstone, slate and a few carbonates. A final stage of rhyolitic magmatism took place during rapid unroofing of granitoid basement rocks (Kizildag Formation). Such a complex sequence of events recorded by the Kizilkaya episutural basin succession documents the stepwise assemblage of magmatic arcs and continental fragments to form the Turan microblock collage during the Late Paleozoic. Evolution of detrital modes is compatible with that predicted for juvenile to accreted and unroofed crustal blocks. The deposition of braidplain lithic arkoses in earliest Triassic time indicates that strong subsidence continued after the end of the volcanic activity, possibly in retroarc foreland basin settings. The occurrence of transgressive coquinas yielding endemic ammonoids ( Dorikranites) characteristic of the whole Caspian area suggests proximity to the southern margin of the newly formed Eurasian continent in the late Early Triassic. The Late Triassic Eo-Cimmerian Orogeny caused only mild tilting and rejuvenation of the underlying succession in the study area. Only at this time were the Turan blocks, a series of Indonesian-type terranes comprised between the Mashad Paleo-Tethys Suture in the south and the Mangyshlak belt in the north, finally incorporated into the Eurasian landmass.
NASA Astrophysics Data System (ADS)
Thompson, Jeffrey R.; Hu, Shi-xue; Zhang, Qi-Yue; Petsios, Elizabeth; Cotton, Laura J.; Huang, Jin-Yuan; Zhou, Chang-yong; Wen, Wen; Bottjer, David J.
2018-01-01
The Permian-Triassic bottleneck has long been thought to have drastically altered the course of echinoid evolution, with the extinction of the entire echinoid stem group having taken place during the end-Permian mass extinction. The Early Triassic fossil record of echinoids is, however, sparse, and new fossils are paving the way for a revised interpretation of the evolutionary history of echinoids during the Permian-Triassic crisis and Early Mesozoic. A new species of echinoid, Yunnanechinus luopingensis n. sp. recovered from the Middle Triassic (Anisian) Luoping Biota fossil Lagerstätte of South China, displays morphologies that are not characteristic of the echinoid crown group. We have used phylogenetic analyses to further demonstrate that Yunnanechinus is not a member of the echinoid crown group. Thus a clade of stem group echinoids survived into the Middle Triassic, enduring the global crisis that characterized the end-Permian and Early Triassic. Therefore, stem group echinoids did not go extinct during the Palaeozoic, as previously thought, and appear to have coexisted with the echinoid crown group for at least 23 million years. Stem group echinoids thus exhibited the Lazarus effect during the latest Permian and Early Triassic, while crown group echinoids did not.
NASA Astrophysics Data System (ADS)
Hadlari, Thomas; Dewing, Keith; Matthews, William A.; Alonso-Torres, Daniel; Midwinter, Derrick
2018-06-01
Following the amalgamation of Laurasia and Gondwana to form Pangea, some Triassic tectonic models show an encircling arc system called the "Pangean Rim of Fire". Here we show that the stratigraphy and Early Triassic detrital zircon provenance of the Sverdrup Basin in the Canadian Arctic is most consistent with deposition in a retro-arc foreland basin. Late Permian and Early Triassic volcanism was accompanied by relatively high rates of subsidence leading to a starved basin with volcanic input from a magmatic arc to the northwest. The mostly starved basin persisted through the Middle and Late Triassic with nearly continuous input of volcanic ash recorded as bentonites on the northwestern edge of the basin. In the latest Triassic it is interpreted that decreasing subsidence and a significant influx of sand-grade sediment when the arc was exhumed led to filling of the basin at the end of an orogenic cycle. Combined with other hints of Early Triassic arc activity along the western margin of Laurentia we propose that the Pangean Rim of Fire configuration spanned the entire Triassic. This proposed configuration represents the ring of external subduction zones that some models suggest are necessary for the breakup of supercontinents such as Pangea.
NASA Astrophysics Data System (ADS)
Kozur, H. W.
2007-01-01
The conodont succession and stratigraphic events around the Permian-Triassic boundary (PTB) have been investigated in detail in the open sea deposits of Iran (Abadeh and Shahreza in central Iran, and Jolfa and Zal in northwestern Iran). This investigation produced a very detailed conodont zonation from the Clarkina nodosa Zone up to the Isarcicella isarcica Zone. All significant events have been accurately located and dated within this zonation, and the duration of most of these conodont zones has been calculated by cross-correlation with continental lake deposits that display obvious Milankovitch cyclicity. The unusually short duration of all conodont zones in the interval from the C. nodosa up to the Hindeodus parvus Zone indicates that there was persistent high ecological stress during this time interval. Most of the conodont zones can be accurately correlated with South China. In the interval from the C. hauschkei Zone to the H. parvus Zone, even correlation with the Arctic is possible. Within three thin stratigraphic intervals, the Changhsingian (Dorashamian) warm water conodont fauna of the C. subcarinata lineage is replaced by a cool water fauna with small H. typicalis, rare Merrillina sp., and cool water Clarkina that have very widely spaced denticles. The uppermost cool water fauna horizon comprises the lower C. zhangi Zone and can be accurately correlated with continental beds by recognition of a short reversed magnetozone below the long uppermost Permian-lowermost Triassic normal magnetozone. In Iran and Transcaucasia, this short reversed zone comprises the upper C. changxingensis- C. deflecta Zone and most of the C. zhangi Zone. Its top lies 50 cm below the top of the Paratirolites Limestone (s.s.) in the Dorasham 2 section, which is at the beginning of the upper quarter of the C. zhangi Zone. In the Germanic Basin, this short palaeomagnetic interval comprises the lower and the basal part of the upper Fulda Formation. On the Russian Platform, the Nedubrovo Formation belongs to this short reversed magnetic interval. In its upper part (corresponding to the top of the lower C. zhangi Zone, see above) there is a fallout of mafic tuffs from the Siberian Trap event that originated about 3000 km away in eruption centres in the Siberian Tungusska Basin. In the Germanic Basin and in Iran, this horizon contains volcanic microsphaerules. Thus, a direct correlation can be made between the immigration of a cool water fauna into the tropical realm and an exceptionally strong interval of explosive activity during the Siberian Trap volcanic episode. These faunal changes are the same as those found at the base of the Boundary Clay, suggesting that a short cooling event at this horizon also was due to intense volcanism. Additional influence by a bolide impact cannot be excluded. Most of the events in the interval from the C. nodosa up to the I. isarcica Zone (upper Changhsingian to middle Gangetian) in the Iranian sections can be also observed in other marine sections (e.g., in Meishan) and even in continental sections of the Germanic Basin. Of particular significance is the fact that, in the investigated Iranian sections, the PTB lies either in red sediments or in light grey sediments (as in Abadeh) that contain an ostracod fauna indicative of highly oxygenated bottom waters. Therefore, anoxia cannot be the reason for the PTB extinction event in this region, even though anoxia does cause locally or regionally elsewhere an overprint on the extinction event.
Early archosauromorph remains from the Permo-Triassic Buena Vista Formation of north-eastern Uruguay
Velozo, Pablo; Meneghel, Melitta; Piñeiro, Graciela
2015-01-01
The Permo-Triassic archosauromorph record is crucial to understand the impact of the Permo-Triassic mass extinction on the early evolution of the group and its subsequent dominance in Mesozoic terrestrial ecosystems. However, the Permo-Triassic archosauromorph record is still very poor in most continents and hampers the identification of global macroevolutionary patterns. Here we describe cranial and postcranial bones from the Permo-Triassic Buena Vista Formation of northeastern Uruguay that contribute to increase the meagre early archosauromorph record from South America. A basioccipital fused to both partial exoccipitals and three cervical vertebrae are assigned to Archosauromorpha based on apomorphies or a unique combination of characters. The archosauromorph remains of the Buena Vista Formation probably represent a multi-taxonomic assemblage composed of non-archosauriform archosauromorphs and a ‘proterosuchid-grade’ animal. This assemblage does not contribute in the discussion of a Late Permian or Early Triassic age for the Buena Vista Formation, but reinforces the broad palaeobiogeographic distribution of ‘proterosuchid grade’ diapsids in Permo-Triassic beds worldwide. PMID:25737816
NASA Astrophysics Data System (ADS)
Barboza-Gudiño, R.
2013-05-01
The lower Mesozoic succession of central and northeastern Mexico was deposited in a late Paleozoic-early Mesozoic remnant basin, formed at the westernmost culmination of the Ouachita-Marathon geosuture, after closure of the Rheic Ocean. Triassic fluvial deposits of El Alamar Formation (El Alamar River) are distributed in Tamaulipas and Nuevo Leon as remnants of a continental succession deposited close to the western margin of equatorial Pangea, such fluvial systems flowed to the ocean, located to the west and contributed to construction of the so-called Potosí submarine fan (Zacatecas Formation). Petrographic, geochemical, and detrital zircon geochronology studies indicate that both, marine and continental Triassic successions, come from a continental block and partially from a recycled orogen, showing grenvillian (900-1300 Ma) and Pan-African (500-700 Ma) zircon age populations, typical for peri-gondwanan blocks, in addition to zircons from the Permo-Triassic East Mexico arc (240-280 Ma). The absence of detrital zircons from the southwestern North American craton, represent a strong argument against left lateral displacement of Mexico to the southwest during the Jurassic up to their actual position, as proposed by the Mojave-Sonora megashear hypothesis. Towards the end of the Triassic or in earliest Jurassic time, began the subduction along the western margin of Pangea, which causes deformation of the Late Triassic Zacatecas Formation and subsequent magmatism in the continental Jurassic arc known as "Nazas Arc ", whose remnants are now exposed in central- to northeastern Mexico. Wide distributed in northern Mexico occurred also deposition of a red bed succession, overlying or partially interstratified with the Early to Middle Jurassic volcanic rocks of the Nazas Formation. To the west and southwest, such redbeds change transitionally to marine and marginal sedimentary facies which record sedimentation at the ancient paleo-pacific margin of Mexico (La Boca and Huayacocotla formations). The Middle to Upper Jurassic La Joya Formation overlies unconformable all continental and marine-marginal successions and older rocks, and records the transgressive basal deposits of the Gulf series, changing upsection to the evaporites and limestone of the Oxfordian Zuloaga Group. Successive intraoceanic subduction zones to the West sparked magmatic arcs whose accretion in the continental margin produced the consolidation of much of the Mexican territory up to the current Pacific margin. Scattered isolated outcrops from the Early Mesozoic succession in central- and northeastern Mexico allow interpretation of tectonic setting and paleogeography associated to each stratigraphic unit, revealing a strongly different geologic evolution than the previously established models, opening a range of new possibilities and areas of opportunity for mining and fossil fuels exploration. However, most of the Triassic-Jurassic rocks or stratigraphic units in northern Mexico lie under many hundreds of meters of a Cretaceous-Cenozoic cover. Their recognition and preliminary evaluation implies the use of indirect techniques like geophysical methods, before drilling or subsurface mining.
NASA Astrophysics Data System (ADS)
Diamantopoulos, A.
