Sample records for uppermost mantle structure

  1. Fine crustal and uppermost mantle S-wave velocity structure beneath the Tengchong volcanic area inferred from receiver function and surface-wave dispersion: constraints on magma chamber distribution

    NASA Astrophysics Data System (ADS)

    Li, Mengkui; Zhang, Shuangxi; Wu, Tengfei; Hua, Yujin; Zhang, Bo

    2018-03-01

    The Tengchong volcanic area is located in the southeastern margin of the collision zone between the Indian and Eurasian Plates. It is one of the youngest intraplate volcano groups in mainland China. Imaging the S-wave velocity structure of the crustal and uppermost mantle beneath the Tengchong volcanic area is an important means of improving our understanding of its volcanic activity and seismicity. In this study, we analyze teleseismic data from nine broadband seismic stations in the Tengchong Earthquake Monitoring Network. We then image the crustal and uppermost mantle S-wave velocity structure by joint analysis of receiver functions and surface-wave dispersion. The results reveal widely distributed low-velocity zones. We find four possible magma chambers in the upper-to-middle crust and one in the uppermost mantle. The chamber in the uppermost mantle locates in the depth range from 55 to 70 km. The four magma chambers in the crust occur at different depths, ranging from the depth of 7 to 25 km in general. They may be the heat sources for the high geothermal activity at the surface. Based on the fine crustal and uppermost mantle S-wave velocity structure, we propose a model for the distribution of the magma chambers.

  2. Seismic anisotropy and mantle creep in young orogens

    USGS Publications Warehouse

    Meissner, R.; Mooney, W.D.; Artemieva, I.

    2002-01-01

    Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.

  3. S-wave attenuation structure beneath the northern Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsutomu; Obana, Koichiro; Kodaira, Shuichi

    2016-04-01

    To understand temperature structure or magma distribution in the crust and uppermost mantle, it is essential to know their attenuation structure. This study estimated the 3-D S-wave attenuation structure in the crust and uppermost mantle at the northern Izu-Bonin arc, taking into account the apparent attenuation due to multiple forward scattering. In the uppermost mantle, two areas of high seismic attenuation (high Q -1) imaged beneath the volcanic front were mostly colocated with low-velocity anomalies. This coincidence suggests that these high- Q -1 areas in low-velocity zones are the most likely candidates for high-temperature regions beneath volcanoes. The distribution of random inhomogeneities indicated the presence of three anomalies beneath the volcanic front: Two were in high- Q -1 areas but the third was in a moderate- Q -1 area, indicating a low correlation between random inhomogeneities and Q -1. All three anomalies of random inhomogeneities were rich in short-wavelength spectra. The most probable interpretation of such spectra is the presence of volcanic rock, which would be related to accumulated magma intrusion during episodes of volcanic activity. Therefore, the different distributions of Q -1 and random inhomogeneities imply that the positions of hot regions in the uppermost mantle beneath this arc have changed temporally; therefore, they may provide important constraints on the evolutionary processes of arc crust and volcanoes.

  4. Seismic Structure of India from Regional Waveform Matching

    NASA Astrophysics Data System (ADS)

    Gaur, V.; Maggi, A.; Priestley, K.; Rai, S.

    2003-12-01

    We use a neighborhood adaptive grid search procedure and reflectivity synthetics to model regional distance range (500-2000~km) seismograms recorded in India and to determine the variation in the crust and uppermost mantle structure across the subcontinent. The portions of the regional waveform which are most influenced by the crust and uppermost mantle structure are the 10-100~s period Pnl and fundamental mode surface waves. We use the adaptive grid search algorithm to match both portions of the seismogram simultaneously. This procedure results in a family of 1-D path average crust and upper mantle velocity and attenuation models whose propagation characteristics closely match those of the real Earth. Our data set currently consist of ˜20 seismograms whose propagation paths are primarily confined to the Ganges Basin in north India and the East Dharwar Craton of south India. The East Dharwar Craton has a simple and uniform structure consisting of a 36+/-2 km thick two layer crust, and an uppermost mantle with a sub-Moho velocity of 4.5~km/s. The structure of northern India is more complicated, with pronounced low velocities in the upper crustal layer due to the large sediment thicknesses in the Ganges basin.

  5. Sn-wave velocity structure of the uppermost mantle beneath the Australian continent

    NASA Astrophysics Data System (ADS)

    Wei, Zhi; Kennett, Brian L. N.; Sun, Weijia

    2018-06-01

    We have extracted a data set of more than 5000 Sn traveltimes for source-station pairs within continental Australia, with 3-D source relocation using Pn arrivals to improve data consistency. We conduct tomographic inversion for S-wave-speed structure down to 100 km using the Fast Marching Tomography (FMTOMO) method for the whole Australian continent. We obtain a 3-D model with potential resolution of 3.0° × 3.0°. The new S-wave-speed model provides strong constraints on structure in a zone that was previously poorly characterized. The S velocities in the uppermost mantle are rather fast, with patterns of variation generally corresponding to those for Pn. We find strong heterogeneities of Swave speed in the uppermost mantle across the entire continent of Australia with a close relation to crustal geological features. For instance, the cratons in the western Australia usually have high S velocities (>4.70 km s-1), while the volcanic regions on the eastern margin of Australia are characterized by low S velocities (<4.40 km s-1). Exploiting an equivalent Pn inversion, we also determine the Vp/Vs ratios across the whole continent. We find that most of the uppermost mantle has Vp/Vs between 1.65 and 1.85, but with patches in central Australia and in the east with much higher Vp/Vs ratios. Distinctive local anomalies on the eastern margin may indicate the positions of remnants of mantle plumes.

  6. Heterogeneous seismic anisotropy in the transition zone and uppermost lower mantle: evidence from South America, Izu-Bonin and Japan

    NASA Astrophysics Data System (ADS)

    Lynner, Colton; Long, Maureen D.

    2015-06-01

    Measurements of seismic anisotropy are commonly used to constrain deformation in the upper mantle. Observations of anisotropy at mid-mantle depths are, however, relatively sparse. In this study we probe the anisotropic structure of the mid-mantle (transition zone and uppermost lower mantle) beneath the Japan, Izu-Bonin, and South America subduction systems. We present source-side shear wave splitting measurements for direct teleseismic S phases from earthquakes deeper than 300 km that have been corrected for the effects of upper mantle anisotropy beneath the receiver. In each region, we observe consistent splitting with delay times as large as 1 s, indicating the presence of anisotropy at mid-mantle depths. Clear splitting of phases originating from depths as great as ˜600 km argues for a contribution from anisotropy in the uppermost lower mantle as well as the transition zone. Beneath Japan, fast splitting directions are perpendicular or oblique to the slab strike and do not appear to depend on the propagation direction of the waves. Beneath South America and Izu-Bonin, splitting directions vary from trench-parallel to trench-perpendicular and have an azimuthal dependence, indicating lateral heterogeneity. Our results provide evidence for the presence of laterally variable anisotropy and are indicative of variable deformation and dynamics at mid-mantle depths in the vicinity of subducting slabs.

  7. Uppermost Mantle Deformation and Hydration Beneath the Gorda Plate Inferred from Pn Travel-times

    NASA Astrophysics Data System (ADS)

    VanderBeek, B. P.; Toomey, D. R.

    2017-12-01

    Deformation of the uppermost oceanic mantle is thought to occur primarily in response to divergence beneath mid-ocean ridges with little subsequent deformation off-axis. A notable exception to this is the Gorda plate where sinuous magnetic anomalies and numerous intra-plate earthquakes indicate diffuse, plate-wide deformation. Thus, the Gorda region provides a natural laboratory to investigate the non-rigid behavior of tectonic plates. We invert Pn (the seismic head wave refracted below the Moho) arrival times from 770 local earthquakes for epicentral and mantle anisotropic velocity parameters to understand how the surficial pattern of deformation translates into the uppermost 10 km of the mantle. Specifically, we ask does the pattern of seismic anisotropy reflect spreading-induced fabrics or has it been re-worked by extensive deformation of the Gorda plate? If it has been re-worked, does it reflect pervasive faulting of the uppermost mantle or plate-scale ductile deformation? And, are isotropic velocities anomalously slow suggesting significant mantle hydration? Preliminary results show that the average mantle velocity beneath Gorda is 7.55 km/s. Velocities vary azimuthally by 4% and the fast-propagation direction is sub-parallel to Pacific absolute plate motion (APM). In comparison, the uppermost mantle beneath the Juan de Fuca (JdF) plate is characterized by 4.6% anisotropy with a mean velocity of 7.85 km/s [VanderBeek and Toomey, 2017]; the fast propagation direction trends between the paleo-spreading direction and JdF APM. The reduced Gorda velocities may indicate a greater extent of fault-controlled hydration of the shallow mantle compared to the JdF plate. In both regions, the anisotropic structure argues against the notion that shallow mantle deformation ceases away from the ridge. Instead, shearing across Gorda due to differential motion between the Pacific and JdF plates [e.g. Bodmer et al., 2015] may cause broad scale ductile deformation and the realignment of shallow mantle fabrics. Beneath the JdF plate, the anisotropic signal is inferred to track the evolution of mantle flow as it evolves from divergence at the ridge to simple shear that is more closely aligned with APM. We discuss the rheologic implications of these observations and the patterns of mantle flow and deformation in Cascadia.

  8. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin; Ostaficzuk, Stanisław R.

    2016-01-01

    In the area of Poland a contact between the Precambrian and Phanerozoic Europe and the Carpathians has a complicated structure and a complex P-wave velocity of the sedimentary cover, crystalline crust, Moho depth and the uppermost mantle. The geometry of the uppermost several kilometers of sediments is relatively well recognized from over 100,000 boreholes. The vertical seismic profiling (VSP) from 1188 boreholes provided detailed velocity data for regional tectonic units and for stratigraphic successions from Permian to the Tertiary and Quaternary deposits. These data, however, do not provide information about the velocity and basement depth in the central part of the Trans-European suture zone (TESZ) and in the Carpathians. So, the data set is supplemented by 2D velocity models from 32 deep seismic sounding refraction profiles which also provide information about the crust and uppermost mantle. Together with the results of other methods: vertical seismic profiling, magnetotelluric, allow for the creation of a detailed, high-resolution 3D model for the entire Earth's crust and the uppermost mantle down to a depth of 60 km. The thinnest sedimentary cover in the Mazury-Belarus anteclise is only 0.3 to 1 km thick, which increases to 7 to 8 km along the East European Craton (EEC) margin, and 9 to 12 km in the TESZ. The Variscan domain is characterized by a 1-4 km thick sedimentary cover, while the Carpathians are characterized by very thick sedimentary layers, up to about 20 km. The crystalline crust is differentiated and has a layered structure. The crust beneath the West European Platform (WEP; Variscan domain) is characterized by P-wave velocities of 5.8-6.6 km/s. The upper and middle crusts beneath the EEC are characterized by velocities of 6.1-6.6 km/s, and are underlain by a high velocity lower crust with a velocity of about 7 km/s. A general decrease in velocity is observed from the older to the younger tectonic domains. The TESZ is associated with a steep dip in the Moho depth, from 30-35 km in the Paleozoic Platform to 42-52 km in the Precambrian craton. The new model confirms the Moho depth derived from previous compilations. In the TESZ the lower crust has a very high seismic velocity (> 7.0 km/s) which correlates to the high P-wave velocity (about 8.4 km/s) in the uppermost mantle beneath the Polish Basin. The Cratonic area is generally characterized by high P-wave velocities (> 8.2 km/s), while the Phanerozoic area is characterized by velocities of ~ 8.0 km/s. In the TESZ very high velocities of 8.3-8.4 km/s are observed, and the southwestern limitation of this area coincides with a high velocity lower crust, and could be continued to the NW toward the Elbe line. The influence of the structure for teleseismic tomography time residuals of seismic waves traveling through the 3D seismic model was analyzed. Lithological candidates for the crust and uppermost mantle of the EEC and WEP were suggested by comparison to laboratory data. The presented 3D seismic model may make more reliable studies on global dynamics, and geotectonic correlations, particularly for sedimentary basins in the Polish Lowlands, the napped flysch sediment series in the Carpathians, the basement shape, the southwestern edge of the EEC, a high-velocity lower crust and the high-velocity uppermost mantle in the TESZ. Finally, the new 3D velocity model of the crust shows a heterogeneous structure and offers a starting point for the numerical modeling of deeper structures by allowing for a correction of the crustal effects in studies of the mantle heterogeneities.

  9. Nature of the uppermost mantle below the Porcupine Basin, offshore Ireland: new insights from seismic refraction and gravity data modeling

    NASA Astrophysics Data System (ADS)

    Prada, M.; Watremez, L.; Chen, C.; O'Reilly, B.; Minshull, T. A.; Reston, T. J.; Wagner, G.; Gaw, V.; Klaeschen, D.; Shannon, P.

    2015-12-01

    The Porcupine Basin is a tongue-shaped basin SW of Ireland formed during the opening of the North Atlantic Ocean. Its history of sedimentation reveals several rifting and subsidence phases during the Late Paleozoic and Cenozoic, with a particular major rift phase occurring in Late Jurassic-Early Cretaceous times. Previous work, focused on seismic and gravity data, suggest the presence of major crustal faulting and uppermost mantle serpentinization in the basin. Serpentinization is a key factor in lithospheric extension since it reduces the strength of mantle rocks, and hence, influences the tectonics of the lithosphere. Besides reducing the seismic velocity of the rock, serpentinization decreases mantle rock density favoring isostatic rebound and basin uplift, thus affecting the tectonic and thermal evolution of the basin. Here we characterize the deep structure of the Porcupine Basin from wide-angle seismic (WAS) and gravity data, with especial emphasis on the nature of the underlying mantle. The WAS data used were acquired along a 300 km long transect across the northern region of the basin. We used a travel time inversion method to model the data and obtain a P-wave velocity (Vp) model of the crust and uppermost mantle, together with the geometry of the main geological interfaces. The crustal structure along the model reveals a maximum stretching factor of ~5-6. These values are well within the range of crustal extension at which the crust becomes entirely brittle allowing the formation of major crustal faulting and serpentinization of the mantle. To further constrain the seismic structure and hence the nature of the mantle we assess the Vp uncertainty of the model by means of a Monte Carlo analysis and perform gravity modeling to test different interpretations regarding mantle rock nature. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.

  10. Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data

    NASA Astrophysics Data System (ADS)

    Tenzer, Robert; Chen, Wenjin; Baranov, Alexey; Bagherbandi, Mohammad

    2018-02-01

    Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth's interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic-Indian and Pacific-Antarctic mid-oceanic ridges and it is possibly formed by two major fault segments. Gravity lows over the Transantarctic Mountains confirms their non-collisional origin. Additionally, more localized gravity lows closely coincide with known locations of hotspots and volcanic regions (Marie Byrd Land, Balleny Islands, Mt. Erebus). Gravity lows also suggest a possible hotspot under the South Orkney Islands. However, this finding has to be further verified.

  11. Evolution of Meso-Cenozoic lithospheric thermal-rheological structure in the Jiyang sub-basin, Bohai Bay Basin, eastern North China Craton

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Qiu, Nansheng; Wang, Ye; Chang, Jian

    2018-01-01

    The Meso-Cenozoic lithospheric thermal-rheological structure and lithospheric strength evolution of the Jiyang sub-basin were modeled using thermal history, crustal structure, and rheological parameter data. Results indicate that the thermal-rheological structure of the Jiyang sub-basin has exhibited obvious rheological stratification and changes over time. During the Early Mesozoic, the uppermost portion of the upper crust, middle crust, and the top part of the upper mantle had a thick brittle layer. During the early Early Cretaceous, the top of the middle crust's brittle layer thinned because of lithosphere thinning and temperature increase, and the uppermost portion of the upper mantle was almost occupied by a ductile layer. During the late Early Cretaceous, the brittle layer of the middle crust and the upper mantle changed to a ductile one. Then, the uppermost portion of the middle crust changed to a thin brittle layer in the late Cretaceous. During the early Paleogene, the thin brittle layer of the middle crust became even thinner and shallower under the condition of crustal extension. Currently, with the decrease in lithospheric temperature, the top of the upper crust, middle crust, and the uppermost portion of the upper mantle are of a brittle layer. The total lithospheric strength and the effective elastic thickness ( T e) in Meso-Cenozoic indicate that the Jiyang sub-basin experienced two weakened stages: during the late Early Cretaceous and the early Paleogene. The total lithospheric strength (approximately 4-5 × 1013 N m-1) and T e (approximately 50-60 km) during the Early Mesozoic was larger than that after the Late Jurassic (2-7 × 1012 N m-1 and 19-39 km, respectively). The results also reflect the subduction, and rollback of Pacific plate is the geodynamic mechanism of the destruction of the eastern North China Craton.

  12. Eight good reasons why the uppermost mantle could be magnetic

    NASA Astrophysics Data System (ADS)

    Ferre, E. C.; Friedman, S. A.; Martin Hernandez, F.; Till, J. L.; Ionov, D. A.; Conder, J. A.

    2012-12-01

    The launch of Magsat in 1979 prompted a broad magnetic investigation of mantle xenoliths (Wasilewski et al., 1979). The study concluded that no magnetic remanence existed in the uppermost mantle and that even if present, such sources would be at temperatures too high to contribute to long wavelength magnetic anomalies (LWMA). However, new collections of unaltered mantle xenoliths from four different tectonic settings, along with updated views on the sources of LWMA and modern petrologic constraints on fO2 in the mantle indicate that the uppermost mantle could, in certain cases, contain ferromagnetic minerals. 1. The analysis of some LWMA over areas such as, for example, Bangui in the Central African Craton, the Cascadia subduction zone and serpentinized oceanic lithosphere suggest magnetic sources in the uppermost mantle. 2. The most common ferromagnetic phase in the uppermost mantle is pure magnetite, which has a pressure-corrected Curie temperature at 10 kbars of 600C instead of the generally used value of 580C. Assuming 30 km-thick continental crust, and crustal and mantle geotherms of 15C/km and 5C/km, respectively, the 600C Curie temperature implies the existence of a 30 km-thick layer of mantle rocks, whose remanent and induced magnetizations could contribute to LWMA. The thickness of this layer decreases to about 15 km for a 35 km-thick crust. 3. The uppermost mantle is cooler than 600C in some tectonic settings, including Archean and Proterozoic shields (>350C), subduction zones (>300C) and old oceanic basins (>250C). 4. Recently investigated sets of unaltered mantle xenoliths contain pure SD and PSD magnetite inclusions exsolved in olivine and pyroxene. The fact that these magnetite grains are not associated with any alteration phases, such as serpentine, and exhibit a subhedral shape, demonstrates that they formed in equilibrium with the host silicate. 5. The ascent of mantle xenoliths in volcanic conduits through cratons and subduction zones occurs in less than a day. Numerical models of Fe diffusion in silicates suggest that it is unlikely for exsolved magnetite grains to reach greater than superparamagnetic sizes within this time frame. 6. Demagnetization of natural remanent magnetization (NRM) of unaltered mantle xenoliths unambiguously indicates only a single component. The demagnetization of NRM spectra resembles that of laboratory-imparted anhysteretic remanent magnetizations, suggesting that the NRM is of thermal origin, and most likely acquired upon cooling at the Earth's surface. Yet mantle peridotites had to be magnetized before extraction from the mantle source. 7. Modern experimental data suggest that the wüstite-magnetite oxygen buffer and the fayalite-magnetite-quartz oxygen buffer extend several tens of km at depth within the uppermost mantle. Modern petrologic models also indicate that fO2 in the uppermost mantle varies significantly with tectonic setting. 8. The magnetic properties of mantle xenoliths vary consistently across island arc, craton, hot spot and mantle plume regions. The intensity of their NRMs appear to be influenced by their tectonic setting, in accordance with petrologic models. In conclusion, the model of a uniformaly non-magnetic mantle no longer agrees with multiple lines of evidence and should be revisited, especially because the most strongly magnetic xenoliths originate from cold geotherm settings.

  13. Uppermost mantle (Pn) velocity model for the Afar region, Ethiopia: an insight into rifting processes

    NASA Astrophysics Data System (ADS)

    Stork, A. L.; Stuart, G. W.; Henderson, C. M.; Keir, D.; Hammond, J. O. S.

    2013-04-01

    The Afar Depression, Ethiopia, offers unique opportunities to study the transition from continental rifting to oceanic spreading because the process is occurring onland. Using traveltime tomography and data from a temporary seismic deployment, we describe the first regional study of uppermost mantle P-wave velocities (VPn). We find two separate low VPn zones (as low as 7.2 km s-1) beneath regions of localized thinned crust in northern Afar, indicating the existence of high temperatures and, potentially, partial melt. The zones are beneath and off-axis from, contemporary crustal magma intrusions in active magmatic segments, the Dabbahu-Manda-Hararo and Erta'Ale segments. This suggests that these intrusions can be fed by off-axis delivery of melt in the uppermost mantle and that discrete areas of mantle upwelling and partial melting, thought to characterize segmentation of the uppermost mantle at seafloor spreading centres, are initiated during the final stages of break-up.

  14. Density structure of the lithosphere in the southwestern United States and its tectonic significance

    USGS Publications Warehouse

    Kaban, M.K.; Mooney, W.D.

    2001-01-01

    We calculate a density model of the lithosphere of the southwestern United States through an integrated analysis of gravity, seismic refraction, drill hole, and geological data. Deviations from the average upper mantle density are as much as ?? 3%. A comparison with tomographic images of seismic velocities indicates that a substantial part (>50%) of these density variations is due to changes in composition rather than temperature. Pronounced mass deficits are found in the upper mantle under the Basin and Range Province and the northern part of the California Coast Ranges and adjacent ocean. The density structure of the northern and central/southern Sierra Nevada is remarkably different. The central/southern part is anomalous and is characterized by a relatively light crust underlain by a higher-density upper mantle that may be associated with a cold, stalled subducted plate. High densities are also determined within the uppermost mantle beneath the central Transverse Ranges and adjoining continental slope. The average density of the crystalline crust under the Great Valley and western Sierra Nevada is estimated to be up to 200 kg m~3 higher than the regional average, consistent with tectonic models for the obduction of oceanic crust and uppermost mantle in this region.

  15. Seismic and thermal structure of the crust and uppermost mantle beneath Antarctica from inversion of multiple seismic datasets

    NASA Astrophysics Data System (ADS)

    Wiens, D.; Shen, W.; Anandakrishnan, S.; Aster, R. C.; Gerstoft, P.; Bromirski, P. D.; Dalziel, I.; Hansen, S. E.; Heeszel, D.; Huerta, A. D.; Nyblade, A.; Stephen, R. A.; Wilson, T. J.; Winberry, J. P.; Stern, T. A.

    2017-12-01

    Since the last decade of the 20th century, over 200 broadband seismic stations have been deployed across Antarctica (e.g., temporary networks such as TAMSEIS, AGAP/GAMSEIS, POLENET/ANET, TAMNNET and RIS/DRIS by U.S. geoscientists as well as stations deployed by Japan, Britain, China, Norway, and other countries). In this presentation, we discuss our recent efforts to build reference crustal and uppermost mantle shear velocity (Vs) and thermal models for continental Antarctica based on those seismic arrays. By combing the high resolution Rayleigh wave dispersion maps derived from both ambient noise and teleseismic earthquakes, together with P receiver function waveforms, we develop a 3-D Vs model for the crust and uppermost mantle beneath Central and West Antarctica to a depth of 200 km. Additionally, using this 3-D seismic model to constrain the crustal structure, we re-invert for the upper mantle thermal structure using the surface wave data within a thermodynamic framework and construct a 3-D thermal model for the Antarctic lithosphere. The final product, a high resolution thermal model together with associated uncertainty estimates from the Monte Carlo inversion, allows us to derive lithospheric thickness and surface heat flux maps for much of the continent. West Antarctica shows a much thinner lithosphere ( 50-90 km) than East Antarctica ( 130-230 km), with a sharp transition along the Transantarctic Mountains (TAM). A variety of geological features, including a slower/hotter but highly heterogeneous West Antarctica and a much faster/colder East Antarctic craton, are present in the 3-D seismic/thermal models. Notably, slow seismic velocities observed in the uppermost mantle beneath the southern TAM are interpreted as a signature of lithospheric foundering and replacement with hot asthenosphere. The high resolution image of these features from the 3-D models helps further investigation of the dynamic state of Antarctica's lithosphere and underlying asthenosphere and provides key constraints on the interaction between the solid Earth and the West Antarctic Ice Sheet.

  16. Cordilleran Longevity, Elevation and Heat Driven by Lithospheric Mantle Removal

    NASA Astrophysics Data System (ADS)

    Mackay-Hill, A.; Currie, C. A.; Audet, P.; Schaeffer, A. J.

    2017-12-01

    Cordilleran evolution is controlled by subduction zone back-arc processes that generate and maintain high topography due to elevated uppermost mantle temperatures. In the northern Canadian Cordillera (NCC), the persisting high mean elevation long after subduction has stopped (>50 Ma) requires a sustained source of heat either from small-scale mantle convection or lithospheric mantle removal; however direct structural constraints of these processes are sparse. We image the crust and uppermost mantle beneath the NCC using scattered teleseismic waves recorded on an array of broadband seismograph stations. We resolve two sharp and flat seismic discontinuities: a downward velocity increase at 35 km that we interpret as the Moho; and a deeper discontinuity with opposite velocity contrast at 50 km depth. Based on petrologic estimates, we interpret the deeper interface as the lithosphere-asthenosphere boundary (LAB), which implies an extremely thin ( 15 km) lithospheric mantle. We calculate the temperature at the Moho and the LAB in the range 800-900C and 1200-1300C, respectively. Below the LAB, we find west-dipping features far below the LAB beneath the eastern NCC that we associate with laminar downwelling of Cordilleran lithosphere. Whether these structures are fossilized or active, they suggest that lithospheric mantle removal near the Cordillera-Craton boundary may have provided the source of heat and elevation and therefore played a role in the longevity and stability of the Cordillera.

  17. Gravity and geoid anomalies of the Philippine Sea: Evidence on the depth of compensation for the negative residual water depth anomaly

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1982-01-01

    A negative free-air gravity anomaly which occurs in the central part of the Philippine Sea was examined to determine the distribution and nature of possible regional mass excesses or deficiencies. Geoid anomalies from GEOS-3 observation were positive. A negative residual geoid anomaly consistent with the area of negative free-air gravity anomalies were found. Theoretical gravity-topography and geoid-topography admittance functions indicated that high density mantle at about 60 km dept could account for the magnitudes of the gravity and residual geoid anomaly and the 1 km residual water depth anomaly in the Philippine Sea. The negative residual depth anomaly may be compensated for by excess density in the uppermost mantle, but the residual geoid and regional free-air gravity anomalies and a slow surface wave velocity structure might result from low-density warm upper mantle material lying beneath the zone of high-density uppermost mantle. From a horizontal disk approximation, the depth of the low-density warm mantle was estimated to be on the order of 200 km.

  18. On the resolution of shallow mantle viscosity structure using post-earthquake relaxation data: Application to the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Pollitz, Fred F.; Thatcher, Wayne R.

    2010-01-01

    Most models of lower crust/mantle viscosity inferred from postearthquake relaxation assume one or two uniform-viscosity layers. A few existing models possess apparently significant radially variable viscosity structure in the shallow mantle (e.g., the upper 200 km), but the resolution of such variations is not clear. We use a geophysical inverse procedure to address the resolving power of inferred shallow mantle viscosity structure using postearthquake relaxation data. We apply this methodology to 9 years of GPS-constrained crustal motions after the 16 October 1999 M = 7.1 Hector Mine earthquake. After application of a differencing method to isolate the postearthquake signal from the “background” crustal velocity field, we find that surface velocities diminish from ∼20 mm/yr in the first few months to ≲2 mm/yr after 2 years. Viscoelastic relaxation of the mantle, with a time-dependent effective viscosity prescribed by a Burgers body, provides a good explanation for the postseismic crustal deformation, capturing both the spatial and temporal pattern. In the context of the Burgers body model (which involves a transient viscosity and steady state viscosity), a resolution analysis based on the singular value decomposition reveals that at most, two constraints on depth-dependent steady state mantle viscosity are provided by the present data set. Uppermost mantle viscosity (depth ≲ 60 km) is moderately resolved, but deeper viscosity structure is poorly resolved. The simplest model that explains the data better than that of uniform steady state mantle viscosity involves a linear gradient in logarithmic viscosity with depth, with a small increase from the Moho to 220 km depth. However, the viscosity increase is not statistically significant. This suggests that the depth-dependent steady state viscosity is not resolvably different from uniformity in the uppermost mantle.

  19. Uppermost mantle structure beneath eastern China and its surroundings from Pn and Sn tomography

    NASA Astrophysics Data System (ADS)

    Sun, Weijia; Kennett, B. L. N.

    2016-04-01

    The Pn and Sn residuals from regional events provide strong constraints on the structure and lithological characteristics of the uppermost mantle beneath eastern China and its surroundings. With the dense Chinese Digital Seismic Network in eastern China, separate Pn and Sn tomographic inversions have been exploited to obtain P and S velocities at a resolution of 2° × 2° or better. The patterns of P velocities are quite consistent with the S velocities at depth of 50 and 60 km, but the amplitude of P wave speed anomalies are a little larger than those of S wave speed. The low P wave speed, high S wave speed, and low Vp/Vs ratio beneath the northern part of Ordos Basin are related to upwelling hot material. Abrupt changes in material properties are indicated from the rapid variations in the Vp/Vs ratio.

  20. The bright spot in the West Carpathian upper mantle: a trace of the Tertiary plate collision-and a caveat for a seismologist

    NASA Astrophysics Data System (ADS)

    Środa, Piotr

    2010-07-01

    The 2-D full waveform modelling of the mantle arrivals from the CELEBRATION 2000 profiles crossing the Carpathian orogen suggests two possible tectonic models for the collision of ALCAPA (Alpine-Carpathian-Pannonian) and the European Plate in the West Carpathians in southern Poland and Slovakia. Due to an oblique (NE-SW) convergence of plates, the character of the collision may change along the zone of contact of the plates: in the western part of the area an earlier collision might have caused substantial crustal shortening and formation of a crocodile-type structure, with the delaminated lower crust of ~100km length acting as a north-dipping reflecting discontinuity in the uppermost mantle. In the eastern part, a less advanced collision only involved the verticalization of the subducted slab remnant after a slab break-off. The lower crustal remnant of ~10km size in the uppermost mantle acts as a pseudo-diffractor generating observable mantle arrivals. Due to the similarity of synthetic data generated by both models, the question of the non-uniqueness of seismic data interpretation, that may lead to disparate tectonic inferences, is also discussed.

  1. Crustal and uppermost mantle structures of the South China from joint analysis of receiver functions and Rayleigh wave dispersions

    NASA Astrophysics Data System (ADS)

    Guo, Zhi; Gao, Xing; Li, Tong; Wang, Wei

    2018-05-01

    We use P-wave receiver function H-k stacking and joint inversion of receiver functions and Rayleigh wave dispersions to investigate crustal and uppermost mantle structure beneath the South China. The obtained results reveal prominent crustal structure variations in the study area, Moho depth increases from ∼30 km in the Cathaysia Block to more than ∼60 km in the eastern Tibetan Plateau. A Moho undulation and Vp/Vs ratio variations can be observed from the Cathaysia Block to Yangtze Craton. These observations consistent with the crustal structures predict by the flat slab subduction model. We interpret these lateral crustal structure variations reflect the tectonic evolution of the Yangtze Craton and Cathaysia Block prior the Mesozoic and the post-orogenic magmatism due to the breaking up of the subducted flat slab and subsequent slab rollback in the South China. The observed variations of the crustal structures not only reveal the lateral crustal inhomogeneity, but also provide constraints on the geodynamic evolution of the South China.

  2. Geophysical and petrological modeling of the lower crust and uppermost mantle in the Variscan and Proterozoic surroundings of the Trans-European Suture Zone in Central Europe

    NASA Astrophysics Data System (ADS)

    Puziewicz, Jacek; Polkowski, Marcin; Grad, Marek

    2017-04-01

    High-quality seismic data on the lower crust and uppermost lithospheric mantle in the Central European part of the Trans European Suture Zone, together with thermal and gravimetric data, enables the quantitative modeling of the rocks occurring in those parts of the lithosphere, including their mineral compositions and the chemical composition of individual minerals. The P3 seismic profile is located at the SW margin of the East European Craton. The lower crust is dominated by gabbronoritic intrusions (plagioclase An45Ab55, clinopyroxene Di80Hed20, orthopyroxene En74Fs26), and the uppermost mantle is harzburgitic (olivine and orthopyroxene Mg# 0.91). The lower crust and upper mantle of the P1 seismic profile belong to the Trans European Suture Zone, albeit the upper crust is of Variscan affinity. The P1 lower crust has gabbronoritic composition which is layered from plagioclase-rich compositions on the top to the orthopyroxene-rich ones at the bottom (plagioclase An45Ab55, clinopyroxene Di80Hed20, orthopyroxene En85Fs15), and is lithologically different Proterozoic and Variscan surroundings. The 100 × 200 km eclogite slice (garnet Alm48Gr25Py27, clinopyroxene Di51Hed10Jd39), with a thickness of 5-10 km, occurs in the uppermost mantle sampled by the P1 profile. The Niedźwiedź Massif is located at the NE margin of the Bohemian Massif, which shows an exposed Variscan basement. The lower crust beneath the Niedźwiedź Massif consists of gabbroic rock of variable proportions of plagioclase (An45Ab55) and clinopyroxene (Di80Hed20), whereas the uppermost mantle is supposedly spinel harzburgite (olivine, ortho- and clinopyroxene Mg# 0.90). Our models show that the lowermost crust and uppermost mantle of the East European Craton do not continue to the SW into the Trans European Suture Zone in its Central European section in Poland.

  3. Deep structure of the Alborz Mountains by joint inversion of P receiver functions and dispersion curves

    NASA Astrophysics Data System (ADS)

    Rastgoo, Mehdi; Rahimi, Habib; Motaghi, Khalil; Shabanian, Esmaeil; Romanelli, Fabio; Panza, Giuliano F.

    2018-04-01

    The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia - Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of ∼50-100 km. In deeper parts of the uppermost mantle (depth range of 100-150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere.

  4. 3D Crust and Uppermost Mantle Structure beneath Tian Shan Region from ambient noise and earthquake surface waves

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Wen, L.

    2017-12-01

    As a typical active intracontinental mountain range in Central Asia, Tian Shan Mt serves as the prototype in studying geodynamic processes and mechanism of intracontinental mountain building. We study 3D crust and the uppermost mantle structure beneath Tian Shan region using ambient noise and earthquake surface waves. Our dataset includes vertical component records of 62 permanent broadband seismic stations operated by the Earthquake Administration of China. Firstly, we calculate two-year stacked Cross-Correlation Functions (CCFs) of ambient noise records between the stations. The CCFs are treated as the Empirical Green's Functions (EGFs) of each station pair, from which we measured phase velocities of fundamental-mode Rayleigh wave in the period of 3-40 s using a frequency-time analysis method. Secondly, we collect surface wave data from tele-seismic events with Mw > 5.5 and depth shallower than 200 km and measure phase velocities of the fundamental-mode of Rayleigh wave in the period of 30-150 s using a two-station method. Finally, we combine the phase velocity measurements from ambient noise and earthquake surface waves, obtain lateral isotropic phase velocity maps at different periods based on tomography and invert a 3D Vsv model of crust and uppermost mantle down to about 150 km using a Monte Carlo Inversion method. We will discuss our inversion results in detail, as well as their implications to the tectonics in the region.

  5. High resolution image of uppermost mantle beneath NE Iran continental collision zone

    NASA Astrophysics Data System (ADS)

    Motaghi, K.; Tatar, M.; Shomali, Z. H.; Kaviani, A.; Priestley, K.

