Sample records for upper white river

  1. Evaluation of Selected Model Constraints and Variables on Simulated Sustainable Yield from the Mississippi River Valley Alluvial Aquifer System in Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2008-01-01

    An existing conjunctive use optimization model of the Mississippi River Valley alluvial aquifer was used to evaluate the effect of selected constraints and model variables on ground-water sustainable yield. Modifications to the optimization model were made to evaluate the effects of varying (1) the upper limit of ground-water withdrawal rates, (2) the streamflow constraint associated with the White River, and (3) the specified stage of the White River. Upper limits of ground-water withdrawal rates were reduced to 75, 50, and 25 percent of the 1997 ground-water withdrawal rates. As the upper limit is reduced, the spatial distribution of sustainable pumping increases, although the total sustainable pumping from the entire model area decreases. In addition, the number of binding constraint points decreases. In a separate analysis, the streamflow constraint associated with the White River was optimized, resulting in an estimate of the maximum sustainable streamflow at DeValls Bluff, Arkansas, the site of potential surface-water withdrawals from the White River for the Grand Prairie Area Demonstration Project. The maximum sustainable streamflow, however, is less than the amount of streamflow allocated in the spring during the paddlefish spawning period. Finally, decreasing the specified stage of the White River was done to evaluate a hypothetical river stage that might result if the White River were to breach the Melinda Head Cut Structure, one of several manmade diversions that prevents the White River from permanently joining the Arkansas River. A reduction in the stage of the White River causes reductions in the sustainable yield of ground water.

  2. WATER QUALITY VULNERABILITY IN THE OZARKS USING LANDSCAPE ECOLOGY METRICS: UPPER WHITE RIVER BROWSER (V2.0)

    EPA Science Inventory

    The principal focus of this project is the mapping and interpretation of landscape scale (i.e., broad scale) ecological metrics among contributing watersheds of the Upper White River, and the development of geospatial models of water quality vulnerability for several suspected no...

  3. Health of white sucker within the St. Louis River area of concern associated with habitat usage as assessed using stable isotopes

    EPA Science Inventory

    In Spring 2011, 200 adult white sucker were collected in four areas of the St. Louis River Area of Concern (AOC), located in Minnesota and Wisconsin, USA. The areas included the upper AOC as a reference area, the upper estuary, St. Louis Bay and Superior Bay. Grossly visible abno...

  4. Subspecific affinity of black bears in the White River National Wildlife Refuge

    USGS Publications Warehouse

    Warrillow, J.; Culver, M.; Hallerman, E.; Vaughan, M.

    2001-01-01

    The black bear population of the White River National Wildlife Refuge (NWR) is adjacent to populations of black bear in Louisiana (Urusus americanus luteolus) which are listed as threatened under the U.S. Endangered Species Act. Wildlife management plans can pose restrictions on bear harvests and timber extraction; therefore the management plan for the White River NWR is sensitive to subspecific classification of its bear population. The objective of this study was to analyze genetic variation in the White River NWR and seven adjacent populations of black bears to assess the subspecific affinity of the White River NWR population. Here we report the variation at seven microsatellite DNA loci among eight black bear populations. The patterns of genetic variation gave strong support for distinguishing a southern group of black bears comprised of the White River, Arkansas; Tensas River, Louisiana; Upper Atchafalaya, Louisiana; Lower Atchafalaya, Louisiana; and Alabama/Mississippi populations. Phylogenetic analysis of individual variation suggested that historical black bear introductions into Arkansas and Louisiana affected gene pools of certain southern receiving populations, but did not significantly change interpopulation relatedness. Phylogenetic inferences at both the population and individual levels support the hypothesis that the White River NWR population of black bears belongs to the U. a. luteolus subspecies.

  5. Subspecific affinity of black bears in the White River National Wildlife Refuge.

    PubMed

    Warrillow, J; Culver, M; Hallerman, E; Vaughan, M

    2001-01-01

    The black bear population of the White River National Wildlife Refuge (NWR) is adjacent to populations of black bear in Louisiana (Urusus americanus luteolus) which are listed as threatened under the U.S. Endangered Species Act. Wildlife management plans can pose restrictions on bear harvests and timber extraction; therefore the management plan for the White River NWR is sensitive to subspecific classification of its bear population. The objective of this study was to analyze genetic variation in the White River NWR and seven adjacent populations of black bears to assess the subspecific affinity of the White River NWR population. Here we report the variation at seven microsatellite DNA loci among eight black bear populations. The patterns of genetic variation gave strong support for distinguishing a southern group of black bears comprised of the White River, Arkansas; Tensas River, Louisiana; Upper Atchafalaya, Louisiana; Lower Atchafalaya, Louisiana; and Alabama/Mississippi populations. Phylogenetic analysis of individual variation suggested that historical black bear introductions into Arkansas and Louisiana affected gene pools of certain southern receiving populations, but did not significantly change interpopulation relatedness. Phylogenetic inferences at both the population and individual levels support the hypothesis that the White River NWR population of black bears belongs to the U. a. luteolus subspecies.

  6. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the abundances and size structures present before golden alga. Received August 26, 2011; accepted November 25, 2012

  7. Toxicity of copper to early-life stage Kootenai River white sturgeon, Columbia River white sturgeon, and rainbow trout

    USGS Publications Warehouse

    Little, E.E.; Calfee, R.D.; Linder, G.

    2012-01-01

    White sturgeon (Acipenser transmontanus) populations throughout western North America are in decline, likely as a result of overharvest, operation of dams, and agricultural and mineral extraction activities in their watersheds. Recruitment failure may reflect the loss of early-life stage fish in spawning areas of the upper Columbia River, which are contaminated with metals from effluents associated with mineral-extraction activities. Early-life stage white sturgeon (A. transmontanus) from the Columbia River and Kootenai River populations were exposed to copper during 96-h flow-through toxicity tests to determine their sensitivity to the metal. Similar tests were conducted with rainbow trout (RBT [Oncorhynchus mykiss]) to assess the comparative sensitivity of this species as a surrogate for white sturgeon. Exposures were conducted with a water quality pH 8.1-8.3, hardness 81-119 mg/L as CaCO2, and dissolved organic carbon 0.2-0.4 mg/L. At approximately 30 days posthatch (dph), sturgeon were highly sensitive to copper with median lethal concentration (LC50) values ranging from 4.1 to 6.8 μg/L compared with 36.5 μg/L for 30 dph RBT. White sturgeon at 123-167 dph were less sensitive to copper with LC50 values ranging from 103.7 to 268.9 μg/L. RBT trout, however, remained more sensitive to copper at 160 dph with an LC50 value of 30.9 μg/L. The results indicate that high sensitivity to copper in early-life stage white sturgeon may be a factor in recruitment failure occurring in the upper Columbia and Kootenai rivers. When site-specific water-quality criteria were estimated using the biotic ligand model (BLM), derived values were not protective of early-life stage fish, nor were estimates derived by water-hardness adjustment.

  8. Preliminary water-quality assessment of the upper White River near Indianapolis, Marion County, Indiana

    USGS Publications Warehouse

    Wangsness, David J.; Eikenberry, S.E.; Wilber, W.G.; Crawford, Charles G.

    1981-01-01

    The White River Park Commission is planning the development of park facilities along the White River through Indianapolis, Ind. A key element in the planning is the determination of whether water quality of the river is suitable for recreation. A preliminary water-quality assessment conducted August 4-5, 1980, indicated that, during low-flow steady-state conditions, the river is suitable for partial body contact recreation (any contact with water up to, but not including complete submergence). Dissolved-oxygen concentrations varied but were higher than the Indiana water-quality standards established to ensure conditions for the maintenance of a well-balanced, warm-water fish community. High fecal-coliform densities that have been observed in the White River during high streamflow are probably caused by stormwater runoff carried by combined storm and sanitary sewers. However, during the low-flow, steady-state conditions on August 4-5, 1980, fecal-coliform densities were within the Indiana standards for partial body contact recreation. Quantities of organic matter and concentrations of nutrients and heavy metals in the White River were generally within the limits recommended by the U.S. Environmental Protection Agency and were generally similar to values for other Indiana rivers. Chromium, copper, lead, zinc, and mercury are accumulating in bottom materials downstream from 30th Street. The phytoplankton concentrations in the White River were high. The dominant phytoplankton species were indicative of rivers moderately affected by organic wastes. (USGS)

  9. Status of White Sturgeon (Acipenser transmontanus Richardson, 1863) throughout the species range, threats to survival, and prognosis for the future

    USGS Publications Warehouse

    Hildebrand, L. R.; Drauch Schreier, Andrea; Lepla, K.; McAdam, S. O.; McLellan, J; Parsley, Michael J.; Paragamian, V L; Young, S P

    2016-01-01

    White Sturgeon, Acipenser transmontanus (WS), are distributed throughout three major river basins on the West Coast of North America: the Sacramento-San Joaquin, Columbia, and Fraser River drainages. Considered the largest North American freshwater fish, some WS use estuarine habitat and make limited marine movements between river basins. Some populations are listed by the United States or Canada as threatened or endangered (upper Columbia River above Grand Coulee Dam; Kootenai River; lower, middle and, upper Fraser River and Nechako River), while others do not warrant federal listing at this time (Sacramento-San Joaquin Rivers; Columbia River below Grand Coulee Dam; Snake River). Threats that impact WS throughout the species’ range include fishing effects and habitat alteration and degradation. Several populations suffer from recruitment limitations or collapse due to high early life mortality associated with these threats. Efforts to preserve WS populations include annual monitoring, harvest restrictions, habitat restoration, and conservation aquaculture. This paper provides a review of current knowledge on WS life history, ecology, physiology, behavior, and genetics and presents the status of WS in each drainage. Ongoing management and conservation efforts and additional research needs are identified to address present and future risks to the species.

  10. Final Environmental Planning Technical Report

    DTIC Science & Technology

    1984-01-01

    from natural. For cold waters, the maximum limit is 68°F (20’C) with an allowable change of 5’F (3°C) from natural. For warm waters the maximum limit...upper Cretaceous Fox Hills and Lance formations, Oligocene White River Group, Miocene Arikaree Formation, Miocene-Pliocene Ogallala Formation, and...day) and 1 to 15 feet per day (ft/day), respectively, averaging roughly 200 sq ft/day and 3 ft/day (Rapp et al. 1957). The Oligocene White River

  11. Health of white sucker within the St. Louis River area of concern associated with habitat usage as assessed using stable isotopes

    USGS Publications Warehouse

    Blazer, V.S.; Hoffman, J.; Walsh, H.L.; Braham, R.P.; Hahn, C.; Collins, P.; Jorgenson, Z.; Ledder, T.

    2014-01-01

    In Spring 2011, 200 adult white sucker were collected in four areas of the St. Louis River area of concern (AOC), located in Minnesota and Wisconsin, USA. The areas included the upper AOC as a reference area, the upper estuary, St. Louis Bay and Superior Bay. Grossly visible abnormalities were documented and preserved for microscopic analyses, as were five to eight representative pieces of liver tissue. A piece of dorsal muscle was preserved for stable isotope analyses and otoliths removed for age determination. The incidence of raised skin lesions (mucoid plaques) was high (31 %), however, microscopically only 4.5 % of the white suckers had neoplasia (papillomas). The remaining lesions were epidermal hyperplasia. Superior Bay had the lowest percentage of skin/lip lesions (10 %), while St. Louis Bay had the highest (44 %). St. Louis Bay also had the highest incidence of skin neoplasms (12 %). No hepatocellular neoplasms were documented, however bile duct tumors were observed in 4.5 % of the suckers. Foci of cellular alteration were observed in fish from all sites except the upper AOC. Stable isotope data indicated that most of the suckers relied on the St. Louis River AOC for the majority (>75 %) of their diet, indicating they were resident within the AOC and not in Lake Superior. The amount of diet obtained from the upper estuary was a significant predictor of skin lesion incidence. Hence, habitat use within the AOC appears to be an important risk factor for skin and possibly, liver lesions.

  12. Health of white sucker within the St. Louis River area of concern associated with habitat usage as assessed using stable isotopes.

    PubMed

    Blazer, V S; Hoffman, J; Walsh, H L; Braham, R P; Hahn, C; Collins, P; Jorgenson, Z; Ledder, T

    2014-03-01

    In Spring 2011, 200 adult white sucker were collected in four areas of the St. Louis River area of concern (AOC), located in Minnesota and Wisconsin, USA. The areas included the upper AOC as a reference area, the upper estuary, St. Louis Bay and Superior Bay. Grossly visible abnormalities were documented and preserved for microscopic analyses, as were five to eight representative pieces of liver tissue. A piece of dorsal muscle was preserved for stable isotope analyses and otoliths removed for age determination. The incidence of raised skin lesions (mucoid plaques) was high (31 %), however, microscopically only 4.5 % of the white suckers had neoplasia (papillomas). The remaining lesions were epidermal hyperplasia. Superior Bay had the lowest percentage of skin/lip lesions (10 %), while St. Louis Bay had the highest (44 %). St. Louis Bay also had the highest incidence of skin neoplasms (12 %). No hepatocellular neoplasms were documented, however bile duct tumors were observed in 4.5 % of the suckers. Foci of cellular alteration were observed in fish from all sites except the upper AOC. Stable isotope data indicated that most of the suckers relied on the St. Louis River AOC for the majority (>75 %) of their diet, indicating they were resident within the AOC and not in Lake Superior. The amount of diet obtained from the upper estuary was a significant predictor of skin lesion incidence. Hence, habitat use within the AOC appears to be an important risk factor for skin and possibly, liver lesions.

  13. Environmental Impact Study of the Northern Section of the Upper Mississippi River, St. Croix River Pool.

    DTIC Science & Technology

    1973-11-01

    Poa palustris Fowl meadow-grass P Poa pratensis Blue grass Setaria viridis Green foxtail P P P P D Setaria sp. Bristly foxtail P Spartina pectinata...Juneberry) Crataegus spp. (Thorn-Apple) Fragaria vesca (Wild Strawberry) Geum canadense (White Avens) Geum laciniatum (Avens) Geum triflorum (Three

  14. The Scientific Assessment and Strategy Team

    USGS Publications Warehouse

    ,

    1999-01-01

    The flood of 1993 in the Upper Mississippi River Basin caused widespread devastation. The human and economic costs were high. The total flood and other related damage estimates were in the $10 billion to $16 billion range, with total Federal expenditures in excess of $5.4 billion. In response to the effects of the flood of 1993, the White House established the Scientific Assessment and Strategy Team (SAST) on November 24, 1993. The SAST?s goals are to provide scientific advice and assistance to policymakers and officials responsible for flood recovery and river basin management in the Upper Mississippi River Basin and to prepare a data base to support those goals.

  15. Channel-conveyance capacity, channel change, and sediment transport in the lower Puyallup, White, and Carbon Rivers, western Washington

    USGS Publications Warehouse

    Czuba, Jonathan A.; Czuba, Christiana R.; Magirl, Chistopher S.; Voss, Frank D.

    2010-01-01

    Draining the volcanic, glaciated terrain of Mount Rainier, Washington, the Puyallup, White, and Carbon Rivers convey copious volumes of water and sediment down to Commencement Bay in Puget Sound. Recent flooding in the lowland river system has renewed interest in understanding sediment transport and its effects on flow conveyance throughout the lower drainage basin. Bathymetric and topographic data for 156 cross sections were surveyed in the lower Puyallup River system by the U.S. Geological Survey (USGS) and were compared with similar datasets collected in 1984. Regions of significant aggradation were measured along the Puyallup and White Rivers. Between 1984 and 2009, aggradation totals as measured by changes in average channel elevation were as much as 7.5, 6.5, and 2 feet on the Puyallup, White, and Carbon Rivers, respectively. These aggrading river sections correlated with decreasing slopes in riverbeds where the rivers exit relatively confined sections in the upper drainage and enter the relatively unconstricted valleys of the low-gradient Puget Lowland. Measured grain-size distributions from each riverbed showed a progressive fining downstream. Analysis of stage-discharge relations at streamflow-gaging stations along rivers draining Mount Rainier demonstrated the dynamic nature of channel morphology on river courses influenced by glaciated, volcanic terrain. The greatest rates of aggradation since the 1980s were in the Nisqually River near National (5.0 inches per year) and the White River near Auburn (1.8 inches per year). Less pronounced aggradation was measured on the Puyallup River and the White River just downstream of Mud Mountain Dam. The largest measured rate of incision was measured in the Cowlitz River at Packwood (5.0 inches per year). Channel-conveyance capacity estimated using a one-dimensional hydraulic model decreased in some river reaches since 1984. The reach exhibiting the largest decrease (about 20-50 percent) in channel-conveyance capacity was the White River between R Street Bridge and the Lake Tapps return, a reach affected by recent flooding. Conveyance capacity also decreased in sections of the Puyallup River. Conveyance capacity was mostly unchanged along other study reaches. Bedload transport was simulated throughout the entire river network and consistent with other observations and analyses, the hydraulic model showed that the upper Puyallup and White Rivers tended to accumulate sediment. Accuracy of the bedload-transport modeling, however, was limited due to a scarcity of sediment-transport data sets from the Puyallup system, mantling of sand over cobbles in the lower Puyallup and White Rivers, and overall uncertainty in modeling sediment transport in gravel-bedded rivers. Consequently, the output results from the model were treated as more qualitative in value, useful in comparing geomorphic trends within different river reaches, but not accurate in producing precise predictions of mass of sediment moved or deposited. The hydraulic model and the bedload-transport component were useful for analyzing proposed river-management options, if surveyed cross sections adequately represented the river-management site and proposed management options. The hydraulic model showed that setback levees would provide greater flood protection than gravel-bar scalping after the initial project construction and for some time thereafter, although the model was not accurate enough to quantify the length of time of the flood protection. The greatest hydraulic benefit from setback levees would be a substantial increase in the effective channel-conveyance area. By widening the distance between levees, the new floodplain would accommodate larger increases in discharge with relatively small incremental increases in stage. Model simulation results indicate that the hydraulic benefit from a setback levee also would be long-lived and would effectively compensate for increased deposition within the setback reach

  16. Powder Keg on the Upper Missouri: Sources of Blackfeet Hostility, 1730-1810.

    ERIC Educational Resources Information Center

    Judy, Mark A.

    1987-01-01

    Evaluates reasons why Blackfeet Indians were bitterly hostile toward white fur traders in the upper Missouri River basin during the early 1800s. Explains causes of internal tribal turmoil including rapid adaptation of horses to tribal culture, devastating effects of disease, and guns disrupting the balance of power among tribes. (JHZ)

  17. Postglacial volcanic deposits at Glacier Peak, Washington, and potential hazards from future eruptions; a preliminary report

    USGS Publications Warehouse

    Beget, J.E.

    1982-01-01

    Eruptions and other geologic events at Glacier Peak volcano in northern Washington have repeatedly affected areas near the volcano as well as areas far downwind and downstream. This report describes the evidence of this activity preserved in deposits on the west and east flanks of the volcano. On the west side of Glacier Peak the oldest postglacial deposit is a large, clayey mudflow which traveled at least 35 km down the White Chuck River valley sometime after 14,000 years ago. Subsequent large explosive eruptions produced lahars and at least 10 pyroclastic-flow deposits, including a semiwelded vitric tuff in the White Chuck River valley. These deposits, known collectively as the White Chuck assemblage, form a valley fill which is locally preserved as far as 100 km downstream from the volcano in the Stillaguamish River valley. At least some of the assemblage is about 11,670-11,500 radiocarbon years old. A small clayey lahar, containing reworked blocks of the vitric tuff, subsequently traveled at least 15 km down the White Chuck River. This lahar is overlain by lake sediments containing charred wood which is about 5,500 years old. A 150-m-thick assemblage of pyroclastic-flow deposits and lahars, called the Kennedy Creek assemblage, is in part about 5,500-5,100 radiocarbon years old. Lithic lahars from this assemblage extend at least 100 km downstream in the Skagit River drainage. The younger lahar assemblages, each containing at least three lahars and reaching at least 18 km downstream from Glacier Peak in the White Chuck River valley, are about 2,800 and 1,800 years old, respectively. These are postdated by a lahar containing abundant oxyhornblende dacite, which extends at least 30 km to the Sauk River. A still younger lahar assemblage that contains at least five lahars, and that also extends at least 30 km to the Sauk River, is older than a mature forest growing on its surface. At least one lahar and a flood deposit form a low terrace at the confluence of the White Chuck and Sauk Rivers, and were deposited before 300 years ago, but more recently than about 1,800 years ago. Several small outburst floods, including one in 1975, have affected Kennedy and Baekos Creek and the upper White Chuck River in the last hundred years. East of Glacier Peak the oldest postglacial deposits consist of ash-cloud deposits that underlie tephra erupted by Glacier Peak between 12,750 and 11,250 radiocarbon years ago. Although pyroclastic-flow deposits correlative with the ash-cloud deposits have not been recognized, late Pleistocene pumiceous lahars extend at least 50 km downstream in the Suiattle River valley. A younger clayey mudflow extends at least 6 km down Dusty Creek. This lahar is overlain by deposits of lithic pyroclastic flows and lahars that form the Dusty assemblage. This assemblage is at least 300 m thick in the upper valleys of Dusty and Chocolate Creeks, and contains more than 10 km3 of lithic debris. Lahars derived from the Dusty assemblage extend at least 100 km down the Skagit River valley from Glacier Peak. This assemblage is younger than tephra layer 0 from Mount Mazama, and older than tephra layer Yn from Mount St. Helens, and thus was formed between about 7,000 and 3,400 years ago. The Dusty assemblage may have been formed at the same time as the Kennedy Creek assemblage. A 100-m-thick assemblage of pyroclastic flows and lahars preserved in the Chocolate Creek valley is about 1,800 radiocarbon years old. A clayey lahar in the upper Chocolate Creek valley extended at least 2 km downvalley after 1,800 years ago, but before pyroclastic flows and lahars were deposited in upper Chocolate Creek 1,100 radiocarbon years ago. Several clayey lahars in the Dusty Creek valley east of Glacier Peak are also about 1,100 years old. A lahar in the valley of Dusty Creek, which contains rare prismatically jointed blocks of vesiculated dacite, and a white ash that is locally as much as 50 cm thick may be the products of small

  18. Water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the lower White River and the Puyallup River estuary, Washington, August-October 2002

    USGS Publications Warehouse

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1°C (degrees Celsius) at river mile 4.9 and 19.6°C at river mile 1.8 exceeded the water-quality standard of 18°C at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River.Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The lower limit allowed by the water-quality standard is 8 mg/L. Concentrations of dissolved oxygen measured in a cross section of the Puyallup River estuary at high tide on September 12, 2002, ranged from 9.9 to 10.2 mg/L in fresh water at the surface and from 8.1 to 8.4 mg/L in salt water near the riverbed. These values were within limits set by Washington State water-quality standards for dissolved oxygen of 8 mg/L in fresh water and 6 mg/L in marine water.

  19. Sources of groundwater and characteristics of surface-water recharge at Bell, White, and Suwannee Springs, Florida, 2012–13

    USGS Publications Warehouse

    Stamm, John F.; McBride, W. Scott

    2016-12-21

    Discharge from springs in Florida is sourced from aquifers, such as the Upper Floridan aquifer, which is overlain by an upper confining unit that locally can have properties of an aquifer. Water levels in aquifers are affected by several factors, such as precipitation, recharge, and groundwater withdrawals, which in turn can affect discharge from springs. Therefore, identifying groundwater sources and recharge characteristics can be important in assessing how these factors might affect flows and water levels in springs and can be informative in broader applications such as groundwater modeling. Recharge characteristics include the residence time of water at the surface, apparent age of recharge, and recharge water temperature.The groundwater sources and recharge characteristics of three springs that discharge from the banks of the Suwannee River in northern Florida were assessed for this study: Bell Springs, White Springs, and Suwannee Springs. Sources of groundwater were also assessed for a 150-foot-deep well finished within the Upper Floridan aquifer, hereafter referred to as the UFA well. Water samples were collected for geochemical analyses in November 2012 and October 2013 from the three springs and the UFA well. Samples were analyzed for a suite of major ions, dissolved gases, and isotopes of sulfur, strontium, oxygen, and hydrogen. Daily means of water level and specific conductance at White Springs were continuously recorded from October 2012 through December 2013 by the Suwannee River Water Management District. Suwannee River stage at White Springs was computed on the basis of stage at a U.S. Geological Survey streamgage about 2.4 miles upstream. Water levels in two wells, located about 2.5 miles northwest and 13 miles southeast of White Springs, were also used in the analyses.Major ion concentrations were used to differentiate water from the springs and Upper Floridan aquifer into three groups: Bell Springs, UFA well, and White and Suwannee Springs. When considered together, evidence from water-level, specific conductance, major-ion concentration, and isotope data indicated that groundwater at Bell Springs and the UFA well was a mixture of surface water and groundwater from the upper confining unit, and that groundwater at White and Suwannee Springs was a mixture of surface water, groundwater from the upper confining unit, and groundwater from the Upper Floridan aquifer. Higher concentrations of magnesium in groundwater samples at the UFA well than in samples at Bell Springs might indicate less mixing with surface water at the UFA well than at Bell Springs. Characteristics of surface-water recharge, such as residence time at the surface, apparent age, and recharge water temperature, were estimated on the basis of isotopic ratios, and dissolved concentrations of gases such as argon, tritium, and sulfur hexafluoride. Oxygen and deuterium isotopic ratios were consistent with rapid recharge by rainwater for samples collected in 2012, and longer residence time at the surface (ponding) for samples collected in 2013. Apparent ages of groundwater samples, computed on the basis of tritium activity and sulfur hexafluoride concentration, indicated groundwater recharge occurred after the late 1980s; however, the estimated apparent ages likely represent the average of ages of multiple sources. Recharge since the 1980s is consistent with groundwater from shallow sources, such as the upper confining unit and Upper Floridan aquifer. Recharge water temperature computed for the three springs and UFA well averaged 20.1 degrees Celsius, which is similar to the mean annual air temperature of 20.6 degrees Celsius at a nearby weather station for 1960–2014.

  20. Collaborative environmental planning in river management: An application of multicriteria decision analysis in the White River Watershed in Vermont

    USGS Publications Warehouse

    Hermans, C.; Erickson, J.; Noordewier, T.; Sheldon, A.; Kline, M.

    2007-01-01

    Multicriteria decision analysis (MCDA) provides a well-established family of decision tools to aid stakeholder groups in arriving at collective decisions. MCDA can also function as a framework for the social learning process, serving as an educational aid in decision problems characterized by a high level of public participation. In this paper, the framework and results of a structured decision process using the outranking MCDA methodology preference ranking organization method of enrichment evaluation (PROMETHEE) are presented. PROMETHEE is used to frame multi-stakeholder discussions of river management alternatives for the Upper White River of Central Vermont, in the northeastern United States. Stakeholders met over 10 months to create a shared vision of an ideal river and its services to communities, develop a list of criteria by which to evaluate river management alternatives, and elicit preferences to rank and compare individual and group preferences. The MCDA procedure helped to frame a group process that made stakeholder preferences explicit and substantive discussions about long-term river management possible. ?? 2006 Elsevier Ltd. All rights reserved.

  1. Collaborative environmental planning in river management: an application of multicriteria decision analysis in the White River Watershed in Vermont.

    PubMed

    Hermans, Caroline; Erickson, Jon; Noordewier, Tom; Sheldon, Amy; Kline, Mike

    2007-09-01

    Multicriteria decision analysis (MCDA) provides a well-established family of decision tools to aid stakeholder groups in arriving at collective decisions. MCDA can also function as a framework for the social learning process, serving as an educational aid in decision problems characterized by a high level of public participation. In this paper, the framework and results of a structured decision process using the outranking MCDA methodology preference ranking organization method of enrichment evaluation (PROMETHEE) are presented. PROMETHEE is used to frame multi-stakeholder discussions of river management alternatives for the Upper White River of Central Vermont, in the northeastern United States. Stakeholders met over 10 months to create a shared vision of an ideal river and its services to communities, develop a list of criteria by which to evaluate river management alternatives, and elicit preferences to rank and compare individual and group preferences. The MCDA procedure helped to frame a group process that made stakeholder preferences explicit and substantive discussions about long-term river management possible.

  2. Suspended sediment, turbidity, and stream water temperature in the Sauk River Basin, western Washington, water years 2012-16

    USGS Publications Warehouse

    Jaeger, Kristin L.; Curran, Christopher A.; Anderson, Scott W.; Morris, Scott T.; Moran, Patrick W.; Reams, Katherine A.

    2017-11-01

    The Sauk River is a federally designated Wild and Scenic River that drains a relatively undisturbed landscape along the western slope of the North Cascade Mountain Range, Washington, which includes the glaciated volcano, Glacier Peak. Naturally high sediment loads characteristic of basins draining volcanoes like Glacier Peak make the Sauk River a dominant contributor of sediment to the downstream main stem river, the Skagit River. Additionally, the Sauk River serves as important spawning and rearing habitat for several salmonid species in the greater Skagit River system. Because of the importance of sediment to morphology, flow-conveyance, and ecosystem condition, there is interest in understanding the magnitude and timing of suspended sediment and turbidity from the Sauk River system and its principal tributaries, the White Chuck and Suiattle Rivers, to the Skagit River.Suspended-sediment measurements, turbidity data, and water temperature data were collected at two U.S. Geological Survey streamgages in the upper and middle reaches of the Sauk River over a 4-year period extending from October 2011 to September 2015, and at a downstream location in the lower river for a 5-year period extending from October 2011 to September 2016. Over the collective 5-year study period, mean annual suspended-sediment loads at the three streamgages on the upper, middle, and lower Sauk River streamgages were 94,200 metric tons (t), 203,000 t, and 940,000 t streamgages, respectively. Fine (smaller than 0.0625 millimeter) total suspended-sediment load averaged 49 percent at the upper Sauk River streamgage, 42 percent at the middle Sauk River streamgage, and 34 percent at the lower Sauk River streamgage.

  3. Demolition of Munitions Storage Area Facilities. Right Size Project 10-0192C

    DTIC Science & Technology

    2011-07-01

    area of the Proposed Action. 3.4.2 Affected Environment Fairchild AFB is situated within the channeled scablands of the Columbia River Basin which...grebe, great blue heron, turkey vulture, Caspian tern , black tern , and osprey. The white-tailed jackrabbit, a state candidate species, is known to...Geography The MSA is located in the Upper Columbia River Basin Basalt Geomorphic Province and lies within the Latah Creek watershed. The landtype is

  4. INFLUENCE OF SNOWFALL ON BLOOD LEAD LEVELS OF FREE-FLYING BALD EAGLES (HALIAEETUS LEUCOCEPHALUS) IN THE UPPER MISSISSIPPI RIVER VALLEY.

    PubMed

    Lindblom, Ronald A; Reichart, Letitia M; Mandernack, Brett A; Solensky, Matthew; Schoenebeck, Casey W; Redig, Patrick T

    2017-10-01

    Lead poisoning of scavenging raptors occurs primarily via consumption of game animal carcasses containing lead, which peaks during fall firearm hunting seasons. We hypothesized that snowfall would mitigate exposure by concealing carcasses. We categorized blood lead level (BLL) for a subsample of Bald Eagles (Haliaeetus leucocephalus) from the Upper Mississippi River Valley and described BLL with respect to age, sex, and snowfall. We captured Bald Eagles overwintering in the Upper Mississippi River Valley (n=55) between December 1999 and January 2002. Individual BLL ranged from nondetectable to 335 μg/dL, with 73% of the samples testing positive for acute exposure to lead. Eagle BLL did not significantly differ between age or sex, but levels were higher immediately following the hunting season, and they were lower when the previous month's snowfall was greater than 11 cm. This study suggests a window of time between the white-tailed deer (Odocoileus virginianus) hunting season and the onset of snow when the population experienced peak exposure to lead. Combining these findings with existing research, we offer a narrative of the annual lead exposure cycle of Upper Mississippi River Valley Bald Eagles. These temporal associations are necessary considerations for accurate collection and interpretation of BLL.

  5. Columbia River White Sturgeon (Acipenser Transmontanus) Early Life History and Genertics Study, August 1, 1984 to December 31, 1985 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannon, Ernest L.

    1985-12-01

    Research on Columbia River white sturgeon has been directed at their early life history as it may apply to production and enhancement strategies for management of the species. The river environment in which sturgeon historically migrated, spawned, and reared has changed through development. Habitat changes are expected to precipitate genetic changes in the fish, as well as reduce the fitness in populations. Genetic analysis of samples taken from various locations over the length of the Columbia River have indicated that observed gene frequencies in all areas sampled were not in Hardy-Weinburg equilibrium, which could suggest that the general population ismore » experiencing perturbation in the system. Analysis thus far has exposed few differences between samples from the lower, middle, and upper portions of the system. Allelic differences were identified in fish from the Roosevelt Lake, which may be evidence of unique characteristics among fish from that general area.« less

  6. USING LANDSCAPE ECOLOGY AND PARTIAL LEAST SQUARES PREDICTIONS TO MAP WATERSHEDS THAT ARE VULNERABLE TO NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Office of Research and Development have mapped and interpreted landscape-scale (i.e., broad scale) ecological metrics among watersheds in the upper White River watershed, producing the first geospatial models of water quality vulnerabili...

  7. Environmental Impact Study of the Northern Section of the Upper Mississippi River. Pool 7.

    DTIC Science & Technology

    1973-11-01

    7945 Salix interior Rowlee 7911 Salix rig a luhi. 7913 Ulm-us americana L. 7922,7955 SHRUBS Cephalanthus occidentalis L. 7924,7952 VINES Cuscuta p. 7916...still, I believe, a very useful indicator. Tables A16, Al7 andAl8 give frequency values for alluvial forest shrubs , vines , and herbs respectively...intcnsively utilized to meet the trans- protation needs of the Midwest . 33 Long before the coming of the first white settlers, the Mississippi River

  8. Three-year progression of emerald ash borer-induced decline and mortality in southeastern Michigan

    Treesearch

    Kamal J.K. Gandhi; Annemarie Smith; Robert P. Long; Robin A.J. Taylor; Daniel A. Herms

    2008-01-01

    We monitored the progression of ash (Fraxinus spp.) decline and mortality due to emerald ash borer (EAB), Agrilus planipennis, in 38 forest stands in the upper Huron River watershed region of southeastern Michigan from 2004-2007. Black ash (F. nigra), green ash (F. pennsylvanica), and white ash...

  9. CONTRIBUTION OF NUTRIENTS AND E. COLI TO SURFACE WATER CONDITION IN THE OZARKS

    EPA Science Inventory

    The U.S. EPA's Office of Research and Development, and U.S. EPA Region 7 have collaborated to map and interpret landscape-scale (i.e., broad-scale) ecological metrics among watersheds of the Upper White River, and have produced the first geospatial models of water quality vulnera...

  10. Environmental Impact Study of the Northern Section of the Upper Mississippi River. Pool 1.

    DTIC Science & Technology

    1973-11-01

    grass P Poa pratensis Blue grass Setaria viridis Green foxtail P P P P D Setaria sp. Bristly foxtail P Spartina pectinata Prairie cord grass P...Agrimonia pubescens Cocklebur Alchemilla sp. Lady’s mantle P Fragaria vesca Wild strawberry Oewn canadense White avens Gewn laciniatun Avens Geum

  11. USING LANDSCAPE ECOLOGY AND PARTIAL LEAST SQUARES PREDICITIONS TO MAP WATERSHEDS THAT ARE VULNERABLE TO NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    The U.S. Environmental Protection Agency¿s Office of Research and Development have mapped and interpreted landscape-scale (i.e., broad scale) ecological metrics among watersheds in the upper White River watershed, producing the first geospatial models of water quality vulnerabili...

  12. Spatial and temporal trends of poly- and perfluoroalkyl substances in fish fillets and water collected from pool 2 of the Upper Mississippi River.

    PubMed

    Newsted, John L; Holem, Ryan; Hohenstein, Gary; Lange, Cleston; Ellefson, Mark; Reagen, William; Wolf, Susan

    2017-11-01

    In 2011, poly- and perfluoroalkyl substances (PFASs) were analyzed in surface water and fish fillet samples taken from Pool 2 of the Upper Mississippi River, a 33-mile stretch inclusive of the Minneapolis/St. Paul, Minnesota (USA) metropolitan area. Approximately 100 each of bluegill, freshwater drum, smallmouth bass, and white bass were sampled within the study area. Surface water samples were also collected from each of the 10 sampling reaches established for the study. Water and fillet samples were analyzed for perfluorinated carboxylic acids (C4-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide. Perfluorooctane sulfonate (PFOS) was observed with the greatest frequency in fish fillets and ranged from 3.0 to 760 ng/g wet weight. Mean (geometric) PFOS concentrations in bluegill, freshwater drum, smallmouth bass, and white bass were 20, 28, 29, and 58 ng/g wet weight, respectively. When compared with fish data collected in 2009, a significant reduction (p < 0.05) in PFOS concentrations was noted. This finding was confirmed based on data from studies conducted in 2012 and 2013. Overall, between 2009 and 2013, PFOS concentrations decreased by 65, 76, and 50% for bluegill, freshwater drum, and white bass, respectively (44% decrease for smallmouth bass from 2009 to 2012). These declines in fish PFOS concentrations are consistent with ongoing efforts to effectively control sources of PFASs to the Mississippi River. Environ Toxicol Chem 2017;36:3138-3147. © 2017 SETAC. © 2017 SETAC.

  13. Columbia River White Sturgeon Genetics and Early Life History: Population Segregation and Juvenile Feeding Behavior, 1987 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannon, Ernest L.

    1988-06-01

    The geographic area of the genetics study broadly covered the distribution range of sturgeon in the Columbia from below Bonneville Dam at Ilwaco at Lake Roosevelt, the Upper Snake River, and the Kootenai River. The two remote river sections provided data important for enhancement considerations. There was little electrophoretic variation seen among individuals from the Kootenai River. Upper Snake river sturgeon showed a higher percentage of polymorphic loci than the Kootenai fish, but lower than the other areas in the Columbia River we sampled. Sample size was increased in both Lake Roosevelt and at Electrophoretic variation was specific to anmore » individual sampling area in several cases and this shaped our conclusions. The 1987 early life history studies concentrated on the feeding behavior of juvenile sturgeon. The chemostimulant components in prey attractive to sturgeon were examined, and the sensory systems utilized by foraging sturgeon were determined under different environmental conditions. These results were discussed with regard to the environmental changes that have occurred in the Columbia River. Under present river conditions, the feeding mechanism of sturgeon is more restricted to certain prey types, and their feeding range may be limited. In these situations, enhancement measures cannot be undertaken without consideration given to the introduction of food resources that will be readily available under present conditions. 89 refs., 7 figs., 11 tabs.« less

  14. USING LANDSCAPE ECOLOGY TO MAP WATERSHEDS THAT ARE VULNERABLE TO NON-POINT SOURCE POLLUTION IN THE OZARKS

    EPA Science Inventory

    The U.S. EPA's Office of Research and Development, and U.S. EPA Region 7 have collaborated to map and interpret landscape-scale (i.e. broad-scale) ecological metrics among watershed of the Upper White River, and have produced the first geospatial models of water quality vulnerabi...

  15. Environmental Impact Study of the Northern Section of the Upper Mississippi River. Pool 2.

    DTIC Science & Technology

    1973-11-01

    Setaria viridis Green foxtail P P P P D Setaria sp. Bristly foxtail P Spartina pectinata Prairie cord grass P Unidentified sp. D P P 1YDROCHARITACEAE...americanus New Jersey tea ROSACEAE Agrimonia pubescens Cocklebur Alchemilla sp. Lady’s mantle P Fragaria oesca Wild strawberry Cewn canadense White avens

  16. Colonial waterbird predation on Lost River and Shortnose suckers in the Upper Klamath Basin

    USGS Publications Warehouse

    Evans, Allen F.; Hewitt, David A.; Payton, Quinn; Cramer, Bradley M.; Collis, Ken; Roby, Daniel D.

    2016-01-01

    We evaluated predation on Lost River Suckers Deltistes luxatus and Shortnose Suckers Chasmistes brevirostris by American white pelicans Pelecanus erythrorhynchos and double-crested cormorants Phalacrocorax auritus nesting at mixed-species colonies in the Upper Klamath Basin of Oregon and California during 2009–2014. Predation was evaluated by recovering (detecting) PIT tags from tagged fish on bird colonies and calculating minimum predation rates, as the percentage of available suckers consumed, adjusted for PIT tag detection probabilities but not deposition probabilities (i.e., probability an egested tag was deposited on- or off-colony). Results indicate that impacts of avian predation varied by sucker species, age-class (adult, juvenile), bird colony location, and year, demonstrating dynamic predator–prey interactions. Tagged suckers ranging in size from 72 to 730 mm were susceptible to cormorant or pelican predation; all but the largest Lost River Suckers were susceptible to bird predation. Minimum predation rate estimates ranged annually from <0.1% to 4.6% of the available PIT-tagged Lost River Suckers and from <0.1% to 4.2% of the available Shortnose Suckers, and predation rates were consistently higher on suckers in Clear Lake Reservoir, California, than on suckers in Upper Klamath Lake, Oregon. There was evidence that bird predation on juvenile suckers (species unknown) in Upper Klamath Lake was higher than on adult suckers in Upper Klamath Lake, where minimum predation rates ranged annually from 5.7% to 8.4% of available juveniles. Results suggest that avian predation is a factor limiting the recovery of populations of Lost River and Shortnose suckers, particularly juvenile suckers in Upper Klamath Lake and adult suckers in Clear Lake Reservoir. Additional research is needed to measure predator-specific PIT tag deposition probabilities (which, based on other published studies, could increase predation rates presented herein by a factor of roughly 2.0) and to better understand biotic and abiotic factors that regulate sucker susceptibility to bird predation.

  17. Volcano hazards in the Mount Hood region, Oregon

    USGS Publications Warehouse

    Scott, W.E.; Pierson, T.C.; Schilling, S.P.; Costa, J.E.; Gardner, C.A.; Vallance, J.W.; Major, J.J.

    1997-01-01

    Mount Hood is a potentially active volcano close to rapidly growing communities and recreation areas. The most likely widespread and hazardous consequence of a future eruption will be for lahars (rapidly moving mudflows) to sweep down the entire length of the Sandy (including the Zigzag) and White River valleys. Lahars can be generated by hot volcanic flows that melt snow and ice or by landslides from the steep upper flanks of the volcano. Structures close to river channels are at greatest risk of being destroyed. The degree of hazard decreases as height above a channel increases, but large lahars can affect areas more than 30 vertical meters (100 vertical feet) above river beds. The probability of eruption-generated lahars affecting the Sandy and White River valleys is 1-in-15 to l-in-30 during the next 30 years, whereas the probability of extensive areas in the Hood River Valley being affected by lahars is about ten times less. The accompanying volcano-hazard-zonation map outlines areas potentially at risk and shows that some areas may be too close for a reasonable chance of escape or survival during an eruption. Future eruptions of Mount Hood could seriously disrupt transportation (air, river, and highway), some municipal water supplies, and hydroelectric power generation and transmission in northwest Oregon and southwest Washington.

  18. Tagging age-1 Lost River and shortnose suckers with passive integrated transponders, Upper Klamath Lake, Oregon–Summary of 2009–11 effort

    USGS Publications Warehouse

    Burdick, Summer M.

    2012-01-01

    A passive integrated transponder (PIT) tagging study was initiated in 2009 for age-1 endangered Lost River and shortnose suckers in Upper Klamath Lake, Oregon, for the purpose of examining causes of mortality, validating estimated age to maturity, and examining movement patterns. This study, which was done opportunistically in 2009 and 2010, received funding in 2011 for a directed tagging effort. Tags were redetected using an existing infrastructure of remote PIT tag readers and tag scanning surveys at American white pelican and double-crested cormorant breeding and loafing areas. Individual fish histories are used to describe the distance, direction, and timing of age-1 sucker movement. Sucker PIT tag detections in the Sprague and Williamson rivers in mid-summer and in autumn indicate age-1 suckers use these tributaries outside of the known spring spawning season. PIT tags detected in bird habitats indicate predation by birds may have been a cause of mortality in 2009. Field conditions prevented scanning bird breeding and loafing areas in Upper Klamath Wildlife National Refuge for tags in 2011, however, limiting our ability to make inferences about bird predation in those years.

  19. Hydrostratigraphic interpretation of test-hole and geophysical data, Upper Loup River Basin, Nebraska, 2008-10

    USGS Publications Warehouse

    Hobza, Christopher M.; Asch, Theodore H.; Bedrosian, Paul A.

    2011-01-01

    Test-hole drilling has indicated greater variation in the base-of-aquifer elevation in the western part of the upper Loup study area than in the eastern part reflecting a number of deep paleovalleys incised into the Brule Formation of the White River Group. TDEM measurements within the upper Loup study area were shown to be effective as virtual boreholes in mapping out the base of the aquifer. TDEM estimates of the base of aquifer were in good accordance with existing test-hole data and were able to improve the interpreted elevation and topology of the base of the aquifer. In 2010, AMT data were collected along a profile, approximately 12 miles (19 kilometers) in length, along Whitman Road, in Grant and Cherry Counties. The AMT results along Whitman Road indicated substantial variability in the elevation of the base of the High Plains aquifer and in the distribution of highly permeable zones within the aquifer.

  20. Harry S. Truman Dam and Reservoir, Missouri, Holocene Adaptations Within the Lower Pomme de Terre River Valley, Missouri. Volume 2.

    DTIC Science & Technology

    1982-06-01

    B. 1966 Quantitative analysis of Upper Paleolithic stone tools. American Antiquity 68(2-2) :356-394. Scully, E. G. 1951 Some central Mississippi...Programming for the Social Sciences. Holt, Rinehart and Winston, New York. White, A. M. 1973 Le Malpas Rockshelter: a study of late Paleolithic technology in

  1. A fish survey of the White River, Nevada

    USGS Publications Warehouse

    Scoppettone, G. Gary; Rissler, Peter H.; Shea, Sean

    2004-01-01

    In spring and summer 1991 and 1992, we surveyed fishes of the White River system, Nye and White Pine Counties, Nevada, to determine the status of natives. There are 5 known native fishes to the White River: Lepidomeda albivallis (White River spinedace), Crenichthys baileyi albivallis (Preston White River springfish), Crenichthys baileyi thermophilus (Moorman White River springfish), Catostomus clarki intermedius (White River desert sucker), and Rhinichthys osculus ssp. (White River speckled dace). All 5 had declined in range. Lepidomeda albivallis had experienced the greatest decline, with less than 50 remaining, and these were restricted to a 70-m stream reach. Rhinichthys osculus spp. was most widespread, found in 18 spring systems. Cottus bairdi (mottled sculpin) was collected for the 1st time from the White River system, where it was probably native. Protective measures should be implemented to conserve all native White River fishes to include C. bairdi.

  2. Space Radar Image of Colorado River

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This space radar image illustrates the recent rapid urban development occurring along the lower Colorado River at the Nevada/Arizona state line. Lake Mojave is the dark feature that occupies the river valley in the upper half of the image. The lake is actually a reservoir created behind Davis Dam, the bright white line spanning the river near the center of the image. The dam, completed in 1953, is used both for generating electric power and regulating the river's flow downstream. Straddling the river south of Davis Dam, shown in white and bright green, are the cities of Laughlin, Nevada (west of the river) and Bullhead City, Arizona (east of the river). The runway of the Laughlin, Bullhead City Airport is visible as a dark strip just east of Bullhead City. The area has experienced rapid growth associated with the gambling industry in Laughlin and on the Fort Mojave Indian Reservation to the south. The community of Riviera is the bright green area in a large bend of the river in the lower left part of the image. Complex drainage patterns and canyons are the dark lines seen throughout the image. Radar is a useful tool for studying these patterns because of the instrument's sensitivity to roughness, vegetation and subtle topographic differences. This image is 50 kilometers by 35 kilometers (31 miles by 22 miles) and is centered at 35.25 degrees north latitude, 114.67 degrees west longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 13, 1994, onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Office of Mission to Planet Earth.

  3. Sediment Characteristics and Transport in the Kootenai River White Sturgeon Critical Habitat near Bonners Ferry, Idaho

    USGS Publications Warehouse

    Fosness, Ryan L.; Williams, Marshall L.

    2009-01-01

    Recovery efforts for the endangered Kootenai River population of white sturgeon require an understanding of the characteristics and transport of suspended and bedload sediment in the critical habitat reach of the river. In 2007 and 2008, the U.S. Geological Survey in cooperation with the Kootenai Tribe of Idaho, conducted suspended- and bedload-sediment sampling in the federally designated critical habitat of the endangered Kootenai River white sturgeon population. Three sediment-sampling sites were selected that represent the hydraulic differences in the critical habitat. Suspended- and bedload-sediment samples along with acoustic Doppler current profiles were collected at these sites during specific river discharges. Samples were analyzed to determine suspended- and bedload-sediment characteristics and transport rates. Sediment transport data were analyzed to provide total loading estimates for suspended and bedload sediment in the critical habitat reach. Total suspended-sediment discharge primarily occurred as fine material that moved through the system in suspension. Total suspended-sediment discharge ranged from about 300 metric tons per day to more than 23,000 metric tons per day. Total suspended sediment remained nearly equal throughout the critical habitat, with the exception of a few cases where mass wasting of the banks may have caused sporadic spikes in total suspended sediment. Bedload-sediment discharge averaged 0-3 percent of the total loading. These bedload discharges ranged from 0 to 271 tons per day. The bedload discharge in the upper part of the critical habitat primarily consisted of fine to coarse gravel. A decrease in river competence in addition to an armored channel may be the cause of this limited bedload discharge. The bedload discharge in the middle part of the white sturgeon critical habitat varied greatly, depending on the extent of the backwater from Kootenay Lake. A large quantity of fine-to-coarse gravel is present in the braided reach, but the duration of transport for these gravels is limited by the encroaching backwater of Kootenay Lake. Bedload discharge in the lower part of the white sturgeon critical habitat primarily consisted of fine to coarse sand due to decreased velocities as a result of the backwater from Kootenay Lake.

  4. Ichthyophoniasis: An emerging disease of Chinook salmon in the Yukon River

    USGS Publications Warehouse

    Kocan, R.; Hershberger, P.; Winton, J.

    2004-01-01

    Before 1985, Ichthyophonus was unreported among Pacific salmon Oncorhynchus spp. from the Yukon River; now it infects more than 40% of returning adult Chinook salmon O. tshawytscha. Overall infection prevalence reached about 45% in the Yukon River and about 30% in the Tanana River between 1999 and 2003. Mean infection prevalence was greater in females than males in the main-stem Yukon River during each of the 5 years of the study, but the infection prevalence in males increased each year until the difference was no longer significant. Clinical signs of ichthyophoniasis (presence of visible punctate white lesions in internal organs) were least at the mouth of the Yukon River (∼10%) but increased to 29% when fish reached the middle Yukon River and was 22% at the upper Tanana River. However, clinical signs increased each year from 7% in 1999 to 27% in 2003 at the mouth of the river. As fish approached the upper reaches of the Yukon River (Canada) and the spawning areas of the Chena and Salcha rivers (Alaska), infection prevalence dropped significantly to less than 15% in females on the Yukon River and less than 10% for both sexes in the Chena and Salcha rivers, presumably because of mortality among infected prespawn fish. Age was not a factor in infection prevalence, nor was the position of fish within the run. The source of infection was not determined, but Ichthyophonus was not found in 400 Pacific herring Clupea pallasi from the Bering Sea or in 120 outmigrating juvenile Chinook salmon from two drainages in Alaska and Canada. Freshwater burbot Lota lota from the middle Yukon River were subclinically infected with Ichthyophonus, but the origin and relationship of this agent to the Chinook salmon isolate is unknown.

  5. Larval green and white sturgeon swimming performance in relation to water-diversion flows

    PubMed Central

    Verhille, Christine E.; Poletto, Jamilynn B.; Cocherell, Dennis E.; DeCourten, Bethany; Baird, Sarah; Cech, Joseph J.; Fangue, Nann A.

    2014-01-01

    Little is known of the swimming capacities of larval sturgeons, despite global population declines in many species due in part to fragmentation of their spawning and rearing habitats by man-made water-diversion structures. Larval green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) inhabit the highly altered Sacramento–San Joaquin watershed, making them logical species to examine vulnerability to entrainment by altered water flows. The risk of larval sturgeon entrainment is influenced by the ontogeny of swimming capacity and dispersal timing and their interactions with water-diversion structure operations. Therefore, the aim of this study was to describe and compare the ontogeny and allometry of larval green and white sturgeon swimming capacities until completion of metamorphosis into juveniles. Despite the faster growth rates and eventual larger size of larval white sturgeon, green sturgeon critical swimming velocities remained consistently, though modestly, greater than those of white sturgeon throughout the larval life stage. Although behavioural interactions with water-diversion structures are also important considerations, regarding swimming capacity, Sacramento–San Joaquin sturgeons are most vulnerable to entrainment in February–May, when white sturgeon early larvae are in the middle Sacramento River, and April–May, when green sturgeon early larvae are in the upper river. Green sturgeon migrating downstream to the estuary and bays in October–November are also susceptible to entrainment due to their movements combined with seasonal declines in their swimming capacity. An additional inter-species comparison of the allometric relationship between critical swimming velocities and total length with several sturgeon species found throughout the world suggests a similar ontogeny of swimming capacity with growth. Therefore, although dispersal and behaviour differ among river systems and sturgeon species, similar recommendations are applicable for managers seeking to balance water demands with restoration and conservation of sturgeons worldwide. PMID:27293652

  6. Concentrations of dissolved oxygen in the lower Puyallup and White rivers, Washington, August and September 2000 and 2001

    USGS Publications Warehouse

    Ebbert, J.C.

    2002-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by photosynthesis and respiration. The upper limit on oxygen demand caused by the scour of anoxic bed sediment and subsequent oxidation of reduced iron and manganese is less than 1 mg/L. The actual demand, if any, is probably negligible.In August and September 2001, concentrations of dissolved oxygen in the lower Puyallup River did not fall below the water-quality standard of 8 mg/L, except at high tide when the saline water from Commencement Bay reached the monitor at river mile 2.9. The minimum concentration of dissolved oxygen (7.6 mg/L) observed at river mile 2.9 coincided with the maximum value of specific conductance. Because the dissolved-oxygen standard for marine water is 6.0 mg/L, the standard was not violated at river mile 2.9. The concentration of dissolved oxygen at river mile 1.8 in the White River dropped below the water-quality standard on two occasions in August 2001. The minimum concentration of 7.8 mg/L occurred on August 23, and a concentration of 7.9 mg/L was recorded on August 13. Because there was some uncertainty in the monitoring record for those days, it cannot be stated with certainty that the actual concentration of dissolved oxygen in the river dropped below 8 mg/L. However, at other times when the quality of the monitoring record was good, concentrations as low as 8.2 mg/L were observed at river mile 1.8 in the White River.

  7. 76 FR 8978 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... White River ted Areas effects from confluence of Taney White River). to County. approximate ly 685 feet upstream of the White River confluence Bee Creek From the None +698 Unincorpora (backwater White River ted Areas effects from confluence of Taney White River). to County. approximate ly 1,700 feet upstream of...

  8. A new species of Pseudocrenilabrus (Perciformes: Cichlidae) from Lake Mweru in the Upper Congo River System.

    PubMed

    Katongo, Cyprian; Seehausen, Ole; Snoeks, Jos

    2017-02-26

    Pseudocrenilabrus pyrrhocaudalis sp. nov. is described from Lake Mweru in the upper Congo River drainage, on the border of the Democratic Republic of Congo and Zambia. This species, which appears to be endemic to the lake, lives in sympatry with P. philander. Pseudocrenilabrus pyrrhocaudalis sp. nov. is distinguished from P. philander in nuptial males by the presence of an orange colour on the ventral part of the body and the proximal parts of the anal and caudal fins, a broad band of bright white on the distal edge of anal and caudal fins, a uniform grey head and dorsum, and a subtruncate caudal fin. In addition, P. pyrrhocaudalis has a shorter snout, a narrower head, a smaller interorbital distance, a smaller pre-anal distance, a more slender caudal peduncle and fewer scales around the caudal peduncle in both sexes.