2009-04-01
An assortment of alpine and pre-Permian metamorphic tectonites, belonging to the Pelagonian Zone of the Internal Hellenides, are analyzed from Askion, Vernon and Vorras mountains. They in fact compose the Upper plate of the Western Macedonia core complex, overlying Late Tertiary high-P rocks through large-scale detachment fautls (Diamantopoulos et al. 2007). This work wants to determine the architecture and the kinematic path of rocks in a 3D assumption. Field analysis concludes: a) Meta-sedimentary lithologies and amphibolites, meta-igneous lithologies, granitoid mylonites composed of augen fieldspar gneisses, Permo-Triassic fossiliferous rocks, meta-carbonates of Triassic-Jurassic age, a Jurassic mélange including meta-sedimentary lithologies, serpentinites and carbonate tectonic blocks, Mesozoic Ophiolites, Cretaceous limestones and conglomerates as well as flysch sediments compose the architecture of the study area, b) Multiple high and low-angle cataclastic zones of intense non-coaxial strain separate distinct pre-Permian lithologies, alpine from pre-alpine rocks, Triassic-Jurassic rocks from Permo-Triassic rocks, Jurassic mélange from flysch sediments, Jurassic mélange from Triassic-Jurassic rocks, Cretaceous rocks from the Jurassic mélange, Cretaceous limestones from flysch lithologies and Cretaceous rocks from serpentinites, c) Geometric analysis and description of asymmetric structures found in fault cores, damage zones and in the footwall-related rocks showed a prominent kinematic direction towards WSW in low-T conditions affected all the rock lithologies, d) Multiple S- and L- shape fabric elements in the pre-Permian and Permo-Triassic rocks appear an intricate orientation, produced by intense non-coaxial syn-metamorphic deformation, e) Sheath and isoclinal folds oriented parallel to the L-shape fabric elements as well as a major S-shape fabric element, producing macroscopic fold-like structures compose the main syn-metamorphic fabric elements in the pre-alpine tectonites, f) Discrete and distributed strain along the former boundaries and within footwall- and hangingwall rocks is connoted to control the bulk kinematic path of the involved sequences, g) Field evaluation of the structural geology and the tectonics connote the conjugate character of the cataclastically-deformed boundaries, causing overprinting of the pre-existed ductile-related geometries, h) For the age of the inferred WSW kinematic direction of the involved rocks we believe that it is closely associated with the tectonic superimposition of the Pelagonian Zone onto the Olympos tectonic window during post-Late Eocene times. Miocene to Quaternary faulting activity in all the scales overprint the above Late Tertiary perturbation, resulting a real complicated structural feature (Diamantopoulos 2006). Diamantopoulos A., 2006. Plio-Quaternary geometry and Kinematics of Ptolemais basin (Northern Greece). Implications for the intra-plate tectonics in Western Macedonia. Geologica Croatica 59/1, pages 85-96. Diamantopoulos A., Krohe A., Mposkos E., 2007. Structural asymmetry and distributed strain of low-T shear planes inducing evidence for orogen-scale kinematic partitioning during denudation of high-P rocks (Pelagonian Zone, Greece). Geophysical Research Abstracts, Vol. 9, 03622.
NASA Astrophysics Data System (ADS)
Wu, Huiting; He, Weihong; Weldon, Elizabeth A.
2018-04-01
Analysis of the Permian-Triassic palaeocommunities from basinal facies in South China provides an insight into the environmental deterioration occurring in the prelude to the mass extinction event. Quantitative and multivariate analyses on three brachiopod palaeocommunities from the Changhsingian to the earliest Triassic in basinal facies in South China have been undertaken in this study. Although the end-Permian extinction has been proved to be a one-stepped event, ecological warning signals appeared in the palaeocommunities long before the main pulse of the event. A brachiopod palaeocommunity turnover occurred in the upper part of the Clarkina changxingensis Zone, associated with a significant decrease of palaeocommunity diversity and brachiopod body size. During this turnover the dominant genera changed from Fusichonetes and Crurithyris (or/and Paracrurithyris) to the more competitive genus Crurithyris (or/and Paracrurithyris). The brachiopod palaeocommunity turnover was supposed to be triggered by the decreased marine primary productivity and increased volcanic activity. Moreover, such early warning signals are found not only in the deep-water siliceous facies, but also in the shallow-water clastic facies and carbonate rock facies in South China.
NASA Astrophysics Data System (ADS)
Sokolov, S. Yu.; Moroz, E. A.; Abramova, A. S.; Zarayskaya, Yu. A.; Dobrolubova, K. O.
2017-07-01
On cruises 25 (2007) and 28 (2011) of the R/V Akademik Nikolai Strakhov in the northern part of the Barents Sea, the Geological Institute, Russian Academy of Sciences, conducted comprehensive research on the bottom relief and upper part of the sedimentary cover profile under the auspices of the International Polar Year program. One of the instrument components was the SeaBat 8111 shallow-water multibeam echo sounder, which can map the acoustic field similarly to a side scan sonar, which records the response both from the bottom and from the water column. In the operations area, intense sound scattering objects produced by the discharge of deep fluid flows are detected in the water column. The sound scattering objects and pockmarks in the bottom relief are related to anomalies in hydrocarbon gas concentrations in bottom sediments. The sound scattering objects are localized over Triassic sequences outcropping from the bottom. The most intense degassing processes manifest themselves near the contact of the Triassic sequences and Jurassic clay deposits, as well as over deep depressions in a field of Bouguer anomalies related to the basement of the Jurassic-Cretaceous rift system
Gibson, Sarah Z
2015-04-01
Fishes have evolved to exploit multiple ecological niches. Extant fishes in both marine (e.g., rabbitfishes, surgeonfishes) and freshwater systems (e.g., haplochromine cichlids, characiforms) have evolved specialized, scoop-like, multidenticulate teeth for benthic scraping, feeding primarily on algae. Here, I report evidence of the oldest example of specialized multidenticulate dentition in a ray-finned fish, †Hemicalypterus weiri, from the Upper Triassic Chinle Formation of southeastern Utah (∼210-205 Ma), USA. †H. weiri is a lower actinopterygian species that is phylogenetically remote from modern fishes, and has evolved specialized teeth that converge with those of several living teleost fishes (e.g., characiforms, cichlids, acanthurids, siganids), with a likely function of these teeth being to scrape algae off a rock substrate. This finding contradicts previously held notions that fishes with multicuspid, scoop-like dentition were restricted to teleosts, and indicates that ray-finned fishes were diversifying into different trophic niches and exploring different modes of feeding earlier in their history than previously thought, fundamentally altering our perceptions of the ecological roles of fishes during the Mesozoic.
A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell
Joyce, Walter G.; Lucas, Spencer G.; Scheyer, Torsten M.; Heckert, Andrew B.; Hunt, Adrian P.
2008-01-01
A new, thin-shelled fossil from the Upper Triassic (Revueltian: Norian) Chinle Group of New Mexico, Chinlechelys tenertesta, is one of the most primitive known unambiguous members of the turtle stem lineage. The thin-shelled nature of the new turtle combined with its likely terrestrial habitat preference hint at taphonomic filters that basal turtles had to overcome before entering the fossil record. Chinlechelys tenertesta possesses neck spines formed by multiple osteoderms, indicating that the earliest known turtles were covered with rows of dermal armour. More importantly, the primitive, vertically oriented dorsal ribs of the new turtle are only poorly associated with the overlying costal bones, indicating that these two structures are independent ossifications in basal turtles. These novel observations lend support to the hypothesis that the turtle shell was originally a complex composite in which dermal armour fused with the endoskeletal ribs and vertebrae of an ancestral lineage instead of forming de novo. The critical shell elements (i.e. costals and neurals) are thus not simple outgrowths of the bone of the endoskeletal elements as has been hypothesized from some embryological observations. PMID:18842543
A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell.
Joyce, Walter G; Lucas, Spencer G; Scheyer, Torsten M; Heckert, Andrew B; Hunt, Adrian P
2009-02-07
A new, thin-shelled fossil from the Upper Triassic (Revueltian: Norian) Chinle Group of New Mexico, Chinlechelys tenertesta, is one of the most primitive known unambiguous members of the turtle stem lineage. The thin-shelled nature of the new turtle combined with its likely terrestrial habitat preference hint at taphonomic filters that basal turtles had to overcome before entering the fossil record. Chinlechelys tenertesta possesses neck spines formed by multiple osteoderms, indicating that the earliest known turtles were covered with rows of dermal armour. More importantly, the primitive, vertically oriented dorsal ribs of the new turtle are only poorly associated with the overlying costal bones, indicating that these two structures are independent ossifications in basal turtles. These novel observations lend support to the hypothesis that the turtle shell was originally a complex composite in which dermal armour fused with the endoskeletal ribs and vertebrae of an ancestral lineage instead of forming de novo. The critical shell elements (i.e. costals and neurals) are thus not simple outgrowths of the bone of the endoskeletal elements as has been hypothesized from some embryological observations.
NASA Astrophysics Data System (ADS)
Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.; Henderson, Charles M.; Algeo, Thomas J.
2015-02-01
The geochemical record for the Permian-Triassic boundary in northern latitudes is essential to evaluation of global changes associated with the most profound extinction of life on Earth. We present inorganic and organic geochemical data, and Re-Os isotope systematics in a critical stratigraphic interval of pre- and post-extinction Upper Permian-Lower Triassic sediments from Opal Creek, western Canada (paleolatitude of ∼30°N). We document significant and long-lived changes in Panthalassa seawater chemistry that were initiated during the first of four magmatic or meteoritic inputs to Late Permian seawater, evidenced by notable decreases of Os isotopic ratios upsection. Geochemical signals indicate establishment of anoxic bottom waters shortly after regional transgression reinitiated sedimentation in the Late Permian. Euxinic signals are most prominent in the Upper Permian sediments with low organic carbon and high sulfur contents, and gradually wane in the Lower Triassic. The observed features may have been generated in a strongly euxinic ocean in which high bacterioplankton productivity sustained prolific microbial sulfate reduction in the sediment and/or water column, providing hydrogen sulfide to form pyrite. This scenario requires nearly complete anaerobic decomposition of predominantly labile marine organic matter (OM) without the necessity for a complete collapse of primary marine productivity. Similar geochemical variations could have been achieved by widespread oxidation of methane by sulfate reducers after a methanogenic burst in the Late Permian. Both scenarios could have provided similar kill mechanisms for the latest Permian mass extinction. Despite the moderate thermal maturity of the section, OM in all studied samples is dominantly terrestrial and/or continentally derived, recycled and refractory ancient OM. We argue that, as such, the quantity of the OM in the section mainly reflects changes in terrestrial vegetation and/or weathering, and not in marine productivity. At Opal Creek, a pyrite layer and <20-cm-thick siltstones that are lean in OM mark dramatic and long-lived inorganic geochemical and stable isotope changes. Initial Os isotope ratios decline markedly toward values of ∼0.35 in the pyrite interval, indicating a mantle-sourced or meteoritic trigger for the intensification and expansion of latest Permian anoxia. Subsequent and stronger magmatic or meteoritic pulses recorded by low initial Os isotopes followed the main extinction.
The first megatheropod tracks from the Lower Jurassic upper Elliot Formation, Karoo Basin, Lesotho
Bordy, E. M.; Abrahams, M.; Knoll, F.; McPhee, B. W.
2017-01-01
A palaeosurface with one megatheropod trackway and several theropod tracks and trackways from the Lower Jurassic upper Elliot Formation (Stormberg Group, Karoo Supergroup) in western Lesotho is described. The majority of the theropod tracks are referable to either Eubrontes or Kayentapus based on their morphological characteristics. The larger megatheropod tracks are 57 cm long and have no Southern Hemisphere equivalent. Morphologically, they are more similar to the Early Jurassic Kayentapus, as well as the much younger Upper Cretaceous ichnogenus Irenesauripus, than to other contemporaneous ichnogenera in southern Africa. Herein they have been placed within the ichnogenus Kayentapus and described as a new ichnospecies (Kayentapus ambrokholohali). The tracks are preserved on ripple marked, very fine-grained sandstone of the Lower Jurassic upper Elliot Formation, and thus were made after the end-Triassic mass extinction event (ETE). This new megatheropod trackway site marks the first occurrence of very large carnivorous dinosaurs (estimated body length >8–9 meters) in the Early Jurassic of southern Gondwana, an evolutionary strategy that was repeatedly pursued and amplified in the following ~135 million years, until the next major biotic crisis at the end-Cretaceous. PMID:29069093
NASA Astrophysics Data System (ADS)
Plafker, George; Nokleberg, W. J.; Lull, J. S.