    2012-10-01

    We invert 3775 relative P wave arrival times using the ACH damped least square method of Aki et al. (1977) to study upper mantle structure beneath the NE Iran continental collision zone. The data for this study were recorded by 17 three component broad-band stations operated from August 2006 to February 2008 along a profile from the center of Iranian Plateau, near Yazd, to the northeastern part of Iran on the Turan Platform just north of the Kopeh Dagh Mountains. The results confirm the previously known low velocity upper mantle beneath Central Iran. Our tomographic model reveals a deep high velocity anomaly. The surficial expressions of this anomaly are between the Ashkabad and Doruneh Faults, where the resolution and ray coverage are good. A transition zone in uppermost mantle is recognized under the Binalud foreland that we interpreted as suture zone between Iran and Turan platform. Our results indicate that Atrak Valley which is the boundary between the Binalud and Kopeh Dagh Mountains can be considered as the northeastern suture of the Iranian Plateau where Eurasia and Turan Platform under-thrust beneath the Binalud range and Central Iran.

  6. Processes of lithosphere evolution: New evidence on the structure of the continental crust and uppermost mantle

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.; Perchuc, E.; Thybo, H.

    2002-01-01

    We discuss the structure of the continental lithosphere, its physical properties, and the mechanisms that formed and modified it since the early Archean. The structure of the upper mantle and the crust is derived primarily from global and regional seismic tomography studies of Eurasia and from global and regional data on seismic anisotropy. These data as documented in the papers of this special issue of Tectonophysics are used to illustrate the role of different tectonic processes in the lithospheric evolution since Archean to present. These include, but are not limited to, cratonization, terrane accretion and collision, continental rifting (both passive and active), subduction, and lithospheric basal erosion due to a relative motion of cratonic keels and the convective mantle. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. A Review of Geophysical Constraints on the Deep Structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Molnar, P.

    1988-09-01

    The Tibetan Plateau, the Himalaya and the Karakoram are the most spectacular consequences of the collision of the Indian subcontinent with the rest of Eurasia in Cainozoic time. Accordingly, the deep structures beneath them provide constraints on both the tectonic history of the region and on the dynamic processes that have created these structures. The dispersion of seismic surface waves requires that the crust beneath Tibet be thick: nowhere less than 50 km, at least 65 km, in most areas, but less than 80 km in all areas that have been studied. Wide-angle reflections of P-waves from explosive sources in southern Tibet corroborate the existence of a thick crust but also imply the existence of marked lateral variations in that thickness, or in the velocity structure of the crust. Thus isostatic compensation occurs largely by an Airy-type mechanism, unlike that, for instance, of the Basin and Range Province of western North America where a hot upper mantle buoys up a thin crust. The P-wave and S-wave velocities in the uppermost mantle of most of Tibet are relatively high and typical of those of Precambrian shields and stable platforms: Vp = 8.1 km s-1 or higher, and Vs≈ 4.7 km s-1. Travel times and waveforms of S-waves passing through the uppermost mantle of much of Tibet, however, require a much lower average velocity in the uppermost mantle than that of the Indian, or other, shields. They indicate a thick low-velocity zone in the upper mantle beneath Tibet, reminiscent of tectonically active regions. These data rule out a shield structure beneath northern Tibet and suggest that if such a structure does underlie part of the plateau, it does so only beneath the southern part. Lateral variations in the upper-mantle structure of Tibet are apparent from differences in travel times of S-waves from earthquakes in different parts of Tibet, in the attenuation of short-period phases, Pn and Sn, that propagate through the uppermost mantle of Tibet, and in surface-wave dispersion for different paths. The notably lower velocities and the greater attenuation in the mantle of north--central Tibet than elsewhere imply higher temperatures there and are consistent with the occurrence of active and young volcanism in roughly the same area. Surface-wave dispersion across north--central Tibet also requires a thinner crust in that area than in most of the plateau. Consequently the relatively uniform height of the plateau implies that isostatic compensation in the north--central part of Tibet occurs partly because the density of the relatively hot material in the upper mantle is lower than that elsewhere beneath Tibet, the mechanism envisioned by Pratt. Several seismological studies provide evidence consistent with a continuity of the Indian Shield, and its cold thick lithosphere, beneath the Himalaya. Fault-plane solutions and focal depths of the majority of moderate earthquakes in the Himalaya are consistent with their occurring on the top surface of the gently flexed, intact Indian plate that has underthrust the Lesser Himalaya roughly 80-100 km or more. P-waves from explosions in southern Tibet and recorded in Nepal can be interpreted as wide-angle reflections from this fault zone. P-wave delays across the Tarbela network in Pakistan from distant earthquakes indicate a gentle dip of the Moho beneath the array without pronounced later variations in upper-mantle structure. High Pn and Sn velocities beneath the Himalaya and normal to early S-wave arrival times from Himalayan earthquakes recorded at teleseismic distances are consistent with Himalaya being underlain by the same structure that underlies India. Results from explosion seismology indicate an increase in crustal thickness from the Indo--Gangetic Plain across the Himalaya to southern Tibet, but Hirn, Lepine, Sapin and their co-workers inferred that the depth of the Moho does not increase smoothly northward, as it would if the Indian Shield had been underthrust coherently beneath the Himalaya. They interpreted wide-angle reflections as evidence for steps in the Moho displaced from one another on southward-dipping faults. Although I cannot disprove this interpretation, I think that one can recognize a sequence of signals on their wide-angle reflection profiles that could be wide-angle reflections from a northward-dipping Moho. Gravity anomalies across the Himalaya show that both the Indo--Gangetic Plain and the Himalaya are not in local isostatic equilibrium. A mass deficit beneath the plain is apparently caused by the flexure of the Indian Shield and by the low density of the sedimentary rock in the basin formed by the flexure. The mass excess in the Himalaya seems to be partly supported by the strength of the Indian plate, for which the flexural rigidity is particularly large. An increase in the Bouguer gravity gradient from about 1 mGal km-1 (1 mGal = 10-3 cm s-2) over the Indo--Gangetic Plain to 2 mGal km-1 over the Himalaya implies a marked steepening of the Moho, and therefore a greater flexure of the Indian plate, beneath the Himalaya. This implies a northward decrease in the flexural rigidity of the part of the Indian plate underlying the range. Nevertheless, calculations of deflections of elastic plates with different flexural rigidities and flexed by the weight of the Himalaya show larger deflections and yield more negative gravity anomalies than are observed. Thus, some other force, besides the flexural strength of the plate, must contribute to the support of the range. A bending moment applied to the end of the Indian plate could flex the plate up beneath the range and provide the needed support. The source of this moment might be gravity acting on the mantle portion of the subducting Indian continental lithosphere with much or all of the crust detached from it. Seismological studies of the Karakoram are consistent with its being underlain by particularly cold material in the upper mantle. Intermediate-depth earthquakes occur between depths of 70 and 100 km but apparently do not define a zone of subducted oceanic lithosphere. Rayleigh-wave phase velocities are particularly high for paths across this area and imply high shear wave velocities in the upper mantle. Isostatic gravity anomalies indicate a marked low of 70 mGal over the Karakoram, which could result from a slightly thickened crust pulled down by the sinking of cold material beneath it. Geophysical constraints on the structure of Tibet, the Himalaya and the Karakoram are consistent with a dynamic uppermost mantle that includes first, the plunging of cold material into the asthenosphere beneath southern Tibet and the Karakoram, as the Indian plate slides beneath the Himalaya, and second, an upwelling of hot material beneath north--central Tibet. The structure is too poorly resolved to require such dynamic flow, but the existence for both a hot uppermost mantle beneath north--central Tibet and a relatively cold uppermost mantle beneath southern Tibet and the Karakoram seem to be required. Both group and phase velocities of Rayleigh waves and Love waves are delayed along paths crossing Tibet. The low velocities require a crustal thickness in excess of 50 km, and for most regions in excess of 60 km. Crustal thicknesses in excess of 80 km can be ruled out for all paths studied, and for most of Tibet, a crustal thickness of 65-70 km seems required. Clear evidence for lateral heterogeneity beneath Tibet is provided not only by body waves (discussed below) but also by surface waves (Brandon & Romanowicz 1986), which show an area of lower uppermost shear-wave velocity and thinner crust in north--central Tibet than elsewhere in the plateau. These variations might explain the differences in group velocities measured by different workers, and the different structures that they deduced, but if so, they also render the regionalization of surface-wave dispersion into arbitrary tectonic provinces risky. Although Rayleigh-wave phase velocities can resolve large differences in upper-mantle velocities for regions the size of Tibet, constraints on these velocities are best derived from body waves. Thus, with the exceptions of Brandon & Romanowicz's (1986) detailed investigation of north--central Tibet, the study of southernmost Tibet by Jobert et al. (1985) and that of Romanowicz (1982) for the northeasternmost part of the plateau, I do not think that surface waves have placed an important bound on the velocity in the upper mantle beneath Tibet. The seismic data are broadly consistent with partial melting of the uppermost mantle of north--central Tibet, where recent volcanism has been observed. Correspondingly, there is no suggestion of such low velocities, and such high temperatures, in the mantle elsewhere beneath Tibet, for which late-Cainozoic volcanism has not been reported. The results are also consistent with a slightly thinner crust in north--central Tibet than farther south, suggesting that both Airy and Pratt isostasy share compensation for north--central Tibet's great height. Finally, the average shear-wave velocity in the upper mantle of southern Tibet seems to be higher than that in northern Tibet, but neither is the degree of difference well determined, nor is the location of the transition from one to the other well mapped.

  8. Crustal and Uppermost Mantle Structure across the Tibet-Qinling Transition Zone in NE Tibet: Implications for Material Extrusion of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ye, Z.; Li, J.; Gao*, R.; Song, X.; Li, Q.; Li, Y.; Huang, X.; Xiong, X.; Li, W.; WANG, Y.

    2017-12-01

    Based on a dense linear seismic array traversing across the eastern margin of the Tibetan plateau to the Qinling belt, we conducted joint inversion of receiver functions and surface wave dispersions under constraints of P-wave velocity and derived a crustal and uppermost mantle Vs profile simultaneously with a Vp/Vs ratio profile. Our observations indicate that the Qinling belt, which shows ratio Vp/Vs<1.8 indicative of intermediate-to-felsic components in the lower crust, is currently not acting as a channel accommodating extrusion of the mid-lower crustal flow; and extrusion of Tibet's ductile mantle flow through the Qinling belt as a channel would only be feasible in the sub-lithosphere depth (asthenosphere). Our results suggest that ductile material extrusion of the mid-lower crustal flow accompanied with fault-related tectonics and gravitational buoyancy resulted from lithospheric detachment (triggered by the asthenospheric flow) may jointly work on the plateau uplift and expansion in this Tibet-Qinling transition zone. Corresponding Author: R.Gao, ruigao126@126.com

  9. Geophysical study of the structure and processes of the continental convergence zones: Alpine-Himalayan Belt

    NASA Technical Reports Server (NTRS)

    Toksoez, M. N.

    1981-01-01

    The seismic wave velocity structure in the crust and upper mantle region beneath the Tibetan plateau was studied in detail. Also, a preliminary study of the uppermost mantle P wave velocity beneath Iran and Turkey was carried out, and the results are compared with those for the Tibetan plateau. These two studies compose the bulk of the efforts on the observational aspects of continental collision zones in addition to satellite derived data. On the theoretical aspects the thermal evolution of converging plate boundaries was explored using a finite difference scheme.

  10. Upper mantle P velocity structure beneath the Baikal Rift from modeling regional seismic data

    NASA Astrophysics Data System (ADS)

    Brazier, Richard A.; Nyblade, Andrew A.

    2003-02-01

    Uppermost mantle P wave velocity structure beneath the Baikal rift and southern margin of the Siberian Platform has been investigated by using a grid search method to model Pnl waveforms from two moderate earthquakes recorded by station TLY at the southwestern end of Lake Baikal. The results yielded a limited number of successful models which indicate the presence of upper mantle P wave velocities beneath the rift axis and the margin of the platform that are 2-5% lower than expected. The magnitude of the velocity anomalies and their location support the presence of a thermal anomaly that extends laterally beyond the rift proper, possibly created by small-scale convection or a plume-like, thermal upwelling.

  11. Joint Inversion of Crustal and Uppermost Mantle Structure in Western China

    DTIC Science & Technology

    2013-11-02

    western China from this project. Approved for public release; distribution is unlimited. 21 References Ammon, C. J., G. E. Randall , and G. Zandt, On...the non-uniqueness of receiver function inversions, J. Geophys. Res., 95(B10), pp. 15303-15318, 1990. Benson , G., et al., Processing seismic

  12. Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia

    NASA Astrophysics Data System (ADS)

    Hammond, J. O. S.; Kendall, J.-M.; Wookey, J.; Stuart, G. W.; Keir, D.; Ayele, A.

    2014-05-01

    Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow, or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study, we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti, and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and we directly invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due to shear segregated melt along sharp changes in lithospheric thickness dominates the shear-wave splitting signal in the mantle. Beneath Afar, away from regions with significant lithospheric topography, melt pockets associated with the crustal and uppermost mantle magma storage dominate the signal in localized regions. In general, little anisotropy is seen in the uppermost mantle beneath Afar suggesting melt retains no preferential alignment. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is lacking beneath Afar today, rather a broad flow from the southwest dominates flow in the upper mantle.

  13. The uppermost mantle shear wave velocity structure of eastern Africa from Rayleigh wave tomography: constraints on rift evolution

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. P.; Adams, A.; Nyblade, A. A.; Mulibo, G. D.; Tugume, F.

    2013-08-01

    An expanded model of the 3-D shear wave velocity structure of the uppermost mantle beneath eastern Africa has been developed using earthquakes recorded by the AfricaArray East African Seismic Experiment in conjunction with data from permanent stations and previously deployed temporary stations. The combined data set comprises 331 earthquakes recorded on a total of 95 seismic stations spanning Kenya, Uganda, Tanzania, Zambia and Malawi. In this study, data from 149 earthquakes were used to determine fundamental-mode Rayleigh wave phase velocities at periods ranging from 20 to 182 s using the two-plane wave method, and then combined with the similarly processed published measurements and inverted for a 3-D shear wave velocity model of the uppermost mantle. New features in the model include (1) a low-velocity region in western Zambia, (2) a high-velocity region in eastern Zambia, (3) a low-velocity region in eastern Tanzania and (4) low-velocity regions beneath the Lake Malawi rift. When considered in conjunction with mapped seismicity, these results support a secondary western rift branch striking southwestwards from Lake Tanganyika, likely exploiting the relatively weak lithosphere of the southern Kibaran Belt between the Bangweulu Block and the Congo Craton. We estimate a lithospheric thickness of ˜150-200 km for the substantial fast shear wave anomaly imaged in eastern Zambia, which may be a southward subsurface extension of the Bangweulu Block. The low-velocity region in eastern Tanzania suggests that the eastern rift branch trends southeastwards offshore eastern Tanzania coincident with the purported location of the northern margin of the proposed Ruvuma microplate. Pronounced velocity lows along the Lake Malawi rift are found beneath the northern and southern ends of the lake, but not beneath the central portion of the lake.

  14. Magmatic arc structure around Mount Rainier, WA, from the joint inversion of receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Obrebski, Mathias; Abers, Geoffrey A.; Foster, Anna

    2015-01-01

    The deep magmatic processes in volcanic arcs are often poorly understood. We analyze the shear wave velocity (VS) distribution in the crust and uppermost mantle below Mount Rainier, in the Cascades arc, resolving the main velocity contrasts based on converted phases within P coda via source normalization or receiver function (RF) analysis. To alleviate the trade-off between depth and velocity, we use long period phase velocities (25-100 s) obtained from earthquake surface waves, and at shorter period (7-21 s) we use seismic noise cross correlograms. We use a transdimensional Bayesian scheme to explore the model space (VS in each layer, number of interfaces and their respective depths, level of noise on data). We apply this tool to 15 broadband stations from permanent and Earthscope temporary stations. Most results fall into two groups with distinctive properties. Stations east of the arc (Group I) have comparatively slower middle-to-lower crust (VS = 3.4-3.8 km/s at 25 km depth), a sharp Moho and faster uppermost mantle (VS = 4.2-4.4 km/s). Stations in the arc (Group II) have a faster lower crust (VS = 3.7-4 km/s) overlying a slower uppermost mantle (VS = 4.0-4.3 km/s), yielding a weak Moho. Lower crustal velocities east of the arc (Group I) most likely represent ancient subduction mélanges mapped nearby. The lower crust for Group II ranges from intermediate to felsic. We propose that intermediate-felsic to felsic rocks represent the prearc basement, while intermediate composition indicates the mushy andesitic crustal magmatic system plus solidified intrusion along the volcanic conduits. We interpret the slow upper mantle as partial melt.

  15. Crustal and Uppermost Mantle Structure beneath the Western United States from USArray Regional Phase Analysis

    NASA Astrophysics Data System (ADS)

    Buehler, Janine Sylvia

    The aim of this dissertation is to improve our understanding of the crust and uppermost mantle structure in the western United States, profiting from the wealth of regional phase data recorded at USArray stations. USArray, a transportable seismic array of ˜400 seismometers, has greatly increased seismic data coverage across the United States in the past few years, and allows imaging of the lithosphere of the North American continent with better resolution and new methods. The regional phases are often challenging to analyze, especially in a tectonically-active region like the western United States, because of their sensitivities to the heterogeneities of the crust and uppermost mantle. However, knowledge of the seismic structure of the lithosphere is not only essential in order to accurately image the velocity structure at greater depths, but also for constraining geodynamic models that reconstruct the tectonic evolution of the continent, and hence the information that is carried by the regional phases is very valuable. The data set used in this study consists mostly of the regional seismic phases Pn and Sn, which propagate horizontally along the Moho in the mantle lid and constrain the seismic velocity structure at a confined depth. We applied traditional tomographic methods that profit from the improved ray coverage through USArray, but also employed array-based techniques that take advantage of the regular station spacing of the transportable array and don't depend on regularization. In addition, we used stacking methods to image the propagation efficiency of the Sn phase, which is often highly attenuated in tectonically active regions, on a regional scale. The results complement other seismic studies that average over greater depth intervals, such as surface- and body-wave tomographies and anisotropy analysis from shear-wave splitting, to provide information on temperature, composition, and tectonic processes at depth. Comparisons between Pn azimuthal anisotropy and fast polarization direction from shear wave splitting suggest significant vertical changes in anisotropy in several regions of the upper mantle beneath the western United States. Sn can in theory further constrain the nature of anisotropy in the mantle lid. However, we have so far been unable to resolve shear-wave splitting directly in the Sn waveforms as the phase is often attenuated and difficult to detect. Still, we obtained evidence for Sn propagation in several regions of the western United States such as the central Great Basin and the northeastern part of the Colorado Plateau. We found that there are enough quality Sn picks for joint Pn-Sn tomography and identified prominent Vp/Vs anomalies, such as large high Vp/Vs regions --- typically associated with partial melt --- below the Snake River Plain and the Colorado Plateau.

  16. Behavior of MORB magmas at uppermost mantle beneath a fast-spreading axis: an example from Wadi Fizh of the northern Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Akizawa, Norikatsu; Arai, Shoji; Tamura, Akihiro

    2012-10-01

    Relationships of lithologies in uppermost mantle section of Oman ophiolite are highly complicated, harzburgites especially being closely associated with dunites, wehrlites, and gabbros. The petrology and geochemistry of the uppermost mantle section provide constrains on how MORB (mid-ocean ridge basalt) magmas migrate from the mantle to crust. We conducted detailed sampling at the uppermost mantle section of the northern Oman ophiolite (along Wadi Fizh), and it provides us with centimeter-scale lithological and mineral chemical heterogeneity. In particular, we found peculiar plagioclase-free harzburgites that have not been recorded from the current ocean floor, which contain high-Mg# [Mg/(Mg + Fe2+) atomic ratio] clinopyroxenes that are almost in equilibrium (saturated) with MORB in terms of REE concentrations. They are from the uppermost mantle section underlying the wehrlite-dunite layer (=Moho transition zone; MTZ) just beneath the layered gabbro. MORBs cannot be in equilibrium with harzburgites; however, we call the peculiar harzburgites as "MORB-saturated harzburgite" for simplicity in this paper. The MORB-saturated harzburgites exhibit slightly enriched mineralogy (e.g., spinels with higher Ti and ferric iron, and clinopyroxenes with higher Ti and Na) and contain slightly but clearly more abundant modal clinopyroxene (up to 3.5 vol.%) than ordinary Oman depleted harzburgites (less than 1 vol.% clinopyroxene), which are similar to abyssal harzburgites. Gabbro-clinopyroxenite bands, which were melt lenses beneath the ridge axis, are dominant around the MTZ. Detailed sampling around the gabbro-clinopyroxenite bands revealed that the MORB-saturated harzburgites appear around the bands. The interaction between a melt that was MORB-like and an ordinary harzburgite induced incongruent melting of orthopyroxenes in harzburgites, and the melt chromatographically intruded into the wall harzburgite and was modified to coexist with olivine and two pyroxenes at low melt/harzburgite ratios. The modified melt left clinopyroxene (not clinopyroxene + plagioclase as in plagioclase-impregnated abyssal harzburgite) to form the MORB-saturated harzburgites in the vicinity (harzburgite) of the fracture, which are left as gabbro-clinopyroxenite bands. This local modification mimics the whole lithological and chemical variation of the MTZ and makes chemical variation of MORB suite at fast-spreading ridge.

  17. Unveiling the lithospheric structure of the US Interior using the USArray Transportable Array

    NASA Astrophysics Data System (ADS)

    Moschetti, M. P.; Ritzwoller, M. H.; Lin, F.; Shen, W.; Yang, Y.

    2009-12-01

    We present current results from ambient noise tomography (ANT) and earthquake surface wave tomography applied to the USARRAY Transportable Array (TA) for the western and central US. We have processed ambient seismic noise data since October 2004 to produce cumulative Rayleigh and Love wave dispersion maps (from about 6 to 40 sec period) within the footprint of the TA. The high spatial density of these instruments results in dispersion maps with a resolution of about the average inter-station distance (70 km) and far exceeds previous surface wave tomographic results for the US interior. The dispersion maps from ANT are complemented by Rayleigh wave phase speed maps from teleseismic earthquake tomography (25 - 100 sec period). The development of a new method of surface wave tomography, termed Eikonal tomography, that models wavefront complexity and off great-circle propagation allows for the robust estimation of phase velocity azimuthal anisotropy. Eikonal tomography has been applied to ambient seismic noise and earthquake measurements and provides a means to compare and vet results in the period band of overlap (25 - 40 sec). In addition, the recent application of this method to Love waves from teleseismic earthquakes provides dispersion measurements up to 50 sec period. These longer period Love wave dispersion measurements may improve the characterization of anisotropy in the uppermost mantle. In addition to the current dispersion maps, we present regional-scale 3-D models of isotropic and anisotropic shear-velocities for the crust and uppermost mantle beneath the western US. Because dispersion measurements from ambient seismic noise include short period (<20 sec) information, they provide a strong constraint on the shear-velocity structure of the crust and uppermost mantle. A radially anisotropic shear-velocity model of the crust and uppermost mantle is constructed by simultaneously inverting Rayleigh and Love wave dispersion measurements from ANT and from earthquake tomography. Models with isotropic and radially anisotropic mantle shear-velocities do not fit the Rayleigh and Love wave measurements simultaneously across large regions of the western US, and the models present a Rayleigh-Love misfit discrepancy at the periods most sensitive to crustal velocity structures. However, by introducing positive radial anisotropy (Vsh>Vsv) to the middle and lower crust, this misfit discrepancy is resolved. Higher amplitude crustal radial anisotropy is observed in the predominant extensional provinces of the western US and is thought to result from the alignment of anisotropic crustal minerals during extension and deformation. Several regions of the western US remain poorly fit by the 3-D radially anisotropic shear-velocity model. These include the Olympic Peninsula, Mendocino Triple Junction, southern Cascadia backarc, Yakima Fold Belt, Wasatch Front, Salton Trough and Great Valley. We investigate various additional model parametrizations and the effect of breaking the constraint on the monotonic increase of crustal velocities with depth to resolve crustal shear-velocity structure in these regions. These techniques will readily be applied to data from the US Interior as the TA moves to the east.

  18. Petrochemical and petrophysical characterization of the lower crust and the Moho beneath the West African Craton, based on Xenoliths from Kimberlites

    NASA Technical Reports Server (NTRS)

    Haggerty, Stephen E.; Toft, Paul B.

    1988-01-01

    Additional evidence to the composition of the lower crust and uppermost mantle was presented in the form of xenolith data. Xenoliths from the 2.7-Ga West African Craton indicate that the Moho beneath this shield is a chemically and physically gradational boundary, with intercalations of garnet granulite and garnet eclogite. Inclusions in diamonds indicate a depleted upper mantle source, and zenolith barometry and thermometry data suggest a high mantle geotherm with a kink near the Moho. Metallic iron in the xenoliths indicates that the uppermost mantle has a significant magnetization, and that the depth to the Curie isotherm, which is usually considered to be at or above the Moho, may be deeper than the Moho.

  19. Understanding the nature of mantle upwelling beneath East-Africa

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham

    2014-05-01

    The concept of hot upwelling material - otherwise known as mantle plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep mantle source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep mantle plumes on land is the East African Rift (EAR). We image seismic velocity structure of the mantle below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower mantle incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 < mb < 5.5) from poorly sampled regions in order to have a more uniform data coverage. The tomographic results allow us to image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower mantle. Our observations provide evidence that the shallow mantle slow seismic velocities continue trough the transition zone and into the lower mantle. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper mantle only. These features in the lower mantle are isolated with a diameter of about 400 km indicating deep multiple sources of upwelling that converge in broader low-velocity bodies along the rift axis at shallow depths. Moreover, our preliminary models show that the low-velocity feature in the transition zone and uppermost lower mantle beneath Afar trends to the northeast beneath the Red Sea and Saudi Arabia as opposed to being linked to the African Superplume towards the southwest.

  20. Crust-mantle coupling mechanism in Cameroon, West Africa, revealed by 3D S-wave velocity and azimuthal anisotropy

    NASA Astrophysics Data System (ADS)

    Ojo, Adebayo Oluwaseun; Ni, Sidao; Chen, Haopeng; Xie, Jun

    2018-01-01

    To understand the depth variation of deformation beneath Cameroon, West Africa, we developed a new 3D model of S-wave isotropic velocity and azimuthal anisotropy from joint analysis of ambient seismic noise and earthquake surface wave dispersion. We found that the Cameroon Volcanic Line (CVL) is well delineated by slow phase velocities in contrast with the neighboring Congo Craton, in agreement with previous studies. Apart from the Congo Craton and the Oubanguides Belt, the uppermost mantle revealed a relatively slow velocity indicating a thinned or thermally altered lithosphere. The direction of fast axis in the upper crust is mostly NE-SW, but trending approximately N-S around Mt. Oku and the southern CVL. The observed crustal azimuthal anisotropy is attributed to alignment of cracks and crustal deformation related to magmatic activities. A widespread zone of weak-to-zero azimuthal anisotropy in the mid-lower crust shows evidence for vertical mantle flow or isotropic mid-lower crust. In the uppermost mantle, the fast axis direction changed from NE-SW to NW-SE around Mt. Oku and northern Cameroon. This suggests a layered mechanism of deformation and revealed that the mantle lithosphere has been deformed. NE-SW fast azimuths are observed beneath the Congo Craton and are consistent with the absolute motion of the African plate, suggesting a mantle origin for the observed azimuthal anisotropy. Our tomographically derived fast directions are consistent with the local SKS splitting results in some locations and depths, enabling us to constrain the origin of the observed splitting. The different feature of azimuthal anisotropy in the upper crust and the uppermost mantle implies decoupling between deformation of crust and mantle in Cameroon.

  1. Three-dimensional thermal structure and seismogenesis in the Tohoku and Hokkaido subduction system

    NASA Astrophysics Data System (ADS)

    van Keken, P. E.; Kita, S.; Nakajima, J.; Bengtson, A. K.; Hacker, B. R.; Abers, G. A.

    2010-12-01

    The Northern Japan arc is characterized by fast subduction of old oceanic lithosphere. The high density instrumentation and high seismicity make this an ideal natural laboratory to study the interplay between subduction zone dynamics, dehydration, migration of fluids, and seismogenesis. In this study we use high resolution finite element models to predict the thermal structure of the subduction slab below Tohoku (Northern Honshu) and Hokkaido. These models allow us to predict the pressure, temperature and mineralogy of the subducted crust and mantle. We use these models to predict the (p,T) conditions of earthquakes that are relocated with a precision of around 1 km by double difference techniques. Below Northern Hokkaido and Tohoku we find that the earthquake activity is strong in crust and the uppermost mantle for temperatures < 450 C. Above this temperature earthquakes occur more sporadically and have significantly reduced integrated seismic moment. The strongest 3D variations in this arc occur below southern Hokkaido. This 200 km wide region is characterized by a change in trench geometry, anomalously low heatflow and an anomalous velocity structure in the mantle wedge. Tomographic imaging suggest that continental crust is subducted to significant depth, thereby insulating the subducting slab from the hot mantle wedge at least at intermediate depths. The thermal insulation is also suggested by the deepening of the earthquakes in the slab (Kita et al., EPSL, 2010). This region may be characterized by active crustal erosion which would lead to a further blanketing of the crust by a sedimentary layer. Further modifications in thermal structure are possible due to the 3D wedge flow that is generated by the along-arc variations in trench geometry. We quantitatively verify the relative importance of these processes using 2D and 3D dynamical models. Without the seismically imaged crustal structure the earthquake temperatures are significantly elevated compared to the Tohoku and (northern) Hokkaido sections. If we take the modified crustal structure into account we find a (p,T) pattern that is quite similar to that in the other sections, suggesting that the processes that lead to earthquakes in crust and uppermost mantle of the downgoing slab are similar across the northern Japan arc.

  2. Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?

    NASA Astrophysics Data System (ADS)

    Plesa, A.-C.; Tosi, N.; Breuer, D.

    2014-10-01

    The impact heat accumulated during the late stage of planetary accretion can melt a significant part or even the entire mantle of a terrestrial body, giving rise to a global magma ocean. The subsequent cooling of the interior causes the magma ocean to freeze from the core-mantle boundary (CMB) to the surface due to the steeper slope of the mantle adiabat compared to the slope of the solidus. Assuming fractional crystallization of the magma ocean, dense cumulates are produced close to the surface, largely due to iron enrichment in the evolving magma ocean liquid. A gravitationally unstable mantle thus forms, which is prone to overturn. We investigate the cumulate overturn and its influence on the thermal evolution of Mars using mantle convection simulations in 2D cylindrical geometry. We present a suite of simulations using different initial conditions and a strongly temperature-dependent viscosity. We assume that all radiogenic heat sources have been enriched during the freezing-phase of the magma ocean in the uppermost 50 km and that the initial steam-atmosphere created by the degassing of the freezing magma ocean was rapidly lost, implying that the surface temperature is set to present-day values. In this case, a stagnant lid quickly forms on top of the convective interior preventing the uppermost dense cumulates to sink, even when allowing for a plastic yielding mechanism. Below this dense stagnant lid, the mantle chemical gradient settles to a stable configuration. The convection pattern is dominated by small-scale structures, which are difficult to reconcile with the large-scale volcanic features observed over Mars' surface and partial melting ceases in less than 900 Ma. Assuming that the stagnant lid can break because of additional mechanisms and allowing the uppermost dense layer to overturn, a stable density gradient is obtained, with the densest material and the entire amount of heat sources lying above the CMB. This stratification leads to a strong overheating of the lowermost mantle, whose temperature increases to values that exceed the liquidus. The iron-rich melt would most likely remain trapped in the lower part of the mantle. The upper mantle in that scenario cools rapidly and only shows partial melting during the first billion year of evolution. Therefore a fractionated global and deep magma ocean is difficult to reconcile with observations. Different scenarios assuming, for instance, a hemispherical or shallow magma ocean, or a crystallization sequence resulting in a lower density gradient than that implied by pure fractional crystallization will have to be considered.

  3. Structural evolution of preexisting oceanic crust through intraplate igneous activities in the Marcus-Wake seamount chain

    NASA Astrophysics Data System (ADS)

    Kaneda, Kentaro; Kodaira, Shuichi; Nishizawa, Azusa; Morishita, Taisei; Takahashi, Narumi

    2010-10-01

    Multichannel seismic reflection studies and seismic refraction surveys with ocean bottom seismographs in the Marcus-Wake seamount chain in the northwestern Pacific Ocean reveal P wave velocity structures of hot spot-origin seamounts and adjacent oceanic crust. Inside the seamounts are central high-velocity (>6.5 km/s) structures extending nearly to the top that may indicate intrusive cores. Thick sediment layers (up to 4 km) with P wave velocities of 4-5 km/s have accumulated on seafloor that predates seamount formation. Downward crustal thickening of up to 2 km was documented beneath a large seamount cluster, but thickening was not confirmed below a small seamount cluster. Volume ratios of an intrusive core to a seamount body are 15-20%, indicating that most of the supplied magma was consumed in forming the thick sedimentary and volcaniclastic layer constituting the seamount flanks. Underplating and downward crustal thickening may tend to occur when second or later intrusive cores are formed in a seamount. P wave velocities in the lowest crust and in the uppermost mantle below the seamount chain are 0.1-0.2 km/s higher and 0.3-0.5 km/s lower, respectively, than velocities below oceanic crust. We explain this difference as a result of sill-like intrusion of magma into the lower crust and uppermost mantle. Reflected waves observed at offsets >200 km are from mantle reflectors at depths of 30-45 km and 55-70 km. The shallower reflectors may indicate structures formed by intraplate igneous activities, and the deeper reflectors may correspond to the lithosphere-asthenosphere boundary.

  4. Architecture of the crust and uppermost mantle in the northern Canadian Cordillera from receiver functions

    NASA Astrophysics Data System (ADS)

    Tarayoun, Alizia; Audet, Pascal; Mazzotti, Stéphane; Ashoori, Azadeh

    2017-07-01

    The northern Canadian Cordillera (NCC) is an active orogenic belt in northwestern Canada characterized by deformed autochtonous and allochtonous structures that were emplaced in successive episodes of convergence since the Late Cretaceous. Seismicity and crustal deformation are concentrated along corridors located far (>200 to 800 km) from the convergent plate margin. Proposed geodynamic models require information on crust and mantle structure and strain history, which are poorly constrained. We calculate receiver functions using 66 broadband seismic stations within and around the NCC and process them to estimate Moho depth and P-to-S velocity ratio (Vp/Vs) of the Cordilleran crust. We also perform a harmonic decomposition to determine the anisotropy of the subsurface layers. From these results, we construct simple seismic velocity models at selected stations and simulate receiver function data to constrain crust and uppermost mantle structure and anisotropy. Our results indicate a relatively flat and sharp Moho at 32 ± 2 km depth and crustal Vp/Vs of 1.75 ± 0.05. Seismic anisotropy is pervasive in the upper crust and within a thin ( 10-15 km thick) sub-Moho layer. The modeled plunging slow axis of hexagonal symmetry of the upper crustal anisotropic layer may reflect the presence of fractures or mica-rich mylonites. The subhorizontal fast axis of hexagonal anisotropy within the sub-Moho layer is generally consistent with the SE-NW orientation of large-scale tectonic structures. These results allow us to revise the geodynamic models proposed to explain active deformation within the NCC.

  5. Seismic imaging of the upper mantle beneath the northern Central Andean Plateau: Implications for surface topography

    NASA Astrophysics Data System (ADS)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.

    2015-12-01

    Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.