  9. Floods in Bangladesh and Northeast India

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For the past month heavy monsoon rains have led to massive flooding in eastern India, Nepal, and Bangladesh, which have killed over 500 people and left millions homeless. This false-color image acquired on August 5, 2002, by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra spacecraft shows the extent of this flooding. In the upper right-hand corner of the image, the swollen Brahmaputra River runs east to west through the Indian state of Assam. Normally, the river and its tributaries would resemble a tangle of thin lines. Moving to the upper left-hand corner, flooding can be seen along the Ganges River in the state of Bihar, India. Both of these rivers flow into Bangladesh along with many others from India and Nepal. Heavy monsoon rains from all across the region have inundated the small country with water this year. Floodwaters have all but covered northeastern Bangladesh, which is usually dry. The Jamuna River, which runs down the center of the country off of the Brahmaputra River, now resembles a narrow lake. Millions of dollars in crops have been destroyed and thousands have been left stranded in their villages or on rafts. Forecasters are warning that flooding could get worse. In the false-color image, land is green, and water is black and dark brown. Clouds appear pink, red and white. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  10. Tributary use by imperiled Flannelmouth and Bluehead Suckers in the upper Colorado River Basin

    USGS Publications Warehouse

    Fraser, Gregory S.; Winkelman, Dana L.; Bestgen, Kevin R.; Thompson, Kevin G.

    2017-01-01

    Habitat alterations and establishment of nonnative fishes have reduced the distributions of Flannelmouth Sucker Catostomus latipinnis and Bluehead Sucker C. discobolus to less than 50% of their historical ranges in the Colorado River basin. Tributaries are sometimes less altered than main-stem habitat in the basin and may be important to support various life history processes, but their role in the maintenance of Flannelmouth Sucker and Bluehead Sucker populations is poorly understood. Using mark–recapture techniques, we show tributaries are important habitat for native suckers in the upper Colorado River basin and report three main findings. First, both Flannelmouth and Bluehead suckers likely respond to a thermal cue that initiates spawning movement patterns. Suckers moved into Coal Creek from the White River beginning in mid-May of 2012 and 2013 to spawn. The majority of sucker spawning movements occurred when water temperatures in White River exceeded 11–14°C and those in Coal Creek were 2.5–4°C warmer, while flows varied between years. Second, based on PIT tag detection arrays, 13–45% of suckers showed spawning site fidelity. Sampling only with fyke nets would have resulted in the conclusion that site fidelity by native suckers was only 1–17%, because nets were less efficient at detecting marked fish. Third, most suckers of both species emigrated from Coal Creek within 48 h after being captured while suckers that were detected only via arrays remained resident for 10–12 d. The posthandling flight response we observed was not anticipated and to our knowledge has not been previously reported for these species. Remote PIT tag antenna arrays allowed for a stronger inference regarding movement and tributary use by these species than what could be achieved using just fyke nets. Tributaries are an important part of Flannelmouth Sucker and Bluehead Sucker life history and thus important to conservation strategies for these species.

  11. Cultural Resources Reconnaissance. Appalachian Regional Commission’s Stream Rehabilitation Project, Upper Cumberland River Basin, Kentucky and Tennessee, January and February 1980,

    DTIC Science & Technology

    1980-03-01

    1980 Prepared by Archeologist Environmental Planning Section ABERT ARWEDSKY Archeologist Environmental Planning Section It ABSTRACT In accordance with...terrestrial species presently found in eastern Kentucky include cottontail rabbit, gray squirrel , raccoon, oppossum, skunk, muskrat, red fox, grey fox, quail...and ruffed grouse. Less abundant species include fox squirrel , white-tailed deer, mink, mourning dove, wild turkey, ducks and geese (Casey 1965

  12. Miocene and Pliocene lacustrine and fluvial sequences, Upper Ramparts and Canyon village, Porcupine river, east-central Alaska

    USGS Publications Warehouse

    Fouch, T.D.; Carter, L.D.; Kunk, Michael J.; Smith, C.A.S.; White, J.M.

    1994-01-01

    Cenozoic strata exposed along the Porcupine River between the Upper Ramparts and Canyon Village, Alaska, can be divided into five unconformity-bounded units (sequences) which are: lower and middle Miocene unit A, the white sandy fluvial sequence with peat beds; middle Miocene unit B, the basalt sequence-part B1 is basalt, and part B2 is organic-rich sedimentary beds; upper Miocene unit C, mudrock-dominated lake sequence; late Miocene or Pliocene to Pleistocene unit D, terrace gravels, detrital organic matter and associated sediments, and Holocene unit E, mixed sand and gravel-rich sediment and other sedimentary material including peat and eolian silt. The sequence (unit A) of lower and middle Miocene fluvial deposits formed in streams and on flood plains, just before the inception of local volanism. Fossil pollen from unit A suggests conifer-dominated regional forests and cool temperate climates. Peat beds and lake deposits from unit B contain pollen that indicates a warmer temperate climate coinciding with the middle Miocene thermal maximum. The lake deposits (unit C) downstream from the basalts accumulated in a small basin which resulted from a hydrologic system that was dammed in the late Miocene but breached soon thereafter. The lower part of the terrace gravels (unit D) expresses breaching of the dammed hydrologic system (of unit C). The Porcupine River became a major tributary of the Yukon River in late Pleistocene time when Laurentide ice blocked drainage from the Yukon interior basins causing meltwater to spill over the low divide separating it from the Porcupine River drainage initiating erosion and capture of the Yukon interior basins. ?? 1994.

  13. The multiple stressor ecological risk assessment for the mercury-contaminated South River and upper Shenandoah River using the Bayesian network-relative risk model.

    PubMed

    Landis, Wayne G; Ayre, Kimberley K; Johns, Annie F; Summers, Heather M; Stinson, Jonah; Harris, Meagan J; Herring, Carlie E; Markiewicz, April J

    2017-01-01

    We have conducted a regional scale risk assessment using the Bayesian Network Relative Risk Model (BN-RRM) to calculate the ecological risks to the South River and upper Shenandoah River study area. Four biological endpoints (smallmouth bass, white sucker, Belted Kingfisher, and Carolina Wren) and 4 abiotic endpoints (Fishing River Use, Swimming River Use, Boating River Use, and Water Quality Standards) were included in this risk assessment, based on stakeholder input. Although mercury (Hg) contamination was the original impetus for the site being remediated, other chemical and physical stressors were evaluated. There were 3 primary conclusions from the BN-RRM results. First, risk varies according to location, type and quality of habitat, and exposure to stressors within the landscape. The patterns of risk can be evaluated with reasonable certitude. Second, overall risk to abiotic endpoints was greater than overall risk to biotic endpoints. By including both biotic and abiotic endpoints, we are able to compare risk to endpoints that represent a wide range of stakeholder values. Third, whereas Hg reduction is the regulatory priority for the South River, Hg is not the only stressor driving risk to the endpoints. Ecological and habitat stressors contribute risk to the endpoints and should be considered when managing this site. This research provides the foundation for evaluating the risks of multiple stressors of the South River to a variety of endpoints. From this foundation, tools for the evaluation of management options and an adaptive management tools have been forged. Integr Environ Assess Manag 2017;13:85-99. © 2016 SETAC. © 2016 SETAC.

  14. Does Late Miocene Exhumation Along the Western Slope of the Colorado Rockies Reflect Differential Rock Uplift?

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. H.; Kirby, E.; Aslan, A.; Karlstrom, K. E.; Heizler, M. T.; Kelley, S. A.; Piotraschke, R. E.; Furlong, K. P.

    2011-12-01

    It is increasingly recognized that dynamic effects associated with changes in mantle flow and buoyancy can influence the evolution of surface topography. In the Rocky Mountain province of the western United States, recent seismic deployments reveal intriguing correlations between anomalies in the velocity structure of the upper mantle and regions of high topography. Here, we investigate whether regional correlations between upper-mantle structure and topography are associated with the history of Late Cenozoic fluvial incision and exhumation. Major tributaries of the upper Colorado River, including the Gunnison and Dolores Rivers, which drain high topography in central and western Colorado overlie upper mantle with slow seismic wave velocities; these drainages exhibit relatively steep longitudinal profiles (normalized for differences in drainage area and discharge) and are associated with ~1000-1500 m of incision over the past 10 Ma. In contrast, tributaries of the Green River that drain the western slope in northern Colorado (White, Yampa, and Little Snake Rivers) overlie mantle of progressively higher seismic wave velocities. River profiles in northern Colorado are two to three times less steep along reaches with comparable bedrock lithologies. New Ar39/Ar40 ages on ~11 Ma basalt flows capping the Tertiary Brown's Park Formation in northern Colorado indicate that the magnitude of exhumation along these profiles ranges from ~400 - 600 m over this time interval. The correspondence of steep river profiles in regions of greater incision implies that the fluvial systems are dynamically adjusting to an external forcing. New constraints on the exhumation history of the upper Colorado River from apatite fission track ages in boreholes near Rifle, Colorado are best explained by an onset of exhumation at ca. 8-10 Ma. Thus, relative base level fall associated with development of Grand Canyon (ca. 6-5 Ma) does not explain the regional onset of incision along the western slope of the Rockies. Additionally, new cosmogenic burial ages from fan-terrace complexes near Rifle, Colorado show that Colorado River incision occurred at similar rates over both 10 Ma and 2 Ma timescales. Fluvial incision in response to relative base level fall or to changes in regional climate cannot easily explain the history of differential incision along the western slope. Given the correspondence of steep channels, large magnitude incision and regions of low seismic velocity mantle, we suggest that differential rock uplift, driven, in part, by differences in the buoyancy and/or convective flow of the mantle beneath western Colorado is the likely driver for Neogene incision.

  15. A new distinctively banded-species of Panaqolus (Siluriformes: Loricariidae) from the western Amazon Basin in Peru.

    PubMed

    Lujan, Nathan K; Steele, Sarah; Velasquez, Miquel

    2013-01-01

    Panaqolus albivermis is described as a new species based on four specimens from the San Alejandro River, a tributary of the upper Ucayali River in central Peru. Panaqolus albivermis is diagnosed from all other Panaqolus except P. maccus by having head, body, and fins with widely separated small white to yellow spots, vermiculations, and/or thin oblique bands on a black base (vs. exclusively small white to yellow spots on a black base in P. alboinaculatus, generally broad oblique bands of alternating light to dark brown in P. changae, P. gnomus, P purusiensis, and a uniformly dark gray to black body color in P. dentex, P. koko, and P. nocturnus); P. albivernis can be diagnosed from P. maccus by having a black base color (vs. brown), by having parallel dentary tooth cups (vs. acute intermandibular tooth cup angle), and by having a larger known adult body size (95.8 mm SL vs. 84.8).

  16. Geologic map of the Hiller Mountain Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Howard, Keith A.; Hook, Simon; Phelps, Geoffrey A.; Block, Debra L.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map The Hiller Mountains Quadrangle straddles Virgin Canyon in the eastern part of Lake Mead. Proterozoic gneisses and granitoid rocks underlie much of the quadrangle. They are overlain by upper Miocene basin-filling deposits of arkosic conglomerate, basalt, and the overlying Hualapai Limestone. Inception of the Colorado River followed deposition of the Hualapai Limestone and caused incision of the older rocks. Fluvial gravel deposits indicate various courses of the early river across passes through highlands of the Gold Butte-Hiller Mountains-White Hills structural block. Faults and tilted rocks in the quadrangle record tectonic extension that climaxed in middle Miocene time.

  17. 77 FR 60101 - Boundary Establishment for White Salmon Wild and Scenic River “Lower Segment”, Gifford Pinchot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... Establishment for White Salmon Wild and Scenic River ``Lower Segment'', Gifford Pinchot National Forest..., is transmitting the final amended boundary of the White Salmon Wild and Scenic River ``Lower Segment... Friday. SUPPLEMENTARY INFORMATION: The White Salmon Wild and Scenic River ``Lower Segment'' boundary is...

  18. Water-table contours and depth to water in the southeastern part of the Sweetwater River basin, central Wyoming, 1982

    USGS Publications Warehouse

    Borchert, William B.

    1987-01-01

    This map describes the southeastern part of the Sweetwater River basin; the major aquifer consists of the upper part of the White River formations, all of Tertiary age, and to a small extent, the alluvium of the Quaternary age along the Sweetwater River. The saturated thickness of the aquifer in most of the area, but not including the alluvium ranges from 500 to 3000 ft. The maximum saturated thickness of the alluvium penetrated by test holes was 63 ft. The water-table contours and depths to water are based primarily on groundwater-level measurements made during 1982 in 104 wells, most of which are located south of the Sweetwater River. Land-surface altitudes of springs and water-surface altitudes along the Sweetwater River and perennial reaches of creeks flowing northward from the Green and Ferris Mountains also were used as control for mapping the water table. The perennial reaches shown on the map are assumed hydraulically connected with the water table. They were identified from streamflow gain-and-loss measurements made during April and May 1982. (Author 's abstract)

  19. 78 FR 46258 - Safety Zone; Upper Mississippi River, Mile 662.8 to 663.9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ...-AA00 Safety Zone; Upper Mississippi River, Mile 662.8 to 663.9 AGENCY: Coast Guard, DHS. ACTION... Upper Mississippi River, from mile 662.8 to 663.9, extending the entire width of the river. This safety... mile 662.8 to 663.9 on the Upper Mississippi River. Anticipated traffic on the river presents safety...

  20. Historical and current perspectives on fish assemblages of the Snake River, Idaho and Wyoming

    USGS Publications Warehouse

    Maret, T.R.; Mebane, C.A.

    2005-01-01

    The Snake River is the tenth longest river in the United States, extending 1,667 km from its origin in Yellowstone National Park in western Wyoming to its union with the Columbia River at Pasco, Washington. Historically, the main-stem Snake River upstream from the Hells Canyon Complex supported at least 26 native fish species, including anadromous stocks of Chinook salmon Oncorhynchus tshawytscha, steelhead O. mykiss, Pacific lamprey Lampetra tridentata, and white sturgeon Acipenser transmontanus. Of these anadromous species, only the white sturgeon remains in the Snake River between the Hells Canyon Complex and Shoshone Falls. Today, much of the Snake River has been transformed into a river with numerous impoundments and flow diversions, increased pollutant loads, and elevated water temperatures. Current (1993-2002) fish assemblage collections from 15 sites along the Snake River and Henrys Fork contained 35 fish species, including 16 alien species. Many of these alien species such as catfish (Ictaluridae), carp (Cyprinidae), and sunfish (Centrarchidae) are adapted for warmwater impounded habitats. Currently, the Snake River supports 19 native species. An index of biotic integrity (IBI), developed to evaluate large rivers in the Northwest, was used to evaluate recent (1993-2002) fish collections from the Snake River and Henrys Fork in southern Idaho and western Wyoming. Index of biotic integrity site scores and component metrics revealed a decline in biotic integrity from upstream to downstream in both the Snake River and Henrys Fork. Two distinct groups of sites were evident that correspond to a range of IBI scores-an upper Snake River and Henrys Fork group with relatively high biotic integrity (mean IBI scores of 46-84) and a lower Snake River group with low biotic integrity (mean IBI scores of 10-29). Sites located in the lower Snake River exhibited fish assemblages that reflect poor-quality habitat where coldwater and sensitive species are rare or absent, and where tolerant, less desirable species predominate. Increases in percentages of agricultural land, total number of diversions, and number of constructed channels were strongly associated with these decreasing IBI scores.

  1. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 inmore » order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the repository by Washington Department of Fish and Wildlife and Columbia River Intertribal Fish Commission, respectively. To date, a total of 3,928 Columbia River salmon and steelhead gamete samples and three Kootenai River white sturgeon are preserved in the repository. Samples are stored in independent locations at the University of Idaho (UI) and Washington State University (WSU).« less

  2. Crustal controls on magmatic-hydrothermal systems: A geophysical comparison of White River, Washington, with Goldfield, Nevada

    USGS Publications Warehouse

    Blakely, R.J.; John, D.A.; Box, S.E.; Berger, B.R.; Fleck, R.J.; Ashley, R.P.; Newport, G.R.; Heinemeyer, G.R.

    2007-01-01

    The White River altered area, Washington, and the Goldfield mining district, Nevada, are nearly contemporaneous Tertiary (ca.20 Ma) calc-alkaline igneous centers with large exposures of shallow (<1 km depth) magmatic-hydrothermal, acid-sulfate alteration. Goldfield is the largest known high-sulfidation gold deposit in North America. At White River, silica is the only commodity exploited to date, but, based on its similarities with Goldfield, White River may have potential for concealed precious and/or base metal deposits at shallow depth. Both areas are products of the ancestral Cascade arc Goldfield lies within the Great Basin physiographic province in an area of middle Miocene and younger Basin and Range and Walker Lane faulting, whereas White River is largely unaffected by young faults. However, west-northwest-striking magnetic anomalies at White River do correspond with mapped faults synchronous with magmatism, and other linear anomalies may reflect contemporaneous concealed faults. The White River altered area lies immediately south of the west-northwest-striking White River fault zone and north of a postulated fault with similar orientation. Structural data from the White River altered area indicate that alteration developed synchronously with an anomalous stress field conducive to left-lateral, strike-slip displacement on west-north-west-striking faults. Thus, the White River alteration may have developed in a transient transtensional region between the two strike-slip faults, analogous to models proposed for Goldfield and other mineral deposits in transverse deformational zones. Gravity and magnetic anomalies provide evidence for a pluton beneath the White River altered area that may have provided heat and fluids to overlying volcanic rocks. East- to east- northeast-striking extensional faults and/or fracture zones in the step-over region, also expressed in magnetic anomalies, may have tapped this intrusion and provided vertical and lateral transport of fluids to now silicified areas. By analogy to Goldfield, geophysical anomalies at the White River altered area may serve as proxies for geologic mapping in identifying faults, fractures, and intrusions relevant to hydrothermal alteration and ore formation in areas of poor exposure. ?? 2006 Geological Society of America.

  3. Life History Attributes of Asian Carps in the Upper Mississippi River System

    DTIC Science & Technology

    2007-05-01

    Mature ovary of a female silver carp. Each small white spherical structure is a mature egg 4 ERDC/TN ANSRP-07-1 May 2007 Silver carp in the...weight/fish weight), and fecundity (number of eggs per female ) of each silver and bighead carp were quantified. Diets of silver carp from the MMR also...through November, with gonads ranging from 1 to 13 percent of body weight. Females with mature ovaries (Figure 3) were present as early as age 2 years

  4. GREAT I Study of the Upper Mississippi River. Technical Appendixes. Volume 5. Fish and Wildlife. Part II.

    DTIC Science & Technology

    1980-09-01

    Waterlily .1! Kuphar variegatum x X x * : White Waterlily Numphaea tuberosa X X X X X Greater Duckweed Spirodela polrhiz x x Lesser Duckweed Lemna minor ...expected that this would be a minor portion of the project. A channel 6 feet deep and 30 feet wide is desired. 9. Johnson Slough (Clayton County, Iowa...76,276.74. The actual budget may be substantially less, however. MINORITY REPORT Unanimous vote. No minority opinion. ,p Michael Vanderfoy6 Chairman Side

  5. 76 FR 36316 - Safety Zone; Upper Mississippi River, Mile 180.0 to 179.0

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ...-AA00 Safety Zone; Upper Mississippi River, Mile 180.0 to 179.0 AGENCY: Coast Guard, DHS. ACTION... Upper Mississippi River, from Mile 180.0 to 179.0, extending the entire width of the river. This safety... combat capabilities between Mile 180.0 and 179.0 on the Upper Mississippi River. This event presents...

  6. Montgomery Point Lock and Dam, White River, Arkansas

    DTIC Science & Technology

    2016-01-01

    ER D C/ CH L TR -1 6- 1 Monitoring Completed Navigation Projects (MCNP) Program Montgomery Point Lock and Dam, White River, Arkansas Co...Navigation Projects (MCNP) Program ERDC/CHL TR-16-1 January 2016 Montgomery Point Lock and Dam, White River, Arkansas Allen Hammack, Michael Winkler, and...20314-1000 Under MCNP Work Unit: Montgomery Point Lock and Dam, White River, Arkansas ERDC/CHL TR-16-1 ii Abstract Montgomery Point Lock and

  7. 76 FR 77901 - Safety Zone; Upper Mississippi River, Mile 389.4 to 403.1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...-AA00 Safety Zone; Upper Mississippi River, Mile 389.4 to 403.1 AGENCY: Coast Guard, DHS. ACTION... Upper Mississippi River, from Mile 389.4 to 403.1, extending the entire width of the river located on... 389.4 to 403.1 on the Upper Mississippi River. Under 5 U.S.C. 553(d)(3), the Coast Guard finds that...

  8. The Upper Mississippi River System—Topobathy

    USGS Publications Warehouse

    Stone, Jayme M.; Hanson, Jenny L.; Sattler, Stephanie R.

    2017-03-23

    The Upper Mississippi River System (UMRS), the navigable part of the Upper Mississippi and Illinois Rivers, is a diverse ecosystem that contains river channels, tributaries, shallow-water wetlands, backwater lakes, and flood-plain forests. Approximately 10,000 years of geologic and hydrographic history exist within the UMRS. Because it maintains crucial wildlife and fish habitats, the dynamic ecosystems of the Upper Mississippi River Basin and its tributaries are contingent on the adjacent flood plains and water-level fluctuations of the Mississippi River. Separate data for flood-plain elevation (lidar) and riverbed elevation (bathymetry) were collected on the UMRS by the U.S. Army Corps of Engineers’ (USACE) Upper Mississippi River Restoration (UMRR) Program. Using the two elevation datasets, the U.S. Geological Survey (USGS) Upper Midwest Environmental Sciences Center (UMESC) developed a systemic topobathy dataset.

  9. Habitat and Hydrology Condition Indices for the Upper Mississippi, Missouri, and Ohio Rivers

    EPA Science Inventory

    Habitat and hydrology indices were developed to assess the conditions in reaches of the impounded Upper Mississippi River, the Fort Peck and Garrison reaches of the Upper Missouri River, the Missouri National Recreational River, and the channelized Lower Missouri River, and the O...

  10. Assessing the impacts of water abstractions on river ecosystem services: an eco-hydraulic modelling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carolli, Mauro, E-mail: mauro.carolli@unitn.it; Geneletti, Davide, E-mail: davide.geneletti@unitn.it; Zolezzi, Guido, E-mail: guido.zolezzi@unitn.it

    The provision of important river ecosystem services (ES) is dependent on the flow regime. This requires methods to assess the impacts on ES caused by interventions on rivers that affect flow regime, such as water abstractions. This study proposes a method to i) quantify the provision of a set of river ES, ii) simulate the effects of water abstraction alternatives that differ in location and abstracted flow, and iii) assess the impact of water abstraction alternatives on the selected ES. The method is based on river modelling science, and integrates spatially distributed hydrological, hydraulic and habitat models at different spatialmore » and temporal scales. The method is applied to the hydropeaked upper Noce River (Northern Italy), which is regulated by hydropower operations. We selected locally relevant river ES: habitat suitability for the adult marble trout, white-water rafting suitability, hydroelectricity production from run-of-river (RoR) plants. Our results quantify the seasonality of river ES response variables and their intrinsic non-linearity, which explains why the same abstracted flow can produce different effects on trout habitat and rafting suitability depending on the morphology of the abstracted reach. An economic valuation of the examined river ES suggests that incomes from RoR hydropower plants are of comparable magnitude to touristic revenue losses related to the decrease in rafting suitability.« less

  11. Geology of the Knife River area, North Dakota

    USGS Publications Warehouse

    Benson, William Edward

    1953-01-01

    The Knife River area, consisting of six 15-minute quadrangles, includes the lower half of the Knife River valley in west-central North Dakota. The area, in the center of the Williston Basin, is underlain by the Tongue River member of the Fort Union formation (Paleocene) and the Golden Valley formation (Eocene). The Tongue River includes beds equivalent to the Sentinel Butte shale; the Golden Valley formation, which receives its first detailed description in this report, consists of two members, a lower member of gray to white sandy kaolin clay and an upper member of cross-bedded micaceous sandstone. Pro-Tongue River rocks that crop out in southwestern North Dakota include the Ludlow member of the Fort Union formation, the Cannonball marine formation (Paleocene) and the Hell Creek, Fox Hills, and Pierre formations, all upper Cretaceous. Post-Golden Valley rocks include the White River formation (Oligocene) and gravels on an old planation surface that may be Miocene or Pliocent. Surficial deposits include glacial and fluvial deposits of Pleistocene age and alluvium, dune sand, residual silica, and landslide blocks of Recent age. Three ages of glacial deposits can be differentiated, largely on the basis of three fills, separated by unconformities, in the Knife River valley. All three are of Wisconsin age and probably represent the Iowan, Tazewell, and Mankato substages. Deposits of the Cary substage have not been identified either in the Knife River area or elsewhere in southern North Dakota. Iowan glacial deposits form the outermost drift border in North Dakota. Southwest of this border are a few scattered granite boulders that are residual from the erosion of either the White River formation or a pre-Wisconsin till. The Tazewell drift border cannot be followed in southern North Dakota. The Mankato drift border can be traced in a general way from the South Dakota State line northwest across the Missouri River and through the middle of the Knife River area. The major land forms of southwestern North Dakota are: (1) high buttes that stand above (2) a gravel-capped planation surface and (3) a gently-rolling upland; below the upland surface are (4) remnants of a broad valley stage of erosion into which (5) modern valleys have been cut. The broad valley profiles of many streams continue east across the Missouri River trench and are part of a former drainage system that flowed into Hudson Bay. Crossing the divides are (6) large trenches, formed when the former northeast-flowing streams were dammed by the glacier and diverted to the southeast. The largest diversion valley is occupied by the Missouri River; another diversion system, now largely abandoned, extends from the Killdeer Mountains southwest to the mouth of Porcupine Creek in Sioux County. By analogy with South Dakota, most of the large diversion valleys are thought to have been cut in Illinoian time. Numerous diversion valleys of Illinoian to late Wisconsin age cut across the divides. Other Pleistocene land forms include ground and moraines, kames, and terraces. Land forms of Recent age include dunes, alluvial terraces, floodplains, and several types of landslide blocks. One type of landslide, called rockslide slump, has not previously been described. Drainage is well adjusted to the structure, most of the streams flowing down the axes of small synclines. The bedrock formations have been gently folded into small domes and synclines that interrupt a gentle northward regional dip into the Williston Basin. Three episodes of deformation affected southwestern North Dakota in Tertiary time: (1) intra-Paleocene, involving warping and minor faulting; (2) post-Eocene, involving uplift and tilting; (2) Oligocene, involving uplift and gentle folding. Mineral resources include ceramic clay, sand and gravel and lignite coal. The Knife River area is the largest lignite-producing district in the United States.

  12. 77 FR 28255 - Safety Zone; Upper Mississippi River, Mile 183.0 to 183.5

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ...-AA00 Safety Zone; Upper Mississippi River, Mile 183.0 to 183.5 AGENCY: Coast Guard, DHS. ACTION... Upper Mississippi River, from mile 183.0 to mile 183.5, in the vicinity of the Merchants Bridge and... Merchants Bridge in the vicinity of mile 183.0 to 183.5 on the Upper Mississippi River. After initial...

  13. 77 FR 39393 - Special Local Regulation; Upper Mississippi River, Mile 842.0 to 840.0

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... the swim leg of the Optum Health Twin Cities Triathlon occurring on the Upper Mississippi River. Entry... 1625-AA00 Special Local Regulation; Upper Mississippi River, Mile 842.0 to 840.0 AGENCY: Coast Guard... regulation for all waters of the Upper Mississippi River, Mile 842.0 to 840.0, extending the entire width of...

  14. Temporal and Spatial Trends in the Frequency of Occurrence, Length-Frequency Distributions, Length-Weight Relationships, and Relative Abundance of Upper Mississippi River Fish

    DTIC Science & Technology

    2006-07-01

    and white crappie [Pomoxis annularis]). d. Analysis of variance suggests that centrarchid species, bowfin ( Amia calva ), emerald shiners (Notropis...10 10 10 W C Family Amiidae-bowfins Bowfin ~( Amia calva ) 10 to 10 10 10 T0 A A Family Hiodontidae-mooneyes (Hiodon alosoides) 5 4 2 ~ 10 9 10A C...Bluntnose minnow Pimephales notatus All lengths BUSKAL . Blue sucker ’C7ycleptus elongatus All lengths BWFNAL Bowfin Amia calva All lengths CARPSS

  15. The density and biomass of mesozooplankton and ichthyoplankton in the Negro and the Amazon Rivers during the rainy season: the ecological importance of the confluence boundary

    PubMed Central

    Rimachi, Elvis V.; Santos-Silva, Edinaldo N.; Calixto, Laura S.F.; Leite, Rosseval G.; Khen, Adi; Yamane, Tetsuo; Mazeroll, Anthony I.; Inuma, Jomber C.; Utumi, Erika Y.K.; Tanaka, Akira

    2017-01-01

    The boundary zone between two different hydrological regimes is often a biologically enriched environment with distinct planktonic communities. In the center of the Amazon River basin, muddy white water of the Amazon River meets with black water of the Negro River, creating a conspicuous visible boundary spanning over 10 km along the Amazon River. Here, we tested the hypothesis that the confluence boundary between the white and black water rivers concentrates prey and is used as a feeding habitat for consumers by investigating the density, biomass and distribution of mesozooplankton and ichthyoplankton communities across the two rivers during the rainy season. Our results show that mean mesozooplankton density (2,730 inds. m−3) and biomass (4.8 mg m−3) were higher in the black-water river compared to the white-water river (959 inds. m−3; 2.4 mg m−3); however an exceptionally high mesozooplankton density was not observed in the confluence boundary. Nonetheless we found the highest density of ichthyoplankton in the confluence boundary (9.7 inds. m−3), being up to 9-fold higher than in adjacent rivers. The confluence between white and black waters is sandwiched by both environments with low (white water) and high (black water) zooplankton concentrations and by both environments with low (white water) and high (black water) predation pressures for fish larvae, and may function as a boundary layer that offers benefits of both high prey concentrations and low predation risk. This forms a plausible explanation for the high density of ichthyoplankton in the confluence zone of black and white water rivers. PMID:28507821

  16. The density and biomass of mesozooplankton and ichthyoplankton in the Negro and the Amazon Rivers during the rainy season: the ecological importance of the confluence boundary.

    PubMed

    Nakajima, Ryota; Rimachi, Elvis V; Santos-Silva, Edinaldo N; Calixto, Laura S F; Leite, Rosseval G; Khen, Adi; Yamane, Tetsuo; Mazeroll, Anthony I; Inuma, Jomber C; Utumi, Erika Y K; Tanaka, Akira

    2017-01-01

    The boundary zone between two different hydrological regimes is often a biologically enriched environment with distinct planktonic communities. In the center of the Amazon River basin, muddy white water of the Amazon River meets with black water of the Negro River, creating a conspicuous visible boundary spanning over 10 km along the Amazon River. Here, we tested the hypothesis that the confluence boundary between the white and black water rivers concentrates prey and is used as a feeding habitat for consumers by investigating the density, biomass and distribution of mesozooplankton and ichthyoplankton communities across the two rivers during the rainy season. Our results show that mean mesozooplankton density (2,730 inds. m -3 ) and biomass (4.8 mg m -3 ) were higher in the black-water river compared to the white-water river (959 inds. m -3 ; 2.4 mg m -3 ); however an exceptionally high mesozooplankton density was not observed in the confluence boundary. Nonetheless we found the highest density of ichthyoplankton in the confluence boundary (9.7 inds. m -3 ), being up to 9-fold higher than in adjacent rivers. The confluence between white and black waters is sandwiched by both environments with low (white water) and high (black water) zooplankton concentrations and by both environments with low (white water) and high (black water) predation pressures for fish larvae, and may function as a boundary layer that offers benefits of both high prey concentrations and low predation risk. This forms a plausible explanation for the high density of ichthyoplankton in the confluence zone of black and white water rivers.

  17. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  18. Ecology of invasive Melilotus albus on Alaskan glacial river floodplains

    USGS Publications Warehouse

    Conn, Jeff S.; Werdin-Pfisterer, Nancy R.; Beattie, Katherine L.; Densmore, Roseann V.

    2011-01-01

    Melilotus albus (white sweetclover) has invaded Alaskan glacial river floodplains. We measured cover and density of plant species and environmental variables along transects perpendicular to the Nenana, Matanuska, and Stikine Rivers to study interactions between M. albus and other plant species and to characterize the environment where it establishes. Melilotus albus was a pioneer species on recently disturbed sites and did not persist into closed canopy forests. The relationships between M. albus cover and density and other species were site-specific.Melilotus albus was negatively correlated with native species Elaeagnus commutata at the Nenana River, but not at the Matanuska River. Melilotus albus was positively correlated with the exotic species Crepis tectorumand Taraxacum officinale at the Matanuska River and T. officinale on the upper Stikine River. However, the high density of M. albus at a lower Stikine River site was negatively correlated with T. officinale and several native species including Lathyrus japonicus var. maritimus and Salix alaxensis. Glacial river floodplains in Alaska are highly disturbed and are corridors for exotic plant species movement. Melilotus albus at moderate to low densities may facilitate establishment of exotic species, but at high densities can reduce the cover and density of both exotic and native species.

  19. Trends in concentrations of polychlorinated biphenyls in fish tissue from selected sites in the Delaware River basin in New Jersey, New York, and Pennsylvania, 1969-98

    USGS Publications Warehouse

    Riva-Murray, Karen; Brightbill, Robin A.; Bilger, Michael D.

    2003-01-01

    Trends in concentrations of polychlorinated biphenyls in fish tissue from selected sites in the Delaware River basin in New Jersey, New York, and Pennsylvania, 1969-98 by Karen Riva-Murray, Robin A. Brightbill, and Michael D. Bilger U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 01-4066 ABSTRACT Polychlorinated biphenyl (PCB) concentrations in fish tissue collected during the 1990's from selected sites in the Delaware River Basin were compared with concentrations in fish tissue collected during 1969-88. Data collected by State and Federal agencies on concentrations in whole-body common carp (Cyprinus carpio) and white sucker (Catostomus commersoni), and edible portions of American eel (Anguilla rostrata), smallmouth bass (Micropterus dolomieu), and channel catfish (Ictalurus punctatus) during 1969-98 were compiled to define temporal trends in concentrations of PCBs in fish tissue from selected segments of the Delaware River, Lehigh River, Schuylkill River, and Brandywine Creek. The Delaware River in the vicinity of Trenton, New Jersey and Yardley, Pennsylvania (above the tidal influence) had the largest long-term data set among the sites considered for this study and was the only site with sufficient data for statistical analysis. A general pattern of decline in PCB concentrations during 1969-98 was apparent for this river segment. PCB concentrations in whole-body white sucker from this lower Delaware River segment declined during 1969-98 from a highest concentration of 7 micrograms per gram (?g/g, wet weight) in a sample collected during 1972 to 0.26 ?g/g (wet weight) in a sample collected during 1998. PCB concentration was negatively correlated with year (Spearman rank correlation -0.46, p < 0.08, n = 15); especially after removal of a sample from 1977 with an unusually low concentration (Spearman rank correlation -0.53, p = 0.05, n = 14). PCB concentrations in edible flesh of American eel declined during 1975-95, from a highest concentration of 3.8 ?g/g (wet weight) in a sample collected during 1976 to less than the reporting limit of 0.26 ?g/g (wet weight) in samples collected during 1993 and 1995. PCB concentrations in most samples (for species considered in this study) collected from the lower Delaware River exceeded the National Academy of Sciences and National Academy of Engineering (NAS/NAE) wildlife guideline level of 0.5 ?g/g during the 1970's and 1980's, and decreased to below this level during the 1990's. No samples of edible portions of game fish exceeded the U.S. Food and Drug Administration (FDA) tolerance level by the mid 1980's. However, the PCB concentration in a smallmouth bass fillet sample that was collected during 1998 (0.37 ?g/g) exceeded the Pennsylvania fish-consumption advisory level of 0.06 ?g/g, and the concentrations in whole-body common carp and white sucker collected during 1998 (1.10 ?g/g and 0.26 ?g/g, respectively) exceeded the New York State Department of Environmental Conservation wildlife criterion concentration of 0.11 ?g/g. (The concentration in carp also exceeded the 1973 NAS/NAE wildlife guideline concentration of 0.5 ?g/g.) Graphical analysis of PCB concentrations in whole white sucker and (or) edible portions of American eel from the upper Delaware River, lower Delaware River, middle Schuylkill River, and Brandywine Creek indicate a decline from the 1970's and (or) 1980's to the middle to late 1990's. Temporal trends in PCB concentrations in white sucker samples from the lower Lehigh and Schuylkill Rivers during 1979-98 are less clear; the PCB concentration (wet-weight basis) from a sample collected in 1998 from the lower Lehigh River was similar to that from a sample collected in 1979, and concentrations actually increased during 1982-98. Similarly, PCB concentrations in samples of white sucker and American eel from the lower Schuylkill River were highly variable over time. A decrease in lipid-adjusted PCB concentrations at both sites (for several whi

  20. 75 FR 51448 - Withdrawal of Notice for Preparation of an Environmental Impact Statement (EIS) for the Arkansas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... the environment. Solutions were focused on decreasing erosion on the White River containment structure... Preparation of an Environmental Impact Statement (EIS) for the Arkansas White River Cutoff Study AGENCY... Impact Statement (EIS) for the Arkansas White River Cutoff Study. The original Notice of Intent (NOI) was...

  1. Double-crested cormorants along the upper Mississippi River

    USGS Publications Warehouse

    Kirsch, E.M.

    1995-01-01

    The Upper Mississippi River is an important habitat corridor for migratory birds and other wildlife, and it supports an important commercial and sport fishery. A study was initiated by the U.S. Fish and Wildlife Service in 1991 to describe Double-crested cormorant (Phalacrocorax auritus) distribution and abundance on the Upper Mississippi River throughout the year to better understand the possible impacts of cormorants on fish resources and populations of other piscivorous birds. Double-crested Cormorants were common breeders and abundant during migration on the Upper Mississippi River during the 1940s. Numbers of cormorants declined in the 1960s and 1970s along the Upper Mississippi River as they did in other parts of the United States. In 1992, 418 cormorant pairs were estimated to have nested in four colonies on the Upper Mississippi River, and less than 7,000 cormorants were estimated to have migrated along the river during the fall and spring of 1991 and 1992. Recent public concern for fish resources has grown with a perceived growth of the local cormorant population. Migrating cormorants collected on the Upper Mississippi River took Gizzard Shad (Dorosoma cepedianum) primarily, but chicks were fed a wide variety of fish species.

  2. Space Radar Image of Niya Ruins, Taklamakan Desert

    NASA Image and Video Library

    1999-05-01

    This radar image is of an area thought to contain the ruins of the ancient settlement of Niya. It is located in the southwestern corner of the Taklamakan Desert in China Sinjiang Province. This oasis was part of the famous Silk Road, an ancient trade route from one of China's earliest capitols, Xian, to the West. The image shows a white linear feature trending diagonally from the upper left to the lower right. Scientists believe this newly [sic] discovered feature is a man-made canal which presumably diverted river waters toward the settlement of Niya for irrigation purposes. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 106th orbit on April 16, 1994, and is centered at 37.78 degrees north latitude and 82.41 degrees east longitude. The false-color radar image was created by displaying the C-band (horizontally transmitted and received) return in red, the L-band (horizontally transmitted and received) return in green, and the L-band (horizontally transmitted and vertically received) return in blue. Areas in mottled white and purple are low-lying floodplains of the Niya River. Dark green and black areas between river courses are higher ridges or dunes confining the water flow. http://photojournal.jpl.nasa.gov/catalog/PIA01725

  3. Quantity and quality of streamflow in the White River basin, Colorado and Utah

    USGS Publications Warehouse

    Boyle, J.M.; Covay, K.J.; Bauer, D.P.

    1984-01-01

    The water quality and flow of existing streams in the White River basin, located in northwestern Colorado and northeastern Utah, are adequate for present uses, but future development (such as energy) may affect stream quality and quantity. Present conditions are described as a baseline to enable planners to allocate available water and to measure changes in quantity and quality of water in the future. The White River basin contains extensive energy resources consisting of oil, natural gas, coal, and oil shale. Large quantities of water will be required for energy-resource development and associated municipal and industrial uses. An average of 70% of the annual flow in the White River occurs during May, June, and July as a result of snowmelt runoff. The 7-day, 10-year low-flow discharges/sq mi and the 1-day, 25-year high-flow discharges/sq mi are larger in the eastern part of the basin than in the western part. Flow-duration curves indicate that high flows in the White River and the North and South Fork White Rivers result mainly from snowmelt runoff and that base flow is sustained throughout the year by groundwater discharge from the alluvial and bedrock aquifers. Water type varies in the basin; however, calcium and sodium are the dominantly occurring cations and sulfate and bicarbonate are the dominantly occurring anions. Computed total annual dissolved-solids loads in the White River range from 31 ,800 tons/yr in the North Fork White River to 284,000 tons/yr at the mouth. A 10% increase to a 14% decrease of the dissolved-solids load could result at the mouth of the White River near Ouray, Utah. This corresponds to a 5% increase to a 10% decrease in dissolved-solids concentration. The seasonal pattern of stream temperatures was found to fit a harmonic curve. (Lantz-PTT)

  4. Kootenai River velocities, depth, and white sturgeon spawning site selection – A mystery unraveled?

    USGS Publications Warehouse

    Paragamian, V.L.; McDonald, R.; Nelson, G.J.; Barton, G.

    2009-01-01

    The Kootenai River white sturgeon Acipenser transmontanus population in Idaho, US and British Columbia (BC), Canada became recruitment limited shortly after Libby Dam became fully operational on the Kootenai River, Montana, USA in 1974. In the USA the species was listed under the Endangered Species Act in September of 1994. Kootenai River white sturgeon spawn within an 18-km reach in Idaho, river kilometer (rkm) 228.0–246.0. Each autumn and spring Kootenai River white sturgeon follow a ‘short two-step’ migration from the lower river and Kootenay Lake, BC, to staging reaches downstream of Bonners Ferry, Idaho. Initially, augmented spring flows for white sturgeon spawning were thought to be sufficient to recover the population. Spring discharge mitigation enhanced white sturgeon spawning but a series of research investigations determined that the white sturgeon were spawning over unsuitable incubation and rearing habitat (sand) and that survival of eggs and larvae was negligible. It was not known whether post-Libby Dam management had changed the habitat or if the white sturgeon were not returning to more suitable spawning substrates farther upstream. Fisheries and hydrology researchers made a team effort to determine if the spawning habitat had been changed by Libby Dam operations. Researchers modeled and compared velocities, sediment transport, and bathymetry with post-Libby Dam white sturgeon egg collection locations. Substrate coring studies confirmed cobbles and gravel substrates in most of the spawning locations but that they were buried under a meter or more of post-Libby Dam sediment. Analysis suggested that Kootenai River white sturgeon spawn in areas of highest available velocity and depths over a range of flows. Regardless of the discharge, the locations of accelerating velocities and maximum depth do not change and spawning locations remain consistent. Kootenai River white sturgeon are likely spawning in the same locations as pre-dam, but post-Libby Dam water management has reduced velocities and shear stress, thus sediment is now covering the cobbles and gravels. Although higher discharges will likely provide more suitable spawning and rearing conditions, this would be socially and politically unacceptable because it would bring the river elevation to or in excess of 537.66 m, which is flood stage. Thus, support should be given to habitat modifications incorporated into a management plan to restore suitable habitat and ensure better survival of eggs and larvae.

  5. 78 FR 15292 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... Operation Regulations; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of... schedule that governs the Rock Island Railroad and Highway Drawbridge, across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the River Bandits 5K Run/Walk...

  6. Flood of June 8-9, 2008, Upper Iowa River, Northeast Iowa

    USGS Publications Warehouse

    Fischer, Edward E.; Eash, David A.

    2010-01-01

    Major flooding occurred June 8-9, 2008, in the Upper Iowa River Basin in northeast Iowa following severe thunderstorm activity over the region. About 7 inches of rain were recorded for the 48-hour period ending 4 p.m., June 8, at Decorah, Iowa; more than 7 inches of rain were recorded for the 48-hour period ending 7 a.m., June 8, at Dorchester, Iowa, about 17 miles northeast of Decorah. The maximum peak discharge measured in the Upper Iowa River was 34,100 cubic feet per second at streamgage 05387500 Upper Iowa River at Decorah, Iowa. This discharge is the largest discharge recorded in the Upper Iowa River Basin since streamgaging operations began in the basin in 1914. The flood-probability range of the peak discharge is 0.2 to 1 percent. High-water marks were measured at 15 locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and U.S. Highway 63 at Chester, Iowa, a distance of 124 river miles. The high-water marks were used to develop a flood profile.

  7. Winter browse selection by white-tailed deer and implications for bottomland forest restoration in the Upper Mississippi River Valley, USA

    USGS Publications Warehouse

    Cogger, Benjamin J.; De Jager, Nathan R.; Thomsen, Meredith; Adams, Carrie Reinhardt

    2014-01-01

    White-tailed deer (Odocoileus virginianus) forage selectively, modifying upland forest species composition and in some cases shifting ecosystems to alternative stable states. Few studies, however, have investigated plant selection by deer in bottomland forests. Herbaceous invasive species are common in wetlands and their expansion could be promoted if deer avoid them and preferentially feed on native woody species. We surveyed plant species composition and winter deer browsing in 14 floodplain forest restoration sites along the Upper Mississippi River and tributaries. Tree seedling density declined rapidly with increasing cover of invasive Phalaris arundinacea, averaging less than 1 per m2 in all sites in which the grass was present. Deer browsed ∼46% of available tree seedling stems (branches) at mainland restorations, compared to ∼3% at island sites. Across all tree species, the number of browsed stems increased linearly with the number available and responded unimodally to tree height. Maximum browsing rates were observed on trees with high stem abundances (>10 per plant) and of heights between 50 and 150 cm. Deer preferred Ulmus americana and Acer saccharinum, and avoided Fraxinus pennsylvanica, Acer negundo, and Quercus spp. at mainland sites, and did not browse Phalaris arundinacea if present. Depending on plant growth responses to herbivory and the competitive effects of unbrowsed species, our results suggest that selective foraging could promote the expansion of invasive species and/or alter tree species composition in bottomland forest restorations. Islands may, however, serve as refuges from browsing on a regional scale.

  8. Metals in fish from the Upper Benue River and lakes Geriyo and Njuwa in northeastern Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eromosele, C.O.; Eromosele, I.C.; Muktar, S.L.M.

    Lakes Geriyo and Njuwa occupy natural depressions near the upper Benue River in northeastern Nigeria. The lakes are flooded by the river during the rainy season spanning the months of May to September. Fishing activities on the lakes and river provide fish for consumption by the local communities. Industrial activity around the upper Benue River and the lakes is low and there is no information on other activities with the potential for polluting the Benue River as it flows from neighboring Cameroon. However, an unconfirmed report indicated high levels of lead in the upper Benue River, generally speculated as arisingmore » from biogeometrical factors. Trace elements, some of which are toxic, may accumulate in edible marine organisms to levels which may be deleterious to human health. For the upper Benue River and its associate lakes, Geriyo and Njuwa, there is yet no report of a systematic study to assess the levels of metals in fish found in these waters. This paper presents the results of a study on metal levels in fish collected from Lakes Geriyo and Njuwa and upper Benue River in northeastern Nigeria. 7 refs., 1 fig., 2 tabs.« less

  9. Secondary poisoning of kestrels by white phosphorus

    USGS Publications Warehouse

    Sparling, D.W.; Federoff, N.E.

    1997-01-01

    Since 1982, extensive waterfowl mortality due to white phosphorus (P4) has been observed at Eagle River Flats, a tidal marsh near Anchorage, Alaska. Ducks and swans that ingest P4 pellets become lethargic and may display severe convulsions. Intoxicated waterfowl attract raptors and gulls that feed on dead or dying birds. To determine if avian predators can be affected by secondary poisoning, we fed American kestrels (Falco sparverius) 10-day-old domestic chickens that had been dosed with white phosphorus. Eight of 15 kestrels fed intact chicks with a pellet of P4 implanted in their crops died within seven days. Three of 15 kestrels fed chicks that had their upper digestive tracts removed to eliminate any pellets of white phosphorus also died. Hematocrit and hemoglobin in kestrels decreased whereas lactate dehydrogenaseL, glucose, and alanine aminotransferase levels in plasma increased with exposure to contaminated chicks. Histological examination of liver and kidneys showed that the incidence and severity of lesions increased when kestrels were fed contaminated chicks. White phosphorus residues were measurable in 87% of the kestrels dying on study and 20% of the survivors. This study shows that raptors can become intoxicated either by ingesting portions of digestive tracts containing white phosphorus pellets or by consuming tissues of P4 contaminated prey.

  10. 78 FR 9588 - Drawbridge Operation Regulation; Mile 535.0, Upper Mississippi River, Sabula, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Operation Regulation; Mile 535.0, Upper Mississippi River, Sabula, IA AGENCY: Coast Guard, DHS. ACTION... River, mile 535.0, at Sabula, Iowa. The deviation is necessary to allow the bridge owner time to perform... Upper Mississippi River, mile 535.0, at Sabula, Iowa to remain in the closed-to-navigation position...

  11. 18 CFR 708.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Snelling, Twin Cities, Minnesota. (c) Master Plan means the Upper Mississippi River System Comprehensive... Section 708.1 Conservation of Power and Water Resources WATER RESOURCES COUNCIL UPPER MISSISSIPPI RIVER BASIN COMMISSION: PUBLIC PARTICIPATION IN UPPER MISSISSIPPI RIVER SYSTEM MASTER PLAN § 708.1 Definitions...

  12. 78 FR 28139 - Drawbridge Operation Regulation; Tuckahoe River, Between Corbin City and Upper Township, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Operation Regulation; Tuckahoe River, Between Corbin City and Upper Township, NJ AGENCY: Coast Guard, DHS... River, mile 8.0, between Corbin City and Upper Township, NJ. The deviation is necessary to facilitate... operating schedule, the State Highway Bridge, mile 8.0, between Corbin City and Upper Township, NJ shall...

  13. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Daily Maximum Temperature, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  14. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Daily Minimum Temperature, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  15. Assessing movement and sources of mortality of juvenile catostomids using passive integrated transponder tags, Upper Klamath Lake, Oregon - Summary of 2012 effort

    USGS Publications Warehouse

    Burdick, Summer M.

    2013-01-01

    Survival of juvenile endangered Lost River and shortnose suckers is thought to limit recruitment into the adult populations and ultimately limit the recovery of these species in Upper Klamath Lake, Oregon. Although many hypotheses exist about the sources of mortality, the contribution of each speculated source of mortality has not been examined. To examine causes of mortality, validate estimated age to maturity, and examine movement patterns for juvenile suckers in Upper Klamath Lake, passive integrated transponder (PIT) tags and remote tag detection systems were used. Age-1 suckers were opportunistically tagged in 2009 and 2010 during another study on juvenile sucker distribution. After the distribution study concluded in 2010, USGS redirected sampling efforts to target age-1 suckers for tagging. Tags were redetected using an existing infrastructure of remote PIT tag readers and tag scanning surveys at American white pelican (Pelecanus erythrorhynchos), double-crested cormorant (Phalacrocorax auritus), and Forster’s tern (Sterna forsteri) breeding and loafing areas. Individual fish histories are used to describe the distance, direction, and timing of juvenile sucker movement. Sucker PIT tag detections in the Sprague and Williamson Rivers in mid-summer and in autumn indicate tagged juvenile suckers use these tributaries outside of the known spring spawning season. PIT tags detected in bird habitats indicate predation by birds was a cause of mortality.

  16. Reconnaissance Report for Upper Mississippi River Navigation Study. (Revised)

    DTIC Science & Technology

    1992-09-01

    Contaminants may include ammonia, arsenic, cadmium , chlordane, chromium, copper, dioxins, lead, nickel, nitrogen, PCBs, phosphorus, zinc, various...al 1981 Rock River, Upper Mississippi River, Little Wabash River, Lower Wabash River Units (I, III-north, aid VIII). In Predictive Models in Illinois

  17. Floodplains within reservoirs promote earlier spawning of white crappies Pomoxis annularis

    USGS Publications Warehouse

    Miranda, Leandro E.; Dagel, Jonah D.; Kaczka, Levi J.; Mower, Ethan; Wigen, S. L.

    2015-01-01

    Reservoirs impounded over floodplain rivers are unique because they may include within their upper reaches extensive shallow water stored over preexistent floodplains. Because of their relatively flat topography and riverine origin, floodplains in the upper reaches of reservoirs provide broad expanses of vegetation within a narrow range of reservoir water levels. Elsewhere in the reservoir, topography creates a band of shallow water along the contour of the reservoir where vegetation often does not grow. Thus, as water levels rise, floodplains may be the first vegetated habitats inundated within the reservoir. We hypothesized that shallow water in reservoir floodplains would attract spawning white crappies Pomoxis annularis earlier than reservoir embayments. Crappie relative abundance over five years in floodplains and embayments of four reservoirs increased as spawning season approached, peaked, and decreased as fish exited shallow water. Relative abundance peaked earlier in floodplains than embayments, and the difference was magnified with higher water levels. Early access to suitable spawning habitat promotes earlier spawning and may increase population fitness. Recognition of the importance of reservoir floodplains, an understanding of how reservoir water levels can be managed to provide timely connectivity to floodplains, and conservation of reservoir floodplains may be focal points of environmental management in reservoirs.

  18. 33 CFR 117.671 - Upper Mississippi River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Upper Mississippi River. 117.671 Section 117.671 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.671 Upper Mississippi River. (a) The...

  19. 33 CFR 117.671 - Upper Mississippi River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Upper Mississippi River. 117.671 Section 117.671 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.671 Upper Mississippi River. (a) The...

  20. 33 CFR 117.671 - Upper Mississippi River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Upper Mississippi River. 117.671 Section 117.671 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.671 Upper Mississippi River. (a) The...

  1. 33 CFR 117.1103 - Upper Mississippi River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Upper Mississippi River. 117.1103 Section 117.1103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1103 Upper Mississippi River. See...

  2. 33 CFR 117.1103 - Upper Mississippi River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Upper Mississippi River. 117.1103 Section 117.1103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1103 Upper Mississippi River. See...

  3. 33 CFR 117.1103 - Upper Mississippi River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Upper Mississippi River. 117.1103 Section 117.1103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1103 Upper Mississippi River. See...

  4. 33 CFR 117.1103 - Upper Mississippi River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Upper Mississippi River. 117.1103 Section 117.1103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1103 Upper Mississippi River. See...

  5. 33 CFR 117.1103 - Upper Mississippi River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Upper Mississippi River. 117.1103 Section 117.1103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1103 Upper Mississippi River. See...

  6. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, David L.; Kern, J. Chris; Hughes, Michele L.

    2004-02-01

    We report on our progress from April 2002 through March 2003 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  7. Statistical analysis of vessel waiting time and lockage times on the upper Mississippi River.

    DOT National Transportation Integrated Search

    2011-10-01

    This project uses statistical methods to analyze traffic congestion of the upper Mississippi and : the Illinois Rivers, in particular, locks 18, 20, 21, 22, 24, and 25 on the upper Mississippi and : the Lagrange and Peoria locks on the Illinois River...

  8. Simulations of floodflows on the White River in the vicinity of U.S. Highway 79 near Clarendon, Arkansas

    USGS Publications Warehouse

    Funkhouser, Jaysson E.; Barks, C. Shane

    2003-01-01

    A two-dimensional finite-element surface-water model was used to study the effects of the proposed modification to the U.S. Highway 79 corridor on flooding on the White River near Clarendon, Arkansas. The effects of floodflows were simulated for the following scenarios: existing, natural, and four proposed bridging alternatives. All of the scenarios were modeled with floods having the 5- and 100-year recurrence intervals (115,100 and 216,000 cubic feet per second). The simulated existing conditions included a 3,200-foot White River bridge located on the east side of the study area near Clarendon, Arkansas; a 3,700-foot First Old River bridge located 0.5 mile west of the White River bridge opening; and a 1,430-foot Roc Roe Bayou bridge located 1.6 mile west of the First Old River bridge. The simulated hypothetical natural conditions involved removing the U.S. Highway 79 and the Union Pacific Railroad embankments along the entire length of the flood plain. The primary purpose of model simulations for natural conditions was to calculate backwater data for the existing and proposed conditions. The four simulated hypothetical proposed alternatives involved a 1.8-mile White River bridge located on the east side of the study area near Clarendon, Arkansas, either a 1,400-foot relief bridge (Alternative 1) or a 1,545 relief bridge (Alternatives 2-4) located 0.25 mile west of the White River bridge opening, and three different Roc Roe Bayou bridge openings ranging from 1,540-3,475 feet in length located 0.9 mile west of the relief bridge (Alternatives 1-4). Simulation of the 5-year floodflow for the existing bridge openings indicates that about 57 percent (65,600 cubic feet per second) of flow was conveyed by the White River bridge, about 26 percent (29,900 cubic feet per second) by the First Old River bridge, and about 17 percent (19,600 cubic feet per second) by the Roc Roe Bayou bridge. Maximum depth-averaged point velocities for the White River, First Old River, and Roc Roe Bayou bridges were 3.6, 1.6, and 3.3 feet per second, respectively. For the 100-year floodflow, the simulation indicates that about 56 percent (123,100 cubic feet per second) of flow was conveyed by the White River bridge, about 26 percent (56,200 cubic feet per second) by the First Old River bridge, and about 19 percent (41,000 cubic feet per second) by the Roc Roe Bayou bridge. The maximum depth-averaged point velocities for the White River, First Old River, and Roc Roe Bayou bridges were 4.2, 2.2, and 4.1 feet per second, respectively. Simulation of the 5-year floodflow for the proposed U.S. Highway 79 alignment alternatives indicates that 76-78 percent (87,100-89,900 cubic feet per second) of the flow was conveyed by the proposed White River bridge, 6-7 percent (7,000-7,500 cubic feet per second) by the proposed relief bridge, and 13-16 percent (14,600-18,600 cubic feet per second) by the proposed Roc Roe Bayou bridge. For the 100-year floodflow, simulations predicted that 70-72 percent (151,200-155,600 cubic feet per second) of the flow was conveyed by the proposed White River bridge, 9-10 percent (19,800-20,700 cubic feet per second) by the proposed relief bridge, and 14-20 percent (30,700-43,000 cubic feet per second) by the proposed Roc Roe Bayou bridge.