1989-04-01
The Trans-Alaskan Crustal Transect in the southern Copper River Basin and Chugach Mountains traverses the margins of the Peninsular and Wrangellia terranes, and the adjacent accretionary oceanic units of the Chugach terrane to the south. The southern Wrangellia terrane margin consists of a polymetamorphosed magmatic arc complex at least in part of Pennsylvanian age (Strelna Metamorphics and metagranodiorite) and tonalitic metaplutonic rocks of the Late Jurassic Chitina magmatic arc. The southern Peninsular terrane margin is underlain by rocks of the Late Triassic (?) and Early Jurassic Talkeetna magmatic arc (Talkeetna Formation and Border Ranges ultra-mafic-mafic assemblage) on Permian or older basement rocks. The Peninsular and Wrangellia terranes are parts of a dominantly oceanic superterrane (composite Terrane II) that was amalgamated by Late Triassic time and was accreted to terranes of continental affinity north of the Denali fault system in the mid- to Late Cretaceous. The Chugach terrane in the transect area consists of three successively accreted units: (1) minor greenschist and intercalated blueschist, the schist of Liberty Creek, of unknown protolith age that was metamorphosed and probably accreted during the Early Jurassic, (2) the McHugh Complex (Late Triassic to mid-Cretaceous protolith age), a melange of mixed oceanic, volcaniclastic, and olistostromal rocks that is metamorphosed to prehnite-pumpellyite and lower greenschist facies that was accreted by middle Cretaceous time, and (3) the Upper Cretaceous Valdez Group, mainly magmatic arc-derived flysch and lesser oceanic volcanic rocks of greenschist facies that was accreted by early Paleocene time. A regional thermal event that culminated in early middle Eocene time (48-52 Ma) resulted in widespread greenschist facies metamorphism and plutonism.
NASA Astrophysics Data System (ADS)
Elston, Donald P.; Bressler, Stephen L.
1980-01-01
Twelve paleomagnetic poles and a preliminary polarity zonation are reported from geologically mapped, stratigraphically controlled sections of the middle Proterozoic Belt Supergroup in western Montana and northern Idaho. Although gaps exist in the stratigraphic coverage, the lower Belt, Ravalli Group, and middle Belt carbonate appear to be largely if not entirely of normal polarity. A switch to reversed polarity takes place near the base of the overlying Missoula Group (base of Snowslip Fomration), and two comparatively narrow intervals of mixed polarity containing at least 18 reversals are found in the lower and middle Snowslip. Seven reversals, mostly widely spaced in stratigraphic position, have been found in overlying strata of the Missoula Group. Poles from strata of the Ravalli Group through Missoula Group are well defined and tightly clustered. They plot in the south-central Pacific Ocean and display only a small (~20°) southeast to northwest shift in pole path. Poles from Belt strata in the eastern basin plot sytematically east of poles from the more westerly collection sites. A counterclockwise shift in declination of 7°-10° is seen in strata from the easterly sites, which has given rise to a curving pole path that closely parallels the path for the westerly sites. This easterly path appears explainable as a consequence of a counterclokwise structural rotation of eastern Belt strata relative to western and central Belt strata produced during west ot east thrust faulting of late Mesozoic and early Cenozoic age. An additional counterclockwise rotation of the same magnitude exists between the northern and southern parts of the Montana fisturbed belt of the eastern Belt basin. Moreover, anomalously steep inclinations, not yet explained, have been reported from some of the strata sampled at the north end of the disturbed belt. The steep inclinations result in poles that plot distinctly east of poles reported from this study. The Belt pole path lies in a part of the North American apparent polar wander path that has been assigned an age of about 1500-1200 m.y. This is in broad agreement with isotopic ages reported for strata of the lower Belt to the middle Ravalli Group. The Belt path trends toward, and its northwest end overlaps, the beginning of the pole path for the Grand Canyon Supergroup, which formed in the interval from <~1300 to ~830 m.y. ago. Because polarity zonations differ between strata of the upper Belt and lower Grand Canyon Supergroups. Belt strata would appear, on paleomagnetic grounds, to be largely or entirely older than strata of the Grand Canyon Supergroup. However, isotopic ages for the Missoula Group (1100 m.y. and younger) presently require an alternative interpretation, i.e., that the Belt terrance did not participate in inferred plate motion which gave rise to a large north-trending loop in the inverval ~1200 to ~1100 m.y. ago and to later motion seen in the Grand Canyon path. Additional dating is needed for the Purcell Lava of the Missoula Group to support or modify the 1100 m.y. age determined by the K-Ar method.
Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.
2001-01-01
Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically stratified diamictites interbedded with massive and graded sandstones and mudstones. The sedimentary record and seismic stratigraphy is consistent with deposition on a continental slope from debris flows and turbidity currents released from a glacial source. Data from Sites 1097 and 1103 suggest the importance of aggradation of the Antarctic Peninsula continental shelf by tilt deposition and progradation of the slope by mass flow. This may provide a model for the interpretation of Palaeozoic and Proterozoic glacial successions that accumulated on glacially influenced continental margins.
Rare earths in the Leadville Limestone and its marble derivates
Jarvis, J.C.; Wildeman, T.R.; Banks, N.G.
1975-01-01
Samples of unaltered and metamorphosed Leadville Limestone (Mississippian, Colorado) were analyzed by neutron activation for ten rare-earth elements (REE). The total abundance of the REE in the least-altered limestone is 4-12 ppm, and their distribution patterns are believed to be dominated by the carbonate minerals. The abundances of the REE in the marbles and their sedimentary precursors are comparable, but the distribution patterns are not. Eu is enriched over the other REE in the marbles, and stratigraphically upward in the formation (samples located progressively further from the heat source), the light REE become less enriched relative to the heavy REE. The Eu anomaly is attributed to its ability, unique among the REE, to change from the 3+ to 2+ oxidation state. Whether this results in preferential mobilization of the other REE or whether this reflects the composition of the pore fluid during metamorphism is unknown. Stratigraphically selective depletion of the heavy REE may be attributed to more competition for the REE between fluid and carbonate minerals in the lower strata relative to the upper strata. This competition could have been caused by changes in the temperature of the pore fluid or to the greater resistance to solution of the dolomite in the lower parts of the formation than the calcite in the upper parts. ?? 1975.
Fatty acid profile in vertical strata of elephant grass subjected to intermittent stocking.
Dias, Kamila M; Schmitt, Daniel; Rodolfo, Giselle R; Deschamps, Francisco C; Camargo, Guilherme N; Pereira, Raphael S; Sbrissia, André F
2017-01-01
The milk and meat from animals with a pasture-based diet have higher proportions of CLA and C18:3 and lower omega-6:omega-3 ratios than products from animals with diets based on corn silage and concentrate. However, most of the published studies have evaluated fatty acid profiles in temperate climate grasses and the literature with tropical grasses is scarce. Thus, the aim of this study was to evaluate the morphological and fatty acid compositions in the vertical strata of elephant grass (Pennisetum purpureum Schum.) swards subjected to grazing heights (90 or 120 cm pre-grazing heights) and levels of defoliation (50% or 70% removal of the initial pre-grazing height). There were no interactions among pre-grazing height, the level of defoliation and grazing stratum. However, higher proportion of C18:3 (58% and 63%) was found in the 90-cm swards and in the half upper stratum. A higher proportion of C18:3 was associated with a higher leaf proportion and crude protein content. Thus, the upper stratum of sward or a grazing management scheme (e.g. first-last stocking) resulting in a higher proportion of leaves and crude protein both provide higher proportions of C18:3 to animals grazing in elephant grass swards.
Pratt, Thomas L.; Holmes, Mark; Schweig, Eugene S.; Gomberg, Joan S.; Cowan, Hugh A.
2003-01-01
High-resolution seismic reflection profiles from Limo??n Bay, Republic of Panama, were acquired as part of a seismic hazard investigation of the northern Panama Canal region. The seismic profiles image gently west and northwest dipping strata of upper Miocene Gatu??n Formation, unconformably overlain by a thin (<20 m) sequence of Holocene muds. Numerous faults, which have northeast trends where they can be correlated between seismic profiles, break the upper Miocene strata. Some of the faults have normal displacement, but on many faults, the amount and type of displacement cannot be determined. The age of displacement is constrained to be Late Miocene or younger, and regional geologic considerations suggest Pliocene movement. The faults may be part of a more extensive set of north- to northeast-trending faults and fractures in the canal region of central Panama. Low topography and the faults in the canal area may be the result of the modern regional stress field, bending of the Isthmus of Panama, shearing in eastern Panama, or minor deformation of the Panama Block above the Caribbean subduction zone. For seismic hazard analysis of the northern canal area, these faults led us to include a source zone of shallow faults proximal to northern canal facilities. ?? 2003 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Craddock, W. H.; Kirby, E.; Harkins, N.; Zhang, H.
2008-12-01
Characterizing the space-time patterns of the growth of high topography in Asia is an important step toward a deeper understanding of the mechanics of intracontinental deformation and its influence on global climate. In northeastern Tibet, there is emerging evidence that a number of ranges around the margins of the plateau experienced a pulse of deformation in the Late Miocene (ca. 12-8 Ma). It remains uncertain, however, whether this event was confined to the margins of the plateau, or whether interior regions deformed synchronously. Here we present a preliminary assessment of the timing and magnitude of upper crustal shortening along the margins of the Gonghe-Tongde basin complex. The Gonghe basin is located at the boundary between the high plateau of central Tibet and the southern flank of the Qilian Shan, and as such it is well-suited as a site to begin reconstructing patterns of plateau growth. The basin is overthrust by two regionally-extensive fault systems, the Qinghai Nan Shan (QNS) fault system on the north side and the Gonghe Nan Shan (GNS) fault system on the south side. Both fault systems are associated with deformation of Tertiary strata; variations in dip, sedimentary facies, and provenance are used to interpret the onset of growth along the margins of the Gonghe basin. A combination of the architecture of pre- and syntectonic basin strata, field measurements of fault dip, fault plane solutions, and topographic analysis of fold backlimbs for the GNS and QNS leads us to infer that the fault systems are a) trishear fault propagation style thrust faults and b) south vergent, with ~30 degree fault ramps soleing into a gently dipping decollement. Reconstructions of fold evolution suggest that the area has experienced > 5 km of upper crustal shortening in the late Cenozoic. A combination of magnetostratigraphy, biostratigraphy and cosmogenic burial ages provides preliminary age control. South of the GNS, a 250 m thick package of growth related strata are found to be 3.4 - 0.5 Ma. A 500 m thick exposure of growth strata on the north side of the range is also interpreted to be Plio-Quaternary in age. At present, however, we can only place a minimum bound on the onset of deformation of ca. 4-5 Ma. In light of a companion study interpreting the onset of deformation along the QNS at >= 5-7 Ma (Zhang H., in review), deformation of the Gonghe region appears to be slightly more recent than at the plateau margins. Historic seismicity and deformation of late-Quaternary alluvial surfaces on both fault systems indicate that these structures have remained active into the Pleistocene.
NASA Astrophysics Data System (ADS)
Iqbal, Shahid; Wagreich, Michael
2016-04-01
The environmental changes during the Triassic-Jurassic boundary interval and the associated mass extinction event are still strongly debated. Sea-level reconstruction records during this interval reveal an end-Triassic global regression event. Erosion and karstification at the top of Triassic sediments, and Lower Jurassic fluvial channels with reworked Triassic clasts indicate widespread regression in the European basins. Laterite at the top of the Triassic, and quartzose conglomerates/sandstones at the base of the Jurassic indicate a fluvial/terrestrial onset in Iran and Afghanistan. Abrupt emergence, erosion and facies dislocation, from the Triassic dolomites (Kingriali Formation) to Lower Jurassic fluvial/continental quartzose conglomerates/pebbly sandstones (Datta Formation) occur in the Tethyan Salt Range of Pakistan. Sedimentological analyses indicate marine regression and emergence under tropical-subtropical conditions (Greenhouse conditions) and negates the possibility of glacial influence in this region. Field evidences indicate the presence of an undulatory surface at the base of the Jurassic and a high (Sargodha High) is present south of the Salt Range Thrust, the southern boundary of the basin. Furthermore, geophysical data (mostly seismic sections) in different parts of the basin display normal faults in the basement. These features are interpreted as horst and graben structures at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau. The Lower Jurassic Datta Formation appears to have been deposited in an overall graben fill settings. Similar normal faults and graben fill geometries are observed on seismic sections in Tanzania, Mozambique, Madagascar and other regions of the southeastern margin of the African Plate and are related to the Karoo rift system. To summarize, the basement normal faults and the graben fill features at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau can be correlated to similar features common in the Karoo rift area. Regional sea-level fall associated with this rift produced erosional and reworking features similar to those occur at the Triassic-Jurassic boundary in the European basins, Iran and Afghanistan. The tectonic correlation with the European basins and sedimentological evidences for the globally present Jurassic-Triassic boundary in the Salt Range of Pakistan encourage a detail work in this regard.
Poag, C.W.; Commeau, J.A.