  6. Continent-arc collision in the Banda Arc imaged by ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Porritt, Robert W.; Miller, Meghan S.; O'Driscoll, Leland J.; Harris, Cooper W.; Roosmawati, Nova; Teofilo da Costa, Luis

    2016-09-01

    The tectonic configuration of the Banda region in southeast Asia captures the spatial transition from subduction of Indian Ocean lithosphere to subduction and collision of the Australian continental lithosphere beneath the Banda Arc. An ongoing broadband seismic deployment funded by NSF is aimed at better understanding the mantle and lithospheric structure in the region and the relationship of the arc-continent collision to orogenesis. Here, we present results from ambient noise tomography in the region utilizing this temporary deployment of 30 broadband instruments and 39 permanent stations in Indonesia, Timor Leste, and Australia. We measure dispersion curves for over 21,000 inter-station paths resulting in good recovery of the velocity structure of the crust and upper mantle beneath the Savu Sea, Timor Leste, and the Nusa Tenggara Timur (NTT) region of Indonesia. The resulting three dimensional model indicates up to ∼25% variation in shear velocity throughout the plate boundary region; first-order velocity anomalies are associated with the subducting oceanic lithosphere, subducted Australian continental lithosphere, obducted oceanic sediments forming the core of the island of Timor, and high velocity anomalies in the Savu Sea and Sumba. The structure in Sumba and the Savu Sea is consistent with an uplifting forearc sliver. Beneath the island of Timor, we confirm earlier inferences of pervasive crustal duplexing from surface mapping, and establish a link to underlying structural features in the lowermost crust and uppermost mantle that drive upper crustal shortening. Finally, our images of the volcanic arc under Flores, Wetar, and Alor show high velocity structures of the Banda Terrane, but also a clear low velocity anomaly at the transition between subduction of oceanic and continental lithosphere. Given that the footprint of the Banda Terrane has previously been poorly defined, this model provides important constraints on tectonic reconstructions that formerly have lacked information on the lower crust and uppermost mantle.

  7. Seismic properties of the crust and uppermost mantle of North America

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B.; Keller, G. R.

    1983-01-01

    Seismic refraction profiles for the North American continent were compiled. The crustal models compiled data on the upper mantle seismic velocity (P sub n), the crustal thickness (H sub c) and the average seismic velocity of the crystalline crust (V sub p). Compressional wave parameters were compared with shear wave data derived from surface wave dispersion models and indicate an average value for Poisson's ratio of 0.252 for the crust and of 0.273 for the uppermost mantle. Contour maps illustrate lateral variations in crustal thickness, upper mantle velocity and average seismic velocity of the crystalline crust. The distribution of seismic parameters are compared with a smoothed free air anomaly map of North America and indicate that a complidated mechanism of isostatic compensation exists for the North American continent. Several features on the seismic contour maps also correlate with regional magnetic anomalies.

  8. Upper mantle beneath foothills of the western Himalaya: subducted lithospheric slab or a keel of the Indian shield?

    NASA Astrophysics Data System (ADS)

    Vinnik, L.; Singh, A.; Kiselev, S.; Kumar, M. Ravi

    2007-12-01

    The fate of the mantle lithosphere of the Indian Plate in the India-Eurasia collision zone is not well understood. Tomographic studies reveal high P velocity in the uppermost mantle to the south of the western Himalaya, and these high velocities are sometimes interpreted as an image of subducting Indian lithosphere. We suggest that these high velocities are unrelated to the ongoing subduction but correspond to a near-horizontal mantle keel of the Indian shield. In the south of the Indian shield upper-mantle velocities are anomalously low, and relatively high velocities may signify a recovery of the normal shield structure in the north. Our analysis is based on the recordings of seismograph station NIL in the foothills of the western Himalaya. The T component of the P receiver functions is weak relative to the Q component, which is indicative of a subhorizontally layered structure. Joint inversion of the P and S receiver functions favours high uppermost mantle velocities, typical of the lithosphere of Archean cratons. The arrival of the Ps converted phase from 410 km discontinuity at NIL is 2.2 s earlier than in IASP91 global model. This can be an effect of remnants of Tethys subduction in the mantle transition zone and of high velocities in the keel of the Indian shield. Joint inversion of SKS particle motions and P receiver functions reveals a change in the fast direction of seismic azimuthal anisotropy from 60° at 80-160 km depths to 150° at 160-220 km. The fast direction in the lower layer is parallel to the trend of the Himalaya. The change of deformation regimes at a depth of 160 km suggests that this is the base of the lithosphere of the Indian shield. A similar boundary was found with similar techniques in central Europe and the Tien Shan region, but the base of the lithosphere in these regions is relatively shallow, in agreement with the higher upper-mantle temperatures. The ongoing continental collision is expressed in crustal structure: the crust beneath NIL is very thick (58 +/- 2 km), and the S velocity in the intermediate and lower crust is around 4.0 km s-1. This anomalously large velocity and thickness can be explained by scraping off the lower crust, when the Indian lithosphere underthrusts the Himalaya.

  9. Intracontinental Deformation in the NW Iranian Plateau and Comparisons with the Northern Margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, L.; Jiang, M.; Talebian, M.; Wan, B.; Ai, Y.; Ghods, A.; Sobouti, F.; Xiao, W.; Zhu, R.

    2017-12-01

    This study investigates the intracontinental deformation and its relationship with the structure of the crust and uppermost mantle in the NW Iranian plateau by combining new seismic and geological observations, to understand how this part of the plateau deformed to accommodate the Arabia-Eurasia plate collision and how the property of the lithosphere controls the deformation pattern. In contrast to the adjacent Anatolian block that exhibits westward large-scale extrusion, the northwesternmost part of the Iranian plateau shows dispersed intracontinental deformations with the development of numerous small-scale and discontinuous right-lateral strike-slip faults. The dispersed surface structures and deformation pattern correspond well to the active volcanism and seismically slow crust and uppermost mantle, and hence a weak lithosphere of the area. Further to the southeast are the western part of the Alborz Mountains and the southern Caspian Sea, both of which are characterized by stronger and more rigid lithosphere with relatively fast crust and uppermost mantle and absence of Quaternary volcanoes. A sharp Moho offset of 18 km has been imaged at the border of the Alborz and southern Caspian Sea using teleseismic receiver function data from a dense seismic array deployed under a collaborative project named "China-Iran Geological and Geophysical Survey in the Iranian Plateau (CIGSIP)". The sharp Moho offset and the minor undulations of the Moho on both sides indicate insignificant intracrustal deformation but mainly relative crustal movements between the Alborz Mountains and southern Caspian Sea, a behavior consistent with the relatively rigid nature of the lithosphere. Similar Moho offsets and lithospheric structures have been reported at the borders between the Kunlun Mountains and Qaidam or Tarim Basins in the northern margin of the Tibetan plateau, suggesting the occurrence of relative crustal movements with the effects of rigid continental lithosphere in the region. The new observations in the NW Iranian plateau combined with those in the Tibetan plateau thus provide solid evidence that intracontinental deformation is primarily controlled by the structure and properties of the continental lithosphere that may or may not have been severely altered by the collisional processes at plate margins.

  10. Mantle-crust interaction at the Blanco Ridge segment of the Blanco Transform Fault Zone: Results from the Blanco Transform Fault OBS Experiment

    NASA Astrophysics Data System (ADS)

    Kuna, V. M.; Nabelek, J.; Braunmiller, J.

    2016-12-01

    We present results of the Blanco Transform OBS Experiment, which consists of the deployment of 55 three-component broadband and short-period ocean bottom seismometers in the vicinity of the Blanco Fault Zone for the period between September 2012 and October 2013. Our research concentrates on the Blanco Ridge, a purely transform segment of the Blanco Fault Zone, that spans over 130 km between the Cascadia and the Gorda pull-apart depressions. Almost 3,000 well-constrained earthquakes were detected and located along the Blanco Ridge by an automatic procedure (using BRTT Antelope) and relocated using a relative location algorithm (hypoDD). The catalog magnitude of completeness is M=2.2 with an overall b value of 1. Earthquakes extend from 0 km to 20 km depth, but cluster predominantly at two depth levels: in the crust (5-7 km) and in the uppermost mantle (12-17 km). Statistical analysis reveals striking differences between crustal and mantle seismicity. The temporal distribution of crustal events follows common patterns given by Omori's law, while most mantle seismicity occurs in spatially tight sequences of unusually short durations lasting 30 minutes or less. These sequences cannot be described by known empirical laws. Moreover, we observe increased seismic activity in the uppermost mantle about 30 days before the largest (M=5.4) earthquake. Two mantle sequences occurred in a small area of 3x3 km about 4 and 2 weeks before the M=5.4 event. In the week leading up to the M=5.4 event we observe a significant downward migration of crustal seismicity, which results in the subsequent nucleation of the main event at the base of the crust. We hypothesize that the highly localized uppermost mantle seismicity is triggered by aseismic slow-slip of the surrounding ductile mantle. We also suggest that the mantle slip loads the crust eventually resulting in relatively large crustal earthquakes.

  11. A 3-D shear velocity model of the southern North America and the Caribbean plates from ambient noise and earthquake tomography

    NASA Astrophysics Data System (ADS)

    Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.

    2014-10-01

    We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh-waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of NAM plate. A new imaged feature is the low crustal velocities along USA-Mexico border. The model also shows a break of the E-W mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of Tehuantepec and Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.

  12. A 3-D shear velocity model of the southern North American and Caribbean plates from ambient noise and earthquake tomography

    NASA Astrophysics Data System (ADS)

    Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.

    2015-02-01

    We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of the NAM plate. A new imaged feature is the low crustal velocities along the USA-Mexico border. The model also shows a break of the east-west mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of the Tehuantepec and the Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.

  13. Crustal structure of the Boreas Basin formed at ultraslow spreading Knipovich Ridge - Northern North Atlantic

    NASA Astrophysics Data System (ADS)

    Hermann, T.; Jokat, W.

    2012-04-01

    The Boreas Basin is located in Norwegian Greenland Sea bordered by the Greenland Fracture Zone in the south and the Hovgard Ridge in the north, respectively. In the east it adjoins the ultraslow mid-ocean Knipovich Ridge. Previous seismic reflection studies in the Boreas Basin have shown that the basement topography has a roughness, which is typical for ultraslow spreading ridges. This observation supports assumptions that the basin was formed at ultraslow spreading rates during its entire geological history. However, the detailed crustal structure remained unresolved. In summer 2009 new seismic refraction data were acquired in the Boreas Basin during the expedition ARK-XXIV/3 with the research vessel Polarstern. The deep seismic sounding line has a length of 340 km. Forward modelling of the data of 18 ocean bottom seismometers deployed along the NW-SE trending profile reveal an unusual 3.2 km thin oceanic crust. The crustal model is further constrained by S-wave and 2D gravity modelling. The P-wave velocity model shows a layered oceanic crust without oceanic layer 3 and with velocities less than 6.3 km/s except beneath a nearly 2000 m high seamount. Beneath the seamount velocities of up to 6.7 km/s were observed. The mantle velocities range between 7.5 km/s in the uppermost mantle and 8.0 km/s in almost 15 km depth. A serpentinisation of approximately 13% in the uppermost mantle decreasing downwards can explain the low mantle velocities. In summary, the transect confirms earlier models that the entire Boreas Basin was formed at ultraslow spreading rates. Indications for this are the basement roughness and the overall thin oceanic crust. Both observations are typical for ultraslow spreading systems.

  14. Crustal and uppermost mantle S-wave velocity structure beneath the Japanese islands from seismic ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Guo, Zhi; Gao, Xing; Shi, Heng; Wang, Weiming

    2013-04-01

    In this study, the crustal and uppermost mantle shear wave velocities beneath the Japanese islands have been determined by inversion from seismic ambient noise tomography using data recorded at 75 Full Range Seismograph Network of Japan broad-band seismic stations, which are uniformly distributed across the Japanese islands. By cross-correlating 2 yr of vertical component seismic ambient noise recordings, we are able to extract Rayleigh wave empirical Green's functions, which are subsequently used to measure phase velocity dispersion in the period band of 6-50 s. The dispersion data are then inverted to yield 2-D tomographic phase velocity maps and 3-D shear wave velocity models. Our results show that the velocity variations at short periods (˜10 s), or in the uppermost crust, correlate well with the major known surface geological and tectonic features. In particular, the distribution of low-velocity anomalies shows good spatial correlation with active faults, volcanoes and terrains of sediment exposure, whereas the high-velocity anomalies are mainly associated with the mountain ranges. We also observe that large upper crustal earthquakes (5.0 ≤ M ≤ 8.0, depth ≤ 25 km) mainly occurred in low-velocity anomalies or along the boundary between low- and high-velocity anomalies, suggesting that large upper crustal earthquakes do not strike randomly or uniformly; rather they are inclined to nucleate within or adjacent to low-velocity areas.

  15. Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities

    NASA Astrophysics Data System (ADS)

    Heeszel, David S.; Wiens, Douglas A.; Anandakrishnan, Sridhar; Aster, Richard C.; Dalziel, Ian W. D.; Huerta, Audrey D.; Nyblade, Andrew A.; Wilson, Terry J.; Winberry, J. Paul

    2016-03-01

    The seismic velocity structure of Antarctica is important, both as a constraint on the tectonic history of the continent and for understanding solid Earth interactions with the ice sheet. We use Rayleigh wave array analysis methods applied to teleseismic data from recent temporary broadband seismograph deployments to image the upper mantle structure of central and West Antarctica. Phase velocity maps are determined using a two-plane wave tomography method and are inverted for shear velocity using a Monte Carlo approach to estimate three-dimensional velocity structure. Results illuminate the structural dichotomy between the East Antarctic Craton and West Antarctica, with West Antarctica showing thinner crust and slower upper mantle velocity. West Antarctica is characterized by a 70-100 km thick lithosphere, underlain by a low-velocity zone to depths of at least 200 km. The slowest anomalies are beneath Ross Island and the Marie Byrd Land dome and are interpreted as upper mantle thermal anomalies possibly due to mantle plumes. The central Transantarctic Mountains are marked by an uppermost mantle slow-velocity anomaly, suggesting that the topography is thermally supported. The presence of thin, higher-velocity lithosphere to depths of about 70 km beneath the West Antarctic Rift System limits estimates of the regionally averaged heat flow to less than 90 mW/m2. The Ellsworth-Whitmore block is underlain by mantle with velocities that are intermediate between those of the West Antarctic Rift System and the East Antarctic Craton. We interpret this province as Precambrian continental lithosphere that has been altered by Phanerozoic tectonic and magmatic activity.

  16. Three-dimensional crust and mantle structure of Kilauea Volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth, W.L.; Koyanagi, R.Y.

    1977-11-10

    Teleseismic P wave arrival times recorded by a dense network of seismograph stations located on Kilauea volcano, Hawaii, are inverted to determine lateral variation in crust and upper mantle structure to a depth of 70 km. The crustal structure is dominated by relatively high velocities within the central summit complex and along the two radial rift zones compared with the nonrift flank of the volcano. Both the mean crustal velocity contrast between summit and nonrift flank and the distribution of velocities agree well with results from crustal refraction studies. Comparison of the velocity structure with Bouguer gravity anomalies over themore » volcano through a simple physical model also gives excellent agreement. Mantle structure appears to be more homogeneous than crustal structure. The root mean square velocity variation for the mantle averages only 1.5%, whereas variation within the crust exceeds 4%. The summit of Kilauea is underlain by normal velocity (8.1 km/s) material within the uppermost mantle (12--25 km), suggesting that large magma storage reservoirs are not present at this level and that the passageways from deeper sources must be quite narrow. No evidence is found for substantial volumes of partially molten rock (5%) within the mantle to depths of at least 40 km. Below about 30 km, low-velocity zones (1--2%) underlie the summits of Kilauea and nearby Mauna Loa and extend south of Kilauea into a broad offshore zone. Correlation of volcanic tremor source locations and persistent zones of mantle earthquakes with low-velocity mantle between 27.5- and 42.5-km depth suggests that a laterally extensive conduit system feeds magma to the volcanic summits from sources either at comparable depth or deeper within the mantle. The center of contemporary magmatic production and/or upwelling from deeper in the mantle appears to extend well to the south of the active volcanic summits, suggesting that the Hawaiian Island chain is actively extending to the southeast.« less

  17. Seismicity and S-wave velocity structure of the crust and the upper mantle in the Baikal rift and adjacent regions

    NASA Astrophysics Data System (ADS)

    Seredkina, Alena; Kozhevnikov, Vladimir; Melnikova, Valentina; Solovey, Oksana

    2016-12-01

    Correlations between seismicity, seismotectonic deformation (STD) field and velocity structure of the crust and the upper mantle in the Baikal rift and the adjacent areas of the Siberian platform and the Mongol-Okhotsk fold belt have been investigated. The 3D S-wave velocity structure up to the depths of 500 km has been modeled using a representative sample of Rayleigh wave group velocity dispersion curves (about 3200 paths) at periods from 10 to 250 s. The STD pattern has been reconstructed from mechanisms of large earthquakes, and is in good agreement with GPS and structural data. Analysis of the results has shown that most of large shallow earthquakes fall in regions of low S-wave velocities in the uppermost mantle (western Mongolia and areas of recent mountain building in southern Siberia) and in zones of their relatively high lateral variations (northeastern flank of the Baikal rift). In the first case the dominant STD regime is compression manifested in a mixture of thrust and strike-slip deformations. In the second case we observe a general predominance of extension.

  18. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab

    PubMed Central

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-01-01

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure–temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge. PMID:23716664

  19. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.

    PubMed

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-06-11

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.

  20. P wave velocity of Proterozoic upper mantle beneath central and southern Asia

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew A.; Vogfjord, Kristin S.; Langston, Charles A.

    1996-05-01

    P wave velocity structure of Proterozoic upper mantle beneath central and southern Africa was investigated by forward modeling of Pnl waveforms from four moderate size earthquakes. The source-receiver path of one event crosses central Africa and lies outside the African superswell while the source-receiver paths for the other events cross Proterozoic lithosphere within southern Africa, inside the African superswell. Three observables (Pn waveshape, PL-Pn time, and Pn/PL amplitude ratio) from the Pnl waveform were used to constrain upper mantle velocity models in a grid search procedure. For central Africa, synthetic seismograms were computed for 5880 upper mantle models using the generalized ray method and wavenumber integration; synthetic seismograms for 216 models were computed for southern Africa. Successful models were taken as those whose synthetic seismograms had similar waveshapes to the observed waveforms, as well as PL-Pn times within 3 s of the observed times and Pn/PL amplitude ratios within 30% of the observed ratio. Successful models for central Africa yield a range of uppermost mantle velocity between 7.9 and 8.3 km s-1, velocities between 8.3 and 8.5 km s-1 at a depth of 200 km, and velocity gradients that are constant or slightly positive. For southern Africa, successful models yield uppermost mantle velocities between 8.1 and 8.3 km s-1, velocities between 7.9 and 8.4 km s-1 at a depth of 130 km, and velocity gradients between -0.001 and 0.001 s-1. Because velocity gradients are controlled strongly by structure at the bottoming depths for Pn waves, it is not easy to compare the velocity gradients obtained for central and southern Africa. For central Africa, Pn waves turn at depths of about 150-200 km, whereas for southern Africa they bottom at ˜100-150 km depth. With regard to the origin of the African superswell, our results do not have sufficient resolution to test hypotheses that invoke simple lithospheric reheating. However, our models are not consistent with explanations for the African superswell invoking extensive amounts of lithospheric thinning. If extensive lithospheric thinning had occurred beneath southern Africa, as suggested previously, then upper mantle P wave velocities beneath southern Africa would likely be lower than those in our models.

  1. Icelandic-type crust

    USGS Publications Warehouse

    Foulger, G.R.; Du, Z.; Julian, B.R.

    2003-01-01

    Numerous seismic studies, in particular using receiver functions and explosion seismology, have provided a detailed picture of the structure and thickness of the crust beneath the Iceland transverse ridge. We review the results and propose a structural model that is consistent with all the observations. The upper crust is typically 7 ?? 1 km thick, heterogeneous and has high velocity gradients. The lower crust is typically 15-30 ?? 5 km thick and begins where the velocity gradient decreases radically. This generally occurs at the V p ??? 6.5 km s-1 level. A low-velocity zone ??? 10 000 km2 in area and up to ??? 15 km thick occupies the lower crust beneath central Iceland, and may represent a submerged, trapped oceanic microplate. The crust-mantle boundary is a transition zone ???5 ?? 3 km thick throughout which V p increases progressively from ???7.2 to ???8.0 km s-1. It may be gradational or a zone of alternating high- and low-velocity layers. There is no seismic evidence for melt or exceptionally high temperatures in or near this zone. Isostasy indicates that the density contrast between the lower crust and the mantle is only ???90 kg m-3 compared with ???300 kg m-3 for normal oceanic crust, indicating compositional anomalies that are as yet not understood. The seismological crust is ???30 km thick beneath the Greenland-Iceland and Iceland-Faeroe ridges, and eastern Iceland, ???20 km beneath western Iceland, and ???40 km thick beneath central Iceland. This pattern is not what is predicted for an eastward-migrating plume. Low attenuation and normal V p/V s ratios in the lower crust beneath central and southwestern Iceland, and normal uppermost mantle velocities in general, suggest that the crust and uppermost mantle are subsolidus and cooler than at equivalent depths beneath the East Pacific Rise. Seismic data from Iceland have historically been interpreted both in terms of thin-hot and thick-cold crust models, both of which have been cited as supporting the plume hypothesis. This suggests that the plume model for Iceland is an a priori assumption rather than a hypothesis subject to testing. The long-extinct Ontong-Java Plateau, northwest India and Parana??, Brazil large igneous provinces, beneath which mantle plumes are not expected are all underlain by mantle low-velocity bodies similar to that beneath Iceland. A plume interpretation for the mantle anomaly beneath Iceland is thus not required.

  2. Next-generation seismic experiments: wide-angle, multi-azimuth, three-dimensional, full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Morgan, Joanna; Warner, Michael; Bell, Rebecca; Ashley, Jack; Barnes, Danielle; Little, Rachel; Roele, Katarina; Jones, Charles

    2013-12-01

    Full-waveform inversion (FWI) is an advanced seismic imaging technique that has recently become computationally feasible in three dimensions, and that is being widely adopted and applied by the oil and gas industry. Here we explore the potential for 3-D FWI, when combined with appropriate marine seismic acquisition, to recover high-resolution high-fidelity P-wave velocity models for subsedimentary targets within the crystalline crust and uppermost mantle. We demonstrate that FWI is able to recover detailed 3-D structural information within a radially faulted dome using a field data set acquired with a standard 3-D petroleum-industry marine acquisition system. Acquiring low-frequency seismic data is important for successful FWI; we show that current acquisition techniques can routinely acquire field data from airguns at frequencies as low as 2 Hz, and that 1 Hz acquisition is likely to be achievable using ocean-bottom hydrophones in deep water. Using existing geological and geophysical models, we construct P-wave velocity models over three potential subsedimentary targets: the Soufrière Hills Volcano on Montserrat and its associated crustal magmatic system, the crust and uppermost mantle across the continent-ocean transition beneath the Campos Basin offshore Brazil, and the oceanic crust and uppermost mantle beneath the East Pacific Rise mid-ocean ridge. We use these models to generate realistic multi-azimuth 3-D synthetic seismic data, and attempt to invert these data to recover the original models. We explore resolution and accuracy, sensitivity to noise and acquisition geometry, ability to invert elastic data using acoustic inversion codes, and the trade-off between low frequencies and starting velocity model accuracy. We show that FWI applied to multi-azimuth, refracted, wide-angle, low-frequency data can resolve features in the deep crust and uppermost mantle on scales that are significantly better than can be achieved by any other geophysical technique, and that these results can be obtained using relatively small numbers (60-90) of ocean-bottom receivers combined with large numbers of airgun shots. We demonstrate that multi-azimuth 3-D FWI is robust in the presence of noise, that acoustic FWI can invert elastic data successfully, and that the typical errors to be expected in starting models derived using traveltimes will not be problematic for FWI given appropriately designed acquisition. FWI is a rapidly maturing technology; its transfer from the petroleum sector to tackle a much broader range of targets now appears to be entirely achievable.

  3. P-wave Velocity Structure Across the Mariana Trench and Implications for Hydration

    NASA Astrophysics Data System (ADS)

    Eimer, M. O.; Wiens, D.; Lizarralde, D.; Cai, C.

    2017-12-01

    Estimates of the water flux at subduction zones remain uncertain, particularly the amount of water brought into the trench by the subducting plate. Normal faulting related to the bending of the incoming plate has been proposed to provide pathways for water to hydrate the crust and upper mantle. A passive and active source seismic experiment spanning both the incoming plate and forearc was conducted in 2012 in central Mariana to examine the role of hydration at subduction zones. The active-source component of the survey used the R/V M.G. Langsethairgun array and 68 short period sensors, including suspended hydrophones, deployed on 4 transects. This study at the Mariana trench offers a comparison to related studies of incoming plate hydration in Middle America, where differing thermal structures related to plate age predict different stability fields for hydrous minerals. The forearc structure is also of interest, since Mariana is characterized by large serpentine seamounts and may have a serpentinized mantle wedge. The velocity structure will also be important for the relocation of earthquakes in the incoming plate, since the seismicity can offer a constraint for the depth extent of these bending faults. We examine the P-wave velocity structure along a 400-km long wide-angle refraction transect perpendicular to the trench and spanning both the forearc and incoming plate. Preliminary results indicate a velocity reduction in the crust and uppermost mantle at the bending region of the incoming plate, relative to the plate's structure away from the trench. This reduction suggests that outer-rise faults extend into the upper mantle and may have promoted serpentinization of that material. Mantle Pn refraction phases are not observed in the forearc, consistent with the ambient noise tomography results that show upper-mantle velocities similar to that of the lower crust. The lack of contrast between the upper mantle and crustal velocities from the ambient noise has been interpreted to indicate extensive serpentinization of the shallow mantle wedge.

  4. Mantle transition zone structure and upper mantle S velocity variations beneath Ethiopia: Evidence for a broad, deep-seated thermal anomaly

    NASA Astrophysics Data System (ADS)

    Benoit, Margaret H.; Nyblade, Andrew A.; Owens, Thomas J.; Stuart, Graham

    2006-11-01

    Ethiopia has been subjected to widespread Cenozoic volcanism, rifting, and uplift associated with the Afar hot spot. The hot spot tectonism has been attributed to one or more thermal upwellings in the mantle, for example, starting thermal plumes and superplumes. We investigate the origin of the hot spot by imaging the S wave velocity structure of the upper mantle beneath Ethiopia using travel time tomography and by examining relief on transition zone discontinuities using receiver function stacks. The tomographic images reveal an elongated low-velocity region that is wide (>500 km) and extends deep into the upper mantle (>400 km). The anomaly is aligned with the Afar Depression and Main Ethiopian Rift in the uppermost mantle, but its center shifts westward with depth. The 410 km discontinuity is not well imaged, but the 660 km discontinuity is shallower than normal by ˜20-30 km beneath most of Ethiopia, but it is at a normal depth beneath Djibouti and the northwestern edge of the Ethiopian Plateau. The tomographic results combined with a shallow 660 km discontinuity indicate that upper mantle temperatures are elevated by ˜300 K and that the thermal anomaly is broad (>500 km wide) and extends to depths ≥660 km. The dimensions of the thermal anomaly are not consistent with a starting thermal plume but are consistent with a flux of excess heat coming from the lower mantle. Such a broad thermal upwelling could be part of the African Superplume found in the lower mantle beneath southern Africa.

  5. Seismic structure of the central US crust and upper mantle: Uniqueness of the Reelfoot Rift

    USGS Publications Warehouse

    Pollitz, Fred; Mooney, Walter D.

    2014-01-01

    Using seismic surface waves recorded with Earthscope's Transportable Array, we apply surface wave imaging to determine 3D seismic velocity in the crust and uppermost mantle. Our images span several Proterozoic and early Cambrian rift zones (Mid-Continent Rift, Rough Creek Graben—Rome trough, Birmingham trough, Southern Oklahoma Aulacogen, and Reelfoot Rift). While ancient rifts are generally associated with low crustal velocity because of the presence of thick sedimentary sequences, the Reelfoot Rift is unique in its association with low mantle seismic velocity. Its mantle low-velocity zone (LVZ) is exceptionally pronounced and extends down to at least 200 km depth. This LVZ is of variable width, being relatively narrow (∼50km">∼50km wide) within the northern Reelfoot Rift, which hosts the New Madrid Seismic Zone (NMSZ). We hypothesize that this mantle volume is weaker than its surroundings and that the Reelfoot Rift consequently has relatively low elastic plate thickness, which would tend to concentrate tectonic stress within this zone. No other intraplate ancient rift zone is known to be associated with such a deep mantle low-velocity anomaly, which suggests that the NMSZ is more susceptible to external stress perturbations than other ancient rift zones.

  6. Flow in the Deep Mantle from Seisimc Anisotropy: Progress and Prospects

    NASA Astrophysics Data System (ADS)

    Long, M. D.

    2017-12-01

    Observations of seismic anisotropy, or the directional dependence of seismic wavespeeds, provide one some of the most direct constraints on the pattern of flow in the Earth's mantle. In particular, as our understanding of crystallographic preferred orientation (CPO) of olivine aggregates under a range of deformation conditions has improved, our ability to exploit observations of upper mantle anisotropy has led to fundamental discoveries about the patterns of flow in the upper mantle and the drivers of that flow. It has been a challenge, however, to develop a similar framework for understanding flow in the deep mantle (transition zone, uppermost lower mantle, and lowermost mantle), even though there is convincing observational evidence for seismic anisotropy at these depths. Recent progress on the observational front has allowed for an increasingly detailed view of mid-mantle anisotropy (transition zone and uppermost lower mantle), particularly in subduction systems, which may eventually lead to a better understanding of mid-mantle deformation and the dynamics of slab interaction with the surrounding mid-mantle. New approaches to the observation and modeling of lowermost mantle anisotropy, in combination with constraints from mineral physics, are progressing towards interpretive frameworks that allow for the discrimination of different mantle flow geometries in different regions of D". In particular, observational strategies that involve the use of multiple types of body wave phases sampled over a range of propagation azimuths enable detailed forward modeling approaches that can discriminate between different mechanisms for D" anisotropy (e.g., CPO of post-perovskite, bridgmanite, or ferropericlase, or shape preferred orientation of partial melt) and identify plausible anisotropic orientations. We have recently begun to move towards a full waveform modeling approach in this work, which allows for a more accurate simulation for seismic wave propagation. Ongoing improvements in seismic observational strategies, experimental and computational mineral physics, and geodynamic modeling approaches are leading to new avenues for understanding flow in the deep mantle through the study of seismic anisotropy.

  7. Spatiotemporal distribution of low-frequency earthquakes in Southwest Japan: Evidence for fluid migration and magmatic activity

    NASA Astrophysics Data System (ADS)

    Yu, Zhiteng; Zhao, Dapeng; Niu, Xiongwei; Li, Jiabiao

    2018-01-01

    Low-frequency earthquakes (LFEs) in the lower crust and uppermost mantle are widely observed in Southwest Japan, and they occur not only along the subducting Philippine Sea (PHS) slab interface but also beneath active arc volcanoes. The volcanic LFEs are still not well understood because of their limited quantities and less reliable hypocenter locations. In this work, seismic tomography is used to determine detailed three-dimensional (3-D) P- and S-wave velocity (Vp and Vs) models of the crust and upper mantle beneath Southwest Japan, and then the obtained 3-D Vp and Vs models are used to relocate the volcanic LFEs precisely. The results show that the volcanic LFEs can be classified into two types: pipe-like and swarm-like LFEs, and both of them are located in or around zones of low-velocity and high-Poisson's ratio anomalies in the crust and uppermost mantle beneath the active volcanoes. The pipe-like LFEs may be related to the fluid migration from the lower crust or the uppermost mantle, whereas the swarm-like LFEs may be related to local magmatic activities or small magma chambers. The number of LFEs sometimes increases sharply before or after a nearby large crustal earthquake which may cause cracks and fluid migration. The spatiotemporal distribution of the LFEs may indicate the track of migrating fluids. As compared with the tectonic LFEs along the PHS slab interface, the volcanic LFEs are more sensitive to fluid migration and local magmatic activities. High pore pressures play an important role in triggering both types of LFEs in Southwest Japan.

  8. Earthquake focal parameters and lithospheric structure of the anatolian plateau from complete regional waveform modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A

    2000-12-28

    This is an informal report on preliminary efforts to investigate earthquake focal mechanisms and earth structure in the Anatolian (Turkish) Plateau. Seismic velocity structure of the crust and upper mantle and earthquake focal parameters for event in the Anatolian Plateau are estimated from complete regional waveforms. Focal mechanisms, depths and seismic moments of moderately large crustal events are inferred from long-period (40-100 seconds) waveforms and compared with focal parameters derived from global teleseismic data. Using shorter periods (10-100 seconds) we estimate the shear and compressional velocity structure of the crust and uppermost mantle. Results are broadly consistent with previous studiesmore » and imply relatively little crustal thickening beneath the central Anatolian Plateau. Crustal thickness is about 35 km in western Anatolia and greater than 40 km in eastern Anatolia, however the long regional paths require considerable averaging and limit resolution. Crustal velocities are lower than typical continental averages, and even lower than typical active orogens. The mantle P-wave velocity was fixed to 7.9 km/s, in accord with tomographic models. A high sub-Moho Poisson's Ratio of 0.29 was required to fit the Sn-Pn differential times. This is suggestive of high sub-Moho temperatures, high shear wave attenuation and possibly partial melt. The combination of relatively thin crust in a region of high topography and high mantle temperatures suggests that the mantle plays a substantial role in maintaining the elevation.« less

  9. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle

    NASA Astrophysics Data System (ADS)

    Nestola, F.; Korolev, N.; Kopylova, M.; Rotiroti, N.; Pearson, D. G.; Pamato, M. G.; Alvaro, M.; Peruzzo, L.; Gurney, J. J.; Moore, A. E.; Davidson, J.

    2018-03-01

    Laboratory experiments and seismology data have created a clear theoretical picture of the most abundant minerals that comprise the deeper parts of the Earth’s mantle. Discoveries of some of these minerals in ‘super-deep’ diamonds—formed between two hundred and about one thousand kilometres into the lower mantle—have confirmed part of this picture. A notable exception is the high-pressure perovskite-structured polymorph of calcium silicate (CaSiO3). This mineral—expected to be the fourth most abundant in the Earth—has not previously been found in nature. Being the dominant host for calcium and, owing to its accommodating crystal structure, the major sink for heat-producing elements (potassium, uranium and thorium) in the transition zone and lower mantle, it is critical to establish its presence. Here we report the discovery of the perovskite-structured polymorph of CaSiO3 in a diamond from South African Cullinan kimberlite. The mineral is intergrown with about six per cent calcium titanate (CaTiO3). The titanium-rich composition of this inclusion indicates a bulk composition consistent with derivation from basaltic oceanic crust subducted to pressures equivalent to those present at the depths of the uppermost lower mantle. The relatively ‘heavy’ carbon isotopic composition of the surrounding diamond, together with the pristine high-pressure CaSiO3 structure, provides evidence for the recycling of oceanic crust and surficial carbon to lower-mantle depths.

  10. Preliminary analysis of seismic anisotropy in the uppermost mantle beneath NW Pacific reveled by the Normal Oceanic Mantle project

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Isse, T.; Nishida, K.; Kawakatsu, H.; Shiobara, H.; Sugioka, H.; Ito, A.; Utada, H.

    2013-12-01

    Seismic structure including anisotropy in the oceanic uppermost mantle is essential for understanding deformation related to plate tectonics. Recent reports of a sharp discontinuity between the high velocity LID and the low velocity zone (LVZ) especially emphasize the importance of observation in oceanic basins apart from ridges and hotspots for determining the structure including LID and LVZ. In this study, we analyzed records of four broadband ocean bottom seismometers (BBOBSs) deployed in the northwest of Shatsky Rise by the pilot observation of the Normal Oceanic Mantle (NOMan) project in 2010-2011. We first measured average phase velocities of surface waves at periods of 5-30 s by the ambient-noise cross correlation method. Based on the method of Takeo et al. (in prep. GJI), we analyzed fundamental- and first higher- mode Rayleigh waves and fundamental-mode Love wave simultaneously by waveform fitting after the correction of clock delay. At periods of 25-100 s, we measured phase velocities of fundamental-mode surface waves by the array analysis of teleseismic waveforms. We then determined one-dimensional radially anisotropic structure beneath the array by the method of Takeo et al. (2013, JGR). The obtained structure shows transition from LID to LVZ at depths of 50-80km, which is marginally consistent with the depth of ~80 km estimated by a receiver function analysis at WP2 station situated at east of the studies area (Kawakatsu et al., 2009). The velocity gradient in the LID is almost zero and inconsistent with the simple cooling model of homogeneous oceanic plate. The average intensity of S-wave radial anisotropy at depths of ~10-220 km is ~3% (VSH>VSV). We further estimated S-wave azimuthal anisotropy at depths of ~30-100 km by analyzing teleseismic fundamental-mode Rayleigh waves at periods of 25-50 s. The intensity of anisotropy is 2-3%. The fastest direction is about N35W, close to that of Sn-wave velocity around WP2 station obtained by a refraction survey (Shinohara et al., 2008), and indicates the presence of past mantle flow almost perpendicular to the ancient mid ocean ridge or the presence of current mantle flow parallel to the plate motion at depths of 30-100 km. We will further analyze new records after the recovery of 13 BBOBSs in August 2013 and will present more detailed structure around Shatsky Rise. BBOBS stations of pilot observation of NOMan project (white crosses), WP2 station (circle), isochrons (white lines). Black bars show the fastest directions of Rayleigh wave at periods of 25-50 s and the fastest direction of Sn-wave velocity (Shinohara et al. 2008).