  9. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from the McNary Dam, 1994-1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiningen, Kirk T.

    The author reports on progress from April 1994 through March 1995 of research on white sturgeon in the lower Columbia River. The study began in July 1986 and is a cooperative effort of federal, state and tribal fisheries entities to determine the (1) the status and habitat requirements, and (2) the effects of mitigative measures on productivity of white sturgeon populations in the lower Columbia River. This report describes activities conducted during the third year of this contract's second phase. Information was collected, analyzed, and evaluated on sub-adult and adult life histories, population dynamics, quantity and quality of habitat, andmore » production enhancement strategies. The report is divided into sections that evaluate success of developing and implementing a management plan for white sturgeon; evaluate growth, mortality, and contributions to fisheries of juvenile white sturgeon transplanted from areas downstream; describe the life history and population dynamics of sub-adult a nd adult white sturgeon; define habitat requirements for spawning and rearing of white sturgeon and quantify the extent of habitat available; describe reproductive and early life history characteristics of white sturgeon; and quantify physical habitat used by spawning and rearing white sturgeon in the free-flowing portion of the Columbia River.« less

  10. 75 FR 68974 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... Operation Regulation; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of..., has issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois...

  11. 75 FR 17561 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ...] Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION... issued a temporary deviation from the regulation governing the operations of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, Mile 482.9, Rock Island, Illinois. The deviation is...

  12. 76 FR 9224 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ...] Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation...

  13. 77 FR 3607 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ...] Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation...

  14. 77 FR 20716 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ...] Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation...

  15. 78 FR 64887 - Drawbridge Operation Regulation; Upper Mississippi River, Hannibal, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... Operation Regulation; Upper Mississippi River, Hannibal, MO AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Hannibal Railroad Drawbridge across the Upper Mississippi River, mile 309.9, at Hannibal, Missouri. The deviation is necessary to allow the bridge owner time to replace...

  16. Flood of August 24–25, 2016, Upper Iowa River and Turkey River, northeastern Iowa

    USGS Publications Warehouse

    Linhart, S. Mike; O'Shea, Padraic S.

    2018-02-05

    Major flooding occurred August 24–25, 2016, in the Upper Iowa River Basin and Turkey River Basin in northeastern Iowa following severe thunderstorm activity over the region. About 8 inches of rain were recorded for the 24-hour period ending at 4 p.m., August 24, at Decorah, Iowa, and about 6 inches of rain were recorded for the 24-hour period ending at 7 a.m., August 24, at Cresco, Iowa, about 14 miles northwest of Spillville, Iowa. A maximum peak-of-record discharge of 38,000 cubic feet per second in the Upper Iowa River at streamgage 05388250 Upper Iowa River near Dorchester, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at six locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and State Highway 76 about 3.5 miles south of Dorchester, Iowa, a distance of 15 river miles. Along the profiled reach of the Turkey River, a maximum peak-of-record discharge of 15,300 cubic feet per second at streamgage 05411600 Turkey River at Spillville, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 1–2 percent. A maximum peak discharge of 35,700 cubic feet per second occurred on August 25, 2016, along the profiled reach of the Turkey River at streamgage 05411850 Turkey River near Eldorado, Iowa, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at 11 locations along the Turkey River between County Road B64 in Elgin and 220th Street, located about 4.5 miles northwest of Spillville, Iowa, a distance of 58 river miles. The high-water marks were used to develop flood profiles for the Upper Iowa River and Turkey River.

  17. 33 CFR 165.T08-0315 - Safety Zone; Upper Mississippi River, Mile 183.0 to 183.5.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... River, Mile 183.0 to 183.5. 165.T08-0315 Section 165.T08-0315 Navigation and Navigable Waters COAST... Guard District § 165.T08-0315 Safety Zone; Upper Mississippi River, Mile 183.0 to 183.5. (a) Location. The following area is a safety zone: All waters of the Upper Mississippi River, mile 183.0 to 183.5...

  18. 78 FR 16411 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... Operation Regulation; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the Quad City Heart...

  19. 78 FR 69995 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... Operation Regulation; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the bridge owner time...

  20. 78 FR 18933 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Operation Regulations; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the Quad City Marathon...

  1. 78 FR 21537 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... Operation Regulations; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the Front Street 5K Run...

  2. 75 FR 68704 - Drawbridge Operation Regulations; Hackensack River, Jersey City, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... temporary deviation from the regulation governing the operation of the Upper Hack Bridge at mile 6.9, across.... SUPPLEMENTARY INFORMATION: The Upper Hack Bridge, across the Hackensack River at mile 6.9 has a vertical.... Under this temporary deviation the Upper Hack Bridge, mile 6.9, across the Hackensack River may remain...

  3. 76 FR 4818 - Drawbridge Operation Regulations; Hackensack River, Jersey City, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... temporary deviation from the regulation governing the operation of the Upper Hack Bridge across the...-9826. SUPPLEMENTARY INFORMATION: The Upper Hack Bridge, across the Hackensack River at mile 6.9 has a... temporary deviation the Upper Hack Bridge, mile 6.9, across the Hackensack River may remain in the closed...

  4. Space Radar Image of Washington D.C.

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The city of Washington, D.C., is shown is this space radar image. Images like these are useful tools for urban planners and managers, who use them to map and monitor land use patterns. Downtown Washington is the bright area between the Potomac (upper center to lower left) and Anacostia (middle right) rivers. The dark cross shape that is formed by the National Mall, Tidal Basin, the White House and Ellipse is seen in the center of the image. Arlington National Cemetery is the dark blue area on the Virginia (left) side of the Potomac River near the center of the image. The Pentagon is visible in bright white and red, south of the cemetery. Due to the alignment of the radar and the streets, the avenues that form the boundary between Washington and Maryland appear as bright red lines in the top, right and bottom parts of the image, parallel to the image borders. This image is centered at 38.85 degrees north latitude, 77.05 degrees west longitude. North is toward the upper right. The area shown is approximately 29 km by 26 km (18 miles by 16 miles). Colors are assigned to different frequencies and polarizations of the radar as follows: Red is the L-band horizontally transmitted, horizontally received; green is the L-band horizontally transmitted, vertically received; blue is the C-band horizontally transmitted, vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on April 18, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  5. American white pelican predation on Cui-ui in Pyramid Lake, Nevada

    USGS Publications Warehouse

    Scoppettone, Gayton G.; Rissler, Peter H.; Fabes, Mark C.; Withers, Donna

    2014-01-01

    Anthropogenic changes to the Pyramid Lake–Truckee River ecosystem in Nevada are suspected to have altered the predator–prey balance between American white pelican Pelecanus erythrorhynchos and Cui-ui Chasmistes cujus. We estimated the loss of the adult Cui-ui population to pelican predation over a 13-year period by netting and tagging Cui-uis as they aggregated at the mouth of the Truckee River prior to their spawning migration into the Truckee River. Cui-ui access to the Truckee River typically required traversing a shallow delta (a foraging advantage for these American white pelicans). Dams and greater frequency of low stream flows also contributed to American white pelican foraging success. We used tag recoveries from Pyramid Lake's nesting colony of American white pelicans along with an experiment to estimate the chance of tag recovery within the colony to calculate the number of tagged fish taken by American white pelicans. We also used numbered tags to test whether there was a size preference for Cui-uis taken. Our results showed that the primary source of adult Cui-ui mortality was from American white pelican predation in the Truckee River. Within a 13-year period American white pelicans had taken 90% of the tags deployed during the first 7 years of the interval. There was no preference for the size of Cui-uis taken. A better understanding of the effects of heavy cropping by American white pelicans on Cui-ui population dynamics is still needed.

  6. Invasion of the Upper Mississippi River System by Saltwater Amphipods

    EPA Science Inventory

    Zoobenthos surveys of the Great Rivers of the Upper Mississippi River basin (Missouri, Mississippi, and Ohio Rivers) provided an opportunity for documenting a series of invasions by euryhaline amphipods. The corophiid amphipod Apocorophium lacustre was first found in the Ohio Ri...

  7. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    USGS Publications Warehouse

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper Umatilla River Basin during 1951–2010 is about 9.6 inches per year (in/yr). Annual recharge from precipitation for water year 2010 ranged from 3 in. in the lowland area to about 30 in. in the Blue Mountains. Using Kahle and others (2011) data and methods from the Columbia Plateau regional model, average annual recharge from irrigation is estimated to be about 2.2 in/yr for the 13 square miles of irrigated land in the upper Umatilla River Basin.Groundwater discharges to streams throughout the year and is a large component of annual streamflow in the upper Umatilla River Basin. Upward vertical hydraulic gradients near the Umatilla River indicate the potential for groundwater discharge. Groundwater discharge to the Umatilla River generally occurs in the upper part of the basin, upstream from the main stem.Groundwater development in the upper Umatilla River Basin began sometime after 1950 (Davies-Smith and others, 1988; Gonthier and Bolke, 1991). By water year 2010, groundwater use in the upper Umatilla River Basin was approximately 11,214 acre-feet (acre-ft). Total groundwater withdrawals for the study area were estimated at 7,575 acre-ft for irrigation, 3,173 acre-ft for municipal use, and 466 acre-ft for domestic use.Total groundwater flow into or from the study area depends locally on geology and hydraulic head distribution. Estimates of subsurface flow were calculated using the U.S. Geological Survey Columbia Plateau regional groundwater flow model. Net flux values range from 25,000 to 27,700 acre-ft per year and indicate that groundwater is moving out of the upper Umatilla River Basin into the lower Umatilla River Basin.Water level changes depend on storage changes within an aquifer, and storage changes depend on the storage properties of the aquifer, as well as recharge to or discharge from the aquifer. Groundwater level data in the upper Umatilla River Basin are mostly available from wells in Columbia River basalt units, which indicate areas of long-term water level declines in the Grande Ronde basalt unit near Pendleton and Athena, Oregon. Groundwater levels in the Wanapum basalt unit do not show long-term declines in the upper Umatilla River Basin. Because of pumping, some areas in the upper Umatilla River Basin have shown a decrease, or reversal, in the upward vertical head gradient.Key data needs are improvement of the spatial and temporal distribution of water-level data collection and continued monitoring of streamflow gaging sites. Additionally, refinement of recharge estimates would enhance understanding of the processes that provide the groundwater resources in the upper Umatilla River Basin.

  8. 76 FR 70442 - Clean Water Act Section 303(d): Availability of 28 Total Maximum Daily Loads (TMDLs) in Louisiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Hwy Fecal Coliform. to entrance of White Bayou (East Baton Rouge Parish) (Scenic). 040103 Comite River--Entrance of White Fecal Coliform. Bayou to Amite River. 040201 Bayou Manchac--Headwaters to Fecal Coliform... Blind River--From Amite River TSS. Diversion Canal to mouth at Lake Maurepas (Scenic). 040903 Bayou Cane...

  9. White sturgeon mitigation and restoration in the Columbia and Snake rivers upstream from Bonneville Dam, Annual Progress Report April 2006 - March 2007. Report C

    USGS Publications Warehouse

    Parsley, M.J.; Kofoot, P.

    2008-01-01

    Describe reproduction and early life history characteristics of white sturgeon populations in the Columbia River between Bonneville and Priest Rapids dams. Define habitat requirements for spawning and rearing white sturgeon and quantify the extent of habitat available in the Columbia River between Bonneville and Priest Rapids dams. Progress updates on young-of-the-year recruitment in Bonneville Reservoir and indices of white sturgeon spawning habitat for 2006 for McNary, John Day, The Dalles, and Bonneville dam tailrace spawning areas.

  10. 75 FR 81125 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Operation Regulation; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of... the Upper Mississippi River, mile 481.4, at Rock Island, Illinois. The deviation is necessary to allow... Rock Island, Illinois to open on signal if at least 24 hours advance notice is given for 44 days from...

  11. THE CHANNELS AND WATERS OF THE UPPER SALMON RIVER AREA, IDAHO. (HYDROLOGIC EVALUATION OF THE UPPER SALMON RIVER AREA)

    EPA Science Inventory

    The upper 1,800 square miles of the Salmon River drainage basin (17060201) in south-central Idaho is an area of great scenic beauty and little-disturbed natural environment. Proper development and use of this land and its natural resources are contingent on a multifaceted and de...

  12. Status and risk of extinction for westslope cutthroat trout in the Upper River Basin, Montana

    Treesearch

    Bradley B. Shepard; Brian Sanborn; Linda Ulmer; Danny C. Lee

    1997-01-01

    Westslope cutthroat trout Oncorhynchus clarki lewisi now occupy less than 5% of the subspecies' historical range within the upper Missouri River drainage in Montana. We assessed the risk of extinction for 144 known populations inhabiting streams within federally managed lands in the upper Missouri River basin using a Bayesian...

  13. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  14. Taking the pulse of a river system: first 20 years

    USGS Publications Warehouse

    Leake, Linda; Johnson, Barry

    2006-01-01

    Your doctor would not base decisions for your health care today on one physical examination when you were age three! You would reasonably expect decisions to be based on records from over your lifetime. Likewise, those responsible for monitoring the health of the Upper Mississippi River System want a more comprehensive way to diagnose problems and find treatment options. To begin developing a comprehensive view of the river, the five neighboring states of the Upper Mississippi River System and several Federal agencies formed a partnership in 1986 to monitor river conditions and long-term trends in the Upper Mississippi and Illinois Rivers.

  15. Simulated effects of proposed reservoir-development alternatives on streamflow quantity in the White River, Colorado and Utah

    USGS Publications Warehouse

    Kuhn, Gerhard; Ellis, S.R.

    1984-01-01

    Numerous reservoirs have been proposed for the White River basin in Colorado and Utah, primarily to provide water for oil-shale development. A multireservoir-flow model was used to simulate the effects of streamflow withdrawal at four of the proposed reservoirs using historical streamflow data from the 1932-81 water years. The proposed reservoirs considered in the study were Avery, Powell Park, Taylor Draw, and White River Reservoirs; construction of Taylor Draw Dam was completed during the study. Annual streamflow depletions from the White River ranging from about 93,000 to 226,000 acre-feet were simulated for the 50 year period. Simulated streamflow throughout the year generally became smaller and more constant as streamflow throughout the year generally became smaller and more constant as streamflow depletion increased. Minimum streamflow requirements would not have been met for a maximum of 13 years and water-use requirements associated with the proposed reservoirs would not have been met for a maximum of 3 years. The current water-use pattern, which depletes about 40,000 acre-feet per year and is dominated by irrigation of hay meadows and pastureland, was maintained in the simulation. Relations between reservoir active capacity and yield applicable to the White River also were developed. These relations show that reservoir storage of about 400,000 acre-feet is the maximum practicable for the White River. (USGS)

  16. Salinization of the Upper Colorado River - Fingerprinting Geologic Salt Sources

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Grauch, Richard I.

    2009-01-01

    Salt in the upper Colorado River is of concern for a number of political and socioeconomic reasons. Salinity limits in the 1974 U.S. agreement with Mexico require the United States to deliver Colorado River water of a particular quality to the border. Irrigation of crops, protection of wildlife habitat, and treatment for municipal water along the course of the river also place restrictions on the river's salt content. Most of the salt in the upper Colorado River at Cisco, Utah, comes from interactions of water with rock formations, their derived soil, and alluvium. Half of the salt comes from the Mancos Shale and the Eagle Valley Evaporite. Anthropogenic activities in the river basin (for example, mining, farming, petroleum exploration, and urban development) can greatly accelerate the release of constituents from these geologic materials, thus increasing the salt load of nearby streams and rivers. Evaporative concentration further concentrates these salts in several watersheds where agricultural land is extensively irrigated. Sulfur and oxygen isotopes of sulfate show the greatest promise for fingerprinting the geologic sources of salts to the upper Colorado River and its major tributaries and estimating the relative contribution from each geologic formation. Knowing the salt source, its contribution, and whether the salt is released during natural weathering or during anthropogenic activities, such as irrigation and urban development, will facilitate efforts to lower the salt content of the upper Colorado River.

  17. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Estimated Mean Annual Natural Groundwater Recharge, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every MRB_E2RF1catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is Estimated Mean Annual Natural Ground-Water Recharge in the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  18. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Surficial Geology

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of surficial geology types in square meters compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is the "Digital data set describing surficial geology in the conterminous US" (Clawges and Price, 1999).The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  19. Zion National Park, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though the Grand Canyon may receive all the attention due to its tremendous size, the smaller canyons of the Southwest are arguably more sublime. This true-color image of Zion Canyon in southwestern Utah was taken by the Enhanced Thematic Mapper plus aboard the Landsat 7 satellite on October 10, 2001. Zion Canyon is located in the lower half of the image amidst the crisscross pattern of rock formations. The canyon walls, made of red and white sandstone, rise 2,000-3,000 feet from the canyon floor and are peppered with hanging vegetation. Over a period of four million years, the Virgin River cut a path through the western edge of the Colorado Plateau to form the canyon. The river and its tributaries resemble branches across the gray-green landscape in the upper section of the image. They eventually join the canyon, often as spectacular slot canyons only a few feet wide, and exit at the bottom of the image on the way to the Colorado River. Image by Robert Simmon, based on data provided by the Landsat 7 Science Team and the Arizona Regional Image Archive

  20. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  1. Upper South Platte Watershed Protection and Restoration Project

    Treesearch

    Steve Culver; Cindy Dean; Fred Patten; Jim Thinnes

    2001-01-01

    The Upper South Platte Basin is a critical watershed in Colorado. Nearly 80 percent of the water used by the 1.5 million Denver metropolitan residents comes from or is transmitted through this river drainage. The Colorado Unified Watershed Assessment identified the Upper South Platte River as a Category 1 watershed in need of restoration. Most of the river basin is...

  2. Strategic PSYOP Management: A Marketing Management Approach

    DTIC Science & Technology

    2005-03-01

    Armstrong, Gary & Kotler , Philip , (2005). Marketing: An Introduction. Upper Saddle River, New Jersey: Prentice Hall. Daft, Richard L., (2001). Essentials of...Briefing presented at the John F. Kennedy Special Warfare Center, Fort Bragg, North Carolina. Kotler , Philip , (2003). A Framework for Marketing...Management. Upper Saddle River, New Jersey: Prentice Hall. Kotler , Philip , & Armstrong, Gary, (2004). Principles of marketing. Upper Saddle River, New

  3. Determination of the 100-year flood plain on Upper Three Runs and selected tributaries, and the Savannah River at the Savannah River site, South Carolina, 1995

    USGS Publications Warehouse

    Lanier, T.H.

    1996-01-01

    The 100-year flood plain was determined for Upper Three Runs, its tributaries, and the part of the Savannah River that borders the Savannah River Site. The results are provided in tabular and graphical formats. The 100-year flood-plain maps and flood profiles provide water-resource managers of the Savannah River Site with a technical basis for making flood-plain management decisions that could minimize future flood problems and provide a basis for designing and constructing drainage structures along roadways. A hydrologic analysis was made to estimate the 100-year recurrence- interval flow for Upper Three Runs and its tributaries. The analysis showed that the well-drained, sandy soils in the head waters of Upper Three Runs reduce the high flows in the stream; therefore, the South Carolina upper Coastal Plain regional-rural-regression equation does not apply for Upper Three Runs. Conse- quently, a relation was established for 100-year recurrence-interval flow and drainage area using streamflow data from U.S. Geological Survey gaging stations on Upper Three Runs. This relation was used to compute 100-year recurrence-interval flows at selected points along the stream. The regional regression equations were applicable for the tributaries to Upper Three Runs, because the soil types in the drainage basins of the tributaries resemble those normally occurring in upper Coastal Plain basins. This was verified by analysis of the flood-frequency data collected from U.S. Geological Survey gaging station 02197342 on Fourmile Branch. Cross sections were surveyed throughout each reach, and other pertinent data such as flow resistance and land-use were col- lected. The surveyed cross sections and computed 100-year recurrence-interval flows were used in a step-backwater model to compute the 100-year flood profile for Upper Three Runs and its tributaries. The profiles were used to delineate the 100-year flood plain on topographic maps. The Savannah River forms the southwestern border of the Savannah River Site. Data from previously published reports were used to delineate the 100-year flood plain for the Savannah River from the downstream site boundary at the mouth of Lower Three Runs at river mile 125 to the upstream site boundary at river mile 163.

  4. Diet of first-feeding larval and young-of-the-year white sturgeon in the lower Columbia River

    USGS Publications Warehouse

    Muir, W.D.; McCabe, G.T.; Parsley, M.J.; Hinton, S.A.

    2000-01-01

    In some Snake and Columbia River reservoirs, adult white sturgeon (Acipenser transmontanus) are common but few juvenile fish are found, indicating a lack of spawning success or poor survival of larvae. In contrast, recruitment of young-of-the-year white sturgeon to juvenile and adult stages is successful in the unimpounded Columbia River downstream of Bonneville Dam. The availability and size of preferred prey during the period when white sturgeon larvae begin exogenous feeding could be an important determinant of year-class strength. To explore this issue, we examined the diet composition of 352 larval and young-of-the year white sturgeon collected from 1989 through 1991 in the lower Columbia River. Samples were collected downstream from Bonneville Dam and upstream from the dam in Bonneville and The Dalles Reservoirs. Fish that ranged in size from 15 to 290 mm in total length fed primarily on gammarid amphipods (Corophium spp.) during all months. This diet item became increasingly important to all sizes of white sturgeon examined as they grew. The length of Corophium spp. eaten by larval and young-of-the-year white sturgeon increased with increasing fish length (r2 = 45.6%, P < 0.0001). Copepods (Cyclopoida), Ceratopogonidae larvae, and Diptera pupae and larvae (primarily chironomids) were also consumed, especially at the onset of exogenous feeding. A small percentage of white sturgeon were found with empty stomachs during June (1.6% downstream from Bonneville Dam) and July (4.5% downstream and 2.6% in the reservoirs). Diets of larval and young-of-the year white sturgeon from both impounded and free-flowing sections of the Columbia River were similar and we found no evidence of larval starvation in the areas investigated, areas currently supporting healthy white sturgeon populations.

  5. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rien, Thomas A.; Beiningen, Kirk T.

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  6. The Atlantic-Mediterranean watershed, river basins and glacial history shape the genetic structure of Iberian poplars.

    PubMed

    Macaya-Sanz, D; Heuertz, M; López-de-Heredia, U; De-Lucas, A I; Hidalgo, E; Maestro, C; Prada, A; Alía, R; González-Martínez, S C

    2012-07-01

    Recent phylogeographic studies have elucidated the effects of Pleistocene glaciations and of Pre-Pleistocene events on populations from glacial refuge areas. This study investigates those effects in riparian trees (Populus spp.), whose particular features may convey enhanced resistance to climate fluctuations. We analysed the phylogeographic structure of 44 white (Populus alba), 13 black (Populus nigra) and two grey (Populus x canescens) poplar populations in the Iberian Peninsula using plastid DNA microsatellites and sequences. We also assessed fine-scale spatial genetic structure and the extent of clonality in four white and one grey poplar populations using nuclear microsatellites and we determined quantitative genetic differentiation (Q(ST) ) for growth traits in white poplar. Black poplar displayed higher regional diversity and lower differentiation than white poplar, reflecting its higher cold-tolerance. The dependence of white poplar on phreatic water was evidenced by strong differentiation between the Atlantic and Mediterranean drainage basins and among river basins, and by weaker isolation by distance within than among river basins. Our results suggest confinement to the lower river courses during glacial periods and moderate interglacial gene exchange along coastlines. In northern Iberian river basins, white poplar had lower diversity, fewer private haplotypes and larger clonal assemblies than in southern basins, indicating a stronger effect of glaciations in the north. Despite strong genetic structure and frequent asexual propagation in white poplar, some growth traits displayed adaptive divergence between drainage and river basins (Q(ST) >F(ST)), highlighting the remarkable capacity of riparian tree populations to adapt to regional environmental conditions. © 2012 Blackwell Publishing Ltd.

  7. Reevaluation of the Crooked Ridge River- Early Pleistocene (ca. 2 Ma) age and origin of the White Mesa Alluvium, northeastern Arizona

    USGS Publications Warehouse

    Hereford, Richard; Beard, Sue; Dickinson, William R.; Karlstrom, Karl E.; Heizler, Matthew T.; Crossey, Laura J.; Amoroso, Lee; House, P. Kyle; Pecha, Mark

    2016-01-01

    Essential features of the previously named and described Miocene Crooked Ridge River in northeastern Arizona (USA) are reexamined using new geologic and geochronologic data. Previously it was proposed that Cenozoic alluvium at Crooked Ridge and southern White Mesa was pre–early Miocene, the product of a large, vigorous late Paleogene river draining the 35–23 Ma San Juan Mountains volcanic field of southwestern Colorado. The paleoriver probably breeched the Kaibab uplift and was considered important in the early evolution of the Colorado River and Grand Canyon. In this paper, we reexamine the character and age of these Cenozoic deposits. The alluvial record originally used to propose the hypothetical paleoriver is best exposed on White Mesa, providing the informal name White Mesa alluvium. The alluvium is 20–50 m thick and is in the bedrock-bound White Mesa paleovalley system, which comprises 5 tributary paleochannels. Gravel composition, detrital zircon data, and paleochannel orientation indicate that sediment originated mainly from local Cretaceous bedrock north, northeast, and south of White Mesa. Sedimentologic and fossil evidence imply alluviation in a low-energy suspended sediment fluvial system with abundant fine-grained overbank deposits, indicating a local channel system rather than a vigorous braided river with distant headwaters. The alluvium contains exotic gravel clasts of Proterozoic basement and rare Oligocene volcanic clasts as well as Oligocene–Miocene detrital sanidine related to multiple caldera eruptions of the San Juan Mountains and elsewhere. These exotic clasts and sanidine likely came from ancient rivers draining the San Juan Mountains. However, in this paper we show that the White Mesa alluvium is early Pleistocene (ca. 2 Ma) rather than pre–early Miocene. Combined 40Ar/39Ar dating of an interbedded tuff and detrital sanidine ages show that the basal White Mesa alluvium was deposited at 1.993 ± 0.002 Ma, consistent with a detrital sanidine maximum depositional age of 2.02 ± 0.02 Ma. Geomorphic relations show that the White Mesa alluvium is older than inset gravels that are interbedded with 1.2–0.8 Ma Bishop–Glass Mountain tuff. The new ca. 2 Ma age for the White Mesa alluvium refutes the hypothesis of a large regional Miocene(?) Crooked Ridge paleoriver that predated carving of the Grand Canyon. Instead, White Mesa paleodrainage was the northernmost extension of the ancestral Little Colorado River drainage basin. This finding is important for understanding Colorado River evolution because it provides a datum for quantifying rapid post–2 Ma regional denudation of the Grand Canyon region.

  8. 1. BLACK RIVER CANAL PARSHALL FLUME AT UPPER END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BLACK RIVER CANAL - PARSHALL FLUME AT UPPER END OF SUPPLY (USED BY STATE ENGINEER). VIEW TO NORTHEAST - Carlsbad Irrigation District, Black River Canal, 15 miles Southeast of Carlsbad near Malaga, Carlsbad, Eddy County, NM

  9. Capture of white sturgeon larvae downstream of The Dalles Dam, Columbia River, Oregon and Washington, 2012

    USGS Publications Warehouse

    Parsley, Michael J.; Kofoot, Eric

    2013-01-01

    Wild-spawned white sturgeon (Acipenser transmontanus) larvae captured and reared in aquaculture facilities and subsequently released, are increasingly being used in sturgeon restoration programs in the Columbia River Basin. A reconnaissance study was conducted to determine where to deploy nets to capture white sturgeon larvae downstream of a known white sturgeon spawning area. As a result of the study, 103 white sturgeon larvae and 5 newly hatched free-swimming embryos were captured at 3 of 5 reconnaissance netting sites. The netting, conducted downstream of The Dalles Dam on the Columbia River during June 25–29, 2012, provided information for potentially implementing full-scale collection efforts of large numbers of larvae for rearing in aquaculture facilities and for subsequent release at a larger size in white sturgeon restoration programs.

  10. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    NASA Astrophysics Data System (ADS)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  11. 78 FR 5176 - CED White River Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-764-000] CED White River Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... River Solar, LLC's application for market-based rate authority, with an accompanying rate schedule...

  12. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes from the mountain indicates that rockfalls, glaciers, debris flows, and main-stem flooding act sequentially to deliver sediment from Mount Rainier to river reaches in the Puget Lowland over decadal time scales. Greater-than-normal runoff was associated with cool phases of the Pacific Decadal Oscillation. Streamflow-gaging station data from four unregulated rivers directly draining Mount Rainier indicated no statistically significant trends of increasing peak flows over the course of the 20th century. The total sediment load of the upper Nisqually River from 1945 to 2011 was determined to be 1,200,000±180,000 tonnes/yr. The suspended-sediment load in the lower Puyallup River at Puyallup, Washington, was 860,000±300,000 tonnes/yr between 1978 and 1994, but the long-term load for the Puyallup River likely is about 1,000,000±400,000 tonnes/yr. Using a coarse-resolution bedload transport relation, the long-term average bedload was estimated to be about 30,000 tonnes/yr in the lower White River near Auburn, Washington, which was four times greater than bedload in the Puyallup River and an order of magnitude greater than bedload in the Carbon River. Analyses indicate a general increase in the sediment loads in Mount Rainier rivers in the 1990s and 2000s relative to the time period from the 1960s to 1980s. Data are insufficient, however, to determine definitively if post-1990 increases in sediment production and transport from Mount Rainier represent a statistically significant increase relative to sediment-load values typical from Mount Rainier during the entire 20th century. One-dimensional river-hydraulic and sediment-transport models simulated the entrainment, transport, attrition, and deposition of bed material. Simulations showed that bed-material loads were largest for the Nisqually River and smallest for the Carbon River. The models were used to simulate how increases in sediment supply to rivers transport through the river systems and affect lowland reaches. For each simulation, the input sediment pulse evolved through a combination of translation, dispersion, and attrition as it moved downstream. The characteristic transport times for the median sediment-size pulse to arrive downstream for the Nisqually, Carbon, Puyallup, and White Rivers were approximately 70, 300, 80, and 60 years, respectively.

  13. Mining-related metals in terrestrial food webs of the upper Clark Fork River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorok, R.A.; LaTier, A.J.; Butcher, M.K.

    1994-12-31

    Fluvial deposits of tailings and other mining-related waste in selected riparian habitats of the Upper Clark Fork River basin (Montana) have resulted in metals enriched soils. The significance of metals exposure to selected wildlife species was evaluated by measuring tissue residues of metals (arsenic, cadmium, copper, lead, zinc) in key dietary species, including dominant grasses (tufted hair grass and redtop), willows, alfalfa, barley, invertebrates (grasshoppers, spiders, and beetles), and deer mice. Average metals concentrations in grasses, invertebrates, and deer mice collected from tailings-affected sites were elevated relative to reference to reference levels. Soil-tissue bioconcentration factors for grasses and invertebrates weremore » generally lower than expected based on the range of values in the literature, indicating the reduced bioavailability of metals from mining waste. In general, metals concentrations in willows, alfalfa, and barley were not elevated above reference levels. Using these data and plausible assumptions for other exposure parameters for white-tailed deer, red fox, and American kestrel, metals intake was estimated for soil and diet ingestion pathways. Comparisons of exposure estimates with toxicity reference values indicated that the elevated concentrations of metals in key food web species do not pose a significant risk to wildlife.« less

  14. A Synoptic Survey of Nitrogen and Phosphorus in Tributary Streams and Great Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    We combined stream chemistry and hydrology data from surveys of 467 tributary stream sites and 447 great river sites in the Upper Mississippi River basin to provide a regional snapshot of baseflow total nitrogen (TN) and total phosphorus (TP) concentrations, and to investigate th...

  15. Do riparian plant community characteristics differ between Tamarix (L.) invaded and non-invaded sites on the upper Verde River, Arizona?

    Treesearch

    Tyler D. Johnson; Thomas E. Kolb; Alvin L. Medina

    2009-01-01

    Invasion by Tamarix (L.) can severely alter riparian areas of the western U.S., which are globally rare ecosystems. The upper Verde River, Arizona, is a relatively free-flowing river and has abundant native riparian vegetation. Tamarix is present on the upper Verde but is a minor component of the vegetation (8% of stems). This...

  16. 36 CFR 7.5 - Mount Rainier National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (ii) The Mather Memorial Parkway (State Route 410) from its intersection with the White River Road north to the park boundary. (iii) The White River Road from its intersection with the Mather Memorial...

  17. 36 CFR 7.5 - Mount Rainier National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (ii) The Mather Memorial Parkway (State Route 410) from its intersection with the White River Road north to the park boundary. (iii) The White River Road from its intersection with the Mather Memorial...

  18. 36 CFR 7.5 - Mount Rainier National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (ii) The Mather Memorial Parkway (State Route 410) from its intersection with the White River Road north to the park boundary. (iii) The White River Road from its intersection with the Mather Memorial...

  19. 36 CFR 7.5 - Mount Rainier National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (ii) The Mather Memorial Parkway (State Route 410) from its intersection with the White River Road north to the park boundary. (iii) The White River Road from its intersection with the Mather Memorial...

  20. 36 CFR 7.5 - Mount Rainier National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (ii) The Mather Memorial Parkway (State Route 410) from its intersection with the White River Road north to the park boundary. (iii) The White River Road from its intersection with the Mather Memorial...

  1. Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: surficial geology

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of surficial geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Digital data set describing surficial geology in the conterminous US" (Clawges and Price, 1999). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  2. Fish communities of the Buffalo River Basin and nearby basins of Arkansas and their relation to selected environmental factors, 2001-2002

    USGS Publications Warehouse

    Petersen, James C.

    2004-01-01

    The Buffalo River lies in north-central Arkansas and is a tributary of the White River. Most of the length of the Buffalo River lies within the boundaries of Buffalo National River, a unit of the National Park Service; the upper 24 river kilometers lie within the boundary of the Ozark National Forest. Much of the upper and extreme lower parts of the basin on the south side of the Buffalo River is within the Ozark National Forest. During the summers of 2001 and 2002, fish communities were sampled at 52 sites in the study area that included the Buffalo River Basin and selected smaller nearby basins within the White River Basin in north-central Arkansas. Water quality (including nutrient and bacteria concentrations) and several other environmental factors (such as stream size, land use, substrate size, and riparian shading) also were measured. A total of 56 species of fish were collected from sites within the Buffalo River Basin in 2001 and 2002. All 56 species also were collected from within the boundaries of Buffalo National River. Twenty-two species were collected from headwater sites on tributaries of the Buffalo River; 27 species were collected from sites within or immediately adjacent to the Ozark National Forest. The list of species collected from Buffalo National River is similar to the list of species reported by previous investigators. Species richness at sites on the mainstem of the Buffalo River generally increased in a downstream direction. The number of species collected (both years combined) increased from 17 at the most upstream site to 38 near the mouth of the Buffalo River. In 2001 and 2002, a total of 53 species of fish were collected from sites outside the Buffalo River Basin. Several fish community metrics varied among sites in different site categories (mainstem, large tributary, small tributary, headwater, and developed out-of-basin sites). Median relative abundances of stonerollers ranged from about 25 to 55 percent and were highest at headwater and developed out-of-basin sites and lowest at mainstem sites. The relative abundances at the headwater and developed out-of-basin sites were significantly different from the relative abundances at the mainstem sites. Percentages of individuals of algivorous/herbivorous, invertivorous, and piscivorous species at headwater sites were significantly lower than values at mainstem and developed out-of-basin sites. Percentages of individuals of invertivorous species at mainstem sites were significantly higher than values at small tributary, headwater, and developed out-of-basin sites. Percentages of top carnivores at mainstem sites were significantly higher than values at tributary and headwater sites. The numbers of darter, sculpin, plus madtom species at mainstem, large tributary, and developed out-of-basin sites were significantly higher than values at other sites, and the values at small tributary sites and headwater sites were each significantly different from values at the other four types of sites. The number of lithophilic spawning species at large tributary sites was not significantly different from values at mainstem and developed out-of-basin sites, but values for small tributary and headwater sites each were significantly different from values for all other categories. Index of biotic integrity scores varied among the site categories. Scores for mainstem sites were significantly larger than all but large tributary site scores. Scores for headwater sites were significantly smaller than mainstem and large tributary site scores. Several analyses of the data described in this report suggest that drainage area is the most important single factor influencing fish communities of the Buffalo River Basin and nearby basins. Species richness increases with increasing drainage area and some species are restricted to smaller streams while other species are more common in larger streams. Some community metrics also are related to land use and related factors

  3. White sturgeon spawning and rearing habitat in the lower Columbia River

    USGS Publications Warehouse

    Parsley, Michael J.; Beckman, Lance G.

    1994-01-01

    Estimates of spawning habitat for white sturgeons Acipenser transmontanus in the tailraces of the four dams on the lower 470 km of the Columbia River were obtained by using the Physical Habitat Simulation System of the U.S. Fish and Wildlife Service's Instream Flow Incremental Methodology to identify areas with suitable water depths, water velocities, and substrates. Rearing habitat throughout the lower Columbia River was assessed by using a geographic information system to identify areas with suitable water depths and substrates. The lowering of spring and summer river discharges from hydropower system operation reduces the availability of spawning habitat for white sturgeons. The four dam tailraces in the study area differ in the amount and quality of spawning habitat available at various discharges; the differences are due to channel morphology. The three impoundments and the free-flowing Columbia River downstream from Bonneville Dam provide extensive areas that are physically suitable for rearing young-of-the-year and juvenile white sturgeons.

  4. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  5. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    USGS Publications Warehouse

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by fertilizer or animal waste. Wells at the Blackwater Creek and Hillsborough River at State Road 39 transects showed little seasonal variation in dissolved organic carbon. Dissolved organic carbon concentrations, however, were greater during the wet season than during the dry season at the Hillsborough River Tract transect, indicating some influence from surface-water sources. During dry periods, streamflow in the upper Hillsborough River was sustained by ground water from the underlying Upper Floridan aquifer. During wet periods, streamflow had additional contributions from runoff, and release of water from extensive riverine wetlands, and by overflow from the Withlacoochee River. In contrast, streamflow in Blackwater and Itchepackesassa Creeks was less constant, with many no-flow days occurring during dry periods. During wet season storm events, streamflow peaks occur more rapidly because there is greater confinement between the surficial deposits and the Upper Floridan aquifer, and these creeks have been highly channelized, leaving less of the adjacent wetlands intact. During dry periods, Blackwater Creek is dry upstream from its confluence with Itchepackesassa Creek, and all downstream flow is from Itchepackesassa Creek. Much of the dry season flow in Itchepackesassa Creek originates from a treated wastewater effluent outfall located on East Canal. Long-term streamflow at the Hillsborough River and Blackwater Creek stations was greater than the discharge observed during the study period. Water quality in the upper Hillsborough River is influenced by ground-water discharge. The chemical composition of water from Blackwater Creek, Itchepackesassa Creek, and East Canal was more variable because there was less ground-water discharge to these creeks than to the upper Hillsborough River, and because of the influence of wastewater effluent. Strontium isotope data indicated that the source of the water at all Hillsborough River sites during the dry season was the Oli

  6. Hydrologic and landscape database for the Cache and White River National Wildlife Refuges and contributing watersheds in Arkansas, Missouri, and Oklahoma

    USGS Publications Warehouse

    Buell, Gary R.; Wehmeyer, Loren L.; Calhoun, Daniel L.

    2012-01-01

    A hydrologic and landscape database was developed by the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, for the Cache River and White River National Wildlife Refuges and their contributing watersheds in Arkansas, Missouri, and Oklahoma. The database is composed of a set of ASCII files, Microsoft Access® files, Microsoft Excel® files, an Environmental Systems Research Institute (ESRI) ArcGIS® geodatabase, ESRI ArcGRID® raster datasets, and an ESRI ArcReader® published map. The database was developed as an assessment and evaluation tool to use in examining refuge-specific hydrologic patterns and trends as related to water availability for refuge ecosystems, habitats, and target species; and includes hydrologic time-series data, statistics, and hydroecological metrics that can be used to assess refuge hydrologic conditions and the availability of aquatic and riparian habitat. Landscape data that describe the refuge physiographic setting and the locations of hydrologic-data collection stations are also included in the database. Categories of landscape data include land cover, soil hydrologic characteristics, physiographic features, geographic and hydrographic boundaries, hydrographic features, regional runoff estimates, and gaging-station locations. The database geographic extent covers three hydrologic subregions—the Lower Mississippi–St Francis (0802), the Upper White (1101), and the Lower Arkansas (1111)—within which human activities, climatic variation, and hydrologic processes can potentially affect the hydrologic regime of the refuges and adjacent areas. Database construction has been automated to facilitate periodic updates with new data. The database report (1) serves as a user guide for the database, (2) describes the data-collection, data-reduction, and data-analysis methods used to construct the database, (3) provides a statistical and graphical description of the database, and (4) provides detailed information on the development of analytical techniques designed to assess water availability for ecological needs.

  7. 6. DETAIL VIEW OF BRIDGE DATEPLATE WHICH READS '1930, WHITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF BRIDGE DATEPLATE WHICH READS '1930, WHITE RIVER BRIDGE, ARKANSAS HIGHWAY COMMISSION, DWIGHT BLACKWOOD, CHAIRMAN, JUSTIN MATTHEWS, J. LAN WILLIAMS, J.S. PARKS, SAM J. WILSON, COMMISSIONERS, C.S. CHRISTIAN, STATE HIGHWAY ENGINEER, IRA HEDRICK, INC., CONSULTING ENGINEERS, PARHAM CONT. CO., CONTRACTOR' - Augusta Bridge, Spanning White River at Highway 64, Augusta, Woodruff County, AR

  8. A ROBUST DESIGN FOR THE ASSESSMENT OF A GREAT RIVER, ENVIRONMENTAL MONITORING, AND ASSESSMENT PROGRAM - UPPER MISSOURI RIVER (EMAP-UMR)

    EPA Science Inventory

    Great Rivers and reservoirs are complex, trans-border resources that are difficult and expensive to assess, monitor and manage. EMAP-UMR is a five-year effort to develop the methodology for Great River assessments, using the Upper Missouri as a test case. A major early achievemen...

  9. Flood-plain study of the Upper Iowa River in the vicinity of Decorah, Iowa

    USGS Publications Warehouse

    Christiansen, Daniel E.; Eash, David A.

    2008-01-01

    The city of Decorah, Iowa, has experienced severe flooding from the Upper Iowa River resulting in property damage to homes and businesses. Streamflow data from two U.S. Geological Survey (USGS) streamflow-gaging stations, the Upper Iowa River at Decorah, Iowa (station number 05387500), located upstream from the College Drive bridge; and the Upper Iowa River near Decorah, Iowa (station number 05388000), at the Clay Hill Road bridge (locally known as the Freeport bridge) were used in the study. The three largest floods on the Upper Iowa River at Decorah occurred in 1941, 1961, and 1993, for which the estimated peak discharges were 27,200 cubic feet per second (ft3/s), 20,200 ft3/s, and 20,500 ft3/s, respectively. Flood-discharge information can be obtained from the World Wide Web at URL (uniform resource locator) http://waterdata.usgs.gov/nwis/. In response to the need to provide the City of Decorah and other flood-plain managers with an assessment of the risks of flooding to properties and facilities along an 8.5-mile (mi) reach of the Upper Iowa River, the USGS, in cooperation with the City of Decorah, initiated a study to map 100- and 500-year flood-prone areas.

  10. Gonad organochlorine concentrations and plasma steroid levels in white sturgeon (Acipenser transmontanus) from the Columbia River, USA

    USGS Publications Warehouse

    Foster, E.P.; Fitzpatrick, M.S.; Feist, G.W.; Schreck, C.B.; Yates, J.

    2001-01-01

    Sturgeon are an important fishery resource world-wide, providing food and income through commercial, sport, and tribal fisheries. However, sturgeon populations are imperiled in many areas due to overharvest, habitat loss, and pollution. White Sturgeon (Acipenser transmontanus) are found along the west coast of North America from San Francisco Bay, USA to British Columbia, Canada. The Columbia River, located in the Pacific Northwest USA, supports active commercial, sport, and tribal white sturgeon fisheries. The white sturgeon fishery in the Columbia River estuary is one of the most productive sturgeon fisheries in the World. Despite the success of the Columbia River estuary white sturgeon fishery, the populations within the impounded sections (i.e. behind the hydroelectric dams) of the Columbia River experience poor reproductive success (Beamesderfer et al. 1995). This poor reproductive success has been attributed to hydroelectric development, but water pollution could also be a significant factor. The bottom dwelling life history and late maturing reproductive strategy for this species may make it particularly sensitive to the adverse effects of bioaccumulative pollutants.The Columbia River receives effluent from bleached-kraft pulp mills, aluminum smelters, municipal sewage treatment plants and runoff from agricultural. industrial, and urban areas. Bioaccumulative contaminants that have the potential for endocrine disruption have been detected in fish and sediments from the Columbia River (Foster et al. 1999). An integrated system of hormones control reproduction in vertebrates. Plasma steroids direct developmental events essential for reproduction. Disruption of endocrine control by contaminants has been linked to reproductive anomalies and failure in a number of vertebrate species (Guillette et al. 1996; Jobling et al. 1996). Because of this, it is important to understand if organochlorine compounds are accumulating in Columbia River white sturgeon and having an effect on their reproductive physiology.The objective of this study was to determine if sturgeon from an impounded section of the Columbia River (where reproductive success has been low) had higher levels of bioaccumulative pollutants than sturgeon from the estuary (where reproductive success has been high) and if these compounds were associated with decreased plasma steroid levels. Specifically, we measured chlorinated pesticides and PCBs in the gonads and plasma steroids in white sturgeon from the Columbia River fishery.

  11. Population impacts in white sucker (Catostomus commersonii) exposed to oil sands-derived contaminants in the Athabasca River.

    PubMed

    Arens, Collin J; Arens, Jennifer C; Hogan, Natacha S; Kavanagh, Richard J; Berrue, Fabrice; Van Der Kraak, Glen J; van den Heuvel, Michael R

    2017-08-01

    Biological and chemical endpoints were measured in white sucker collected downstream of Athabasca oil sands developments (AB, Canada) and compared with those at Calling Lake (AB, Canada), a reference location upstream of the Athabasca oil sands deposit. Naphthenic acid concentrations were also measured at 14 sites in the Athabasca River watershed. Concentrations of naphthenic acids were elevated in tributaries adjacent to oil sands mining developments. Tributary naphthenic acid profiles were more similar to aged oil sands process water than samples from the Athabasca River, suggesting an influence of tailings in the tributaries. White sucker showed higher energy storage in the Athabasca River as indicated by significantly higher condition and liver size. White sucker were not investing that energy into reproductive effort as measured by gonad size and fecundity, which were significantly reduced relative to the reference location. White sucker showed increased exposure to polycyclic aromatic hydrocarbons as indicated by hepatic cytochrome P4501A (CYP1A) activity and fluorescent bile metabolites, as well as higher concentrations of naphthenic acids in bile. Cadmium, copper, nickel, and selenium were also elevated in white sucker liver tissue compared with the reference location. Based on the exposure profile and response pattern observed, effects on energy storage and utilization in white sucker from the Athabasca River most likely resulted from exposure to polycyclic aromatic hydrocarbons derived from petrogenic and pyrolytic sources. Environ Toxicol Chem 2017;36:2058-2067. © 2017 SETAC. © 2017 SETAC.

  12. Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rinella, F.A.; McKenzie, S.W.; Wille, S.A.

    1981-01-01

    During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)

  13. Modeling water quality, temperature, and flow in Link River, south-central Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.

    2016-09-09

    The 2.1-km (1.3-mi) Link River connects Upper Klamath Lake to the Klamath River in south-central Oregon. A CE-QUAL-W2 flow and water-quality model of Link River was developed to provide a connection between an existing model of the upper Klamath River and any existing or future models of Upper Klamath Lake. Water-quality sampling at six locations in Link River was done during 2013–15 to support model development and to provide a better understanding of instream biogeochemical processes. The short reach and high velocities in Link River resulted in fast travel times and limited water-quality transformations, except for dissolved oxygen. Reaeration through the reach, especially at the falls in Link River, was particularly important in moderating dissolved oxygen concentrations that at times entered the reach at Link River Dam with marked supersaturation or subsaturation. This reaeration resulted in concentrations closer to saturation downstream at the mouth of Link River.

  14. Sediment transport and water-quality characteristics and loads, White River, northwestern Colorado, water years 1975-88

    USGS Publications Warehouse

    Tobin, R.L.

    1993-01-01

    Streamflow, sediment, and water-quality data are summarized for 6 sites on the White River, Colorado for water years 1975-88. Correlation techniques were used to estimate annual data for unmeasured years. Annual stream discharge in the main stem of the White River ranged from about 200,000 to about 1 million acre-feet. Generally, bedload was less than/= 3.3 percent of total sediment load. Annual suspended-sediment loads ranged from about 2,100 tons at the upstream sites on the North Fork and South Fork of the White River to about 2 million tons at the most downstream site. Average annual suspended-sediment loads ranged from about 11,000 tons at the upstream sites to about 705,000 tons at the most downstream site. Annual capacity losses in a 50,000 acre-ft reservoir could range from less than 0.01 percent near upstream sites to about 2.5 percent near downstream sites. Maximum water temperatures in the White River ranged from less than 20 to 25 C in summer. Specific conductance ranged from 200 to 1,000 microsiemens/cm. Generally, values of pH ranged from 7.6 to 8.8, and concentrations of dissolved oxygen were greater than 6.0 mg/L. In small streamflows, values of pH and dissolved oxygen were affected by biologic processes. Composition of dissolved solids in the White River was mostly calcium, bicarbonate, and(or) sulfate. Changes in the composition of dissolved solids caused by the changes in the concentrations of sodium and sulfate were greatest in small stream discharges. Annual loads of dissolved solids ranged from 21,100 tons in the South Fork to about 480,000 tons at the most downstream site. Total solids transport in the White River was mostly as dissolved solids at upstream sites and mostly as suspended sediment at downstream sites. Concentration ranges of nutrients and trace constituents were determined.

  15. 4. REAR (NORTH) FACADE OF THE UPPER FALLS GATE HOUSE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. REAR (NORTH) FACADE OF THE UPPER FALLS GATE HOUSE. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  16. Multistate models of bigheaded carps in the Illinois River reveal spatial dynamics of invasive species

    USGS Publications Warehouse

    Coulter, Alison A; Brey, Marybeth; Lubejko, Matthew; Kallis, Jahn L; Glover, David C.; Whitledge, Gregory W; Garvey, James E.

    2018-01-01

    Knowledge of the spatial distributions and dispersal characteristics of invasive species is necessary for managing the spread of highly mobile species, such as invasive bigheaded carps (Bighead Carp [Hypophthalmichthys nobilis] and Silver Carp [H. molitrix]). Management of invasive bigheaded carps in the Illinois River has focused on using man-made barriers and harvest to limit dispersal towards the Laurentian Great Lakes. Acoustic telemetry data were used to parameterize multistate models to examine the spatial dynamics of bigheaded carps in the Illinois River to 1) evaluate the effects of current dams on movement, 2) identify how individuals distribute among pools, and 3) gauge the effects of reductions in movement towards the invasion front. Multistate models estimated that movement was generally less likely among upper river pools (Starved Rock, Marseilles, and Dresden Island) than the lower river (La Grange and Peoria) which matched the pattern of gated vs. wicket style dams. Simulations using estimated movement probabilities indicated that Bighead Carp accumulate in La Grange Pool while Silver Carp accumulate in Alton Pool. Fewer Bighead Carp reached the upper river compared to Silver Carp during simulations. Reducing upstream movement probabilities (e.g., reduced propagule pressure) by ≥ 75% into any of the upper river pools could reduce upper river abundance with similar results regardless of location. Given bigheaded carp reproduction in the upper Illinois River is limited, reduced movement towards the invasion front coupled with removal of individuals reaching these areas could limit potential future dispersal towards the Great Lakes.

  17. Synthetic Minor NSR Permit: Anadarko Uintah Midstream, LLC - White River Compressor Station

    EPA Pesticide Factsheets

    This page contains documents relevant to the synthetic minor NSR permi for the Anadarko Uintah Midstream, LLC, White River Compressor Station, located on Indian country lands within the Uintah and Ouray Indian Reservation.

  18. Salmon and steelhead in the White Salmon River after the removal of Condit Dam–Planning efforts and recolonization results

    USGS Publications Warehouse

    Allen, Brady; Engle, Rod O; Zendt, Joseph S; Shrier, Frank C; Wilson, Jeremy T; Connolly, Patrick J.

    2016-01-01

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and completely removed in 2012. This action opened habitat to migratory fish for the first time in 100 years. The White Salmon Working Group was formed to create plans for fish salvage in preparation for fish recolonization and to prescribe the actions necessary to restore anadromous salmonid populations in the White Salmon River after Condit Dam removal. Studies conducted by work group members and others served to inform management decisions. Management options for individual species were considered, including natural recolonization, introduction of a neighboring stock, hatchery supplementation, and monitoring natural recolonization for some time period to assess the need for hatchery supplementation. Monitoring to date indicates that multiple species and stocks of anadromous salmonids are finding and spawning in the now accessible and recovering habitat.

  19. Fishes of the White River basin, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  20. An Index of Ecological Condition Based on Great River Fish Assemblages

    EPA Science Inventory

    I will be presenting this talk at a workshop titled: Examining biological indicators for the Upper Mississippi River: Applications in Clean Water Act (CWA) and ecosystem restoration programs. This workshop is sponsored by the Upper Mississippi River Basin Association to frame th...

  1. Characterization of instream hydraulic and riparian habitat conditions and stream temperatures of the Upper White River Basin, Washington, using multispectral imaging systems

    USGS Publications Warehouse

    Black, Robert W.; Haggland, Alan; Crosby, Greg

    2003-01-01

    Instream hydraulic and riparian habitat conditions and stream temperatures were characterized for selected stream segments in the Upper White River Basin, Washington. An aerial multispectral imaging system used digital cameras to photograph the stream segments across multiple wavelengths to characterize fish habitat and temperature conditions. All imageries were georeferenced. Fish habitat features were photographed at a resolution of 0.5 meter and temperature imageries were photographed at a 1.0-meter resolution. The digital multispectral imageries were classified using commercially available software. Aerial photographs were taken on September 21, 1999. Field habitat data were collected from August 23 to October 12, 1999, to evaluate the measurement accuracy and effectiveness of the multispectral imaging in determining the extent of the instream habitat variables. Fish habitat types assessed by this method were the abundance of instream hydraulic features such as pool and riffle habitats, turbulent and non-turbulent habitats, riparian composition, the abundance of large woody debris in the stream and riparian zone, and stream temperatures. Factors such as the abundance of instream woody debris, the location and frequency of pools, and stream temperatures generally are known to have a significant impact on salmon. Instream woody debris creates the habitat complexity necessary to maintain a diverse and healthy salmon population. The abundance of pools is indicative of a stream's ability to support fish and other aquatic organisms. Changes in water temperature can affect aquatic organisms by altering metabolic rates and oxygen requirements, altering their sensitivity to toxic materials and affecting their ability to avoid predators. The specific objectives of this project were to evaluate the use of an aerial multispectral imaging system to accurately identify instream hydraulic features and surface-water temperatures in the Upper White River Basin, to use the multispectral system to help establish baseline instream/riparian habitat conditions in the study area, and to qualitatively assess the imaging system for possible use in other Puget Sound rivers. For the most part, all multispectral imagery-based estimates of total instream riffle and pool area were less than field measurements. The imagery-based estimates for riffle habitat area ranged from 35.5 to 83.3 percent less than field measurements. Pool habitat estimates ranged from 139.3 percent greater than field measurements to 94.0 percent less than field measurements. Multispectral imagery-based estimates of turbulent habitat conditions ranged from 9.3 percent greater than field measurements to 81.6 percent less than field measurements. Multispectral imagery-based estimates of non-turbulent habitat conditions ranged from 27.7 to 74.1 percent less than field measurements. The absolute average percentage of difference between field and imagery-based habitat type areas was less for the turbulent and non-turbulent habitat type categories than for pools and riffles. The estimate of woody debris by multispectral imaging was substantially different than field measurements; percentage of differences ranged from +373.1 to -100 percent. Although the total area of riffles, pools, and turbulent and non-turbulent habitat types measured in the field were all substantially higher than those estimated from the multispectral imagery, the percentage of composition of each habitat type was not substantially different between the imagery-based estimates and field measurements.