1995-01-01
The Paleocene to Middle Miocene sedimentary fill of the southwestern Salisbury Embayment contains a fragmental depositional record, interrupted by numerous local diastems and regional unconformities. Using planktic foraminiferal biostratigraphy, 15 unconformity-bounded depositional units have been identified, assigned to six formations and seven alloformations previously recognized in the embayment. The units correlate with second- and third-order sequences of the Exxon sequence stratigraphy model, and include transgressive and highstand systems tracts. Alloformation, formation, and sequence boundaries are marked by abrupt, scoured, burrowed, erosional surfaces, which display lag deposits, biostratigraphic gaps, and intense reworking of microfossils above and below the boundaries.Paleocene deposits represent the upper parts of upper Pleocene Biochronozones P4 and P5, and rest uncomformably on Cretaceous sedimentary beds of various ages (Maastrichtian to Albian). Lower Eocene deposits represent parts of Biochronozones P6 and P9. Middle Eocene strata represent mainly parts of Biochronozones P11, P12, and P14. Upper Eocene sediments include parts of Biochronozones P15, P16, and P17. Oligocene deposits encompass parts of Biochronozones. N4b to N7 undifferentiated, P21a, and, perhaps, N4a. Lower Miocene deposits encompass parts of Biochronozones N4b to N7 undifferentiated. Middle Miocene strata represent mainly parts of Biochronorones N8, N9, and N10.Nine plates of scanning electron micrographs illustrate the principal planktic foraminifera used to establish the biostratigraphic framework. Two new informal formine of Praeterenuitella praegemma Li, 1987, are introduced.
,; Prowell, D.C.; Christopher, R.A.
2004-01-01
This paper formally defines two new Upper Cretaceous subsurface units in the southern Atlantic Coastal Plain of North Carolina, South Carolina and Georgia: the Collins Creek Formation and the Pleasant Creek Formation. These units are confined to the subsurface of the outer Coastal Plain, and their type sections are established in corehole CHN-820 from Charleston County, S.C. The Collins Creek Formation consists of greenish-gray lignitic sand and dark-greenish-gray sandy clay and is documented in cores from Allendale, Beaufort, Berkeley, Dorchester, Jasper and Marion Counties, South Carolina, and from Screven County, Georgia. Previously, Collins Creek strata had been incorrectly assigned to the Middendorf Formation. These sediments occupy a stratigraphic position between the Turonian/Coniacian Cape Fear Formation (?) below and the proposed upper Coniacian to middle Santonian Pleasant Creek Formation above. The Collins Creek Formation is middle and late Coniacian in age on the basis of calcareous nannofossil and palynomorph analyses. The Pleasant Creek Formation consists of olive-gray sand and dark-greenish-gray silty to sandy clay and is documented in cores from New Hanover County, North Carolina, and Berkeley, Charleston, Dorchester, Horry and Marion Counties, South Carolina. The strata of this unit previously were assigned incorrectly to the Middendorf Formation and (or) the Cape Fear Formation. These sediments occupy a stratigraphic position between the proposed Collins Creek Formation below and the Shepherd Grove Formation above. The Pleasant Creek Formation is late Coniacian and middle Santonian in age, on the basis of its calcareous nannofossil and palynomorph assemblages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, W.C.; Reaser, D.F.
1991-03-01
Ichnofossils are abundant in outcrops of the Austin Chalk near Waxahachie, Texas (designated site of the Super-Conducting Super Collider). The abundance and diversity of ichnofossils in Austin strata contrast with the paucity of other macrofossils, except large inoceramids. The lower Austin Chalk (Coniacian) disconformably overlies the Eagle Ford Shale (Turonian). Planolites, Thalassinoides, and Chondrites are conspicuous in the lower Austin. Some lower Austin strata contain well-preserved burrows having menicus fillings. However, most lower Austin ichnofossils are poorly preserved and have compacted. The middle Austin Marl and upper Austin Chalk (Santonain) contain Planolites, Chondrites, Thalassinoides, and Pseudobilobites. Several thin, intensely burrowed,more » Fe-stained, horizons within the middle Austin represent omission surfaces having postomission Thalassinoides. The upper Austin disconformably underlies the Taylor Marl (Campanian). The Austin-Taylor contact is a Rhizocorallium-infested omission surface overlain by a condensed bed of phosphatic and pyritic bioclasts. Upper Austin occurrences of Rhizocorallium and Pseudobilobites are unique for North American Cretaceous chalks. Based on cross-cutting relationships and differences in morphology, diameter, and burrow-filling sediments, numerous ichnospecies of Thalassinoides are discernable throughout the Austin. Variations in preservation quality exhibited by successive generations of ichnofossils record progressive changes in substrate consistency. Earliest formed burrows have diffuse outlines representing an initial thixotropic (softground) Austin substrate. Subsequent generations of burrows have more distinct outlines recording a gradual increase in substrate firmness. Paleo-firmgrounds are common in Austin outcrops; evidence of hardgrounds is lacking. The Thalassinoides-dominated Austin ichnoassemblage represents an inner shelf paleoenvironment.« less
NASA Astrophysics Data System (ADS)
Karacan, C. Özgen; Olea, Ricardo A.
2014-06-01
Prediction of potential methane emission pathways from various sources into active mine workings or sealed gobs from longwall overburden is important for controlling methane and for improving mining safety. The aim of this paper is to infer strata separation intervals and thus gas emission pathways from standard well log data. The proposed technique was applied to well logs acquired through the Mary Lee/Blue Creek coal seam of the Upper Pottsville Formation in the Black Warrior Basin, Alabama, using well logs from a series of boreholes aligned along a nearly linear profile. For this purpose, continuous wavelet transform (CWT) of digitized gamma well logs was performed by using Mexican hat and Morlet, as the mother wavelets, to identify potential discontinuities in the signal. Pointwise Hölder exponents (PHE) of gamma logs were also computed using the generalized quadratic variations (GQV) method to identify the location and strength of singularities of well log signals as a complementary analysis. PHEs and wavelet coefficients were analyzed to find the locations of singularities along the logs. Using the well logs in this study, locations of predicted singularities were used as indicators in single normal equation simulation (SNESIM) to generate equi-probable realizations of potential strata separation intervals. Horizontal and vertical variograms of realizations were then analyzed and compared with those of indicator data and training image (TI) data using the Kruskal-Wallis test. A sum of squared differences was employed to select the most probable realization representing the locations of potential strata separations and methane flow paths. Results indicated that singularities located in well log signals reliably correlated with strata transitions or discontinuities within the strata. Geostatistical simulation of these discontinuities provided information about the location and extents of the continuous channels that may form during mining. If there is a gas source within their zone of influence, paths may develop and allow methane movement towards sealed or active gobs under pressure differentials. Knowledge gained from this research will better prepare mine operations for potential methane inflows, thus improving mine safety.
NASA Astrophysics Data System (ADS)
Rodriguez, L.; Cuevas, J.; Tubía, J. M.
2012-04-01
This work deals with the structural evolution of the Sierras Interiores between the Tena and Aragon valleys. The Sierras Interiores is a WNW-trending mountain range that bounds the South Pyrenean Zone to the north and that is characterized by a thrust-fold system with a strong lithological control that places preferably decollements in Triassic evaporites. In the studied area of the Sierras Interiores Cenomanian limestones cover discordantly the Paleozoic rocks of the Axial Zone because there is a stratigraphic lacuna developed from Triassic to Late Cretaceous times. A simple lithostratigraphy of the study area is made up of Late Cenomanian to Early Campanian limestones with grey colour and massive aspect in landscape (170 m, Lower calcareous section), Campanian to Maastrichtian brown coloured sandstones (400-600 m, Marboré sandstones) and, finally, Paleocene light-coloured massive limestones (130-230 m), that often generate the higher topographic levels of the Sierras Interiores due to their greater resistance to erosion. Above the sedimentary sequence of the Sierras Interiores, the Jaca Basin flysch succession crops out discordantly. Based on a detailed mapping of the studied area of the Sierras Interiores, together with well and structural data of the Jaca Basin (Lanaja, 1987; Rodríguez and Cuevas, 2008) we have constructed a 12 km long NS cross section, approximately parallel to the movement direction deduced for this region (Rodríguez et al., 2011). The main structure is a thrust array made up of at least four Paleozoic-involving thrusts (the deeper thrust system) of similar thickness in a probably piggyback sequence, some of which are blind thrusts that generate fold-propagation-folds in upper levels. The higher thrust of the thrust array crops out duplicating the lower calcareous section all over the Sierras Interiores. The emplacement of the deeper thrust system generated the tightness of previous structures: south directed piggyback duplexes (the upper thrust system) affecting the Marboré sandstones and the Paleocene limestones, deformed by angular south-vergent folds and their related axial plane foliation. The transect explained above clearly summarizes the alpine evolution of northern part of the Sierras Interiores. Moreover, well data available indicate the presence of two thrust soled in the lower calcareous section covering Triassic evaporites at 5 km depth and 8 km to the south of the Sierras Interiores. Because the Triassic evaporites constitute a main decollement level in the South Pyrenean Zone, the deeper thrust system is associated to the emplacement of the Gavarnie nappe. Lanaja, J.M., 1987, Contribución de la exploración petrolífera al conocimiento de la Geología de España, IGME, Madrid, 465 p. Rodríguez, L., Cuevas, J., 2008. Geogaceta 44, 51-54. Rodríguez, L., Cuevas, J., Tubia, J.M., 2011. Geophysical Research Abstracts 13, 2273.
Hettinger, R.D.; Honey, J.G.; Ellis, M.S.; Barclay, C.S.V.; East, J.A.
2008-01-01
This report provides a map and detailed descriptions of geologic formations for a 1,250 square mile region in the Rawlins-Little Snake River coal field in the eastern part of the Washakie and Great Divide Basins of south-central Wyoming. Mapping of geologic formations and coal beds was conducted at a scale of 1:24,000 and compiled at a scale of 1:100,000. Emphasis was placed on coal-bearing strata of the China Butte and Overland Members of the Paleocene Fort Union Formation. Surface stratigraphic sections were measured and described and well logs were examined to determine the lateral continuity of individual coal beds; the coal-bed stratigraphy is shown on correlation diagrams. A structure contour and overburden map constructed on the uppermost coal bed in the China Butte Member is also provided.
NASA Astrophysics Data System (ADS)
Lowe, David; Arnott, Bill
2015-04-01
Recent experimental work has much improved our understanding of the lithological attributes of open-channel supercritical flow deposits, namely those formed by antidunes, chutes-and-pools and cyclic steps. However their limited documentation in the ancient sedimentary record brings into question details about their geological preservation. Antidune, chute-and-pool and cyclic step deposits are well developed in sandy ephemeral fluvial deposits of the Upper Cambrian - Lower Ordovician Potsdam Group in the Ottawa Embayment of eastern North America. These high energy fluvial strata form dm- to a few m-thick units intercalated within thick, areally expansive successions of sheet sandstones consisting mostly of wind ripple and adhesion stratification with common deflation lags. Collectively these strata record deposition in a semi-arid environment in which rare, episodic high-energy fluvial events accounted for most of the influx of sediment from upland sources. Following deposition, however, extensive aeolian processes reworked the sediment pile, and hence modified profoundly the preserved stratigraphic record. Antidune deposits occur as 0.2 - 1.6 m thick cosets made up of 2 - 15 cm thick lenticular sets of low angle (≤ 20o) cross-stratified, medium- to coarse-grained sandstone bounded by low-angle (5 - 15o) concave-upward scours and, in many cases, capped by low angle (10 - 15o) convex-upwards symmetrical formsets. Chute-and-pool deposits form single sets, 5 - 55 cm thick and 0.6 - 6 m wide, with scoured bases and low to high angle (5 - 25o) sigmoidal cross-strata consisting of medium- to coarse-grained sandstone. Cyclic step deposits consist of trough cross-stratified sets, 20 cm - 1.6 m thick, 2.5 - 12 m long and 7 - 35 m wide, typically forming trains that laterally are erosively juxtaposed at regularly-spaced intervals. They are composed of medium- to coarse-grained sandstone with concave-up, moderate to high angle (15 - 35o) cross-strata with tangential bases that conform to the shape of the basal bounding surface of the set. Antidune and cyclic step deposits are common and fill 0.4 - 1.8 m deep channels, which then are generally overlain by extensive (>1 km) aeolian deflation surfaces. Chute-and-pool strata, however, are rare and only occur as isolated scour-filling sets within unconfined floodplain deposits. Nowhere in outcrop do different kinds of supercritical bedform deposits interfinger or appear related to the same flow event, suggesting that individual packages of supercritical strata were deposited by discreet, rapidly waning flows with little time for incremental growth or deposition under changing flow conditions. The stratal characteristics and geometries of channel-filling antidune and cyclic step cosets in the Potsdam are similar to those produced in steady experimental flows with high rates of aggradation. Similar conditions in the Potsdam were probably attained because the flows were channelized, which also caused the freshly deposited sediment to lie beneath the water table, and hence beneath the effects of extensive post-flood aeolian deflation. Conversely, scour-filling chute-and-pool deposits formed on the floodplain where highly unsteady, erosive and rapidly waning unconfined flows formed isolated, partly-filled, erosively-based, ephemeral structures. Moreover, being formed on the surface of the floodplain subjected these deposits to extensive post-depositional reworking, and as a consequence caused them to be poorly preserved.