  11. Identifying Moho depths and velocity anomalies in the uppermost mantle of the Mississippi Embayment from Pn tomography and anisotropy studies

    NASA Astrophysics Data System (ADS)

    Basu, U.; Powell, C. A.

    2017-12-01

    Lateral depth variations of the Mohorovicic discontinuity, Pn velocities, and anisotropy features at uppermost mantle depths below the central U.S. are determined using Pn tomography. Excellent raypath coverage throughout the northern Mississippi Embayment (ME) is obtained using the NELE (Northern Embayment Lithosphere Experiment) and US TA (Transportable Array) datasets. High Pn velocities are present below the northern portion of the Reelfoot Rift and the New Madrid seismic zone. Prominent regions of low velocity are present to the east and north of the ME, in agreement with recent teleseismic tomography studies indicating the presence of low P- and S-wave velocities in the uppermost mantle. A prominent region of low velocity coincides with the southwestern portion of the Illinois Basin. Higher velocities are located west of the Illinois Basin and west of the Ozark Plateau. Crustal thicknesses obtained from the Pn station delays indicate thinner crust in the southern Coastal Plain and ME and thicker crust north of the ME. Strong Pn anisotropy and rotation of the fast directions are associated with the northern ME. Fast directions differ from present absolute plate motion directions and from fast directions determined from SKS splitting, suggesting the presence of multiple anisotropic layers. Parameter errors estimated using the bootstrap method are all less than 0.1 km/s for velocity and magnitude of the anisotropy.

  12. Constraints on seismic anisotropy of the innermost inner core from observations of antipode PKIIKP phases

    NASA Astrophysics Data System (ADS)

    Niu, F.

    2006-12-01

    While the existence of seismic anisotropy in the inner core is well accepted, its magnitude and depth variations are still debated. Besides seismic anisotropy, there is growing evidence that suggests the top several hundred kilometers of the inner core exhibits a hemispherical variation in both velocity (the isotropic wave speed and the magnitude of anisotropy) and attenuation structure. When the PKIKP wave propagates through the uppermost ~400 km of the inner core and reaches a distance less than ~155°, there are two other phases, PKiKP and PKPbc, which have mantle ray paths very close to it. The former is a P wave that reflects off the inner-core boundary (ICB) and the latter is P wave that travels above the ICB. These two phases are usually used as reference phases to infer the uppermost structure of the inner core. As the result, the top ~400 km of the inner core is relatively well studied and its structure is well known. On the other hand to study the deeper ~800 km of the inner core, one must use PKIKP arrivals observed at greater distances where there is no regular phase can be used as a suitable reference phase to remove mantle anomalies. PKPab is sometime used as the reference, but it is generally considered to be a poor reference phase as it has a very different ray path from PKIPK in the mantle and it also travels along the core-mantle boundary (CMB) where very strong lateral heterogeneities are known to exist. Another approach is to use a 3D global mantle velocity model to correct the mantle anomalies in the PKIKP travel time residuals. Using this approach Ishii and Dziewonski (2002) found that the innermost ~300 km exhibits a distinct seismic anisotropy from the rest of body, which they used to argue that the Earth's center might have a unique early history in the core's formation and evolution. Here we report on an observation of the PKIIKP phase, an underside reflected P wave at the ICB, for both the major- and minor-arc ray paths. The major-arc PKIIKP phase can be seen in individual seismograms recorded by 11 broadband stations in a distance range of 176.5° 179.5° from a deep earthquake occurring in the Indonesia arc. The stations recording the phase were in northern Venezuela and the southern Caribbean and consisted of the Venezuelan national seismograph network, and the BB U.S. BOLIVAR project stations. Both the major-arc and minor-arc PKIIKP can be identified in the vespagram stacked from records in the distance range between 172.6° and 176.5°. To our knowledge observation of major-arc PKIIKP phase has never before been reported. Since PKIIKP has a very similar ray path to PKIKP in the mantle and has almost a normal incidence to the D" layer, it serves as a much better reference phase than the PKPab phase to remove mantle effects from the PKIKP residual times. In fact we observed a very consistent PKIIKP- PKIKP residual time across the entire array, indicating that mantle anomalies can indeed be removed efficiently using PKIIKP. After correcting very trivial anomalies due to the PKIIKP ray path in the uppermost ~100 km of the inner core, we obtained a ~1.5 s PKIKP-PKIIKP differential time residual with respect to PREM. As the paths have an almost 90° ray angle to the Earth's rotational axis, it is impossible to explain the early PKIKP arrival by a model of uniform anisotropy with fast direction parallel to the rotational axis The tilt anisotropy model for the innermost 300 km proposed by Ishii and Dziewonski can roughly explain the 1.5 s positive residual.

  13. 3-D structure of the crust and uppermost mantle at the junction between the Southeastern Alps and External Dinarides from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Guidarelli, Mariangela; Aoudia, Abdelkrim; Costa, Giovanni

    2017-12-01

    We use ambient noise tomography to investigate the crust and the uppermost mantle structure beneath the junction between the Southern Alps, the Dinarides and the Po Plain. We obtained Rayleigh wave empirical Green's functions from cross-correlation of vertical component seismic recordings for three years (2010-2012) using stations from networks in Italy, Slovenia, Austria, Croatia, Serbia and Switzerland. We measure group and phase velocity dispersion curves from the reconstructed Rayleigh waves in the period range 5-30 and 8-37 s, respectively, and we invert the surface wave velocities for tomographic images on a grid of 0.1° × 0.1°. After the tomography, the group velocities are then inverted to compute the 3-D shear wave velocity model of the crust and the upper mantle beneath the region. Our shear wave velocity model provides the 3-D image of the structure in the region between Northeastern Italy, Slovenia and Austria. The velocity variations at shallow depths correlate with known geological and tectonic domains. We find low velocities below the Po Plain, the northern tip of the Adriatic and the Pannonian Basin, whereas higher velocities characterize the Alpine chain. The vertical cross-sections reveal a clear northward increase of the crustal thickness with a sharp northward dipping of the Moho that coincides at the surface with the leading edge of the Alpine thrust front adjacent to the Friuli Plain in Northeastern Italy. This geometry of the Moho mimics fairly well the shallow north dipping geometry of the decollement inferred from permanent GPS velocity field where high interseismic coupling is reported. From the northern Adriatic domain up to the Idrija right lateral strike-slip fault system beneath Western Slovenia, the crustal thickness is more uniform. Right across Idrija fault, to the northeast, and along its strike, we report a clear change of the physical properties of the crust up to the uppermost mantle as reflected by the lateral distribution of both group and phase velocity anomalies at relevant periods. Idrija fault is therefore interpreted as a subvertical fault sampling the whole crust. Our 3-D velocity model favours crustal thickening with Adria underthrusting the Alps at a shallow angle north of the Friuli Plain where much of the convergence is absorbed and where the destructive 1976 Ms 6.5 thrust Friuli earthquake sequence took place. In Western Slovenia, the deformation is accommodated by strike-slip motion along the Idrija strike-slip fault system where the destructive 1511 Mw 6.9 right lateral strike-slip event occurred.

  14. Along-axis crustal structure of the Porcupine Basin from seismic refraction data modelling

    NASA Astrophysics Data System (ADS)

    Prada, Manel; Watremez, Louise; Chen, Chen; O'Reilly, Brian; Minshull, Tim; Reston, Tim; Wagner, Gerlind; Gaws, Viola; Klaschen, Dirk; Shannon, Patrick

    2016-04-01

    The Porcupine Basin is a tongue-shaped offshore basin SW of Ireland that formed during the opening of the North Atlantic Ocean. Its history of development involved several rifting and subsidence phases during the Late Paleozoic and Cenozoic, with a particular major rift phase occurring in Late Jurassic-Early Cretaceous times. Previous work, focused on subsidence analysis, showed that stretching factors (β) in the northern part of the basin are < 1.5 and increase significantly southwards, where they were estimated to be > 6. However, recent studies based on seismic reflection and refraction profiles concluded that β in places along the basin axis were significantly higher, and suggested the presence of major crustal faulting and uppermost mantle serpentinization in the basin. Constraining β and the processes related to the formation of the basin will provide insights into aspects such as the tectonic response to lithospheric extension and the thermal evolution of the basin. Here we present the tomography results of five wide-angle seismic (WAS) profiles acquired across and along the basin axis. We used a travel time inversion method to model the WAS data and obtain P-wave velocity (Vp) models of the crust and uppermost mantle, together with the geometry of the main geological interfaces along each of these lines. Coincident seismic reflection profiles to each WAS line were also used to integrate the tectonic structure with the Vp model. These results improved constrains on the location of the base of the crust and allow to estimate maximum β (βmax) along each profile. The analysis shows that βmax values in the northern part of the basin are 5-6 times larger than estimates based on subsidence analysis. Towards the south, βmax increases up to 10, but then rapidly decreases to 3.3 southwards. These values are well within the range of crustal extension at which the crust becomes entirely brittle at magma-poor margins allowing the formation of major crustal faulting and serpentinization of the mantle. In agreement with this observation, Vp values of the mantle are lower than those expected for a non-altered mantle (i.e. ~8 km/s) supporting mantle serpentinization. The outcome of this study reveals the complexity of the crustal structure of the Porcupine Basin and demonstrates the importance and value of this type of analysis in understanding rift systems. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.

  15. 3D Density Structure of Oceanic Lithosphere Affected by A Plume: A Case Study from the Greater Jan Mayen-East Greenland Region (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Tan, P.; Sippel, J.; Breivik, A. J.; Scheck-Wenderoth, M.; Meeßen, C.

    2017-12-01

    Unraveling the density structure of the oceanic lithosphere north of Iceland is key for understanding the effects of the Iceland Plume on the mid-ocean ridges of the greater Jan Mayen-East Greenland Region. We use a data-integrative approach for 3D gravity modeling to develop new insights into the crust and upper mantle density structure of this region. First, we obtain the 3D density structure of the sediments and crust from interpretations of regional reflection and refraction seismic lines. Then, the temperature and density structure of the mantle between 50 and 250 km are derived from a published shear-wave velocity (Vs) tomography model. To assess the density configuration between the Moho and 50 km depth, we follow a combined forward and inverse 3D gravity modeling approach. The Vs tomography and derived density of the deeper mantle (>50 km depth) reveal that the low-density anomaly related to the Iceland plume gets weaker with increasing distance from the plume, i.e. from the strongly influenced Middle Kolbeinsey Ridge (MKR) to the Mohn's Ridge. The West Jan Mayen Fracture Zone is identified as a main mantle density contrast, indicative of differences in the thermal evolution of the ridge systems it separates. Beneath the MKR region, the low-density anomaly at depths of >50 km continues upwards into the uppermost mantle, where its lateral dimensions narrow considerably. This elongated density anomaly is consistent with a basement high and indicates a channelization of the Iceland plume effects. The NE-SW elongated mantle anomaly does not, however, coincide with the topographical NNE-SSW striking ridge axis. Thus, the modelled plume-affected oceanic lithosphere reveals discrepancies with the half-space cooling model. We discuss the 3D density model in terms of such spatial relations between deeper mantle anomalies and the shallow crustal structure.

  16. Seismically imaging the Afar plume

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.

    2011-12-01

    Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings suggest that there is no evidence for a plume in the classical sense (i.e. a narrow conduit). Instead, we propose that secondary upwellings rise from the base of the transition zone and connect in the upper mantle. This coupled with measurements of seismic anisotropy suggest that mantle material flows northeast towards Arabia, and may be responsible for the dramatic dynamic topography observed in northeast Africa and western Arabia.

  17. Mantle Serpentinization near the Central Mariana Trench Constrained by Ocean Bottom Surface Wave Observations

    NASA Astrophysics Data System (ADS)

    Cai, C.; Wiens, D. A.; Lizarralde, D.; Eimer, M. O.; Shen, W.

    2017-12-01

    We investigate the crustal and uppermost mantle seismic structure across the Mariana trench by jointly inverting Rayleigh wave phase and group velocities from ambient noise and longer period phase velocities from Helmholtz tomography of teleseismic waveforms. We use data from a temporary deployment in 2012-2013, consisting of 7 island-based stations and 20 broadband ocean bottom seismographs, as well as data from the USGS Northern Mariana Islands Seismograph Network. To avoid any potential bias from the starting model, we use a Bayesian Monte-Carlo algorithm to invert for the azimuthally-averaged SV-wave velocity at each node. This method also allows us to apply prior constraints on crustal thickness and other parameters in a systematic way, and to derive formal estimates of velocity uncertainty. The results show the development of a low velocity zone within the incoming plate beginning about 80 km seaward of the trench axis, consistent with the onset of bending faults from bathymetry and earthquake locations. The maximum depth of the velocity anomaly increases towards the trench, and extends to about 30 km below the seafloor. The low velocities persist after the plate is subducted, as a 20-30 km thick low velocity layer with a somewhat smaller velocity reduction is imaged along the top of the slab beneath the forearc. An extremely low velocity zone is observed beneath the serpentine seamounts in the outer forearc, consistent with 40% serpentinization in the forearc mantle wedge. Azimuthal anisotropy results show trench parallel fast axis within the incoming plate at uppermost mantle depth (2%-4% anisotropy). All these observations suggest the velocity reduction in the incoming plate prior to subduction results from both serpentinized normal faults and water-filled cracks. Water is expelled from the cracks early in subduction, causing a modest increase in the velocity of the subducting mantle, and moves upward and causes serpentinization of the outer forearc. Assuming the velocity anomaly remaining in the subducting plate mantle is caused by serpentinization, calculations suggest the top 20 km of the slab mantle retains 10-15% serpentinization beyond the outer forearc. The amount of water carried into the deep mantle by this layer ( 54 Tg/Myr/m) is two to three times greater than previous estimates for the entire slab.

  18. Receiver Function Imaging of Crust and Uppermost Mantle Structure beneath the Japan Islands -Inclusion of Hi-net Data-

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Hirahara, K.; Shibutani, T.

    2001-12-01

    We are examining a large number of teleseismic waveforms observed at stations closely distributed over the Japan Islands to construct body-wave waveform tomography data for determining 3-D crust and upper mantle structure including velocity discontinuities. As one of preparatory studies toward this final goal, we are executing array analyses of Receiver Functions (RF). RF analyses of J-array data ( 32 broad band stations and 269 short period stations ) and Freesia data ( 15 broad band stations ), whose stations are closely distributed, have provided us with new information on the structure including velocity discontinuities beneath the Japan Islands (Tada et al, 2001). In their study, for crustal imaging, RFs transformed from time to depth domain after SVD filtering ( Chevrot and Giardin, 2000 ) are projected onto 2-D profiles, which show average values for cells within +/- 50km from each cross section. However, this cell size does not satisfy our demand to draw the detailed image beneath the Japan Islands. In addition, J-array short period RFs available for the analyses are limited because of high frequency noises. In this research, Hi-net data (short period), whose stations are far more closely distributed, are newly included into our data. We make RF image with α =3 of short period J-array data and Hi-net data for events observed during a period from September, 2000 to July, 2001 with the magnitudes larger than 5.5. The total number of the stations with their average spacing of 10km is about 800 (J-array; 270, Hi-net; 500), which enables to reduce the cell size to +/- 20km at most. We show a new 3-D RF image of the crust and the uppermost mantle, whose best spatial resolution is reaching less than 5km. Therefore we can obtain much more detailed 3-D RF image beneath the whole Japan Islands.

  19. Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate

    NASA Astrophysics Data System (ADS)

    Nishizawa, Azusa; Kaneda, Kentaro; Oikawa, Mitsuhiro

    2016-02-01

    We acquired 27 wide-angle seismic profiles to investigate variation in crustal structure along the Kyushu-Palau Ridge (KPR), a 2600-km-long remnant island arc in the center of the Philippine Sea plate; 26 lines were shot across the strike of the KPR at 13°-31°N, and one was shot along the northernmost KPR. The derived P-wave velocity (Vp) models show that the KPR has a crustal thickness of 8-23 km, which is thicker than the neighboring backarc basin oceanic crusts of the West Philippine Basin to the west and the Shikoku and Parece Vela Basins to the east. While the KPR crust consists mainly of lower crusts with a Vp of 6.8-7.2 km/s, the thicker crust contains a thick middle crust with Vp of 6.0-6.8 km/s. In general, the KPR crust is thicker in the north than in the south. The uppermost mantle velocities just below the KPR bathymetric highs are lower than 8.0 km/s and are commonly associated with a slightly high Vp of 7.2 km/s at the base of the crust. Large amplitude reflection signals are sometimes observed at far offsets on several lines suggesting the existence of several reflectors at depths of 23-40 km in the mantle beneath the KPR. The characteristics of these reflections are similar to these observed beneath the Izu-Ogasawara (Bonin) island arc, the tectonically conjugate arc of the KPR before backarc basin spreading. Very thin crust and high Pn velocities characterize the transition between the KPR and the eastern basins, which is probably a relic of the initial stage of the rifting. West of the KPR, the crust varies in structure from north to south as a result of the different tectonic settings in which it evolved.

  20. Complex Anisotropic Structure of the Mantle Wedge Beneath Kamchatka Volcanoes

    NASA Astrophysics Data System (ADS)

    Levin, V.; Park, J.; Gordeev, E.; Droznin, D.

    2002-12-01

    A wedge of mantle material above the subducting lithospheric plate at a convergent margin is among the most dynamic environments of the Earth's interior. Deformation and transport of solid and volatile phases within this region control the fundamental process of elemental exchange between the surficial layers and the interior of the planet. A helpful property in the study of material deformation and transport within the upper mantle is seismic anisotropy, which may reflect both microscopic effects of preferentialy aligned crystals of olivine and orthopyroxene and macroscopic effects of systematic cracks, melt lenses, layering etc. Through the mapping of anisotropic properties within the mantle wedge we can establish patterns of deformation. Volatile content affects olivine alignment, so regions of anomalous volatile content may be evident. Indicators of seismic anisotropy commonly employed in upper mantle studies include shear wave birefringence and mode-conversion between compressional and shear body waves. When combined together, these techniques offer complementary constraints on the location and intensity of anisotropic properties. The eastern coast of southern Kamchatka overlies a vigorous convergent margin where the Pacific plate descends at a rate of almost 80 mm/yr towards the northwest. We extracted seismic anisotropy indicators from two data sets sensitive to the anisotropic properties of the uppermost mantle. Firstly, we evaluated teleseismic receiver functions for a number of sites, and found ample evidence for anisotropicaly-influenced P-to-S mode conversion. Secondly, we measured splitting in S waves of earthquakes with sources within the downgoing slab. The first set of observations provides constraints on the depth ranges where strong changes in anisotropic properties take place. The local splitting data provides constraints on the cumulative strength of anisotropic properties along specific pathways through the mantle wedge and possibly parts of the slab. To explain the vertical stratification of anisotropy implied from receiver functions, and the strong lateral dependence of shear-wave splitting observations, we cannot rely on simple models of mantle wedge behaviour e.g., olivine-crystal alignment through subduction-driven corner flow. Diverse mechanisms can contribute to the observed pattern of anisotropic properties, with volatiles likely being a key influence. For instance, we find evidence in favor of a slow-symmetry-axis anisotropy within the uppermost 10-20 km of the mantle wedge, implying either excessive hydration of the mantle or else a presence of systematically aligned volatile-filled cracks or lenses. Also, shear-wave splitting is weak beneath the Avachinsky-Koryaksky volcanic center, suggesting either vertical flow or the influence of volatiles and/or thermally-enhanced diffusion creep.

  1. Pn tomography with Moho depth correction from eastern Europe to western China

    NASA Astrophysics Data System (ADS)

    Lü, Yan; Ni, Sidao; Chen, Ling; Chen, Qi-Fu

    2017-02-01

    We proposed a modified Pn velocity and anisotropy tomography method by considering the Moho depth variations using the Crust 1.0 model and obtained high-resolution images of the uppermost mantle Pn velocity and anisotropy structure from eastern Europe to western China. The tomography results indicate that the average Pn velocities are approximately 8.0 and 8.1 km/s under the western and eastern parts of the study area, respectively, with maximum velocity perturbations of 3%-4%. We observed high Pn velocities under the Adriatic Sea, Black Sea, Caspian Sea, Arabian Plate, Indian Plate, and in the Tarim and Sichuan Basins but low Pn velocities under the Apennine Peninsula, Dead Sea fault zone, Anatolia, Caucasus, Iranian Plateau, Hindu Kush, and in the Yunnan and Myanmar regions. Generally, regions with stable structures and low lithospheric temperatures exhibit high Pn velocities. Low Pn velocities provide evidence for the upwelling of hot material, which is associated with plate subduction and continental collision processes. Our Pn velocity and anisotropy imaging results indicate that the Adriatic microplate dives to the east and west, the hot material upwelling caused by subduction beneath the Tibetan Plateau is not as significant as that in the Caucasus and Myanmar regions, the lithosphere exhibits coupled rotational movement around the Eastern Himalayan syntaxes, and the areas to the north and south of 26°N in the Yunnan region are affected by different geodynamic processes. Our newly captured images of the uppermost mantle velocity and anisotropy structure provide further information about continental collision processes and associated dynamic mechanisms.

  2. Compositional mantle layering revealed by slab stagnation at ~1000-km depth

    PubMed Central

    Ballmer, Maxim D.; Schmerr, Nicholas C.; Nakagawa, Takashi; Ritsema, Jeroen

    2015-01-01

    Improved constraints on lower-mantle composition are fundamental to understand the accretion, differentiation, and thermochemical evolution of our planet. Cosmochemical arguments indicate that lower-mantle rocks may be enriched in Si relative to upper-mantle pyrolite, whereas seismic tomography images suggest whole-mantle convection and hence appear to imply efficient mantle mixing. This study reconciles cosmochemical and geophysical constraints using the stagnation of some slab segments at ~1000-km depth as the key observation. Through numerical modeling of subduction, we show that lower-mantle enrichment in intrinsically dense basaltic lithologies can render slabs neutrally buoyant in the uppermost lower mantle. Slab stagnation (at depths of ~660 and ~1000 km) and unimpeded slab sinking to great depths can coexist if the basalt fraction is ~8% higher in the lower mantle than in the upper mantle, equivalent to a lower-mantle Mg/Si of ~1.18. Global-scale geodynamic models demonstrate that such a moderate compositional gradient across the mantle can persist can in the presence of whole-mantle convection. PMID:26824060

  3. Seismic structure of the crust and uppermost mantle of north America and adjacent oceanic basins: A synthesis

    USGS Publications Warehouse

    Chulick, G.S.; Mooney, W.D.

    2002-01-01

    We present a new set of contour maps of the seismic structure of North America and the surrounding ocean basins. These maps include the crustal thickness, whole-crustal average P-wave and S-wave velocity, and seismic velocity of the uppermost mantle, that is, Pn and Sn. We found the following: (1) The average thickness of the crust under North America is 36.7 km (standard deviation [s.d.] ??8.4 km), which is 2.5 km thinner than the world average of 39.2 km (s.d. ?? 8.5) for continental crust; (2) Histograms of whole-crustal P- and S-wave velocities for the North American crust are bimodal, with the lower peak occurring for crust without a high-velocity (6.9-7.3 km/sec) lower crustal layer; (3) Regions with anomalously high average crustal P-wave velocities correlate with Precambrian and Paleozoic orogens; low average crustal velocities are correlated with modern extensional regimes; (4) The average Pn velocity beneath North America is 8.03 km/sec (s.d. ?? 0.19 km/sec); (5) the well-known thin crust beneath the western United States extends into northwest Canada; (6) the average P-wave velocity of layer 3 of oceanic crust is 6.61 km/ sec (s.d. ?? 0.47 km/sec). However, the average crustal P-wave velocity under the eastern Pacific seafloor is higher than the western Atlantic seafloor due to the thicker sediment layer on the older Atlantic seafloor.

  4. Local thickening of the Cascadia forearc crust and the origin of seismic reflectors in the uppermost mantle

    USGS Publications Warehouse

    Calvert, A.J.; Ramachandran, K.; Kao, H.; Fisher, M.A.

    2006-01-01

    Seismic reflection profiles from three different surveys of the Cascadia forearc are interpreted using P wave velocities and relocated hypocentres, which were both derived from the first arrival travel time inversion of wide-angle seismic data and local earthquakes. The subduction decollement, which is characterized beneath the continental shelf by a reflection of 0.5 s duration, can be traced landward into a large duplex structure in the lower forearc crust near southern Vancouver Island. Beneath Vancouver Island, the roof thrust of the duplex is revealed by a 5–12 km thick zone, identified previously as the E reflectors, and the floor thrust is defined by a short duration reflection from a − 1. We suggest that these relatively low velocities indicate the presence of either crustal rocks from the oceanic plate that have been underplated to the continent or crustal rocks from the forearc that have been transported downward by subduction erosion. The absence of seismicity from within the E reflectors implies that they are significantly weaker than the overlying crust, and the reflectors may be a zone of active ductile shear. In contrast, seismicity in parts of the D reflectors can be interpreted to mean that ductile shearing no longer occurs in the landward part of the duplex. Merging of the D and E reflectors at 42–46 km depth creates reflectivity in the uppermost mantle with a vertical thickness of at least 15 km. We suggest that pervasive reflectivity in the upper mantle elsewhere beneath Puget Sound and the Strait of Georgia arises from similar shear zones.

  5. Geophysical and petrological modelling of the structure and composition of the crust and upper mantle in complex geodynamic settings: The Tyrrhenian Sea and surroundings

    NASA Astrophysics Data System (ADS)

    Panza, G. F.; Peccerillo, A.; Aoudia, A.; Farina, B.

    2007-01-01

    Information on the physical and chemical properties of the lithosphere-asthenosphere system (LAS) can be obtained by geophysical investigation and by studies of petrology-geochemistry of magmatic rocks and entrained xenoliths. Integration of petrological and geophysical studies is particularly useful in geodynamically complex areas characterised by abundant and compositionally variable young magmatism, such as in the Tyrrhenian Sea and surroundings. A thin crust, less than 10 km, overlying a soft mantle (where partial melting can reach about 10%) is observed for Magnaghi, Vavilov and Marsili, which belong to the Central Tyrrhenian Sea backarc volcanism where subalkaline rocks dominate. Similar characteristics are seen for the uppermost crust of Ischia. A crust about 20 km thick is observed for the majority of the continental volcanoes, including Amiata-Vulsini, Roccamonfina, Phlegraean Fields-Vesuvius, Vulture, Stromboli, Vulcano-Lipari, Etna and Ustica. A thicker crust is present at Albani - about 25 km - and at Cimino-Vico-Sabatini — about 30 km. The structure of the upper mantle, in contrast, shows striking differences among various volcanic provinces. Volcanoes of the Roman region (Vulsini-Sabatini-Alban Hills) sit over an upper mantle characterised by Vs mostly ranging from about 4.2 to 4.4 km/s. At the Alban Hills, however, slightly lower Vs values of about 4.1 km/s are detected between 60 and 120 km of depth. This parallels the similar and rather homogeneous compositional features of the Roman volcanoes, whereas the lower Vs values detected at the Alban Hills may reflect the occurrence of small amounts of melts within the mantle, in agreement with the younger age of this volcano. The axial zone of the Apennines, where ultrapotassic kamafugitic volcanoes are present, has a mantle structure with high-velocity lid ( Vs ˜ 4.5 km/s) occurring at the base of a 40-km-thick crust. Beneath the Campanian volcanoes of Vesuvius and Phlegraean Fields, the mantle structure shows a rigid body dipping westward, a feature that continues southward, up to the eastern Aeolian arc. In contrast, at Ischia the upper mantle contains a shallow low-velocity layer ( Vs = 3.5-4.0 km/s) just beneath a thin but complex crust. The western Aeolian arc and Ustica sit over an upper mantle with Vs ˜ 4.2-4.4 km/s, although a rigid layer ( Vs = 4.55 km/s) from about 80 to 150 km occurs beneath the western Aeolian arc. In Sardinia, no significant differences in the LAS structure are detected from north to south. The petrological-geochemical signatures of Italian volcanoes show strong variations that allow us to distinguish several magmatic provinces. These often coincide with mantle sectors identified by Vs tomography. For instance, the Roman volcanoes show remarkable similar petrological and geochemical characteristics, mirroring similar structure of the LAS. The structure and geochemical-isotopic composition of the upper mantle change significantly when we move to the Stromboli-Campanian volcanoes. The geochemical signatures of Ischia and Procida volcanoes are similar to other Campanian centres, but Sr-Pb isotopic ratios are lower marking a transition to the backarc mantle of the Central Tyrrhenian Sea. The structural variations from Stromboli to the central (Vulcano and Lipari) and western Aeolian arc are accompanied by strong variations of geochemical signatures, such as a decrease of Sr-isotope ratios and an increase of Nd-, Pb-isotope and LILE/HFSE ratios. The dominance of mafic subalkaline magmatism in the Tyrrhenian Sea basin denotes large degrees of partial melting, well in agreement with the soft characteristics of the uppermost mantle in this area. In contrast, striking isotopic differences of Plio-Quaternary volcanic rocks from southern to northern Sardinia does not find a match in the LAS geophysical characteristics. The combination of petrological and geophysical constraints allows us to propose a 3D schematic geodynamic model of the Tyrrhenian basin and bordering volcanic areas, including the subduction of the Ionian-Adria lithosphere in the southern Tyrrhenian Sea, and to place constraints on the geodynamic evolution of the whole region.

  6. CRUST 5.1: A global crustal model at 5° x 5°

    USGS Publications Warehouse

    Mooney, Walter D.; Laske, Gabi; Masters, T. Guy

    1998-01-01

    We present a new global model for the Earth's crust based on seismic refraction data published in the period 1948–1995 and a detailed compilation of ice and sediment thickness. An extensive compilation of seismic refraction measurements has been used to determine the crustal structure on continents and their margins. Oceanic crust is modeled with both a standard model for normal oceanic crust, and variants for nonstandard regions, such as oceanic plateaus. Our model (CRUST 5.1) consists of 2592 5° × 5° tiles in which the crust and uppermost mantle are described by eight layers: (1) ice, (2) water, (3) soft sediments, (4) hard sediments, (5) crystalline upper, (6) middle, (7) lower crust, and (8) uppermost mantle. Topography and bathymetry are adopted from a standard database (ETOPO-5). Compressional wave velocity in each layer is based on field measurements, and shear wave velocity and density are estimated using recently published empirical Vp- Vs and Vp-density relationships. The crustal model differs from previous models in that (1) the thickness and seismic/density structure of sedimentary basins is accounted for more completely, (2) the velocity structure of unmeasured regions is estimated using statistical averages that are based on a significantly larger database of crustal structure, (3) the compressional wave, shear wave, and density structure have been explicitly specified using newly available constraints from field and laboratory studies. Thus this global crustal model is based on substantially more data than previous models and differs from them in many important respects. A new map of the thickness of the Earth's crust is presented, and we illustrate the application of this model by using it to provide the crustal correction for surface wave phase velocity maps. Love waves at 40 s are dominantly sensitive to crustal structure, and there is a very close correspondence between observed phase velocities at this period and those predicted by CRUST 5.1. We find that the application of crustal corrections to long-period (167 s) Rayleigh waves significantly increases the variance in the phase velocity maps and strengthens the upper mantle velocity anomalies beneath stable continental regions. A simple calculation of crustal isostacy indicates significant lateral variations in upper mantle density. The model CRUST 5.1 provides a complete description of the physical properties of the Earth's crust at a scale of 5° × 5° and can be used for a wide range of seismological and nonseismological problems.

  7. Finite Frequency Traveltime Tomography of Lithospheric and Upper Mantle Structures beneath the Cordillera-Craton Transition in Southwestern Canada

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Gu, Y. J.; Hung, S. H.

    2014-12-01

    Based on finite-frequency theory and cross-correlation teleseismic relative traveltime data from the USArray, Canadian National Seismograph Network (CNSN) and Canadian Rockies and Alberta Network (CRANE), we present a new tomographic model of P-wave velocity perturbations for the lithosphere and upper mantle beneath the Cordillera-cration transition region in southwestern Canada. The inversion procedure properly accounts for the finite-volume sensitivities of measured travel time residuals, and the resulting model shows a greater resolution of upper mantle velocity heterogeneity beneath the study area than earlier approaches based on the classical ray-theoretical approach. Our model reveals a lateral change of P velocities from -0.5% to 0.5% down to ~200-km depth in a 50-km wide zone between the Alberta Basin and the foothills of the Rocky Mountains, which suggests a sharp structural gradient along the Cordillera deformation front. The stable cratonic lithosphere, delineated by positive P-velocity perturbations of 0.5% and greater, extends down to a maximum depth of ~180 km beneath the Archean Loverna Block (LB). In comparison, the mantle beneath the controversial Medicine Hat Block (MHB) exhibits significantly higher velocities in the uppermost mantle and a shallower (130-150 km depth) root, generally consistent with the average depth of the lithosphere-asthenosphere boundary beneath Southwest Western Canada Sedimentary Basin (WCSB). The complex shape of the lithospheric velocities under the MHB may be evidence of extensive erosion or a partial detachment of the Precambrian lithospheric root. Furthermore, distinct high velocity anomalies in LB and MHB, which are separated by 'normal' mantle block beneath the Vulcan structure (VS), suggest different Archean assembly and collision histories between these two tectonic blocks.

  8. A seismic transect across West Antarctica: Evidence for mantle thermal anomalies beneath the Bentley Subglacial Trench and the Marie Byrd Land Dome

    NASA Astrophysics Data System (ADS)

    Lloyd, Andrew J.; Wiens, Douglas A.; Nyblade, Andrew A.; Anandakrishnan, Sridhar; Aster, Richard C.; Huerta, Audrey D.; Wilson, Terry J.; Dalziel, Ian W. D.; Shore, Patrick J.; Zhao, Dapeng

    2015-12-01

    West Antarctica consists of several tectonically diverse terranes, including the West Antarctic Rift System, a topographic low region of extended continental crust. In contrast, the adjacent Marie Byrd Land and Ellsworth-Whitmore mountains crustal blocks are on average over 1 km higher, with the former dominated by polygenetic shield and stratovolcanoes protruding through the West Antarctic ice sheet and the latter having a Precambrian basement. The upper mantle structure of these regions is important for inferring the geologic history and tectonic processes, as well as the influence of the solid earth on ice sheet dynamics. Yet this structure is poorly constrained due to a lack of seismological data. As part of the Polar Earth Observing Network, 13 temporary broadband seismic stations were deployed from January 2010 to January 2012 that extended from the Whitmore Mountains, across the West Antarctic Rift System, and into Marie Byrd Land with a mean station spacing of ~90 km. Relative P and S wave travel time residuals were obtained from these stations as well as five other nearby stations by cross correlation. The relative residuals, corrected for both ice and crustal structure using previously published receiver function models of crustal velocity, were inverted to image the relative P and S wave velocity structure of the West Antarctic upper mantle. Some of the fastest relative P and S wave velocities are observed beneath the Ellsworth-Whitmore mountains crustal block and extend to the southern flank of the Bentley Subglacial Trench. However, the velocities in this region are not fast enough to be compatible with a Precambrian lithospheric root, suggesting some combination of thermal, chemical, and structural modification of the lithosphere. The West Antarctic Rift System consists largely of relative fast uppermost mantle seismic velocities consistent with Late Cretaceous/early Cenozoic extension that at present likely has negligible rift related heat flow. In contrast, the Bentley Subglacial Trench, a narrow deep basin within the West Antarctic Rift System, has relative P and S wave velocities in the uppermost mantle that are ~1% and ~2% slower, respectively, and suggest a thermal anomaly of ~75 K. Models for the thermal evolution of a rift basin suggest that such a thermal anomaly is consistent with Neogene extension within the Bentley Subglacial Trench and may, at least in part, account for elevated heat flow reported at the nearby West Antarctic Ice Sheet Divide Ice Core and at Subglacial Lake Whillans. The slowest relative P and S wave velocity anomaly is observed extending to at least 200 km depth beneath the Executive Committee Range in Marie Byrd Land, which is consistent with warm possibly plume-related, upper mantle. The imaged low-velocity anomaly and inferred thermal perturbation (~150 K) are sufficient to support isostatically the anomalous long-wavelength topography of Marie Byrd Land, relative to the adjacent West Antarctic Rift System.