  2. Toxicity of smelter slag-contaminated sediments from Upper Lake Roosevelt and associated metals to early life stage White Sturgeon (Acipenser transmontanus Richardson, 1836)

    USGS Publications Warehouse

    Little, E.E.; Calfee, R.D.; Linder, G.

    2014-01-01

    The toxicity of five smelter slag-contaminated sediments from the upper Columbia River and metals associated with those slags (cadmium, copper, zinc) was evaluated in 96-h exposures of White Sturgeon (Acipenser transmontanus Richardson, 1836) at 8 and 30 days post-hatch. Leachates prepared from slag-contaminated sediments were evaluated for toxicity. Leachates yielded a maximum aqueous copper concentration of 11.8 μg L−1 observed in sediment collected at Dead Man's Eddy (DME), the sampling site nearest the smelter. All leachates were nonlethal to sturgeon that were 8 day post-hatch (dph), but leachates from three of the five sediments were toxic to fish that were 30 dph, suggesting that the latter life stage is highly vulnerable to metals exposure. Fish maintained consistent and prolonged contact with sediments and did not avoid contaminated sediments when provided a choice between contaminated and uncontaminated sediments. White Sturgeon also failed to avoid aqueous copper (1.5–20 μg L−1). In water-only 96-h exposures of 35 dph sturgeon with the three metals, similar toxicity was observed during exposure to water spiked with copper alone and in combination with cadmium and zinc. Cadmium ranging from 3.2 to 41 μg L−1 or zinc ranging from 21 to 275 μg L−1 was not lethal, but induced adverse behavioral changes including a loss of equilibrium. These results suggest that metals associated with smelter slags may pose an increased exposure risk to early life stage sturgeon if fish occupy areas contaminated by slags.

  3. 7. DETAIL VIEW OF BRIDGE DATEPLATE WHICH READS '1929, WHITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW OF BRIDGE DATEPLATE WHICH READS '1929, WHITE RIVER BRIDGE, BUILT BY ARKANSAS HIGHWAY COMMISSION, DWIGHT BLACKWOOD, CHAIRMAN, JUSTIN MATTHEWS, J. LAN WILLIAMS, J.S. PARKS, SAM J. WILSON, COMMISSIONERS, C.S. CHRISTIAN, STATE HIGHWAY ENGINEER, IRA HEDRICK, INC., CONSULTING ENGINEERS, LIST & WEATHERLY, CONSTRUCTION CO.' - Newport Bridge, Spanning White River at State Highway 14, Newport, Jackson County, AR

  4. Effects of advanced treatment of municipal wastewater on the White River near Indianapolis, Indiana; trends in water quality, 1978-86

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1993-01-01

    The City of Indianapolis has constructed state-of-the-art advanced municipal wastewater-treatment systems to enlarge and upgrade the existing secondary-treatment processes at its Belmont and Southport treatment plants. These new advanced-wastewater-treatment plants became operational in 1983. A nonparametric statistical procedure--a modified form of the Wilcoxon-Mann-Whitney rank-sum test--was used to test for trends in time-series water-quality data from four sites on the White River and from the Belmont and Southport wastewater-treatment plants. Time-series data representative of pre-advanced- (1978-1980) and post-advanced- (1983--86) wastewater-treatment conditions were tested for trends, and the results indicate substantial changes in water quality of treated effluent and of the White River downstream from Indianapolis after implementation of advanced wastewater treatment. Water quality from 1981 through 1982 was highly variable due to plant construction. Therefore, this time period was excluded from the analysis. Water quality at sample sites located upstream from the wastewater-treatment plants was relatively constant during the period of study (1978-86). Analysis of data from the two plants and downstream from the plants indicates statistically significant decreasing trends in effluent concentrations of total ammonia, 5-day biochemical-oxygen demand, fecal-coliform bacteria, total phosphate, and total solids at all sites where sufficient data were available for testing. Because of in-plant nitrification, increases in nitrate concentration were statistically significant in the two plants and in the White River. The decrease in ammonia concentrations and 5-day biochemical-oxygen demand in the White River resulted in a statistically significant increasing trend in dissolved-oxygen concentration in the river because of reduced oxygen demand for nitrification and biochemical oxidation processes. Following implementation of advanced wastewater treatment, the number of river-quality samples that failed to meet the water-quality standards for ammonia and dissolved oxygen that apply to the White River decreased substantially.

  5. Updated estimates of long-term average dissolved-solids loading in streams and rivers of the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating over 4.5 million acres of farmland, and annually generating about 12 billion kilowatt hours of hydroelectric power. The Upper Colorado River Basin, part of the Colorado River Basin, encompasses more than 110,000 mi2 and is the source of much of more than 9 million tons of dissolved solids that annually flows past the Hoover Dam. High dissolved-solids concentrations in the river are the cause of substantial economic damages to users, primarily in reduced agricultural crop yields and corrosion, with damages estimated to be greater than 300 million dollars annually. In 1974, the Colorado River Basin Salinity Control Act created the Colorado River Basin Salinity Control Program to investigate and implement a broad range of salinity control measures. A 2009 study by the U.S. Geological Survey, supported by the Salinity Control Program, used the Spatially Referenced Regressions on Watershed Attributes surface-water quality model to examine dissolved-solids supply and transport within the Upper Colorado River Basin. Dissolved-solids loads developed for 218 monitoring sites were used to calibrate the 2009 Upper Colorado River Basin Spatially Referenced Regressions on Watershed Attributes dissolved-solids model. This study updates and develops new dissolved-solids loading estimates for 323 Upper Colorado River Basin monitoring sites using streamflow and dissolved-solids concentration data through 2012, to support a planned Spatially Referenced Regressions on Watershed Attributes modeling effort that will investigate the contributions to dissolved-solids loads from irrigation and rangeland practices.

  6. White River National Forest Hanging Lake Capacity Study

    DOT National Transportation Integrated Search

    2016-05-01

    Due to overcrowding at Hanging Lake, the Volpe Center performed a capacity study for the White River National Forest. This capacity study examines the visitation and environmental constraints of Hanging Lake parking lot, trail, and site to develop th...

  7. Wetland Management Reduces Sediment and Nutrient Loading to the Upper Mississippi River

    EPA Science Inventory

    Restored riparian wetlands in the Upper Mississippi River basin have the potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh...

  8. Land degradation trends in upper catchments and morphological developments of braided rivers in drylands: the case of a marginal graben of the Ethiopian Rift Valley

    NASA Astrophysics Data System (ADS)

    Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom did not change significantly. This is due primarily to the stable vegetation cover conditions between the mid of 1980s and 2000 (average NDVI of 0.34 with std. deviation of 0.07). Vegetation cover and area of upper catchments are important controlling factors of the morphologic characteristics of braided rivers in drylands. Thus, measures geared towards reducing the impacts of braided rivers on agricultural systems and there by the livelihood of the society in plains need to focus on rehabilitation activities (soil and water conservation) in upper catchments.

  9. Streams as Entanglement of Nature and Culture: European Upper Paleolithic River Systems and Their Role as Features of Spatial Organization.

    PubMed

    Hussain, Shumon T; Floss, Harald

    2016-01-01

    Large river valleys have long been seen as important factors to shape the mobility, communication, and exchange of Pleistocene hunter-gatherers. However, rivers have been debated as either natural entities people adapt and react to or as cultural and meaningful entities people experience and interpret in different ways. Here, we attempt to integrate both perspectives. Building on theoretical work from various disciplines, we discuss the relationship between biophysical river properties and sociocultural river semantics and suggest that understanding a river's persona is central to evaluating its role in spatial organization. By reviewing the literature and analyzing European Upper Paleolithic site distribution and raw material transfer patterns in relation to river catchments, we show that the role of prominent rivers varies considerably over time. Both ecological and cultural factors are crucial to explaining these patterns. Whereas the Earlier Upper Paleolithic record displays a general tendency toward conceiving rivers as mobility guidelines, the spatial consolidation process after the colonization of the European mainland is paralleled by a trend of conceptualizing river regimes as frontiers, separating archaeological entities, regional groups, or local networks. The Late Upper Paleolithic Magdalenian, however, is characterized again by a role of rivers as mobility and communication vectors. Tracing changing patterns in the role of certain river regimes through time thus contributes to our growing knowledge of human spatial behavior and helps to improve our understanding of dynamic and mutually informed human-environment interactions in the Paleolithic.

  10. 1. CONTEXTUAL VIEW OF THE UPPER FALLS GATE HOUSE, FOREBAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW OF THE UPPER FALLS GATE HOUSE, FOREBAY IN FOREGROUND, LOOKING NORTH. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  11. Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Shroba, Ralph R.; Egger, Anne

    2001-01-01

    New 1:24,000-scale geologic map of the Rifle Falls 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Upper Cretaceous Iles Formation through Ordovician and Cambrian units. The Iles Formation includes the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale is divided into three members, an upper member, the Niobrara Member, and a lower member. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and the Entrada Sandstone are present. Below the Upper Jurassic Entrada Sandstone, the easternmost limit of the Lower Jurassic and Upper Triassic Glen Canyon Sandstone is recognized. Both the Upper Triassic Chinle Formation and the Lower Triassic(?) and Permian State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is divided into two members, the Schoolhouse Member and a lower member. All the exposures of the Middle Pennsylvanian Eagle Evaporite intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Middle and Lower Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group is divided into the Dyer Dolomite, which is broken into the Coffee Pot Member and the Broken Rib Member, and the Parting Formation. Ordovician through Cambrian units are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two is a large-offset, mid-Tertiary(?) Rifle Falls normal fault, that dips southward placing Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side and presumably was injected into older strata on the upthrown block creating a blister-like, steeply north-dipping sequence of Mississippian and older strata. Also, removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks that form distinctly different styles of compressive deformation called the Elk Park fold and fault complex at different parts of the toe of the slide. The major geologic hazard in the area consist of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Significant uranium and vanadium deposits were mined prior to 1980.

  12. Surface-Water and Groundwater Interactions along the Withlacoochee River, West-Central Florida

    USGS Publications Warehouse

    Trommer, J.T.; Yobbi, D.K.; McBride, W.S.

    2009-01-01

    A study of the Withlacoochee River watershed in west-central Florida was conducted from October 2003 to March 2007 to gain a better understanding of the hydrology and surface-water and groundwater interactions along the river. The Withlacoochee River originates in the Green Swamp area in north-central Polk County and flows northerly through seven counties, emptying into the Gulf of Mexico. This study includes only the part of the watershed located between the headwaters in the Green Swamp and the U.S. Geological Survey gaging station near Holder, Florida. The Withlacoochee River within the study area is about 108 miles long and drains about 1,820 square miles. The Withlacoochee River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the degree of confinement between the Upper Florida aquifer and the surficial aquifer is highly variable throughout the watershed. The potential for movement of water from the surface or shallow deposits to deeper deposits, or from deeper deposits to the shallow deposits, exists throughout the Withlacoochee River watershed. Water levels were higher in deeper Upper Floridan aquifer wells than in shallow Upper Floridan aquifer wells or surficial aquifer wells at 11 of 19 paired or nested well sites, indicating potential for discharge to the surface-water system. Water levels were higher in shallow Upper Floridan aquifer or surficial aquifer wells than in deeper Upper Floridan aquifer wells at five other sites, indicating potential for recharge to the deeper Upper Floridan aquifer. Water levels in the surficial aquifer and Upper Floridan aquifer wells at the remaining three sites were virtually the same, indicating little or no confinement at the sites. Potentiometric-surface maps of the Upper Floridan aquifer indicate the pattern of groundwater flow in the aquifer did not vary greatly from season to season during the study. Potentiometric contours indicate groundwater discharge to the river in the vicinity of Dade City and Lake Panasoffkee. During dry periods, groundwater from the underlying Upper Floridan aquifer contributed to the flow in the river. During wet periods, streamflow had additional contributions from runoff and input from tributaries. Groundwater has a greater effect on streamflow downstream from the Dade City station than upstream from the Dade City station because confinement between surficial deposits and the Upper Floridan aquifer is greater in the Green Swamp area than in downstream areas. Estimates of streamflow gains and losses were made along the Withlacoochee River during base-flow conditions in May 2004, April 2005, and April 2006. Base flow was higher in April 2005 than in May 2004 and April 2006. Consistent net seepage gains were identified in 16 of 20 subreaches analyzed during all seepage runs. The direction of exchange was variable in the remaining four subreaches. Low specific conductance, pH, and calcium concentrations in water from the Withlacoochee River near the headwater area indicated a surface-water system not directly connected to the Upper Floridan aquifer. Downstream from the Dade City station, higher specific conductance, pH, and calcium concentrations in the river water indicated an increasing influence of groundwater, and were similar to groundwater during low-flow conditions. Strontium isotope ratios indicate groundwater originates from shallow parts of the Upper Floridan aquifer in the upper reaches of the river, and from increasingly deeper parts of the aquifer in the downstream direction. Mean annual base-flow estimates also indicate increasing groundwater discharge to the river in the downstream direction. Mean annual base flow estimated using standard hydrograph separation method assumptions ranged from about 4.7 to 5.1 inches per year

  13. Algeria- Gemini 7, Earth-Sky View

    NASA Image and Video Library

    1965-12-05

    S65-63830 (5 Dec. 1965) --- Algeria, south-southeast of the Colomb Bechar area, as seen from the National Aeronautics and Space Administration's Gemini-7 spacecraft. Sand dunes are 200 to 300 feet high in the Grand Erg Occidental area. The Quod Sacura River can be seen in the upper left corner. The white spot in the middle of the picture is the Sebcha el Malah salt beds. It should be noted that the area had just experienced very heavy rains (first in many years) and the stream and salt flat are inundated. This photograph was taken with a modified 70mm Hasselblad camera, with Eastman Kodak, Ektachrome MS (S.O. 217) color film. Photo credit: NASA

  14. Altitude and configuration of the potentiometric surface in the Lower White Clay Creek and Upper Christina River Basins including portions of Franklin, London Britain, New Garden, and New London Townships, Chester County, Pennsylvania, June through September 2005

    USGS Publications Warehouse

    Hale, Lindsay B.

    2006-01-01

    Since 1984, the U.S. Geological Survey (USGS) has been mapping the altitude and configuration of the potentiometric surface in Chester County as part of an ongoing cooperative program to measure and describe the water resources of the county.  Areas where the potentiometric surface has been mapped are shown on figure 1.  These maps can be used to determine the general direction of ground-water flow and are frequently referenced by municipalities and developers to evaluate ground-water conditions for water supply and resource-protection requirements (Wood, 1998).

  15. Earth observations taken during the STS-59 mission

    NASA Image and Video Library

    1994-04-18

    STS059-228-094 (9-20 April 1994) --- The spring thaw along the coast of the Gulf of Alaska has not touched the St. Elias Mountains, southeast of Yakutat Bay and Malaspina Glacier. A prominent glacier flows from Mt. Fairweather (15,300 feet) at right center, to form Cape Fairweather. Another glacier to the northwest almost reaches the sea; the valley of the Alsek River forms a broad, braided plan at upper left. The low sun elevation and oblique angle of this photograph provide a striking 3-dimensional appearance to the black-and-white landscape. SRL investigators will study microwave response to varying depths and conditions of ice and snow along this coast, in Spring and Summer. Hasselblad photograph.

  16. Salmon habitat assessment for conservation planning in the lower White Salmon River, Washington

    USGS Publications Warehouse

    Hardiman, Jill M.; Allen, M. Brady

    2015-01-01

    In 2011, Condit Dam was removed from the White Salmon River, Washington. Since dam removal, there has been interest among scientists (State and Federal), Tribes, non-profit organizations, and the general public in assessing Pacific salmon habitat and use in the White Salmon River for conservation planning and potential fishery management actions. The study area extended from the lower 6 miles of the White Salmon River to the confluence with the Columbia River, including the former reservoir area. The Mid-Columbia Fisheries Enhancement Group received a grant to initiate efforts to plan for salmon habitat protection in the lower 6 river miles of the White Salmon River. As part of efforts by the Mid-Columbia Fisheries Enhancement Group to conduct conservation planning, the U.S. Geological Survey (USGS) used current and historical habitat information to assist in the planning process. The USGS compiled existing georeferenced habitat data into a Geographic Information System to identify areas of high quality habitat for salmon, potential areas for restoration/improvement, and areas that could be threatened. The primary sources of georeferenced data for this project include a lidar flight contracted by PacifiCorp, bathymetry from USGS, and fall Chinook salmon redd surveys from the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife. Redd observations provided support that the study area is a migratory corridor for salmon and steelhead and that the lowest 2–3 miles had the highest concentration of documented fall Chinook salmon redds. The study area has potential for restoration/conservation areas to improve/conserve salmon habitat.

  17. Population demographics of American eels Anguilla rostrata in two Arkansas, U.S.A., catchments that drain into the Gulf of Mexico.

    PubMed

    Cox, C A; Quinn, J W; Lewis, L C; Adams, S R; Adams, G L

    2016-03-01

    The goal of this study was to compare American eel Anguilla rostrata life history in two inland river systems in Arkansas, U.S.A., that ultimately discharge into the Gulf of Mexico via the Mississippi River and the Red-Atchafalaya catchments. From 21 June 2011 to 24 April 2014, 238 yellow-phase A. rostrata were captured in the middle Ouachita River and tributaries using boat electrofishing and 39 in the lower White River using multiple sampling gears. Most of them were caught downstream of dams in both basins (61%). Medium-sized A. rostrata ranging from 225 to 350 mm total length (LT ) were the most abundant size group in the Ouachita River basin, but they were absent from the White River. Mean LT at age 4 years (i.e. youngest shared age) was 150 mm greater for the White River than the Ouachita River basin. Anguilla rostrata appeared to have a greater initial LT (i.e. minimum size upon arrival) in the White River that allowed them to reach a gonado-somatic index (IG ) of 1·5 up to 4 years earlier, and downstream migration appeared to occur 5 years earlier at 100 mm greater LT ; these differences may be related to increased river fragmentation by dams in the Ouachita River basin. Growth and maturation of A. rostrata in this study were more similar to southern populations along the Atlantic coast than other inland populations. Adult swimbladder nematodes Anguillicoloides crassus were not present in any of the 214 swimbladders inspected. Gulf of Mexico catchments may be valuable production areas for A. rostrata and data from these systems should be considered as range-wide protection and management plans are being developed. © 2016 The Fisheries Society of the British Isles.

  18. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon leftmore » the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the downstream areas. Juveniles tagged as they left the upper rearing areas of Catherine Creek in fall and that overwintered in areas downstream were detected in the hydrosystem at a lower rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the upper rearing areas. Juveniles tagged as they left the upper rearing areas of the Lostine River in fall and that overwintered in areas downstream were detected in the hydrosystem at a similar rate to fish tagged during winter in the upper rearing areas, indicating similar overwinter survival in the upstream and downstream areas. Chinook salmon parr were generally associated with low velocity habitat types, that is pools, during both winter and summer in the Lostine River.« less

  19. White Sturgeon Mitgation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rein, Thomas A.; Hughes, Michele L.; Kern, J. Chris

    2005-08-01

    We report on our progress from April 2003 through March 2004 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  20. Ambient conditions and fate and transport simulations of dissolved solids, chloride, and sulfate in Beaver Lake, Arkansas, 2006--10

    USGS Publications Warehouse

    Green, W. Reed

    2013-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas, and was completed in 1963 for the purposes of flood control, hydroelectric power, and water supply. Beaver Lake is affected by point and nonpoint sources of minerals, nutrients, and sediments. The City of Fayetteville discharges about half of its sewage effluent into the White River immediately upstream from the backwater of the reservoir. The City of West Fork discharges its sewage effluent into the West Fork of the White River, and the City of Huntsville discharges its sewage effluent into a tributary of War Eagle Creek. A study was conducted to describe the ambient conditions and fate and transport of dissolved solids, chloride, and sulfate concentrations in Beaver Lake. Dissolved solids, chloride, and sulfate are components of wastewater discharged into Beaver Lake and a major concern of the drinking water utilities that use Beaver Lake as their source. A two-dimensional model of hydrodynamics and water quality was calibrated to include simulations of dissolved solids, chloride, and sulfate for the period January 2006 through December 2010. Estimated daily dissolved solids, chloride, and sulfate loads were increased in the White River and War Eagle Creek tributaries, individually and the two tributaries together, by 1.2, 1.5, 2.0, 5.0, and 10.0 times the baseline conditions to examine fate and transport of these constituents through time at seven locations (segments) in the reservoir, from upstream to downstream in Beaver Lake. Fifteen dissolved solids, chloride, and sulfate fate and transport scenarios were compared to the baseline simulation at each of the seven downstream locations in the reservoir, both 2 meters (m) below the surface and 2 m above the bottom. Concentrations were greater in the reservoir at model segments closer to where the tributaries entered the reservoir. Concentrations resulting from the increase in loading became more diluted farther downstream from the source. Differences in concentrations between the baseline condition and the 1.2, 1.5, and 2.0 times baseline concentration scenarios were smaller than the differences in the 5.0 and 10.0 times baseline concentration scenarios. The results for both the 2 m below the surface and 2 m above the bottom were similar, with the exception of concentrations resulting from the increased loading factors (5.0 and 10.0 times), where concentrations 2 m above the bottom were consistently greater than those 2 m below the surface at most segments.

  1. 75 FR 54707 - Endangered and Threatened Wildlife and Plants; Revised 12-Month Finding to List the Upper...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ...We, the U.S. Fish and Wildlife Service (Service/USFWS), announce a revised 12-month finding on a petition to list the upper Missouri River Distinct Population Segment (Missouri River DPS) of Arctic grayling (Thymallus arcticus) as endangered or threatened under the Endangered Species Act of 1973, as amended. After review of all available scientific and commercial information, we find that listing the upper Missouri River DPS of Arctic grayling as endangered or threatened is warranted. However, listing the upper Missouri River DPS of Arctic grayling is currently precluded by higher priority actions to amend the Lists of Endangered and Threatened Wildlife and Plants. Upon publication of this 12-month finding, we will add the upper Missouri River DPS of Arctic grayling to our candidate species list. We will develop a proposed rule to list this DPS as our priorities allow. We will make any determination on critical habitat during development of the proposed listing rule. In the interim, we will address the status of this DPS through our annual Candidate Notice of Review (CNOR).

  2. Diet composition and fish consumption of double-crested cormorants from three St. Lawrence River Colonies in 2013

    USGS Publications Warehouse

    Johnson, James H.; Farquhar, James F.; Mazzocchi, Irene M.; Bendig, Anne

    2014-01-01

    Double-crested Cormorants (Phalacrocorax auritus) were first observed nesting in the upper St. Lawrence River at Strachan Island in 1992. Cormorants now nest at a number of islands in the Thousand Islands section of the river. Griswold, McNair, and Strachan islands are among the largest colonies in the upper river. Until 2011, nest counts had remained relatively stable, ranging from 200 to 603 nests per colony. However, since 2011 the number of nests at McNair Island have exceeded 700 each year. Although the size of cormorant colonies in the upper St. Lawrence River is smaller than those in the eastern basin of Lake Ontario, the close proximity of islands in the upper river that have colonies may cause a cumulative fish consumption effect similar to a larger colony. Because of increasing numbers of Double-crested Cormorants in the upper St. Lawrence River and the possible effects on fish populations, studies were initiated in 1999 to quantify cormorant diet and fish consumption at the three largest colonies. From 1999 to 2012, these studies have shown that cormorants consumed about 128.6 million fish including 37.5 million yellow perch (Perca flavescens), 17.4 million rock bass (Ambloplites rupestris) and 1.0 million smallmouth bass (Micropterus dolemieu) (Johnson et al. 2012). During this same time period fish assessment studies near some of these islands have shown a major decrease in yellow perch populations (Klindt 2007). This occurrence is known as the halo effect and happens when piscivorous birds deplete local fish populations in areas immediately surrounding the colony (Ashmole 1963). This paper describes the diet and fish consumption of cormorants in the upper St. Lawrence River in 2013.

  3. Habitat and movement of lake sturgeon in the upper Mississippi River system, USA

    USGS Publications Warehouse

    Knights, Brent C.; Vallazza, Jonathon M.; Zigler, Steven J.; Dewey, Michael R.

    2002-01-01

    Lake sturgeon Acipenser fluvescens, which are now protected from harvest, are considered rare in the upper Mississippi River and little information is available on the remaining populations. Transmitters were implanted into 31 lake sturgeon from two sites in the upper Mississippi River to describe their habitats and movement. The areas surrounding the tagging sites were core areas for both groups of lake sturgeon based on the high use (about 50% of locations by group) and frequent return to these areas by many of the tagged fish. Core areas contained sites with unique hydraulic characteristics, such that depositional substrates were common yet flow was present; these areas probably provide important feeding habitat for lake sturgeon. Minimal geographical overlap in range occurred between groups, suggesting that river reaches and associated core areas were unique to groups or substocks of fish. Lake sturgeon exhibited complex movement behaviors and had ranges of 3-198 km (median, 56 km) during the study. Tagged fish moved both downstream and upstream through upper Mississippi River navigation dams. However, dams appeared to be intermittent barriers to upstream passage because upstream passage events (10 fish, 19 passages) were fewer than downstream events (13 fish, 35 passages). Extensive use of the Wisconsin River by one group of lake sturgeon tagged in the upper Mississippi River has implications regarding management of a threatened population that transcends regulatory boundaries. Our study indicates that lake sturgeon In the upper Mississippi River system share many movement and habitat use characteristics with populations in other systems. However, significant data gaps preclude development of cogent management strategies, including information on population numbers and dynamics, identification of spawning areas, relations between groups, and assessment of the effects of commercial navigation.

  4. 78 FR 63439 - Endangered and Threatened Species: Designation of a Nonessential Experimental Population of Upper...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Experimental Population of Upper Columbia Spring-Run Chinook Salmon in the Okanogan River Subbasin, Washington... authorize the release of a nonessential experimental population (NEP) of Upper Columbia River spring-run... (301-427-8403). SUPPLEMENTARY INFORMATION: Background Information Relevant to Experimental Population...

  5. Multistate models of bigheaded carps in the Illinois River reveal spatial dynamics of invasive species

    USGS Publications Warehouse

    Coulter, Alison A.; Brey, Marybeth; Lubejko, Matthew; Kallis, Jahn L.; Coulter, David P.; Glover, David C.; Whitledge, Gregory W.; Garvey, James E.

    2018-01-01

    Knowledge of the spatial distributions and dispersal characteristics of invasive species is necessary for managing the spread of highly mobile species, such as invasive bigheaded carps (Bighead Carp [Hypophthalmichthys nobilis] and Silver Carp [H. molitrix]). Management of invasive bigheaded carps in the Illinois River has focused on using human-made barriers and harvest to limit dispersal towards the Laurentian Great Lakes. Acoustic telemetry data were used to parameterize multistate models to examine the spatial dynamics of bigheaded carps in the Illinois River to (1) evaluate the effects of existing dams on movement, (2) identify how individuals distribute among pools, and (3) gauge the effects of reductions in movement towards the invasion front. Multistate models estimated that movement was generally less likely among upper river pools (Starved Rock, Marseilles, and Dresden Island) than the lower river (La Grange and Peoria) which matched the pattern of gated versus wicket style dams. Simulations using estimated movement probabilities indicated that Bighead Carp accumulate in La Grange Pool while Silver Carp accumulate in Alton Pool. Fewer Bighead Carp reached the upper river compared to Silver Carp during simulations. Reducing upstream movement probabilities (e.g., reduced propagule pressure) by ≥ 75% into any of the upper river pools could reduce upper river abundance with similar results regardless of location. Given bigheaded carp reproduction in the upper Illinois River is presently limited, reduced movement towards the invasion front coupled with removal of individuals reaching these areas could limit potential future dispersal towards the Great Lakes.

  6. Movement and habitat use by radio-tagged paddlefish in the upper Mississippi River and tributaries

    USGS Publications Warehouse

    Zigler, S.J.; Dewey, M.R.; Knights, B.C.; Runstrom, A.L.; Steingraeber, M.T.

    2003-01-01

    We used radio telemetry to evaluate the movement and habitat use of paddlefish Polyodon spathula in the upper Mississippi River and two tributary rivers. Radio transmitters were surgically implanted into 71 paddlefish in Navigation Pools 5A and 8 of the upper Mississippi River, the Chippewa River, and the Wisconsin River during fall 1994 through fall 1996. Radiotagged paddlefish were located through summer 1997. The range of paddlefish movement was typically low during all seasons except spring, but some paddlefish moved throughout the 420-km extent of the study area. Paddlefish tagged in the Chippewa River were closely linked with the upper Mississippi River, as substantial portions of the population inhabited the adjacent Navigation Pool 4 each spring; paddlefish in the Wisconsin River, however, rarely ventured out of that tributary. The use of aquatic area types by paddlefish varied among the study reaches. A cartographic model of paddlefish habitat suitability was developed for Navigation Pool 8 based on geographic information systems (GIS) coverages of bathymetry and current velocity. The value of paddlefish habitat in the cartographic model increased with depth and decreased with current velocity. For example, areas modeled as excellent corresponded to regions classified as having both deep water (greater than or equal to6.0 m) and negligible (<5 cm/s) current velocities. Our study suggests that aquatic area types are an inadequate basis for making sound management decisions regarding the critical habitats of paddlefish in complex riverine systems because such strata rely on gross geomorpological features rather than on the physicochemical variables that fish use to choose habitats. The development of systemic GIS coverages of such variables could improve the understanding of fish habitat selection and management in the upper Mississippi River.

  7. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: 30-Year Average Daily Minimum Temperature, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents thecatchment-average for the 30-year (1971-2000) average daily minimum temperature in Celsius multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  8. Attributes for MRB_E2RF1 Catchments in Selected Major River Basins: Population Density, 2000

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  9. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Saturation Excess-Overland Flow, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average value of saturation overland flow, in percent of total streamflow, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is Saturation Overland Flow Estimated by TOPMODEL for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  10. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Base-Flow Index, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean base-flow index expressed as a percent, compiled for every catchment of MRB_E2RF1 catchments of Major River Basins (MRBs, Crawford and others, 2006). Base flow is the component of streamflow that can be attributed to ground-water discharge into streams. The source data set is Base-Flow Index for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every catchment of MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  11. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Hydrologic Landscape Regions

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is a 100-meter version of Hydrologic Landscape Regions of the United States (Wolock, 2003). HLR groups watersheds on the basis of similarities in land-surface form, geologic texture, and climate characteristics. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  12. Catchments by Major River Basins in the Conterminous United States: 30-Year Average Daily Minimum Temperature, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents thecatchment-average for the 30-year (1971-2000) average daily minimum temperature in Celsius multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  13. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Bedrock Geology

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of bedrock geology types in square meters compiled for every catchment of MRB_E2RF1 catchments for Major River Basins (MRBs, Crawford and others, 2006). The source data set is the "Geology of the Conterminous United States at 1:2,500,000 Scale--A Digital Representation of the 1974 P.B. King and H.M. Beikman Map" (Schuben and others, 1994). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  14. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Level 3 Ecoregions

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of level 3 ecological landscape regions (ecoregions), as defined by Omernik (1987), compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is Level III Ecoregions of the Continental United States (U.S. Environmental Protection Agency, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  15. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Mean Infiltration-Excess Overland Flow, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean value for infiltration-excess overland flow as estimated by the watershed model TOPMODEL, compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is Infiltration-Excess Overland Flow Estimated by TOPMODEL for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  16. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Level 3 Nutrient Ecoregions, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of each level 3 nutrient ecoregion in square meters compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data are from the 2002 version of the U.S. Environmental Protection Agency's (USEPA) Aggregations of Level III Ecoregions for National Nutrient Assessment & Management Strategy (USEPA, 2002). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  17. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Mean Annual R-factor, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average annual R-factor, rainfall-runoff erosivity measure, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data are from Christopher Daly of the Spatial Climate Analysis Service, Oregon State University, and George Taylor of the Oregon Climate Service, Oregon State University (2002). The ERF1_2 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  18. Attributes for MRB_E2RF1 Catchments by Major Rivers Basins in the Conterminous United States: Total Precipitation, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the catchment-average total precipitation in millimeters multiplied by 100 for 2002, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the Near-Real-Time Monthly High-Resolution Precipitation Climate Data Set for the Conterminous United States (2002) raster data set produced by the Spatial Climate Analysis Service at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  19. Surface- and ground-water characteristics in the Upper Truckee River and Trout Creek watersheds, South Lake Tahoe, California and Nevada, July-December 1996

    USGS Publications Warehouse

    Rowe, T.G.; Allander, Kip K.

    2000-01-01

    The Upper Truckee River and Trout Creek watersheds, South Lake Tahoe, California and Nevada, were studied from July to December 1996 to develop a better understanding of the relation between surface water and ground water. Base flows at 63 streamflow sites were measured in late September 1996 in the Upper Truckee River and Trout Creek watersheds. Most reaches of the main stem of the Upper Truckee River and Trout Creek had gaining or steady flows, with one losing reach in the mid-section of each stream. Twenty-seven of the streamflow sites measured in the Upper Truckee River watershed were on 14 tributaries to the main stem of the Upper Truckee River. Sixteen of the 40 streamflow sites measured in the Upper Truckee River watershed had no measurable flow. Streamflow in Upper Truckee River watershed ranged from 0 to 11.6 cubic feet per second (ft3/s). The discharge into Lake Tahoe from the Upper Truckee River was 11.6 ft3/s, of which, 40 percent of the flow was from ground-water discharge into the main stem, 40 percent was from tributary inflows, and the remaining 20 percent was the beginning flow. Gains from or losses to ground water along streams ranged from a 1.4 cubic feet per second per mile (ft3/s/mi) gain to a 0.5 ft3/s/mi loss along the main stem. Fourteen of the streamflow sites measured in the Trout Creek watershed were on eight tributaries to the main stem of Trout Creek. Of the 23 streamflow sites measured in the Trout Creek watershed, only one site had no flow. Flows in the Trout Creek watershed ranged from zero to 23.0 ft3/s. Discharge into Lake Tahoe from Trout Creek was 23.0 ft3/s, of which, about 5 percent of the flow was from ground-water discharge into the main stem, 75 percent was from tributary inflows, and the remaining 20 percent was the beginning flow. Ground-water seepage rates ranged from a 1.4 ft3/s/mi gain to a 0.9 ft3/s/mi loss along the main stem. Specific conductances measured during the seepage run in September 1996 increased in a downstream direction in the main stem of the Upper Truckee River and remained relatively constant in the main stem of Trout Creek. Water temperatures measured during the seepage run also increased in a downstream direction in both watersheds. Depths to ground water measured at 62 wells in the study area were used with the results of the seepage run to produce a water-level map in the Upper Truckee River and Trout Creek watersheds. Ground-water levels ranged from 1.3 to 69.8 feet below land surface. In the upper sections of the watersheds ground-water flow is generally toward the main stems of Upper Truckee River and Trout Creek, whereas in the lower sections, ground-water flow generally parallels the two streams and flows toward Lake Tahoe. The altitude of ground water between Lake Tahoe and Highway 50 was nearly the same as the lake-surface altitude from July to November 1996. This suggests ground-water discharge beneath the Upper Truckee River and Trout Creek drainages directly to Lake Tahoe was minimal and that much of the ground-water discharge was to the channels of the Upper Truckee River and Trout Creek upstream from Highway 50. Hydraulic gradients ranged from near zero to 1,400 feet per mile. Samples were collected at six surface-water-quality and eight ground-water-quality sites from July through mid-December 1996. Specific conductance of the ground-water-quality sites was higher than that of the surface-water-quality sites. Water temperature and pH median values were similar between ground-water-quality and surface-water-quality sites but ground water had greater variation in pH and surface water had greater variation in water temperature. Ground-water nutrient concentrations were generally higher than those in streams except for bioreactive iron.

  20. 76 FR 77226 - Clean Water Act Section 303(d): Availability of 28 Total Maximum Daily Loads (TMDLs) in Louisiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... White Bayou (East Baton Rouge Parish) (Scenic). 040103 Comite River-- Fecal Coliform. Entrance of White.... Amite River Diversion Canal to mouth at Lake Maurepas (Scenic). 040903 Bayou Cane-- TSS. Headwaters to U...

  1. White ash (Fraxinus americana L.) survival and growth in unmanaged upland forests

    Treesearch

    Jeffery S. Ward

    1997-01-01

    Crown class and diameter of 704 white ash (Fraxinus americana L.) > 0.5 inches dbh have been monitored at 10-yr intervals since 1927. Nominal stand age was 25 years in 1927. Although the density of white ash in the upper canopy declined from 14/acre to 3/acre between stand ages 25 through 85, the proportion of the upper canopy comprised by white...

  2. 77 FR 40518 - Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... 1625-AA00 Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York Bay, Lower New York Bay; New York, NY ACTION: Final rule. SUMMARY: The Coast Guard is establishing seven temporary safety zones for swim events within the Captain of the Port (COTP) New York Zone. These...

  3. Longitudinal patterns in abundance of the zebra mussel (Dreissena polymorpha) in the upper Mississippi River

    USGS Publications Warehouse

    Cope, W.G.; Bartsch, M.R.; Hayden, R.R.

    1997-01-01

    We assessed the abundance of zebra mussels in the upper Mississippi River during 1995, four years after they were first found in the river. Samplers were deployed from May 30 to October 19, 1995, at 19 lock and dam facilities in the upper Mississippi River from Minneapolis, Minnesota, to Muscatine, Iowa. Zebra mussels were found at every lock and dam except the two sites farthest upstream (Minneapolis). Generally, densities of zebra mussels were greatest at sites 161 km and farther downstream of the Minneapolis area. The greatest mean mussel density was 11,432/m(2) at Fulton, Illinois.

  4. White sturgeon mitigation and restoration in the Columbia and Snake rivers upstream from Bonneville Dam Report C, Annual Progress Report April 2003 - March 2004

    USGS Publications Warehouse

    Parsley, Michael J.; Gadomski, Dena M.; Kofoot, Pete

    2005-01-01

    River discharge and water temperatures that occurred during April through July 2003 provided conditions suitable for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Although optimal spawning temperatures in the four tailraces occurred for less than two weeks, they coincided with a period of relatively high river discharge. Bottom-trawl sampling in Bonneville and The Dalles Reservoirs revealed the presence of young-of-the-year (YOY) white sturgeon in Bonneville Reservoir, but none were captured in The Dalles Reservoir. A comparison of five years of indices of abundance of YOY sturgeon from sampling done by ODFW with gillnets and the USGS with bottom trawls was completed. Despite obvious differences in gear sampling characteristics (e.g. one gear is actively fished, one passively fished), it appears that either gear can be used to assess relative trends in YOY white sturgeon abundance. The analyses suffered due to poor catches of YOY fish, as YOY were only captured in The Dalles Reservoir during three of the five years of comparison sampling, and during only one of four years in John Day Reservoir. However, both gears detected the presence or absence of YOY white sturgeon within a reservoir equally. That is, if any YOY white sturgeon were captured in any year in a reservoir, both gears captured at least one fish, and if one gear failed to collect any YOY white sturgeon, both gears failed. Concerns have been raised that the Wang et al. (1985) egg development relationships for Sacramento River white sturgeon may not be applicable to Columbia Basin stocks. However, using laboratory experiments with white sturgeon eggs incubated at 10, 12, 15, and 18o C, we found no significant differences in development rates of eggs of Columbia, Kootenai, Snake, and Sacramento river fish.

  5. Sources and Dynamics of Inorganic Carbon within the Upper Reaches of the Xi River Basin, Southwest China

    PubMed Central

    Zou, Junyu

    2016-01-01

    The carbon isotopic composition (δ13C) of dissolved and particulate inorganic carbon (DIC; PIC) was used to compare and analyze the origin, dynamics and evolution of inorganic carbon in two headwater tributaries of the Xi River, Southwest China. Carbonate dissolution and soil CO2 were regarded as the primary sources of DIC on the basis of δ13CDIC values which varied along the Nanpan and Beipan Rivers, from −13.9‰ to 8.1‰. Spatial trends in DIC differed between the two rivers (i.e., the tributaries), in part because factors controlling pCO2, which strongly affected carbonate dissolution, differed between the two river basins. Transport of soil CO2 and organic carbon through hydrologic conduits predominately controlled the levels of pCO2 in the Nanpan River. However, pCO2 along the upper reaches of the Nanpan River also was controlled by the extent of urbanization and industrialization relative to agriculture. DIC concentrations in the highly urbanized upper reaches of the Nanpan River were typical higher than in other carbonate-dominated areas of the upper Xi River. Within the Beipan River, the oxidation of organic carbon is the primary process that maintains pCO2 levels. The pCO2 within the Beipan River was more affected by sulfuric acid from coal industries, inputs from a scenic spot, and groundwater than along the Nanpan River. With regards to PIC, the contents and δ13C values in the Nanpan River were generally lower than those in the Beipan River, indicating that chemical and physical weathering contributes more marine carbonate detritus to the PIC along the Beipan River. The CO2 evasion flux from the Nanpan River was higher than that in the Beipan River, and generally higher than along the middle and lower reaches of the Xi River, demonstrating that the Nanpan River is an important net source of atmospheric CO2 in Southwest China. PMID:27513939

  6. Sediment Microbial Enzyme Activity as an Indicator of Nutrient Limitation in the Great Rivers of the Upper Mississippi Basin

    EPA Science Inventory

    We compared extracellular enzyme activity (EEA) of microbial assemblages in river sediments at 447 sites along the Upper Mississippi, Missouri, and Ohio Rivers with sediment and water chemistry, atmospheric deposition of nitrogen and sulfate, and catchment land uses. The sites re...

  7. Are Two Systemic Fish Assemblage Sampling Programmes on the Upper Mississippi River Telling Us the Same Thing?

    EPA Science Inventory

    We applied an Index of Biotic Integrity (IBI) used on the Upper Mississippi River (UMR) to compare data from three sampling programs. Ability to use multiple sampling programs could greatly extend spatial and temporal coverage of river assessment and monitoring efforts. We an...

  8. Comparative study of fluvial lakes in floodplains of the Elbe, Lužnice and Svratka Rivers based on hydrochemical and biological approach.

    PubMed

    Havlíková, Petra; Chuman, Tomáš; Janský, Bohumír

    2017-11-17

    The aim of the thesis was to specify key differences in chemistry and biota (zooplankton communities) among fluvial lakes in three regions of the Czech Republic: the central part of the Elbe River, the upper part of the Lužnice River and the upper part of the Svratka River. The ten studied lakes of the three regions differ in size, geology, shading, connection with the river and the level of anthropogenic impact. The following hypotheses were tested: (1) The water chemistry of fluvial lakes significantly differs in different floodplains. In the central Elbe River floodplain, there are the highest values of conductivity and concentrations of organic matter and nutrients. Fluvial lakes of the Svratka River floodplain show the lowest level of these parameters, and fluvial lakes of the upper Lužnice River have levels intermediate between the two previous regions. (2) The chemistry of fluvial lakes that have contact with the river through surface connection is significantly influenced by the river. (3) The structure of zooplankton differs in different lakes due to the geographical distance between locations, their different altitude and water chemistry. The PCA analysis of selected parameters of the water chemistry revealed a close relationship of locations in the central Elbe River floodplain on the one side and close relationship of the locations in the upper Lužnice River and Svratka River on the other. However, the amount of organic matter, nitrogen (with the exception of nitrates) and phosphorus was independent of the region. The relationship between the extent of the lake-river connection and the water chemistry was not significant. The hypothesis that the zooplankton differ in different lakes was not proved-the species composition was similar in all the lakes.

  9. Hydrodynamic and sedimentological controls governing formation of fluvial levees

    NASA Astrophysics Data System (ADS)

    Johnston, G. H.; Edmonds, D. A.; David, S. R.; Czuba, J. A.

    2017-12-01

    Fluvial levees are familiar features found on the margins of river channels, yet we know little about what controls their presence, height, and shape. These attributes of levees are important because they control sediment transfer from channel to floodplain and flooding patterns along a river system. Despite the familiarity and importance of levees, there is a surprising lack of basic geomorphic data on fluvial levees. Because of this we seek to understand: 1) where along rivers do levees tend to occur?; 2) what geomorphic and hydrodynamic variables control cross-sectional shape of levees? We address these questions by extracting levee shape from LiDAR data and by collecting hydrodynamic and sedimentological data from reaches of the Tippecanoe River, the White River, and the Muscatatuck River, Indiana, USA. Fluvial levees are extracted from a 1.5-m resolution LiDAR bare surface model and compared to hydrological, sedimentological, and geomorphological data from USGS stream gages. We digitized banklines and extracted levee cross-sections to calculate levee slope, taper, height, e-folding length, and e-folding width. To answer the research questions, we performed a multivariable regression between the independent variables—channel geometry, sediment grain size and concentration, flooding conditions, and slope—and the dependent levee variables. We find considerable variation in levee presence and shape in our field data. On the Muscatatuck River levees occur on 30% of the banks compared to 10% on the White River. Moreover, levees on the Muscatatuck are on average 3 times wider than the White River. This is consistent with the observation that the Muscatatuck is finer-grained compared to the White River and points to sedimentology being an important control on levee geomorphology. Future work includes building a morphodynamic model to understand how different hydrodynamic and geomorphic conditions control levee geometry.

  10. White River National Forest Hanging Lake transportation and operations study

    DOT National Transportation Integrated Search

    2017-05-01

    Hanging Lake is a recreation site located on land managed by the U.S. Forest Service (USFS) under the jurisdiction of the White River National Forests Eagle-Holy Cross Ranger District. Due to its increasing popularity over the past few years, the ...

  11. White River National Forest Hanging Lake visitor transportation survey : summary of results

    DOT National Transportation Integrated Search

    2017-01-01

    The USDOT Volpe Center conducted a visitor transportation survey at Hanging Lake recreation site in the White River National Forest from July 14 to July 18, 2016. This report outlines the summary of results from that survey effort. Key findings inclu...

  12. 3. EAST FACADE OF THE UPPER FALLS GATE HOUSE, FOREBAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAST FACADE OF THE UPPER FALLS GATE HOUSE, FOREBAY IN LEFT FOREGROUND, SPOKANE CITY HALL IN LEFT BACKGROUND, LOOKING WEST. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  13. Teaching Comparative Local History: Upper Mississippi River Towns.

    ERIC Educational Resources Information Center

    Crozier, William L.

    Intended to engage students in a comparative look at local history in two upper Mississippi river towns (Winona, Minnesota and Dubuque, Iowa), this paper describes the computer-assisted component of an upper-level American Studies course. With emphasis on the 19th century, students examine the transition made by the United States from a…

  14. Effects of flooding on ion exchange rates in an Upper Mississippi River floodplain forest impacted by herbivory, invasion, and restoration

    USGS Publications Warehouse

    Kreiling, Rebecca; DeJager, Nathan R.; Whitney Swanson,; Eric A. Strauss,; Meredith Thomsen,

    2015-01-01

    We examined effects of flooding on supply rates of 14 nutrients in floodplain areas invaded by Phalaris arundinacea (reed canarygrass), areas restored to young successional forests (browsed by white-tailed deer and unbrowsed), and remnant mature forests in the Upper Mississippi River floodplain. Plant Root Simulator ion-exchange probes were deployed for four separate 28-day periods. The first deployment occurred during flooded conditions, while the three subsequent deployments were conducted during progressively drier periods. Time after flooding corresponded with increases in NO3 −-N, K+ and Zn+2, decreases in H2PO4 −-P, Fe+3, Mn+2, and B(OH)4-B, a decrease followed by an increase in NH4 +-N, Ca+2, Mg+2 and Al+3, and an increase followed by a decrease for SO4 −2-S. Plant community type had weak to no effects on nutrient supply rates compared to the stronger effects of flooding duration. Our results suggest that seasonal dynamics in floodplain nutrient availability are similarly driven by flood pulses in different community types. However, reed canarygrass invasion has potential to increase availability of some nutrients, while restoration of forest cover may promote recovery of nutrient availability to that observed in reference mature forests.

  15. Occurrence of Organic Compounds and Trace Elements in the Upper Passaic and Elizabeth Rivers and Their Tributaries in New Jersey, July 2003 to February 2004: Phase II of the New Jersey Toxics Reduction Workplan for New York-New Jersey Harbor

    USGS Publications Warehouse

    Wilson, Timothy P.; Bonin, Jennifer L.

    2008-01-01

    Samples of surface water and suspended sediment were collected from the Passaic and Elizabeth Rivers and their tributaries in New Jersey from July 2003 to February 2004 to determine the concentrations of selected chlorinated organic and inorganic constituents. This sampling and analysis was conducted as Phase II of the New York-New Jersey Harbor Estuary Workplan?Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. Samples were collected from three groups of tributaries: (1) the Second, Third, and Saddle Rivers; (2) the Pompton and upper Passaic Rivers; and (3) the West Branch and main stem of the Elizabeth River. The Second, Third, and Saddle Rivers were sampled near their confluence with the tidal Passaic River, but at locations not affected by tidal flooding. The Pompton and upper Passaic Rivers were sampled immediately upstream from their confluence at Two Bridges, N.J. The West Branch and the main stem of the Elizabeth River were sampled just upstream from their confluence at Hillside, N.J. All tributaries were sampled during low-flow discharge conditions using the protocols and analytical methods for organic constituents used in low-flow sampling in Phase I. Grab samples of streamflow also were collected at each site and were analyzed for trace elements (mercury, methylmercury, cadmium, and lead) and for suspended sediment, particulate organic carbon, and dissolved organic carbon. The measured concentrations and available historical suspended-sediment and stream-discharge data (where available) were used to estimate average annual loads of suspended sediment and organic compounds in these rivers. Total suspended-sediment loads for 1975?2000 were estimated using rating curves developed from historical U.S. Geological Survey (USGS) suspended-sediment and discharge data, where available. Average annual loads of suspended sediment, in millions of kilograms per year (Mkg/yr), were estimated to be 0.190 for the Second River, 0.23 for the Third River, 1.00 for the Saddle River, 1.76 for the Pompton River, and 7.40 for the upper Passaic River. On the basis of the available discharge records, the upper Passaic River was estimated to provide approximately 60 percent of the water and 80 percent of the total suspended-sediment load at the Passaic River head-of-tide, whereas the Pompton River provided roughly 20 percent of the total suspended-sediment load estimated at the head-of-tide. The combined suspended-sediment loads of the upper Passaic and Pompton Rivers (9.2 Mkg/yr), however, represent only 40 percent of the average annual suspended-sediment load estimated for the head-of-tide (23 Mkg/yr) at Little Falls, N.J. The difference between the combined suspended-sediment loads of the tributaries and the estimated load at Little Falls represents either sediment trapped upriver from the dam at Little Falls, additional inputs of suspended sediment downstream from the tributary confluence, or uncertainty in the suspended-sediment and discharge data that were used. The concentrations of total suspended sediment-bound polychlorinated biphenyls (PCBs) in the tributaries to the Passaic River were 194 ng/g (nanograms per gram) in the Second River, 575 ng/g in the Third River, 2,320 ng/g in the Saddle River, 200 ng/g in the Pompton River, and 87 ng/g in the upper Passic River. The dissolved PCB concentrations in the tributaries were 563 pg/L (picograms per liter) in the Second River, 2,510 pg/L in the Third River, 2,270 pg/L in the Saddle River, 887 pg/L in the Pompton River, and 1,000 pg/L in the upper Passaic River. Combined with the sediment loads and discharge, these concentrations resulted in annual loads of suspended sediment-bound PCBs, i

  16. Modelling Kepone in the striped bass food chain of the James River estuary

    NASA Astrophysics Data System (ADS)

    Connolly, John P.; Tonelli, Rosella

    1985-03-01

    A mathematical model that computes the accumulation of Kepone in the striped bass food chain of the James River estuary was developed. The purpose of the model was to help understand the relationship of Kepone levels in important fish species to sediment and water column Kepone concentrations and then to address the question of why these levels still exceed Food and Drug Administration limits eight years after discharge ceased. The model considers exposure through diet and respiration at rates based on species bioenergetics. It was successfully calibrated to the Kepone concentrations observed in the period 1976 through 1982 in striped bass, white perch, and Atlantic croaker. The model indicates that for the upper levels of the food chain, diet is the major route of contamination, accounting for 87-88% of the observed concentration in croaker and white perch and 91% of the observed concentration in striped bass. The two Kepone sources; sediment and water column, contribute approximately equally to the croaker and white perch. The water column is more significant for striped bass, being the original source for approximately 60% of the observed body burdens. It was estimated that a criterion requiring Kepone concentrations in fish to be at or below 0·3 μg g -1 would require dissolved water column and sediment Kepone concentrations to be reduced to somewhere between 3 and 9 ng l -1 and 13-39 ng g -1, respectively, depending on the species. Striped bass require the greatest reductions in dissolved water column and sediment Kepone concentrations to somewhere between 3 and 5 ng l -1 and 13 and 24 ng g -1, respectively.

  17. Feasibility of estimate sediment yield in the non-sediment monitoring station area - A case study of Alishan River watershed,Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, ChiaChi; Chan, HsunChuan; Jia, YaFei; Zhang, YaoXin

    2017-04-01

    Due to the steep topography, frail geology and concentrated rainfall in wet season, slope disaster occurred frequently in Taiwan. In addition, heavy rainfall induced landslides in upper watersheds. The sediment yield on the slopeland affects the sediment transport in the river. Sediment deposits on the river bed reduce the river cross section and change the flow direction. Furthermore, it generates risks to residents' lives and property in the downstream. The Taiwanese government has been devoting increasing efforts on the sedimentary management issues and on reduction in disaster occurrence. However, due to the limited information on the environmental conditions in the upper stream, it is difficult to set up the sedimentary monitoring equipment. This study used the upper stream of the Qingshuei River, the Alishan River, as a study area. In August 2009, Typhoon Morakot caused the sedimentation of midstream and downstream river courses in the Alishan River. Because there is no any sediment monitoring stations within the Alishan River watershed, the sediment yield values are hard to determine. The objective of this study is to establish a method to analyze the event-landslide sediment transport in the river on the upper watershed. This study numerically investigated the sediment transport in the Alishan River by using the KINEROS 2 model developed by the United States Department of Agriculture and the CCHE1D model developed by the National Center for Computational Hydroscience and Engineering. The simulated results represent the morphology changes in the Alishan River during the typhoon events. The results consist of a critical strategy reference for the sedimentary management for the Alishan River watershed.

  18. Flood-inundation maps for the East Fork White River at Columbus, Indiana

    USGS Publications Warehouse

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 5.4-mile reach of the East Fork White River at Columbus, Indiana, from where the Flatrock and Driftwood Rivers combine to make up East Fork White River to just upstream of the confluence of Clifty Creek with the East Fork White River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03364000&agency_cd=USGS&). The National Weather Service (NWS) forecasts flood hydrographs for the East Fork White River at Columbus, Indiana at their Advanced Hydrologic Prediction Service (AHPS) flood warning system Website (http://water.weather.gov/ahps/), that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. The calibrated hydraulic model was then used to determine 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data), having a 0.37-ft vertical accuracy and a 1.02 ft horizontal accuracy), in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at Columbus, Indiana, and forecasted stream stages from the NWS will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  19. 78 FR 19522 - Notice of Public Meeting, Northwest Colorado Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... White River Field Office, 220 E. Market St., Meeker, CO. FOR FURTHER INFORMATION CONTACT: David Boyd... the BLM National Sage Grouse Conservation Strategy, working group reports, recreation, fire management... National Conservation Area, Kremmling Resource Management Plan revision and the White River Field Office...

  20. AN ECOLOGICAL AND HABITAT VULNERABILITY ASSESSMENT OF THE WHITE RIVER BASIN

    EPA Science Inventory

    This study is an important first step toward a determination of how such landscape alterations are correlated with changes in the hydrologic, chemical, and biological characteristics of the White River Basin and how the influences of potential alterations may affect change in the...

  1. AN ECOLOGICAL AND HABITAT VULNERABILITY ASSESSMENT OF ARKANSAS WHITE RIVER BASIN

    EPA Science Inventory

    This study is an important first step toward a determination of how such landscape alterations are correlated with changes in the hydrologic, chemical, and biological characteristics of the White River Basin and how the influences of potential alterations may affect change in the...