NASA Astrophysics Data System (ADS)
Fraiser, M.; Dineen, A.; Sheehan, P.
2013-12-01
Published data has been interpreted as indicating that marine ecological devastation following the end-Permian mass extinction was protracted and may have lasted 5 million years into the Middle Triassic (Anisian). However, a review of previous literature shows that understanding of biotic recovery is typically based on only a few components of the ecosystem, such as on taxonomic diversity, a single genus/phylum, or facies. Typically, paleocommunities are considered fully recovered when dominance and diversity are regained and normal ecosystem functioning has resumed. However, in addition to the biodiversity crash at the end of the Permian, taxonomic and ecologic structure also changed,with the extinction marking the faunal shift from brachiopod-rich Paleozoic Evolutionary Fauna (EF) to the mollusc-rich Modern EF. This suggests that the extreme reorganizational nature of the Triassic does not adhere to the standard definition of recovery, which is a return to previous conditions. Thus, we propose the term 'restructuring' to describe this interval, as Early and Middle Triassic communities might not exhibit the typical characteristics of a 'normal' Permian one. To more fully characterize Triassic ecologic restructuring, paleoecologists should take into account functional diversity and redundancy. We quantified functional richness and regularity in four different paleocommunities from classic Permian and Triassic sections. Functional richness was low in paleocommunities after the end-Permian mass extinction, but increased to high levels by the Middle Triassic. In contrast, functional regularity was low in the Middle Permian, but high in all the Triassic paleocommunities. The change from low to high functional regularity/redundancy at the P/T boundary may be a factor of the highly stressful Triassic environmental conditions (i.e. anoxia, hypercapnia), as high regularity in a community can boost survival in harsh environments. Parameters such as these will more accurately establish if the biotic patterns represent either failed biotic restructuring or a fully restructured marine community adapted to harsh Triassic environments.
NASA Astrophysics Data System (ADS)
Eltom, Hassan A.; Abdullatif, Osman M.; Babalola, Lamidi O.
2018-03-01
The southern margin of the Tethys Ocean was occupied by a broad, shallow continental shelf during the Permian-Triassic boundary interval, with the area of present-day Saudi Arabia located from 10° to 30° south of the paleo-equator. The strata deposited in modern Saudi Arabia in the aftermath of the latest Permian mass extinction (LPME) are dominated by oolitic microbialite limestone (OML), which are overlain by skeletal oolitic limestones (SOL) capped by dolostones and dolomitic limestones (DDL). This succession reflects changes in depositional setting, which can be potentially tied to redox conditions using redox sensitive trace elements and rare earth elements (REEs). Statistical analyses reveals that trace elements and REEs are associated with detrital material, and possibly with diagenetic minerals as well. Proxies such as the Y/Ho, Pr/Pr*, Smn/Ybn, Lan/Smn and Lan/Ybn ratios indicate that REEs do not record a seawater-like pattern, and cannot be used as redox indicator. The presence of a normal marine fauna implies oxic conditions during deposition of the DDL and SOL units. However, the OML unit, which represents the immediate aftermath of LPME, lacks both a normal marine fauna and reliable geochemical signals, making it difficult to infer redox conditions in the depositional environment. Similar to published data from sections that reflect shallow marine condition in the LPME of the Tethys Ocean, chemical index of alteration values are consistently high throughout the study succession, suggesting globally intense chemical weathering in the aftermath of the LPME. As a result, geochemical redox proxies in shallow marine carbonates of the Tethys Ocean are likely to be contaminated by detrital material that have been generated by chemical weathering, and thus, other methods are required to determine depositional redox conditions.
Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa
NASA Astrophysics Data System (ADS)
Bordy, Emese M.; Catuneanu, Octavian
2001-08-01
The sedimentary rocks of the Karoo Supergroup in the Tuli Basin (South Africa) may be grouped in four stratigraphic units: the basal, middle and upper units, and the Clarens Formation. This paper presents the findings of the sedimentological investigation of the fluvial terrigenous clastic and chemical deposits of the upper unit. Evidence provided by primary sedimentary structures, palaeontological record, borehole data, palaeo-flow measurements and stratigraphic relations resulted in the palaeo-environmental reconstruction of the upper unit. The dominant facies assemblages are represented by sandstones and finer-grained sediments, which both can be interbedded with subordinate intraformational coarser facies. The facies assemblages of the upper unit are interpreted as deposits of a low-sinuosity, ephemeral stream system with calcretes and silcretes in the dinosaur-inhabited overbank area. During the deposition of the upper unit, the climate was semi-arid with sparse precipitation resulting in high-magnitude, low-frequency devastating flash floods. The current indicators of the palaeo-drainage system suggest flow direction from northwest to southeast, in a dominantly extensional tectonic setting. Based on sedimentologic and biostratigraphic evidence, the upper unit of the Tuli Basin correlates to the Elliot Formation in the main Karoo Basin to the south.
NASA Astrophysics Data System (ADS)
Wang, Ruiliang; Zhang, Shuichang; Brassell, Simon; Wang, Jiaxue; Lu, Zhengyuan; Ming, Qingzhong; Wang, Xiaomei; Bian, Lizeng
2012-07-01
Stable carbon isotope composition (δ13C) of carbonate sediments and the molecular (biomarker) characteristics of a continuous Permian-Triassic (PT) layer in southern China were studied to obtain geochemical signals of global change at the Permian-Triassic boundary (PTB). Carbonate carbon isotope values shifted toward positive before the end of the Permian period and then shifted negative above the PTB into the Triassic period. Molecular carbon isotope values of biomarkers followed the same trend at and below the PTB and remained negative in the Triassic layer. These biomarkers were acyclic isoprenoids, ranging from C15 to C40, steranes (C27 dominates) and terpenoids that were all significantly more abundant in samples from the Permian layer than those from the Triassic layer. The Triassic layer was distinguished by the dominance of higher molecular weight (waxy) n-alkanes. Stable carbon isotope values of individual components, including n-alkanes and acyclic isoprenoids such as phytane, isop-C25, and squalane, are depleted in δ13C by up to 8-10‰ in the Triassic samples as compared to the Permian. Measured molecular and isotopic variations of organic matter in the PT layers support the generally accepted view of Permian oceanic stagnation followed by a massive upwelling of toxic deep waters at the PTB. A series of large-scale (global) outgassing events may be associated with the carbon isotope shift we measured. This is also consistent with the lithological evidence we observed of white thin-clay layers in this region. Our findings, in context with a generally accepted stagnant Permian ocean, followed by massive upwelling of toxic deep waters might be the major causes of the largest global mass extinction event that occurred at the Permian-Triassic boundary.
The Jurassic section along McElmo Canyon in southwestern Colorado
O'Sullivan, Robert B.
1997-01-01
In McElmo Canyon, Jurassic rocks are 1500-1600 ft thick. Lower Jurassic rocks of the Glen Canyon Group include (in ascending order) Wingate Sandstone, Kayenta Formation and Navajo Sandstone. Middle Jurassic rocks are represented by the San Rafael Group, which includes the Entrada Sandstone and overlying Wanakah Formation. Upper Jurassic rocks comprise the Junction Creek Sandstone overlain by the Morrison Formation. The Burro Canyon Formation, generally considered to be Lower Cretaceous, may be Late Jurassic in the McElmo Canyon area and is discussed with the Jurassic. The Upper Triassic Chinle Formation in the subsurface underlies, and the Upper Cretaceous Dakota Sandstone overlies, the Jurassic section. An unconformity is present at the base of the Glen Canyon Group (J-0), at the base of the San Rafael Group (J-2), and at the base of the Junction Creek Sandstone (J-5). Another unconformity of Cretaceous age is at the base of the Dakota Sandstone. Most of the Jurassic rocks consist of fluviatile, lacustrine and eolian deposits. The basal part of the Entrada Sandstone and the Wanakah Formation may be of marginal marine origin.
Geologic map of the Washington West 30’ × 60’ quadrangle, Maryland, Virginia, and Washington D.C.
Lyttle, Peter T.; Aleinikoff, John N.; Burton, William C.; Crider, E. Allen; Drake, Avery A.; Froelich, Albert J.; Horton, J. Wright; Kasselas, Gregorios; Mixon, Robert B.; McCartan, Lucy; Nelson, Arthur E.; Newell, Wayne L.; Pavlides, Louis; Powars, David S.; Southworth, C. Scott; Weems, Robert E.
2018-01-02
The Washington West 30’ × 60’ quadrangle covers an area of approximately 4,884 square kilometers (1,343 square miles) in and west of the Washington, D.C., metropolitan area. The eastern part of the area is highly urbanized, and more rural areas to the west are rapidly being developed. The area lies entirely within the Chesapeake Bay drainage basin and mostly within the Potomac River watershed. It contains part of the Nation's main north-south transportation corridor east of the Blue Ridge Mountains, consisting of Interstate Highway 95, U.S. Highway 1, and railroads, as well as parts of the Capital Beltway and Interstate Highway 66. Extensive Federal land holdings in addition to those in Washington, D.C., include the Marine Corps Development and Education Command at Quantico, Fort Belvoir, Vint Hill Farms Station, the Naval Ordnance Station at Indian Head, the Chesapeake and Ohio Canal National Historic Park, Great Falls Park, and Manassas National Battlefield Park. The quadrangle contains most of Washington, D.C.; part or all of Arlington, Culpeper, Fairfax, Fauquier, Loudoun, Prince William, Rappahannock, and Stafford Counties in northern Virginia; and parts of Charles, Montgomery, and Prince Georges Counties in Maryland.The Washington West quadrangle spans four geologic provinces. From west to east these provinces are the Blue Ridge province, the early Mesozoic Culpeper basin, the Piedmont province, and the Coastal Plain province. There is some overlap in ages of rocks in the Blue Ridge and Piedmont provinces. The Blue Ridge province, which occupies the western part of the quadrangle, contains metamorphic and igneous rocks of Mesoproterozoic to Early Cambrian age. Mesoproterozoic (Grenville-age) rocks are mostly granitic gneisses, although older metaigneous rocks are found as xenoliths. Small areas of Neoproterozoic metasedimentary rocks nonconformably overlie Mesoproterozoic rocks. Neoproterozoic granitic rocks of the Robertson River Igneous Suite intruded the Mesoproterozoic rocks. The Mesoproterozoic rocks are nonconformably overlain by Neoproterozoic metasedimentary rocks of the Fauquier and Lynchburg Groups, which in turn are overlain by metabasalt of the Catoctin Formation. The Catoctin Formation is overlain by Lower Cambrian clastic metasedimentary rocks of the Chilhowee Group. The Piedmont province is exposed in the east-central part of the map area, between overlapping sedimentary units of the Culpeper basin on the west and those of the Coastal Plain province on the east. In this area, the Piedmont province contains Neoproterozoic and lower Paleozoic metamorphosed sedimentary, volcanic, and plutonic rocks. Allochthonous mélange complexes on the western side of the Piedmont are bordered on the east by metavolcanic and metasedimentary rocks of the Chopawamsic Formation, which has been interpreted as part of volcanic arc. The mélange complexes are unconformably overlain by metasedimentary rocks of the Popes Head Formation. The Silurian and Ordovician Quantico Formation is the youngest metasedimentary unit in this part of the Piedmont. Igneous rocks include the Garrisonville Mafic Complex, transported ultramafic and mafic inclusions in mélanges, monzogranite of the Dale City pluton, and Ordovician tonalitic and granitic plutons. Jurassic diabase dikes are the youngest intrusions. The fault boundary between rocks of the Blue Ridge and Piedmont provinces is concealed beneath the Culpeper basin in this area but is exposed farther south. Early Mesozoic rocks of the Culpeper basin unconformably overlie those of the Piedmont and Blue Ridge provinces in the central part of the quadrangle. The north-northeast-trending extensional basin contains Upper Triassic to Lower Jurassic nonmarine sedimentary rocks. Lower Jurassic sedimentary strata are interbedded with basalt flows, and both Upper Triassic and Lower Jurassic strata are intruded by diabase of Early Jurassic age. The Bull Run Mountain fault, a major Mesozoic normal fault characterized by down-to-the-east displacement, separates rocks of the Culpeper basin from those of the Blue Ridge province on the west. On the east, the contact between rocks of the Culpeper basin and those of the Piedmont province is an unconformity, which has been locally disrupted by normal faults. Sediments of the Coastal Plain province unconformably overlie rocks of the Piedmont province along the Fall Zone and occupy the eastern part of the quadrangle. Lower Cretaceous deposits of the Potomac Formation consist of fluvial-deltaic gravels, sands, silts, and clays. Discontinuous fluvial and estuarine terrace deposits of Pleistocene and middle- to late-Tertiary age flank the modern Potomac River valley unconformable capping these Cretaceous strata and the crystalline basement where the Cretaceous has been removed by erosion. East of the Potomac River, the Potomac Formation is onlapped and unconformably overlain by a westward thinning wedge of marine sedimentary deposits of Late Cretaceous and early- and late-Tertiary age. Basement rooted Coastal Plain faults of Tertiary to Quaternary age occur along the Fall Zone and this part of the inner Coastal Plain. These Coastal Plain faults have geomorphic expression that appear to influence river drainage patterns.The geologic map of the Washington West quadrangle is intended to serve as a foundation for applying geologic information to problems involving land use decisions, groundwater availability and quality, earth resources such as natural aggregate for construction, assessment of natural hazards, and engineering and environmental studies for waste disposal sites and construction projects. This 1:100,000-scale map is mainly based on more detailed geologic mapping at a scale of 1:24,000.