  9. Global Transition Zone Anisotropy and Consequences for Mantle Flow and Earth's Deep Water Cycle

    NASA Astrophysics Data System (ADS)

    Beghein, C.; Yuan, K.

    2011-12-01

    The transition zone has long been at the center of the debate between multi- and single-layered convection models that directly relate to heat transport and chemical mixing throughout the mantle. It has also been suggested that the transition zone is a reservoir that collects water transported by subduction of the lithosphere into the mantle. Since water lowers mantle minerals density and viscosity, thereby modifying their rheology and melting behavior, it likely affects global mantle dynamics and the history of plate tectonics. Constraining mantle flow is therefore important for our understanding of Earth's thermochemical evolution and deep water cycle. Because it can result from deformation by dislocation creep during convection, seismic anisotropy can help us model mantle flow. It is relatively well constrained in the uppermost mantle, but its presence in the transition zone is still debated. Its detection below 250 km depth has been challenging to date because of the poor vertical resolution of commonly used datasets. In this study, we used global Love wave overtone phase velocity maps, which are sensitive to structure down to much larger depths than fundamental modes alone, and have greater depth resolution than shear wave-splitting data. This enabled us to obtain a first 3-D model of azimuthal anisotropy for the upper 800km of the mantle. We inverted the 2Ψ terms of anisotropic phase velocity maps [Visser, et al., 2008] for the first five Love wave overtones between 35s and 174s period. The resulting model shows that the average anisotropy amplitude for vertically polarized shear waves displays two main stable peaks: one in the uppermost mantle and, most remarkably, one in the lower transition zone. F-tests showed that the presence of 2Ψ anisotropy in the transition zone is required to improve the third, fourth, and fifth overtones fit. Because of parameter trade-offs, however, we cannot exclude that the anisotropy is located in the upper transition zone as well. Azimuthal anisotropy in the transition zone could result from tilted laminated structures, or from the LPO of wadsleyite and hydrous ringwoodite. Anhydrous ringwoodite is mostly isotropic, but it becomes more anisotropic in the presence of water [Kavner, 2003]. The presence of significant seismic anisotropy in the lower transition zone may thus indicate the presence of OH--bearing minerals. This would be consistent with the observed high solubility of water in ringwoodite and wadsleyite, and the hypothesis that the transition zone is a water reservoir. In addition, at most locations the fast azimuth of propagation for Vsv forms approximately a 90° angle in the transition zone with the fast direction found at shallower depths. Assuming that LPO causes the anisotropy and that seismic fast directions are a proxy for flow direction in the transition zone, this angle change combined with mineral physics data could help us infer mantle convective pattern. The robustness of this feature is, however, currently difficult to assess as Love wave overtones are unable to reliably constrain 2Ψ anisotropy at shallow depths. The inclusion of Rayleigh wave fundamental mode data in future work will help resolve that issue.

  10. Origin of dipping structures in fast-spreading oceanic lower crust offshore Alaska imaged by multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Bécel, Anne; Shillington, Donna J.; Nedimović, Mladen R.; Webb, Spahr C.; Kuehn, Harold

    2015-08-01

    Multi-channel seismic (MCS) reflection profiles across the Pacific Plate south of the Alaska Peninsula reveal the internal structure of mature oceanic crust (48-56 Ma) formed at fast to intermediate spreading rates during and after a major plate re-organization. Oceanic crust formed at fast spreading rates (half spreading rate ∼ 74 mm /yr) has smoother basement topography, thinner sediment cover with less faulting, and an igneous section that is at least 1 km thicker than crust formed at intermediate spreading rates (half spreading rate ∼ 28- 34 mm /yr). MCS data across fast-spreading oceanic crust formed during plate re-organization contain abundant bright reflections, mostly confined to the lower crust above a highly reflective Moho transition zone, which has a reflection coefficient (RC) of ∼0.1. The lower crustal events dip predominantly toward the paleo-ridge axis at ∼10-30°. Reflections are also imaged in the uppermost mantle, which primarily dip away from the ridge at ∼10-25°, the opposite direction to those observed in the lower crust. Dipping events in both the lower crust and upper mantle are absent on profiles acquired across the oceanic crust formed at intermediate spreading rates emplaced after plate re-organization, where a Moho reflection is weak or absent. Our preferred interpretation is that the imaged lower crustal dipping reflections within the fast spread crust arise from shear zones that form near the spreading center in the region characterized by interstitial melt. The abundance and reflection amplitude strength of these events (RC ∼ 0.15) can be explained by a combination of solidified melt that was segregated within the shear structures, mylonitization of the shear zones, and crystal alignment, all of which can result in anisotropy and constructive signal interference. Formation of shear zones with this geometry requires differential motion between the crust and upper mantle, where the upper mantle moves away from the ridge faster than the crust. Active asthenospheric upwelling is one possible explanation for these conditions. The other possible interpretation is that lower crustal reflections are caused by magmatic (mafic/ultramafic) layering associated with accretion from a central mid-crustal magma chamber. Considering that the lower crustal dipping events have only been imaged in regions that have experienced plate re-organizations associated with ridge jumps or rift propagation, we speculate that locally enhanced mantle flow associated with these settings may lead to differential motion between the crust and the uppermost mantle, and therefore to shearing in the ductile lower crust or, alternatively, that plate reorganization could produce magmatic pulses which may lead to mafic/ultramafic banding.

  11. Variable styles of rifting expressed in crustal structure across three rift segments of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Lizarralde, D. D.; Axen, G. J.; Brown, H. E.; Fletcher, J. M.; Fernandez, A. G.; Harding, A. J.; Holbrook, W. S.; Kent, G. M.; Paramo, P.; Sutherland, F. H.; Umhoefer, P. J.

    2007-05-01

    We present a summary of results from a crustal-scale seismic experiment conducted in the southern Gulf of California. This experiment, the PESCADOR experiment, imaged crustal structure across three rift segments, the Alarcon, Guaymas, and San José del Cabo to Puerto Vallarta (Cabo-PV) segments, using seismic refraction/wide-angle reflection data acquired with airgun sources and recorded by closely spaced (10-15 km) ocean-bottom seismometers (OBSs). The imaged crustal structure reveals a surprisingly large variation in rifting style and magmatism between these segments: the Alarcon segment is a wide rift with apparently little syn-rift magmatism; the Guaymas segment is a narrow, magmatically robust rift; and the Cabo-PV segment is a narrow, magmatically "normal" rift. Our explanation for the observed variability is non-traditional in that we do not invoke mantle temperature, the factor commonly invoked to explain end-member volcanic and non-volcanic rifted margins, as the source of the considerable, though non-end-member variability we observe. Instead, we invoke mantle depletion related to pre-rift arc volcanism to account for observed wide, magma-poor rifting and mantle fertility and possibly the influence of sediments to account for robust rift and post-rift magmatism. These factors may commonly vary over small lateral spatial scales in regions that have transitioned from convergent to extensional tectonics, as is the case for the Gulf of California and many other rifts. Our hypothesis suggests that substantial lateral variability may exist within the uppermost mantle beneath the Gulf of California today, and it is hoped that ongoing efforts to image upper mantle structure here will provide tests for this hypothesis.

  12. Evidence of phase nucleation during olivine diffusion creep: a new perspective for mantle strain localisation

    NASA Astrophysics Data System (ADS)

    Précigout, Jacques; Stünitz, Holger

    2017-04-01

    Mantle strain localisation is of great importance for lithosphere dynamics, but the cause for this phenomenon remains very elusive, particularly in conditions of the strong and ductile uppermost mantle. In these latter, grain size reduction leading to diffusion creep in olivine is believed to be one of the best candidates to account for strain localisation. However, the mechanisms of grain size reduction in this regime are still poorly understood. Here we show the results of Griggs-type experiments that document grain size reduction and material weakening during wet olivine diffusion creep at 900 °C and 1.2 GPa. While occurring for both, mono-phase and two-phase aggregates, grain size reduction is coeval with strain localisation and local phase mixing in olivine-pyroxene aggregates. Based on evidence of fluid inclusions and cracks filled with a fine-grained phase mixture, we conclude that grain size reduces as a result of fluid-assisted nucleation. Cavitation induced by grain boundary sliding (creep cavitation) can be inferred, and may play a critical role for olivine grain size reduction. Amongst their implications for rock rheology in general, our findings highlight a key process for strain localisation in the ductile uppermost mantle. This study has been published under the reference: "Précigout, J., and Stünitz, H. (2016) Evidence of phase nucleation during olivine diffusion creep: a new perspective for mantle strain localisation. Earth and Planetary Science Letters 455: 94-105, doi:101016/j.epsl.2016.09.029".

  13. Evidence of dehydration in peridotites from Eifel Volcanic Field and estimates of the rate of magma ascent

    NASA Astrophysics Data System (ADS)

    Denis, Carole M. M.; Demouchy, Sylvie; Shaw, Cliff S. J.

    2013-05-01

    We report major element compositions and water contents in upper mantle minerals from peridotites transported by silica undersaturated, mafic alkaline lavas from three volcanoes Rockeskyllerkopf, Dreiser Weiher, and Meerfelder Maar of the Eifel Volcanic Field (West Germany). The hydrogen concentrations (expressed in ppm wt. H2O) obtained from unpolarized and polarized Fourier transform infrared (FTIR) spectroscopy give water contents for olivine, enstatite and diopside of ~ 6 ppm wt. H2O, ~ 200 ppm wt. H2O and ~ 285 ppm wt. H2O, respectively. The hydrogen concentration in individual olivine grains is strongly heterogeneous whereas that in pyroxenes is homogeneous. Profiles measured across crystallographically oriented single-crystals of olivine using polarized infrared radiation reveal hydrogen depleted rims that are interpreted to be due to partial dehydration by ionic diffusion during the ascent of the xenolith to the surface. Using experimentally obtained diffusion coefficients for hydrogen in olivine at high temperature and high pressure, we estimate that the duration of the dehydration for the spinel-bearing xenoliths is limited to a few hours yielding rates of magma ascent from 3 ms- 1 to 12 ms- 1. Our study suggests that the water contents of the upper mantle based solely on measurements of mantle-derived olivine, when concentration is not homogeneous, underestimate the true water content of the equilibrated uppermost mantle and that pyroxenes are a better proxy to constrain uppermost mantle water contents.

  14. Dynamical links between small- and large-scale mantle heterogeneity: Seismological evidence

    NASA Astrophysics Data System (ADS)

    Frost, Daniel A.; Garnero, Edward J.; Rost, Sebastian

    2018-01-01

    We identify PKP • PKP scattered waves (also known as P‧ •P‧) from earthquakes recorded at small-aperture seismic arrays at distances less than 65°. P‧ •P‧ energy travels as a PKP wave through the core, up into the mantle, then scatters back down through the core to the receiver as a second PKP. P‧ •P‧ waves are unique in that they allow scattering heterogeneities throughout the mantle to be imaged. We use array-processing methods to amplify low amplitude, coherent scattered energy signals and resolve their incoming direction. We deterministically map scattering heterogeneity locations from the core-mantle boundary to the surface. We use an extensive dataset with sensitivity to a large volume of the mantle and a location method allowing us to resolve and map more heterogeneities than have previously been possible, representing a significant increase in our understanding of small-scale structure within the mantle. Our results demonstrate that the distribution of scattering heterogeneities varies both radially and laterally. Scattering is most abundant in the uppermost and lowermost mantle, and a minimum in the mid-mantle, resembling the radial distribution of tomographically derived whole-mantle velocity heterogeneity. We investigate the spatial correlation of scattering heterogeneities with large-scale tomographic velocities, lateral velocity gradients, the locations of deep-seated hotspots and subducted slabs. In the lowermost 1500 km of the mantle, small-scale heterogeneities correlate with regions of low seismic velocity, high lateral seismic gradient, and proximity to hotspots. In the upper 1000 km of the mantle there is no significant correlation between scattering heterogeneity location and subducted slabs. Between 600 and 900 km depth, scattering heterogeneities are more common in the regions most remote from slabs, and close to hotspots. Scattering heterogeneities show an affinity for regions close to slabs within the upper 200 km of the mantle. The similarity between the distribution of large-scale and small-scale mantle structures suggests a dynamic connection across scales, whereby mantle heterogeneities of all sizes may be directed in similar ways by large-scale convective currents.

  15. Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes

    NASA Astrophysics Data System (ADS)

    Kosarev, Grigoriy; Oreshin, Sergey; Vinnik, Lev; Makeyeva, Larissa

    2018-01-01

    We investigate structure of the mantle transition zone (MTZ) under the central Tien Shan in central Asia by using recordings of seismograph stations in Kyrgyzstan, Kazakhstan and adjacent northern China. We apply P-wave receiver functions techniques and evaluate the differential time between the arrivals of seismic phases that are formed by P to SV mode conversion at the 410-km and 660-km seismic boundaries. The differential time is sensitive to the thickness of the MTZ and insensitive to volumetric velocity anomalies above the 410-km boundary. Under part of the southern central Tien Shan with the lowest S wave velocity in the uppermost mantle and the largest thickness of the crust, the thickness of the MTZ increases by 15-20 km relative to the ambient mantle and the reference model IASP91. The increased thickness is a likely effect of low (about - 150 K) temperature. This anomaly is indicative of delamination and sinking of the mantle lithosphere. The low temperature in the MTZ might also be a relic of subduction of the oceanic lithosphere in the Paleozoic, but this scenario requires strong coupling and coherence between structures in the MTZ and in the lithosphere during plate motions in the last 300 Myr. Our data reveal a reduction of thickness of the MTZ of 10-15 km under the Fergana basin, in the neighborhood of the region of small-scale basaltic volcanism at the time near the Cretaceous-Paleogene boundary. The reduced thickness of the MTZ is the effect of a depressed 410-km discontinuity, similar to that found in many hotspots. This depression suggests a positive temperature anomaly of about 100-150 K, consistent with the presence of a thermal mantle plume. A similar depression on the 410-km discontinuity is found underneath the Tarim basin.

  16. Gravity field over northern Eurasia and variations in the strength of the upper mantle

    NASA Technical Reports Server (NTRS)

    Kogan, Mikhail G.; Mcnutt, Marcia K.

    1993-01-01

    The correlation of long-wavelength gravity anomalies in northern Eurasia with seismic velocity anomalies in the upper mantle reverses in sign between western and eastern Eurasia. The difference between western and eastern Eurasia can be explained by the presence of a low-viscosity zone in the uppermost mantle beneath eastern Eurasia that is absent to the west. The location of the lateral change in viscosity corresponds with the geologic boundary between the older shields and platforms of the Baltics, Russia, and Siberia and the younger, geologically active mountain belts of eastern Asia. This relation provides evidence that differences in the strength of the upper mantle control the locus of intracontinental deformation.

  17. Lithospheric evolution of the Northern Arabian Shield: Chemical and isotopic evidence from basalts, xenoliths and granites

    NASA Technical Reports Server (NTRS)

    Stein, M.

    1988-01-01

    The evolution of the upper-mantle and the lower-crust (the conteinental lithosphere), is the area of Israel and Sinai was studied, using the chemical composition and the Nd-Sr isotopic systematics from mantle and crustal nodules, their host basalts, and granites. The magmatism and the metasomatism making the lithosphere are related to uprise of mantle diapirs in the uppermost mantle of the area. These diapirs heated the base of the lithosphere, eroded, and replaced it with new hot material. It caused a domal uplift of the lithosphere (and the crust). The doming resulted in tensional stresses that in turn might develop transport channels for the basalt.

  18. Test of high-resolution 3D P-wave velocity model of Poland by back-azimuthal sections of teleseismic receiver function

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2015-04-01

    Geological and seismic structure under area of Poland is well studied by over one hundred thousand boreholes, over thirty deep seismic refraction and wide angle reflection profiles and by vertical seismic profiling, magnetic, gravity, magnetotelluric and thermal methods. Compilation of these studies allowed to create a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Polkowski et al. 2014). Model also provides details about the geometry of main layers of sediments (Tertiary and Quaternary, Cretaceous, Jurassic, Triassic, Permian, old Paleozoic), consolidated/crystalline crust (upper, middle and lower) and uppermost mantle. This model gives an unique opportunity for calculation synthetic receiver function and compering it with observed receiver function calculated for permanent and temporary seismic stations. Modified ray-tracing method (Langston, 1977) can be used directly to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. So, 3D P-wave velocity model has been interpolated to 2.5D P-wave velocity model beneath each seismic station and back-azimuthal sections of components of receiver function have been calculated. Vp/Vs ratio is assumed to be 1.8, 1.67, 1.73, 1.77 and 1.8 in the sediments, upper/middle/lower consolidated/crystalline crust and uppermost mantle, respectively. Densities were calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Additionally, to test a visibility of the lithosphere-asthenosphere boundary phases at receiver function sections models have been extended to 250 km depth based on P4-mantle model (Wilde-Piórko et al., 2010). National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284 and by NCN grant UMO-2011/01/B/ST10/06653.

  19. Viscoelastic lower crust and mantle relaxation following the 14-16 April 2016 Kumamoto, Japan, earthquake sequence

    NASA Astrophysics Data System (ADS)

    Pollitz, Fred F.; Kobayashi, Tomokazu; Yarai, Hiroshi; Shibazaki, Bunichiro; Matsumoto, Takumi

    2017-09-01

    The 2016 Kumamoto, Japan, earthquake sequence, culminating in the Mw=7.0 16 April 2016 main shock, occurred within an active tectonic belt of central Kyushu. GPS data from GEONET reveal transient crustal motions from several millimeters per year up to ˜3 cm/yr during the first 8.5 months following the sequence. The spatial pattern of horizontal postseismic motions is shaped by both shallow afterslip and viscoelastic relaxation of the lower crust and upper mantle. We construct a suite of 2-D regional viscoelastic structures in order to derive an optimal joint afterslip and viscoelastic relaxation model using forward modeling of the viscoelastic relaxation. We find that afterslip dominates the postseismic relaxation in the near field (within 30 km of the main shock epicenter), while viscoelastic relaxation dominates at greater distance. The viscoelastic modeling strongly favors a very weak lower crust below a ˜65 km wide zone coinciding with the Beppu-Shimabara graben and the locus of central Kyushu volcanism. Inferred uppermost mantle viscosity is relatively low beneath southern Kyushu, consistent with independent inferences of a hydrated mantle wedge within the Nankai trough fore -arc.

  20. Viscoelastic lower crust and mantle relaxation following the 14–16 April 2016 Kumamoto, Japan, earthquake sequence

    USGS Publications Warehouse

    Pollitz, Fred; Kobayashi, Tomokazu; Yarai, Hiroshi; Shibazaki, Bunichiro; Matsumoto, Takumi

    2017-01-01

    The 2016 Kumamoto, Japan, earthquake sequence, culminating in the Mw=7.0 16 April 2016 main shock, occurred within an active tectonic belt of central Kyushu. GPS data from GEONET reveal transient crustal motions from several millimeters per year up to ∼3 cm/yr during the first 8.5 months following the sequence. The spatial pattern of horizontal postseismic motions is shaped by both shallow afterslip and viscoelastic relaxation of the lower crust and upper mantle. We construct a suite of 2-D regional viscoelastic structures in order to derive an optimal joint afterslip and viscoelastic relaxation model using forward modeling of the viscoelastic relaxation. We find that afterslip dominates the postseismic relaxation in the near field (within 30 km of the main shock epicenter), while viscoelastic relaxation dominates at greater distance. The viscoelastic modeling strongly favors a very weak lower crust below a ∼65 km wide zone coinciding with the Beppu-Shimabara graben and the locus of central Kyushu volcanism. Inferred uppermost mantle viscosity is relatively low beneath southern Kyushu, consistent with independent inferences of a hydrated mantle wedge within the Nankai trough fore -arc.

  1. The spatial sensitivity of Sp converted waves—scattered-wave kernels and their applications to receiver-function migration and inversion

    NASA Astrophysics Data System (ADS)

    Mancinelli, N. J.; Fischer, K. M.

    2018-03-01

    We characterize the spatial sensitivity of Sp converted waves to improve constraints on lateral variations in uppermost-mantle velocity gradients, such as the lithosphere-asthenosphere boundary (LAB) and the mid-lithospheric discontinuities. We use SPECFEM2D to generate 2-D scattering kernels that relate perturbations from an elastic half-space to Sp waveforms. We then show that these kernels can be well approximated using ray theory, and develop an approach to calculating kernels for layered background models. As proof of concept, we show that lateral variations in uppermost-mantle discontinuity structure are retrieved by implementing these scattering kernels in the first iteration of a conjugate-directions inversion algorithm. We evaluate the performance of this technique on synthetic seismograms computed for 2-D models with undulations on the LAB of varying amplitude, wavelength and depth. The technique reliably images the position of discontinuities with dips <35° and horizontal wavelengths >100-200 km. In cases of mild topography on a shallow LAB, the relative brightness of the LAB and Moho converters approximately agrees with the ratio of velocity contrasts across the discontinuities. Amplitude retrieval degrades at deeper depths. For dominant periods of 4 s, the minimum station spacing required to produce unaliased results is 5 km, but the application of a Gaussian filter can improve discontinuity imaging where station spacing is greater.

  2. Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Li, Chun-Feng

    2015-01-01

    The western North American lithosphere experienced extensive magmatism and large-scale crustal deformation due to the interactions between the Farallon and North American plates. To further understand such subduction-related dynamic processes, we characterize crustal structure, magmatism and lithospheric thermal state of western North America based on various data processing and interpretation of gravimetric, magnetic and surface heat flow data. A fractal exponent of 2.5 for the 3D magnetization model is used in the Curie-point depth inversion. Curie depths are mostly small to the north of the Yellowstone-Snake River Plain hotspot track, including the Steens Mountain and McDermitt caldera that are the incipient eruption locations of the Columbia River Basalts and Yellowstone hotspot track. To the south of the Yellowstone hotspot track, larger Curie depths are found in the Great Basin. The distinct Curie depths across the Yellowstone-Snake River Plain hotspot track can be attributed to subduction-related magmatism induced by edge flow around fractured slabs. Curie depths confirm that the Great Valley ophiolite is underlain by the Sierra Nevada batholith, which can extend further west to the California Coast Range. The Curie depths, thermal lithospheric thickness and surface heat flow together define the western edge of the North American craton near the Roberts Mountains Thrust (RMT). To the east of the RMT, large Curie depths, large thermal lithospheric thickness, and low thermal gradient are found. From the differences between Curie-point and Moho depth, we argue that the uppermost mantle in the oceanic region is serpentinized. The low temperature gradients beneath the eastern Great Basin, Montana and Wyoming permit magnetic uppermost mantle, either by serpentinization/metasomatism or in-situ magnetization, which can contribute to long-wavelength and low-amplitude magnetic anomalies and thereby large Curie-point depths.

  3. Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China

    USGS Publications Warehouse

    Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.

    2002-01-01

    Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.

  4. NoMelt Experiment: High-resolution constraints on Pacific upper mantle fabric inferred from radial and azimuthal anisotropy

    NASA Astrophysics Data System (ADS)

    Russell, J. B.; Gaherty, J. B.; Lin, P. P.; Lizarralde, D.; Collins, J. A.; Hirth, G.; Evans, R. L.

    2017-12-01

    Observations of seismic anisotropy in the ocean basins are important for constraining deformation and melting processes in the upper mantle. The NoMelt OBS array was deployed on relatively pristine, 70 Ma seafloor in the central Pacific with the aim of constraining upper mantle circulation and the evolution of the lithosphere-asthenosphere system. Surface-waves traversing the array provide a unique opportunity to estimate a comprehensive set of anisotropic parameters. Azimuthal variations in Rayleigh-wave velocity over a period band of 15-180 s suggest strong anisotropic fabric both in the lithosphere and deep in the asthenosphere. High-frequency ambient noise (4-10 s) provides constraints on average VSV and VSH as well as azimuthal variations in both VS and VP in the upper ˜10 km of the mantle. Our best fitting models require radial anisotropy in the uppermost mantle with VSH > VSV by 3 - 7% and as much as 2% radial anisotropy in the crust. Additionally, we find a strong azimuthal dependence for Rayleigh- and Love-wave velocities, with Rayleigh 2θ fast direction parallel to the fossil spreading direction (FSD) and Love 2θ and 4θ fast directions shifted 90º and 45º from the FSD, respectively. These are some of the first direct observations of the Love 2θ and 4θ azimuthal signal, which allows us to directly invert for anisotropic terms G, B, and E in the uppermost Pacific lithosphere, for the first time. Together, these observations of radial and azimuthal anisotropy provide a comprehensive picture of oceanic mantle fabric and are consistent with horizontal alignment of olivine with the a-axis parallel to fossil spreading and having an orthorhombic or hexagonal symmetry.

  5. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Carbotte, S. M.; Nedimovic, M. R.; Carton, H. D.

    2017-12-01

    Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use controlled-source seismic data collected in 2012 as part of the Ridge-to-Trench seismic experiment to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. We use wide-angle OBS seismic data along a 400-km-long margin-parallel profile 10-15 km seaward from the Cascadia deformation front to obtain P-wave tomography models of the sediments, crust, and uppermost mantle, and effective medium theory combined with a stochastic description of crustal properties (e.g., temperature, alteration assemblages, porosity, pore aspect ratio), to analyze the pore fluid and structurally bound water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the Cascadia margin. Our results demonstrate that the Juan de Fuca lower crust and mantle are much drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Previously documented, variable but limited bend faulting along the margin, which correlates with degree of plate locking, limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. Our results have important implications for a number of subduction processes at Cascadia, such as: (1) the dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust; (2) decompression rather than hydrous melting must dominate arc magmatism in northern-central Cascadia; and (3) dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.

  6. One billion year-old Mid-continent Rift leaves virtually no clues in the mantle

    NASA Astrophysics Data System (ADS)

    Bollmann, T. A.; Frederiksen, A. W.; van der Lee, S.; Wolin, E.; Revenaugh, J.; Wiens, D.; Darbyshire, F. A.; Aleqabi, G. I.; Wysession, M. E.; Stein, S.; Jurdy, D. M.

    2017-12-01

    We measured the relative arrival times of more than forty-six thousand teleseismic P waves recorded by seismic stations of Earthscope's Superior Province Rifting Earthscope Experiment (SPREE) and combined them with a similar amount of such measurements from other seismic stations in the larger region. SPREE recorded seismic waves for two and a half years around the prominent, one billion year-old Mid-continent Rift structure. The curvilinear Mid-continent Rift (MR) is distinguished by voluminous one billion year-old lava flows, which produce a prominent gravity high along the MR. As for other seismic waves, these lava flows along with their underplated counterpart, slightly slow down the measured teleseismic P waves, on average, compared to P waves that did not traverse structures beneath the Mid-continent Rift. However, the variance in the P wave arrival times in these two groups is nearly ten times higher than their average difference. In a seismic-tomographic inversion, we mapped all measured arrival times into structures deep beneath the crust, in the Earth's mantle. Beneath the crust we generally find relatively high P velocities, indicating relatively cool and undeformable mantle structures. However, the uppermost mantle beneath the MR shows several patches of slightly decreased P velocities. These patches are coincident with where the gravity anomalies peak, in Iowa and along the northern Minnesota/Wisconsin border. We will report on the likelihood that these anomalies are indeed a remaining mantle-lithospheric signature of the MR or whether these patches indirectly reflect the presence of the lava flows and their underplated counterparts at the crust-mantle interface. Other structures of interest and of varying depth extent in our tomographic image locate at 1) the intersection of the Superior Craton with the Penokean Province and the Marshfield Terrane west of the MR in southern Minnesota, 2) the intersection of the Penokean, Yavapai, and Mazatzal Terranes along the eastern edge of the Michigan arm of the MR, and 3) beneath Lake Nipigon, north of Lake Superior. Our tomographic image also reveals an intricate distribution of deep high-velocity anomalies, including in the lower mantle, potentially related to Mesozoic subduction of the Kula and/or Farallon Plates.

  7. Radial Anisotropy in the Mantle Transition Zone and Its Implications

    NASA Astrophysics Data System (ADS)

    Chang, S. J.; Ferreira, A. M.

    2016-12-01

    Seismic anisotropy is a useful tool to investigate mantle flow, mantle convection, and the presence of melts in mantle, since it provides information on the direction of mantle flow or the orientation of melts by combining it with laboratory results in mineral physics. Although the uppermost and lowermost mantle with strong anisotropy have been well studied, anisotropic properties of the mantle transition zone is still enigmatic. We use a recent global radially anisotropic model, SGLOBE-rani, to examine the patterns of radial anisotropy in the mantle transition zone. Strong faster SV velocity anomalies are found in the upper transition zone beneath subduction zones in the western Pacific, which decrease with depth, thereby nearly isotropic in the lower transition zone. This may imply that the origin for the anisotropy is the lattice-preferred orientation of wadsleyite, the dominant anisotropic mineral in the upper transition zone. The water content in the upper transition zone may be inferred from radial anisotropy because of the report that anisotropic intensity depends on the water content in wadsleyite.

  8. Crustal and mantle velocity models of southern Tibet from finite frequency tomography

    NASA Astrophysics Data System (ADS)

    Liang, Xiaofeng; Shen, Yang; Chen, Yongshun John; Ren, Yong

    2011-02-01

    Using traveltimes of teleseismic body waves recorded by several temporary local seismic arrays, we carried out finite-frequency tomographic inversions to image the three-dimensional velocity structure beneath southern Tibet to examine the roles of the upper mantle in the formation of the Tibetan Plateau. The results reveal a region of relatively high P and S wave velocity anomalies extending from the uppermost mantle to at least 200 km depth beneath the Higher Himalaya. We interpret this high-velocity anomaly as the underthrusting Indian mantle lithosphere. There is a strong low P and S wave velocity anomaly that extends from the lower crust to at least 200 km depth beneath the Yadong-Gulu rift, suggesting that rifting in southern Tibet is probably a process that involves the entire lithosphere. Intermediate-depth earthquakes in southern Tibet are located at the top of an anomalous feature in the mantle with a low Vp, a high Vs, and a low Vp/Vs ratio. One possible explanation for this unusual velocity anomaly is the ongoing granulite-eclogite transformation. Together with the compressional stress from the collision, eclogitization and the associated negative buoyancy force offer a plausible mechanism that causes the subduction of the Indian mantle lithosphere beneath the Higher Himalaya. Our tomographic model and the observation of north-dipping lineations in the upper mantle suggest that the Indian mantle lithosphere has been broken laterally in the direction perpendicular to the convergence beneath the north-south trending rifts and subducted in a progressive, piecewise and subparallel fashion with the current one beneath the Higher Himalaya.

  9. Seismic Velocity Structure of the Pacific Upper Mantle in the NoMelt Region from Finite-Frequency Traveltime Tomography

    NASA Astrophysics Data System (ADS)

    Hung, S. H.; Lin, P. Y.; Gaherty, J. B.; Russell, J. B.; Jin, G.; Collins, J. A.; Lizarralde, D.; Evans, R. L.; Hirth, G.

    2017-12-01

    Surface wave dispersion and magnetotelluric survey from the NoMelt Experiment conducted on 70 Ma central Pacific seafloor revealed an electrically resistive, high shear wave velocity lid of 80 km thick underlain by a non-highly conductive, low-velocity layer [Sarafian et al., 2015; Lin et al., 2016]. The vertical structure of the upper mantle consistent with these observational constraints suggests a plausible convection scenario, where the seismically fast, dehydrated lithosphere preserving very strong fossil spreading fabric moves at a constant plate speed over the hydrated, melt-free athenospheric mantle with the presence of either pressure-driven return flow or thermally-driven small scale circulation. To explore 3-D variations in compressional shear wave velocities related to the lithospheric and asthenospheric mantle dynamics, we employ a multichannel cross correlation method to measure relative traveltime residuals based on the vertical P and traverse S waveforms filtered at 10-33 s from telseismic earthquakes at epicentral distance between 30 and 98 degrees. The obtained P and S residuals show on average peak-to-peak variations of ±0.5 s and ±1 s, respectively, across the NoMelt OBS array. Particularly, the P residuals for most of the events display an asymmetrical pattern with respect to an axis oriented nearly N-S to NE-SW through the array. Preliminary ray-based P tomography results reveal similar asymmetric variations in the uppermost 100 km mantle. To verify the resulting structural features, we will further perform both the P and S traveltime tomography and resolution tests based on a multiscale finite-frequency approach which properly takes into account both the 3D off-path sensitivities of the measured residuals and data-adaptive resolution of the model.

  10. Shear velocity structure of central Eurasia from inversion of surface wave velocities

    NASA Astrophysics Data System (ADS)

    Villaseñor, A.; Ritzwoller, M. H.; Levshin, A. L.; Barmin, M. P.; Engdahl, E. R.; Spakman, W.; Trampert, J.

    2001-04-01

    We present a shear velocity model of the crust and upper mantle beneath central Eurasia by simultaneous inversion of broadband group and phase velocity maps of fundamental-mode Love and Rayleigh waves. The model is parameterized in terms of velocity depth profiles on a discrete 2°×2° grid. The model is isotropic for the crust and for the upper mantle below 220 km but, to fit simultaneously long period Love and Rayleigh waves, the model is transversely isotropic in the uppermost mantle, from the Moho discontinuity to 220 km depth. We have used newly available a priori models for the crust and sedimentary cover as starting models for the inversion. Therefore, the crustal part of the estimated model shows good correlation with known surface features such as sedimentary basins and mountain ranges. The velocity anomalies in the upper mantle are related to differences between tectonic and stable regions. Old, stable regions such as the East European, Siberian, and Indian cratons are characterized by high upper-mantle shear velocities. Other large high velocity anomalies occur beneath the Persian Gulf and the Tarim block. Slow shear velocity anomalies are related to regions of current extension (Red Sea and Andaman ridges) and are also found beneath the Tibetan and Turkish-Iranian Plateaus, structures originated by continent-continent collision. A large low velocity anomaly beneath western Mongolia corresponds to the location of a hypothesized mantle plume. A clear low velocity zone in vSH between Moho and 220 km exists across most of Eurasia, but is absent for vSV. The character and magnitude of anisotropy in the model is on average similar to PREM, with the most prominent anisotropic region occurring beneath the Tibetan Plateau.

  11. Upper mantle anisotropy from long-period P polarization

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, Vera; Masters, Guy; Shearer, Peter M.