  2. Chemical characterization of sediments and pore water from the upper Clark Fork River and Milltown Reservoir, Montana

    USGS Publications Warehouse

    Brumbaugh, W. G.; Ingersoll, C.G.; Kemble, N.E.; May, T.W.; Zajicek, J.L.

    1994-01-01

    The upper Clark Fork River basin in western Montana is widely contaminated by metals from past mining, milling, and smelting activities As part of a comprehensive ecological risk assessment for the upper Clark Fork River, we measured physical and chemical characteristics of surficial sediment samples that were collected from depositional zones for subsequent toxicity evaluations Sampling stations included five locations along the upper 200 km of the river, six locations in or near Milltown Reservoir (about 205 km from the river origin), and two tributary reference sites Concentrations of As, Cd, Cu, Mn, Pb, and Zn decreased from the upper stations to the downstream stations in the Clark Fork River but then increased in all Milltown Reservoir stations to levels similar to uppermost river stations Large percentages (50 to 90%) of the total Cd, Cu, Pb, and Zn were extractable by dilute (3 n) HCl for all samples Copper and zinc accounted for greater than 95% of extractable metals on a molar basis Acid-volatile sulfide (AVS) concentrations were typically moderate (0 6 to 23 μmol/g) in grab sediment samples and appeared to regulate dissolved (filterable) concentrations of Cd, Cu, and Zn in sediment pore waters Acid volatile sulfide is important in controlling metal solubility in the depositional areas of the Clark Fork River and should be monitored in any future studies Spatial variability within a sampling station was high for Cu, Zn, and AVS, therefore, the potential for toxicity to sediment dwelling organisms may be highly localized.

  3. 78 FR 56650 - Boundary Description and Final Map for Sandy Wild and Scenic River, Upper Portion, Mount Hood...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... DEPARTMENT OF AGRICULTURE Forest Service Boundary Description and Final Map for Sandy Wild and...: Notice of availability. SUMMARY: In accordance with section 3(b) of the Wild and Scenic Rivers Act, the... Sandy Wild and Scenic River, Upper Portion, to Congress. DATES: The boundaries and classification of the...

  4. Characteristics of fish assemblages and related environmental variables for streams of the upper Snake River basin, Idaho and western Wyoming, 1993-95

    USGS Publications Warehouse

    Maret, Terry R.

    1997-01-01

    limited designation for the middle reach of the Snake River between Milner Dam and King Hill and provide a framework for developing indices of biotic integrity by using fish assemblages to evaluate water quality of streams in the upper Snake River Basin.

  5. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Physiographic Provinces

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This dataset represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from Fenneman and Johnson's Physiographic Provinces of the United States, which is based on 8 major divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock type and structure, and geologic and geomorphic history (Fenneman and Johnson, 1946). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  6. Attributes for NHDPlus Catchments (Version 1.1) in the Conterminous United States: Bedrock Geology

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of bedrock geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Geology of the Conterminous United States at 1:2,500,000 Scale--A Digital Representation of the 1974 P.B. King and H.M. Beikman Map" (Schuben and others, 1994). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18

  7. Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: 30-year average annual maximum temperature, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the 30-year (1971-2000) average annual maximum temperature in Celsius multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  8. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Level 3 Ecoregions

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the estimated area of level 3 ecological landscape regions (ecoregions), as defined by Omernik (1987), compiled for every catchment of NHDPlus for the conterminous United States. The source data set is Level III Ecoregions of the Continental United States (U.S. Environmental Protection Agency, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  9. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Hydrologic Landscape Regions

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every catchment of NHDPlus for the conterminous United States. The source data set is a 100-meter version of Hydrologic Landscape Regions of the United States (Wolock, 2003). HLR groups watersheds on the basis of similarities in land-surface form, geologic texture, and climate characteristics. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  10. Attributes for NHDPlus Catchments (Version 1.1): Level 3 Nutrient Ecoregions, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of each level 3 nutrient ecoregion in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from the 2002 version of the U.S. Environmental Protection Agency's (USEPA) Aggregations of Level III Ecoregions for National Nutrient Assessment & Management Strategy (USEPA, 2002). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  11. Attributes for NHDPlus Catchments (Version 1.1): Basin Characteristics, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents basin characteristics, compiled for every catchment in NHDPlus for the conterminous United States. These characteristics are basin shape index, stream density, sinuosity, mean elevation, mean slope, and number of road-stream crossings. The source data sets are the U.S. Environmental Protection Agency's NHDPlus and the U.S. Census Bureau's TIGER/Line Files. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  12. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Annual Daily Minimum Temperature, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average monthly minimum temperature in Celsius multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  13. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Base-Flow Index

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean base-flow index expressed as a percent, compiled for every catchment in NHDPlus for the conterminous United States. Base flow is the component of streamflow that can be attributed to ground-water discharge into streams. The source data set is Base-Flow Index for the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  14. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: 30-Year Average Annual Precipitation, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the 30-year (1971-2000) average annual precipitation in millimeters multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the "United States Average Monthly or Annual Precipitation, 1971 - 2000" raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  15. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Mean Annual R-factor, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average annual R-factor, rainfall-runoff erosivity measure, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from Christopher Daly of the Spatial Climate Analysis Service, Oregon State University, and George Taylor of the Oregon Climate Service, Oregon State University (2002), who developed spatially distributed estimates of R-factor for the period 1971-2000 for the conterminous United States. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  16. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Atmospheric (Wet) Deposition of Inorganic Nitrogen, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average atmospheric (wet) deposition, in kilograms per square kilometer, of inorganic nitrogen for the year 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data set for wet deposition was from the USGS's raster data set atmospheric (wet) deposition of inorganic nitrogen for 2002 (Gronberg, 2005). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years (2007-2008), an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  17. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Nutrient Inputs from Fertilizer and Manure, Nitrogen and Phosphorus (N&P), 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the estimated amount of nitrogen and phosphorus in kilograms for the year 2002, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982-2001 (Ruddy and others, 2006). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  18. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: 30-Year Average Annual Minimum Temperature, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the 30-year (1971-2000) average annual minimum temperature in Celsius multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the "United States Average Monthly or Annual Minimum Temperature, 1971 - 2000" raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  19. Attributes for NHDPlus catchments (Version 1.1) for the conterminous United States: STATSGO soil characteristics

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents estimated soil variables compiled for every catchment of NHDPlus for the conterminous United States. The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  20. Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: Average Annual Daily Maximum Temperature, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average monthly maximum temperature in Celsius multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  1. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Estimated Mean Annual Natural Groundwater Recharge, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is Estimated Mean Annual Natural Ground-Water Recharge in the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, containing NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  2. Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000

    USGS Publications Warehouse

    Wieczorek, Michael; LaMottem, Andrew E.

    2010-01-01

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  3. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen ) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  4. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Monthly Precipitation, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average monthly precipitation in millimeters multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time Monthly High-Resolution Precipitation Climate Data Set for the Conterminous United States (2002) raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  5. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam: Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1997-1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, David L.

    The authors report on their progress from April 1997 through March 1998 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), National Marine Fisheries Service (NMFS; Report D), U.S. Fish andmore » Wildlife Service (USFWS; Report E), and Columbia River Inter-Tribal Fish Commission (CRITFC; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of the work from April 1997 through March 1998 listed.« less

  6. Hydrologic Conditions that Influence Streamflow Losses in a Karst Region of the Upper Peace River, Polk County, Florida

    USGS Publications Warehouse

    Metz, P.A.; Lewelling, B.R.

    2009-01-01

    The upper Peace River from Bartow to Fort Meade, Florida, is described as a groundwater recharge area, reflecting a reversal from historical groundwater discharge patterns that existed prior to the 1950s. The upper Peace River channel and floodplain are characterized by extensive karst development, with numerous fractures, crevasses, and sinks that have been eroded in the near-surface and underlying carbonate bedrock. With the reversal in groundwater head gradients, river water is lost to the underlying groundwater system through these karst features. An investigation was conducted to evaluate the hydrologic conditions that influence streamflow losses in the karst region of the upper Peace River. The upper Peace River is located in a basin that has been altered substantially by phosphate mining and increases in groundwater use. These alterations have changed groundwater flow patterns and caused streamflow declines through time. Hydrologic factors that have had the greatest influence on streamflow declines in the upper Peace River include the lowering of the potentiometric surfaces of the intermediate aquifer system and Upper Floridan aquifer beneath the riverbed elevation due to below-average rainfall (droughts), increases in groundwater use, and the presence of numerous karst features in the low-water channel and floodplain that enhance the loss of streamflow. Seepage runs conducted along the upper Peace River, from Bartow to Fort Meade, indicate that the greatest streamflow losses occurred along an approximate 2-mile section of the river beginning about 1 mile south of the Peace River at Bartow gaging station. Along the low-water and floodplain channel of this 2-mile section, there are about 10 prominent karst features that influence streamflow losses. Losses from the individual karst features ranged from 0.22 to 16 cubic feet per second based on measurements made between 2002 and 2007. The largest measured flow loss for all the karst features was about 50 cubic feet per second, or about 32 million gallons per day, on June 28, 2002. Streamflow losses varied throughout the year, and were related to seasonal fluctuations in groundwater levels. When groundwater levels were at their lowest level at the end of the dry season (May and June), there was an increased potential for streamflow losses. During this study, the largest streamflow losses occurred at the beginning of the summer rainy season when discharge in the river increased and large volumes of water were needed to replenish unfilled cavities and void spaces in the underlying aquifers. The underlying geology along the upper Peace River and floodplain is highly karstified, and aids in the movement and amount of streamflow that is lost to the groundwater system in this region. Numerous karst features and fractured carbonates and cavernous zones observed in geologic cores and geophysical logs indicate an active, well-connected, groundwater flow system. Aquifer and dye tests conducted along the upper Peace River indicate the presence of cavernous and highly transmissive layers within the floodplain area that can store and transport large volumes of water in underground cavities. A discharge measurement made during this study indicates that the cavernous system associated with Dover Sink can accept over 10 million gallons per day (16 cubic feet per second) of streamflow before the localized aquifer storage volume is replenished and the level of the sink is stabilized.

  7. 131. View, looking northeast, into transformer bay no. 1 showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    131. View, looking northeast, into transformer bay no. 1 showing ca. 1950s General Electric transformer; this transformer was brought to White River from the Snoqualmie Falls plant. It has been abandoned and is being removed. When operational it stepped down 55,000 volts to 6,600 volts. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  8. White sturgeon mitigation and restoration in the Columbia and Snake rivers upstream from Bonneville Dam, Annual progress report April 2002 - March 2003. Report C

    USGS Publications Warehouse

    Gadomski, D.M.; Parsley, M.J.; Kofoot, P.

    2004-01-01

    During 1 April 2002 through 31 March 2003, the U.S. Geological Survey (USGS) continued work on several tasks, including quantifying habitat suitable for white sturgeon Acipenser transmontanus spawning, a long-term survey of young-of-the-year (YOY) white sturgeon recruitment in the lower Columbia River, and a laboratory study investigating predation on larval and juvenile white sturgeon. River discharge and water temperatures that occurred during April through July 2002 provided relatively good conditions for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Optimal spawning temperatures in the four tailraces occurred for approximately three weeks and during a period of relatively high river discharge. Our monthly estimates of the index of spawning habitat showed that the availability of habitat for spawning peaked in June at levels higher than the average of past years. However, indices for the month of May were less than average in all four tailraces. YOY white sturgeon were collected during bottom trawling in Bonneville and The Dalles reservoirs, but none were captured in the John Day Reservoir. In an ongoing comparison of indices of abundance derived from bottom trawls and gill nets, the Oregon Department of Fish and Wildlife also caught YOY white sturgeon in gill nets set in The Dalles Reservoir, but none in the John Day Reservoir. The third year of a three-year laboratory predation study was completed. Adult channel catfish ingested white sturgeon up to a mean total length of about 120 mm, and juvenile walleye ate white sturgeon up to a mean length of 53 mm. When white sturgeon and coho salmon were both available as prey, northern pikeminnow continued to ingest white sturgeon, but in most cases preferred salmon. Conversely, prickly sculpins preferred white sturgeon over goldfish as prey. The presence of cover and also lower light levels reduced predation by sculpins on white sturgeon larvae, but cover did not reduce predation on white sturgeon juveniles. Similar to the past two years, turbidity affected predation of white sturgeon larvae by prickly sculpins, with less sturgeon ingested at higher turbidities.

  9. 76 FR 13288 - Drawbridge Operation Regulations; Hackensack River, Secaucus, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... deviation from the regulation governing the operation of the Upper Hack Bridge at mile 6.9, across the...: The Upper Hack Bridge, across the Hackensack River at mile 6.9 has a vertical clearance in the closed... rehabilitation at the bridge. Under this temporary deviation the Upper Hack Bridge, mile 6.9, across the...

  10. Bottomland Hardwood Forests along the Upper Mississippi River

    USGS Publications Warehouse

    Yin, Y.; Nelson, J.C.; Lubinski, S.J.

    1997-01-01

    Bottomland hardwood forests along the United States' Upper Mississippi River have been drastically reduced in acreage and repeatedly logged during the nineteenth and twentieth centuries. Conversion to agricultural land, timber harvesting, and river modifications for flood prevention and for navigation were the primary factors that caused the changes. Navigation structures and flood-prevention levees have altered the fluvial geomorphic dynamics of the river and floodplain system. Restoration and maintenance of the diversity, productivity, and natural regeneration dynamics of the bottomland hardwood forests under the modified river environment represent a major management challenge.

  11. Evaluation of effects of super-heavy loading on the US 41 bridge over the White River : appendices.

    DOT National Transportation Integrated Search

    2011-01-01

    Built in 1958, the US-41 White River Bridge is a two-girder, riveted steel structure located in Hazelton, IN. The bridge is comprised of two, sixteen span superstructures sharing a common substructure. Each superstructure also contains four pin and h...

  12. Evaluation of effects of super-heavy loading on the US 41 bridge over the White River.

    DOT National Transportation Integrated Search

    2011-01-01

    Built in 1958, the US-41 White River Bridge is a two-girder, riveted steel structure located in Hazelton, IN. The bridge is comprised of two, sixteen span : superstructures sharing a common substructure. Each superstructure also contains four pin and...

  13. Evaluation of effects of super-heavy loading on the US 41 bridge over the White River : technical summary.

    DOT National Transportation Integrated Search

    2011-01-01

    Built in 1958, the US-41 White River Bridge is a two-girder, riveted steel structure located near Hazelton, IN. The bridge is comprised of two, sixteen span superstructures sharing a common substructure. Each superstructure also contains four pin and...

  14. Relating river discharge and water temperature to the recruitment of age‐0 White Sturgeon (Acipenser transmontanus Richardson, 1836) in the Columbia River using over‐dispersed catch data

    USGS Publications Warehouse

    Counihan, Timothy D.; Chapman, Colin G.

    2018-01-01

    The goals were to (i) determine if river discharge and water temperature during various early life history stages were predictors of age‐0 White Sturgeon, Acipenser transmontanus, recruitment, and (ii) provide an example of how over‐dispersed catch data, including data with many zero observations, can be used to better understand the effects of regulated rivers on the productivity of depressed sturgeon populations. An information theoretic approach was used to develop and select negative binomial and zero‐inflated negative binomial models that model the relation of age‐0 White Sturgeon survey data from three contiguous Columbia River reservoirs to river discharge and water temperature during spawning, egg incubation, larval, and post‐larval phases. Age‐0 White Sturgeon were collected with small mesh gill nets in The Dalles and John Day reservoirs from 1997 to 2014 and a bottom trawl in Bonneville Reservoir from 1989 to 2006. Results suggest that seasonal river discharge was positively correlated with age‐0 recruitment; notably that discharge, 16 June–31 July was positively correlated to age‐0 recruitment in all three reservoirs. The best approximating models for two of the three reservoirs also suggest that seasonal water temperature may be a determinant of age‐0 recruitment. Our research demonstrates how over‐dispersed catch data can be used to better understand the effects of environmental conditions on sturgeon populations caused by the construction and operation of dams.

  15. Seasonal and diel movements of white sturgeon in the lower columbia river

    USGS Publications Warehouse

    Parsley, M.J.; Popoff, N.D.; Van Der Leeuw, B. K.; Wright, C.D.

    2008-01-01

    Continuous monitoring of the movements and depths used by white sturgeon Acipenser transmontanus with acoustic telemetry technologies in the lower Columbia River provided information on diel and seasonal migrations, local movements, and site fidelity. White sturgeon moved to shallower water at night and showed greater activity, inferred from rates of movement, than during daytime. The extent of local movement within a season was variable among fish; some fish readily moved among habitats while the movements of others were more constrained. White sturgeon were absent from the study area (river kilometers 45-52) during winter and returned from upstream during the spring, confirming an upstream seasonal migration in the fall and downstream migration in spring. The return of individual fish and reoccupation of areas previously inhabited showed that some white sturgeon exhibit site fidelity. This work shows that studies seeking to characterize habitat for white sturgeon need to be cognizant of diel migrations and site fidelity. We urge caution in the use of limited fish location data to describe habitats if diel activities and fine-scale movements are not known.

  16. Flood of June 11, 2010, in the Upper Little Missouri River watershed, Arkansas

    USGS Publications Warehouse

    Holmes, Robert R.; Wagner, Daniel M.

    2011-01-01

    Catastrophic flash flooding occurred in the early morning hours of June 11, 2010, in the upper Little Missouri River and tributary streams in southwest Arkansas. The flooding, which resulted in 20 fatalities and substantial property damage, was caused by as much as 4.7 inches of rain falling in the upper Little Missouri River watershed in 3 hours. The 4.7 inches of rain in 3 hours corresponds to estimated annual exceedance probability of approximately 2 percent for a 3-hour duration storm. The maximum total estimated rainfall in the upper Missouri River watershed was 5.3 inches in 6 hours. Peak streamflows and other hydraulic properties were determined at five ungaged locations and one gaged location in the upper Little Missouri River watershed.The peak streamflow for the Little Missouri River at Albert Pike, Arkansas was 40,100 cubic feet per second, estimated to have occurred between 4:00 AM and 4:30 AM the morning of June 11, 2010. The peak streamflow resulted in average water depths in the nearby floodplain (Area C of the Albert Pike Campground) of 7 feet flowing at velocities potentially as great as 11 feet per second. Peak streamflow 9.1 miles downstream on the Little Missouri at the U.S. Geological Survey streamgage near Langley, Arkansas was 70,800 cubic feet per second, which corresponds to an estimated annual exceedance probability of less than 1 percent.

  17. Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary.

    PubMed

    Yin, Su; Wu, Yuehan; Xu, Wei; Li, Yangyang; Shen, Zhenyao; Feng, Chenghong

    2016-07-01

    To determine whether the discharge control of heavy metals in the Yangtze River basin can significantly change the pollution level in the estuary, this study analyzed the sources (upper river, the estuarine region, and the adjacent sea) of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in dissolved and particulate phases in the surface water of the estuary during wet, normal, and dry seasons. Metal sources inferred from section fluxes agree with those in statistical analysis methods. Heavy metal pollution in the surface water of Yangtze Estuary primarily depends on the sediment suspension and the wastewater discharge from estuary cities. Upper river only constitutes the main source of dissolved heavy metals during the wet season, while the estuarine region and the adjacent sea (especially the former) dominate the dissolved metal pollution in the normal and dry seasons. Particulate metals are mainly derived from sediment suspension in the estuary and the adjacent sea, and the contribution of the upper river can be neglected. Compared with the hydrologic seasons, flood-ebb tides exert a more obvious effect on the water flow directions in the estuary. Sediment suspension, not the upper river, significantly affects the suspended particulate matter concentration in the estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Simulation of flow and sediment mobility using a multidimensional flow model for the White Sturgeon critical-habitat reach, Kootenai River near Bonners Ferry, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; McDonald, Richard R.; Nelson, Jonathan M.; Dinehart, Randal L.

    2005-01-01

    In 1994, the Kootenai River white sturgeon (Acipenser transmontanus) was listed as an Endangered Species as a direct result of two related observations. First, biologists observed that the white sturgeon population in the Kootenai River was declining. Second, they observed a decline in recruitment of juvenile sturgeon beginning in the 1950s with an almost total absence of recruitment since 1974, following the closure of Libby Dam in 1972. This second observation was attributed to changes in spawning and (or) rearing habitat resulting from alterations in the physical habitat, including flow regime, sediment-transport regime, and bed morphology of the river. The Kootenai River White Sturgeon Recovery Team was established to find and implement ways to improve spawning and rearing habitat used by white sturgeon. They identified the need to develop and apply a multidimensional flow model to certain reaches of the river to quantify physical habitat in a spatially distributed manner. The U.S. Geological Survey has addressed these needs by developing, calibrating, and validating a multidimensional flow model used to simulate streamflow and sediment mobility in the white sturgeon critical-habitat reach of the Kootenai River. This report describes the model and limitations, presents the results of a few simple simulations, and demonstrates how the model can be used to link physical characteristics of streamflow to biological or other habitat data. This study was conducted in cooperation with the Kootenai Tribe of Idaho along a 23-kilometer reach of the Kootenai River, including the white sturgeon spawning reach near Bonners Ferry, Idaho that is about 108 to 131 kilometers below Libby Dam. U.S. Geological Survey's MultiDimensional Surface-Water Modeling System was used to construct a flow model for the critical-habitat reach of the Kootenai River white sturgeon, between river kilometers 228.4 and 245.9. Given streamflow, bed roughness, and downstream water-surface elevation, the model computes the velocity field, water-surface elevations, and boundary shear stress throughout the modeled reach. The 17.5 kilometer model reach was subdivided into two segments on the basis of predominant grain size: a straight reach with a sand, gravel, and cobble substrate located between the upstream model boundary at river kilometer 245.9 and the upstream end of Ambush Rock at river kilometer 244.6, and a meandering reach with a predominately sand substrate located between upstream end of Ambush Rock and the downstream model boundary at river kilometer 228.4. Model cell size in the x and y (horizontal) dimensions is 5 meters by 5 meters along the computational grid centerline with 15 nodes in the z (vertical) dimension. The model was calibrated to historical streamflows evenly distributed between 141.6 and 2,548.9 cubic meters per second. The model was validated by comparing simulated velocities with velocities measured at 15 cross sections during steady streamflow. These 15 cross sections were each measured multiple (7-13) times to obtain velocities suitable for comparison to the model results. Comparison of modeled and measured velocities suggests that the model does a good job of reproducing flow patterns in the river, although some discrepancies were noted. The model was used to simulate water-surface elevation, depth, velocity, bed shear stress, and sediment mobility for Kootenai River streamflows of 170, 566, 1,130, 1,700, and 2,270 cubic meters per second (6,000, 20,000, 40,000, 60,000, and 80,000 cubic feet per second). The three lowest streamflow simulations represent a range of typical river conditions before and since the construction of Libby Dam, and the highest streamflow simulation (2,270 cubic meters per second) is approximately equal to the annual median peak streamflow prior to emplacement of Libby Dam in 1972. Streamflow greater than 566 cubic meters per second were incrementally increased by 570 cubic meters per second. For each

  19. Assessing river recreation use and perceptions of environmental quality trends on Michigan's upper Manistee River

    Treesearch

    Charles Nelson; Brian Valentine

    2003-01-01

    Through vehicle counts and windshield surveys at 43 public access points and a mail questionnaire to shoreline property owners, Michigan State University researchers estimated the recreation effort on a 55-mile stretch of Michigan's upper Manistee River from April 28 - September 3, 2001. In addition, public access point user satisfaction, perceived trends in the...

  20. Geophysical data collected from the St. Clair River between Michigan and Ontario, Canada (2008-016-FA)

    USGS Publications Warehouse

    Denny, Jane F.; Foster, D.S.; Worley, C.R.; Irwin, Barry J.

    2011-01-01

    In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, Mich., and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the riverbed of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the geophysical and sample data collected from the St. Clair River, May 29-June 6, 2008, as part of the International Upper Great Lakes Study, a 5-year project funded by the International Joint Commission of the United States and Canada to examine whether physical changes in the St. Clair River are affecting water levels within upper Great Lakes, to assess regulation plans for outflows from Lake Superior, and to examine the potential effect of climate change on the Great Lakes water levels (http://www.iugls.org). This document makes available the data that were used in a separate report, U.S. Geological Survey Open-File Report 2009-1137, which detailed the interpretations of the Quaternary geologic framework of the region. This report includes a description of the high-resolution acoustic and sediment-sampling systems that were used to map the morphology, surficial sediment distribution, and underlying geology of the Upper St. Clair River during USGS field activity 2008-016-FA (http://quashnet.er.usgs.gov/cgi-bin/datasource/public_ds_info.pl?fa=2008-016-FA). Video and photographs of the riverbed were also collected and are included in this data release. Future analyses will be focused on substrate erosion and its effects on river-channel morphology and geometry. Ultimately, the International Upper Great Lakes Study will attempt to determine where physical changes in the St. Clair River affect water flow and, subsequently, water levels in the Upper Great Lakes.

  1. Nonnative Fishes in the Upper Mississippi River System

    USGS Publications Warehouse

    Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.

    2009-01-01

    The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for nonnative species expansion between the Mississippi River and the Great Lakes Basin. This report presents a synthesis of data on nonnative fish species observed during Long Term Resource Monitoring Program monitoring activities.

  2. Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan

    NASA Astrophysics Data System (ADS)

    Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.

    2015-12-01

    Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.

  3. Fish assemblage, density, and growth in lateral habitats within natural and regulated sections of Washington's Elwha River prior to dam removal

    USGS Publications Warehouse

    Connolly, P.J.; Brenkman, S.J.

    2008-01-01

    We characterized seasonal fish assemblage, relative density, and growth in river margins above and between two Elwha River dams scheduled for removal. Fish assemblage and relative density differed in the lateral habitats of the middle-regulated and upper-unregulated sections of the Elwha River. Rainbow trout was the numerically dominant salmonid in both sections, with bull trout present in low numbers. Sculpin were common in the middle section, but not detected in the upper section. In 2004, mean length and biomass of age-0 rainbow trout were significantly smaller in the middle section than in the upper section by the end of the growing season (September). In 2005, an earlier emergence of rainbow trout in the middle section (July) compared to the upper section (August) corresponded with warmer water temperatures in the middle section. Despite lower growth, the margins of mainstem units in the middle section supported higher mean areal densities and biomass of age-0 rainbow trout than the up-per section. These results suggest that growth performance of age-0 rainbow trout was lower in the middle section than in the upper section, which could have been a density-dependent response, or a result of poor food production in the sediment-starved regulated section, or both. Based on our findings, we believe that seasonal sampling of river margins within reference reaches is a cost effective and repeatable method for detection of biologically important short- and long-term changes in emergence timing, density, and growth of rainbow trout before and after dam removals in the Elwha River.

  4. White sturgeon mitigation and restoration in the Columbia and Snake rivers upstream from Bonneville Dam, Annual Progress Report April 2004 - March 2005. Report C

    USGS Publications Warehouse

    Parsley, M.J.; Kofoot, P.

    2006-01-01

    River discharge and water temperatures that occurred during April through July 2004 provided conditions suitable for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Optimal spawning temperatures in the four tailraces occurred for 3-4 weeks and coincided with the peak of the river hydrograph. However, the peak of the hydrograph was relatively low compared to past years, which is reflected in the relatively low monthly and annual indices of suitable spawning habitat. Bottom-trawl sampling in the Bonneville Reservoir revealed the presence of young-of-theyear (YOY) white sturgeon.

  5. Effects of controlled dog hunting on movements of female white-tailed deer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Angelo, Gino, J.; Kilgo, John, C.; Comer, Christopher, E.

    D'Angelo, Gino, J., John C. Kilgo, Christopher E. Comer, Cory D. Drennan, David A. Osborn, and Karl V. Miller. 2003. Effects of controlled dog hunting on movements of female white-tailed deer. In: Proceedings of the Annu. Conf. Southeast. Assoc. Fish and Wildl. Agencies. 57:317-325. This article explores the relationship between controlled dog hunting and the movements of female white tailed deer at the Savannah River Site, South Carolina. The data suggests that short term, controlled dog hunting has little long-term effect on adult, female white-tailed deer movement on the Savannah River Site.

  6. 78 FR 76195 - Drawbridge Operation Regulations; Hackensack River, New Jersey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... Upper Hack and HX Bridges, miles 6.9 and 7.7, respectively, all across the Hackensack River, NJ to... Upper Hack Bridge, mile 6.9, has a vertical clearance of 8 feet at mean high water, and 13 feet at mean... so at all times. Under this temporary deviation the PATH, Portal, Upper Hack and HX bridges may...

  7. 2. CLOSEUP OF SOUTH FACADE OF UPPER FALLS GATE HOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CLOSEUP OF SOUTH FACADE OF UPPER FALLS GATE HOUSE, SHOWING TRASH RACKS, REMOVABLE STEEL DOORS, TRASH RAKE STRUCTURE, AND DERRICK, WINCH AND CABLE GATE LIFTING DEVICE, LOOKING SOUTH/SOUTHWEST. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  8. Intertonguing of the Lower Part of the Uinta Formation with the Upper Part of the Green River Formation in the Piceance Creek Basin During the Late Stages of Lake Uinta

    USGS Publications Warehouse

    Donnell, John R.

    2009-01-01

    During most of middle Eocene time, a 1,500-mi2 area between the Colorado and White Rivers in northwestern Colorado was occupied by the Piceance lobe of Lake Uinta. This initially freshwater lake became increasingly saline throughout its history. Sediments accumulating in the lake produced mostly clay shale, limestone, and dolomite containing varying concentrations of organic matter. At the time of the maximum extent of the lake, the organic-rich Mahogany bed of the Green River Formation was deposited throughout the area. Shortly after its deposition, stream deposits began infilling the lake from the north through a series of contractions interspersed with minor expansions. This fluctuation of the shoreline resulted in the intertonguing of the stream sediments of the lower part of the overlying Uinta Formation with the lacustrine sediments of the upper part of the Green River over a distance of about 40 mi; construction of regional stratigraphic cross sections show the pattern of intertonguing in considerable detail. The data utilized in this study, which covered parts of Rio Blanco, Garfield, and Mesa counties, was derived from (1) geologic mapping of thirty-four 7 1/2-minute quadrangles and stratigraphic studies by geologists of the U.S. Geological Survey, and (2) shale-oil assay information from numerous cores. As a result of this previous work and the additional effort involved in the compilation here presented, more than a dozen Green River Formation tongues have been named, some formally, others informally. Middle Eocene strata above the Mahogany bed in the northern part of the study area are dominantly coarse clastics of the Uinta Formation. The sedimentary sequence becomes more calcareous and organic-rich to the south where, in a 400-mi2 area, a 250 ft-thick sequence of oil shale above the Mahogany bed contains an average of 16 gallons of oil per ton of shale and is estimated to contain 73 billion barrels of oil.

  9. 2012 White Book, Pacific Northwest Loads and Resources Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The White Book is a planning analysis produced by BPA that informs BPA of its load and resource conditions for sales and purchases. The White Book provides a 10-year look at the expected obligations and resources in the Federal system and PNW region. The White Book is used as a planning tool for the Columbia River Treaty (Treaty) studies, as an information tool for customers and regional interests, and as a publication of information utilized by other planning entities for their analyses. The White Book is not used to guide day-to-day operations of the Federal Columbia River Power System (FCRPS)more » or determine BPA revenues or rates.« less

  10. Estimated discharge and chemical-constituent loading from the upper Floridan aquifer to the lower St John's River, northeastern Florida, 1990-91

    USGS Publications Warehouse

    Spechler, R.M.

    1995-01-01

    The lower St. Johns River, a 101-mile long segment of the St. Johns River, begins at the confluence of the Ocklawaha River and ends where the river discharges into the Atlantic Ocean at Mayport. The St. Johns River is affected by tides as far upstream as Lake George, 106 miles from the mouth. Saltwater from the ocean advances inland during each incoming tide and recedes during each outgoing tide. The chemical quality of the lower St. Johns River is highly variable primarily because of the inflow of saltwater from the ocean, and in some areas, from the discharge of mineralized ground water. Three hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. The surficial aquifer system overlies the intermediate confining unit and consists of deposits containing sand, clay, shell, and some limestone and dolomite. The intermediate confining unit underlies all of the study area and retards the vertical movement of water between the surficial aquifer system and the Floridan aquifer system. The intermediate confining unit consists of beds of relatively low permeability sediments that vary in thickness and areal extent and can be breached by sinkholes, fractures, and other openings. The Floridan aquifer system primarily consists of limestone and dolomite. The quality of water in the Upper Floridan aquifer varies throughout the study area. Dissolved solids in water range from about 100 to more than 5,000 milligrams per liter. Chloride and sulfate concentrations in water from the Upper Floridan aquifer range from about 4 to 3,700 milligrams per liter and from 1 to 1,300 milligrams per liter, respectively. The rate of leakage through the intermediate confining unit is controlled by the leakance coefficient of the intermediate confining unit and by the head difference between the Upper Floridan aquifer and the surficial aquifer system. The total ground-water discharge from the Upper Floridan aquifer to the St. Johns River within the lower St. Johns River drainage basin, based on the potentiometric surface of the Upper Floridan aquifer in September 1990, was estimated to be 86 cubic feet per second. Total estimated ground-water discharge to the lower St. Johns River in September 1991, when heads in the Upper Floridan aquifer averaged about 4 feet higher than in 1990, was 133 cubic feet per second. The load of dissolved-solids that discharged from the Upper Floridan aquifer into the lower St. Johns River on the basis of September 1990 heads is estimated to be 47,000 tons per year. Estimated chloride and sulfate loads are 18,000 and 9,500 tons per year, respectively. Dissolved-solids, chloride, and sulfate loads discharging into the lower St. Johns River are estimated to be 81,000, 39,000, and 15,000 tons per year, respectively, on the basis of September 1991 heads.

  11. Inventory and management of trespass recreation use at Upper Delaware and Scenic and Recreational River

    USGS Publications Warehouse

    Marion, J.L.; More, Thomas A.; Donnelly, Maureen P.; Graefe, Alan R.; Vaske, Jerry J.

    1989-01-01

    Recreational trespass on private lands within the Upper Delaware Scenic and Recreational River, located along the eastern border between Pennsylvania and New York, prompted this survey of recreational trespass sites. The National Park Service has been mandated to manage river recreational use within its boundaries but land ownership shall remain predominantly private. This survey was conducted to document the number and distribution of river recreation trespass sites and to recommend appropriate management actions to minimize trespass use.

  12. GREAT I: A Study of the Upper Mississippi River. Volume 1. Main Report

    DTIC Science & Technology

    1980-09-01

    management of the river system and its interrelated Ensure necessary capability to components within the river corridor . maintain the total river...stem corridor will is a complex resource. It means many probably directly modify many or all things to many people. To call it a other components of the...resource in the "resource" implies that it is some- main stem corridor , Any description thing which man can draw on to satisfy of the Upper

  13. River enhancement in the Upper Mississippi River basin: Approaches based on river uses, alterations, and management agencies

    USGS Publications Warehouse

    O'Donnell, T. K.; Galat, D.L.

    2007-01-01

    The Upper Mississippi River is characterized by a series of locks and dams, shallow impoundments, and thousands of river channelization structures that facilitate commercial navigation between Minneapolis, Minnesota, and Cairo, Illinois. Agriculture and urban development over the past 200 years have degraded water quality and increased the rate of sediment and nutrient delivery to surface waters. River enhancement has become an important management tool employed to address causes and effects of surface water degradation and river modification in the Upper Mississippi River Basin. We report information on individual river enhancement projects and contrast project densities, goals, activities, monitoring, and cost between commercially non-navigated and navigated rivers (Non-navigated and Navigated Rivers, respectively). The total number of river enhancement projects collected during this effort was 62,108. Cost of all projects reporting spending between 1972 and 2006 was about US$1.6 billion. Water quality management was the most cited project goal within the basin. Other important goals in Navigated Rivers included in-stream habitat improvement and flow modification. Most projects collected for Non-navigated Rivers and their watersheds originated from the U.S. Department of Agriculture (USDA). The U.S. Army Corps of Engineers and the USDA were important sources for projects in Navigated Rivers. Collaborative efforts between agencies that implement projects in Non-navigated and Navigated Rivers may be needed to more effectively address river impairment. However, the current state of data sources tracking river enhancement projects deters efficient and broad-scale integration. ?? Journal compilation ?? 2007 Society for Ecological Restoration International.

  14. 11. DETAIL VIEW OF BRIDGE DATEPLATE AT SOUTHEAST CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF BRIDGE DATEPLATE AT SOUTHEAST CORNER OF BRIDGE WHICH READS 'NORTH FORK OF WHITE RIVER, VINCENNES STEEL CORP., CONTRACTOR, ARKANSAS STATE HIGHWAY COMMISSION AND THE UNITED STATES BUREAU OF PUBLIC ROADS, 1936' - North Fork Bridge, Spans North Fork of White River at State Highway 5, Norfork, Baxter County, AR

  15. 33 CFR 117.139 - White River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATION REGULATIONS Specific Requirements Arkansas § 117.139 White River. (a) The draws of the St. Louis Southwestern railroad bridge, mile 98.9 at Clarendon, the US70 highway bridge, mile 121.7 at DeValls Bluff, the Chicago, Rock Island and Pacific Railroad bridge, mile 122.0 at DeValls Bluff, the Missouri Pacific...

  16. Physical-chemical modeling of elements' behavior in mixing sea and fresh waters of minor rivers in the White Sea catchment area.

    PubMed

    Maksimova, Victoria V; Mazukhina, Svetlana I; Cherepanova, Tatiana A; Gorbacheva, Tamara T

    2017-07-29

    The physical-chemical stage of marginal filters in minor rivers of the White Sea catchment area by the example of the Umba River, flowing to Kandalaksha Gulf, has been explored. Application of the method of physical-chemical modeling on the basis of field data allowed establishing migration forms of a number of elements in the "river-sea" system and deposition of solid phases when mixing waters. The mixing of river and sea water is accompanied by the sedimentation of predominantly goethite, hydromuscovite, and hydroxylapatite. Sediments in mixing river and sea waters were found to be mainly composed by goethite, hydromuscovite, and hydroxylapatite. The research has added to the knowledge of the role of the abiotic part in the marginal filters of small rivers in the Arctic.

  17. Can beaver impact promote river renaturalization? The example of the Raba River, southern Poland.

    PubMed

    Gorczyca, Elżbieta; Krzemień, Kazimierz; Sobucki, Mateusz; Jarzyna, Krzysztof

    2018-02-15

    The European beaver (Castor fiber) was reintroduced in the Polish Carpathians in the 1980s after a few centuries of absence. It gradually colonized suitable habitats in the Raba River valley and elsewhere. The question arises as to whether beaver activity can play a role in the local improvement of hydromorphological conditions and spontaneous renaturalization of the Raba River channel. Field surveys were performed in morphodynamically and structurally homogeneous reaches of the river. Traces of beaver activity were identified and used to estimate the studied beaver population. Local beaver impact on the studied river channel was also determined. The Raba channel is trained along about 80% of its length and considerably incised. Traces of beavers activity were found in 16 out of 31 river reaches, mainly in the upper and lower river course. The study showed that relatively flat channel gradient, small maximum bed-material grain size, and high channel sinuosity favour beaver presence. The largest number of beaver habitats was identified in river reaches strongly altered by man and characterized by a uniform channel structure. Beaver impact on channel structure varies depending on differences of the river channel features in upper and lower reaches of the Raba River channel. In upper reaches, the impact of beaver activity (mostly dams) is reflected in increased lateral erosion, while slower water current reduces the tendency for bed degradation. In lower reaches, beaver impact is mostly limited to bank fragmentation (slides and burrows). Lateral erosion, accumulation of material at the toe of riverbanks, and wood debris accumulation all produce a local impact on river channel width. These beaver-initiated processes mostly alter artificially homogenized river reaches. Beavers may actually play a substantial role in future renaturalization of both upper and lower reaches of the Raba River. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Analysis of ambient conditions and simulation of hydrodynamics and water-quality characteristics in Beaver Lake, Arkansas, 2001 through 2003

    USGS Publications Warehouse

    Galloway, Joel M.; Green, W. Reed

    2006-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas. The purpose of this report is to describe the ambient hydrologic and water-quality conditions in Beaver Lake and its inflows and describe a two-dimensional model developed to simulate the hydrodynamics and water quality of Beaver Lake from 2001 through 2003. Water-quality samples were collected at the three main inflows to Beaver Lake; the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Nutrient concentrations varied among the tributaries because of land use and contributions of nutrients from point sources. The median concentrations of total ammonia plus organic nitrogen were greater for the White River than Richland and War Eagle Creeks. The greatest concentrations of nitrite plus nitrate and total nitrogen, however, were observed at War Eagle Creek. Phosphorus concentrations were relatively low, with orthophosphorus and dissolved phosphorus concentrations mostly below the laboratory reporting limit at the three sites. War Eagle Creek had significantly greater median orthophosphorus and total phosphorus concentrations than the White River and Richland Creek. Dissolved organic-carbon concentrations were significantly greater at the White River than at War Eagle and Richland Creeks. The White River also had significantly greater turbidity than War Eagle Creek and Richland Creek. The temperature distribution in Beaver Lake exhibits the typical seasonal cycle of lakes and reservoirs located within similar latitudes. Beaver Lake is a monomictic system, in which thermal stratification occurs annually during the summer and fall and complete mixing occurs in the winter. Isothermal conditions exist throughout the winter and early spring. Nitrogen concentrations varied temporally, longitudinally, and vertically in Beaver Lake for 2001 through 2003. Nitrite plus nitrate concentrations generally decreased from the upstream portion of Beaver Lake to the downstream portion and generally were greater in the hypolimnion. Total ammonia plus organic nitrogen concentrations also decreased from the upstream end of Beaver Lake to the downstream end and were substantially greater in the hypolimnion of Beaver Lake. Phosphorus concentrations mostly were near or below laboratory detection limits in the epilimnion and metalimnion in Beaver Lake and were substantially greater in the hypolimnion in the upstream and middle parts of the reservoir. Measured total and dissolved organic carbon in Beaver Lake was relatively uniform spatially, longitudinally, and vertically in the reservoir from January 2001 through December 2003. Chlorophyll a concentrations measured at sites in the upstream portion of the lake were significantly greater than at the other sites in the downstream portion of Beaver Lake. During the study period, water clarity in Beaver Lake was significantly greater at the downstream end of the reservoir than at the upstream end. The greatest Secchi depths at the downstream end of the reservoir generally were observed in 2001 compared to 2002 and 2003, but did not have a seasonal pattern as observed at sites in the middle and upstream portion of the reservoir. Similar to Secchi depth results, turbidity results indicated greater water clarity in the downstream portion of Beaver Lake compared to the upstream portion. Turbidity also was greater in the hypolimnion than in the epilimnion in the reservoir during the stratification season. A two-dimensional, laterally averaged, hydrodynamic, and water-quality model using CE-QUAL-W2 Version 3.1 was developed for Beaver Lake and calibrated based on vertical profiles of temperature and dissolved oxygen, and water-quality constituent concentrations collected at various depths at four sites in the reservoir from April 2001 to April 2003. Simulated temperatures and dissolved-oxygen concentrations compared reasonably well with measured t

  19. Water Demand Management Strategies and Challenges in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Kuhn, R. E.

    2016-12-01

    Under the 1922 Colorado River Compact, the Upper Basin (Colorado, New Mexico, Utah, and Wyoming) has flow obligations at Lee Ferry to downstream states and Mexico. The Colorado River Storage Project Act (CRSPA) of 1956 led to the construction of four large storage reservoirs. These provide river regulation to allow the Upper Basin to meet its obligations. Lake Powell, the largest and most important, and Lake Mead are now operated in a coordinated manner under the 2007 Interim Guidelines. Studies show that at current demand levels and if the hydrologic conditions the Basin has experienced since the mid-1980s continue or get drier, reservoir operations, alone, may not provide the necessary water to meet the Upper Basin's obligations. Therefore, the Upper Basin states are now studying demand management strategies that will reduce consumptive uses when total system reservoir storage reaches critically low levels. Demand management has its own economic, political and technical challenges and limitations and will provide new opportunities for applied research. This presentation will discuss some of those strategies, their challenges, and the kinds of information that research could provide to inform demand management.

  20. Development and implications of a sediment budget for the upper Elk River watershed, Humboldt County

    Treesearch

    Lee H. MacDonald; Michael W. Miles; Shane Beach; Nicolas M. Harrison; Matthew R. House; Patrick Belmont; Ken L. Ferrier

    2017-01-01

    A number of watersheds on the North Coast of California have been designated as sediment impaired under the Clean Water Act, including the 112 km2 upper Elk River watershed that flows into Humboldt Bay just south of Eureka. The objectives of this paper are to: 1) briefly explain the geomorphic context and anthropogenic uses of the Elk River...

  1. Influence of landscape geomorphology on large wood jams and salmonids in an old-growth river of Upper Michigan

    Treesearch

    Arthur E. L. Morris; P. Charles Goebel; Lance R. Williams; Brian J. Palik

    2006-01-01

    We investigated the structure of large wood jams (LWJ) and their use by brook trout (Salvelinus fontinalis Mitchill) and other fish in four geomorphically-distinct sections of the Little Carp River, a small river flowing through an uncut, old-growth, northern hardwood-conifer forest along the south shore of Lake Superior, Upper Michigan. We...

  2. Upper Washita River experimental watersheds: Sediment Database

    USDA-ARS?s Scientific Manuscript database

    Improving the scientific understanding of the effectiveness of watershed conservation practices and floodwater-retardation structures to control floods and soil erosion is one of the primary objectives for sediment studies in the upper Washita River Experimental Watersheds. This paper summarizes se...

  3. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; Annual Progress Report, April 2007 - March 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallette, Christine

    2009-07-28

    We report on our progress from April 2007 through March 2008 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), Columbia River Inter-Tribal Fish Commission (CRITFC; Report C), and Montana State University (MSU; Report D). This is a multi-year studymore » with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.« less

  4. Discovery of ammocrypta clara (western sand darter) in the Upper Ohio River of West Virginia

    USGS Publications Warehouse

    Cincotta, Dan A.; Welsh, Stuart A.

    2010-01-01

    Ammocrypta clara Jordan and Meek (western sand darter) occurs primarily in the western portions of Mississippi River system, but also has been reported from a Lake Michigan drainage and a few eastern Texas Gulf Slope rivers. Additional range records depict a semi-disjunct distribution within the Ohio River drainage, including collections from Wabash River in Indiana, the Cumberland, Green, Kentucky and Big Sandy rivers of Kentucky, and the upper Tennessee River in Tennessee and Virginia. This paper documents the occurrence of A. clara from the upper Ohio River drainage within the lower Elk River, West Virginia, based on collections from 1986, 1991, 1995, 2005 and 2006. The Elk River population, consistent with those of other Ohio River drainages, has slightly higher counts for numbers of dorsal-fin rays, scales below lateral line and lateral line scales when compared to data from populations outside of the Ohio River drainage. Modal counts of meristic characters are similar among populations, except for higher modal counts of lateral line scales in the Ohio River population. The discovery of the Elk River population extends the range distribution of A. clara in the Eastern Highlands region, documents wide distributional overlap and additional sympatry with its sister species,A. pellucida (eastern sand darter), and softens support for an east-west Central Highlands vicariance hypothesis for the present distribution of A. clara and A. pellucida.

  5. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    We determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout Oncorhynchus mykiss using rotary screw traps on four streams in the Grande Ronde River basin during the 2001 migratory year (MY 2001) from 1 July 2000 through 30 June 2001. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O. mykiss could be distinguished. An 'early' migrant group left upper rearing areas from 1 July 2000 through 29 January 2001 with a peak in the fall. A 'late' migrant group descended from upper rearing areas from 30more » January 2001 through 30 June 2001 with a peak in the spring. The migrant population of juvenile spring chinook salmon in the upper Grande Ronde River in MY 2001 was very low in comparison to previous migratory years. We estimated 51 juvenile spring chinook migrated out of upper rearing areas with approximately 12% of the migrant population leaving as early migrants to overwinter downstream. In the same migratory year, we estimated 16,067 O. mykiss migrants left upper rearing areas with approximately 4% of these fish descending the upper Grande Ronde River as early migrants. At the Catherine Creek trap, we estimated 21,937 juvenile spring chinook migrants in MY 2001. Of these migrants, 87% left upper rearing areas early to overwinter downstream. We also estimated 20,586 O. mykiss migrants in Catherine Creek with 44% leaving upper rearing areas early to overwinter downstream. At the Lostine River trap, we estimated 13,610 juvenile spring chinook migrated out of upper rearing areas with approximately 77% migrating early. We estimated 16,690 O. mykiss migrated out of the Lostine River with approximately 46% descending the river as early migrants. At the Minam River trap, we estimated 28,209 juvenile spring chinook migrated out of the river with 36% migrating early. During the same period, we estimated 28,113 O. mykiss with approximately 14% of these fish leaving as early migrants. Juvenile spring chinook salmon PIT-tagged at trap sites in the fall and in upper rearing areas during winter were used to compare migration timing and survival to Lower Granite Dam of the early and late migrant groups. Juvenile spring chinook tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 May to 20 May 2001, with a median passage date of 17 May. Too few fish were collected and tagged to conduct detection rate and survival comparisons between migrant groups. PIT-tagged salmon from Catherine Creek trap were detected at Lower Granite Dam from 27 April to 13 July 2001. Early migrants were detected significantly earlier (median = 10 May) than late migrants (median = 1 June). Also, early migrants from Catherine Creek were detected at a significantly higher rate than fish tagged in upper rearing areas in the winter, suggesting better survival for fish that migrated out of upper rearing areas in the fall. Juvenile spring chinook salmon from the Lostine River were detected at Lower Granite Dam from 2 April through 4 July 2001. Early migrants were detected significantly earlier (median = 27 April) than late migrants (median = 14 May). However, there was no difference in detection rates between early and late migrants. Survival probabilities showed similar patterns as dam detection rates. Juvenile spring chinook salmon from the Minam River were detected at Lower Granite Dam from 8 April through 18 August 2001. Early migrants were detected significantly earlier (median = 28 April) than late migrants (median = 14 May). Late migrants from the Minam River were tagged at the trap in the spring. Spring chinook salmon parr PIT-tagged in summer 2000 on Catherine Creek and the Imnaha, Lostine, and Minam rivers were detected at Lower Granite Dam over an 87 d period from 8 April to 3 July 2001. The migratory period of individual populations ranged from 51 d (Imnaha River) to 67 d (Catherine Creek) in length. Median dates of migration ranged from 30 April (Imnaha River) to 17 May (Catherine Creek). Detection rates differed between populations with Catherine Creek spring chinook salmon detected at the lowest rate (8.2%). Imnaha, Lostine, and Minam detection rates were not significantly different from each other. A similar pattern was seen for survival probabilities. Using mark-and-recapture and scale-aging techniques, we determined the population size and age-structure of spring chinook salmon parr in Catherine Creek and the Lostine River during the summer of 2001. In Catherine Creek, we estimated that 986 mature age-1 parr (precocious males) and 15,032 immature age-0 parr were present during August 2001. We estimated there were 7.5 mature male parr for every anadromous female spawner in Catherine Creek in 2001. We estimated 33,086 immature, age-0 parr inhabited the Lostine River in August 2001.« less

  6. Organic compounds in White River water used for public supply near Indianapolis, Indiana, 2002-05

    USGS Publications Warehouse

    Lathrop, Tim; Moran, Dan

    2011-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterized the occurrence of 277 organic compounds in source water (stream water collected before treatment) and finished water (treated water before distribution) from the White River North treatment plant, one of several community water systems that use the White River as its primary water supply (fig. 1). Samples were collected at least monthly during 2002-05 and included 30 source- and 13 finished-water samples. The samples were analyzed for pesticides and selected pesticide degradates (or 'breakdown products'), solvents, gasoline hydrocarbons, disinfection by-products, personal-care and domestic-use products, and other organic compounds. Community water systems are required to monitor for compounds regulated under the Safe Drinking Water Act. Most of the compounds tested in this study are not regulated under U.S. Environmental Protection Agency (USEPA) federal drinking-water standards (U.S. Environmental Protection Agency, 2007a). The White River study is part of the ongoing Source Water-Quality Assessment (SWQA) investigation of community water systems that withdraw from rivers across the United States. More detailed information and references on the sampling-design methodology, specific compounds monitored, and the national study are described by Carter and others (2007).

  7. Modeling hydraulic and sediment transport processes in white sturgeon spawning habitat on the Kootenai River, Idaho

    USGS Publications Warehouse

    McDonald, Richard R.; Nelson, Jonathan M.; Vaughn Paragamian,; Barton, Gary J.

    2017-01-01

    The Kootenai River white sturgeon currently spawn (2005) in an 18-kilometer reach of the Kootenai River, Idaho. Since completion of Libby Dam upstream from the spawning reach, there has been only one successful year of recruitment of juvenile fish. Where successful in other rivers, white sturgeon spawn over clean coarse material of gravel size or larger. The channel substrate in the current spawning reach is composed primarily of sand and some buried gravel; within a few kilometers upstream there is clean gravel. We used a 2-dimensional flow and sediment-transport model and the measured locations of sturgeon spawning from 1994-2002 to gain insight into the paradox between the current spawning location and the absence of suitable substrate. Spatial correlations between spawning locations and the model simulations of velocity and depth indicate the white sturgeon tend to select regions of highest velocity and depth within any river cross-section to spawn. These regions of high velocity and depth are independent of pre- or post-dam flow conditions. A simple sediment-transport simulation suggests that high discharge and relatively long duration flow associated with pre-dam flow events might be sufficient to scour the sandy substrate and expose existing lenses of gravel and cobble as lag deposits in the current spawning reach.

  8. Occurrence and transport of nutrients in the Missouri River Basin, April through September 2011: Chapter G in 2011 floods of the central United States

    USGS Publications Warehouse

    Kalkhoff, Stephen J.

    2013-01-01

    Heavy snow and early spring rainfall generated substantial amounts of runoff and flooding in the upper part of the Missouri River Basin in 2011. Spring runoff in the upper and middle parts of the basin exceeded the storage capacity of the Missouri River reservoirs and unprecedented amounts of water were released into the lower parts of the basin resulting in record floods from June through September on the Missouri River in Iowa and Nebraska and extending into Kansas and Missouri. Runoff from the Missouri River Basin in April through September 2011 was 8,440,000 hectare meters (68,400,000 acre feet) and was only exceeded during flooding in 1993 when runoff was 11,200,000 hectare meters (90,700,000 acre feet). Nitrate and total phosphorus concentrations in the Missouri River and selected tributaries in April through September, 2011 generally were within the expected range of concentrations measured during the last 30 years. Substantial discharge from the upper and middle parts of the Missouri River Basin resulted in nitrate concentrations decreasing in the lower Missouri River beginning in June. Concentrations of nitrate in water entering the Mississippi River from the Missouri River were less in 2011 than in 1993, but total phosphorus concentrations entering the Mississippi River were substantially greater in 2011 than in 1993. The Missouri River transported an estimated 79,600 megagrams of nitrate and 38,000 megagrams of total phosphorus to the Mississippi River from April through September 2011. The nitrate flux in 2011 was less than 20 percent of the combined total from the Upper Mississippi and Missouri River Basins. In contrast, the total phosphorus flux of 38,000 megagrams from the Missouri River constituted about 39 percent of the combined total from the Upper Mississippi and Missouri River Basins during April through September 2011. Substantially more nitrate but less total phosphorus was transported from the Missouri River Basin during the historic 1993 than during the 2011 flood. Greater runoff from the lower part of the basin contributed to the greater nitrate transport in 1993. In addition to the differing amounts of runoff and the source of flood waters, changes in land use, and management practices are additional factors that may have contributed to the difference in nitrate and total phosphorus flux between the 1993 and 2011 floods.