Early Neogene unroofing of the Sierra Nevada de Santa Marta along the Bucaramanga -Santa Marta Fault
NASA Astrophysics Data System (ADS)
Piraquive Bermúdez, Alejandro; Pinzón, Edna; Bernet, Matthias; Kammer, Andreas; Von Quadt, Albrecht; Sarmiento, Gustavo
2016-04-01
Plate interaction between Caribbean and Nazca plates with Southamerica gave rise to an intricate pattern of tectonic blocks in the Northandean realm. Among these microblocks the Sierra Nevada de Santa Marta (SNSM) represents a fault-bounded triangular massif composed of a representative crustal section of the Northandean margin, in which a Precambrian to Late Paleozoic metamorphic belt is overlain by a Triassic to Jurassic magmatic arc and collateral volcanic suites. Its western border fault belongs to the composite Bucaramanga - Santa Marta fault with a combined left lateral-normal displacement. SE of Santa Marta it exposes remnants of an Oligocene marginal basin, which attests to a first Cenoizoic activation of this crustal-scale lineament. The basin fill consists of a sequence of coarse-grained cobble-pebble conglomerates > 1000 m thick that unconformably overlay the Triassic-Jurassic magmatic arc. Its lower sequence is composed of interbedded siltstones; topwards the sequence becomes dominated by coarser fractions. These sedimentary sequences yields valuable information about exhumation and coeval sedimentation processes that affected the massif's western border since the Upper Eocene. In order to analyse uplifting processes associated with tectonics during early Neogene we performed detrital zircon U-Pb geochronology, detrital thermochronology of zircon and apatites coupled with the description of a stratigraphic section and its facies composition. We compared samples from the Aracataca basin with analog sequences found at an equivalent basin at the Oca Fault at the northern margin of the SNSM. Our results show that sediments of both basins were sourced from Precambrian gneisses, along with Mesozoic acid to intermediate plutons; sedimentation started in the Upper Eocene-Oligocene according to palynomorphs, subsequently in the Upper Oligocene a completion of Jurassic to Cretaceous sources was followed by an increase of Precambrian input that became the dominant source for sediments, this shift in provenance is related to an increase in exhumation and erosion rates. The instauration of such a highly erosive regime since the Upper Oligocene attests how the Santa Marta massif was subject to uplifting and erosion, our data shows how in the Upper Oligocene an exhaustion of Cretaceous to Permian sources was followed by an increase in Neo-Proterozoic to Meso-Proterozoic input that is related to the unroofing of the basement rocks, this accelerated exhumation is directly related to the reactivation of the Orihueca Fault as a NW verging thrust at the interior of the massif coeval with Bucaramanga-Santa Marta Fault trans-tensional tectonics in response to the fragmentation of the Farallon plate into the Nazca an Cocos Plates.
Palaeozoic and Mesozoic tectonic implications of Central Afghanistan
NASA Astrophysics Data System (ADS)
Sliaupa, Saulius; Motuza, Gediminas
2017-04-01
The field and laboratory studies were carried out in Ghor Province situated in the central part of Afghanistan. It straddles juxtaposition of the Tajik (alternatively, North Afghanistan) and Farah Rod blocks separated by Band-e-Bayan zone. The recent studies indicate that Band-e-Bayan zone represents highly tectonised margin of the Tajik block (Motuza, Sliaupa, 2016). The Band-e-Bayan zone is the most representative in terms of sedimentary record. The subsidence trends and sediment lithologies suggest the passive margin setting during (Cambrian?) Ordovician to earliest Carboniferous times. A change to the foredeep setting is implied in middle Carboniferous through Early Permian; the large-thickness flysh-type sediments were derived from continental island arc provenance, as suggested by chemical composition of mudtstones. This stage can be correlated to the amalgamation of the Gondwana supercontinent. The new passive-margin stage can be inferred in the Band-e-Bayan zone and Tajik blocks in the Late Permian throughout the early Late Triassic that is likely related to breaking apart of Gondwana continent. A collisional event is suggested in latest Triassic, as seen in high-rate subsidence associating with dramatic change in litholgies, occurrence of volcanic rocks and granidoid intrusions. The continental volcanic island arc derived (based on geochemical indices) terrigens prevail at the base of Jurassic that were gradually replaced by carbonate platform in the Middle Jurassic pointing to cessation of the tectonic activity. A new tectonic episode (no deposition; and folding?) took place in the Tajik and Band-e-Bayan zone in Late Jurassic. The geological section of the Farah Rod block, situated to the south, is represented by Jurassic and Cretaceous sediments overlain by sporadic Cenozoic volcanic-sedimentary succession. The lower part of the Mesozoic succession is composed of terrigenic sediments giving way to upper Lower Cretaceous shallow water carbonates implying low tectonic regime. There was a break in sedimentation during the upper Cretaceous that is likely related to the Alpine orogenic event. It associated with some Upper Cretaceous magmatic activity (Debon et al., 1987). This event is reflected in the sedimentation pattern in the adjacent Band-e-Bayan zone and Tadjick block. The lower part of the Upper Cretaceous succession is composed of reddish terrigenic sediments. They are overlain by uppermost Cretaceous (and Danian) shallow marine sediments implying establishment of quiet tectonic conditions.
Geology, age, and tectonic setting of the Cretaceous Sliderock Mountain Volcano, Montana
Du Bray, E.A.; Harlan, Stephen S.
1998-01-01
The Sliderock Mountain stratovolcano, part of the Upper Cretaceous continental magmatic arc in southwestern Montana, consists of volcaniclastic strata and basaltic andesite lava flows. An intrusive complex represents the volcano's solidified magma chamber. Compositional diversity within components of the volcano appears to reflect evolution via about 50 percent fractional crystallization involving clinopyroxene and plagioclase. 40Ar/39Ar indicate that the volcano was active about 78?1 Ma.
NASA Astrophysics Data System (ADS)
Guest, Bernard; Horton, Brian K.; Axen, Gary J.; Hassanzadeh, Jamshid; McIntosh, William C.
2007-12-01
Oligocene-Miocene strata preserved in synclinal outcrop belts of the western Alborz Mountains record the onset of Arabia-Eurasia collision-related deformation in northern Iran. Two stratigraphic intervals, informally named the Gand Ab and Narijan units, represent a former basin system that existed in the Alborz. The Gand Ab unit is composed of marine lagoonal mudstones, fluvial and alluvial-fan clastic rocks, fossiliferous Rupelian to Burdigalian marine carbonates, and basalt flows yielding 40Ar/39Ar ages of 32.7 ± 0.3 and 32.9 ± 0.2 Ma. The Gand Ab unit is correlated with the Oligocene-lower Miocene Qom Formation of central Iran and is considered a product of thermal subsidence following Eocene extension. The Narijan unit unconformably overlies the Gand Ab unit and is composed of fluvial-lacustrine and alluvial fan sediments exhibiting contractional growth strata. We correlate the Narijan unit with the middle to upper Miocene Upper Red Formation of central Iran on the basis of lithofacies similarities, stratigraphic position, and an 8.74 ± 0.15 Ma microdiorite dike (40Ar/39Ar) that intruded the basal strata. Deformation timing is constrained by crosscutting relationships and independent thermochronological data. The Parachan thrust system along the eastern edge of the ancestral Taleghan-Alamut basin is cut by dikes dated at 8.74 ± 0.15 Ma to 6.68 ± 0.07 Ma (40Ar/39Ar). Subhorizontal gravels that unconformably overlie tightly folded and faulted Narijan strata are capped by 2.86 ± 0.83 Ma (40Ar/39Ar) andesitic lava flows. These relationships suggest that Alborz deformation had migrated southward into the Taleghan-Alamut basin by late Miocene time and shifted to its present location along the active range front by late Pliocene time. Data presented here demonstrate that shortening in the western Alborz Mountains had started by late middle Miocene time. This estimate is consistent with recent thermochronological results that place the onset of rapid exhumation in the western Alborz at ˜12 Ma. Moreover, nearly synchronous Miocene contraction in the Alborz, Zagros Mountains, Turkish-Iranian plateau, and Anatolia suggests that the Arabia-Eurasia collision affected a large region simultaneously, without a systematic outward progression of mountain building away from the collision zone.
Archean foreland basin tectonics in the Witwatersrand, South Africa
NASA Technical Reports Server (NTRS)
Burke, K.; Kidd, W. S. F.; Kusky, T. M.
1986-01-01
The Witwatersrand Basin of South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These features indicate that the Witwatersrand strata may have been deposited in a foreland basin and a regional geologic synthesis suggests that this basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. It is suggested that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province. Similarities are seen between this phase of Witwatersrand Basin evolution and that of active basins north of the Tibetan Plateau. The geologic evidence does not agree with earlier suggestions that the Witwatersrand strata were deposited in a rift or half-graben.