    2001-10-01

    We introduce a method to infer upper mantle azimuthal anisotropy from the polarization, i.e., the direction of particle motion, of teleseismic long-period P onsets. The horizontal polarization of the initial P particle motion can deviate by >10° from the great circle azimuth from station to source despite a high degree of linearity of motion. Recent global isotropic three-dimensional mantle models predict effects that are an order of magnitude smaller than our observations. Stations within regional distances of each other show consistent azimuthal deviation patterns, while the deviations seem to be independent of source depth and near-source structure. We demonstrate that despite this receiver-side spatial coherence, our polarization data cannot be fit by a large-scale joint inversion for whole mantle structure. However, they can be reproduced by azimuthal anisotropy in the upper mantle and crust. Modeling with an anisotropic reflectivity code provides bounds on the magnitude and depth range of the anisotropy manifested in our data. Our method senses anisotropy within one wavelength (250 km) under the receiver. We compare our inferred fast directions of anisotropy to those obtained from Pn travel times and SKS splitting. The results of the comparison are consistent with azimuthal anisotropy situated in the uppermost mantle, with SKS results deviating from Pn and Ppol in some regions with probable additional deeper anisotropy. Generally, our fast directions are consistent with anisotropic alignment due to lithospheric deformation in tectonically active regions and to absolute plate motion in shield areas. Our data provide valuable additional constraints in regions where discrepancies between results from different methods exist since the effect we observe is local rather than cumulative as in the case of travel time anisotropy and shear wave splitting. Additionally, our measurements allow us to identify stations with incorrectly oriented horizontal components.

  12. The P wavespeed structure in the mantle to 800 km depth below the Philippines region: geodynamic implications

    NASA Astrophysics Data System (ADS)

    Wright, C.

    2009-03-01

    P waves from earthquakes south of Taiwan, recorded by the BATS seismic array and CWB seismic network, were used define the P wavespeed structure between depths of 100 and 800 km below the Philippines region. The presence of a low wavespeed zone in the upper mantle is inferred, although the details are unclear. Wavespeeds in the uppermost mantle are low, as expected for seismic energy propagating within an oceanic plate. The estimated depths of the 410- and 660-km discontinuities are 325 and 676 km respectively. The unusually shallow depth of the upper discontinuity below and to the east of Luzon is inferred by clearly resolving the travel-time branch produced by refraction through the transition zone. A possible explanation for the northern part of the region covered is that seismic energy reaches its maximum depth within or close to the cool, subducted oceanic South China Sea slab where subduction has been slow and relatively recent. Further south, however, the presence of a broken remnant of the South China Sea slab, formed during a period of shallower subduction, is suggested at depths below 300 km to explain the broad extent of the elevated 410-km discontinuity. The 660-km discontinuity is slightly deeper than usual, implying that low temperatures persist to lower mantle depths. The wavespeed gradients within the transition zone between depths of 450 and 610 km are higher than those predicted by both the pyrolite and piclogite models of the mantle, possibly due to the presence of water in the transition zone.

  13. Crustal and uppermost mantle structure and deformation in east-central China

    NASA Astrophysics Data System (ADS)

    Li, H.; Yang, X.; Ouyang, L.; Li, J.

    2017-12-01

    We conduct a non-linear joint inversion of receiver functions and Rayleigh wave dispersions to obtain the crustal and upper mantle velocity structure in east-central China. In the meanwhile, the lithosphere and upper mantle deformation beneath east-central China is also evaluated with teleseismic shear wave splitting measurements. The resulting velocity model reveals that to the east of the North-South Gravity Lineament, the crust and the lithosphere are significantly thinned. Furthermore, three extensive crustal/lithospheric thinning sub-regions are clearly identified within the study area. This indicates that the modification of the crust and lithosphere in central-eastern China is non-uniform due to the heterogeneity of the lithospheric strength. Extensive crustal and lithospheric thinning could occur in some weak zones such as the basin-range junction belts and large faults. The structure beneath the Dabie orogenic belt is complex due to the collision between the North and South China Blocks during the Late Paleozoic-Triassic. The Dabie orogenic belt is generally delineated by a thick crust with a mid-crust low-velocity zone and a two-directional convergence in the lithospheric scale. Obvious velocity contrast exhibits in the crust and upper mantle at both sides of the Tanlu fault, which suggests the deep penetration of this lithospheric-scale fault. Most of our splitting measurements show nearly E-W trending fast polarization direction which is slightly deviating from the direction of plate motion. The similar present-day lithosphere structure and upper mantle deformation may imply that the eastern NCC and the eastern SCB were dominated by a common dynamic process after late Mesozoic, i.e., the westward subduction of Pacific plate and the retreat of the subduction plate. The westward subduction of the Philippine plate and the long-range effects of the collision between the Indian plate and Eurasia plate during Cenozoic may have also contributed to the present velocity structure and stress environment of eastern China.

  14. Possible emplacement of crustal rocks into the forearc mantle of the Cascadia Subduction Zone

    USGS Publications Warehouse

    Calvert, A.J.; Fisher, M.A.; Ramachandran, K.; Trehu, A.M.

    2003-01-01

    Seismic reflection profiles shot across the Cascadia forearc show that a 5-15 km thick band of reflections, previously interpreted as a lower crustal shear zone above the subducting Juan de Fuca plate, extends into the upper mantle of the North American plate, reaching depths of at least 50 km. In the extreme western corner of the mantle wedge, these reflectors occur in rocks with P wave velocities of 6750-7000 ms-1. Elsewhere, the forearc mantle, which is probably partially serpentinized, exhibits velocities of approximately 7500 ms-1. The rocks with velocities of 6750-7000 ms-1 are anomalous with respect to the surrounding mantle, and may represent either: (1) locally high mantle serpentinization, (2) oceanic crust trapped by backstepping of the subduction zone, or (3) rocks from the lower continental crust that have been transported into the uppermost mantle by subduction erosion. The association of subparallel seismic reflectors with these anomalously low velocities favours the tectonic emplacement of crustal rocks. Copyright 2003 by the American Geophysical Union.

  15. Scales of Heterogeneities in the Continental Crust and Upper Mantle

    NASA Astrophysics Data System (ADS)

    Tittgemeyer, M.; Wenzel, F.; Ryberg, T.; Fuchs, K.

    1999-09-01

    A seismological characterization of crust and upper mantle can refer to large-scale averages of seismic velocities or to fluctuations of elastic parameters. Large is understood here relative to the wavelength used to probe the earth.¶In this paper we try to characterize crust and upper mantle by the fluctuations in media properties rather than by their average velocities. As such it becomes evident that different scales of heterogeneities prevail in different layers of crust and mantle. Although we cannot provide final models and an explanation of why these different scales exist, we believe that scales of inhomogeneities carry significant information regarding the tectonic processes that have affected the lower crust, the lithospheric and the sublithospheric upper mantle.¶We focus on four different types of small-scale inhomogeneities (1) the characteristics of the lower crust, (2) velocity fluctuations in the uppermost mantle, (3) scattering in the lowermost lithosphere and on (4) heterogeneities in the mantle transition zone.

  16. Flow, melt and fossil seismic anisotropy beneath Ethiopia

    NASA Astrophysics Data System (ADS)

    Hammond, James; Kendall, J.-Michael; Wookey, James; Stuart, Graham; Keir, Derek; Ayele, Atalay

    2014-05-01

    Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and use shear-wave splitting tomography to invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due aligned melt due to sharp changes in lithospheric thickness dominate the shear-wave splitting signal in the mantle. Beneath Afar, away from lithospheric topography, melt pockets associated with the crustal magma storage dominate the signal and little anisotropy is seen in the uppermost mantle suggesting melt retains no preferential alignment, possibly due to a lack of mantle lithosphere. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is absent beneath Afar today, rather a broad flow from the southwest dominates in the upper mantle.

  17. 3D Integrated geophysical-petrological modelling of the Iranian lithosphere

    NASA Astrophysics Data System (ADS)

    Mousavi, Naeim; Ardestani, Vahid E.; Ebbing, Jörg; Fullea, Javier

    2016-04-01

    The present-day Iranian Plateau is the result of complex tectonic processes associated with the Arabia-Eurasia Plate convergence at a lithospheric scale. In spite of previous mostly 2D geophysical studies, fundamental questions regarding the deep lithospheric and sub-lithospheric structure beneath Iran remain open. A robust 3D model of the thermochemical lithospheric structure in Iran is an important step toward a better understanding of the geological history and tectonic events in the area. Here, we apply a combined geophysical-petrological methodology (LitMod3D) to investigate the present-day thermal and compositional structure in the crust and upper mantle beneath the Arabia-Eurasia collision zone using a comprehensive variety of constraining data: elevation, surface heat flow, gravity potential fields, satellite gravity gradients, xenoliths and seismic tomography. Different mantle compositions were tested in our model based on local xenolith samples and global data base averages for different tectonothermal ages. A uniform mantle composition fails to explain the observed gravity field, gravity gradients and surface topography. A tectonically regionalized lithospheric mantle compositional model is able to explain all data sets including seismic tomography models. Our preliminary thermochemical lithospheric study constrains the depth to Moho discontinuity and intra crustal geometries including depth to sediments. We also determine the depth to Curie isotherm which is known as the base of magnetized crustal/uppermost mantle bodies. Discrepancies with respect to previous studies include mantle composition and the geometry of Moho and Lithosphere-Asthenosphere Boundary (LAB). Synthetic seismic Vs and Vp velocities match existing seismic tomography models in the area. In this study, depleted mantle compositions are modelled beneath cold and thick lithosphere in Arabian and Turan platforms. A more fertile mantle composition is found in collision zones. Based on our 3D thermochemical model we propose a new scenario to interpret the geodynamical history of area. In this context the present-day central Iran block would be as remain of the older and larger Iranian block present before the onset of Turan platform subduction beneath the Iranian Plateau. Further analysis of sub-lithospheric density anomalies (e.g., subducted slabs) is required to fully understand the geodynamics of the area.

  18. Uppermost mantle velocity from Pn tomography in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Corbeau, Jordane; Rolandone, Frédérique; Leroy, Sylvie; Al-Lazki, Ali; Keir, Derek; Stuart, Graham; Stork, Anna

    2013-04-01

    We present an analysis of Pn traveltimes to determine lateral variations of velocity in the uppermost mantle and crustal thickness beneath the Gulf of Aden and its margins. No detailed tomographic image of the entire Gulf of Aden was available. Previous tomographic studies covered the eastern Gulf of Aden and were thus incomplete or at a large scale with a too low resolution to see the lithospheric structures. From 1990 to 2010, 49206 Pn arrivals were selected from the International Seismological Center catalogue. We also used temporary networks : YOCMAL (Young Conjugate Margins Laboratory) networks with broadband stations located in Oman, Yemen and Socotra from 2003 to 2011, and Djibouti network from 2009 to 2011. From these networks we picked Pn arrivals and selected 4110 rays. Using a least-squares tomographic code (Hearn, 1996), these data were analyzed to solve for velocity variations in the mantle lithosphere. We perform different inversions for shorter and longer ray path data sets in order to separate the shallow and deep structure within the mantle lid. In the upper lid, zones of low velocity (7.7 km/s) around Sanaa, Aden, Afar, and along the Gulf of Aden are related to active volcanism. Off-axis volcanism and a regional melting anomaly in the Gulf of Aden area may be connected to the Afar plume, and explained by the model of channeling material away from the Afar plume along ridge-axis. Our study validates the channeling model and shows that the influence of the Afar hotspot may extend much farther eastwards along the Aden and Sheba ridges into the Gulf of Aden than previously believed. Still in the upper lid, high Pn velocities (>8,2 km/s) are observed in Yemen and may be related to the presence of a magmatic underplating under the volcanic margin of Aden and under the Red Sea margins. In the lower lid, zones of low velocities are spatially located differently than in the upper lid. On the Oman margin, a low velocity zone (7.6 km/s) suggests deep partial melting. The Pn velocity below Socotra island is slower, whereas a high velocity zone is observed north of the Sheba ridge. The hot material may have flowed through Alula-Fartak transform zone towards Socotra.

  19. Crustal shear wave velocity and radial anisotropy beneath the Rio Grande rift from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Fu, Yuanyuan V.; Li, Aibing

    2015-02-01

    Shear wave velocity and radial anisotropy beneath New Mexico are obtained from ambient seismic noise tomography using data from the Transportable Array. Besides the distinct seismic structure imaged across the Rio Grande rift from the Colorado Plateau to the Great Plains, both velocity and anisotropy models also reveal significant variations along the rift. The rift at Albuquerque is characterized by remarkably low velocity in the shallow crust, high velocity and strong positive anisotropy in the middle and lower crust, and low velocity in the upper mantle. These observations can be interpreted as magma accumulation in the shallow crust and significant mafic underplating in the lower crust with abundant melt supply from the hot mantle. We propose that the Albuquerque region has recently been experiencing the most vigorous extensional deformation in the rift. Positive anisotropy with Vsh > Vsv appears in the central and southern rifts with a stronger anisotropy beneath younger volcanoes, reflecting layering of magma intrusion due to past and recent rifting activities. The low velocities in the uppermost mantle are observed under high-elevation places, the Jemez Lineament, northern rift, and east rift boundary, implying that the buoyancy of hot mantle largely compensates the local high topography. Low mantle velocities appear at the boundary of the southern rift, corresponding to the large lithosphere thickness change, instead of the rift center, consistent with the prediction from the small-scale, edge-driven mantle convection model. We conclude that the edge-driven upper mantle convection is probably the dominant mechanism for the recent and current rifting and uplift in the Rio Grande rift.

  20. Geothermal Heat Flux and Upper Mantle Viscosity across West Antarctica: Insights from the UKANET and POLENET Seismic Networks

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. P.; Dunham, C.; Stuart, G. W.; Brisbourne, A.; Nield, G. A.; Whitehouse, P. L.; Hooper, A. J.; Nyblade, A.; Wiens, D.; Aster, R. C.; Anandakrishnan, S.; Huerta, A. D.; Wilson, T. J.; Winberry, J. P.

    2017-12-01

    Quantifying the geothermal heat flux at the base of ice sheets is necessary to understand their dynamics and evolution. The heat flux is a composite function of concentration of upper crustal radiogenic elements and flow of heat from the mantle into the crust. Radiogenic element concentration varies with tectonothermal age, while heat flow across the crust-mantle boundary depends on crustal and lithospheric thicknesses. Meanwhile, accurately monitoring current ice mass loss via satellite gravimetry or altimetry hinges on knowing the upper mantle viscosity structure needed to account for the superimposed glacial isostatic adjustment (GIA) signal in the satellite data. In early 2016 the UK Antarctic Network (UKANET) of 10 broadband seismometers was deployed for two years across the southern Antarctic Peninsula and Ellsworth Land. Using UKANET data in conjunction with seismic records from our partner US Polar Earth Observing Network (POLENET) and the Antarctic Seismographic Argentinian Italian Network (ASAIN), we have developed a 3D shear wave velocity model of the West Antarctic crust and uppermost mantle based on Rayleigh and Love wave phase velocity dispersion curves extracted from ambient noise cross-correlograms. We combine seismic receiver functions with the shear wave model to help constrain the depth to the crust-mantle boundary across West Antarctica and delineate tectonic domains. The shear wave model is subsequently converted to temperature using a database of densities and elastic properties of minerals common in crustal and mantle rocks, while the various tectonic domains are assigned upper crustal radiogenic element concentrations based on their inferred tectonothermal ages. We combine this information to map the basal geothermal heat flux variation across West Antarctica. Mantle viscosity depends on factors including temperature, grain size, the hydrogen content of olivine and the presence of melt. Using published mantle xenolith and magnetotelluric data to constrain grain size and hydrogen content, respectively, we use the temperature model to estimate the regional upper mantle viscosity structure. The viscosity information will be incorporated in a 3D GIA model that will better constrain estimates of current ice loss from the West Antarctic Ice Sheet.

  1. Shear velocity profiles in the crust and lithospheric mantle across Tibet

    NASA Astrophysics Data System (ADS)

    Agius, M. R.; Lebedev, S.

    2010-12-01

    We constrain variations in the crustal and lithospheric structure across Tibet, using phase velocities of seismic surface waves. The data are seismograms recorded by broadband instruments of permanent and temporary networks within and around the plateau. Phase-velocity measurements are performed in broad period ranges using an elaborate recent implementation of the 2-station method. A combination of the cross-correlation and multimode-waveform-inversion measurements using tens to hundreds of seismograms per station pair produces robust, accurate phase-velocity curves for Rayleigh and Love waves. We use our new measurements to infer phase-velocity variations and to constrain S-velocity profiles in different parts of the plateau, including radial anisotropy and depths of lithospheric discontinuities. We observe a mid-crustal low-velocity zone (LVZ) in the 20-45 km depth range across the plateau, with S-velocities within a 3.2-3.5 km/s range. This LVZ coincides with a low-resistivity layer inferred from magnetotelluric studies, interpreted as evidence for partial melting in the middle crust. Surface-wave data are also consistent with radial anisotropy in this layer, indicative of horizontal flow. At the north-eastern boundary of the plateau, past the Kunlun Fault, the mid-crustal LVZ, in the sense of an S-velocity decrease with depth in the 15-25 km depth range, is not required by the surface-wave data although the velocity is still relatively low. The mantle-lithosphere structure shows a pronounced contrast between the south-western and central-northern parts of the plateau. The south-west is underlain by a thick, high-velocity, craton-like lithospheric mantle. Below central Lhasa the uppermost mantle appears to be close to global average with an increase in velocity between 150 - 250 km depth. Beneath central and northern Tibet, the average S velocity between the Moho and 200 km depth is close to the global continental average (4.5 km/s). In order to investigate the finer detail of the lithosphere in the North we perform an extensive series of test inversions. We find that surface-wave dispersion measurements alone are consistent both with models that have low S velocity just beneath the Moho, increasing with depth below, and with models that display a thin high-velocity mantle lid underlain by a low-velocity zone (asthenosphere). To resolve this non-uniqueness from the inversion model, we combine our surface-wave measurements in the Qiangtang Block with receiver-function constraints on the Moho depth, and Sn constraints on the uppermost mantle S velocities. We show that the data is matched significantly better with models that contain a thin, high-velocity lithosphere (up to 90 km thick) underlain by a low-velocity zone than by models with no wave-speed decrease between the Moho and ~100 km depth. In the deeper upper mantle (below ~150 km depth), S velocity increases and is likely to exceed the global average value.

  2. Joint Inversion for Lithospheric Structures: Implications for the Growth and Deformation in Northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Deng, Yangfan; Li, Jiangtao; Song, Xiaodong; Zhu, Lupei

    2018-05-01

    Several geodynamic models have been proposed for the deformation mechanism of Tibetan Plateau (TP), but it remains controversial. Here we applied a method of joint inversion of receiver functions and surface wave dispersions with P wave velocity constraint to a dense linear array in the NE Tibet. The results show that the geological blocks, separated by major faults at the surface, are characterized by distinct features in the crust, the Moho, and the uppermost mantle. The main features include crustal low-velocity zones (LVZs) with variable strengths, anomalous Vp/Vs ratios that are correlated with LVZs, a large Moho jump, and other abrupt changes near major faults, strong mantle lithosphere anomalies, and correlation of crustal and mantle velocities. The results suggest a lithospheric-scale deformation of continuous shortening as well as localized faulting, which is affected by the strength of the lithosphere blocks. The thickened mantle lithosphere can be removed, which facilitates the formation of middle-lower crustal LVZ and flow. However, such flow is likely a consequence of the deformation rather than a driving force for the outward growth of the TP. The proposed model of TP deformation and growth can reconcile the continuous deformation within the blocks and major faults at the surface.

  3. The lateral variation of P n velocity gradient under Eurasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaoning

    We report that mantle lid P wave velocity gradient, or P n velocity gradient, reflects the depth and lateral variations of thermal and rheological state of the uppermost mantle. Mapping the P n velocity gradient and its lateral variation helps us gain insight into the temperature, composition, and dynamics of the uppermost mantle. In addition, because P n velocity gradient has profound influence on P n propagation behavior, an accurate mapping of P n velocity gradient also improves the modeling and prediction of P n travel times and amplitudes. In this study, I used measured P n travel times tomore » derive path-specific P n velocity gradients. I then inverted these velocity gradients for two-dimensional (2-D) P n velocity-gradient models for Eurasia based on the assumption that a path-specific Pn velocity gradient is the mean of laterally varying P n velocity gradients along the P n path. Result from a Monte Carlo simulation indicates that the assumption is appropriate. The 2-D velocity-gradient models show that most of Eurasia has positive velocity gradients. High velocity gradients exist mainly in tectonically active regions. Most tectonically stable regions show low and more uniform velocity gradients. In conclusion, strong velocity-gradient variations occur largely along convergent plate boundaries, particularly under overriding plates.« less

  4. The lateral variation of P n velocity gradient under Eurasia

    DOE PAGES

    Yang, Xiaoning

    2017-05-03

    We report that mantle lid P wave velocity gradient, or P n velocity gradient, reflects the depth and lateral variations of thermal and rheological state of the uppermost mantle. Mapping the P n velocity gradient and its lateral variation helps us gain insight into the temperature, composition, and dynamics of the uppermost mantle. In addition, because P n velocity gradient has profound influence on P n propagation behavior, an accurate mapping of P n velocity gradient also improves the modeling and prediction of P n travel times and amplitudes. In this study, I used measured P n travel times tomore » derive path-specific P n velocity gradients. I then inverted these velocity gradients for two-dimensional (2-D) P n velocity-gradient models for Eurasia based on the assumption that a path-specific Pn velocity gradient is the mean of laterally varying P n velocity gradients along the P n path. Result from a Monte Carlo simulation indicates that the assumption is appropriate. The 2-D velocity-gradient models show that most of Eurasia has positive velocity gradients. High velocity gradients exist mainly in tectonically active regions. Most tectonically stable regions show low and more uniform velocity gradients. In conclusion, strong velocity-gradient variations occur largely along convergent plate boundaries, particularly under overriding plates.« less

  5. Analysis of converted S-waves and gravity anomaly along the Aegir Ridge: implications for crustal lithology

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Breivik, A. J.; Mjelde, R.; Hanan, B. B.; Ito, G.; Sayit, K.; Howell, S.; Vogt, P. R.; Pedersen, R.

    2012-12-01

    The Aegir Ridge is an extinct spreading ridge in North-East Atlantic ocean. A thinner than normal crust around the Aegir Ridge appears as a hole in the extensively magmatic surroundings. Its proximity to the Iceland hot-spot makes it particularly important for understanding the changing dynamics of hotspot-ridge interaction. An integrated seismic and dredging experiment was conduced during the summer of 2010 with the primary aim to understand the nature of magmatism along the ridge shortly before cessation of seafloor spreading through variations of sub-seafloor lithological properties. Here, we present results of analysis of converted shear-waves recorded on OBS-sesimic data, and ship-gravity data. The shear-wave study enables us to quantify the variation of Vp/Vs in the sediments, crust and the upper-most mantle. We also inverted the gravity data to determine the sub-seafloor density distribution. The P- to S- converted shear-waves were identified on 20 OBSs along a profile with a total length of 550 km parallel to the ridge-axis. The sedimentary section on top of the crystalline crust is well illuminated in the streamer data. The forward modelling of the OBS data reveals that the Vp/Vs ratio in sediments are as high as 4.8, decreasing rapidly to a value of 3.00, primarily due to compaction of sediments with depth. Identification of sufficient PnS and PSn phases enable us to model the crustal and upper-most mantle Vp/Vs. The upper crystalline crust requires a Vp/Vs value of 1.99 and 1.89 for the southern and the northern profiles respectively, to fit the observations. The lower crust and upper-most part of the mantle have a Vp/Vs of ~1.82 and 1.795 respectively. Slightly lower Vp and moderate increase in Vp/Vs in parts of the crust and upper mantle presumably indicate presence of faulting, fracturing in the crust and moderate degree of serpentinization of the upper mantle. A sub-seafloor density model is derived by non-linear inversion of the gravity anomaly. The distribution of sediments appear to control the short-wavelength features of the gravity data, whereas density variations are required in the upper mantle to optimally fit the overall gravity anomaly. Our results suggest certain degree of temperature and/or compositional heterogeneities towards the southern ends of Aegir Ridge, near the Iceland-Faroes Ridge.

  6. Sensitivities of seismic velocities to temperature, pressure and composition in the lower mantle

    NASA Astrophysics Data System (ADS)

    Trampert, Jeannot; Vacher, Pierre; Vlaar, Nico

    2001-08-01

    We calculated temperature, pressure and compositional sensitivities of seismic velocities in the lower mantle using latest mineral physics data. The compositional variable refers to the volume proportion of perovskite in a simplified perovskite-magnesiowüstite mantle assemblage. The novelty of our approach is the exploration of a reasonable range of input parameters which enter the lower mantle extrapolations. This leads to realistic error bars on the sensitivities. Temperature variations can be inferred throughout the lower mantle within a good degree of precision. Contrary to the uppermost mantle, modest compositional changes in the lower mantle can be detected by seismic tomography, with a larger uncertainty though. A likely trade-off between temperature and composition will be largely determined by uncertainties in tomography itself. Given current sources of uncertainties on recent data, anelastic contributions to the temperature sensitivities (calculated using Karato's approach) appear less significant than previously thought. Recent seismological determinations of the ratio of relative S to P velocity heterogeneity can be entirely explain by thermal effects, although isolated spots beneath Africa and the Central Pacific in the lowermost mantle may ask for a compositional origin.

  7. Improved Nazca slab structure from teleseismic P-wave tomography along the Andean margin

    NASA Astrophysics Data System (ADS)

    Portner, D. E.; Beck, S. L.; Scire, A. C.; Zandt, G.

    2017-12-01

    South America marks the longest continuous ocean-continent subduction zone. As such, there is significant along-strike variability in the subducting Nazca slab structure and the tectonics of the South American margin. Most notably two gaps in the otherwise continuous volcanic arc are correlated with regions of flat slab subduction, indicating that the structure of the Nazca slab plays a controlling role in South American tectonics. Traditionally in subduction zones, our knowledge of slab structure is defined by Wadati-Benioff zone earthquakes. While this method allows for the determination of large-scale variations in Nazca slab structure such as regions of flat slab subduction, a scarcity of intermediate-depth earthquakes hinders our ability to observe the smaller-scale structural variations in the slab that may be critical to our understanding of the geologic record. We use an updated, larger dataset for finite-frequency teleseismic P-wave tomography including relative arrival times from >700 seismic stations along the Andean margin to image the detailed Nazca slab structure throughout the upper mantle and uppermost lower mantle between latitudes 5°S and 45°S. Our results show prominent variations in slab character along the margin. Slab dip varies significantly, from sub-vertical inboard of the Peruvian flat slab segment to 30° dip south of the Pampean flat slab, while the slab's velocity anomaly amplitude changes dramatically near the Pampean flat slab region. High slab velocities north of the Pampean region relative to the south indicate variable slab thermal structures that correspond roughly with the locations of deep (>500 km depth) earthquakes that also occur exclusively north of the Pampean region. Additionally, a wider regional footprint increases our sampling of the upper-lower mantle boundary, improving constraints on the slab's interaction with the 660 km discontinuity along strike. We see that the Nazca slab appears to penetrate into the lower mantle along the majority of the margin.

  8. Upper mantle heterogeneity: Comparisons of regions south of Australia with Philippine Basin

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The nature of mass anomalies that occur beneath the regions of negative residual depth anomalies were identified. Residual geoid anomalies with negative residual depth anomalies are identified in the Philippine Basin (negative) and in the region south of Australia (positive and negative). In the latter region the geoid anomalies are eastward and the depth anomaly is northeast. It is suggested that the negative depth anomaly and the compensating mass excess in the uppermost mantle developed in the Eocene as the lithosphere of the west Philippine basin formed. Heating of the deeper upper mantle which causes slow surface wave velocities and negative gravity and geoid anomalies may be a younger phenomenon which is still in progress.

  9. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle

    NASA Astrophysics Data System (ADS)

    Beghein, Caroline; Trampert, Jeannot

    2004-01-01

    The presence of radial anisotropy in the upper mantle, transition zone and top of the lower mantle is investigated by applying a model space search technique to Rayleigh and Love wave phase velocity models. Probability density functions are obtained independently for S-wave anisotropy, P-wave anisotropy, intermediate parameter η, Vp, Vs and density anomalies. The likelihoods for P-wave and S-wave anisotropy beneath continents cannot be explained by a dry olivine-rich upper mantle at depths larger than 220 km. Indeed, while shear-wave anisotropy tends to disappear below 220 km depth in continental areas, P-wave anisotropy is still present but its sign changes compared to the uppermost mantle. This could be due to an increase with depth of the amount of pyroxene relative to olivine in these regions, although the presence of water, partial melt or a change in the deformation mechanism cannot be ruled out as yet. A similar observation is made for old oceans, but not for young ones where VSH> VSV appears likely down to 670 km depth and VPH> VPV down to 400 km depth. The change of sign in P-wave anisotropy seems to be qualitatively correlated with the presence of the Lehmann discontinuity, generally observed beneath continents and some oceans but not beneath ridges. Parameter η shows a similar age-related depth pattern as shear-wave anisotropy in the uppermost mantle and it undergoes the same change of sign as P-wave anisotropy at 220 km depth. The ratio between dln Vs and dln Vp suggests that a chemical component is needed to explain the anomalies in most places at depths greater than 220 km. More tests are needed to infer the robustness of the results for density, but they do not affect the results for anisotropy.

  10. A Detailed 3D Seismic Velocity Structure of the Subducting Pacific Slab Beneath Hokkaido, Tohoku and Kanto, Japan, by Double-Difference Tomography

    NASA Astrophysics Data System (ADS)

    Tsuji, Y.; Nakajima, J.; Kita, S.; Okada, T.; Matsuzawa, T.; Hasegawa, A.

    2007-12-01

    Three-dimensional heterogeneous structure beneath northeastern (NE) Japan has been investigated by previous studies and an inclined seismic low-velocity zone is imaged in the mantle wedge sub-parallel to the down-dip direction of the subducting slab (Zhao et al., 1992, Nakajima et al., 2001). However, the heterogeneous structure within the slab has not been well studied even though it is very important to understand the whole process of water transportation from the slab to the surface. Here we show a detailed 3D seismic velocity structure within the subducted Pacific slab around Japan and propose a water-transportation path from the slab to the mantle wedge. In this study, we estimated 3D velocity structure within the Pacific slab by the double-difference tomography (Zhang and Thurber, 2003). We divided the study area, from Hokkaido to Kanto, into 6 areas due to the limitation of memory and computation time. In each area, arrival-time data of 7,500-17,000 events recorded at 70-170 stations were used in the analysis. The total number of absolute travel-time data was about 140,000-312,000 for P wave and 123,000-268,000 for S wave, and differential data were about 736,000-1,920,000 for P wave and 644,000-1,488,000 for S wave. Horizontal and vertical grid separations are 10-25 km and 6.5 km, respectively. RMS residuals of travel times for P wave decreased from 0.23s to 0.09s and for S wave from 0.35s to 0.13s. The obtained results are as follows: (1) a remarkable low-Vs zone exists in the uppermost part of the subducting slab, (2) it extends down to a depth of about 80 km, (3) the termination of this low-Vs zone almost corresponds to the "seismic belt" recently detected in the upper plane of the double seismic zone (Kita et al.,2006; Hasegawa et al., 2007), (4) at depths deeper than 80 km, a low-Vs and high-Vp/Vs zone is apparently distributed in the mantle wedge, immediately above the slab crust. We consider that these features reflect water-transportation processes from the slab to the mantle wedge. A low- Vs zone in the uppermost part of the subducting slab corresponds to the hydrous oceanic crust since its absolute velocity is about 4.0 km/s, comparable to that expected for the oceanic crust (Hacker et al., 2003). Dehydration reactions occur in the oceanic crust as temperature and pressure increase, and a relatively large amount of water is released at depths of about 80-100 km. The water generated by dehydration reactions could migrate upward and react peridotite at the base of the mantle wedge, forming a thin-serpentine layer there. Then, the layer is dragged by the subducting slab to deeper depths (e.g. Iwamori, 1998). Such water-transportation processes from the slab to the mantle wedge are partly constrained by a recent receiver function analysis (Kawakatsu and Watada, 2007). We further found an along-arc variation of the termination depth of the low-velocity oceanic crust, suggesting the along-arc variation in the amount of fluids released from the slab.

  11. Orogenic inheritance and continental breakup: Wilson Cycle-control on rift and passive margin evolution

    NASA Astrophysics Data System (ADS)

    Schiffer, C.; Petersen, K. D.

    2016-12-01

    Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often observed seismically or exposed at the sea floor of passive margins, was formed prior to rifting in addition to syn-rift, fault-driven hydrothermal processes. Whether lower crustal and serpentinite bodies are produced previously or during rifting is of relevance for the estimation of thinning-factors of the pre-existing crust.

  12. Age-Orientation Relationships of Northern Hemisphere Martian Gullies and "Pasted-on" Mantling Unit: Implications for Near-Surface Water Migration in Mars' Recent History

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Lackner, C. N.

    2005-01-01

    The finding of abundant, apparently young, Martian gullies with morphologies indicative of formation by flowing fluid was surprising in that volumes of near-surface liquid water in sufficient quantities to modify the surface geology were not thought possible under current conditions. Original hypotheses on origin of gullies were mostly centered on groundwater seepage and surface runoff and melting of near-surface ground ice. More recently, melting of snow deposited in periods of higher obliquity has been proposed as a possible origin of the gullies. Tied to this hypothesis is the supposition that the "pasted-on" mantling unit observed in association with many gullies is composed of remnant snowpack. The mantling unit has distinct rounded edge on its upper boundary and exhibits features suggestive of flow noted that the uppermost part of the mantle marks where gullies begin, suggesting that the source of water for the gullies was within the mantle. The mantle is found preferentially on cold, pole-facing slopes and, where mantled and non-mantled slopes are found together, gullies are observed incised into the latter. In other cases, the mantling material lacks gullies.

  13. A 3-D crustal and uppermost mantle model of the western US from receiver functions and surface wave dispersion derived from ambient noise and teleseismic earthquakes

    NASA Astrophysics Data System (ADS)

    Shen, W.; Schulte-Pelkum, V.; Ritzwoller, M. H.

    2011-12-01

    The joint inversion of surface wave dispersion and receiver functions was proven feasible on a station by station basis more than a decade ago. Joint application to a large number of stations across a broad region such as western US is more challenging, however, because of the different resolutions of the two methods. Improvements in resolution in surface wave studies derived from ambient noise and array-based methods applied to earthquake data now allow surface wave dispersion and receiver functions to be inverted simultaneously across much of the Earthscope/USArray Transportable Array (TA), and we have developed a Monte-Carlo procedure for this purpose. As a proof of concept we applied this procedure to a region containing 186 TA stations in the intermountain west, including a variety of tectonic settings such as the Colorado Plateau, the Basin and Range, the Rocky Mountains, and the Great Plains. This work has now been expanded to encompass all TA stations in the western US. Our approach includes three main components. (1) We enlarge the Earthscope Automated Receiver Survey (EARS) receiver function database by adding more events within a quality control procedure. A back-azimuth-independent receiver function and its associated uncertainties are constructed using a harmonic stripping algorithm. (2) Rayleigh wave dispersion curves are generated from the eikonal tomography applied to ambient noise cross-correlation data and Helmoholtz tomography applied to teleseismic surface wave data to yield dispersion maps from 8 sec to 80 sec period. (3) We apply a Metropolis Monte Carlo algorithm to invert for the average velocity structure beneath each station. Simple kriging is applied to interpolate to the discrete results into a continuous 3-D model. This method has now been applied to over 1,000 TA stations in the western US. We show that the receiver functions and surface wave dispersion data can be reconciled beneath more than 80% of the stations using a smooth parameterization of both crustal and uppermost mantle structure. After the inversion, a 3-D model for the crust and uppermost mantle to a depth of 150 km is constructed for this region. Compared with using surface wave data alone, uncertainty in crustal thickness is much lower and as a result, the lower crustal velocity is better constrained given a smaller depth-velocity trade-off. The new 3-D model including Moho depth with attendant uncertainties provides the basis for further analysis on radial anisotropy and geodynamics in the western US, and also forms a starting point for other seismological studies such as body wave tomography and receiver function CCP analysis.

  14. Improved Seismic Images of the Pacific Northwest Interior, With a Focus on the Region of the Columbia River Flood Basalts and Central Idaho

    NASA Astrophysics Data System (ADS)

    Stanciu, A. C.; Humphreys, E.; Clayton, R. W.