  9. Sedimentary record and luminescence chronology of palaeoflood events along the Gold Gorge of the upper Hanjiang River, middle Yangtze River basin, China

    NASA Astrophysics Data System (ADS)

    Guo, Yongqiang; Huang, Chun Chang; Zhou, Yali; Pang, Jiangli; Zha, Xiaochun; Fan, Longjiang; Mao, Peini

    2018-05-01

    Palaeoflood slackwater deposits (SWDs) along the river banks have important implications for the reconstruction of the past hydro-climatic events. Two palaeoflood SWD beds were identified in the Holocene loess-soil sequences on the cliff river banks along the Gold Gorge of the upper Hanjiang River by field investigation and laboratory analysis. They have recorded two palaeoflood events which were dated by optically stimulated luminescence to 3.2-2.8 ka and 2.1-1.8 ka, respectively. The reliability of the ages obtained for the two events are further confirmed by the presence of archaeological remains and good regional pedostratigraphic correlation. The peak discharges of two palaeoflood events at the studied sites were estimated to be 16,560-17,930 m3/s. A correlation with the palaeoflood events identified in the other reaches shows that great floods occurred frequently during the episodes of 3200-2800 and 2000-1700 a BP along the upper Hanjiang River valley during the last 4000 years. These phases of palaeoflood events in central China are well correlated with the climatic variability identified by δ18O record in the stalagmites from the middle Yangtze River Basin and show apparent global linkages. Palaeoflood studies in a watershed scale also imply that strengthened human activities during the Shang dynasty (BCE 1600-1100) and Han dynasty (BCE206-CE265) may have caused accelerated soil erosion along the upper Hanjiang River valley.

  10. Hydrogeology of the upper and middle Verde River watersheds, central Arizona

    USGS Publications Warehouse

    Blasch, Kyle W.; Hoffmann, John P.; Graser, Leslie F.; Bryson, Jeannie R.; Flint, Alan L.

    2006-01-01

    The upper and middle Verde River watersheds in central Arizona are primarily in Yavapai County, which in 1999 was determined to be the fastest growing rural county in the United States; by 2050 the population is projected to more than double its current size (132,000 in 2000). This study combines climatic, surface-water, ground-water, water-chemistry, and geologic data to describe the hydrogeologic systems within the upper and middle Verde River watersheds and to provide a conceptual understanding of the ground-water flow system. The study area includes the Big Chino and Little Chino subbasins in the upper Verde River watershed and the Verde Valley subbasin in the middle Verde Rive watershed...more...A geochemical mixing model was used to quantify fractions of ground-water sources to the Verde River from various parts of the study area. Most of the water in the uppermost 0.2 mile of the Verde River is from the Little Chino subbasin, and the remainder is from the Big Chino subbasin. Discharge from a system of springs increases base flow to about 17 cubic feet per second within the next 2 miles of the river. Ground water that discharges at these springs is derived from the western part of the Coconino Plateau, from the Big Chino subbasin, and from the Little Chino subbasin. More...

  11. Modal Investment Comparison : The Impact of Upper Mississippi River Lock and Dam Shutdowns on State Highway Infrastructure.

    DOT National Transportation Integrated Search

    2017-10-30

    This project reviews southbound agricultural shipments from the Upper Mississippi River originating from the states of Illinois, Iowa, Minnesota, Missouri, and Wisconsin to understand the potential impacts of shifting barge shipments to the parallel ...

  12. Stressor Identification (Si) at Contaminated Sites: Upper Arkansas River, Colorado (Final)

    EPA Science Inventory

    EPA announced the availability of the final report, Stressor Identification (SI) at Contaminated Sites: Upper Arkansas River, Colorado. This report describes a causal assessment for impairments of plant growth and plant species richness at a terrestrial contaminated site ...

  13. 77 FR 46770 - Notice of Availability of the Injury Assessment Plan for the Upper Columbia River Site, Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ..., Upper Columbia River/Lake Roosevelt, c/o Bureau of Land Management, 1103 N. Fancher Road, Spokane Valley... the following locations: Bureau of Land Management, 1103 N. Fancher Road, Spokane Valley, WA 99212...

  14. Hydrogeologic Framework and Occurrence and Movement of Ground Water in the Upper Humboldt River Basin, Northeastern Nevada

    USGS Publications Warehouse

    Plume, Russell W.

    2009-01-01

    The upper Humboldt River basin encompasses 4,364 square miles in northeastern Nevada, and it comprises the headwaters area of the Humboldt River. Nearly all flow of the river originates in this area. The upper Humboldt River basin consists of several structural basins, in places greater than 5,000 feet deep, in which basin-fill deposits of Tertiary and Quaternary age and volcanic rocks of Tertiary age have accumulated. The bedrock of each structural basin and adjacent mountains is composed of carbonate and clastic sedimentary rocks of Paleozoic age and crystalline rocks of Paleozoic, Mesozoic and Cenozoic age. The permeability of bedrock generally is very low except for carbonate rocks, which can be very permeable where circulating ground water has widened fractures through geologic time. The principal aquifers in the upper Humboldt River basin occur within the water-bearing strata of the extensive older basin-fill deposits and the thinner, younger basin-fill deposits that underlie stream flood plains. Ground water in these aquifers moves from recharge areas along mountain fronts to discharge areas along stream flood plains, the largest of which is the Humboldt River flood plain. The river gains flow from ground-water seepage to its channel from a few miles west of Wells, Nevada, to the west boundary of the study area. Water levels in the upper Humboldt River basin fluctuate annually in response to the spring snowmelt and to the distribution of streamflow diverted for irrigation of crops and meadows. Water levels also have responded to extended periods (several years) of above or below average precipitation. As a result of infiltration from the South Fork Reservoir during the past 20 years, ground-water levels in basin-fill deposits have risen over an area as much as one mile beyond the reservoir and possibly even farther away in Paleozoic bedrock.

  15. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  16. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Physiographic Provinces

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data are from Fenneman and Johnson's Physiographic Provinces of the United States, which is based on 8 major divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock type and structure, and geologic and geomorphic history (Fenneman and Johnson, 1946).The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  17. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: STATSGO Soil Characteristics

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents estimated soil variables compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  18. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: 30-Year Average Annual Precipitation, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the 30-year (1971-2000) average annual precipitation in millimeters multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Precipitation, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; J.W. Brakebill, U.S. Geological Survey, written commun., 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  19. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Inputs from Fertilizer and Manure, Nitrogen and Phosphorus (N&P), 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the total amount of nitrogen and phosphorus, in kilograms for the year 2002, compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982-2001 (Ruddy and others, 2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  20. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Atmospheric (Wet) Deposition of Inorganic Nitrogen, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average atmospheric (wet) deposition, in kilograms per square kilometer, of inorganic nitrogen for the year 2002 compiled for every catchment for MRB_E2RF1 of Major River Basins (MRBs, Crawford and others, 2006). The source data set for wet deposition was from the USGS's raster data set atmospheric (wet) deposition of inorganic nitrogen for 2002 (Gronberg, 2005). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every catchment of MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  1. Attributes for MRB_E2RF1 Catchments in Selected Major River Basins of the Conterminous United States: Contact Time, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average contact time, in units of days, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). Contact time, as described in Vitvar and others (2002), is defined as the baseflow residence time in the subsurface. The source data set was the U.S. Geological Survey's (USGS) 1-kilometer grid for the conterminous United States (D.M. Wolock, U.S. Geological Survey, written commun., 2008). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  2. Landscape ecology of the Upper Mississippi River System: Lessons learned, challenges and opportunities

    USGS Publications Warehouse

    DeJager, Nathan R.

    2016-03-22

    The Upper Mississippi River System (UMRS) is a mosaic of river channels, backwater lakes, floodplain forests, and emergent marshes. This complex mosaic supports diverse aquatic and terrestrial plant communities, over 150 fish species; 40 freshwater mussel species; 50 amphibian and reptile species; and over 360 bird species, many of which use the UMRS as a critical migratory route. The river and floodplain are also hotspots for biogeochemical activity as the river-floodplain collects and processes nutrients derived from the UMR basin. These features qualify the UMRS as a Ramsar wetland of international significance.Two centuries of land-use change, including construction for navigation and conversion of large areas to agriculture, has altered the broad-scale structure of the river and changed local environmental conditions in many areas. Such changes have affected rates of nutrient processing and transport, as well as the abundance of various fish, mussel, plant, and bird species. However, the magnitude and spatial scale of these effects are not well quantified, especially in regards to the best methods and locations for restoring various aspects of the river ecosystem.The U.S. Congress declared the navigable portions of the Upper Mississippi River System (UMRS) a “nationally significant ecosystem and nationally significant commercial navigation system” in the Water Resources Development Act of 1986 (Public Law 99-662) and launched the Upper Mississippi River Restoration (UMRR) Program, the first comprehensive program for ecosystem restoration, monitoring, and research on a large river system. This fact sheet focuses on landscape ecological studies conducted by the U.S. Geological Survey to support decision making by the UMRR with respect to ecosystem restoration.

  3. Life history diversity of Snake River finespotted cutthroat trout: managing for persistence in a rapidly changing environment

    USGS Publications Warehouse

    Homel, Kristen M.; Gresswell, Robert E.; Kershner, Jeffrey L.

    2015-01-01

    Over the last century, native trout have experienced dramatic population declines, particularly in larger river systems where habitats associated with different spawning life history forms have been lost through habitat degradation and fragmentation. The resulting decrease in life history diversity has affected the capacity of populations to respond to environmental variability and disturbance. Unfortunately, because few large rivers are intact enough to permit full expression of life history diversity, it is unclear what patterns of diversity should be a conservation target. In this study, radiotelemetry was used to identify spawning and migration patterns of Snake River Finespotted Cutthroat Trout Oncorhynchus clarkii behnkei in the upper Snake River. Individuals were implanted with radio tags in October 2007 and 2008, and monitored through October 2009. Radio-tagged cutthroat trout in the upper Snake River exhibited variation in spawning habitat type and location, migration distance, spawn timing, postspawning behavior, and susceptibility to mortality sources. Between May and July, Cutthroat Trout spawned in runoff-dominated tributaries, groundwater-dominated spring creeks, and side channels of the Snake River. Individuals migrated up to 101 km from tagging locations in the upper Snake River to access spawning habitats, indicating that the upper Snake River provided seasonal habitat for spawners originating throughout the watershed. Postspawning behavior also varied; by August each year, 28% of spring-creek spawners remained in their spawning location, compared with 0% of side-channel spawners and 7% of tributary spawners. These spawning and migration patterns reflect the connectivity, habitat diversity, and dynamic template of the Snake River. Ultimately, promoting life history diversity through restoration of complex habitats may provide the most opportunities for cutthroat trout persistence in an environment likely to experience increased variability from climate change and disturbance from invasive species.

  4. Uncertainty in low-flow data from three streamflow-gaging stations on the upper Verde River, Arizona

    USGS Publications Warehouse

    Anning, D.W.; ,

    2004-01-01

    The evaluation of uncertainty in low-flow data collected from three streamflow-gaging stations on the upper Verde River, Arizona, was presented. In downstream order, the stations are Verde River near Paulden, Verde River near Clarkdale, and Verde River near Camp Verde. A monitoring objective of the evaluation was to characterize discharge of the lower flow regime through a variety of procedures such as frequency analysis and base-flow analysis. For Verde River near Paulden and near Camp Verde, the uncertainty of daily low flows can be reduced by decreasing the uncertainty of discharge-measurement frequency, or building an artificial control that would have a stable stage-discharge relation over time.

  5. Flood-inundation maps for White River at Petersburg, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2015-08-20

    The availability of these maps along with Internet information regarding current stage from the USGS streamgage at White River at Petersburg, Ind., and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  6. Effects of reintroduced beaver (Castor canadensis) on riparian bird community structure along the upper San Pedro River, southeastern Arizona and northern Sonora, Mexico

    USGS Publications Warehouse

    Johnson, Glenn E.; van Riper, Charles

    2014-01-01

    Chapter 1.—We measured bird abundance and richness along the upper San Pedro River in 2005 and 2006, in order to document how beavers (Castor canadensis) may act as ecosystem engineers after their reintroduction to a desert riparian area in the Southwestern United States. In areas where beavers colonized, we found higher bird abundance and richness of bird groups, such as all breeding birds, insectivorous birds, and riparian specialists, and higher relative abundance of many individual species—including several avian species of conservation concern. Chapter 2.—We conducted bird surveys in riparian areas along the upper San Pedro River in southeastern Arizona (United States) and northern Sonora (Mexico) in order to describe factors influencing bird community dynamics and the distribution and abundance of species, particularly those of conservation concern. These surveys were also used to document the effects of the ecosystem-altering activities of a recently reintroduced beavers (Castor canadensis). Chapter 3.—We reviewed Southwestern Willow Flycatcher (Empidonax traillii extimus) nest records and investigated the potential for future breeding along the upper San Pedro River in southeastern Arizona, where in July 2005 we encountered the southernmost verifiable nest attempt for the species. Continued conservation and management of the area’s riparian vegetation and surface water has potential to contribute additional breeding sites for this endangered Willow Flycatcher subspecies. Given the nest record along the upper San Pedro River and the presence of high-density breeding sites to the north, the native cottonwood-willow forests of the upper San Pedro River could become increasingly important to E. t. extimus recovery, especially considering the anticipated effect of the tamarisk leaf beetle (Diorhabda carinulata) on riparian habitat north of the region.

  7. Physical habitat, water quality, and riverine biological assemblages of selected reaches of the Sheyenne River, North Dakota, 2010

    USGS Publications Warehouse

    Lundgren, Robert F.; Rowland, Kathleen M.; Lindsay, Matthew J.

    2012-01-01

    In 2010, data on physical habitat, water quality, and riverine biological assemblages were collected at selected reaches in four locations (Kleven, Sheyenne, Cooperstown, and West Fargo) on the Sheyenne River in east-central North Dakota. Three of the locations (Kleven, Sheyenne, and Cooperstown) are above Baldhill Dam and one location (West Fargo) is below Baldhill Dam on the Sheyenne River. The 2010 data provide information to establish a better understanding of the water-quality and ecological conditions of the Sheyenne River. Concerns were raised about the water-quality and ecological conditions of the Sheyenne River because of the interbasin transfer of water from nearby Devils Lake. The transfer of water from Devils Lake to the Sheyenne River occurs through the Devils Lake State Outlet near Peterson Coulee or, if lake elevations exceed 1,459 feet above National Geodetic Vertical Datum of 1929 (NGVD 29), through a natural outlet, Tolna Coulee. The field measurements of water-quality characteristics and results of chemical analyses generally are comparable to summary statistics calculated for Sheyenne River for 1980 through 2006. Overall, water-quality results show differences between the Kleven, Sheyenne, Cooperstown, and West Fargo reaches. Sulfate concentrations were less than the State of North Dakota criterion of 750 milligrams per liter for the upper Sheyenne River above Baldhill Dam and less than the criterion of 450 milligrams per liter for the lower Sheyenne River below Baldhill Dam. Arsenic concentrations at most reaches exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 micrograms per liter. Nutrient concentrations (nitrogen, phosphorus) were higher in the upper Sheyenne River above Baldhill Dam than below Baldhill Dam where concentrations decreased by about half. In 2010, 35 families and 44 genera of benthic macroinvertebrates were collected and identified. On the basis of the index of biotic intergrity scores for benthic macroinvertebrate communities present in the Sheyenne River, all the reaches were determined to have condition classes of moderately disturbed to most disturbed. The benthic macroinvertebrate communities at the Cooperstown reaches were classed as moderately disturbed, whereas benthic macroinvertebrate communities at the Kleven, Sheyenne, West and Fargo reaches were most disturbed. During data collection, 37 genera and 165 species of periphyton (diatoms and soft-bodied algae) were collected and identified. In periphyton communities, similar taxa species were dominant in the Kleven, Sheyenne, and Cooperstown reaches, and different taxa species were dominant in the West Fargo reaches. For diatoms, the Kleven 3 reach had the lowest species richness value of 33.0, whereas the Cooperstown 8 reach had the highest species richness value of 57.0. For soft-bodied algae, the species richness values ranged from 8.0 at the Sheyenne 4 reach to 20.0 at the West Fargo 10 reach. During the fish collection, 32 species, representing 10 families, were collected in the Sheyenne River. All but two species are native to the Sheyenne River system. Common carp and white crappie are the two introduced species. Of the 32 species, 29 are tolerant to moderately tolerant to changes in water quality and habitat degradation, 16 species are tolerant to moderately tolerant to turbidity, and 16 species are tolerant to moderately tolerant to sensitivity to total dissolved solids, sulfate, and chloride. All fish species were categorized into four trophic groups. The largest group of 19 species was the insectivores (both benthic and general). The predator group consisted of seven species, and the omnivores consisted of six species. More fish were found in the lower Sheyenne River below Baldhill Dam than in the upper Sheyenne River above Baldhill Dam.

  8. Influence of Aroclor 1242 concentration on polychlorinated biphenyl biotransformations in Hudson River test tube microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fish, K.M.

    1996-08-01

    PCBs are a family of compounds sold with various levels of chlorination and under different trade names. They have accumulated in soils, sediments, and biota, raising concerns about possible health risks. The upper Hudson River was contaminated with Aroclor 1242. This study examines the influence of Aroclor concentration on PCB biotransformations in the upper Hudson River sediment. 6 refs., 3 figs.

  9. Effects of turbidity, light level, and cover on predation of white sturgeon larvae by prickly sculpins

    USGS Publications Warehouse

    Gadomski, D.M.; Parsley, M.J.

    2005-01-01

    White sturgeon Acipenser transmontanus occur in rivers of the western United States and southwestern Canada, but some populations are in decline because of recruitment failure. Many river systems in this area have been altered as a result of development that has caused major environmental changes. Our goal was to examine how three changes - lower turbidity levels, higher light levels, and altered substrates - might affect predation by prickly sculpin Cottus asper on white sturgeon larvae. We experimentally investigated predation at various turbidity levels and found that significantly more white sturgeon yolk sac larvae were eaten at lower turbidity levels. The effects of light level (1-4 and 7-15 1x), the presence or absence of rocks as cover, and prey size (14-17 mm and 20-24 mm total length) on the outcome of predator-prey interactions were also examined. Significantly fewer white sturgeon were eaten during trials that combined the lowest light level, cover, and the smallest larvae. Our results suggest that altered river conditions caused by impoundment and other factors have increased predation on white sturgeon larvae. ?? Copyright by the American Fisheries Society 2005.

  10. Downward economic mobility and preterm birth: an exploratory study of Chicago-born upper class White mothers.

    PubMed

    Collins, James W; Rankin, Kristin M; David, Richard J

    2015-07-01

    A paucity of published data exists on the factors underlying the relatively poor birth outcome of non-Hispanic White women in the United States. To determine whether downward economic mobility is a risk factor for preterm birth (<37 weeks, PTB) among upper class-born White women. Stratified and multilevel logistic regression analyses were performed on an Illinois transgenerational dataset of non-Hispanic White infants (1989-1991) and their women (1956-1976) with appended US census income information. The study sample was restricted to singleton births of Chicago-born upper-class (defined by early-life residence in affluent neighborhoods) non-Hispanic White women. Upper class-born White women (n = 4,891) who did not experience downward economic mobility by the time of delivery had a PTB rate of 5.4 %. Those women who experienced slight (n = 5,112), moderate (n = 2,158), or extreme (n = 339) downward economic mobility had PTB rates of 6.5, 8.5, and 10.1 %, respectively; RR (95 % CI) = 1.2 (1.0-4.0), 1.6 (1.3-1.9), and 1.9 (1.3-2.6), respectively. Maternal downward economic mobility was also associated with an increased prevalence of biologic, medical, and behavioral risk factors. Interestingly, the relationship between moderate to extreme downward mobility and preterm birth was stronger among former low birth weight (<2500 g, LBW) than non-LBW women: 2.8 (1.4-5.8) versus 1.6 (1.3-1.9), respectively. In multilevel logistic regression models, the adjusted odds ratio of preterm birth for former LBW and non-LBW women who experienced any downward mobility (compared to those women with lifelong upper class status) equaled 2.4 (1.1-5.3) and 1.1 (1.0-1.1), respectively. Downward economic mobility is associated with an increased risk of preterm birth among upper class-born White urban women; this phenomenon is strongest among former low birth weight women.

  11. Comparison of historical streamflows to 2013 Streamflows in the Williamson, Sprague, and Wood Rivers, Upper Klamath Lake Basin, Oregon

    USGS Publications Warehouse

    Hess, Glen W.; Stonewall, Adam J.

    2014-01-01

    In 2013, the Upper Klamath Lake Basin, Oregon, experienced a dry spring, resulting in an executive order declaring a state of drought emergency in Klamath County. The 2013 drought limited the water supply and led to a near-total cessation of surface-water diversions for irrigation above Upper Klamath Lake once regulation was implemented. These conditions presented a unique opportunity to understand the effects of water right regulation on streamflows. The effects of regulation of diversions were evaluated by comparing measured 2013 streamflow with data from hydrologically similar years. Years with spring streamflow similar to that in 2013 measured at the Sprague River gage at Chiloquin from water years 1973 to 2012 were used to define a Composite Index Year (CIY; with diversions) for comparison to measured 2013 streamflows (no diversions). The best-fit 6 years (1977, 1981, 1990, 1991, 1994, and 2001) were used to determine the CIY. Two streams account for most of the streamflow into Upper Klamath Lake: the Williamson and Wood Rivers. Most streamflow into the lake is from the Williamson River Basin, which includes the Sprague River. Because most of the diversion regulation affecting the streamflow of the Williamson River occurred in the Sprague River Basin, and because of uncertainties about historical flows in a major diversion above the Williamson River gage, streamflow data from the Sprague River were used to estimate the change in streamflow from regulation of diversions for the Williamson River Basin. Changes in streamflow outside of the Sprague River Basin were likely minor relative to total streamflow. The effect of diversion regulation was evaluated using the “Baseflow Method,” which compared 2013 baseflow to baseflow of the CIY. The Baseflow Method reduces the potential effects of summer precipitation events on the calculations. A similar method using streamflow produced similar results, however, despite at least one summer precipitation event. The result of the analysis estimates that streamflow from the Williamson River Basin to Upper Klamath Lake increased by approximately 14,100 acre-feet between July 1 and September 30 relative to prior dry years as a result of regulation of surface-water diversions in 2013. Quantifying the change in streamflow from regulation of diversion for the Wood River Basin was likely less accurate due to a lack of long-term streamflow data. An increase in streamflow from regulation of diversions in the Wood River Basin of roughly 5,500 acre-feet was estimated by comparing the average August and September streamflow in 2013 with historical August and September streamflow. Summing the results of the estimated streamflow gain of the Williamson River Basin (14,100 acre-feet) and Wood River (5,500 acre-feet) gives a total estimated increase in streamflow into Upper Klamath Lake resulting from the July 1–September 2013 regulation of diversions of approximately 19,600 acre-feet.

  12. Terrestrial arthropods of Steel Creek, Buffalo National River, Arkansas. II. Sawflies (Insecta: Hymenoptera: "Symphyta")

    PubMed Central

    Smith, David R.; Fisher, Danielle M.; Dowling, Ashley P.G.

    2016-01-01

    Abstract Background This is the second in a series of papers detailing the terrestrial arthropods collected during an intensive survey of a site near Steel Creek campground along the Buffalo National River in Arkansas. The survey was conducted over a period of eight and a half months using twelve trap types – Malaise traps, canopy traps (upper and lower collector), Lindgren multifunnel traps (black, green, and purple), pan traps (blue, purple, red, white, and yellow), and pitfall traps – and Berlese-Tullgren extraction of leaf litter. New information We provide collection records for 47 species of "Symphyta" (Insecta: Hymenoptera), 30 of which are new state records for Arkansas: (Argidae) Sterictiphora serotina; (Cimbicidae) Abia americana; (Diprionidae) Monoctenus fulvus; (Orussidae) Orussus terminalis; (Pamphiliidae) Onycholyda luteicornis, Pamphilius ocreatus, P. persicum, P. rileyi; (Pergidae) Acordulecera dorsalis, A. mellina, A. pellucida; (Tenthredinidae) Caliroa quercuscoccineae, Empria coryli, Hoplocampa marlatti, Macrophya cassandra, Monophadnoides conspiculatus, Monophadnus bakeri, Nematus abbotii, Neopareophora litura, Pachynematus corniger, Paracharactus rudis, Periclista marginicollis, Pristiphora banski, P. chlorea, Strongylogaster impressata, S. remota, Taxonus epicera, Thrinax albidopictus, T. multicinctus, Zaschizonyx montana; (Xiphydriidae) Xiphydria tibialis. PMID:27222635

  13. 76 FR 6694 - Drawbridge Operation Regulation; Upper Mississippi River, Keokuk, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket Number USCG-2011-0029] Drawbridge Operation Regulation; Upper Mississippi River, Keokuk, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has...

  14. FISH ASSEMBLAGE GROUPS IN THE UPPER TENNESSEE RIVER BASIN

    EPA Science Inventory

    A hierarchical clustering technique was used to classify sites in the upper Tennessee River basin based on relative abundance of fish species. Five site groups were identified. These groups differed mainly by the occurrence of minnow and darter species. Drainage area and ecore...

  15. Nitrogen Processing Efficiency of an Upper Mississippi River Backwater Lake

    DTIC Science & Technology

    2006-08-01

    Myriophyllum spicatum, and Nymphaea odorata . Figure 1. Location of the Finger Lakes in pool 5 of the Upper Mississippi River Prior to 1965...Ceratophyllum, Nymphaea , and Myriophyllum. Other genera were present, but rarely accounted for a significant proportion of sample biomass (Potamogeton

  16. Upper Mississippi River and Illinois Waterways : non-structural measures cost-benefit study

    DOT National Transportation Integrated Search

    2003-05-01

    These analyses support the U.S. Army Corps of Engineers study of navigation in the Upper Mississippi River (UMR) and Illinois Waterway (IWW) and address the need to examine the potential of non-structural measures to improve efficiency in th...

  17. A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1WS

    USGS Publications Warehouse

    Brakebill, J.W.; Terziotti, S.E.

    2011-01-01

    A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.

  18. A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1

    USGS Publications Warehouse

    Brakebill, J.W.; Terziotti, S.E.

    2011-01-01

    A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.

  19. Preface: Bridging the gap between theory and practice on the upper Mississippi River

    USGS Publications Warehouse

    Lubinski, Kenneth S.

    1995-01-01

    In July 1994, the Upper Mississippi River (UMR) served as a nexus for coalescing scientific information and management issues related to worldwide floodplain river ecosystems. The objective of the conference ‘Sustaining the Ecological Integrity of Large Floodplain Rivers: Application of Ecological Knowledge to River Management’, was to provide presentations of current ideas from the scientific community. To translate the many lessons learned on other river systems to operational decisions on the UMR, a companion workshop for managers and the general public was held immediately after the conference.An immediate local need for such sharing has existed for several years, as the U.S. Corps of Engineers is currently planning commercial navigation activities that will influence the ecological integrity of the river over the next half century. Recently, other equally important management issues have surfaced, including managing the river as an element of the watershed, and assessing its ecological value as a system instead of a collection of parts (Upper Mississippi River Conservation Committee, 1993). Regional and state natural resource agencies are becoming more convinced that they need to address these issues within their own authorities, however spatially limited, rather than relying on the U.S. Corps of Engineers to manage the ecosystem as an adjunct to its purpose of navigation support.

  20. Novel single-nucleotide polymorphism markers confirm successful spawning of endangered pallid sturgeon in the upper Missouri River Basin

    USGS Publications Warehouse

    Eichelberger, Jennifer S.; Braaten, P. J.; Fuller, D. B.; Krampe, Matthew S.; Heist, Edward J.

    2014-01-01

    Spawning of the federally endangered Pallid Sturgeon Scaphirhynchus albus is known to occur in the upper Missouri River basin, but progeny from natural reproductive events have not been observed and recruitment to juvenile or adult life stages has not been documented in recent decades. Identification of Pallid Sturgeon progeny is confounded by the fact that Shovelnose Sturgeon S. platorynchus occurs throughout the entire range of Pallid Sturgeon and the two species are essentially indistinguishable (morphometrically and meristically) during early life stages. Moreover, free embryos of sympatric Paddlefish Polyodon spathula are very similar to the two sturgeon species. In this study, three single-nucleotide polymorphism (SNP) assays were employed to screen acipenseriform free embryos and larvae collected from the upper Missouri River basin in 2011, 2012, and 2013. A mitochondrial DNA SNP discriminates Paddlefish from sturgeon, and specific multilocus genotypes at two nuclear DNA SNPs occurred in 98.9% of wild adult Pallid Sturgeon but only in 3% of Shovelnose Sturgeon sampled in the upper Missouri River. Individuals identified as potential Pallid Sturgeon based on SNP genotypes were further analyzed at 19 microsatellite loci for species discrimination. Out of 1,423 free embryos collected over 3 years of sampling, 971 Paddlefish, 446 Shovelnose Sturgeon, and 6 Pallid Sturgeon were identified. Additionally, 249 Scaphirhynchus spp. benthic larvae were screened, but no Pallid Sturgeon were detected. These SNP markers provide an efficient method of screening acipenseriform early life stages for the presence of Pallid Sturgeon in the Missouri River basin. Detection of wild Pallid Sturgeon free embryos in the upper Missouri and Yellowstone rivers supports the hypothesis that the failure of wild Pallid Sturgeon to recruit to the juvenile life stage in the upper Missouri River basin is caused by early life stage mortality rather than by lack of successful spawning.

  1. Fort Peck Dam/Fort Peck Lake Master Plan with Integrated Programmatic Environmental Assessment, Missouri River, Montana: Update of Design Memorandum MFP-105D

    DTIC Science & Technology

    2008-08-01

    wilderness areas, and a self-guided auto tour. BUREAU OF LAND MANAGEMENT The l49-mile Upper Missouri National Wild and Scenic River flows between Fort...and CMR. This segment is classified as scenic. The National Park Service (NPS) is the overseeing agency for the National Wild and Scenic Rivers...System. Under NPS oversight, the Bureau of Land Management (BLM) is the managing agency for the Upper Missouri National Wild and Scenic River. Within

  2. A Preliminary Appraisal of Offstream Reservoir Sites for Meeting Water Storage Requirements in the Upper Snake River Basin.

    DTIC Science & Technology

    1981-02-01

    510 20.0 78 Bitch Creek Teton R., Bitch Cr. 475 11.0 180 U~pper Badger Creek Teton R., Badger Cr. 440 6.0 84 Ashton Dam Enlargement Henrys Fork Snake R...Lake Offstream Reservoir Site ( Teton River Drainage). Twin Falls Canal power release back into the Snake River downstream from Milner Dam . 3. The...Release at Milner Dam on the Snake River for Possible Power Development . . . 24 9. Nomograph Used in Estimating Conveyance Components of Cost . 32 10

  3. Relationship among side channels, fish assemblages, and environmental gradients in the unimpounded Upper Mississippi River

    USGS Publications Warehouse

    Barko, V.A.; Herzog, D.P.

    2003-01-01

    We analyzed fish abundance and environmental data collected over nine years from six side channels of the unimpounded upper Mississippi River between river km 46.7 and 128.7. A partial canonical correspondence analysis revealed differences in fish assemblages and environmental factors correlated with the six side channels. Fishes correlated with open side channels represented large river species tolerant of current and/or turbidity. Fishes correlated with closed side channels represented assemblages preferring either moderate to low turbidity/current or pools.

  4. Random versus fixed-site sampling when monitoring relative abundance of fishes in headwater streams of the upper Colorado River basin

    USGS Publications Warehouse

    Quist, M.C.; Gerow, K.G.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the upper Colorado River basin (UCRB) have declined in distribution and abundance due to habitat degradation and interactions with normative fishes. Consequently, monitoring populations of both native and nonnative fishes is important for conservation of native species. We used data collected from Muddy Creek, Wyoming (2003-2004), to compare sample size estimates using a random and a fixed-site sampling design to monitor changes in catch per unit effort (CPUE) of native bluehead suckers Catostomus discobolus, flannelmouth suckers C. latipinnis, roundtail chub Gila robusta, and speckled dace Rhinichthys osculus, as well as nonnative creek chub Semotilus atromaculatus and white suckers C. commersonii. When one-pass backpack electrofishing was used, detection of 10% or 25% changes in CPUE (fish/100 m) at 60% statistical power required 50-1,000 randomly sampled reaches among species regardless of sampling design. However, use of a fixed-site sampling design with 25-50 reaches greatly enhanced the ability to detect changes in CPUE. The addition of seining did not appreciably reduce required effort. When detection of 25-50% changes in CPUE of native and nonnative fishes is acceptable, we recommend establishment of 25-50 fixed reaches sampled by one-pass electrofishing in Muddy Creek. Because Muddy Creek has habitat and fish assemblages characteristic of other headwater streams in the UCRB, our results are likely to apply to many other streams in the basin. ?? Copyright by the American Fisheries Society 2006.

  5. Reproductive characteristics of a population of the washboard mussel Megalonaias nervosa (Rafinesque 1820) in the upper Mississippi River

    USGS Publications Warehouse

    Woody, C.A.; Holland-Bartels, L.

    1993-01-01

    The authors examined monthly and age-specific gametogenic development of the washboard mussel, Megalonaias nervosa, from April 1986 to March 1987 in navigation Pool 10 of the upper Mississippi River. The authors found M. nervosa to be a late tachytictic breeder. Female marsupia contained eggs or glochidia primarily from August (17 degree C) through October (9 degree C). Males were mature from July through October. Most females released their glochidia in October. Only one female was gravid in Nov (3 degree C). Most mussels were sexually mature at 8 years of age and then had an estimated average size of 68 mm (shell height). Only 8% of individuals less than or equal to 4 years of age showed any degree of reproductive development, while > 90% of age 5 and older individuals had recognizable reproductive material present. In host specificity studies, three fish species were verified as hosts for the glochidial stage. Green sunfish (Lepomis cyanellus), black bullhead (Ictalurus melas), and channel catfish (Ictalurus punctatus) produced juveniles after 26-28 days at 17 degree C. White suckers (Catastomus commersoni) and yellow perch (Perca flavescens) retained glochidia from 23 up to 26 days, but no juveniles were produced. Glochidia remained attached to common carp (Cyprinus carpio) and fathead minnows (Pimephales promelas) less than or equal to 3 days. Channel catfish were retested at 12 degree C and produced juveniles after 56 days.

  6. White Sturgeon Bibliography, 1985 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fickeisen, Duane H.

    1986-03-01

    This bibliography presents citations to the majority of published materials on white sturgeon (Acipenser transmontanus). The purpose was to assist in planning and implementing research on white sturgeon in the Columbia River system. (ACR)

  7. Restoring ecological integrity of great rivers: Historical hydrographs aid in defining reference conditions for the Missouri River

    USGS Publications Warehouse

    Galat, D.L.; Lipkin, R.

    2000-01-01

    Restoring the ecological integrity of regulated large rivers necessitates characterizing the natural flow regime. We applied 'Indicators of Hydrologic Alteration' to assess the natural range of variation of the Missouri River's flow regime at 11 locations before (1929-1948) and after (1967-1996) mainstem impoundment. The 3768 km long Missouri River was divided into three sections: upper basin least-altered from flow regulation, including the lower Yellowstone River; middle basin inter-reservoir, and lower basin channelized. Flow regulation was associated with a reduction in magnitude and duration of the annual flood pulse, an increase in magnitude and duration of annual discharge minima, a reduction in frequency of annual low-flow pulses, earlier timing of March-October low-flow pulses, and a general increase in frequency of flow reversals with a reduction in the rate of change in river flows. Hydrologic alterations were smallest at two least-altered upper-basin sites and most frequent and severe in inter-reservoir and upper-channelized river sections. The influence of reservoir operations on depressing the annual flood pulse was partially offset by tributary inflow in the lower 600 km of river. Reservoir operations could be modified to more closely approximate the 1929-1948 flow regime to establish a simulated natural riverine ecosystem. For inter-reservoir and upper channelized-river sections, we recommend periodic controlled flooding through managed reservoir releases during June and July; increased magnitude, frequency and duration of annual high-flow pulses; and increased annual rates of hydrograph rises and falls. All of the regulated Missouri River would benefit from reduced reservoir discharges during August-February, modified timing of reservoir releases and a reduced number of annual hydrograph reversals. Assessment of ecological responses to a reregulation of Missouri River flows that more closely approximates the natural flow regime should then be used in an adaptive fashion to further adjust reservoir operations.

  8. 7. DETAIL OF UPPER SECTIONS OF WEST SIDE SHOWING WHITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF UPPER SECTIONS OF WEST SIDE SHOWING WHITE INSULATED DUCTWORK VENTILATING CLEAN ROOM AT TOP LEVELS OF MOBILE SERVICE STRUCTURE; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28417, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  9. Effect of Niagara power project on ground-water flow in the upper part of the Lockport Dolomite, Niagara Falls area, New York

    USGS Publications Warehouse

    Miller, Todd S.; Kappel, W.M.

    1987-01-01

    The Niagara River Power Project near Niagara Falls, N.Y., has created recharge and discharge areas that have modified the direction of groundwater flow east and northeast of the falls. Before construction of the power project in 1962, the configuration of the potentiometric surface in the upper part of the Silurian Lockport Dolomite generally paralleled the buried upper surface of the bedrock. Ground water in the central and east parts of the city of Niagara Falls flowed south and southwestward toward the upper Niagara River (above the falls), and ground water in the western part flowed westward into Niagara River gorge. The power project consists of two hydroelectric powerplants separated by a forebay canal that receives water from the upper Niagara River through two 4-mi-long, parallel, buried conduits. During periods of nonpeak power demand, some water in the forebay canal is pumped to a storage reservoir for later release to generate electricity during peak-demand periods. Since the power project began operation in 1962, groundwater within 0.5 mi of the buried conduits has seeped into the drain system that surrounds the conduits, then flows both south from the forebay canal and north from the Niagara River toward the Falls Street tunnel--a former sewer that crosses the conduits 0.65 mi north of the upper Niagara River. Approximately 6 million gallons of ground water a day leaks into the Falls Street tunnel, which carries it 2.3 mi westward to the Niagara River gorge below the falls. Daily water-level fluctuations in the forebay canal affect water levels in the drain system that surrounds the conduits, and this , in turn, affects the potentiometric surface in the Lockport Dolomite within 0.5 mi of the conduits. The drains transmit changes in pressure head near the forebay canal southward at least as far as the Falls Street tunnel area and possibly to the upper Niagara River. Some water in the pumped-storage reservoir recharges ground water in the Lockport Dolomite by seepage through bedding joints, which are exposed in the unlined reservoir bottom, and through the grout curtain beneath the reservoir 's dike. Water-level fluctuations in the reservoir cause slight ground-water fluctuations near the reservoir. (Author 's abstract)

  10. 76 FR 72308 - Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2011-1039] Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  11. 76 FR 79066 - Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2011-1018] Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  12. 75 FR 70817 - Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-1039] Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  13. Water resources and potential hydrologic effects of oil-shale development in the southeastern Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Lindskov, K.L.; Kimball, B.A.

    1984-01-01

    Proposed oil-shale mining in northeastern Utah is expected to impact the water resources of a 3,000-square-mile area. This report summarizes a comprehensive hydrologic investigation of the area which resulted in 13 published reports. Hydrologic information obtained during 1974-80 was used to evaluate the availability of water and to evaluate potential impacts of an oil-shale industry on the water resources.The study area is the southeastern part of the Uinta Basin, Utah and Colorado, where the hydrology is extremely variable. The normal annual precipitation averages 11 inches and varies with altitude. It ranges from less than 8 inches at altitudes below 5,000 feet along the White and Green Rivers to more than 20 inches where altitudes exceed 9,000 feet on the Roan Plateau.The White and Green Rivers are large streams that flow through the area. They convey an average flow of 4.3 million acre-feet per year from outside drainage areas of about 34,000 square miles, which is more than 150 times as much flow as that originating within the area. Streams originating in areas where precipitation is less than 10 inches are ephemeral. Mean annual runoff from the study area is about 28,000 acre-feet and ranges from less than 0.1 to 1.6 inches, depending on the location. At any given site, runoff varies greatly-from year to year and season to season. Potential evapotranspiration is large, exceeding precipitation in all years. Three major aquifers occur in the area. They are alluvial deposits of small areal extent along the major stream valleys; the bird's-nest aquifer of the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer of the Douglas Creek Member of the Green River Formation, which underlies most of the area. Total recoverable water in storage in the three aquifers is about 18 million acre-feet. Yields of individual wells and interference between wells limit the maximum practical withdrawal to about 20,000 acre-feet per year.An oil-shale industry in the southeastern Uinta Basin with a peak production of 400,000 barrels of oil per day would require a water supply of about 70,000 acre-feet per year. Sources of water supply considered for such an industry were: diversion from the natural flow of the White River, a proposed reservoir on the White River, diversion from the White River combined with proposed off-stream storage in Hells Hole Canyon, diversion from the Green River, and conjunctive use of ground and surface water.The proposed reservoir on the White River would trap about 90 percent of the sediment moving in the river and in turn would release almost sediment-free water. Possible impacts are changes in channel gradient in the downstream 18 miles of the White River and changes in bank stability. In some parts of the area, annual sheet-erosion rates are as great as 2.2 acre-feet per square mile but sediment yield to the White River is less than might be expected because the runoff is small. If process water from retort operations or water used in the construction of surface facilities is discharged into a normally dry streambed, increased channel erosion and sediment in tributary streams could result in increased sediment loads in the White River. In addition, sediment yields from retorted-shale piles with minimum slopes could exceed 0.1 acrefoot per square mile during a common storm. Thus, without safeguards, the useful life of any proposed reservoir or holding pond could be decreased considerably.Leachate water from retorted-shale piles has large concentrations of sodium and sulfate, and the chemical composition of retort waters differs considerably from that of the natural waters of the area. The retort waters contain a greater concentration of dissolved solids and more organic carbon and nutrients. Without proper disposal or impoundment of retort and leachate waters, the salinity of downstream waters in the Colorado River Basin would be increased.

  14. Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2010-04-15

    A data matrix (4032 observations), obtained during a 2-year monitoring period (2005-2006) from 42 sites in the upper Han River is subjected to various multivariate statistical techniques including cluster analysis, principal component analysis (PCA), factor analysis (FA), correlation analysis and analysis of variance to determine the spatial characterization of dissolved trace elements and heavy metals. Our results indicate that waters in the upper Han River are primarily polluted by Al, As, Cd, Pb, Sb and Se, and the potential pollutants include Ba, Cr, Hg, Mn and Ni. Spatial distribution of trace metals indicates the polluted sections mainly concentrate in the Danjiang, Danjiangkou Reservoir catchment and Hanzhong Plain, and the most contaminated river is in the Hanzhong Plain. Q-model clustering depends on geographical location of sampling sites and groups the 42 sampling sites into four clusters, i.e., Danjiang, Danjiangkou Reservoir region (lower catchment), upper catchment and one river in headwaters pertaining to water quality. The headwaters, Danjiang and lower catchment, and upper catchment correspond to very high polluted, moderate polluted and relatively low polluted regions, respectively. Additionally, PCA/FA and correlation analysis demonstrates that Al, Cd, Mn, Ni, Fe, Si and Sr are controlled by natural sources, whereas the other metals appear to be primarily controlled by anthropogenic origins though geogenic source contributing to them. 2009 Elsevier B.V. All rights reserved.

  15. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    USGS Publications Warehouse

    Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.

    2016-01-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  16. Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin.

    PubMed

    García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory

    2016-07-05

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  17. Digital atlas of the upper Washita River basin, southwestern Oklahoma

    USGS Publications Warehouse

    Becker, Carol J.; Masoner, Jason R.; Scott, Jonathon C.

    2008-01-01

    Numerous types of environmental data have been collected in the upper Washita River basin in southwestern Oklahoma. However, to date these data have not been compiled into a format that can be comprehensively queried for the purpose of evaluating the effects of various conservation practices implemented to reduce agricultural runoff and erosion in parts of the upper Washita River basin. This U.S. Geological Survey publication, 'Digital atlas of the upper Washita River basin, southwestern Oklahoma' was created to assist with environmental analysis. This atlas contains 30 spatial data sets that can be used in environmental assessment and decision making for the upper Washita River basin. This digital atlas includes U.S. Geological Survey sampling sites and associated water-quality, biological, water-level, and streamflow data collected from 1903 to 2005. The data were retrieved from the U.S. Geological Survey National Water Information System database on September 29, 2005. Data sets are from the Geology, Geography, and Water disciplines of the U.S. Geological Survey and cover parts of Beckham, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Kiowa, and Washita Counties in southwestern Oklahoma. A bibliography of past reports from the U.S. Geological Survey and other State and Federal agencies from 1949 to 2004 is included in the atlas. Additionally, reports by Becker (2001), Martin (2002), Fairchild and others (2004), and Miller and Stanley (2005) are provided in electronic format.

  18. 33 CFR 207.200 - Mississippi River below mouth of Ohio River, including South and Southwest Passes; use...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... banks of the river, and no floating plant other than launches and similar small craft shall land against... white background readable from the waterway side, placed on each side of the river near the point where...

  19. A review of crust and upper mantle structure studies of the Snake River Plain-Yellowstone volcanic system: A major lithospheric anomaly in the western U.S.A.

    USGS Publications Warehouse

    Iyer, H.M.

    1984-01-01

    The Snake River Plain-Yellowstone volcanic system is one of the largest, basaltic, volcanic field in the world. Here, there is clear evidence for northeasterly progression of rhyolitic volcanism with its present position in Yellowstone. Many theories have been advanced for the origin of the Snake River Plain-Yellowstone system. Yellowstone and Eastern Snake River Plain have been studied intensively using various geophysical techniques. Some sparse geophysical data are available for the Western Snake River Plain as well. Teleseismic data show the presence of a large anomalous body with low P- and S-wave velocities in the crust and upper mantle under the Yellowstone caldera. A similar body in which compressional wave velocity is lower than in the surrounding rock is present under the Eastern Snake River Plain. No data on upper mantle anomalies are available for the Western Snake River Plain. Detailed seismic refraction data for the Eastern Snake River Plain show strong lateral heterogeneities and suggest thinning of the granitic crust from below by mafic intrusion. Available data for the Western Snake River Plain also show similar thinning of the upper crust and its replacement by mafic material. The seismic refraction results in Yellowstone show no evidence of the low-velocity anomalies in the lower crust suggested by teleseismic P-delay data and interpreted as due to extensive partial melting. However, the seismic refraction models indicate lower-than-normal velocities and strong lateral inhomogeneities in the upper crust. Particularly obvious in the refraction data are two regions of very low seismic velocities near the Mallard Eake and Sour Creek resurgent domes in the Yellowstone caldera. The low-velocity body near the Sour Creek resurgent dome is intepreted as partially molten rock. Together with other geophysical and thermal data, the seismic results indicate that a sub-lithospheric thermal anomaly is responsible for the time-progressive volcanism along the Eastern Snake River Plain. However, the exact mechanism responsible for the volcanism and details of magma storage and migration are not yet fully understood. ?? 1984.

  20. Evaluation of partial water reuse systems used for Atlantic salmon smolt production at the White River National Fish Hatchery

    USDA-ARS?s Scientific Manuscript database

    Eight of the existing 9.1 m (30 ft) diameter circular culture tanks at the White River National Fish Hatchery in Bethel, Vermont, were retrofitted and plumbed into two 8,000 L/min partial water reuse systems to help meet the region's need for Atlantic salmon (Salmo salar) smolt production. The part...

  1. Estimates of recreational stream use in the White River drainage, Vermont

    Treesearch

    Ronald J. Glass; Gerald Walton; Herbert E. Echelberger; Herbert E. Echelberger

    1992-01-01

    An observation technique that incorporates Godified, stratified sampling was used to estimate in-stream recreation use in the White River Drainage in Vermont. Results were reported by season, day of week, time of day, kind of activity, and portion of stream. Summer had the highest use followed by spring and fall. Except in fall, weekends and holidays received...

  2. Logging the Great Lakes Indian Reservations: The Case of the Bad River Band of Ojibwe

    ERIC Educational Resources Information Center

    Steen-Adams, Michelle M.; Langston, Nancy E.; Mladenoff, David J.

    2010-01-01

    The harvest of the Great Lakes primary forest stands (ca. 1860-1925) transformed the region's ecological, cultural, and political landscapes. Although logging affected both Indian and white communities, the Ojibwe experienced the lumber era in ways that differed from many of their white neighbors. When the 125,000-acre Bad River Reservation was…

  3. 77 FR 21557 - Clean Water Act: Final Agency Action on 32 Total Maximum Daily Loads (TMDLs) in Louisiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ...--Wilson-Clinton Hwy to Fecal Coliform entrance of White Bayou (East Baton Rouge Parish) (Scenic). 040103 Comite River--Entrance of White Bayou to Fecal Coliform. Amite River. 040201 Bayou Manchac--Headwaters to.... Canal to mouth at Lake Maurepas (Scenic). 040903 Bayou Cane--Headwaters to U.S. Hwy 190 TSS. (Scenic...

  4. Flood-inundation maps for the White River near Edwardsport, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2014-01-01

    The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 03360730 White River near Edwardsport, Ind., and forecasted stream stages from the National Weather Service, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  5. Evaluating external nutrient and suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time turbidity and acoustic backscatter data

    USGS Publications Warehouse

    Schenk, Liam N.; Anderson, Chauncey W.; Diaz, Paul; Stewart, Marc A.

    2016-12-22

    Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models for the Williamson River site showed strong correlations of turbidity with total phosphorus and suspended-sediment concentrations (adjusted coefficients of determination [Adj R2]=0.73 and 0.95, respectively). Regression models for the Wood River site had relatively poor, although statistically significant, relations of turbidity with total phosphorus, and turbidity and acoustic backscatter with suspended sediment concentration, with high prediction uncertainty. Total phosphorus loads for the partial 2014 water year (excluding October and November 2013) were 39 and 28 metric tons for the Williamson and Wood Rivers, respectively. These values are within the low range of phosphorus loads computed for these rivers from prior studies using water-quality data collected by the Klamath Tribes. The 2014 partial year total phosphorus loads on the Williamson and Wood Rivers are assumed to be biased low because of the absence of data from the first 2 months of water year 2014, and the drought conditions that were prevalent during that water year. Therefore, total phosphorus and suspended-sediment loads in this report should be considered as representative of a low-water year for the two study sites. Comparing loads from the Williamson and Wood River monitoring sites for November 2013–September 2014 shows that the Williamson and Sprague Rivers combined, as measured at the Williamson River site, contributed substantially more suspended sediment to Upper Klamath Lake than the Wood River, with 4,360 and 1,450 metric tons measured, respectively.Surrogate techniques have proven useful at the two study sites, particularly in using turbidity to compute suspended-sediment concentrations in the Williamson River. This proof-of-concept effort for computing total phosphorus concentrations using turbidity at the Williamson and Wood River sites also has shown that with additional samples over a wide range of flow regimes, high-temporal-resolution total phosphorus loads can be estimated on a daily, monthly, and annual basis, along with uncertainties for total phosphorus and suspended-sediment concentrations computed using regression models. Sediment-corrected backscatter at the Wood River has potential for estimating suspended-sediment loads from the Wood River Valley as well, with additional analysis of the variable streamflow measured at that site. Suspended-sediment and total phosphorus loads with a high level of temporal resolution will be useful to water managers, restoration practitioners, and scientists in the Upper Klamath Basin working toward the common goal of decreasing nutrient and sediment loads in Upper Klamath Lake.

  6. Photographic copy of early 20” x 33”, black and white ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of early 20” x 33”, black and white photograph. Located loose in oversized box at the National Museum of American History, Smithsonian Institution, Archives Center, Work and Industry Division, Washington, D.C. Original Photographer unknown. EARLY PHOTOGRAPH OF BRIDGE TAKEN FROM DOWN RIVER NEAR EAST BANK LOOKING SOUTHWEST UP RIVER TOWARD WEST BANK SHOWING STEAM LOCOMOTIVE TRAIN CROSSING BRIDGE. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  7. Population trends of smallmouth bass in the upper Colorado River basin with an evaluation of removal effects

    USGS Publications Warehouse

    Breton, André R.; Winkelman, Dana L.; Hawkins, John A.; Bestgen, Kevin R.

    2014-01-01

    Smallmouth bass Micropterus dolomieu were rare in the upper Colorado River basin until the early 1990’s when their abundance dramatically increased in the Yampa River sub-basin. Increased abundance was due primarily to colonization from Elkhead Reservoir, which was rapidly drawn down twice, first to make improvements to the dam (1992) and a second time for reservoir expansion (2005), and allowed escapement of resident bass to the river through an unscreened outlet. Elkhead Reservoir is located on Elkhead Creek, a tributary of the Yampa River. The rapid Elkhead Reservoir drawdown in 1992 was followed by a period of drought years with low, early runoff in the Yampa River sub-basin that benefitted smallmouth bass reproduction. This combination of factors allowed smallmouth bass to establish a self-sustaining population in the Yampa River. Subsequently, successful recruitment allowed smallmouth bass to disperse upstream and downstream in the Yampa River and eventually move into the downstream Green River. Smallmouth bass were also likely introduced, by unknown means, into the upper Colorado River and have since dispersed in this sub-basin. The rapid increase of smallmouth bass in the upper Colorado River basin overlapped with significant reductions in native fish populations in some locations. The threat to these native fishes initiated intensive mechanical removal of smallmouth bass by the Upper Colorado River Endangered Fish Recovery Program.In general, three factors explain fluctuating patterns in smallmouth bass density in the upper Colorado River basin in the last decade: reductions due to electrofishing removal, bass recovery after exploitation due to recruitment and immigration, and changes due to environmental factors not related to electrofishing and other management actions. Our analyses indicated that smallmouth bass densities were substantially reduced in most years by 7 electrofishing removal efforts. Less often, but dramatically in some cases, environmental effects were also responsible for significant declines in smallmouth bass densities in some reaches. Abundant year classes of young smallmouth bass produced in low flow and warm years such as 2007 have potential to overwhelm removal efforts, and the year class persists for one or more years. Nonetheless, it appears that increased electrofishing removal efforts from 2007 to 2011 resulted in sustained reductions in density of smallmouth bass sub-adults and adults throughout the upper basin despite environmental conditions that favored smallmouth bass reproduction in some years (e.g. 2007 and 2009), subsequent recruitment into sub-adult and adult age classes, and movement of smallmouth bass which previously (prior to increases in electrofishing removal efforts) allowed densities to recover in some reaches.We recommend that removal efforts continue in most areas of the upper basin but that the Recovery Program consider allocating effort based on population trends and suspected areas of highest smallmouth bass reproduction. For instance, reproduction, recruitment, and movement of smallmouth bass allowed densities to recover in some reaches, particularly Little Yampa Canyon. Smallmouth bass population recovery implies that areas such as Little Yampa Canyon itself or adjacent reaches (especially upstream), may provide important habitat for age-0 production. We recommend continued assessment of smallmouth bass populations in reaches where reproduction or age-1 nurseries are suspected, such as Little Yampa Canyon and the adjacent upstream reach. It may also be necessary to expand monitoring to areas surrounding suspected sources of smallmouth bass reproduction and increase electrofishing removal effort in these reaches.

  8. The effect of channel shape, bed morphology, and shipwrecks on flow velocities in the Upper St. Clair River

    USGS Publications Warehouse

    Czuba, Jonathan A.; Oberg, Kevin; Best, Jim; Parsons, Daniel R.

    2009-01-01

    In the Great Lakes of North America, the St. Clair River is the major outlet of Lake Huron and conveys water to Lake St. Clair which then flows to Lake Erie. One major topic of interest is morphological change in the St. Clair River and its impact on water levels in the Upper Great Lakes and connecting channel flows. A combined multibeam echosounder (MBES) bathymetric survey and acoustic Doppler current profiler (ADCP) flow survey of the outlet of Lake Huron and the Upper St. Clair River was conducted July 21 – 25, 2008. This paper presents how channel morphology and shipwrecks affect the flow in the Upper St. Clair River. The river is most constricted at the Blue Water Bridge near Port Huron, Michigan, with water velocities over 2 ms-1 for a flow of 5,200 m3s-1. Downstream of this constriction, the river flows around a bend and expands creating a large recirculation zone along the left bank due to flow separation. This recirculation zone reduces the effective channel width, and thus increases flow velocities to over 2 ms-1 in this region. The surveys reveal several shipwrecks on the bed of the St. Clair River, which possess distinct wakes in their flow velocity downstream of the wrecks. The constriction and expansion of the channel, combined with forcing of the flow by bed topography, initiates channel-scale secondary flow, creating streamwise vortices that maintain coherence downstream over a distance of several channel widths.