Progradational sequences in Miocene shoreline deposits, southeastern Caliente Range, California
Clifton, H. Edward
1981-01-01
An exceptionally well exposed marine-nonmarine transition in middle Miocene strata exists in the southeastern Caliente Range, California. About 50 individual progradational sequences form a succession that ranges in thickness from approximately 1000 m (where predominantly nonmarine) to more than 2500 m (where predominantly marine). Paleogreographic evidence in basalt flows near the top of the succession and in overlying fluvial deposists indicates that these middle Miocene strata were deposited across a north-northwest trending shoreline.A complete progradational sequence typically is several meters to a few tens of meters thick and includes strata that represent three intertonguing stratigraphic units. Individual sequences generally rest on a thin gravel deposit interpreted as a transgressive lag on an erosional surface. The gravel is overlain by structureless siltstone or fine-grained sandstone deposited at water depths where the rate of faunal mixing exceeded that of production of structures by physical processes. These rocks grade upward into bedded fine sandstone deposited closer to shore where physical processes exceeded bioturbation. Crossbedded lenses of coarse sand or fine gravel in the upper part of this facies suggest the presence of failry long-period surface waves. The bedded fine sandstone is sharply overlain by a crossbedded coarse sandstone facies that is interpreted as a combined offshore bar-rip channel-surf zone assemblage. Cross-strata dip dominantly offshore, suggesting substantial deposition from rip currents. A secondary, shore=parallel mode of cross-strata direction suggests longshore currents produced by surface waves from the northwest. The crossbedded coarse-grained sandstone grades upward into planar-bedded medium-grained sandstone that is interpreted as a beach foreshore. This facies grades upward through structureless medium-grained sandstone into nonmarine or lagoonal red and green mudstone of the Caliente Formation.The middle Miocene succession was deposited in a subsiding basin that was otherwise remarkably stable tectonically; the position of the strand line differed no more than a few kilometers through a period of 1 to 3 m.y. The average duration of the transgressive-regressive cycles, a few tens of thousands of years, together with their distribution in groups of three or four in the lower two-thirds of the succession, is consistent with the pattern of long-term climatic cycles produced by periodicity of the earth's solar orbit and may be related to eustatic sea level changes attendant to the development of the Antarctic ice cap. Changes in the pattern of progradation in the upper part of the succession and nearby basaltic eruptions may hav been precursors to the onset of movement along the San Andreas fault in this area 12-14 m.y. ago.
Lacerda, Marcel B; Schultz, Cesar L; Bertoni-Machado, Cristina
2015-01-01
The 'Rauisuchia' are a group of Triassic pseudosuchian archosaurs that displayed a near worldwide distribution. In Brazil, their fossils are found only in the Santa Maria Formation (Paraná Basin) of the Rio Grande do Sul State, specifically in the Middle Triassic Dinodontosaurus assemblage zone (AZ) and the Late Triassic Hyperodapedon AZ (Rauisuchus tiradentes). Between these two cenozones is the Santacruzodon AZ (Middle Triassic), whose record was, until now, restricted to non-mammalian cynodonts and the proterochampsian Chanaresuchus bonapartei. Here we present the first occurrence of a rauisuchian archosaur for this cenozone, from the Schoenstatt outcrop, located near the city of Santa Cruz do Sul and propose a new species, based on biostratigraphical evidence and a comparative osteological analysis.
Lacerda, Marcel B.; Schultz, Cesar L.; Bertoni-Machado, Cristina
2015-01-01
The ‘Rauisuchia’ are a group of Triassic pseudosuchian archosaurs that displayed a near worldwide distribution. In Brazil, their fossils are found only in the Santa Maria Formation (Paraná Basin) of the Rio Grande do Sul State, specifically in the Middle Triassic Dinodontosaurus assemblage zone (AZ) and the Late Triassic Hyperodapedon AZ (Rauisuchus tiradentes). Between these two cenozones is the Santacruzodon AZ (Middle Triassic), whose record was, until now, restricted to non-mammalian cynodonts and the proterochampsian Chanaresuchus bonapartei. Here we present the first occurrence of a rauisuchian archosaur for this cenozone, from the Schoenstatt outcrop, located near the city of Santa Cruz do Sul and propose a new species, based on biostratigraphical evidence and a comparative osteological analysis. PMID:25714091
NASA Astrophysics Data System (ADS)
Bonev, N.; Stampfli, G.
2003-04-01
In the southeastern Rhodope, both in southern Bulgaria and northern Greece, Mesozoic low-grade to non-metamorphic units, together with similar units in the eastern Vardar zone, were designated as the Circum-Rhodope Belt (CRB) that fringes the Rhodope high-grade metamorphic complex. In the Bulgarian southeastern Rhodope, Mesozoic units show a complicated tectono-stratigraphy underlaid by amphibolite-facies basement units. The basement sequence includes a lower orthogneiss unit with eclogite and meta-ophiolite lenses overlain by an upper marble-schist unit, presumably along a SSW-directed detachment fault as indicated by shear sense indicators. The Mesozoic sequence starts with greenschist units at the base, overlaying the basement along the tectonic contact. Mineral assemblages such as actinolite-chlorite-white mica ± garnet in schists and phyllites indicate medium greenschist facies metamorphism. Kinematic indicators in the same unit demonstrate a top-to-the NNW and NNE shear deformation coeval with metamorphism, subparallel to NW-SE to NE-SW trending mineral elongation lineation and axis of NW vergent small-scale folds. The greenschist unit is overlain by tectonic or depositional contact of melange-like unit that consists of diabases with Lower Jurassic radiolarian chert interlayers, Upper Permian siliciclastics and Middle-Upper Triassic limestones found as blocks in olistostromic member, embedded in Jurassic-Lower Cretaceous turbiditic matrix. The uppermost sedimentary-volcanogenic unit is represented by andesito-basalt lavas and gabbro-diorites, interbedded with terrigeneous-marl and tufaceous sediments that yield Upper Cretaceous (Campanian) fossils, related to the Late Cretaceous back-arc magmatic activity to the north in Sredna Gora zone. Petrologic and geochemical data indicates sub-alkaline and tholeiitic character of the greenschists and ophiolitic basaltic lavas, and the latter are classified as low-K and very low-Ti basalts with some boninitic affinity. Immobile trace element discrimination of both rock types constrains the volcanic (oceanic)-arc origin. They generally show low total REE concentrations (LREE>HREE) with enrichment of LIL elements relative to the HFS elements, and also very low Nb and relatively high Ce content consistent with an island-arc tectonic setting. We consider that the Meliata-Maliac ocean northern passive margin could be the source provenance for the Upper Permian clastics and Middle-Upper Triassic limestone blocks within the olistostromic melange-like unit, whereas turbidites and magmatic blocks may originate in an island arc-accretionary complex that relates to the southward subduction of the Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. These new structural and petrologic data allow to precise the tectonic setting of the Mesozoic units and their geodynamic context in the frame of the Early Jurassic to Late Cretaceous evolution of the Vardar ocean.
Foth, Christian; Ezcurra, Martín D; Sookias, Roland B; Brusatte, Stephen L; Butler, Richard J
2016-09-15
Archosauromorpha originated in the middle-late Permian, radiated during the Triassic, and gave rise to the crown group Archosauria, a highly successful clade of reptiles in terrestrial ecosystems over the last 250 million years. However, scientific attention has mainly focused on the diversification of archosaurs, while their stem lineage (i.e. non-archosaurian archosauromorphs) has often been overlooked in discussions of the evolutionary success of Archosauria. Here, we analyse the cranial disparity of late Permian to Early Jurassic archosauromorphs and make comparisons between non-archosaurian archosauromorphs and archosaurs (including Pseudosuchia and Ornithodira) on the basis of two-dimensional geometric morphometrics. Our analysis recovers previously unappreciated high morphological disparity for non-archosaurian archosauromorphs, especially during the Middle Triassic, which abruptly declined during the early Late Triassic (Carnian). By contrast, cranial disparity of archosaurs increased from the Middle Triassic into the Late Triassic, declined during the end-Triassic extinction, but re-expanded towards the end of the Early Jurassic. Our study indicates that non-archosaurian archosauromorphs were highly diverse components of terrestrial ecosystems prior to the major radiation of archosaurs, including dinosaurs, while disparity patterns of the Ladinian and Carnian indicate a gradual faunal replacement of stem archosaurs by the crown group, including a short interval of partial overlap in morphospace during the Ladinian.
A Dome-Headed Stem Archosaur Exemplifies Convergence among Dinosaurs and Their Distant Relatives.
Stocker, Michelle R; Nesbitt, Sterling J; Criswell, Katharine E; Parker, William G; Witmer, Lawrence M; Rowe, Timothy B; Ridgely, Ryan; Brown, Matthew A
2016-10-10
Similarities in body plan evolution, such as wings in pterosaurs, birds, and bats or limblessness in snakes and amphisbaenians, can be recognized as classical examples of convergence among animals [1-3]. We introduce a new Triassic stem archosaur that is unexpectedly and remarkably convergent with the "dome-headed" pachycephalosaur dinosaurs that lived over 100 million years later. Surprisingly, numerous additional taxa in the same assemblage (the Otis Chalk assemblage from the Dockum Group of Texas) demonstrate the early acquisition of morphological novelties that were later convergently evolved by post-Triassic dinosaurs. As one of the most successful clades of terrestrial vertebrates, dinosaurs came to occupy an extensive morphospace throughout their diversification in the Mesozoic Era [4, 5], but their distant relatives were first to evolve many of those "dinosaurian" body plans in the Triassic Period [6-8]. Our analysis of convergence between archosauromorphs from the Triassic Period and post-Triassic archosaurs demonstrates the early and extensive exploration of morphospace captured in a single Late Triassic assemblage, and we hypothesize that many of the "novel" morphotypes interpreted to occur among archosaurs later in the Mesozoic already were in place during the initial Triassic archosauromorph, largely non-dinosaurian, radiation and only later convergently evolved in diverse dinosaurian lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hochuli, Peter A.; Sanson-Barrera, Anna; Schneebeli-Hermann, Elke; Bucher, Hugo
2016-01-01
Generally Early Triassic floras are believed to be depauperate, suffering from protracted recovery following the Permian–Triassic extinction event. Here we present palynological data of an expanded East Greenland section documenting recovered floras in the basal Triassic (Griesbachian) and a subsequent fundamental floral turnover, postdating the Permian–Triassic boundary extinction by about 500 kyrs. This event is marked by a swap in dominating floral elements, changing from gymnosperm pollen-dominated associations in the Griesbachian to lycopsid spore-dominated assemblages in the Dienerian. This turnover coincides with an extreme δ13Corg negative shift revealing a severe environmental crisis, probably induced by volcanic outbursts of the Siberian Traps, accompanied by a climatic turnover, changing from cool and dry in the Griesbachian to hot and humid in the Dienerian. Estimates of sedimentation rates suggest that this environmental alteration took place within some 1000 years. Similar, coeval changes documented on the North Indian Margin (Pakistan) and the Bowen Basin (Australia) indicate the global extent of this crisis. Our results evidence the first profound disruption of the recovery of terrestrial environments about 500kyrs after the Permian–Triassic extinction event. It was followed by another crisis, about 1myrs later thus, the Early Triassic can be characterised as a time of successive environmental crises. PMID:27340926
Stocker, Michelle R; Zhao, Li-Jun; Nesbitt, Sterling J; Wu, Xiao-Chun; Li, Chun
2017-04-10
Following the end-Permian extinction, terrestrial vertebrate diversity recovered by the Middle Triassic, and that diversity was now dominated by reptiles. However, those reptilian clades, including archosaurs and their closest relatives, are not commonly found until ~30 million years post-extinction in Late Triassic deposits despite time-calibrated phylogenetic analyses predicting an Early Triassic divergence for those clades. One of these groups from the Late Triassic, Phytosauria, is well known from a near-Pangean distribution, and this easily recognized clade bears an elongated rostrum with posteriorly retracted nares and numerous postcranial synapomorphies that are unique compared with all other contemporary reptiles. Here, we recognize the exquisitely preserved, nearly complete skeleton of Diandongosuchus fuyuanensis from the Middle Triassic of China as the oldest and basalmost phytosaur. The Middle Triassic age and lack of the characteristically-elongated rostrum fill a critical morphological and temporal gap in phytosaur evolution, indicating that the characteristic elongated rostrum of phytosaurs appeared subsequent to cranial and postcranial modifications associated with enhanced prey capture, predating that general trend of morphological evolution observed within Crocodyliformes. Additionally, Diandongosuchus supports that the clade was present across Pangea, suggesting early ecosystem exploration for Archosauriformes through nearshore environments and leading to ease of dispersal across the Tethys.