    2017-12-01

    We construct a P-wave model of the upper mantle based on new and previously acquired data from the USArray-TA stations and regional deployments, including the HLP, ID-OR, and the currently recording Wallowa stations. Our teleseismic arrival times are corrected for crustal structure (based on surface wave, receiver function, and controlled-source models from the region). Our modeling incorporates 3-D ray tracing and several simple considerations of radial anisotropy on travel time. As imaged previously, we find high P-wave velocity anomalies located beneath the Wallowa Mountains and beneath the Idaho Batholith in central west Idaho. Our improved imaging finds that these two anomalies are located down to 350 km depth, and are clearly separated from one another and from a shallower fast anomaly in the uppermost mantle beneath the westernmost Snake River Plain. Our preferred interpretation includes a combination of delamination and slab fragments in this region. As fast (and presumably cool) structures, these upper-mantle anomalies are thought to have a lithospheric origin. The anomaly beneath central Idaho is interpreted as the leading edge of the Farallon slab associated with the accretion of Siletzia terrane to North America. This anomaly may include some North American lithosphere that delaminated from the Laramide-thickened lithospheric mantle, perhaps related to Challis magmatism. The Wallowa anomaly is likely to represent Farallon lithosphere that delaminated during the Columbia River flood basalt event. The small anomaly between the two deeper fast anomalies, occurring at depths above 150km, could represent an isolated lithospheric fragment or a structure created by the Columbia River flood basalt event.

  15. Deep structure of Porcupine Basin and nature of the Porcupine Median Ridge from seismic refraction tomography

    NASA Astrophysics Data System (ADS)

    Watremez, L.; Chen, C.; Prada, M.; Minshull, T. A.; O'Reilly, B.; Reston, T. J.; Wagner, G.; Gaw, V.; Klaeschen, D.; Shannon, P.

    2015-12-01

    The Porcupine Basin is a narrow V-shaped failed rifted basin located offshore SW Ireland. It is of Permo-Triassic to Cenozoic age, with the main rifting phase in the Late Jurassic to Early Cretaceous. Porcupine Basin is a key study area to learn about the processes of continental extension and to understand the thermal history of this rifted basin. Previous studies show increasing stretching factors, from less than 1.5 to the North to more than 6 to the South. A ridge feature, the Porcupine Median Ridge, has been identified in the middle of the southernmost part of the basin. During the last three decades, this ridge has been successively interpreted as a volcanic structure, a diapir of partially serpentinized mantle, or a block of continental crust. Its nature still remains debated today. In this study, we use arrival times from refractions and wide-angle reflections in the sedimentary, crustal and mantle layers to image the crustal structure of the thinnest part of the basin, the geometry of the continental thinning from margin to margin, and the Porcupine Median Ridge. The final velocity model is then compared with coincident seismic reflection data. We show that (1) the basin is asymmetric, (2) P-wave velocities in the uppermost mantle are lower than expected for unaltered peridotites, implying upper-mantle serpentinisation, (3) the nature of Porcupine Median Ridge is probably volcanic, and (4) the amount of thinning is greater than shown in previous studies. We discuss the thermal implications of these results for the evolution of this rift system and the processes leading to the formation of failed rifts. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.

  16. Magnetotelluric investigations of the lithosphere beneath the central Rae craton, mainland Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Spratt, Jessica E.; Skulski, Thomas; Craven, James A.; Jones, Alan G.; Snyder, David B.; Kiyan, Duygu

    2014-03-01

    New magnetotelluric soundings at 64 locations throughout the central Rae craton on mainland Nunavut constrain 2-D resistivity models of the crust and lithospheric mantle beneath three regional transects. Responses determined from colocated broadband and long-period magnetotelluric recording instruments enabled resistivity imaging to depths of > 300 km. Strike analysis and distortion decomposition on all data reveal a regional trend of 45-53°, but locally the geoelectric strike angle varies laterally and with depth. The 2-D models reveal a resistive upper crust to depths of 15-35 km that is underlain by a conductive layer that appears to be discontinuous at or near major mapped geological boundaries. Surface projections of the conductive layer coincide with areas of high grade, Archean metasedimentary rocks. Tectonic burial of these rocks and thickening of the crust occurred during the Paleoproterozoic Arrowsmith (2.3 Ga) and Trans-Hudson orogenies (1.85 Ga). Overall, the uppermost mantle of the Rae craton shows resistivity values that range from 3000 Ω m in the northeast (beneath Baffin Island and the Melville Peninsula) to 10,000 Ω m beneath the central Rae craton, to >50,000 Ω m in the south near the Hearne Domain. Near-vertical zones of reduced resistivity are identified within the uppermost mantle lithosphere that may be related to areas affected by mantle melt or metasomatism associated with emplacement of Hudsonian granites. A regional decrease in resistivities to values of 500 Ω m at depths of 180-220 km, increasing to 300 km near the southern margin of the Rae craton, is interpreted as the lithosphere-asthenosphere boundary.

  17. Cenozoic extension, volcanism and plateau uplift in eastern Africa and the African Superplume

    NASA Astrophysics Data System (ADS)

    Nyblade, A.; O'Donnell, J.; Mulibo, G. D.; Adams, A. N.

    2013-12-01

    Recent body and surface wave studies combine to image mantle velocity structure to a depth of 1200 km beneath eastern Africa using teleseismic earthquake data recorded by the AfricaArray East African Seismic Experiment in conjunction with permanent stations and previously deployed temporary stations. The combined network spans Kenya, Uganda, Tanzania, Zambia and Malawi. The 3-D shear wave velocity structure of the uppermost mantle was imaged using fundamental-mode Rayleigh wave phase velocities measured at periods ranging from 20 to 182 s, subsequently inverted for shear velocity structure. When considered in conjunction with mapped seismicity, the shear velocity model supports a secondary western rift branch striking southwestwards from Lake Tanganyika, likely exploiting the relatively weak lithosphere of the southern Kibaran Belt between the Bangweulu Block and the Congo Craton. In eastern Tanzania a low-velocity region suggests that the eastern rift branch trends southeastwards offshore eastern Tanzania coincident with the purported location of the northern margin of the proposed Ruvuma microplate. The results suggest that existing lithospheric structures exert a significant governing influence on rift development. Sub-lithospheric mantle wave speed variations extending to a depth of 1200 km were tomographically imaged from the inversion of P and S wave relative arrival time residuals. The images shows a low wave speed anomaly (LWA) well developed at shallow depths (100-200 km) beneath the Eastern and Western branches of the rift system and northwestern Zambia, and a fast wave speed anomaly at depths greater than 350 km beneath the central and northern parts of the East African Plateau and the eastern and central parts of Zambia. At depths below 350 km the LWA is most prominent under the central and southern parts of the East African Plateau and dips to the southwest beneath northern Zambia, extending to a depth of at least 900 km. The amplitude of the LWA is consistent with a 150-300 K thermal perturbation, and its depth extent indicates that the African superplume, originally identified as a lower mantle anomaly, is likely a whole mantle structure. A mantle transition zone about 30-40 km thinner than the global average in a region 200-400 km wide extending in a SW-NE direction from central Zambia, across Tanzania and into Kenya was inferred from P to S conversions from the 410 and 660 km discontinuities observed in receiver function stacks. The thinning of the transition zone indicates a 190-300 K thermal anomaly in the same location where the P and S wave tomography models suggest that the lower mantle African superplume structure connects to thermally perturbed upper mantle beneath eastern Africa. These findings provide compelling evidence for the existence of a continuous thermal structure extending from the core-mantle boundary to the surface associated with the African superplume, implying an origin for the Cenozoic extension, volcanism and plateau uplift in eastern Africa rooted in the dynamics of the lower mantle.

  18. The crust and uppermost mantle structure in Southern Peru from ambient noise and earthquake surface wave analysis

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Clayton, R. W.

    2012-12-01

    We determine the Vs structure to a depth of 140 km of Southern Peru, where the subducted Nazca slab changes from normal to flat subduction. The data are from a box-like array that is approximately 300 km on a side, and with 150 stations in total. The structure is inverted from surface wave dispersion curves measured between 5 s to 23 s period from ambient noise cross-correlations, and between 25 s to 69 s from earthquake two-plane-wave analysis. From the map views of different depths, we observe that: (1) The forearc region is characterized by shallow crustal thickness and higher crustal velocity compared with the backarc. (2) The upper-crust velocity in the backarc above normal subduction (3.0-3.2 km/s) is lower compared with that above flat subduction region (3.2-3.4 km/s). The low velocity coincides with the deep sediments above the Altiplano plateau. (3) The transition from the normal to flat subduction is characterized by a comparatively lower upper-mid crust velocity (3.2-3.4 km/s). The lower velocity zone also coincides with the highest topography (>4700 m) in the study area. (4) The mantle wedge velocity above the flat subduction (4.6-4.9 km/s) is higher than the surrounding mantle and the mantle above the normal subduction region (4.3-4.5 km/s). We deduce that the upper-mid crust above the transition of the slab geometry is probably more felsic, which can be due to the old volcanic activity during the normal-flat transition, and thus can more easily accommodate the crustal shortening. The lack of present volcanism above the flat subduction, however, could be explained by the high velocity anomaly related to the flat slab. It may indicate a cold environment, and thus the lack of mantle melting.

  19. Seismic velocity structure of the incoming Pacific Plate subducting into the central part of the Japan Trench revealed by traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Fujie, G.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Miura, S.; Shinohara, M.

    2016-12-01

    Subduction of oceanic plates plays an important role in the water transportation from the earth surface into the deep mantle. Recent active seismic survey studies succeed to image that the seismic velocities within the oceanic crust and the uppermost mantle in the outer rise region decreases toward the trench axis. These velocity changes are considered as an indication of the hydration and alteration of the incoming oceanic plates prior to the subduction. However, the area with sufficient resolution of the active seismic studies is often limited at depths corresponding to the oceanic crust and several km beneath the oceanic Moho. In this study, we have examined the seismic velocity structure of the incoming/subducting Pacific Plate beneath the trench axis and outer trench-slope of the central part of the Japan Trench. The seismicity in the Pacific Plate, including several M7-class intra-plate earthquakes, has been active since the 2011 Tohoku-Oki earthquake in the study area. These activities were observed by the ocean bottom seismographs (OBS) deployed repeatedly. The data obtained from these OBS observations allow us to resolve the seismic velocity structures at greater depths compared to the active seismic surveys. We conducted 3-D traveltime tomography by using double-difference tomography method (Zhang and Thurber, 2003). The results show that the seismic velocities within the oceanic mantle decreased toward the trench axis. The velocity reduction begins at about 80 km seaward of the trench axis and extended to a depth of at least 30 km beneath the trench axis area. If the observed P-wave velocity reduction from 8.4 km/s to 7.7 km/s at a depth of 15 km below the oceanic Moho is caused by the serpentinization of the oceanic mantle (Carlson and Miller, 2003), roughly 2.5 weight per cent of water is expected in the low velocity anomalies in the oceanic mantle.

  20. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry.

    PubMed

    Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M

    2017-05-12

    The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.

  1. Normal Mode Derived Models of the Physical Properties of Earth's Outer Core

    NASA Astrophysics Data System (ADS)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.; Wu, W.

    2017-12-01

    Earth's outer core, the largest reservoir of metal in our planet, is comprised of an iron alloy of an uncertain composition. Its dynamical behaviour is responsible for the generation of Earth's magnetic field, with convection driven both by thermal and chemical buoyancy fluxes. Existing models of the seismic velocity and density of the outer core exhibit some variation, and there are only a small number of models which aim to represent the outer core's density.It is therefore important that we develop a better understanding of the physical properties of the outer core. Though most of the outer core is likely to be well mixed, it is possible that the uppermost outer core is stably stratified: it may be enriched in light elements released during the growth of the solid, iron enriched, inner core; by elements dissolved from the mantle into the outer core; or by exsolution of compounds previously dissolved in the liquid metal which will eventually be swept into the mantle. The stratified layer may host MAC or Rossby waves and it could impede communication between the chemically differentiated mantle and outer core, including screening out some of the geodynamo's signal. We use normal mode center frequencies to estimate the physical properties of the outer core in a Bayesian framework. We estimate the mineral physical parameters needed to best produce velocity and density models of the outer core which are consistent with the normal mode observations. We require that our models satisfy realistic physical constraints. We create models of the outer core with and without a distinct uppermost layer and assess the importance of this region.Our normal mode-derived models are compared with observations of body waves which travel through the outer core. In particular, we consider SmKS waves which are especially sensitive to the uppermost outer core and are therefore an important way to understand the robustness of our models.

  2. Robustness of Global Radial Anisotropy Models of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Xing, Z.; Beghein, C.; Yuan, K.

    2014-12-01

    Radial anisotropy provides important constraints on mantle deformation. While its presence is well accepted in the uppermost mantle, large discrepancies remain among existing models, even at depths well sampled by seismic data, and its presence at greater depths is highly uncertain. Surface wave phase velocity dispersion measurements are routinely used to constrain lateral variations in mantle S-wave velocity (dlnVS) and radial anisotropy (ξ=VSH2/VSV2). Here, we employed the fundamental and higher mode surface wave phase velocity maps of Visser et al. (2008) that have unprecedented sensitivity to structure down to 800-1000km depth, and we adopted a probabilistic forward modeling approach, the Neighbourhood Algorithm, to quantify posterior model uncertainties and parameter trade-offs. We investigated the effect of prior crustal corrections on 3-D ξ and dlnVS models. To avoid mapping crustal structure onto mantle heterogeneities, it is indeed important to accurately account for 3-D crustal anomalies and variations in Moho depth. One approach is to solve the non-linear problem and simultaneously constrain Moho depth and mantle anomalies (Visser et al., 2008). Another approach, taken here, is to calculate non-linear crustal corrections with an a priori crustal model, which are then applied to the phase velocity maps before inverting the remaining signal for mantle structure. In this work, we also determined laterally varying sensitivity kernels to account for lateral changes in the crust. We compare models obtained using CRUST2.0 (Bassin et al., 2000) and the new CRUST1.0 (Laske et al., 2012) models, which mostly differ under continents. Our preliminary results show strong differences (ΔdlnVS>2%) between the two models in continental dlnVS for the upper 150-200km, and strong changes in x amplitudes in the top 200km (Δξ>2%). Some of the differences in ξ persist down to the transition zone, in particular beneath central Asia and South America. Despite these discrepancies, inferences on the depth of continental roots (~200-250km) based on either the extent of the dlnVS>0 anomalies or the depth at which ξ changes sign remain independent of the crustal model employed. We also note that VSV>VSH dominates the deep upper mantle except in central Pacific, which is characterized by VSH>VSV down to the transition zone.

  3. The North American upper mantle: density, composition, and evolution

    USGS Publications Warehouse

    Mooney, Walter D.; Kaban, Mikhail K.

    2010-01-01

    The upper mantle of North America has been well studied using various seismic methods. Here we investigate the density structure of the North American (NA) upper mantle based on the integrative use of the gravity field and seismic data. The basis of our study is the removal of the gravitational effect of the crust to determine the mantle gravity anomalies. The effect of the crust is removed in three steps by subtracting the gravitational contributions of (1) topography and bathymetry, (2) low-density sedimentary accumulations, and (3) the three-dimensional density structure of the crystalline crust as determined by seismic observations. Information regarding sedimentary accumulations, including thickness and density, are taken from published maps and summaries of borehole measurements of densities; the seismic structure of the crust is based on a recent compilation, with layer densities estimated from P-wave velocities. The resultant mantle gravity anomaly map shows a pronounced negative anomaly (−50 to −400 mGal) beneath western North America and the adjacent oceanic region and positive anomalies (+50 to +350 mGal) east of the NA Cordillera. This pattern reflects the well-known division of North America into the stable eastern region and the tectonically active western region. The close correlation of large-scale features of the mantle anomaly map with those of the topographic map indicates that a significant amount of the topographic uplift in western NA is due to buoyancy in the hot upper mantle, a conclusion supported by previous investigations. To separate the contributions of mantle temperature anomalies from mantle compositional anomalies, we apply an additional correction to the mantle anomaly map for the thermal structure of the uppermost mantle. The thermal model is based on the conversion of seismic shear-wave velocities to temperature and is consistent with mantle temperatures that are independently estimated from heat flow and heat production data. The thermally corrected mantle density map reveals density anomalies that are chiefly due to compositional variations. These compositional density anomalies cause gravitational anomalies that reach ~250 mGal. A pronounced negative anomaly (−50 to −200 mGal) is found over the Canadian shield, which is consistent with chemical depletion and a corresponding low density of the lithospheric mantle, also referred to as the mantle tectosphere. The strongest positive anomaly is coincident with the Gulf of Mexico and indicates a positive density anomaly in the upper mantle, possibly an eclogite layer that has caused subsidence in the Gulf. Two linear positive anomalies are also seen south of 40°N: one with a NE-SW trend in the eastern United States, roughly coincident with the Grenville-Appalachians, and a second with a NW-SE trend beneath the states of Texas, New Mexico, and Colorado. These anomalies are interpreted as being due to (1) the presence of remnants of an oceanic slab in the upper mantle beneath the Grenville-Appalachian suture and (2) mantle thickening caused by a period of shallow, flat subduction during the Laramie orogeny, respectively. Based on these geophysical results, the evolution of the NA upper mantle is depicted in a series of maps and cartoons that display the primary processes that have formed and modified the NA crust and lithospheric upper mantle.

  4. A nearly water-saturated mantle transition zone inferred from mineral viscosity.

    PubMed

    Fei, Hongzhan; Yamazaki, Daisuke; Sakurai, Moe; Miyajima, Nobuyoshi; Ohfuji, Hiroaki; Katsura, Tomoo; Yamamoto, Takafumi

    2017-06-01

    An open question for solid-earth scientists is the amount of water in Earth's interior. The uppermost mantle and lower mantle contain little water because their dominant minerals, olivine and bridgmanite, have limited water storage capacity. In contrast, the mantle transition zone (MTZ) at a depth of 410 to 660 km is considered to be a potential water reservoir because its dominant minerals, wadsleyite and ringwoodite, can contain large amounts of water [up to 3 weight % (wt %)]. However, the actual amount of water in the MTZ is unknown. Given that water incorporated into mantle minerals can lower their viscosity, we evaluate the water content of the MTZ by measuring dislocation mobility, a property that is inversely proportional to viscosity, as a function of temperature and water content in ringwoodite and bridgmanite. We find that dislocation mobility in bridgmanite is faster by two orders of magnitude than in anhydrous ringwoodite but 1.5 orders of magnitude slower than in water-saturated ringwoodite. To fit the observed mantle viscosity profiles, ringwoodite in the MTZ should contain 1 to 2 wt % water. The MTZ should thus be nearly water-saturated globally.

  5. Mountain Building in Central and Western Tien Shan Orogen: Insight from Joint Inversion of Surface Wave Phase Velocities and Body Wave Travel Times

    NASA Astrophysics Data System (ADS)

    Wu, S.; Yang, Y.; Wang, K.

    2017-12-01

    The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with body wave or surface wave tomography alone. The joint inversion model will be presented.

  6. Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite

    PubMed Central

    Bindi, Luca; Chen, Ming; Xie, Xiande

    2017-01-01

    We report the first natural occurrence of the Fe-analogue of akimotoite, ilmenite-structured MgSiO3, a missing phase among the predicted high-pressure polymorphs of Fe-pyroxene, with the composition (Fe2+0.48Mg0.37Ca0.04Na0.04Mn2+0.03Al0.03Cr3+0.01)Σ=1.00Si1.00O3. The new mineral was approved by the International Mineralogical Association (IMA 2016-085) and named hemleyite in honour of Russell J. Hemley. It was discovered in an unmelted portion of the heavily shocked L6 Suizhou chondrite closely associated to olivine, clinoenstatite and Fe-bearing pyroxene with a composition nearly identical to that of hemleyite. We also report the first single-crystal X-ray diffraction study of a Si-bearing, ilmenite-structured phase. The fact that hemleyite formed in a meteorite exposed to high pressures (<20 GPa) and temperatures (<2000 °C) during impact-induced shocks indicates that it could play a crucial role at the bottom of the Earth’s mantle transition zone and within the uppermost lower mantle. PMID:28198399

  7. Long wavelength magnetic anomalies over continental rifts in cratonic region

    NASA Astrophysics Data System (ADS)

    Friedman, S. A.; Persaud, P.; Ferre, E. C.; Martín-Hernández, F.; Feinberg, J. M.

    2017-12-01

    New collections of unaltered mantle xenoliths shed light on potential upper mantle contributions to long wavelength magnetic anomalies (LWMA) in continental rifts in cratonic / shield areas. The new material originates from the East African Rift (Tanzania), the Rio Grande Rift (U.S.A.), the Rhine Rift (Germany), and the West Antarctic Rift (Antarctica). The xenoliths sample the uppermost (<80 km depth) lithospheric mantle in these regions in the spinel-peridotite and plagioclase-peridotite stability fields. The most common lithology by far (95% of samples) is a spinel-lherzolite indicating relatively low oxygen fugacities (FMQ -1). Chrome spinel in these peridotites is non-magnetic (Al + Mg > 0.2 or Fe < 0.3) and primary magnetite (Fe3O4) occurs only in trace amounts, typically yielding low natural remanent magnetizations (NRM < 10-2 A/m). The low Koenigsberger ratios (Qn < 1) of these materials, combined with high geotherms (>60ºC/km) that are characteristic of rifted regions preclude any contribution to LWMA at depths >10 km. Hence, only upper basalts and hypovolcanic mafic sills would constitute potential magnetic sources. In contrast, the margins of these rifted regions consist of refractory cratonic domains, often characterized by oxidized sublithospheric mantle that host significant concentrations of primary magnetite. The higher NRMs of these peridotites (up to 15 A/m, Qn > 2.5) combined with much lower geotherms (as low as 15ºC/km) allows for a 5 to 10 km layer of uppermost mantle to potentially contribute to LWMA. Assuming that Qn values in rift margins are also <1, the new data presented here suggests that relatively young rifts would display a central negative magnetic anomaly surrounded by two broad positive anomalies. The latitude of the rift is predicted to exert a primary control on the magnitude of such anomalies, while the steepness of the magnetic gradient across the rift would primarily reflect thermal equilibration over time.

  8. Upper-mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift

    NASA Astrophysics Data System (ADS)

    Bastow, Ian D.; Stuart, Graham W.; Kendall, J.-Michael; Ebinger, Cynthia J.

    2005-08-01

    The northern Ethiopian rift forms the third arm of the Red Sea, Gulf of Aden triple junction, and marks the transition from continental rifting in the East African rift to incipient oceanic spreading in Afar. We determine the P- and S-wave velocity structure beneath the northern Ethiopian rift using independent tomographic inversion of P- and S-wave relative arrival-time residuals from teleseismic earthquakes recorded by the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) passive experiment using the regularised non-linear least-squares inversion method of VanDecar. Our 79 broad-band instruments covered an area 250 × 350 km centred on the Boset magmatic segment ~70 km SE of Addis Ababa in the centre of the northern Ethiopian rift. The study area encompasses several rift segments showing increasing degrees of extension and magmatic intrusion moving from south to north into the Afar depression. Analysis of relative arrival-time residuals shows that the rift flanks are asymmetric with arrivals associated with the southeastern Somalian Plate faster (~0.65 s for the P waves; ~2 s for the S waves) than the northwestern Nubian Plate. Our tomographic inversions image a 75 km wide tabular low-velocity zone (δVP~-1.5 per cent, δVS~-4 per cent) beneath the less-evolved southern part of the rift in the uppermost 200-250 km of the mantle. At depths of >100 km, north of 8.5°N, this low-velocity anomaly broadens laterally and appears to be connected to deeper low-velocity structures under the Afar depression. An off-rift low-velocity structure extending perpendicular to the rift axis correlates with the eastern limit of the E-W trending reactivated Precambrian Ambo-Guder fault zone that is delineated by Quaternary eruptive centres. Along axis, the low-velocity upwelling beneath the rift is segmented, with low-velocity material in the uppermost 100 km often offset to the side of the rift with the highest rift flank topography. Our observations from this magmatic rift zone, which is transitional between continental and oceanic rifting, do not support detachment fault models of lithospheric extension but instead point to strain accommodation via magma assisted rifting.

  9. Seismic and Petrological Constraints on Deep Crustal Evolution in North America: Where and What are 7.x Layers?

    NASA Astrophysics Data System (ADS)

    Mahan, K. H.; Schulte-Pelkum, V.; Shen, W.; Ritzwoller, M. H.

    2012-12-01

    Continental crust worldwide has been found to have areas with a lowermost layer characterized by unusually high seismic P velocities of over 7 km/s, often called 7.x layers. Such layers are commonly ascribed to underplating - in some cases by underthrusting, but in most cases by magmatic processes. In North America, high-velocity lower crust underlies upper crust of Archean, Proterozoic, and younger ages. Its presence reflects the tectonic and magmatic processes associated with continental rifting, collision, subduction, and other evolutionary (e.g. thermal) trends, and its occurrence also provides clues on the nature of the underlying mantle. Detection of a lower crustal high-velocity layer stems mostly from seismic refraction and wide-angle reflection experiments, and information on its geographical extent is very spotty. Similarly sparse are age determinations and knowledge of the tectonic processes responsible for construction of these layers. Despite glimpses of 7.x layers on many profiles across the continental U.S. and Canada, there is no systematic geographical and age information on this fundamental process of crustal growth, and many of the existing observations contradict current hypotheses on underplating. We compare compositional and physical property data of lower crustal and uppermost mantle xenoliths from Montana, Wyoming, and other localities with maps of lower crustal and uppermost mantle seismic velocities obtained from joint inversions of receiver functions with surface waves, and to mapped distinct high-velocity lower crustal layers in receiver functions in areas covered by the EarthScope Transportable Array. Xenolith observations from Montana indicate that portions of metasomatized uppermost mantle exist in that area that may be difficult to distinguish from mafic lower crust based on seismic velocities alone, raising the interesting question of whether a 7.x layer may be below rather than above the seismic Moho in some cases. The persistence of high-velocity, presumably strong lower crust under the Laramide-affected Wyoming craton and the Colorado Plateau suggest that crustal strength may influence surface deformation. The Rocky Mountain Front and Rio Grande rift largely separate fast lower crust to the East from slower lower crust to the West, cutting across NE-SW trends inherited from continental assembly and suggesting that the velocity distribution may be dominated by thermal effects; however, recent volcanics do not correlate well geographically with lower crustal velocity.

  10. Lithospheric structure of the Arabian Shield and Platform from complete regional waveform modelling and surface wave group velocities

    NASA Astrophysics Data System (ADS)

    Rodgers, Arthur J.; Walter, William R.; Mellors, Robert J.; Al-Amri, Abdullah M. S.; Zhang, Yu-Shen

    1999-09-01

    Regional seismic waveforms reveal significant differences in the structure of the Arabian Shield and the Arabian Platform. We estimate lithospheric velocity structure by modelling regional waveforms recorded by the 1995-1997 Saudi Arabian Temporary Broadband Deployment using a grid search scheme. We employ a new method whereby we narrow the waveform modelling grid search by first fitting the fundamental mode Love and Rayleigh wave group velocities. The group velocities constrain the average crustal thickness and velocities as well as the crustal velocity gradients. Because the group velocity fitting is computationally much faster than the synthetic seismogram calculation this method allows us to determine good average starting models quickly. Waveform fits of the Pn and Sn body wave arrivals constrain the mantle velocities. The resulting lithospheric structures indicate that the Arabian Platform has an average crustal thickness of 40 km, with relatively low crustal velocities (average crustal P- and S-wave velocities of 6.07 and 3.50 km s^-1 , respectively) without a strong velocity gradient. The Moho is shallower (36 km) and crustal velocities are 6 per cent higher (with a velocity increase with depth) for the Arabian Shield. Fast crustal velocities of the Arabian Shield result from a predominantly mafic composition in the lower crust. Lower velocities in the Arabian Platform crust indicate a bulk felsic composition, consistent with orogenesis of this former active margin. P- and S-wave velocities immediately below the Moho are slower in the Arabian Shield than in the Arabian Platform (7.9 and 4.30 km s^-1 , and 8.10 and 4.55 km s^-1 , respectively). This indicates that the Poisson's ratios for the uppermost mantle of the Arabian Shield and Platform are 0.29 and 0.27, respectively. The lower mantle velocities and higher Poisson's ratio beneath the Arabian Shield probably arise from a partially molten mantle associated with Red Sea spreading and continental volcanism, although we cannot constrain the lateral extent of a zone of partially molten mantle.

  11. The effects of the theoretical formalism and data selection on mantle models derived from waveform tomography

    NASA Astrophysics Data System (ADS)

    Mégnin, Charles; Romanowicz, Barbara

    1999-08-01

    Most global tomographic models to date are derived using a combination of surface wave (or normal-mode) data and body wave traveltime data. The traveltime approach limits the number of phases available for inversion by requiring them to be isolated on the seismogram. This may ultimately result in limiting the resolution of 3-D structure, at least in some depth ranges in the mantle. In a previous study, we successfully derived a degree 12 whole-mantle SH-velocity tomographic model (SAW12D) using exclusively waveform data. In that inversion, a normal-mode formalism suitable for body waveforms, the non-linear asymptotic coupling theory (NACT), was combined with a body wave windowing scheme, referred to as the `individual wavepacket' (IW) technique, which allows one to assign individual weights to different body wave energy packets. We here compare the relative merits of this choice of theoretical formalism and windowing scheme at different depth ranges in the mantle. Choosing as the reference a model obtained using 7500 transverse-component body wave and 8000 surface wave seismograms and the NACT and IW approaches, we discuss the relative performance of the path average approximation (PAVA), a zeroth-order theoretical approximation appropriate for single-mode surface waves, relative to NACT, and compare the IW windowing scheme with a more standard `full window' (FW) approach, in which a single time window is considered from the first body wave arrival to the fundamental-mode surface waves. The combination PAVA/FW is often used in global tomography to supplement the traveltime data. We show that although the quality of the image derived under the PAVA/FW formalism is very similar to that derived under NACT/IW in the first 300 km of the upper mantle, where the resolution is dominated by surface waves, it deteriorates at greater depths. Images of the lower mantle are shown to be strongly sensitive to the theoretical formalism. In contrast, the resolution of structure near the core-mantle boundary depends mostly on the windowing scheme. This is because this resolution is controlled by low-amplitude phases such as S_diff, which are downweighted in the FW scheme. Whilst the image obtained in D'' using the combination NACT/IW is in good agreement with images obtained by other authors using both waveforms and traveltimes, we show that, when using FW, uppermost mantle structure can be mapped into D''. This result is confirmed by synthetic tests performed on a composite of the upper-mantle geodynamic model 3SMAC. We also show, based on synthetic tests, that for structures in the upper mantle with sharp boundaries, differences are observed between NACT and PAVA. Whilst a combination of traveltimes and surface wave data is adequate for resolving relatively smooth features in the mantle, our results show that by potentially increasing the achievable sampling, the waveform approach shows great promise for future high-resolution tomographic modelling of mantle structure, if cast in an appropriate theoretical framework.

  12. Comparisons of seismic and electromagnetic structures of the MELT area

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Hirth, G.; Forsyth, D.; Baba, K.; Chave, A.

    2003-04-01

    Both seismic and electromagnetic (EM) models from the MELT experiment show similar broad scale features in the mantle beneath the Southern EPR. In all EM models, the conductivity in the upper 50-60˜km is considerably higher to the west of the ridge than to the east. Similarly, seismic models of short period Love waves are asymmetric in velocity structure, with slower velocities to the west of the ridge within the upper 60˜km. Body wave data suggest a similar asymmetry, although the depth extent is not as well defined. West of the ridge, both the higher conductivities and lower velocities have been attributed to the presence of a small melt fraction, although the anomalous regions estimated from different techniques do not entirely agree. To the east, there is a rapid increase in resistivity and S-wave velocity, indicating that within 25˜km of the axis the mantle above 70˜km is both dry and melt-free. Further away from the ridge, the boundary between a conductive asthenospheric mantle and a resistive overlying mantle flattens, at a depth around 60-80˜km. Rayleigh wave inversions also show fairly flat velocity contours with a broad minimum centered at 60-80˜km. Both of these features are consistent with a transition from dry to damp mantle. Also away from the ridge, EM data, shear-wave splitting, and Rayleigh waves all require an azimuthally anisotropic mantle consistent with the a-axis of olivine being preferentially oriented horizontally and perpendicular to the ridge. Anisotropy in EM data suggests damp mantle conditions in the 100-200˜km depth range, with enhanced conduction along the a-axis of olivine. Rayleigh waves are most sensitive to shallower structure and require anisotropy in the upper 70˜km. In the uppermost 40˜km, the most conductive and lowest velocity regions are close to the axis but offset 5-10˜km to the west. Some anisotropic inversions recover a vertically conductive feature that could be interpreted as a few percent melt distributed in vertically aligned channels or tubes. However, modeling of seismic data rule out the presence of a vertical melt bearing channel larger than 5˜km wide with a velocity reduction of 0.5˜kms-1 (3-4% melt fraction). This apparent discrepancy may provide clues as to how melt is distributed.

  13. Petit-spot geology reveals melts in upper-most asthenosphere dragged by lithosphere

    NASA Astrophysics Data System (ADS)

    Machida, Shiki; Hirano, Naoto; Sumino, Hirochika; Hirata, Takafumi; Yoneda, Shigekazu; Kato, Yasuhiro

    2015-09-01

    Petit-spot volcanism is a phenomenon ubiquitous on Earth. It originates from melt in the upper-most mantle asthenosphere, occurring where the plate flexes and fractures before subduction. Recent geochemical and petrological studies of petit-spot volcanism lava have shown that understanding this form of volcanism can contribute to the investigation of mantle dynamics and CO2 degassing of Earth. However, geological information constraining the magma source of petit-spot remains limited. Here, we present a comprehensive dataset of geochemistry (major and trace elements, and Sr and Nd isotopic compositions) and 40Ar/39Ar ages of alkaline basaltic rocks and glasses to define the geological characteristics of petit-spot volcanoes in the northwestern Pacific. The geochemical and geochronological variations of the basalts indicate that petit-spot volcanism is characterized by a petrogenetically and temporally isolated magma system for each volcano. The basalt geochemistry further indicates that the magmas at the volcanoes were derived from the melting of a heterogeneous regional-scale source under a range of conditions. In addition, slight temporal intra-field migration of petit-spot vent fields against the plate motion was detected. These features indicate that the magma originates from isolated melt ponds at the lithosphere-asthenosphere boundary, and that the speed at which the melt ponds are dragged by the plate is only slightly slower than that of the plate motion. Our results provide detailed insight into eruption processes of asthenosphere melts induced by plate-flexure, and also suggest the complete coupling of the lithosphere to the upper-most asthenosphere in the case of large plate subduction.

  14. Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins

    USGS Publications Warehouse

    Chulick, Gary S.; Detweiler, Shane; Mooney, Walter D.

    2013-01-01

    We present a new set of contour maps of the seismic structure of South America and the surrounding ocean basins. These maps include new data, helping to constrain crustal thickness, whole-crustal average P-wave and S-wave velocity, and the seismic velocity of the uppermost mantle (Pn and Sn). We find that: (1) The weighted average thickness of the crust under South America is 38.17 km (standard deviation, s.d. ±8.7 km), which is ∼1 km thinner than the global average of 39.2 km (s.d. ±8.5 km) for continental crust. (2) Histograms of whole-crustal P-wave velocities for the South American crust are bi-modal, with the lower peak occurring for crust that appears to be missing a high-velocity (6.9–7.3 km/s) lower crustal layer. (3) The average P-wave velocity of the crystalline crust (Pcc) is 6.47 km/s (s.d. ±0.25 km/s). This is essentially identical to the global average of 6.45 km/s. (4) The average Pn velocity beneath South America is 8.00 km/s (s.d. ±0.23 km/s), slightly lower than the global average of 8.07 km/s. (5) A region across northern Chile and northeast Argentina has anomalously low P- and S-wave velocities in the crust. Geographically, this corresponds to the shallowly-subducted portion of the Nazca plate (the Pampean flat slab first described by Isacks et al., 1968), which is also a region of crustal extension. (6) The thick crust of the Brazilian craton appears to extend into Venezuela and Colombia. (7) The crust in the Amazon basin and along the western edge of the Brazilian craton may be thinned by extension. (8) The average crustal P-wave velocity under the eastern Pacific seafloor is higher than under the western Atlantic seafloor, most likely due to the thicker sediment layer on the older Atlantic seafloor.