  9. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from this study were used to evaluate the sensitivity of early life stages of white sturgeon and rainbow trout relative to data published for other test organisms. Toxicity data generated from this study also were used to evaluate the level of protection of U.S. Environmental Protection Agency WQC or Washington State water-quality standards (WQS) for copper, zinc, cadmium, or lead to white sturgeon inhabiting the upper Columbia River. Chapter A of this report summarizes the results of acute toxicity tests performed for 4 d with white sturgeon and rainbow trout exposed to copper, cadmium, or zinc. Chapter B of this report summarizes the results of chronic toxicity tests performed for as many as 53 days with white sturgeon or rainbow trout exposed to copper, cadmium, zinc, or lead. Appendixes to the report are available at http://pubs.usgs.gov/sir/2013/5204. Supporting documentation for chapter A toxicity testing is provided in appendix 1. Supporting documentation for chapter B toxicity testing is provided in Appendix 2. Supporting documentation on analysis of water chemistry for chapter A and chapter B is provided in appendix 3 and 4. The rationale for applying corrections to measured copper and zinc values in water samples from some of the toxicity tests performed in chapter A is provided in appendix 5. A summary of dissolved organic carbon measurement variability and implications for biotic ligand model normalization for toxicity data summarized in chapter A and chapter B are provided in appendix 6. An evaluation of an interlaboratory comparison of analyses for dissolved organic carbon in water from the U.S. Geological Survey Columbia Environmental Research Center and University of Saskatchewan is provided in appendix 7. Finally, appendix 8 provides a summary of retesting of white sturgeon in 2012 to determine if improved survival of sturgeon would affect copper effect concentrations in 24-d copper exposures started with newly hatched larvae, and to evaluate the effect of light intensity or temperature on the response of newly hatched larvae during a 25-d study.

  10. Fine-scale genetic structure and social organization in female white-tailed deer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comer, Christopher E.; Kilgo, John C.; D'Angelo, Gino J.

    Abstract: Social behavior of white-tailed deer (Odocoileus virginianus) can have important management implications. The formation of matrilineal social groups among female deer has been documented and management strategies have been proposed based on this well-developed social structure. Using radiocollared (n = 17) and hunter or vehicle-killed (n = 21) does, we examined spatial and genetic structure in white-tailed deer on a 7,000-ha portion of the Savannah River Site in the upper Coastal Plain of South Carolina, USA. We used 14 microsatellite DNA loci to calculate pairwise relatedness among individual deer and to assign doe pairs to putative relationship categories. Linearmore » distance and genetic relatedness were weakly correlated (r = –0.08, P = 0.058). Relationship categories differed in mean spatial distance, but only 60% of first-degree-related doe pairs (full sibling or mother–offspring pairs) and 38% of second-degree-related doe pairs (half sibling, grandmother–granddaughter pairs) were members of the same social group based on spatial association. Heavy hunting pressure in this population has created a young age structure among does, where the average age is <2.5 years, and <4% of does are >4.5 years old. This—combined with potentially elevated dispersal among young does—could limit the formation of persistent, cohesive social groups. Our results question the universal applicability of recently proposed models of spatial and genetic structuring in white-tailed deer, particularly in areas with differing harvest histories.« less

  11. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Mean Infiltration-Excess Overland Flow, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean value for infiltration-excess overland flow as estimated by the watershed model TOPMODEL, compiled for every catchment of NHDPlus for the conterminous United States. Infiltration-excess overland flow, expressed as a percent of total overland flow, is simulated in TOPMODEL as precipitation that exceeds the infiltration capacity of the soil and enters the stream channel. The source data set is Infiltration-Excess Overland Flow Estimated by TOPMODEL for the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  12. Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: normalized atmospheric deposition for 2002, Total Inorganic Nitrogen

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average normalized atmospheric (wet) deposition, in kilograms, of Total Inorganic Nitrogen for the year 2002 compiled for every catchment of NHDPlus for the conterminous United States. Estimates of Total Inorganic Nitrogen deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  13. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Normalized Atmospheric Deposition for 2002, Ammonium (NH4)

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average normalized atmospheric (wet) deposition, in kilograms, of Ammonium (NH4) for the year 2002 compiled for every catchment of NHDPlus for the conterminous United States. Estimates of NH4 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  14. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Normalized Atmospheric Deposition for 2002, Nitrate (NO3)

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average normalized atmospheric (wet) deposition, in kilograms, of Nitrate (NO3) for the year 2002 compiled for every catchment of NHDPlus for the conterminous United States. Estimates of NO3 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  15. Population characteristics and the influence of discharge on Bluehead Sucker and Flannelmouth Sucker

    USGS Publications Warehouse

    Klein, Zachary B.; Breen, Matthew J.; Quist, Michael C.

    2017-01-01

    Rivers are among some of the most complex and important ecosystems in the world. Unfortunately, many fishes endemic to rivers have suffered declines in abundance and distribution suggesting that alterations to lotic environments have negatively influenced native fish populations. Of the 35 fishes native to the Colorado River basin (CRB), seven are considered either endangered, threatened, or species of special concern. As such, the conservation of fishes native to the CRB is a primary interest for natural resource management agencies. One of the major factors limiting the conservation and management of fishes endemic to the CRB is the lack of basic information on their ecology and population characteristics. We sought to describe the population dynamics and demographics of three populations of Bluehead Suckers (Catostomus discobolus) and Flannelmouth Suckers (C. latipinnis) in Utah. Additionally, we evaluated the potential influence of altered flow regimes on the recruitment and growth of Bluehead Suckers and Flannelmouth Suckers. Mortality of Bluehead Suckers and Flannelmouth Suckers from the Green, Strawberry, and White rivers was comparable to other populations. Growth of Bluehead Suckers and Flannelmouth Suckers was higher in the Green, Strawberry, and White rivers when compared to other populations in the CRB. Similarly, recruitment indices suggested that Bluehead Suckers and Flannelmouth Suckers in the Green, Strawberry, and White rivers had more stable recruitment than other populations in the CRB. Models relating growth and recruitment to hydrological indices provided little explanatory power. Notwithstanding, our results indicate that Bluehead Suckers and Flannelmouth Suckers in the Green, Strawberry, and White rivers represent fairly stable populations and provide baseline information that will be valuable for the effective management and conservation of the species.

  16. Multiyear Downstream Response to Dam Removal on the White Salmon River, WA

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; O'Connor, J. E.; Major, J. J.

    2017-12-01

    The 2011 removal of the 38 m tall Condit Dam on the White Salmon River, Washington was one of the largest dam removals to date, in terms of both dam height and sediment release. We examined the multiyear geomorphic response to this event, through 2015, including in a bedrock-confined canyon and in a less-confined, backwater-influenced pool reach near the river's mouth, to the large, rapid influx of fine reservoir sediment produced by the breach and to subsequent sediment transfer in the free-flowing White Salmon River. In the canyon reach, aggraded sediments were rapidly eroded from riffles, returning them toward pre-breach bed elevations within weeks, but pool aggradation persisted for longer. The downstream, less-confined reach transformed from a deep pool to a narrower pool-riffle channel with alternate bars; multiyear observations showed persistence of bars and of this new and distinct morphology. This downstream reach marks a rare case in post-dam removal channel response; in most dam removals, channels have rapidly reverted toward pre-removal morphology, as in the canyon reach here. Comparison of the multiyear geomorphic evolution of the White Salmon River to other recent large dam removals in the U.S. allows evaluation of the relative influences of antecedent channel morphology, post-breach hydrology, and dam removal style, as well as providing a basis for predicting responses to future dam removals.

  17. Flood inundation maps and water-surface profiles for tropical storm Irene and selected annual exceedance probability floods for Flint Brook and the Third Branch White River in Roxbury, Vermont

    USGS Publications Warehouse

    Ahearn, Elizabeth A.; Lombard, Pamela J.

    2014-01-01

    Flint Brook, a tributary to the Third Branch White River in Roxbury, Vermont, has a history of flooding the Vermont Fish and Wildlife Department’s Roxbury Fish Culture Station (the hatchery) and surrounding infrastructure. Flooding resulting from tropical storm Irene on August 28–29, 2011, caused widespread destruction in the region, including extensive and costly damages to the State-owned hatchery and the transportation infrastructure in the Town of Roxbury, Vermont. Sections of State Route 12A were washed out, and several bridges and culverts on Oxbow Road, Thurston Hill Road, and the New England Central Railroad in Roxbury were heavily damaged. Record high peak-discharge estimates of 2,140 cubic feet per second (ft3/s) and 4,320 ft3/s were calculated for Flint Brook at its confluence with the Third Branch White River and for the Third Branch White River at about 350 feet (ft) downstream from the hatchery, respectively. The annual exceedance probabilities (AEPs) of the peak discharges for Flint Brook and the Third Branch White River were less than 0.2 percent (less than a one in 500 chance of occurring in a given year). Hydrologic and hydraulic analyses of Flint Brook and the Third Branch White River were done to investigate flooding at the hatchery in Roxbury and support efforts by the Federal Emergency Management Agency to assist State and local mitigation and reconstruction efforts. During the August 2011 flood, the majority of flow from Flint Brook (97 percent or 2,070 ft3/s) diverged from its primary watercourse due to a retaining wall failure immediately upstream of Oxbow Road and inundated the hatchery. Although a minor amount of flow from the Third Branch White River could have overtopped State Route 12A and spilled into the hatchery, the Third Branch White River did not cause flood damages or exacerbate flooding at the hatchery during the August 2011 flood. The Third Branch White River which flows adjacent to the hatchery does not flood the hatchery for the 10-, 2-, 1, or 0.2-percent annual exceedance probabilities. The simulated water-surface elevations for August 2011 flood equal the elevations of State Route 12A about 500 ft downstream of Thurston Hill Road adjacent to the troughs between the rearing ponds. Four flood mitigation alternatives being considered by the Vermont Agency of Transportation to improve the hydraulic performance of Flint Brook and reduce the risk of flooding at the hatchery include: (A) no changes to the infrastructure or existing alignment of Flint Brook (existing conditions [2014]), (B) structural changes to the bridges and the existing retaining wall along Flint Brook, (C) realignment of Flint Brook to flow along the south side of Oxbow Road to accommodate larger stream discharges, and (D) a diversion channel for flows greater than 1-percent annual exceedance probability. Although the 10-, 2-, and 1-percent AEP floods do not flood the hatchery under alternative A (no changes to the infrastructure), the 0.2-percent AEP flow still poses a flooding threat to the hatchery because flow will continue to overtop the existing retaining wall and flood the hatchery. Under the other mitigation alternatives (B, C, and D) that include some variation of structural changes to bridges, a retaining wall, and (or) channel, the peak discharges for the 10-, 2-, 1-, and 0.2-percent annual exceedance probabilities do not flood the hatchery. Water-surface profiles and flood inundation maps of the August 2011 flood and the 10-, 2-, 1-, and 0.2-percent AEPs for four mitigation alternatives were developed for Flint Brook and the Third Branch White River in the vicinity of the hatchery and can be used by the Federal, State, and local agencies to better understand the potential for future flooding at the hatchery.

  18. Biological assessment of streams in the Indianapolis Metropolitan Area, Indiana, 1999-2001

    USGS Publications Warehouse

    Voelker, David C.

    2004-01-01

    During 1999?2001, benthic invertebrates and fish were sampled to describe biological communities in the White River and selected tributaries in the Indianapolis Metropolitan Area in Indiana. Twelve sites (six on the White River and six on tributaries) were sampled biannually for benthic invertebrates and annually for fish. The information complements water-chemistry data collected by the Indianapolis Department of Public Works in the study area. Evaluation of the habitat for sites in the study area was done, using a Qualitative Habitat Evaluation Index (QHEI) developed by the Ohio Environmental Protection Agency. The QHEI scores basin and habitat characteristics for each site, with a maximum possible score of 100. Higher scores indicate better habitat conditions for biotic communities. The QHEI scores for sites on the White River ranged from 55 at the Harding site to 71 at the Waverly site; scores on the tributaries ranged from 45 on Pogues Run to 82 on Williams Creek. A total of 151 taxa were identified from the benthic-invertebrate samples. The Ephemeroptera, Plecoptera, and Trichoptera (EPT) Index scores for sites on the White River ranged from 0 at the Harding site to 15 at the Nora site. The Nora site, which is upstream from Indianapolis, generally scored the highest of all White River sites. Sites in the immediate vicinity of Indianapolis scored the lowest and indicate a negative effect on benthic-invertebrate communities in that reach. EPT Index scores increased in the farthest downstream reaches, which indicate that water-quality conditions had improved in comparison to sites in Indianapolis. For the tributary sites, EPT Index values ranged from 0 at Pogues Run to 16 at Buck Creek. Tributary sites on Fall Creek, Pleasant Run, and Pogues Run consistently scored 7 or lower; sites on Buck Creek, Eagle Creek, and Williams Creek scored 7 or higher. Hilsenhoff Biotic Index (HBI) scores ranged from 4.9 (good) to 9.6 (very poor) for the White River sites and from 5.2 (good) to 8.0 (poor) for the tributary sites. The lowest scores among the White River sites were at the Nora site, indicating the best water-quality conditions were where the White River enters Marion County. The highest HBI scores were at the Morris and Harding sites, indicating the least-favorable water-quality conditions of all the White River sites. Of the tributary sites, HBI scores for Buck, Eagle, and Williams Creeks indicate fair water-quality conditions; HBI scores for Pleasant Run and Pogues Run were the highest, indicating relatively poor water-quality conditions. On the White River, the highest Invertebrate Community Index (ICI) scores, which indicate the best benthic-invertebrate conditions, were at the Nora site. Conditions were fair to poor in the downtown Indianapolis area; ICI scores indicate slight improvement in the downstream reaches of the study area. Of the tributary sites, Buck Creek was the only site with ICI scores indicating exceptional water quality. Williams Creek ICI scores indicate good water quality; the remaining tributary-site scores reflect fair conditions. A total of 74 species and 3 hybrids of fish were identified during the study period. The Cyprinidae (carps and minnows) was the largest group of fish identified and consisted of more than half of all fish collected. The most numerous species was the central stoneroller (Campostoma anomalum), which accounted for almost 25 percent of the fish identified. Two nonnative species, the koi carp (Cyprinus carpio) and the western mosquitofish (Gambusia affinis), and one species classified as an Indiana species of special concern, the northern studfish (Fundulus catenatus), also were collected during the study. Indiana Index of Biotic Integrity (IBI) and Ohio Index of Biotic Integrity scores were calculated to show the condition of the fish communities at each site. Results of the Indiana IBI calculations showed no apparent differences in scores among the Wh

  19. A SEDIMENT TOXICITY EVALUATION OF THREE LARGE RIVER SYSTEMS

    EPA Science Inventory

    Sediment toxicity samples were collected from selected sites on the Ohio River, Missouri River and upper Mississippi River as part of the 2004 and 2005 Environmental Monitoring and Assessment Program-Great Rivers Ecosystems Study (EMAP-GRE). Samples were collected by compositing...

  20. UPPER MISSOURI RIVER ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM (EMAP-UMR): 2000 PILOT STUDY FINDINGS AND FURTHER DIRECTION

    EPA Science Inventory

    The EPA Office of Research and Development's Mid-Continent Ecology Division has undertaken an EMAP study to assess the condition of selected resources of the Upper Missouri River mainstem (riverine) aquatic habitats, riparian habitats, and reservoirs. In 2000, we completed pilot ...

  1. 51F earth observations

    NASA Image and Video Library

    2009-06-25

    51F-37-014 (29 July-6 Aug 1985) --- This Earth view shows Oregon and Washington including metropolitan Portland at the center. The Columbia River can be seen from Goble (upper left) upstream to Bonneville (upper right). The Willamette River is at the lower photo and seen upstream to east of McMinnville.

  2. 78 FR 76750 - Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-1008] Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation from drawbridge regulations. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  3. 77 FR 69761 - Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2012-0995] Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  4. 78 FR 72022 - Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-0964] Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation from drawbridge regulation. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  5. 77 FR 69759 - Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2012-1002] Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  6. RELATION OF ENVIRONMENTAL CHARACTERISTICS TO FISH ASSEMBLAGES IN THE UPPER FRENCH BROAD RIVER BASIN, NORTH CAROLINA

    EPA Science Inventory

    Fish assemblages at 16 sites in the upper French Broad River basin, North Carolina were related to environmental variables using detrended correspondence analysis (DCA) and linear regression. This study was conducted at the landscape scale because regional variables are controlle...

  7. Guidelines for Software Engineering Education Version 1.0

    DTIC Science & Technology

    1999-11-01

    Turbo Pascal and Software Design. Sudbury, Massachusetts: Jones and Bartlett, 1997. " Deitel, Harvey M. & Deitel, Paul J. C++: How to Program . Upper...Saddle River, New Jersey: Prentice-Hall, 1997. " Deitel, Harvey M. & Deitel, Paul J. Java: How to Program . Upper Saddle River, New Jersey: Prentice-Hall

  8. APPLYING THE ECOSYSTEM SERVICES CONCEPT FOR ENVIRONMENTAL MANAGEMENT IN THE UPPER SAN PEDRO BASIN, ARIZONA

    EPA Science Inventory

    The Upper San Pedro River flows intermittently north from Sonora, Mexico into southeastern Arizona and is one of the last few large unimpounded rivers in the American Southwest. The remaining perennial reaches support a desert riparian ecosystem that is a rare remnant of what ...

  9. 77 FR 6534 - Malheur National Forest; Oregon; Summit Logan Grazing Authorization Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... Creek and Summit Prairie allotments. These allotments are within the Upper Malheur River and Upper North Fork Malheur River watersheds. The Summit Logan Grazing Authorization Project area is located south and west of Prairie City, Oregon and encompasses approximately 40,272 acres of National Forest System Lands...

  10. 78 FR 13082 - Draft Environmental Impact Report/Environmental Impact Statement/Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... Impact Statement/ Environmental Impact Statement, Upper Truckee River and Marsh Restoration Project, El... Statement (EIR/EIS/EIS) for the Upper Truckee River Restoration and Marsh Restoration Project (Project). The... prepare email comments for the Project. The public hearings will be held at 128 Market Street, Stateline...

  11. A Submersed Macrophyte Index of Condition for the Upper Mississippi River

    EPA Science Inventory

    Portions of the Upper Mississippi River are listed as impaired for aquatic life use under section 303(d) of the United States Clean Water Act by the State of Minnesota’s Pollution Control Agency and Wisconsin’s Department of Natural Resources for exceeding turbidity and eutrophic...

  12. Dispersal and dam passage of sonic-tagged juvenile lake sturgeon in the upper Tennessee River

    USGS Publications Warehouse

    Collier, William R.; Bettoli, Phillip William; Scholten, George D.

    2011-01-01

    More than 90,000 state-endangered lake sturgeon (Acipenser fulvescens) have been stocked into the French Broad River, Holston River, and Fort Loudoun Lake in the upper Tennessee River system. Although incidental reports of anglers catching these fish have increased, little is known about their fate after stocking. Therefore, this study was conducted to evaluate lake sturgeon dispersal throughout the system. Seven submersible ultrasonic receivers were deployed in the upper Tennessee River system and 37 juvenile fish (mean fork length = 660 mm) were surgically implanted with ultrasonic transmitters in the fall of 2007. These fish were stocked at two sites in the headwaters of Fort Loudoun Lake. The receivers logged 1,345 detections of tagged fish and manual tracking located 32 of the 37 tagged lake sturgeon over 21 months. Ten (31%) tagged fish passed through Fort Loudoun Dam and were located downstream in the headwaters of Watts Bar Reservoir; the other tagged fish were still at large above Fort Loudoun Dam when tracking ceased in 2009. Of all fish stocked, three (9%) were last located in the French Broad River and none were located in the Holston River.

  13. Silver concentrations and selected hydrologic data in the Upper Colorado River basin, 1991-92

    USGS Publications Warehouse

    Johncox, D.A.

    1993-01-01

    The U.S. Geological Survey, in cooperation with the Colorado River Water Conservation District and the Northern Colorado Water Conservancy District, collected water and sediment samples in May and September 1991 and 1992 from nine stream-sampling sites and three lake-sampling sites within the Upper Colorado River Basin upstream from Kremmling, Colorado. Data were collected to determine the present (1992) conditions of the Upper Colorado River Basin regarding silver concentrations in the water and sediment. Lake-water and stream-water samples were analyzed for concentrations of total recoverable silver, dissolved silver, and suspended solids. Lake- and stream-bottom material was analyzed for concentrations of total recoverable silver. Additional data collected were streamflow, specific conductance, pH, and water temperature. Transparency (Secchi-disk measurements) also was measured in the lakes.

  14. Riparian restoration framework for the Upper Gila River, Arizona

    USGS Publications Warehouse

    Orr, Bruce K.; Leverich, Glen L.; Diggory, Zooey E.; Dudley, Tom L.; Hatten, James R.; Hultine, Kevin R.; Johnson, Matthew P.; Orr, Devyn A.

    2014-01-01

    This technical report summarizes the methods and results of a comprehensive riparian restoration planning effort for the Gila Valley Restoration Planning Area, an approximately 53-mile portion of the upper Gila River in Arizona (Figure 1-1). This planning effort has developed a Restoration Framework intended to deliver science-based guidance on suitable riparian restoration actions within the ecologically sensitive river corridor. The framework development was conducted by a restoration science team, led by Stillwater Sciences with contributions from researchers at the Desert Botanical Garden (DBG), Northern Arizona University (NAU), University of California at Santa Barbara (UCSB), and U.S. Geological Survey (USGS). All work was coordinated by the Gila Watershed Partnership of Arizona (GWP), whose broader Upper Gila River Project Area is depicted in Figure 1-1, with funding from the Walton Family Foundation’s Freshwater Initiative Program.

  15. Physical Effects of Increased Commercial Navigation Traffic on Freshwater Mussels in the Upper Mississippi River: Phase 1 Studies

    DTIC Science & Technology

    1990-02-01

    TECHNICAL REPORT EL-90-3 PHYSICAL EFFECTS OF INCREASED COMMERCIAL of EnNAVIGATION TRAFFIC ON FRESHWATER MUSSELS IN THE UPPER MISSISSIPPI RIVER: PHASE...I Physical Effects of Increased Commercial Navigation Traffic on Freshwater Mussels in the Unner Miqqiqnni River- PhaRA T Studeln .- 12. PERSONAL...0009!5C ’ ) Freshwater musselsD )~j 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Baseline data on freshwater

  16. Hydrologic and hydraulic factors affecting passage of paddlefish through dams in the Upper Mississippi River

    USGS Publications Warehouse

    Zigler, S.J.; Dewey, M.R.; Knights, B.C.; Runstrom, A.L.; Steingraeber, M.T.

    2004-01-01

    Populations of paddlefish Polyodon spathula have been adversely affected by dams that can block their movements. Unlike high-head dams that preclude fish passage (unless they are equipped with fishways), the dams on the upper Mississippi River are typically low-head dams with bottom release gates that may allow fish passage under certain conditions. We evaluated the relation of dam head and river discharge to the passage of radio-tagged paddlefish through dams in the upper Mississippi River. Radio transmitters were surgically implanted into 71 paddlefish from Navigation Pools 5A and 8 of the upper Mississippi River and from two tributary rivers during fall 1994 through fall 1996. We tracked paddlefish through September 1997 and documented 53 passages through dams, 20 upstream and 33 downstream. Passages occurred mostly during spring (71%) but also occurred sporadically during summer and fall (29%). Spring passages varied among years in response to hydrologic conditions. We evaluated patterns in upstream and downstream passages with Cox proportional hazard regression models. Model results indicated that dam head height strongly affected the upstream passage of paddlefish but not the downstream passage. Several paddlefish, however, passed upstream through a dam during periods when the minimum head at the dam was substantial ( greater than or equal to 1m). In these cases, we hypothesize that paddlefish moved upstream through the lock chamber.

  17. Hydrogeology, water quality, and water-resources development potential of the upper Floridan Aquifer in the Valdosta area, south-central Georgia

    USGS Publications Warehouse

    McConnell, J.B.; Hacke, C.M.

    1993-01-01

    Water quality in the Upper Floridan aquifer in the Valdosta, Georgia area is adversely affected by direct recharge from the Withlacoochee River. Water enters the aquifer along a short reach of the river where sinkholes have formed in the stream bed. The water receives little filtration as it recharges the Upper Floridan aquifer through these sinkholes. Naturally occurring organic material in the river provides a readily available source of energy for the growth of microbiota in the aquifer. Microbiological processes and chemical reactions in the aquifer produce methane and hydrogen sulfide as the water from the river mixes with ground water and moves downgradient in the aquifer. Humic substances associated with the organic material in the ground water in this area can form trihalomethanes when the water is chlorinated for public supply. To assess areas most suitable for ground-water supply development, areal distributions of total organic carbon, total sulfide, and methane in the Upper Floridan aquifer were mapped and used to evaluate areas affected by recharge from the Withlacoochee River. Areas where concentrations of total organic carbon, total sulfide, and methane were less than or equal to 2.0 milligrams per liter, 0.5 milligrams per liter, and 100 micrograms per liter, respectively, were considered to be relatively unaffected by recharge from the river and to have the greatest potential for water- resources development.

  18. Spring contributions to water quality and nitrate loads in the Suwannee River during base flow in July 1995

    USGS Publications Warehouse

    Pittman, J.R.; Hatzell, H.H.; Oaksford, E.T.

    1997-01-01

    The Suwannee River flows through an area of north-central Florida where ground water has elevated nitrate concentrations. A study was conducted to determine how springs and other ground-water inflow affect the quantity and quality of water in the Suwannee River. The study was done on a 33-mile (mi) reach of the lower Suwannee River from just downstream of Dowling Park, Fla., to Branford, Fla. Water samples for nitrate concentrations (dissolved nitrite plus nitrate as nitrogen) and discharge data were collected at 11 springs and 3 river sites during the 3-day period in July 1995 during base flow in the river. In the study reach, all inflow to the river is derived from ground water. Measured springs and other ground-water inflow, such as unmeasured springs and upward diffuse leakage through the riverbed, increased the river discharge 47 percent over the 33-mi reach. The 11 measured springs contributed 41 percent of the increased discharge and other ground-water inflow contributed the remaining 59 percent. River nitrate loads increased downstream from 2,300 to 6,000 kilograms per day (kg/d), an increase of 160 percent in the 33-mi study reach. Measured springs contributed 46 percent of this increase and other ground-water inflow contributed the remaining 54 percent. The study reach was divided at Luraville, Fla., into an 11-mi upper segment and a 22-mi lower segment to determine whether the ground-water inflows and nitrate concentrations were uniform throughout the entire study reach (fig. 1). The two segments were dissimilar. The amount of water added to the river by measured springs more than tripled from the upper to the lower segment. Even though the median nitrate concentration for the three springs in the upper segment (1.7 milligrams per liter (mg/L)) was similar to the median for the eight springs in the lower segment (1.8 mg/L), nitrate concentrations in the river almost doubled from 0.46 to 0.83 mg/L in the lower segment. Only 11 percent of the increase in nitrate load for the study reach occurred in the upper segment; the remaining 89 percent occurred in the lower segment. Measured springs were the major source of nitrate load in the upper reach and other ground-water inflow was the major source in the lower segment. Differences in nitrate loads between the upper and lower river segments are probably controlled by such factors as differences in the magnitude of the spring discharges, the size and location of spring basins, and the hydrologic characteristics of ground water in the study area.

  19. Return to the river: strategies for salmon restoration in the Columbia River Basin.

    Treesearch

    Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell

    2006-01-01

    The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remain—for example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia River—the Columbia and Snake River mainstems are dominated...

  20. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... used, or capable of being used, as a means of transportation on water, other than rafts. (b) Waterways... to result in a condition whereby the movement of vessel (and tow) cannot be completely halted or... construction, plant engaged in river and harbor improvement, levees withstanding floodwaters, buildings...

  1. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used, or capable of being used, as a means of transportation on water, other than rafts. (b) Waterways... to result in a condition whereby the movement of vessel (and tow) cannot be completely halted or... construction, plant engaged in river and harbor improvement, levees withstanding floodwaters, buildings...

  2. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... used, or capable of being used, as a means of transportation on water, other than rafts. (b) Waterways... to result in a condition whereby the movement of vessel (and tow) cannot be completely halted or... construction, plant engaged in river and harbor improvement, levees withstanding floodwaters, buildings...

  3. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mississippi River Ark., and Catoosa, Okla. (2) Bridges, wharves and other structures. All bridges, wharves, and other structures in or over the waterways described in paragraph (a)(1) of this section. (3... their not being drawn away from the bank by winds, currents, or the suction of passing vessels. Towlines...

  4. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mississippi River Ark., and Catoosa, Okla. (2) Bridges, wharves and other structures. All bridges, wharves, and other structures in or over the waterways described in paragraph (a)(1) of this section. (3... their not being drawn away from the bank by winds, currents, or the suction of passing vessels. Towlines...

  5. 77 FR 56229 - White River National Wildlife Refuge, AR; Final Comprehensive Conservation Plan and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R4-R-2011-N267; FXRS12650400000-123...: You may obtain a copy of the CCP by writing to: Mr. Dennis Sharp, Refuge Manager, White River NWR, 57... Process The National Wildlife Refuge System Administration Act of 1966 (16 U.S.C. 668dd-668ee...

  6. Population dynamics modeling of introduced smallmouth bass in the upper Colorado River basin

    USGS Publications Warehouse

    Breton, André R.; Winkelman, Dana L.; Bestgen, Kevin R.; Hawkins, John A.

    2014-01-01

    The purpose of these analyses was to identify an effective control strategy to further reduce smallmouth bass in the upper Colorado River basin from the current level. Our simulation results showed that “the surge”, an early to mid-summer increase in electrofishing effort targeting nest-guarding male smallmouth bass, should be made a core component of any future smallmouth bass management strategy in the upper basin. Immigration from off channel reservoirs is supporting smallmouth bass popualtions in the Yampa River and our modeling analyses suggest that smallmouth bass  in Little Yampa Canyon might go extinct in a few years under the present level of exploitation.

  7. 40Ar/39Ar mica dating of late Cenozoic sediments in the upper Yangtze: Implications for sediment provenance and drainage evolution

    NASA Astrophysics Data System (ADS)

    Sun, Xilin; Li, Chang'an; Kuiper, Kuiper; Zhang, Zengjie; Wijbrans, Jan

    2017-04-01

    The development of the river systems in East Asia is closely linked to the uplift of the Tibetan plateau caused by collision of the India-Eurasia. The Yangtze River is the largest river in Asia and the timing and exact causes of its formation are still a matter of debate. Controversy exists for example on the start of the connection of the eastern Tibetan rivers to the eastward flowing Yangtze instead of the southward flowing Red River. Here we use the 40Ar/39Ar dating of detrital micas (muscovite and biotite) and muscovite geochemistry to constrain the sediment provenance in the eastern Tibetan Plateau. The remarkable spatial and temporal variation in sediment provenance allow us to extract information about the evolution of the upper Yangtze River. The combined data suggest that the upper Jinsha River upstream from Shigu town lost its connection with the southward flowing Red River at least earlier than the Pliocene. To the east of Shigu, the Yalong and Jinsha rivers flowed across the Yuanmou Basin into the Red River before 3.1 Ma, but abandoned this connection and turned east somewhere between 3.1 and 2.1 Ma. Our results rule out the possibility of a west-flowing Jinsha River since 1.58 Ma. The current stream directions between Shigu and Panzhihua go north, south and east and must have been formed at that time. Our data also shed new light on the evolution of the Dadu River. The Dadu River did not flow southward into Yuanmou Basin at least since 4.8 Ma but flowed into the Jinsha River along the Anninghe Fault. These capture events are closely linked to the tectonism of the eastern Tibetan Plateau and intensification of the East Asia monsoon.

  8. An assessment of stressor extent and biological condition in the North American mid-continent great rivers (USA)

    USGS Publications Warehouse

    Angradi, Ted R.; Bolgriend, David W.; Jicha, Terri M.; Pearson, Mark S.; Taylor, Debra L.; Moffett, Mary F.; Blocksom, Karen A.; Walters, David M.; Elonen, Colleen M.; Anderson, Leroy E.; Lazorchak, James M.; Reavie, Euan D.; Kireta, Amy R.; Hill, Brian H.

    2011-01-01

    We assessed the North American mid-continent great rivers (Upper Mississippi, Missouri, and Ohio). We estimated the extent of each river in most- (MDC) or least-disturbed condition (LDC) based on multiple biological response indicators: fish and macroinvertebrate, trophic state based on chlorophyll a, macrophyte cover, and exposure of fish-eating wildlife to toxic contaminants in fish tissue (Hg, total chlordane, total DDT, PCBs). We estimated the extent of stressors on each river including nutrients, suspended solids, sediment toxicity, invasive species, and land use (agriculture and impervious surface). All three rivers had a greater percent of their river length in MDC than in LDC based on fish assemblages. The Upper Mississippi River had the greatest percent of river length with eutrophic status. The Ohio River had the greatest percent of river length with fish with tissue contaminant levels toxic to wildlife. Overall, condition indices based on fish assemblages were more sensitive to stress than macroinvertebrate indices. Compared to the streams in its basin, more of the Upper Mississippi and Missouri Rivers were in MDC for nutrients than the Ohio River. Invasive species (Asian carp and Dreissenid mussels) were less widespread and less abundant on the Missouri River than on the other great rivers. The Ohio River had the most urbanized floodplains (greatest percent impervious surface). The Missouri River had the most floodplain agriculture. The effect of large urban areas on river condition was apparent for several indicators. Ecosystem condition based in fish assemblages, trophic state, and fish tissue contamination was related to land use on the floodplain and at the subcatchment scale. This is the first unbiased bioassessment of the mid-continent great rivers in the United States. The indicators, condition thresholds, results, and recommendations from this program are a starting point for improved future great river assessments.

  9. 78 FR 53666 - Drawbridge Operation Regulation; Wolf River, Gills Landing and Winneconne, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... the Upper Fox River. The Wolf River has two drawbridges over the waterway. The Winneconne Highway... the Fox River that connect directly with the Wolf River. This rule will establish consistent operating... by WDOT and Fox River Valley Navigation Authority for the past 10 to 15 years. These agencies, along...

  10. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-09-02

    ISS013-E-74843 (2 Sept. 2006) --- Rio Negro in Amazonia, Brazil is featured in this image photographed by an Expedition 13 crewmember onboard the International Space Station. The wide, multi-island zone in the Rio Negro (Black River) shown in this image is one of two, long "archipelagoes" upstream of the city of Manaus (not shown) in central Amazonia. Ninety kilometers of the total 120 kilometers length of this archipelago appear in this view. On the day the photo was taken, air temperatures over the cooler river water of the archipelago were just low enough to prevent cloud formation. Over the neighboring rainforest, temperatures were warm enough to produce small convection-related clouds, known to pilots as "popcorn" cumulus. Several zones of deforestation, represented by lighter green zones along the river banks, are also visible. Two different types of river appear in this image. Flowing east-southeast (left to right) is the multi-island, Rio Negro, 20 kilometers wide near the right of the view. Two other "black" rivers, Rio Caures and Rio Jufari, join Rio Negro downstream. The second river type is the Rio Branco (White River; right) which is the largest tributary of the Rio Negro. The difference in water color is controlled by the source regions: black-water rivers derive entirely from soils of lowland forests. Water in these rivers has the color of weak tea, which appears black in images from space. By contrast, white-water rivers like the Branco carry a load of sand and mud particles, mudding the waters. The reason for the tan color is that white-water rivers rise in mountainous country where headwater streams erode exposed rock. The Amazon itself rises in the Andes Mts., where very high erosion occurs, and it is thus the most famous white river in Amazonia. This image was taken in September, near low-water stage. Pictures taken at other times show the channels much wider during high-water season (May--July) when water levels rise several meters. It was discovered recently, from high resolution GPS measurements at Manaus, that the land surface actually rises vertically a small amount in compensation when this vast mass of water drains away each season. Although small, the vertical displacement--50-70 mm--was unexpectedly large according to the scientists who performed the study.

  11. Pathogen Transport and Fate Modeling in the Upper Salem River Watershed using SWAT Model

    EPA Science Inventory

    SWAT (Soil and Water Assessment Tool) is a dynamic watershed model that is applied to simulate the impact of land management practices on water quality over a continuous period. The Upper Salem River, located in Salem County New Jersey, is listed by the New Jersey Department of ...

  12. COMPOSITIONAL LANDSCAPE METRICS AND LANDCOVER CONNECTIVITY MEASURES FOR THE SUB-WATERSHEDS OF THE UPPER SAN PEDRO RIVER 1997

    EPA Science Inventory

    Various compositional landscape metrics and landcover connectivity measures for the sub-watersheds of the Upper San Pedro River. Metrics were computed using the ATtILA v.3.03 ArcView extension. Inputs included the sub-watershed coverage obtained from the USDA-ARS-SWRC in Tucson,...

  13. Forest statistics for the upper Koyukuk River, Alaska, 1971.

    Treesearch

    Karl M. Hegg

    1974-01-01

    Area and volume statistics from the first intensive forest inventory of the upper Koyukuk River drainage, in north-central Alaska, are given. Observations are made on forest location, description, defect, regeneration, growth, and mortality. Commercial forests, although generally restricted to a narrow band along drainages, were found as far as 70 miles (113 kilometers...

  14. RELATION OF LANDSCAPE-SCALE ENVIRONMENTAL CHARACTERISTICS TO FISH ASSEMBLAGES IN THE UPPER FRENCH BROAD RIVER BASIN, NORTH CAROLINA

    EPA Science Inventory

    Fish assemblages at 16 sites in the upper French Broad river basin in North Carolina were related to environmental characteristics at the landscape scale, the scale at which management activities and decisions are most likely to occur. Indirect gradient analysis and subsequent re...

  15. Pathogen Transport and Fate Modeling in the Upper Salem River Watershed Using SWAT Model

    EPA Science Inventory

    SWAT (Soil and Water Assessment Tool) is a dynamic watershed model that is applied to simulate the impact of land management practices on water quality over a continuous period. The Upper Salem River, located in Salem County New Jersey, is listed by the New Jersey Department of ...

  16. 44. DETAIL VIEW OF CONTROL PANEL IN UPPER WEST WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. DETAIL VIEW OF CONTROL PANEL IN UPPER WEST WALL CONTROL STATION, LOOKING EAST. UPPER INTERMEDIATE WALL AND UPPER EAST WALL CONTROL STATIONS IN BACKGROUND - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  17. Biological assessment and streambed-sediment chemistry of streams in the Indianapolis metropolitan area, Indiana, 2003–2008

    USGS Publications Warehouse

    Voelker, David C.

    2012-01-01

    During 2003–2008, the U.S. Geological Survey sampled 13 sites in the Indianapolis metropolitan area in Indiana for benthic invertebrates, fish communities, and streambed-sediment chemistry. Data from seven White River sites and six tributary sites complement surface-water chemistry data collected by the Indianapolis Department of Public Works. The information is being used to assess changes in water quality in conjunction with the City's programs to reduce combined sewer overflows and other point and nonpoint sources of pollution in the Indianapolis area. During the study, 233 benthic-invertebrate taxa were identified from which the Ephemeroptera, Plecoptera, and Trichoptera (EPT) Index, the Hilsenhoff Biotic Index (HBI), and the Invertebrate Community Index (ICI) were calculated. EPT index scores ranged from 2 to 16 on the White River and from 2 to 17 on the tributaries. EPT index scores indicate that these pollution-intolerant taxa are more prevalent upstream from and away from the combined-sewer areas of Indianapolis. HBI scores from sites on the White River ranged from 4.67 (good) to 9.55 (very poor), whereas on the tributaries, scores ranged from 4.21 (very good) to 8.14 (poor). Lower HBI scores suggest that less organic pollution was present and, like the EPT scores, indicate better conditions where combined-sewer overflows (CSOs) are not present. Similarly, ICI scores indicated better conditions upstream from the CSO outfalls on the White River. White River scores ranged from 12 to 46, where higher ICI scores indicate better conditions in the benthic-invertebrate community. ICI scores at the tributary sites ranged from 12 to 52, with the highest scores on streams without CSOs.

  18. White-collar workers' self-reported physical symptoms associated with using computers.

    PubMed

    Korpinen, Leena; Pääkkönen, Rauno; Gobba, Fabriziomaria

    2012-01-01

    The aim of our work was to study the physical symptoms of upper- and lower-level white-collar workers using a questionnaire. The study was cross-sectional with a questionnaire posted to 15 000 working-age persons. The responses (6121) included 970 upper- and 1150 lower-level white-collar workers. In the upper- and lower-level white-collar worker groups, 45.7 and 56.0%, respectively, had experienced pain, numbness and aches in the neck either pretty often or more frequently. When comparing daily computer users and nonusers, there were significant differences in pain, numbness and aches in the neck or in the shoulders. In addition, age and gender influenced some physical symptoms. In the future, it is essential to take into account that working with computers can be especially associated with physical symptoms in the neck and in the shoulders when workers use computers daily.

  19. Late Wisconsin and Early Holocene runoff through the upper Ohio River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kite, J.S.

    A tentative absolute chronology is emerging from radiocarbon dates on glacial, alluvial and colluvial sediments in the upper Ohio River basin. Radiocarbon dates for Gallipolis Lock and Dam indicate the river eroded down to its present bedrock floor before 22,400 yr B.P. Data from several sites indicate aggradation began soon after 22,400 yr B.P., coincident with, or just before, a glacier advance into the upper Ohio basin. Sand and gravel aggraded in glaciated tributaries and the main valley, whereas silt, fine sand, and clay accumulated in unglaciated tributaries. Slope instability and colluvial deposition were extensive at this time. Aggradation continuedmore » until 25 to 40 m of sediments filled the Ohio River Valley. The paucity of radiocarbon dates prohibits precise determination of when peak aggradation occurred and how that peak related to glacial and climatic events. Although the Laurentide Ice Sheet retreated out of the basin by about 14,000 yr B.P., the river remained braided until at least 13,000 yr B.P., possibly because of slope instability in a cold late Wisconsin climate or the time required for the river to adjust to reduced outwash sediment supply. Coarse late-glacial channel deposits may reflect increased flood discharges after 13,000 B.P. and onset of the transition from a braided system to a meandering channel. However, the upper Ohio River seems not to have taken on its modern morphology until the early Holocene. Most dated overbank deposits on tributaries are younger than 10,000 yr B.P.; most on the Ohio River are younger than 8,500 yr B.P.« less

  20. [Distribution characteristics of dissolved oxygen and mechanism of hypoxia in the upper estuarine zone of the Daliaohe River].

    PubMed

    Yang, Li-Na; Li, Zheng-Yan; Zhang, Xue-Qing

    2011-01-01

    Based on field surveys in the upper estuarine zone of the Daliaohe River in Spring and Summer of 2009, the spatial and temporal distributions of dissolved oxygen were analyzed and the mechanism of hypoxia were preliminarily discussed. The results indicated that DO concentrations were higher in the river mouth and lower in the upper reaches, higher in surface layers and lower in bottom concerning its spatial distribution. For its temporal distribution, DO concentrations were higher in daytime and lower at night, higher in Spring and lower in Summer. The DO concentrations in the upper estuarine zone of the Daliaohe River in Summer ranged between 1.36-4.77 mg/L with an average of 3.44 mg/L. The concentrations in the lower reaches were higher with an average of 3.94 mg/L. A large hypoxia area was recorded in Summer in the upper reaches of the estuary starting from about 45 km away from the river gate with an average DO concentration of 2.33 mg/L and a minimum of 1.36 mg/L. The correlation analysis showed that DO concentration was significantly correlated with nutrients and permanganate index. Excessive discharge of nutrients and organic pollutants were, therefore, main factors causing hypoxia, and water column stratification due to temperature rise in Summer in surface layers led to further reduction of DO in bottom layers of the water.

  1. Hybridization threatens shoal bass populations in the Upper Chattahoochee River Basin: Chapter 37

    USGS Publications Warehouse

    Dakin, Elizabeth E; Porter, Brady A.; Freeman, Byron J.; Long, James M.; Tringali, Michael D.; Long, James M.; Birdsong, Timothy W.; Allen, Micheal S.

    2015-01-01

    Shoal bass are native only to the Apalachicola-Chattahoochee-Flint river system of Georgia, Alabama, and Florida, and are vulnerable to extinction as a result of population fragmentation and introduction of non-native species. We assessed the genetic integrity of isolated populations of shoal bass in the upper Chattahoochee River basin (above Lake Lanier, Big Creek, and below Morgan Falls Dam) and sought to identify rates of hybridization with non-native, illegally stocked smallmouth bass and spotted bass.

  2. Physical characteristics of the lower San Joaquin River, California, in relation to white sturgeon spawning habitat, 2011–14

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.; Whealdon-Haught, Daniel R.; Kinzel, Paul J.

    2017-07-19

    The U.S. Fish and Wildlife Service confirmed that white sturgeon (Acipenser transmontanus) recently spawned in the lower San Joaquin River, California. Decreases in the San Francisco Bay estuary white sturgeon population have led to an increased effort to understand their migration behavior and habitat preferences. The preferred spawning habitat of other white sturgeon (for example, those in the Columbia and Klamath Rivers) is thought to be areas that have high water velocity, deep pools, and coarse bed material. Coarse bed material (pebbles and cobbles), in particular, is important for the survival of white sturgeon eggs and larvae. Knowledge of the physical characteristics of the lower San Joaquin River can be used to preserve sturgeon spawning habitat and lead to management decisions that could help increase the San Francisco Bay estuary white sturgeon population.Between 2011 and 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, assessed selected reaches and tributaries of the lower river in relation to sturgeon spawning habitat by (1) describing selected spawning reaches in terms of habitat-related physical characteristics (such as water depth and velocity, channel slope, and bed material) of the lower San Joaquin River between its confluences with the Stanislaus and Merced Rivers, (2) describing variations in these physical characteristics during wet and dry years, and (3) identifying potential reasons for these variations.The lower San Joaquin River was divided into five study reaches. Although data were collected from all study reaches, three subreaches where the USFWS collected viable eggs at multiple sites in 2011–12 from Orestimba Creek to Sturgeon Bend were of special interest. Water depth and velocity were measured using two different approaches—channel cross sections and longitudinal profiles—and data were collected using an acoustic Doppler current profiler.During the first year of data collection (water year 2011), runoff was greatest, and gaged streamflow, measured as discharge, peaked at 875 cubic meters per second in the lower San Joaquin River. Also during that year, water velocity was generally between 0.6 and 0.9 meters per second, and depth was typically between 2.5 and 4.5 meters, but water depth exceeded 6 meters in several pools. Water year 2011 was classified as a “wet” year. Later water years were classified as either “dry” (water year 2012) or “critical” (water years 2013 and 2014). During the drier years, water was shallower, and velocities were slower. The streambed aggraded in several areas during the study. At Sturgeon Bend, for example, which had the deepest pool measured in 2011 (maximum depth was 14 meters), about 8 meters of sediment was deposited by 2014.The bed of the lower San Joaquin River was predominately sand, except in areas downstream from the mouth of Del Puerto Creek. A large amount of sand, gravel, and cobble was deposited at the mouth of Del Puerto Creek, and in the 9.5 kilometers downstream from the mouth of Del Puerto Creek, we encountered several gravel bars and patches of gravel-size (8–64 millimeters) bed material. Del Puerto and Orestimba Creeks drain from the Coast Ranges on the west side of the river. Only small quantities of gravel-size bed material were observed in the reach downstream from Orestimba Creek, indicating Orestimba Creek does not deliver much coarse sediment to the lower San Joaquin River. Del Puerto Creek appeared to be the primary source of gravels suitable for white sturgeon spawning in the lower San Joaquin River, and thus, it is important for the long-term spawning success of sturgeon in the San Joaquin River.

  3. Spring Chinook Salmon Production for Confederated Tribes of the Umatilla Indian Reservation, Little White Salmon National Fish Hatchery, Annual Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doulas, Speros

    2007-01-01

    This annual report covers the period from January 1, 2006 through December 31, 2006. Work completed supports the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) effort to restore a locally-adapted stock of spring Chinook to the Umatilla River Basin. During the year, staff at the Little White Salmon/Willard National Fish Hatchery Complex have completed the rearing of 218,764 Brood Year 2004 spring Chinook salmon for release into the Umatilla River during spring 2006 and initiated production of approximately 220,000 Brood Year 2005 spring Chinook for transfer and release into the Umatilla River during spring 2007. All work under thismore » contract is performed at the Little White Salmon and Willard National Fish Hatcheries (NFH), Cook, WA.« less

  4. Earth Observations taken by the Expedition 17 Crew

    NASA Image and Video Library

    2008-04-29

    ISS017-E-005763 (29 April 2008) --- Lake Pontchartrain and the Bonnet Carre Spillway, Louisiana, are featured in this image photographed by an Expedition 17 crewmember on the International Space Station. Lake Pontchartrain, a big body of water immediately north of New Orleans, occupies the upper part of this view, with the winding course of the muddy Mississippi River snaking across the bottom of the image (flow is east, from left to right). The city of New Orleans is sandwiched between the lake and river. Heavy rain in March and April 2008 in the Mississippi's catchment area raised water levels in the river sufficiently to make the Army Corps of Engineers take action. To reduce the volume of the river where it passes through New Orleans, the Corps opened the Bonnet Carre Spillway (lower left), a major engineering structure 18 kilometers upriver from New Orleans. The spillway, a 1.6 kilometer-wide gap in the developments along the Mississippi levees, is an integral part of the river and canal system that allows Mississippi river water to flow into Lake Pontchartrain. The spillway control structure itself is visible as a thin, discontinuous, white line along the river's edge in this image. The spillway has only been opened eight times since 1937. News of the opening in April 2008 was transmitted to crewmembers aboard the International Space Station who managed to capture the immediate effect of muddy water flowing down the spillway and into Lake Pontchartrain, where it forms great brown lobes in the otherwise green water. These lobes moved slowly east along the New Orleans shoreline, where the line of the Lake Pontchartrain Causeway, the longest bridge in the U.S., can be seen, top right. Opening the spillway protects New Orleans in various ways. First, it reduces pressure on the levees, which famously collapsed at some points during the onslaught of Hurricane Katrina in 2005. Keeping water levels below critical high levels also helps the river channel to accommodate the discharge of water, and reduces both the speed of flow and cross currents in the river which can interfere with vessels navigating the river -- or even cause collisions with levees.

  5. DETECTING FOREST STRESS AND DECLINE IN RESPONSE TO INCREASING RIVER FLOW IN SOUTHWEST FLORIDA, USA

    EPA Science Inventory

    Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...

  6. Transport of Riverine Material From Multiple Rivers in the Chesapeake Bay: Important Control of Estuarine Circulation on the Material Distribution

    NASA Astrophysics Data System (ADS)

    Du, Jiabi; Shen, Jian

    2017-11-01

    Driven by estuarine circulation, material released from lower Chesapeake Bay tributaries has the potential to be transported to the upper Bay. How far and what fraction of the material from tributaries can be carried to the upper estuary have not been quantitatively investigated. For an estuary system with multiple tributaries, the relative contribution from each tributary can provide valuable information for source assessment and fate prediction for riverine materials and passive moving organisms. We conducted long-term numerical simulations using multiple passive tracers that are independently released in the headwater of five main rivers (i.e., Susquehanna, Potomac, Rappahannock, York, and James Rivers) and calculated the relative contribution of each river to the total material in the mainstem. The results show that discharge from Susquehanna River exerts the dominant control on the riverine material throughout the entire mainstem. Despite the smaller contribution from the lower-middle Bay tributaries to the total materials in the mainstem, materials released from these rivers have a high potential to be transported to the middle-upper Bay through the bottom inflow by the persistent estuarine circulation. The fraction of the tributary material transported to the upper Bay depends on the location of the tributary. Materials released near the mouth are subject to a rapid flushing process, small retention time, and strong shelf current. Our results reveal three distinct spatial patterns for materials released from the main river, tributary, and coastal oceans. This study highlights the important control of estuarine circulation over horizontal and vertical distributions of materials in the mainstem.

  7. Estimating Nitrogen Loading in the Wabash River Subwatershed Using a GIS Schematic Processing Network in Support of Sustainable Watershed Management Planning

    EPA Science Inventory

    The Wabash River is a tributary of the Ohio River. This river system consists of headwaters and small streams, medium river reaches in the upper Wabash watershed, and large river reaches in the lower Wabash watershed. A large part of the river system is situated in agricultural a...

  8. Simulation of groundwater storage changes in the eastern Pasco Basin, Washington

    USGS Publications Warehouse

    Heywood, Charles E.; Kahle, Sue C.; Olsen, Theresa D.; Patterson, James D.; Burns, Erick

    2016-03-29

    The Miocene Columbia River Basalt Group and younger sedimentary deposits of lacustrine, fluvial, eolian, and cataclysmic-flood origins compose the aquifer system of the Pasco Basin in eastern Washington. Irrigation return flow and canal leakage from the Columbia Basin Project have caused groundwater levels to rise substantially in some areas, contributing to landslides along the Columbia River. Water resource managers are considering extraction of additional stored groundwater to supply increasing demand and possibly mitigate problems caused by the increased water levels. To help address these concerns, the transient groundwater model of the Pasco Basin documented in this report was developed to quantify the changes in groundwater flow and storage. The MODFLOW model uses a 1-kilometer finite-difference grid and is constrained by logs and water levels from 846 wells in the study area. Eight model layers represent five sedimentary hydrogeologic units and underlying basalt formations. Head‑dependent flux boundaries represent the Columbia and Snake Rivers to the west and south, respectively, underflow to and (or) from adjacent areas to the northeast, and discharge to agricultural drains, springs, and groundwater withdrawal wells. Specified flux boundaries represent recharge from infiltrated precipitation and anthropogenic sources, including irrigation return flow and leakage from water-distribution canals. The model was calibrated with the parameter‑estimation code PEST++ to groundwater levels measured from 1907 through 2013 and measured discharge to springs and estimated discharge to agricultural drains. Increased recharge since pre-development resulted in a 6.8 million acre-feet increase in storage in the 508-14 administrative area of the Pasco Basin. Four groundwater-management scenarios simulate the 7-year drawdown resulting from withdrawals in different locations. Withdrawals of 2 million gallons per day (Mgal/d) from a hypothetical well field in the upper Ringold Formation along the Columbia River could generate 30–70 feet of drawdown, which may reduce landslide susceptibility along the White Bluffs. Drawdowns resulting from a 1 Mgal/d withdrawal from wells screened in either Pasco gravels, upper Ringold Formation, or both Ringold Formation and underlying basalt are simulated in the other three scenarios, and differ because of the contrasting hydraulic conductivities within the screened intervals.

  9. Tumours in white suckers from Lake Michigan tributaries: Pathology and prevalence

    USGS Publications Warehouse

    Blazer, Vicki S.; Walsh, H.L.; Braham, R.P.; Hahn, C. M.; Mazik, P.; McIntyre, P.B.

    2016-01-01

    The prevalence and histopathology of neoplastic lesions were assessed in white suckerCatostomus commersonii captured at two Lake Michigan Areas of Concern (AOCs), the Sheboygan River and Milwaukee Estuary. Findings were compared to those observed at two non-AOC sites, the Root and Kewaunee rivers. At each site, approximately 200 adult suckers were collected during their spawning migration. Raised skin lesions were observed at all sites and included discrete white spots, mucoid plaques on the body surface and fins and large papillomatous lesions on lips and body. Microscopically, hyperplasia, papilloma and squamous cell carcinoma were documented. Liver neoplasms were also observed at all sites and included both hepatocellular and biliary tumours. Based on land use, the Kewaunee River was the site least impacted by human activities previously associated with fish tumours and had significantly fewer liver neoplasms when compared to the other sites. The proportion of white suckers with liver tumours followed the same patterns as the proportion of urban land use in the watershed: the Milwaukee Estuary had the highest prevalence, followed by the Root, Sheboygan and Kewaunee rivers. The overall skin neoplasm (papilloma and carcinoma) prevalence did not follow the same pattern, although the percentage of white suckers with squamous cell carcinoma exhibited a similar relationship to land use. Testicular tumours (seminoma) were observed at both AOC sites but not at the non-AOC sites. Both skin and liver tumours were significantly and positively associated with age but not sex.

  10. A spatial model of white sturgeon rearing habitat in the lower Columbia River, USA

    USGS Publications Warehouse

    Hatten, J.R.; Parsley, M.J.

    2009-01-01

    Concerns over the potential effects of in-water placement of dredged materials prompted us to develop a GIS-based model that characterizes in a spatially explicit manner white sturgeon Acipenser transmontanus rearing habitat in the lower Columbia River, USA. The spatial model was developed using water depth, riverbed slope and roughness, fish positions collected in 2002, and Mahalanobis distance (D2). We created a habitat suitability map by identifying a Mahalanobis distance under which >50% of white sturgeon locations occurred in 2002 (i.e., high-probability habitat). White sturgeon preferred relatively moderate to high water depths, and low to moderate riverbed slope and roughness values. The eigenvectors indicated that riverbed slope and roughness were slightly more important than water depth, but all three variables were important. We estimated the impacts that fill might have on sturgeon habitat by simulating the addition of fill to the thalweg, in 3-m increments, and recomputing Mahalanobis distances. Channel filling simulations revealed that up to 9 m of fill would have little impact on high-probability habitat, but 12 and 15 m of fill resulted in habitat declines of ???12% and ???45%, respectively. This is the first spatially explicit predictive model of white sturgeon rearing habitat in the lower Columbia River, and the first to quantitatively predict the impacts of dredging operations on sturgeon habitat. Future research should consider whether water velocity improves the accuracy and specificity of the model, and to assess its applicability to other areas in the Columbia River.