Stocker, Michelle R.; Zhao, Li-Jun; Nesbitt, Sterling J.; Wu, Xiao-Chun; Li, Chun
2017-01-01
Following the end-Permian extinction, terrestrial vertebrate diversity recovered by the Middle Triassic, and that diversity was now dominated by reptiles. However, those reptilian clades, including archosaurs and their closest relatives, are not commonly found until ~30 million years post-extinction in Late Triassic deposits despite time-calibrated phylogenetic analyses predicting an Early Triassic divergence for those clades. One of these groups from the Late Triassic, Phytosauria, is well known from a near-Pangean distribution, and this easily recognized clade bears an elongated rostrum with posteriorly retracted nares and numerous postcranial synapomorphies that are unique compared with all other contemporary reptiles. Here, we recognize the exquisitely preserved, nearly complete skeleton of Diandongosuchus fuyuanensis from the Middle Triassic of China as the oldest and basalmost phytosaur. The Middle Triassic age and lack of the characteristically-elongated rostrum fill a critical morphological and temporal gap in phytosaur evolution, indicating that the characteristic elongated rostrum of phytosaurs appeared subsequent to cranial and postcranial modifications associated with enhanced prey capture, predating that general trend of morphological evolution observed within Crocodyliformes. Additionally, Diandongosuchus supports that the clade was present across Pangea, suggesting early ecosystem exploration for Archosauriformes through nearshore environments and leading to ease of dispersal across the Tethys. PMID:28393843
NASA Astrophysics Data System (ADS)
Song, P.; Lin, D.; Lippert, P. C.; Li, Z.
2017-12-01
The closure of the Paleo-Tethys Ocean is a major event not only in the tectonic history of the Tibetan Plateau that pre-conditioned the plateau for subsequent orogenic events, but also in the paleogeographic evolution of eastern Pangea. Final closure of this equatorial ocean, however, remains disputed, with ages ranging from the Late Permian to the Middle Cretaceous; this huge discrepancy is largely the result of the lack of high-quality paleomagnetic data and ambiguous stratigraphic data from Mesozoic rocks from Central Tibet. A recent Late Triassic paleopole derived from lavas of the Qiangtang block suggests that the Paleo-Tethys Ocean must have closed between Middle and Late Triassic (Song et al., EPSL 2015). We test this prediction with a paleomagnetic study of Middle Triassic lavas from the Qiangtang block. These lavas were previously dated to Middle Triassic (ca. 242-240 Ma) using zircon U-Pb geochonology. Rock magnetic experiments demonstrate that hematite and magnetite are the main carriers of remanence. Progressive thermal and alternating field demagnetization successfully isolated stable characteristic remanent magnetizations. Although these directions pass fold tests, suggesting a primary magnetization, we are conducting additional rock magnetic and petrographic studies to verify the primary nature of this magnetization. If these directions are primary, then they establish the first lava-based paleomagnetic pole of Middle Triassic age from the Qiangtang block. This pole was located at 63.4°N, 198.8°E, A95=4.1° (N=27) and yields a paleolatitude of 22.7±4.1°N at the reference point (33.5°N, 92.0°E). A comparison of our new Middle Triassic pole from the Qiangtang block with coeval paleopoles from the North China (NCB) and Tarim blocks indicates that the Paleo-Tethys Ocean was approximately 5-10° of latitude ( 550-1100 km) wide during the Middle Triassic. Within the context of our previous work that demonstrated the Qiangtang, NCB, and Tarim blocks share similar paleomagnetic poles during the Late Triassic (ca. 210 Ma), we conclude that the Paleo-Tethys Ocean at the longitude of Qiangtang must have closed during the Late Triassic (ca. 210-240 Ma). These paleomagnetic results help clarify stratigraphic and geochemical observations of suturing within the heart of the proto-Tibetan Plateau.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, W.E.; Krause, R.G.F.
1989-04-01
Stratigraphic and paleomagnetic studies have suggested that the western Transverse Ranges (WTR) microplate is allochthonous, and may have experienced translational and rotational motions. Present paleocurrent directions from the Upper Cretaceous Jalama Formation of the Santa Ynez Mountains are north-directed; these forearc sediments (Great Valley sequence) contain magmatic arc-derived conglomerate clasts from the Peninsular Ranges in southern California. Paleocurrents in the lower Eocene Juncal and Cozy Dell Formations are south-directed. This juxtaposition is best explained by 90/degrees/ or more of clockwise rotation of the WTR microplate, so that Upper Cretaceous forearc sediments sourced from the Peninsular Ranges magmatic arc were depositedmore » by west-directed currents. Eocene sediments were derived from an uplifted portion of the western basin margin and deposited by east-directed currents. Franciscan olistoliths in the Upper Cretaceous sediments indicate deposition adjacent to an accretionary wedge; conglomeratic clasts recycled from the Upper Cretaceous sequence, and radiolarian cherts and ophiolitic boulders in the Eocene strata indicate derivation from an outer accretionary ridge.« less
NASA Astrophysics Data System (ADS)
Zanchi, Andrea; Balini, Marco; Ghassemi, Mohammad Reza; Zanchetta, Stefano
2010-05-01
The Aghdarband Basin, consisting of a strongly deformed arc-related Triassic marine succession, is a key-area for the study of the Cimmerian events, as it is unconformably covered by mid-Jurassic gently folded sediments entirely sealing the Cimmerian compressive structures. The basin developed during part of the Triassic in a highly mobile tectonic context suggested by abrupt facies variations and local unconformities. In addition, syn-sedimentary tectonic activity is testified by the occurrence of carbonate olistholiths in the deepest parts of the basin. The marine succession, spanning from Olenekian to lowermost Carnian, shows at the base continental conglomerates andsandstones, as well as basaltic lava flows, possibly of Early Triassic age. They are followed by the shallow water Sefid Kuh Limestone, in which an intraformational unconformity has been now identified. This unit is locally covered by deep-water limestones of the Nazarkardeh Fm. which interfinger with slope facies of the Sefid Kuh Limestone. The volcaniclastic sandstone layers of the Sina Fm follow up-section with a deep unconformity, marked in several places by deep erosion and tilting of the underlying units. The Sina Fm. is in turn unconformably covered by the coal bearing shales of the Miankhui Fm., with a Norian-Rhaetian age testified by plant megafossils, marking the end of marine sedimentation and of volcanic-arc activity. The Triassic units are overthrusted to the south by Upper Palaeozoic siliciclastic successions showing in some cases a LG metamorphic imprint. They largely include the Qara Geithan Fm. consisting of granitic rocks, acidic to basic volcanics, and locally also large blocks of Permian bioclastic limestones derived from the erosion of the Palaeotethys accretionary wedge, exposed south of Aghdarband. The whole succession of the Aghdarband Basin, including the unconformable Miankhui Fm., is deeply involved in a north-verging thrust stack which interacts in the northern part of the area with an important strike-slip shear zone. Several tectonic units have been recognized within the Triassic succession, causing repetitions of the whole stratigraphic succession. Two main thrust sheets are exposed in the southern part of the basin under the Upper Palaeozoic thrust stack. Thrust faults and folds consistently show a N-directed tectonic transport, suggested by dip-slip motion along S-dipping reverse faults and axial plane geometry. Deformation occurred at shallow levels taking to the formation of cataclastic shear zones and to disjunctive and pencil cleavage in the shale layers of the succession. The thrust sheets comprise the Miankhui Fm. which shows a thick basal coal layer (up to 10 m) deeply excavated at the Aghdarband Mine. Nice examples of coal-related tectonics are exposed in open pits and tunnels of the mine. Intensive deformation of the coal, forming complex shear zones with s-c bands, causes the décollement of the Miankhui beds which show intensive tectonic thickening and repetitions mainly caused by polyphase thrust imbrications and disharmonic folding. The northernmost part of the Triassic basin shows a very complex setting, with traspressional structures given by vertical strike-slip faults and closed to tight folds with steeply plunging axes. According to our new data, up to four tectonic slices can be distinguished in this complex area. This structural zone is directly bounded to the north by severely deformed LG metamorphic rocks resulting from a volcaniclastic succession with Devonian and Carboniferous marble layers. Systematic asymmetry of major and parasitic folds, as well as rotation and torsion of axial surfaces indicate a general left-lateral transpressional regime, whereas kinematic indicators along the main fault planes show both left- and right-lateral motions. According to our relative chronology, dextral movements follow in time the sinistral ones reactivating previous Cimmerian structures and displacing also the surrounding Jurassic to Neogene succession of Kopeh Dagh in relatively recent times. Fold analyses along the area of interaction between thrust structure and the transpressional zone suggest an intricate interference pattern between thrust-related folds and strike-slip brittle shear zones, suggesting that the latter caused a strong reorientation of previously formed folds. The extension of the traspressional zone, which can be followed for some 20 km across the study area, indicates that important left-lateral movements, roughly parallel to the orientation of the convergence zone, were active during the last stages of the Late Triassic Cimmerian event, in contrast to what indicated by previous authors in the Mashhad area.
Preliminary comparative study of middle Anisian vertebrate ichnoassociation from South-Eastern Alps
NASA Astrophysics Data System (ADS)
Valdiserri, D.; Todesco, R.; Avanzini, M.
2009-04-01
Anisian vertebrate tracks from the south-eastern Alps are known since the first decades of 1900s (Abel, 1926). The sedimentary units yielding footprints are characterized by the alternation of limestone influenced by terrigenous supply with mere marine and volcanic layers allowing a precise dating. In this study, we compare four different ichnoassociations from three different outcrops in the South-Eastern Alps correlating them chronologically and sedimentologically. They were found to be subsequent in time from Lower Pelsonian (Bad Gfrill-Voltago Conglomerate; Todesco, 2007) through middle Pelsonian (Bad Gfrill- Giovo Formation) (Valdiserri et al., 2006) and basal Illyrian (Piz da Peres- Richthofen Conglomerate; Todesco et al., 2008) to the middle Illyrian (Val Duron-Morbiac Limestone; Avanzini et al., 2007). In all these ichno-associations, Rhynchosauroides, an ichno-genus referable to a lizard - like trackmaker well known in the European Anisian, is dominant. Within this group at least four different morphotypes are known, probably reflecting both intraspecific variation (i.e. sexual dimorphism) and different ichnospecies. Although the Chirotheridae group, referred to Archosaurian trackmakers Synaptichnium is represented in both Pelsonian ichnoassociation of the Bad Gfrill outcrop, while Chirotherium , Isochirotherium and Brachichirotherium are recognized both in Pelsonian and in Illyrian ichnosites with a incremental presence in the Illyrian The ichofamiliae Rotodactylidae und Procolophonidae seem well represented in the Pelsonian strata but absent in the Illyrian ones. The preliminarly comparative analysis of these four correlated ichnosites and the comparision with the yet known ones (Avanzini and Mietto 2008) pointed out the expected predominance of the Lepidosaurian-Archosaurian association typical for the middle Triassic ichnofauna. The incremental presence of the Chirotherian track in Illyrian and the presence of the Procolophonichium just in the Pelsonian ichno-association seem to corroborate the hypothesis of two different ichoassemblages in the late Middle Triassic (Lucas, 2007). Further studies could allow a better understanding of the evolution of the Chirotherian tracks group and the systematics of the Rhynchosauroidae ichnofamily. References Abel, O. 1926. Der erste Fund einer Tetrapodenfährte in den unteren alpinen Trias. Paläontologische Zeitschrift, 7: 22-24. Avanzini, M., Mietto, P. 2008. Lower and Middle Triassic footprint-based Biochronology in the Italian Southern Alps. Oryctos, Vol. 8, 2008: 3-13. Avanzini, M., Wachtler, M., Dellantonio, E. & Todesco, R. 2007. A new Late Anisian vertebrate ichnosite from Dolomites (Val Duron, Val di Fassa). Geoitalia 2007, Abstract Vol. 10.1474/ Epitome 02.1081. Lucas, S. G. 2007. Tetrapod Footprint Biostratigraphy and Biochronology, Ichnos, 14,1:5-38 Todesco, R. 2007. Studio paleontologico delle orme di rettili triassici (Pelsonico) nel Conglomerato di Voltago (Valle di Prissiano, Trentino-Alto Adige). Degree thesis, University of Modena and Reggio Emilia. Todesco, R.; Wachtler, M; Kustatscher, E. & Avanzini, M. 2008. Preliminary reporton a new vertebrate track and flora site from Piz da Peres (Anisian-Illyrian): Olang Dolomites, Northern Italy. Geo. Alp, 5: 121-137 Valdiserri, D. & Avanzini, M. 2006: A tetrapod ichnoassociation from the Middle Triassic (Anisian, Pelsonian) of Northern Italy. Ichnos, 14: 105-116.