  11. Crew Earth Observations (CEO) taken during Expedition 9

    NASA Image and Video Library

    2004-06-03

    ISS009-E-09985 (3 June 2004) --- The Ebro River Delta, located along the eastern coast of Spain, is featured in this image photographed by an Expedition 9 crewmember on the International Space Station (ISS). Taken in partial sun glint, this view defines the Ebro’s fresh water lens— the water density boundary between the upper layer of fresh water issuing from the Ebro River mouth and the saltier, denser Mediterranean Sea water. According to NASA geologists studying the ISS imagery, diversion and impoundment of the Ebro River upstream has led to a decrease in water and sediment delivery to the delta. This decrease has led to increased erosion in some areas to the northeast of El Fangar Bay and along the southwestern shoreline of the delta. The Ebro River Delta is one of the largest wetland areas in the western Mediterranean region. The Ebro delta has grown rapidly—the historical rate of growth of the delta is demonstrated by the city of Amposta. This city was a seaport in the 4th Century, and is now located well inland from the current Ebro river mouth. The rounded form of the delta attests to the balance between sediment deposition by the Ebro River and removal of this material by wave erosion. The modern delta is in intensive agricultural use for rice, fruit, and vegetables. White polygonal areas to the north and south of the Ebro River are paddy fields. The Ebro delta also hosts numerous beaches, marshes, and saltpans that provide habitat for over 300 species of birds. A large part of the delta was designated as Parc Natural del Delta de l'Ebre (Ebre Delta National Park) in 1983. A network of canals and irrigation ditches constructed by both agricultural and conservation groups are helping to maintain the ecologic and economic resources of the Ebro Delta.

  12. [Effect of hydrochemistry characteristics under impact of human activity: a case study in the upper reaches of the Xijiang River basin].

    PubMed

    Yu, Shil; Sun, Ping-an; Du, Wen-yue; He, Shi-yi; Li, Rui

    2015-01-01

    In this paper, observation and sampling were taken three times a month in a hydrological year for three typical sections of the middle and upper reaches of the Xijiang River basin, based on the data of hydrochemistry and flow, the article mainly discusses the evolution process of hydrochemistry in river under natural process and impact of human activity. Hydrochemical characteristics of 116. samples were analyzed in the study area. The hydrochemistry type in the middle and upper reaches of the Xijiang River basin belonged to HCO3- -Ca2+ type, and the chemical weathering type mainly came from carbonate rock weathering. Ca2+ and HCO3- were the main cations and anions, which reflected that hydrochemical characteristics of river in karst area mainly affected by the dissolution of carbonate rock. Na, Mg2, Ca2+ and Cl- mainly affected by natural conditions, the impact of human activity was little. K+, NO3-, SO4(2-) and HCO3- were affected by human activity in different degrees, and it showed different influence ways. This study had an important significance for the change of river hydrochemistry, water quality characteristics, and the effect on substance transported fluxes in the downstream of Pearl River and water quality protection in South China Monsoon Area.

  13. Inverted Meandering Rivers at a Possible Future Mars Landing Site

    NASA Image and Video Library

    2015-11-27

    This image from NASA Mars Reconnaissance Orbiter spacecraft contains interesting examples of crosscutting, sinuous and straight ridges. The ridge in the lower left of the image (orange) has gradual bends and well-defined positive relief, while the ridge in the upper right (blue) exhibits a degree of high sinuosity. Both ridges may be ancient river deposits. In the southern part of the image, there are also possible cut bank and point bar deposition scars (green), but these do not possess visible positive relief. Although lacking relief, the sinuosity of these scars implies an ancient, mature, and low-gradient meandering river. The upper right ridge exhibits a sinuous geometry with positive relief reminiscent of a mature meandering river. Cementation of by underground fluids may have given the river deposits a higher resistance to erosion compared to the surrounding flood plain. Subsequent weathering removed the deposits in the flood plain, leaving behind the river channel positive relief. Offsets of the lower left ridge along possible fault scarps (red) suggest that the area was cut by faults either during or after deposition of the river deposits. There also appears to be a less pronounced fault at the terminus of the upper right ridge. http://photojournal.jpl.nasa.gov/catalog/PIA20160

  14. Application of hydrologic tools and monitoring to support managed aquifer recharge decision making in the Upper San Pedro River, Arizona, USA

    USGS Publications Warehouse

    Lacher, Laurel J.; Turner, Dale S.; Gungle, Bruce W.; Bushman, Brooke M.; Richter, Holly E.

    2014-01-01

    The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr). Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.

  15. Genotoxic Potential and Physicochemical Parameters of Sinos River, Southern Brazil

    PubMed Central

    Scalon, Madalena C. S.; Rechenmacher, Ciliana; Siebel, Anna Maria; Kayser, Michele L.; Rodrigues, Manoela T.; Maluf, Sharbel W.; Rodrigues, Marco Antonio S.

    2013-01-01

    The present study aimed to evaluate the physicochemical parameters and the genotoxic potential of water samples collected in the upper, middle, and lower courses of the Sinos River, southern Brazil. The comet assay was performed in the peripheral blood of fish Hyphessobrycon luetkenii exposed under laboratory conditions to water samples collected in summer and winter in three sampling sites of Sinos River. Water quality analysis demonstrated values above those described in Brazilian legislation in Parobé and Sapucaia do Sul sites, located in the middle and in the lower courses of the Sinos River, respectively. The Caraá site, located in the upper river reach, presented all the physicochemical parameters in accordance with the allowed limits in both sampling periods. Comet assay in fish revealed genotoxicity in water samples collected in the middle course site in summer and in the three sites in winter when compared to control group. Thus, the physicochemical parameters indicated that the water quality of the upper course complies with the limits set by the national guidelines, and the ecotoxicological assessment, however, indicated the presence of genotoxic agents. The present study highlights the importance of combining water physicochemical analysis and bioassays to river monitoring. PMID:24285934

  16. Sewage contamination in the upper Mississippi River as measured by the fecal sterol, coprostanol

    USGS Publications Warehouse

    Writer, J.H.; Leenheer, J.A.; Barber, L.B.; Amy, G.L.; Chapra, S.C.

    1995-01-01

    The molecular sewage indicator, coprostanol, was measured in bed sediments of the Mississippi River for the purpose of determining sewage contamination. Coprostanol is a non-ionic, non-polar, organic molecule that associates with sediments in surface waters, and concentrations of coprostanol in bed sediments provide an indication of long-term sewage loads. Because coprostanol concentrations are dependent on particle size and percent organic carbon, a ratio between coprostanol (sewage sources) and cholestanol + cholesterol (sewage and non-sewage sources) was used to remove the biases related to particle size and percent organic carbon. The dynamics of contaminant transport in the Upper Mississippi River are influenced by both hydrologic and geochemical parameters. A mass balance model incorporating environmental parameters such as river and tributary discharge, suspended sediment concentration, fraction of organic carbon, sedimentation rates, municipal discharges and coprostanol decay rates was developed that describes coprostanol concentrations and therefore, expected patterns of municipal sewage effects on the Upper Mississippi River. Comparison of the computed and the measured coprostanol concentrations provides insight into the complex hydrologic and geochemical processes of contaminant transport and the ability to link measured chemical concentrations with hydrologic characteristics of the Mississippi River.

  17. Home on the Big River, Part II: Great River Habitat Quality Indices

    EPA Science Inventory

    USEPA’s EMAP sampled the Upper Mississippi, Missouri, and Ohio Rivers from 2004 through 2006 as part of an integrated assessment of ecological condition. These Great Rivers are important human recreational destinations and transportation corridors, and represent significant wild...

  18. Reducing nitrogen export from the corn belt to the Gulf of Mexico: Agricultural strategies for remediating hypoxia

    USDA-ARS?s Scientific Manuscript database

    We used the SPARROW model for the Upper Mississippi River Basin to evaluate the potential water quality benefits (nutrient load reductions) likely to be achieved by a variety of agricultural conservation practices in the Upper Mississippi-Ohio River system, and to compare these to the 45% nitrogen l...

  19. An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America

    Treesearch

    K. J. Carim; J. C. S. Dysthe; Michael Young; Kevin McKelvey; Michael Schwartz

    2016-01-01

    The upper Missouri River basin in the northwestern US contains disjunct Arctic grayling (Thymallus arcticus) populations of conservation concern. To assist efforts aimed at understanding Artic grayling distribution, we developed a quantitative PCR assay to detect the presence of Arctic grayling DNA in environmental samples. The assay amplified low...

  20. Phytoplankton Abundance and Contributions to Suspended Particulate Matter in the Ohio, Upper Mississippi and Missouri Rivers.

    EPA Science Inventory

    A survey of the Ohio, Missouri and Upper Mississippi Rivers revealed large (five-fold) differences in summer average chlorophyll a (CHLa). Average concentrations were highest in the Mississippi (32.3 + 1.8 µg L-1) with lower values in the Missouri (19.7 + 1.1 µg L-1) and Ohio (6...

  1. Modeling water-quality loads to the reservoirs of the Upper Trinity River Basin, Texas, USA

    USDA-ARS?s Scientific Manuscript database

    Water quality modeling efforts have been conducted for 12 reservoirs in ten watersheds in Upper Trinity River Basin located in north Texas. The reservoirs are being used for water supply to the populated area around the Dallas-Fort Worth Metro and the water quality of some of these reservoirs has b...

  2. 77 FR 49775 - Boundary Technical Correction for the McKenzie Wild and Scenic River “Lower and Upper Portions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... DEPARTMENT OF AGRICULTURE Forest Service Boundary Technical Correction for the McKenzie Wild and... Service, USDA. ACTION: Notice of availability. SUMMARY: In accordance with Section 3(b) of the Wild and... for the boundary of the McKenzie Wild and Scenic River ``Lower Portion'' and ``Upper Portion'' to...

  3. COMPOSITIONAL LANDSCAPE METRICS AND LANDCOVER CONNECTIVITY MEASURES FOR THE SUB-WATERSHEDS OF THE UPPER SAN PEDRO RIVER 1973

    EPA Science Inventory

    Various compositional landscape metrics and landcover connectivity measures for the sub-watersheds of the Upper San Pedro River. Metrics were computed using the ATtILA v3.03 ArcView extension. Inputs included the sub-watershed coverage obtained from the USDA-ARS-SWRC in Tucson, A...

  4. Analysis of the spatial and temporal variability of mountain snowpack and terrestrial water storage in the Upper Snake River, USA

    EPA Science Inventory

    The spatial and temporal relationships of winter snowpack and terrestrial water storage (TWS) in the Upper Snake River were analyzed for water years 2001–2010 at a monthly time step. We coupled a regionally validated snow model with gravimetric measurements of the Earth’s water...

  5. A River Runs through It: Art, Geology and Life on the Upper Mississippi

    ERIC Educational Resources Information Center

    Henderson, Lynette K.

    2015-01-01

    This article presents a pilot interdisciplinary project for middle-school students including visual literacy, studio art, English-language literacy, geology and the study of indigenous groups. The location of the pilot was in the upper Midwest, along the Mississippi river bluffs of St. Paul, Minnesota. English-as-a-Second Language (ESL) students…

  6. Anthropic signatures in alluvium of the Upper Little Tennessee River valley, Southern Blue Ridge Mountains, USA

    Treesearch

    Lixin Wang; David S. Leigh

    2015-01-01

    Human activities have become important influences on the fluvial systems of eastern North America since post-colonial settlement. This research identifies post-settlement anthropic signatures in alluvial sediments in the Upper Little Tennessee River, USA. Agricultural and mining activities were scattered and discontinuous in this relatively remote region of...

  7. Synthesis of Upper Verde River research and monitoring 1993-2008

    Treesearch

    Daniel G. Neary; Alvin L. Medina; John N. Rinne

    2012-01-01

    This volume is a state-of-knowledge synthesis of monitoring and research conducted on the Upper Verde River (UVR) of Arizona. It contains information on the history, hydrology, soils, geomorphology, vegetation, and fish fauna of the area that can help land managers and other scientists in successfully conducting ecosystem management and future monitoring and research...

  8. Spatial and Temporal Patterns of Nitrification Rates in Forested Floodplain Wetland Soils of Upper Mississippi River Pool 8, Journal Article

    EPA Science Inventory

    Overbank flooding is thought to be a critical process controlling nitrogen retention and cycling. In this study we investigated the effects of season and flood frequency on soil nitrification rates at ten sites in forested floodplains of Upper Mississippi River, Pool 8...A rough ...

  9. The Upper Santa Ynez River as Habitat for a Diverse Riparian Flora and Fauna

    Treesearch

    M. Violet Gray; James M. Greaves; Thomas E. Olson

    1989-01-01

    The upper Santa Ynez River, Santa Barbara County, provides habitats for a relatively large population of least Bell's vireos (Vireo bellii pusillus), as well as diverse riparian flora and fauna. Of particular interest is the richness of the species within particular guilds. Four species of vireos: least Bell's, warbling (Vireo...

  10. Water Planning in the States of the Upper Basin of the Colorado River.

    ERIC Educational Resources Information Center

    Mann, Dean E.

    1978-01-01

    Discussion of issues involved in water planning of the upper basin of the Colorado River: attitudes toward water planning, agricultural leisure and environmental issues, pollution, and energy issues. Various sections are devoted to Indian interests and the interests of Utah, Wyoming, Colorado, and New Mexico. Final section discusses the future of…

  11. 78 FR 76604 - Grand River Dam Authority; Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... reservoir for the Grand River Dam Authority's Markham Ferry Project No. 2183, for pumped storage operations.... Holway Reservoir (the upper reservoir), with a normal pool elevation between 850 feet and 865 feet National Geodetic Vertical Datum; (2) three rim dikes around the upper reservoir; (3) an 1,800-foot-long...

  12. PATHOGEN TRANSPORT AND FATE MODELING IN THE UPPER SALEM RIVER WATERSHED USING SWAT MODEL - PEER-REVIEWED JOURNAL ARTICLE

    EPA Science Inventory

    Simulation of the fate and transport of pathogen contamination was conducted with SWAT for the Upper Salem River Watershed, located in Salem County, New Jersey. This watershed is 37 km2 and land uses are predominantly agricultural. The watershed drains to a 32 km str...

  13. 76 FR 38975 - Safety Zone; Upper Mississippi River, Mile 856.0 to 855.0, Minneapolis, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... through July 24, 2011, World Sports and Marketing will sponsor the U.S. Wakeboard Nationals between Mile... INFORMATION CONTACT: If you have questions on this temporary rule, call or e-mail Chief Petty Officer Bryan Klostermeyer, Sector Upper Mississippi River Response Department at telephone (314) 269-2566, e-mail Bryan.K...

  14. Phylogeography of three snubnose darters (Percidae: subgenus Ulocentra) endemic to the southeastern U.S

    Treesearch

    Steven L. Powers; Melvin L Warren

    2009-01-01

    The Yazoo Darter, Etheostoma raneyi (Percidae: subgenus Ulocentra), is a narrowly restricted endemic occurring in small tributaries in the Loessial Hills of the upper Yazoo River basin in northern Mississippi. The range of the species is shared between the Little Tallahatchie and adjacent upper Yocona rivers, but populations in the two...

  15. 76 FR 20302 - Listing Endangered and Threatened Species; 90-Day Finding on a Petition To List Chinook Salmon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... a Petition To List Chinook Salmon AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... salmon (Oncorhynchus tshawytscha) in the Upper Klamath and Trinity Rivers Basin as threatened or... conduct a status review of the Chinook salmon in the Upper Klamath and Trinity Rivers Basin to determine...

  16. Effects of Mitigation Measures on Productivity of the White Sturgeon Populations in the Columbia River Downstream from McNary Dam, and Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1992-1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beamesdorfer, Raymond C.; Nigro, Anthony A.

    We report on our progress from April 1992-March 1993 in research on white sturgeon in the lower Columbia River. The study began in July 1986 and progress through 1992 was summarized in a comprehensive report in 2 volumes (Beamesderfer and Nigro 1993a, 1993b). This report details activities during the first year of Phase II of this sturgeon research. In Phase I, we assessed the status and habitat requirements of the white sturgeon populations in the Columbia River downstream from McNary Dam. Phase II will examine the effects on white sturgeon productivity of mitigative measures recommended in Phase I. The statusmore » and habitat requirements of white sturgeon populations upstream from McNary Dam will also be examined in Phase II. The study is a cooperative effort by the Oregon Department of Fish and Wildlife, Washington Department of Fisheries, U.S. Fish and Wildlife Service, and National Marine Fisheries Service. Work during the past year has focused on: (1) analysis of results of limited sampling conducted in 1992, (2) submission of Phase I results to the peer-review literature to ensure widespread dissemination, clarity of presentation, and credibility of findings, and (3) preparations for additional field work in 1993. In report sections A to D, each agency reports 1992 results if applicable and the current status of manuscripts. Results of field work conducted in 1993 will be reported in the 1994 annual report.« less

  17. 10. DETAIL VIEW OF SPILLWAY AT DAM 83, SHOWING RIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL VIEW OF SPILLWAY AT DAM 83, SHOWING RIVER COBBLE PAVING (FOREGROUND) AND WINGWALL, LOOKING EAST - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND

  18. Distribution of larval fishes related to potential navigation impacts on the upper Mississippi River, pool 7

    USGS Publications Warehouse

    Holland, L.E.; Sylvester, J.R.

    1983-01-01

    Ichthyoplankton samples were collected twice monthly during spring and summer 1981 from a variety of habitats in Navigation Pool 7 of the upper Mississippi River. Larval-fish distributions in the pool and variations in those distributions were analyzed relative to potential impacts of increased commercial navigation. Although as many as 66 species of adults have been found in the area (33 considered common), only 17 taxa were identified from our collections. In April and May, most larvae were collected in main-channel and main-channel-border areas next to major expanses of shallow backwaters. White bass Morone chrysops, yellow perch Perca flavescens, and crappies Pomoxis spp. were predominant. Numerous catostomids also were taken. In June and July, most larvae were taken in the lower pool. Freshwater drum Aplodinotus grunniens and gizzard shad Dorosoma cepedianum predominated in these samples, which also included many cyprinids and centrarchids. Diel patterns of abundance varied with species and sampling location. Freshwater drums were more abundant near the surface at midnight than during the day. Common carp Cyprinus carpio were most abundant in collections at dusk, whereas all other cyprinids were most abundant at dusk and dawn. Numbers of gizzard shad also increased slightly at dusk. Total numbers of larvae collected were greatest at dusk in main-channel and main-channel-border samples; backwater areas produced the greatest catches at midnight and dawn. Seasonal, spatial, diel, and species-specific variations in larval fish abundances significantly influenced the proportion of the community potentially vulnerable to increased boat traffic through Pool 7.

  19. Fish tissue contamination in the mid-continental great rivers of the United States

    EPA Science Inventory

    The great rivers of the central United States (Upper Mississippi, Missouri and Ohio rivers) are significant economic and cultural resources, but their ecological condition is not well quantified. The Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP...

  20. Development of a regional macroinvertebrate index for large river bioassessment

    EPA Science Inventory

    Large river bioassessment protocols lag far behind those of wadeable streams and often rely on fish assemblages of individual rivers. We developed a regional macroinvertebrate index and assessed relative condition of six large river tributaries to the upper Mississippi and Ohio r...

  1. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    USGS Publications Warehouse

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  2. Substrate and flow characteristics associated with White Sturgeon recruitment in the Columbia River Basin

    USGS Publications Warehouse

    Hatten, James R.; Parsley, Michael; Barton, Gary; Batt, Thomas; Fosness, Ryan L.

    2018-01-01

    A study was conducted to identify habitat characteristics associated with age 0+ White Sturgeon (Acipenser transmontanus Richardson, 1863) recruitment in three reaches of the Columbia River Basin: Skamania reach (consistent recruitment), John Day reach (intermittent/inconsistent recruitment), and Kootenai reach (no recruitment). Our modeling approach involved numerous steps. First, we collected information about substrate, embeddedness, and hydrodynamics in each reach. Second, we developed a set of spatially explicit predictor variables. Third, we built two habitat (probability) models with Skamania reach training data where White Sturgeon recruitment was consistent. Fourth, we created spawning maps of each reach by populating the habitat models with in-reach physical metrics (substrate, embeddedness, and hydrodynamics). Fifth, we examined model accuracy by overlaying spawning locations in Skamania and Kootenai reaches with habitat predictions obtained from probability models. Sixth, we simulated how predicted habitat changed in each reach after manipulating physical conditions to more closely match Skamania reach. Model verification confirmed White Sturgeon generally spawned in locations with higher model probabilities in Skamania and Kootenai reaches, indicating the utility of extrapolating the models. Model simulations revealed significant gains in White Sturgeon habitat in all reaches when spring flow increased, gravel/cobble composition increased, or embeddedness decreased. The habitat models appear well suited to assist managers when identifying reach-specific factors limiting White Sturgeon recruitment in the Columbia River Basin or throughout its range.

  3. Toxicodynamic modeling of 137Cs to estimate white-tailed deer background levels for the Department of Energy's Savannah River Site.

    PubMed

    Gaines, Karen F; Novak, James M; Bobryk, Christopher W; Blas, Susan A

    2014-04-01

    The U.S. Department of Energy's (USDOE) Savannah River Site (SRS) is a former nuclear weapon material production and current research facility adjacent to the Savannah River in South Carolina, USA. The purpose of this study was to determine the background radiocesium ((137)Cs) body burden (e.g., from global fallout) for white-tailed deer (Odocoileus virginianus) inhabiting the SRS. To differentiate what the background burden is for the SRS versus (137)Cs obtained from SRS nuclear activities, data were analyzed spatially, temporally and compared to other off-site hunting areas near the SRS. The specific objectives of this study were: to compare SRS and offsite deer herds based on time and space; to interpret comparisons based on how data were collected as well as the effect of environmental and anthropogenic influences; to determine what the ecological half-life/decay rate is for (137)Cs in the SRS deer herd; and to give a recommendation to what should be considered the background (137)Cs level in the SRS deer herd. Based on the available information and analyses, it is recommended that the determination of what is considered background for the SRS deer herd be derived from data collected from the SRS deer herd itself and not offsite collections for a variety of reasons. Offsite data show extreme variability most likely due to environmental factors such as soil type and land-use patterns (e.g., forest, agriculture, residential activities). This can be seen from results where samples from offsite military bases (Fort Jackson and Fort Stewart) without anthropogenic (137)Cs sources were much higher than both the SRS and a nearby (Sandhills) study site. Moreover, deer from private hunting grounds have the potential to be baited with corn, thus artificially lowering their (137)Cs body burdens compared to other free-ranging deer. Additionally, sample size for offsite collections were not robust enough to calculate a temporal decay curve with an upper confidence level to determine if the herds are following predicted radioactive decay rates like the SRS or if the variability is due to those points described above. Using mean yearly values, the ecological half-life for (137)Cs body burdens for SRS white-tailed deer was determined to be 28.79 years--very close to the 30.2 years physical half-life.

  4. Effects of advanced wastewater treatment on the quality of White River, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1991-01-01

    In 1983, the City of Indianapolis, Indiana, completed construction of advanced wastewater treatment (AWT) systems to enlarge and upgrade its existing Belmont Road and Southport Road secondary treatment plants. A nonparametric statistical procedure, a modified form of the Wilcoxon-Mann-Whitney rank-sum test, was used to test for trends in water quality at two upstream and two downstream sites on White River and at the two treatment plants. Results comparing the pre- (1978-1980) and post- (1983-1988) AWT periods show statistically significant improvements in the quality of the treated effluent and of the White River downstream from the plants. Water quality at sites upstream from the city was relatively constant during the period of study. Total ammonia (as N) decreased 14.6 mg/L and BOD5 (five-day biochemical oxygen demand) decreased 10 to 19 mg/L in the two effluents. Total ammonia in the river downstream from the plants decreased 0.8 to 1.9 mg/L and BOD5 decreased 2.3 to 2.5 mg/L. Nitrate (as N) increased 14.5 mg/L in the plant effluents and 2.0 to 2.4 mg/L in the river because of in-plant nitrification. Dissolved oxygen concentration in the river increased about 3 mg/L because of reduced oxygen demand for nitrification and biochemical oxidation processes.

  5. Effects of incubation substrates on hatch timing and success of White Sturgeon (Acipenser transmontanus) embryos

    USGS Publications Warehouse

    Parsley, Michael J.; Kofoot, Eric

    2013-01-01

    The Kootenai River white sturgeon (Acipenser transmontanus) was listed as endangered under the Endangered Species Act in 1994 because several decades of failed spawning had put the population at risk of extinction. Natural spawning is known to occur at several locations in the Kootenai River, Idaho, but there is little natural recruitment. Microhabitat where embryo incubation occurs is known to be an important factor in white sturgeon reproductive success. This study was conducted to address questions regarding the suitability of different substrates as egg attachment and incubation sites for these fish. A comparative laboratory study using six types of incubation substrates—clean river rocks, periphyton- and algae-covered rocks, waterlogged wood, sand, riparian vegetation, and clean glass plates—tested the hypothesis that survival to hatch of white sturgeon eggs differs among incubation substrates. The results showed that sand was unsuitable as an incubation substrate, as the adhesive embryos were easily dislodged. Periphyton- and algae-covered rocks had the lowest hatch success, and all other substrates had similar hatch success.

  6. Uranium-bearing lignite and its relation to the White River and Arikaree formations in northwestern South Dakota and adjacent states

    USGS Publications Warehouse

    Denson, N.M.; Bachman, G.O.; Zeller, H.D.

    1954-01-01

    the original White River and Arikaree sediments. Individual maps showing the extent, thickness, and variations in mineral content of the important deposits in the Table Mountain, Cave Hills, Slim Buttes, Lodgepole, and Medicine Pole areas are included. Conditions controlling the concentration of uranium are described and their application as guides to finding additional reserves by the presently held concepts are explained and illustrated.

  7. Water Resources Development Miami River, Little Miami River, and Mill Creek Basins, Southwest Ohio. Volume 2. Appendices A-G.

    DTIC Science & Technology

    1981-10-01

    the area. Common species include boxelder, black locust, hackberry, tree of heaven, sycamore, Osage orange, black willow, mulberry, slippery elm ...and maple include tulip poplar, white ash, red elm , American elm , black cherry, hackberry, walnut, basswood, buckeye, white oak, shagbark hickory, and...willow. Other canopy species in these communities include buckeye, elm , beech, black locust, hackberry, walnut, and silver maple. The most prevalent

  8. White sturgeon mitigation and restoration in the Columbia and Snake rivers upstream from Bonneville Dam, Annual Progress Report April 2005 - March 2006. Report C.

    USGS Publications Warehouse

    Parsley, M.J.; Kofoot, P.

    2007-01-01

    River discharge and water temperatures that occurred during April through July 2005 provided conditions suitable for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Optimal spawning temperatures in the four tailraces occurred for 3-4 weeks and coincided with the peak of the river hydrograph. However, the peak of the hydrograph occurred in mid May and discharges dropped quickly and water temperature rose during June, which is reflected in the monthly and annual indices of suitable spawning habitat. Indices of available spawning habitat for the month of June 2005 were less than one-half of the average of the period from 1985-2004. Bottom-trawl sampling in the Bonneville Reservoir revealed the presence of young-of-the-year (YOY) white sturgeon but the proportion of positive tows was quite low at 0.06.

  9. Native American Students: Perceptions of Lived Experiences Attending a Small Predominantly White University in the Upper Midwest

    ERIC Educational Resources Information Center

    Simons, Dennis Richard

    2010-01-01

    The purpose of this qualitative study was to better understand the lived experiences of Native American students when studying on a predominantly white campus at a small university in the Upper Midwest. Using a phenomenological approach, the researcher interviewed each of the eight participants for one hour, although there were two interviews that…

  10. Foods of white-tailed deer in the Upper Great Lakes Region -- a review.

    Treesearch

    Lynn L. Rogers; Jack J. Mooty; Deanna Dawson

    1981-01-01

    Available information on year-round food habits of white-tailed deer in the Upper Great Lakes Region (UGLR) is summarized. Problems of deer in that region are discussed. There is a need for additional information on year-round diet, but new study techniques must be developed if a complete picture of diet is to be obtained.

  11. Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin

    USGS Publications Warehouse

    Reynolds, Lindsay V.; Shafroth, Patrick B.

    2016-01-20

    Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.

  12. 8” x 10” black and white photographic print made from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8” x 10” black and white photographic print made from original 1933, 8” x 10” black and white photographic negative. New 4” x 5” archival negative made from print. Original photographer unknown. Original 8” x 10” negative located in the files of the New Orleans Public Belt Railroad administrative offices at 5100 Jefferson Highway, Jefferson, LA 70123. DECEMBER 11, 1933 PHOTOGRAPH NO. 85 OF CONTRACT NO. 3 SHOWING MAIN BRIDGE SETTING GRANITE ON RIVER PIER. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  13. Great River Environmental Action Team (GREAT II) Upper Mississippi River (Guttenberg, Iowa to Saverton, Missouri). Appendix. Fish and Wildlife Management Work Group.

    DTIC Science & Technology

    1980-12-01

    evaluate silt tolerance and growing success of tree, shrub , vine , grass, and shrub species that are beneficial to wildlife. Additional information will...including plowed fields 4. Levee - levees and areas adjacent to levees usually consisting of grasses, forbs, vines , shrubs , and a few trees 5. Old field...of the river- can b~e measured by the many uses man dcniiads of its waters, its hoeins and its rloxlplain. Population ex- pansion in the Upper Midwest

  14. Algal toxins in Upper Klamath Lake, Oregon: Linking water quality to juvenile sucker health

    USGS Publications Warehouse

    VanderKooi, S.P.; Burdick, S.M.; Echols, K.R.; Ottinger, C.A.; Rosen, B.H.; Wood, T.M.

    2010-01-01

    As the lead science agency for the Department of Interior, the U.S. Geological Survey is actively involved in resource issues in the Klamath River basin. Activities include research projects on endangered Lost River and shortnose suckers, threatened coho salmon, groundwater resources, seasonal runoff forecasting, water quality in Upper Klamath Lake and the Klamath River, nutrient cycling in wetlands, and assessment of land idling programs to reduce water consumption. Many of these studies are collaborations with various partners including Department of Interior agencies, Indian Tribes, and State agencies.

  15. Plans: Poop Deck, Boat Deck, Housetop, Bridge Deck, Upper Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Plans: Poop Deck, Boat Deck, Housetop, Bridge Deck, Upper Bridge Deck, Navigating Bridge, Forecastle Deck, Upper Deck, Second Deck and Hold - Saugatuck, James River Reserve Fleet, Newport News, Newport News, VA

  16. Time and order of eruption of first functional teeth in the upper jaw of post-larval life of Sicyopterus japonicus (Gobiidiae: Sicydiinae) during cranial metamorphosis at the time of river recruitment.

    PubMed

    Sahara, Noriyuki; Moriyama, Keita; Iida, Midori; Watanabe, Shun

    2016-06-01

    The present study was aimed at elucidating the time and order of eruption of first functional teeth in the upper jaw of post-larval life of Sicyopterus japonicus (S. japonicus) during cranial metamorphosis at the time of river recruitment. Fishes were caught at the post-larval stage at a river mouth and maintained for 7 days in a water tank. Each of 10 specimens was evaluated every day for 7 days by using microcomputed tomography, scanning electron microscopy, and light microscopy with peculiar attention to the development of the upper jaw teeth. Fishes caught at the river mouth were mostly transparent, with a rostral terminal mouth, and no teeth could be found in either the upper or lower jaw. At 2 days after collection, the mouth position changed from terminal to subterminal, resulting from a change in head shape. The initial eruption of first functional teeth was detected at the anterior two-thirds region of each upper jaw. These teeth erupted in adjacent positions, most had a tricuspid crown, and they represented miniature versions of adult teeth. At 5 days, the position of the mouth became further relocated from terminal rostral to ventral. The number of erupted teeth increased, followed by spreading of them anteriorly and posteriorly. At 7 days, they formed a single row of close-set tricuspid teeth along the entire length of each upper jaw. The present study demonstrated that even under laboratory conditions a rapid and drastic cranial metamorphosis took place within a week after the time of collection of post-larval S. japonicus from a river. The eruption of first functional teeth in the upper jaw of S. japonicus, which teeth are adapted to scraping algae off the substrate, was initially detected at 2 days after collection, and first functional dentition of the upper jaw was set up within 7 days after it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Persistent organic pollutants in fish tissue in the mid-continental great rivers of the United States

    EPA Science Inventory

    The great rivers of the central United States (Upper Mississippi, Missouri, and Ohio rivers) are significant economic and cultural resources, but their ecological condition is not well quantified. The Environmental Monitoring and Assessment Program for Great River Ecosystems (EMA...

  18. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 6,716 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1997 to June 1998; approximately 6% of the migrants left in summer, 29% in fall, 2% in winter, and 63% in spring. We estimated 8,763 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1997 to June 1998; approximately 12% of the migrants left in summer, 37% in fall, 21% in winter, and 29% in spring. We estimated 8,859 juvenilemore » chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1997 to June 1998; approximately 99% of the migrants left in spring. We estimated 15,738 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1997 to April 1998; approximately 3% of the migrants left in summer, 61% in fall, 2% in winter, and 34% in spring. We estimated 22,754 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from September 1997 to April 1998; approximately 55% of the migrants left in fall, 5% in winter, and 40% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 April to 26 June 1998, with a median passage date of 1 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 3 April to 26 June 1998, with a median passage date of 8 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 26 May 1998, with a median passage date of 28 April. Juveniles tagged as they left the upper rearing areas of the Grande Ronde and Lostine rivers in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the downstream areas. Fish from Catherine Creek showed no difference in detection rates between the fall and winter tag groups, indicating similar overwinter survival in the upper and lower rearing areas. Chinook salmon parr were generally associated with low velocity habitat types during winter in Catherine Creek, and both winter and summer in the Lostine River. In summer 1997, we PIT-tagged parr on Catherine Creek and the Minam and Imnaha rivers in order to monitor their subsequent migration as smolts through the Snake and Columbia River hydrosystem. We found significant differences among populations in smolt migration timing at Lower Granite Dam in 1998. Fish from Catherine Creek and the Minam and Imnaha rivers were detected in the hydrosystem at rates of 16.4, 20.5, and 28.1%, respectively. In 1998, we estimated parr abundance and the number of parr produced per redd in Catherine Creek and the Lostine River. We estimated that 429 mature, age 1+ male parr and 13,222 immature, age 0+ parr were present in Catherine Creek in August. An average of 29 mature, age 1+ male parr and 287 immature, age 0+ parr were produced from each redd constructed in 1996 and 1997, respectively. We estimated that 75 mature, age 1+ male parr and 40,748 immature, age 0+ parr were present in the Lostine River in August. An average of 3 mature, age 1+ male parr and 832 immature, age 0+ parr were produced from each redd constructed in 1996 and 1997, respectively. For every anadromous female spawner in Catherine Creek and the Lostine River in 1998, there were an estimated 13 and 3 mature male parr, respectively.« less

  19. The Public Discourse about Land Use and Water Quality: Themes in Newspapers in the Upper Mississippi River Basin

    ERIC Educational Resources Information Center

    Schmid, Andrea N.; Thompson, Jan R.; Bengston, David N.

    2007-01-01

    Effective educational and management programs to improve water quality will require an improved understanding of public perceptions of the relationship between land use and water quality. We analyzed a large database of newspaper articles in the Upper Mississippi River Basin to assess the public discourse about water quality and land use, and…

  20. Recreation use of upper Pemigewasset and Swift River Drainages, New Hampshire

    Treesearch

    Ronald J. Glass; Gerald S. Walton

    1995-01-01

    In-stream recreation use of the upper Pemigewasset and Swift River Drainages was estimated by a technique based on modified, stratified sampling. Results are reported by category of stream segment, season, day of week, time of day, and activity. "Weekend and holiday" use exceeded weekday use during spring and fall, but weekdays had the heaviest use during the...

  1. 77 FR 53769 - Safety Zone; Liberty to Freedom Swims, Liberty Island, Upper Bay and Hudson River, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... 1625-AA00 Safety Zone; Liberty to Freedom Swims, Liberty Island, Upper Bay and Hudson River, NY AGENCY... September 5, 2012 and September 15, 2012 Liberty to Freedom swim events. This temporary safety zone is necessary to protect the maritime public and event participants from the hazards associated with swim events...

  2. Watercraft user characteristics, management preferences, and user encounters on the upper Delaware scenic and recreational river: 1979-1996

    Treesearch

    Stephen M. Bowes; Chad P. Dawson

    1998-01-01

    Recreational boaters on the National Park Service managed Upper Delaware Scenic and Recreational River were surveyed about their characteristics, management preferences, and user encounters. Field interviews were conducted from Memorial Day weekend through Labor Day weekend during the summer of 1996. A total of 650 boaters were contacted at public and commercial access...

  3. 78 FR 70222 - Regulated Navigation Area; Upper Mississippi River Between Mile 0.0 and 109.9; Cairo, IL to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... closures. As a result, the Coast Guard is implementing the RNA to protect mariners and vessels. The timing... establishing a temporary regulated navigation area (RNA) for all waters of the Upper Mississippi River (UMR) between miles 0.0 and 109.9. This RNA is needed to protect persons, property, and infrastructure from...

  4. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    NASA Astrophysics Data System (ADS)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-12-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using Cl concentrations may be due to the lack of sufficient difference between groundwater and surface water Cl concentrations. Both hydrograph separation and differential flow gauging yield far higher baseflow fluxes than 222Rn activities and Cl concentrations, probably indicating the input of other sources to the river in additional to regional groundwater, such as bank return flows.

  5. Reproductive aspects of piranhas Serrasalmus spilopleura and Serrasalmus marginatus into the upper Paraná River, Brazil.

    PubMed

    Agostinho, C S

    2003-02-01

    Construction of the Itaipu Dam, 150 km downstream from Sete Quedas Falls, resulted in the drowning of that natural geographic barrier, with consequent invasion of Serrasalmus marginatus in the upper stream. This event was followed by the reduction in the abundance of the native species, S. spilopleura. Analyzes of reproductive activity these species revealed that in lotic waters S. marginatus had a very intense reproductive activity while activity of S. spilopleura was nil. This, probably made it possible for the invading species to occupy new environments into the Upper Paraná River, using the river as an entry port. In the 1987-1988 period there was a marked decline in reproductive activity of S. spilopleura reflecting the negative effects of its interaction with the invading species, S. marginatus. The assertiveness of S. marginatus in caring for its offspring and aggressiveness in establishing its feeding territory may be the determining factor for its competitive superiority over S. spilopleura, and consequently its success in colonizing the Upper Paraná River. In addition to the negative interference of S. marginatus, a possible recruitment failure of S. spilopleura could have benefited the colonization of the floodplain by the invader species.

  6. Geologic and hydrogeologic characteristics of the Ogallala Formation and White River Group, Belvoir Ranch near Cheyenne, Laramie County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Diehl, Sharon F.; Hallberg, Laura L.; Webster, Daniel M.

    2014-01-01

    The geologic and hydrogeologic characteristics of Tertiary lithostratigraphic units (Ogallala Formation and White River Group) that typically compose or underlie the High Plains aquifer system in southeastern Wyoming were described physically and chemically, and evaluated at a location on the Belvoir Ranch in Laramie County, Wyoming. On the basis of this characterization and evaluation, three Tertiary lithostratigraphic units were identified using physical and chemical characteristics determined during this study and previous studies, and these three units were determined to be correlative with three identified hydrogeologic units composing the groundwater system at the study site—a high-yielding aquifer composed of the entire saturated thickness of the heterogeneous and coarse-grained fluvial sediments assigned to the Ogallala Formation (Ogallala aquifer); an underlying confining unit composed primarily of very fine-grained volcaniclastic sediments and mudrocks assigned to the Brule Formation of the White River Group and some additional underlying sediments that belong to either the Brule or Chadron Formation, or both (Brule confining unit); and an underlying low-yielding aquifer composed primarily of poorly sorted fluvial sediments assigned to the Chadron Formation of the White River Group (Chadron aquifer). Despite widely varying sediment heterogeneity and consolidation, some limited hydraulic connection throughout the full vertical extent of the Ogallala aquifer was indicated but not conclusively proven by interpretation of similar chemical and isotopic characteristics, modern apparent groundwater ages, and similar hydraulic-head responses measured continuously in two Ogallala aquifer monitoring wells installed for this study at two different widely separated (83 feet) depth intervals. Additional work beyond the scope of this study, such as aquifer tests, would be required to conclusively determine hydraulic connection within the Ogallala aquifer. Groundwater levels (hydraulic heads) measured continuously using water-level recorders in both monitoring wells completed in the Ogallala aquifer showed a consistent strong upward vertical gradient in the Ogallala aquifer, indicating the potential for water to move from deeper to shallower parts of the aquifer, regardless of the time of year and the presumed effects of pumping of public-supply and industrial wells in the area. Continuous measurement of groundwater levels in the shallowest monitoring well, installed near the water table, and examination of subsequently constructed water-level hydrographs indicated substantial groundwater recharge is likely during the spring of 2009 and 2010 from the ephemeral stream (Lone Tree Creek) located adjacent to the study site that flows primarily in response to spring snowmelt from the adjacent Laramie Mountains and surface runoff from precipitation events. Using the water-table fluctuation method, groundwater recharge was estimated to be about 13 inches for the period beginning in early October 2009 and ending in late June 2010, and about 4 inches for the period beginning in March 2011 and ending in early July 2011. Comparison of previously measured groundwater levels (hydraulic heads) and groundwater-quality characteristics in nearby monitoring wells completed in the Chadron aquifer with those measured in the two monitoring wells installed for this study in the Ogallala aquifer, combined with detailed lithologic characterization, strongly indicated the Brule confining unit hydraulically confines and isolates the Chadron aquifer from the overlying Ogallala aquifer, thus likely limiting hydraulic connection between the two units. Consequently, because of the impermeable nature of the Brule confining unit and resulting hydraulic separation of the Ogallala and Chadron aquifers, and compared with local and regional hydrostratigraphic definitions of the High Plains aquifer system, the groundwater system in Tertiary lithostratigraphic units overlying the Upper Cretaceous Lance Formation at the location studied on the Belvoir Ranch was defined as being composed of, from shallowest to deepest, the High Plains aquifer system (high-yielding Ogallala aquifer only, composed of the saturated Ogallala Formation); the Brule confining unit composed of the Brule Formation of the White River Group and an underlying fine-grained depth interval with sediments that belong to either the Brule or Chadron Formation, or both; and the low-yielding Chadron aquifer (composed of poorly sorted coarse-grained sediments with substantial fine-grained matrix material assigned to the Chadron Formation of the White River Group).

  7. Terrestrial arthropods of Steel Creek, Buffalo National River, Arkansas. I. Select beetles (Coleoptera: Buprestidae, Carabidae, Cerambycidae, Curculionoidea excluding Scolytinae)

    PubMed Central

    Fisher, Danielle M.; Schnepp, Kyle E.; Dowling, Ashley P.G.

    2015-01-01

    Abstract Background The Ozark Mountains are a region with high endemism and biodiversity, yet few invertebrate inventories have been made and few sites extensively studied. We surveyed a site near Steel Creek Campground, along the Buffalo National River in Arkansas, using twelve trap types – Malaise traps, canopy traps (upper and lower collector), Lindgren multifunnel traps (black, green, and purple), pan traps (blue, purple, red, white, and yellow), and pitfall traps – and Berlese-Tullgren extraction for eight and half months. New information We provide collection records of beetle species belonging to eight families collected at the site. Thirty one species represent new state records: (Buprestidae) Actenodes acornis, Agrilus cephalicus, Agrilus ohioensis, Agrilus paracelti, Taphrocerus nicolayi; (Carabidae) Agonum punctiforme, Synuchus impunctatus; (Curculionidae) Acalles clavatus, Acalles minutissimus, Acoptus suturalis, Anthonomus juniperinus, Anametis granulata, Idiostethus subcalvus, Eudociminus mannerheimii, Madarellus undulatus, Magdalis armicollis, Magdalis barbita, Mecinus pascuorum, Myrmex chevrolatii, Myrmex myrmex, Nicentrus lecontei, Otiorhynchus rugosostriatus, Piazorhinus pictus, Phyllotrox ferrugineus, Plocamus hispidulus, Pseudobaris nigrina, Pseudopentarthrum simplex, Rhinoncus pericarpius, Sitona lineatus, Stenoscelis brevis, Tomolips quericola. Additionally, three endemic carabids, two of which are known only from the type series, were collected. PMID:26752967

  8. Diversity and genetic distance in populations of Steindachnerina in the upper Paraná river floodplain of Brazil.

    PubMed

    Oliveira, A V; Prioli, A J; Prioli, S M A P; Pavanelli, C S; Júlio, H F; Panarari, R S

    2002-08-01

    Whereas four species of the genus Steindachnerina occur in the Paraná river basin, S. insculpta was the only endemic species of the region under analysis, which is the third lower section of the upper Paraná river. Among other factors, this species has been characterised by the absence of spots in the basal region of the dorsal fin. However, various specimens with this characteristic appeared in the region after the construction of the Itaipu Hydroelectric Plant in 1982. An analysis of the genetic variability of Steindachnerina populations with or without spots is provided. Specimens were collected in different sites of the floodplain of the upper Paraná river and samples were compared by random amplified polymorphic DNA (RAPD) technique and morphological analyses. Ninety-eight amplified loci with nine random primers were analysed in 19 specimens of each phenotype. Data for genetic distance showed great divergences between the two phenotypes and indicate two different species. Spotted specimens may be identified as S. brevipinna, found in the region downstream Sete Quedas Falls. The species must have overcome the geographical barrier during the building of the Itaipu hydroelectric dam that submerged the waterfalls and which became an obstacle between the upper and middle Paraná river some 150 km downstream. Since phenotypes do not share dominant alleles, absence of gene flow has been suggested.

  9. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Burnett, William C.; Wattayakorn, Gullaya; Taniguchi, Makoto; Dulaiova, Henrieta; Sojisuporn, Pramot; Rungsupa, Sompop; Ishitobi, Tomotoshi

    2007-01-01

    We report here the first direct measurements of nutrient fluxes via groundwater discharge into the Upper Gulf of Thailand. Nutrient and standard oceanographic surveys were conducted during the wet and dry seasons along the Chao Phraya River, Estuary and out into the Upper Gulf of Thailand. Additional measurements in selected near-shore regions of the Gulf included manual and automatic seepage meter deployments, as well as nutrient evaluations of seepage and coastal waters. The river transects characterized the distribution of biogeochemical parameters in this highly contaminated urban environment. Seepage flux measurements together with nutrient analyses of seepage fluids were used to estimate nutrient fluxes via groundwater pathways for comparison to riverine fluxes. Our findings show that disseminated seepage of nutrient-rich mostly saline groundwater into the Upper Gulf of Thailand is significant. Estimated fluxes of dissolved inorganic nitrogen (DIN) supplied via groundwater discharge were 40-50% of that delivered by the Chao Phraya River, inorganic phosphate was 60-70%, and silica was 15-40%. Dissolved organic nitrogen (DON) and phosphorus (DOP) groundwater fluxes were also high at 30-40% and 30-130% of the river inputs, respectively. These observations are especially impressive since the comparison is being made to the river that is the largest source of fresh water into the Gulf of Thailand and flows directly through the megacity of Bangkok with high nutrient loadings from industrial and domestic sources.

  10. Air flow analysis in the upper Río Negro Valley (Argentina)

    NASA Astrophysics Data System (ADS)

    Cogliati, M. G.; Mazzeo, N. A.

    2006-06-01

    The so called Upper Río Negro Valley in Argentina is one of the most important fruit and vegetable production regions of the country. It comprises the lower valleys of the Limay and Neuquén rivers and the upper Negro river valley. Out of the 41,671 cultivated hectares, 84.6% are cultivated with fruit trees, especially apple, pear and stone fruit trees. Late frosts occurring when trees are sensitive to low temperatures have a significant impact on the regional production. This study presents an analysis of air flow characteristics in the Upper Río Negro Valley and its relationship with ambient air flow. To such effect, observations made when synoptic-scale weather patterns were favorable for radiative frosts (light wind and clear sky) or nocturnal temperature inversion in the lower layer were used. In the Negro river valley, both wind channeling and downward horizontal momentum transport from ambient wind were observed; in nighttime, very light wind events occurred, possibly associated with drainage winds from the nearby higher levels of the barda. In the Neuquén river valley, the prevailing effect appeared to be forced channeling, consistent with the results obtained in valleys where the synoptic scale wind crossed the axis of the valley. In the Limay river valley, the flow was observed to blow parallel to the longitudinal valley axis, possibly influenced by pressure gradient and forced channeling.

  11. Flood-inundation maps for the East Fork White River near Bedford, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2014-01-01

    Digital flood-inundation maps for an 1.8-mile reach of the East Fork White River near Bedford, Indiana (Ind.) were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selectedwater levels (stages) at USGS streamgage 03371500, East Fork White River near Bedford, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=03371500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the East Fork White River near Bedford, Ind. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the East Fork White River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03371500, East Fork White River near Bedford, Ind., and documented high-water marks from the flood of June 2008. The calibrated hydraulic model was then used to determine 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging (LiDAR) data having a 0.593-foot vertical accuracy) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage near Bedford, Ind., and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery eforts.

  12. Attributes for NHDPlus Catchments (Version 1.1)for the Conterminous United States: Contact Time, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average contact time, in units of days, compiled for every catchment of NHDPlus for the conterminous United States. Contact time, as described in Wolock and others (1989), is the baseflow residence time in the subsurface. The source data set was the U.S. Geological Survey's (USGS) 1-kilometer grid for the conterminous United States (D.M. Wolock, U.S. Geological Survey, written commun., 2008). The grid was created using a method described by Wolock and others (1997a; see equation 3). In the source data set, the contact time was estimated from 1-kilometer resolution elevation data (Verdin and Greenlee, 1996 ) and STATSGO soil characteristics (Wolock, 1997b). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  13. 33 CFR 117.739 - Passaic River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the drawtender at Upper Hack Bridge mile 6.9, across the Hackensack River at Secaucus, N.J. In the event the HX drawtender is at the Lower Hack Bridge, mile 3.4 on the Hackensack River, at Jersey City...

  14. 33 CFR 117.739 - Passaic River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the drawtender at Upper Hack Bridge mile 6.9, across the Hackensack River at Secaucus, N.J. In the event the HX drawtender is at the Lower Hack Bridge, mile 3.4 on the Hackensack River, at Jersey City...

  15. 33 CFR 117.739 - Passaic River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the drawtender at Upper Hack Bridge mile 6.9, across the Hackensack River at Secaucus, N.J. In the event the HX drawtender is at the Lower Hack Bridge, mile 3.4 on the Hackensack River, at Jersey City...

  16. Changes in river discharge and hydrograph separation in the upper basins of Yangtze and Yellow Rivers on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ding, Y.

    2017-12-01

    Systematic changes of river discharge and the concentration-discharge relation were explored to elucidate the response of river discharge to climate change as well as the connectivity of hydrologic and hydrochemical processes using hydrological data during 1956-2015 and chemical data during 2013-2015 at Yanshiping (YSP, 4,538 km2), Tuotuohe (TTH, 15,924 km2) and Zhimenda (ZMD, 137,704 km2) gauging sections in the upper basin of Yangtze River (UBYA), and at Huangheyan (HHY, 20,930 km2), Jimai (JM, 45,019 km2), Jungong (JG, 98,414 km2) and Tangnaihai (TNH, 121,972 km2) gauging sections in the upper basin of Yellow River (UBYE) on the Tibetan Plateau (TP). Results showed that annual discharge in UBYA presents a decreasing trend from 1950s to late 1970s and exhibits an increasing trend since 1970s due to increased temperature and precipitation. However, discharge in UBYE increases from 1950s to 1980s and decrease since late 1980s due to increased temperature and decreased precipitation. Snow/ice meltwater may play an important role on changes in river discharge from the most upper catchments, particularly for periods with increasing temperature, where snow cover, glaciers and frozen soils are widely distributed. Concentration/flux-discharge in discharge was dominated by a well-defined power law relation, with R2 values lower on rising than falling limbs. This finding has important implications for efforts to estimate annual concentrations and export of major solutes from similar catchments in cold regions where only river discharge is available. Concentrations of conservative solutes in discharge resulted from mixing of two end-members at the most upper gauging sections (YSP, TTH and HHY), and three end-members at the lower gauging sections (ZMD, JM, JG and TNH), with relatively constant solute concentrations in end-members. Relationship between the fractional contributions of meltwater and/or precipitation and groundwater and river discharge followed the same relation as the concentration-discharge as a result of end-member mixing. This study suggests that combining concentration-discharge and end-member mixing analyses can be used as a tool to understand runoff generation and hydrochemical process, and the export of water and solutes from the TP may affect water balance and ecosystems downstream.

  17. Nitrogen Removal by Streams and Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    Our study, based on chemistry and channel dimensions data collected at 893 randomly-selected stream and river sites in the Mississippi River basin, demonstrated the interaction of stream chemistry, stream size, and NO3-N uptake metrics across a range of stream sizes and across re...

  18. ENVIRONMENTAL MONITORING AND ASSESSMENT - GREAT RIVER ECOSYSTEMS PROGRAM (EMAP-GRE) GREAT RIVER ECOSYSTEMS FIELD OPERATIONS MANUAL

    EPA Science Inventory

    This manual describes procedures for collecting samples and field measurements for biotic assemblages and abiotic characteristics of the Great Rivers of the Central Basin of the United States: the Missouri, Upper Mississippi, and Ohio Rivers. In addition to the technical and logi...

  19. Weak Effects of Urbanization on Macroinvertebrate Assemblages in Mid-continent, USA, Great Rivers

    EPA Science Inventory

    Effects of urbanization on rivers are not well studied in the US, especially for our largest rivers. We compared the macroinvertebrate assemblages on snags and in the littoral benthos between urban and non-urban reaches of the Upper Mississippi and Lower Missouri Rivers. We used ...

  20. Geologic framework and hydrogeologic characteristics of the Edwards aquifer, Uvalde County, Texas

    USGS Publications Warehouse

    Clark, Allan K.

    2003-01-01

    The Edwards aquifer in Uvalde County is composed of Lower Cretaceous carbonate (mostly dolomitic limestone) strata of the Devils River Formation in the Devils River trend and of the West Nueces, McKnight, and Salmon Peak Formations in the Maverick basin. Rocks in the Devils River trend are divided at the bottom of the Devils River Formation into the (informal) basal nodular unit. Maverick basin rocks are divided (informally) into the basal nodular unit of the West Nueces Formation; into lower, middle, and upper units of the McKnight Formation; and into lower and upper units of the Salmon Peak Formation. The Edwards aquifer overlies the (Lower Cretaceous) Glen Rose Limestone, which composes the lower confining unit of the Edwards aquifer. The Edwards aquifer is overlain by the (Upper Cretaceous) Del Rio Clay, the basal formation of the upper confining unit. Upper Cretaceous and (or) Lower Tertiary igneous rocks intrude all stratigraphic units that compose the Edwards aquifer, particularly in the southern part of the study area.The Balcones fault zone and the Uvalde salient are the principal structural features in the study area. The fault zone comprises mostly en echelon, high-angle, and down-to-the-southeast normal faults that trend mostly from southwest to northeast. The Uvalde salient—resulting apparently from a combination of crustal uplift, diverse faulting, and igneous activity—elevates the Edwards aquifer to the surface across the central part of Uvalde County. Downfaulted blocks associated with six primary faults—Cooks, Black Mountain, Blue Mountain, Uvalde, Agape, and Connor—juxtapose the Salmon Peak Formation (Lower Cretaceous) in central parts of the study area against Upper Cretaceous strata in the southeastern part.The carbonate rocks of the Devils River trend and the Maverick basin are products of assorted tectonic and depositional conditions that affected the depth and circulation of the Cretaceous seas. The Devils River Formation formed in a fringing carbonate bank—the Devils River trend— in mostly open shallow marine environments of relatively high wave and current energy. The West Nueces, McKnight, and Salmon Peak Formations resulted mostly from partly restricted to open marine, tidal-flat, and restricted deep-basinal environments in the Maverick basin.The porosity of the Edwards aquifer results from depositional and diagenetic effects along specific lithostratigraphic horizons (fabric selective) and from structural and solutional features that can occur in any lithostratigraphic horizon (non-fabric selective). In addition to porosity depending upon the effects of fracturing and the dissolution of chemically unstable (soluble) minerals and fossils, the resultant permeability depends on the size, shape, and distribution of the porosity as well as the interconnection among the pores. Upper parts of the Devils River Formation and the upper unit of the Salmon Peak Formation compose some of the most porous and permeable rocks in Uvalde County.

Top