  15. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group

    2018-05-01

    Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.

  16. Uppermost mantle seismic velocity and anisotropy in the Euro-Mediterranean region from Pn and Sn tomography

    NASA Astrophysics Data System (ADS)

    Díaz, J.; Gil, A.; Gallart, J.

    2013-01-01

    In the last 10-15 years, the number of high quality seismic stations monitoring the Euro-Mediterranean region has increased significantly, allowing a corresponding improvement in structural constraints. We present here new images of the seismic velocity and anisotropy variations in the uppermost mantle beneath this complex area, compiled from inversion of Pn and Sn phases sampling the whole region. The method of Hearn has been applied to the traveltime arrivals of the International Seismological Center catalogue for the time period 1990-2010. A total of 579 753 Pn arrivals coming from 12 377 events recorded at 1 408 stations with epicentral distances between 220 km and 1 400 km have been retained after applying standard quality criteria (maximum depth, minimum number of recordings, maximum residual values …). Our results show significant features well correlated with surface geology and evidence the heterogeneous character of the Euro-Mediterranean lithosphere. The station terms reflect the existence of marked variations in crustal thickness, consistent with available Moho depths inferred from active seismic experiments. The highest Pn velocities are observed along a continuous band from the Po Basin to the northern Ionian Sea. Other high velocity zones include the Ligurian Basin, the Valencia Trough, the southern Alboran Sea and central part of the Algerian margin. Most significant low-velocity values are associated to orogenic belts (Betics, Pyrenees, Alps, Apennines and Calabrian Arc, Dinarides-Hellenides), and low-velocity zones are also identified beneath Sardinia and the Balearic Islands. The introduction of an anisotropic term enhances significantly the lateral continuity of the anomalies, in particular in the most active tectonic areas. Pn anisotropy shows consistent orientations subparallel to major orogenic structures, such as Betics, Apennines, Calabrian Arc and Alps. The Sn tomographic image has lower resolution but confirms independently most of the features evidenced in the Pn tomography.

  17. Velocity Structure Determination Through Seismic Waveform Modeling and Time Deviations

    NASA Astrophysics Data System (ADS)

    Savage, B.; Zhu, L.; Tan, Y.; Helmberger, D. V.

    2001-12-01

    Through the use of seismic waveforms recorded by TriNet, a dataset of earthquake focal mechanisms and deviations (time shifts) relative to a standard model facilitates the investigation of the crust and uppermost mantle of southern California. The CAP method of focal mechanism determination, in use by TriNet on a routine basis, provides time shifts for surface waves and Pnl arrivals independently relative to the reference model. These shifts serve as initial data for calibration of local and regional seismic paths. Time shifts from the CAP method are derived by splitting the Pnl section of the waveform, the first arriving Pn to just before the arrival of the S wave, from the much slower surface waves then cross-correlating the data with synthetic waveforms computed from a standard model. Surface waves interact with the entire crust, but the upper crust causes the greatest effect. Whereas, Pnl arrivals sample the deeper crust, upper mantle, and source region. This natural division separates the upper from lower crust for regional calibration and structural modeling and allows 3-D velocity maps to be created using the resulting time shifts. Further examination of Pnl and other arrivals which interact with the Moho illuminate the complex nature of this boundary. Initial attempts at using the first 10 seconds of the Pnl section to determine upper most mantle structure have proven insightful. Two large earthquakes north of southern California in Nevada and Mammoth Lakes, CA allow the creation of record sections from 200 to 600 km. As the paths swing from east to west across southern California, simple 1-D models turn into complex structure, dramatically changing the waveform character. Using finite difference models to explain the structure, we determine that a low velocity zone is present at the base of the crust and extends to 100 km in depth. Velocity variations of 5 percent of the mantle in combination with steeply sloping edges produces complex waveform variations. Characteristics of this complex propagation appear from the southern Sierra Nevada Mountains, in the west, to Death Valley in the east. The structure does not cross the Garlock fault to the south, but we are unsure of the structures northern extent.

  18. Composition of uppermost mantle beneath the Northern Fennoscandia - numerical modeling and petrological interpretation

    NASA Astrophysics Data System (ADS)

    Virshylo, Ivan; Kozlovskaya, Elena; Prodaivoda, George; Silvennoinen, Hanna

    2013-04-01

    Studying of the uppermost mantle beneath the northern Fennoscandia is based on the data of the POLENET/LAPNET passive seismic array. Firstly, arrivals of P-waves of teleseismic events were inverted into P-wave velocity model using non-linear tomography (Silvennoinen et al., in preparation). The second stage was numerical petrological interpretation of referred above velocity model. This study presents estimation of mineralogical composition of the uppermost mantle as a result of numerical modeling. There are many studies concerning calculation of seismic velocities for polymineral media under high pressure and temperature conditions (Afonso, Fernàndez, Ranalli, Griffin, & Connolly, 2008; Fullea et al., 2009; Hacker, 2004; Xu, Lithgow-Bertelloni, Stixrude, & Ritsema, 2008). The elastic properties under high pressure and temperature (PT) conditions were modelled using the expanded Hook's law - Duhamel-Neumann equation, which allows computation of thermoelastic strains. Furthermore, we used a matrix model with multi-component inclusions that has no any restrictions on shape, orientation or concentration of inclusions. Stochastic method of conditional moment with computation scheme of Mori-Tanaka (Prodaivoda, Khoroshun, Nazarenko, & Vyzhva, 2000) is applied instead of traditional Voigt-Reuss-Hill and Hashin-Shtrikman equations. We developed software for both forward and inverse problem calculation. Inverse algorithm uses methods of global non-linear optimization. We prefer a "model-based" approach for ill-posed problem, which means that the problem is solved using geological and geophysical constraints for each parameter of a priori and final models. Additionally, we are checking at least several different hypothesis explaining how it is possible to get the solution with good fit to the observed data. If the a priori model is close to the real medium, the nearest solution would be found by the inversion. Otherwise, the global optimization is searching inside the restricted volume in the multi-dimensional parameter space. In order to constrain concentration of minerals we used equilibrium of mineral associations for selected P-T condition obtained by free Gibbs energy minimization (c.f. Stixrude & Lithgow-Bertelloni, 2005). We also considered the mineralogical composition of upper mantle xenoliths, although the representativeness of xenoliths in Precambrian rocks could be treated with care, if one tries to describe the modern mantle. As a first step, we estimated 1D model of mineralogical composition in the depth range of 35-350 km using the IASP91 reference model (Kennett & Engdahl, 1991). Both the P- and S- wave velocities were used for inversion, in order to improve the reliability of the model. More comprehensive result could be obtained if density distribution is involved. In our study we used the 1D PEMC density model (Dziewonski, Hales & Lapwood, 1975) as it is the most adequate for the continental lithosphere. The 1D modeling showed that the garnet lherzolite model (forsterite, fayalite, enstatite, ferrosilite, diopside, jadeite, pyrope) can be considered as a basic one. The end-members of olivine and orthopyroxene solutions were included with the aim of Fe/Mg ratio estimation. Testing with modified models including hedenbergite, harzburgite spinel, etc. showed that these minerals have no significant influence on bulk elastic properties. Selected set of minerals allows modelling the most species of peridote-pyroxenite associations known from xenoliths investigations (Kukkonen, Kuusisto, Lehtonen, & Peltonen, 2008; Lehtonen, O'Brien, Peltonen, Johanson, & Pakkanen, 2004). However, there exist also a number of evidences for mantle eclogite xenoliths from the region under study and its surrounding (Lehtonen et al., 2004; Peltonen, Kinnunen, & Huhma, 2002). That is why we also made modelling for garnet-clinopyroxene model of eclogite. The volumetric mineral compositions obtained were transformed into weight concentration of rock-forming oxides using stoichiometric formulas. The results indicate significant variation of Fe and Mg oxides concentration in the uppermost mantle. The Mg/Fe ratio could be different from the results of previous studies (Griffin et al., 2003; Svetov & Smolkin, 2003), but it is in agreement with the geophysical models considered in our study. At the same time the SiO2 concentration is close to the chemical composition of xenoliths from the Fennoscandia, including Kola Peninsula and Central Finland (Beard, Downes, Mason, & Vetrin, 2007; Kukkonen et al., 2008; Lehtonen et al., 2004). Brief conclusions from our study could be formulated as follows: 1) Modelling confirms potential significant lateral inhomogeneity of mineral composition of the uppermost mantle of northern Fennoscandian Shield. 2) Lherzolitic composition of the mantle lithosphere generally explains seismic velocities obtained by teleseismic tomography in northern Fennoscandian Shield. It could be used as a primary a priori model for interpretation. But potential presence of eclogites cannot be rejected, at least for some parts of studied area. 3) The future study needs to include more precise evaluation of temperature and density in the upper mantle using gravity and heat flow data. Afonso, J. C., Fernàndez, M., Ranalli, G., Griffin, W. L., & Connolly, J. a. D. (2008). Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications. Geochemistry Geophysics Geosystems, 9(5). doi:10.1029/2007GC001834 Beard, a. D., Downes, H., Mason, P. R. D., & Vetrin, V. R. (2007). Depletion and enrichment processes in the lithospheric mantle beneath the Kola Peninsula (Russia): Evidence from spinel lherzolite and wehrlite xenoliths. Lithos, 94(1-4), 1-24. doi:10.1016/j.lithos.2006.02.002 Dziewonski, A.M., A.L. Hales, & E.R. Lapwood. (1975) Parametrically simple earth models consistent with geophysical data Phys. Earth Plan. Int. 10:12. Fullea, J., Afonso, J. C., Connolly, J. A. D., Fernàndez, M., García-Castellanos, D., & Zeyen, H. (2009). LitMod3D: An interactive 3-D software to model the thermal, compositional, density, seismological, and rheological structure of the lithosphere and sublithospheric upper mantle. Geochemistry Geophysics Geosystems, 10(8), 1-21. doi:10.1029/2009GC002391 Griffin, W. ., O'Reilly, S. ., Abe, N., Aulbach, S., Davies, R. ., Pearson, N. ., Doyle, B. ., et al. (2003). The origin and evolution of Archean lithospheric mantle. Precambrian Research, 127(1-3), 19-41. doi:10.1016/S0301-9268(03)00180-3 Hacker, B. R. (2004). Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H 2 O contents of minerals and rocks at pressure and temperature. Geochemistry Geophysics Geosystems, 5(1), 1-7. doi:10.1029/2003GC000614 Kennett B.L.N. & Engdahl E.R. (1991) Travel times for global earthquake location and phase association. Geophysical Journal International, 105:429-465. Kukkonen, I., Kuusisto, M., Lehtonen, M., & Peltonen, P. (2008). Delamination of eclogitized lower crust: Control on the crust-mantle boundary in the central Fennoscandian shield. Tectonophysics, 457(3-4), 111-127. doi:10.1016/j.tecto.2008.04.029 Lehtonen, M. L., O'Brien, H. E., Peltonen, P., Johanson, B. S., & Pakkanen, L. K. (2004). Layered mantle at the Karelian Craton margin: P - T of mantle xenocrysts and xenoliths from the Kaavi - Kuopio kimberlites , Finland. Lithos, 77, 593-608. doi:10.1016/j.lithos.2004.04.026 Peltonen, P., Kinnunen, K. A., & Huhma, H. (2002). Petrology of two diamondiferous eclogite xenoliths from the Lahtojoki kimberlite pipe , eastern Finland. Lithos, 63, 151-164. Prodaivoda, G. T., Khoroshun, L. P., Nazarenko, L. V, & Vyzhva, S. A. (2000). Mathematical modeling of the azimuthal anisotropy in thermoelasic properties of the oceanic upper mantle. IzvestiyaPhysics of the Solid Earth, 36(5), 394-405. Stixrude, L., & Lithgow-Bertelloni, C. (2005). Thermodynamics of mantle minerals - I. Physical properties. Geophysical Journal International, 162(2), 610-632. Retrieved from http://discovery.ucl.ac.uk/8891/ Svetov, S. A., & Smolkin, V. F. (2003). Model P - T Conditions of High-Magnesia Magma Generation in the Precambrian of the Fennoscandian Shield. Geochemistry International, 41(8), 799-811. Xu, W., Lithgow-Bertelloni, C., Stixrude, L., & Ritsema, J. (2008). The effect of bulk composition and temperature on mantle seismic structure. Earth and Planetary Science Letters, 275(1-2), 70-79. doi:10.1016/j.epsl.2008.08.012

  19. Lithospheric structure of the southeastern margin of the Tibetan Plateau from Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    Fu, Yuanyuan V.; Gao, Yuan; Li, Aibing; Li, Lun; Chen, Anguo

    2017-06-01

    Lithospheric shear wave velocity beneath the southeastern margin of the Tibetan Plateau is obtained from Rayleigh wave tomography using earthquake data recorded by the temporary ChinArray and permanent China Digital Seismic Array. Fundamental mode Rayleigh wave phase velocities at periods of 20-100 s are determined and used to construct the 3-D shear wave velocity model. Low-velocity anomalies appear along or close to the major faults in the middle crust and become a broad zone in the lower crust, suggesting block extrusion in the shallow crust and diffuse deformation in the lower crust, both of which play important roles in accommodating the collision between the Indian and Eurasian plates. A vertical low-velocity column beneath the Tengchong Volcano is observed, which could be caused by upwelling of warm mantle due to the lithosphere extension in the Thailand rift basin to the south or by fluid-induced partial melting due to the subduction of the Burma slab. The western Yangtze Craton is characterized by low velocity in the crust and uppermost mantle above the fast mantle lithosphere, indicating possible thermal erosion at the western craton edge resulted from the extrusion of the Tibetan Plateau. A low-velocity zone is imaged at the depths of 70-150 km beneath the eastern part of the Yangtze Craton, which could be caused by small-scale mantle convection associated with the subduction of the Burma microplate and/or the opening of the South China Sea.

  20. The lunar interior

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Kovach, R. L.

    1972-01-01

    The compressional velocities are estimated for materials in the lunar interior and compared with lunar seismic results. The lower crust has velocities appropriate for basalts or anorthosites. The high velocities associated with the uppermost mantle imply high densities and a change in composition to a lighter assemblage at depths of the order of 120 km. Calcium and aluminum are probably important components of the upper mantle and are deficient in the lower mantle. Much of the moon may have accreted from material similar in composition to eucrites. The important mineral of the upper mantle is garnet; possible accessory minerals are kyanite, spinel, and rutile. If the seismic results stand up, the high velocity layer in the moon is more likely to be a high pressure form of anorthosite than eclogite, pyroxenite, or dunite. The thickness of the layer is of the order of 50 km. Cosmic abundances can be maintained if the lower mantle is ferromagnesium silicate with minimal amounts of calcium and aluminum. Achondrites such as eucrites and howardites have more of the required characteristics of the lunar interior than carbonaceous chondrites. A density inversion in the moon is a strong possibility.

  1. Mantle hydration along outer-rise faults inferred from serpentinite permeability.

    PubMed

    Hatakeyama, Kohei; Katayama, Ikuo; Hirauchi, Ken-Ichi; Michibayashi, Katsuyoshi

    2017-10-24

    Recent geophysical surveys indicate that hydration (serpentinization) of oceanic mantle is related to outer-rise faulting prior to subduction. The serpentinization of oceanic mantle influences the generation of intermediate-depth earthquakes and subduction water flux, thereby promoting arc volcanism. Since the chemical reactions that produce serpentinite are geologically rapid at low temperatures, the flux of water delivery to the reaction front appears to control the lateral extent of serpentinization. In this study, we measured the permeability of low-temperature serpentinites composed of lizardite and chrysotile, and calculated the lateral extent of serpentinization along an outer-rise fault based on Darcy's law. The experimental results indicate that serpentinization extends to a region several hundred meters wide in the direction normal to the outer-rise fault in the uppermost oceanic mantle. We calculated the global water flux carried by serpentinized oceanic mantle ranging from 1.7 × 10 11 to 2.4 × 10 12  kg/year, which is comparable or even higher than the water flux of hydrated oceanic crust.

  2. Shear wave velocity structure of the Anatolian Plate and surrounding regions using Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Delph, J. R.; Beck, S. L.; Zandt, G.; Biryol, C. B.; Ward, K. M.

    2013-12-01

    The Anatolian Plate consists of various lithospheric terranes amalgamated during the closure of the Tethys Ocean, and is currently extruding to the west in response to a combination of the collision of the Arabian plate in the east and the roll back of the Aegean subduction zone in the west. We used Ambient Noise Tomography (ANT) at periods <= 40s to investigate the crust and uppermost mantle structure of the Anatolian Plate. We computed a total of 13,779 unique cross-correlations using one sample-per-second vertical component broadband seismic data from 215 stations from 8 different networks over a period of 7 years to compute fundamental-mode Rayleigh wave dispersion curves following the method of Benson et al. (2007). We then inverted the dispersion data to calculate phase velocity maps for 11 periods from 8 s - 40 s throughout Anatolia and the Aegean regions (Barmin et al. 2001). Using smoothed Moho values derived from Vanacore et al. (2013) in our starting models, we inverted our dispersion curves using a linear least-squares iterative inversion scheme (Herrmann & Ammon 2004) to produce a 3-D shear-wave velocity model of the crust and uppermost mantle throughout Anatolia and the Aegean. We find a good correlation between our seismic shear wave velocities and paleostructures (suture zones) and modern deformation (basin formation and fault deformation). The most prominent crustal velocity contrasts occur across intercontinental sutures zones, resulting from the juxtaposition of the compositionally different basements of the amalgamated terranes. At shallow depths, seismic velocity contrasts correspond closely with surficial features. The Thrace, Cankiri and Tuz Golu basins, and accretionary complexes related to the closure of the Neotethys are characterized by slow shear wave velocities, while the Menderes and Kirsehir Massifs, Pontides, and Istanbul Zone are characterized by fast velocities. We find that the East Anatolia Plateau has slow shear-wave velocities, as expected due to high heat flow and active volcanism. The Tuz Golu fault has a visible seismic signal down to ~15 km below sea level, and the eastern Inner-Tauride Suture corresponding to the Central Anatolian Fault Zone may extend into the mantle. The Isparta Angle separates the actively extending portion of western Anatolia from the plateau regions in the east, and the largest anomaly (slow velocities) extending into the upper mantle is observed under the western flank of the Isparta Angle, corresponding to the Fethiye-Burdur fault zone. We attribute these slow shear-wave velocities to the effects of complex deformations within the crust as a result of the interactions of the African and Anatolian Plates. In the upper mantle, slow shear-wave velocities are consistent with a slab tear along a STEP fault corresponding to the extensions of the Pliny and Strabo Transform faults, allowing asthenosphere to rise to very shallow depths. The upper mantle beneath the Taurides exhibits very slow shear-wave velocities, in agreement with possible delamination or slab-breakoff (Cosentino et al. 2012) causing rapid uplift in the last 8 million years.

  3. Upper mantle electrical resistivity structure beneath back-arc spreading centers

    NASA Astrophysics Data System (ADS)

    Seama, N.; Shibata, Y.; Kimura, M.; Shindo, H.; Matsuno, T.; Nogi, Y.; Okino, K.

    2011-12-01

    We compare four electrical resistivity structure images of the upper mantle across back-arc spreading centers (Mariana Trough at 18 N and 13 N, and the Eastern Lau at 19.7 S and 21.3 S) to provide geophysical constraints on issues of mantle dynamics beneath the back-arc spreading system related to the subducting slab. The central Mariana Trough at 18 N has the full spreading rate of 25 km/Myr, and shows characteristic slow-spreading features; existence of median valley neovolcanic zone and "Bull's eyes" mantle Bouguer anomaly (MBA) along the axes. On the other hand, the southern Mariana Trough at 13 N shows an EPR type axial relief in morphology and lower MBA than that in the central Mariana Trough (Kitada et al., 2006), suggesting abundance of magma supply, even though the full spreading rate is 35 km/Myr that is categorized as a slow spreading ridge. At the Eastern Lau spreading center, crustal thickness and morphology vary systematically with arc proximity and shows the opposed trends against spreading rate: The full spreading rate increases from 65 km/Myr at 21.3 S to 85 km/Myr at 19.7 S, while the crustal thicknesses decrease together with morphology transitions from shallow peaked volcanic highs to a deeper flat axis (Martinez et al., 2006). Matsuno et al. (2010) provides a resistivity structure image of the upper mantle across the central Mariana subduction system, which contains several key features: There is an uppermost resistive layer with a thickness of 80-100 km beneath the central Mariana Trough, suggesting dry residual from the plate accretion process. But there is no evidence for a conductive feature beneath the back-arc spreading center at 18 N, and this feature is clearly independent from the conductive region beneath the volcanic arc below 60 km depth that reflects melting and hydration driven by water release from the subducting slab. The resultant upper mantle resistivity structure well support that the melt supply is not abundant, resulting in characteristic slow-spreading features at the surface. We have conducted marine magnetotelluric (MT) surveys at the southern Mariana in 2010 and at the Eastern Lau in 2009-2010. We obtained 10 ocean bottom electro-magnetometer (OBEM) data from a 130 km length MT transect across the southern Mariana spreading axis at 13 N, while we obtained 2 OBEM data and 11 ocean bottom magnetometer data from two 160 km length MT transects across the Eastern Lau spreading axes at 19.7 S and 21.3 S. After calculation of MT response functions and their correction for topographic distortion, two-dimensional electrical resistivity structures will be derived using an inversion algorithm. At this meeting, first we will show the resistivity structure images of the upper mantle beneath these spreading axes. Then, these structure images will be compared to identify differences in the mantle dynamics and the melt supply beneath the back-arc spreading system related to the subducting slab.

  4. Tracking the Progress of EarthScope/USArray: The crust and upper mantle beneath the transition region between tectonic western US and cratonic eastern US

    NASA Astrophysics Data System (ADS)

    Shen, W.; Lin, F.; Ritzwoller, M. H.

    2010-12-01

    The transition region between the tectonic western US and the cratonic eastern US contains numerous significant geological regions (e.g., the Rocky Mountains, the Colorado Plateau, and the Rio Grande Rift), and also, unknowns (e.g, the location or extent of the east-west US dichotomy, the compensation of the high topography of the western Great Plains, the extensional mechanics of the Rio Grande Rift, and the structure of the mantle beneath the Colorado Plateau). The answers to these questions and others are critical to an understanding of the tectonics and tectonic history of this region and its impact on the cratonic eastern US. The recent deployments of seismic stations, particularly the EarthScope USArray Transportable Array (TA), provide an opportunity to construct a detailed 3-D structural model of the crust and upper mantle beneath this transition region, and thus allow us to address some of the questions listed above. We present results from ambient noise tomography (ANT) and teleseismic earthquake tomography by using data from TA stations within the western and central US. We processed continuous seismic noise data from ~600 TA stations from August 2008 to March 2010, which after data selection produces a data set with ~100,000 inter-station paths. Rayleigh wave phase speed maps between 6 and 40 sec period and Love wave phase speed maps between 8 and 30 sec with a resolution of ~60 km are constructed using eikonal tomography. In addition, we applied eikonal tomography (ET) to about 300 teleseismic earthquakes to obtain long-period (30 - 100 sec) Rayleigh wave phase speed maps and Love wave phase speeds maps (30 - 60 sec). By jointly inverting Rayleigh and Love phase speeds maps from ANT and earthquake tomography, we constructed a 3-D isotropic and radially anisotropic shear velocity model of the crust and upper mantle to ~150 km depth together with model uncertainties constrained by a Monte-Carlo inversion. The 3-D isotropic model reveals a variety of robust features in this transition region. In the uppermost crust, the main sedimentary basins (e.g., Green River, Uinta, Washakie, Powder River, Denver, Albuquerque, Permian, and Anadarko) are imaged. In the middle and lower crust where the low shear velocities from basins diminish, the Yellowstone hot spot becomes the main slow anomaly. In the uppermost mantle, high velocity anomalies are observed beneath the Colorado Plateau, the Wyoming craton, and the Great Plains. Although the Colorado Plateau shows more or less homogeneous shear velocity in its middle and towards its northern boundary, the other two main fast anomalies reveal inhomogeneous structures at depths deeper than 100 km. Two main low velocity anomalies are observed: one underlying the Snake River Plain which broadens and dips to the northeast and another U-shaped anomaly on the eastern margin of the Colorado Plateau. These velocity anomalies add to complexities at the transition between the tectonic western US and the stable eastern US. The location and uncertainty of the east-west shear velocity dichotomy also is constrained by this model.

  5. Lateral variations in the crustal structure of the Indo-Eurasian collision zone

    NASA Astrophysics Data System (ADS)

    Gilligan, Amy; Priestley, Keith

    2018-05-01

    The processes involved in continental collisions remain contested, yet knowledge of these processes is crucial to improving our understanding of how some of the most dramatic features on Earth have formed. As the largest and highest orogenic plateau on Earth today, Tibet is an excellent natural laboratory for investigating collisional processes. To understand the development of the Tibetan Plateau we need to understand the crustal structure beneath both Tibet and the Indian Plate. Building on previous work, we measure new group velocity dispersion curves using data from regional earthquakes (4424 paths) and ambient noise data (5696 paths), and use these to obtain new fundamental mode Rayleigh Wave group velocity maps for periods from 5-70 s for a region including Tibet, Pakistan and India. The dense path coverage at the shortest periods, due to the inclusion of ambient noise measurements, allows features of up to 100 km scale to be resolved in some areas of the collision zone, providing one of the highest resolution models of the crust and uppermost mantle across this region. We invert the Rayleigh wave group velocity maps for shear wave velocity structure to 120 km depth and construct a 3D velocity model for the crust and uppermost mantle of the Indo-Eurasian collision zone. We use this 3D model to map the lateral variations in the crust and in the nature of the crust-mantle transition (Moho) across the Indo-Eurasian collision zone. The Moho occurs at lower shear velocities below north eastern Tibet than it does beneath western and southern Tibet and below India. The east-west difference across Tibet is particularly apparent in the elevated velocities observed west of 84° E at depths exceeding 90 km. This suggests that Indian lithosphere underlies the whole of the Plateau in the west, but possibly not in the east. At depths of 20-40 km our crustal model shows the existence of a pervasive mid-crustal low velocity layer (˜10% decrease in velocity, Vs <3.4 km/s) throughout all of Tibet, as well as beneath the Pamirs, but not below India. The thickness of this layer, the lowest velocity in the layer and the degree of velocity reduction vary across the region. Combining our Rayleigh wave observations with previously published Love wave dispersion measurements (Acton et al., 2010), we find that the low velocity layer has a radial anisotropic signature with Vsh > Vsv. The characteristics of the low velocity layer are supportive of deformation occurring through ductile flow in the mid-crust.

  6. Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km

    NASA Astrophysics Data System (ADS)

    Xing, Z.; Beghein, C.; Yuan, K.

    2012-12-01

    This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density function of each anisotropic parameter and the corresponding resolution.

  7. The Main Ethiopian Rift: a Narrow Rift in a Hot Craton?

    NASA Astrophysics Data System (ADS)

    Gashawbeza, E.; Keranen, K.; Klemperer, S.; Lawrence, J.

    2008-12-01

    The Main Ethiopian Rift (MER) is a classic example of a narrow rift, but a synthesis of our results from the EAGLE (Ethiopia-Afar Geoscientific Lithospheric Experiment Phase I broadband experiment) and from the EBSE experiment (Ethiopia Broadband Seismic Experiment) suggests the MER formed in thin, hot, weak continental lithosphere, in strong contrast with predictions of the Buck model of modes of continental lithospheric extension. Our joint inversion of receiver functions and Rayleigh-wave group velocities yields shear-wave velocities of the lowermost crust and uppermost mantle across the MER and the Ethiopian Plateau that are significantly lower than the equivalent velocities in the Eastern and Western branches of the East African Rift System. The very low shear-wave velocities, high electrical conductivity in the lower-crust, and high shear-wave splitting delay times beneath a very broad region of the MER and the Ethiopian Plateau indicate that the lower-crust is hot and likely contains partial melt. Our S-receiver function data demonstrate shallowing of the lithosphere-asthenosphere boundary from 90 km beneath the northwestern Ethiopian Plateau to 60 km beneath the MER. Although we lack good spatial resolution on the lithosphere-asthenosphere boundary, the region of thinned lithosphere may be intermediate in width between the narrow surface rift (< 100 km) and the broader zone of strain in the lower crust (~ 300 km). The MER developed as a narrow rift at the surface, localized along the Neoproterozoic suture that joined East and West Gondwana. However, a far broader of lower crust and uppermost mantle remains thermally weakened since the Oligocene formation of the flood basalts by the Afar plume head. If the lithosphere- asthenosphere boundary is indeed a strain marker then lithospheric mantle deformation is localized beneath the surface rift. The development of both the Eastern/Western branches of the East African Rift System to the south and of the MER in the north as narrow rifts, despite vastly different lithospheric strength profiles, indicates that inherited structure, rather than rheological stratification, is the primary control on the mode of extension in these continental rifts.

  8. Slab-controlled Tectonomagmatism of the Pacific Northwest: A Holistic view of Columbia River, High Lava Plains, and Snake River Plain/Yellowstone Volcanism

    NASA Astrophysics Data System (ADS)

    James, D. E.; Fouch, M. J.; Long, M. D.; Druken, K. A.; Wagner, L. S.; Chen, C.; Carlson, R. W.

    2012-12-01

    We interpret post-20 Ma tectonomagmatism across the U.S. Pacific Northwest in the context of subduction related processes. While mantle plume models have long enjoyed favor as an explanation for the post 20-Ma magmatism in the region, conceptually their support has hinged almost entirely on two major features: (1) Steens/Columbia River flood basalt volcanism (plume head); and (2) The Snake River Plain/Yellowstone hotspot track (plume tail). Recent work, synthesized in this presentation, suggests that these features are more plausibly the result of mantle dynamical processes driven by southerly truncation of the Farallon/Juan de Fuca subduction zone and slab detachment along the evolving margin of western North America (Long et al., 2012; James et al., 2011). Plate reconstructions indicate that shortening of the subduction zone by the northward migration of the Mendocino triple junction resulted in a significant increase in the rate of trench retreat and slab rollback ca 20 Ma. Both numerical modeling and physical tank experiments in turn predict large-scale mantle upwelling and flow around the southern edge of the rapidly retreating slab, consistent both with the observed Steens/Columbia River flood volcanism and with the strong E-W mantle fabric observed beneath the region of the High Lava Plains of central and eastern Oregon. The High Lava Plains and Snake River Plain time-progressive volcanism began concurrently about 12 Ma, but along highly divergent tracks and characterized by strikingly different upper mantle structure. Crustal and upper mantle structure beneath the High Lava Plains exhibits evidence typical of regional extension; i.e. thin crust, flat and sharp Moho, and an uppermost mantle with low velocities but otherwise largely devoid of significant vertical structure. In contrast, the Snake River Plain exhibits ultra-low mantle velocities to depths of about 180 km along the length of the hotspot track. Seismic images of the upper mantle in the depth range 300-600 km show that a northern segment of the orphaned Farallon plate lies sub-horizontally in the mantle transition zone parallel to and along the length of the SRP. The images also provide evidence for present-day upwelling from the deep upper mantle around the northern edge of the remnant slab beneath SRP as well as around its leading tip beneath Yellowstone. These results, coupled with petrologic and geochemical constraints, provide compelling support for a subduction model that accounts for virtually all post-20 Ma Cenozoic volcanism and structural deformation in the Cascadian back arc. James, D.E., Fouch, M.J., Carlson, R.W., Roth, J.B., 2011. Slab fragmentation, edge flow, and the origin of the Yellowstone hotspot track. Earth and Planetary Science Letters 311, 124-135. Long, M.D., Till, C.B., Druken, K.A., Carlson, R.W., Wagner, L.S., Fouch, M.J., James, D.E., Grove, T.L., Schmerr, N., Kincaid, C., 2012. Mantle dynamics beneath the Pacific Northwest and generation of voluminous back-arc volcanism. G-cubed in press.

  9. A reference model for crust and uppermost mantle beneath Antarctica

    NASA Astrophysics Data System (ADS)

    Shen, W.; Wiens, D.; Gerstoft, P.; Bromirski, P. D.; Stephen, R. A.; Aster, R. C.; Nyblade, A.; Winberry, J. P.; Huerta, A. D.; Anandakrishnan, S.; Hansen, S. E.; Wilson, T. J.; Heeszel, D.

    2016-12-01

    Since the last decade of the 20th Century, over 300 broad-band seismic stations have been deployed across the continent of Antarctica (e.g., temporary networks such as TAMSEIS, AGAP/GAMSEIS, POLENET/ANET, TAMNNET and RIS/DRIS by US geoscientists, as well as stations deployed by other countries). In this presentation, we discuss our recent effort that builds a reference crustal and uppermost mantle shear velocity (Vs) model for continental Antarctica based on those seismic arrays. The data analysis for this effort consists of four steps. First, we compute ambient noise cross-correlations between all possible station pairs and use them to construct Rayleigh wave phase and group velocity maps at a continental scale. Coherence of the new maps with maps generated from teleseismic earthquake data from an earlier study (Heeszel et al., 2016) confirms the high quality of both maps and the minor difference helps quantify the map uncertainties. Second, we compute P receiver function waveforms for each station in Antarctica. Third, we collect Rayleigh waves generated by teleseismic earthquakes and measure their horizontal to vertical (H/V) ratio at each station. Fourth and finally, by combing all seismic measurements from the first three steps together with the phase velocity maps by Heeszel et al.(2016) using a non-linear Monte Carlo (MC) inversion algorithm, we built a 3-D model for the crust and uppermost mantle beneath continental Antarctica and its periphery to a depth of 150 km. This high resolution model, together with associated uncertainty estimates from the MC inversion, serve as a starting point for further improvement and geological interpretation. A variety of tectonic features, including a slower but highly heterogeneous West Antarctica and a much faster East Antarctica, are present in the 3D model. A better image of these features from the 3D model helps further investigation of the thermal and dynamic state of Antarctica's lithosphere and underlying asthenosphere and provides key constraints on the interaction of the solid earth with the West Antarctic Ice Sheet.

  10. Consequences of an unstable chemical stratification on mantle dynamics

    NASA Astrophysics Data System (ADS)

    Plesa, Ana-Catalina; Tosi, Nicola; Breuer, Doris

    2013-04-01

    Early in the history of terrestrial planets, the fractional crystallization of primordial magma oceans may have led to the formation of large scale chemical heterogeneities. These may have been preserved over the entire planetary evolution as suggested for Mars by the isotopic analysis of the so-called SNC meteorites. The fractional crystallization of a magma ocean leads to a chemical stratification characterized by a progressive enrichment in heavy elements from the core-mantle boundary to the surface. This results in an unstable configuration that causes the overturn of the mantle and the subsequent formation of a stable chemical layering. Assuming scaling parameters appropriate for Mars, we first performed simulations of 2D thermo-chemical convection in Cartesian geometry with the numerical code YACC [1]. We investigated systems heated either solely from below or from within by varying systematically the buoyancy ratio B, which measures the relative importance of chemical to thermal buoyancy, and the mantle rheology, by considering systems with constant, strongly temperature-dependent and plastic viscosity. We ran a large set of simulations spanning a wide parameter space in order to understand the basic physics governing the magma ocean cumulate overturn and its consequence on mantle dynamics. Moreover, we derived scaling laws that relate the time over which chemical heterogeneities can be preserved (mixing time) and the critical yield stress (maximal yield stress that allows the lithosphere to undergo brittle failure) to the buoyancy ratio. We have found that the mixing time increases exponentially with B, while the critical yield stress shows a linear dependence. We investigated then Mars' early thermo-chemical evolution using the code GAIA in a 2D cylindrical geometry [2] and assuming a detailed magma ocean crystallization sequence as obtained from geochemical modeling [3]. We used an initial composition profile adapted from [3], accounted for an exothermic phase transition between lower and upper mantle and assumed all radiogenic heat sources to be enriched during the freezing-phase of the magma ocean in the uppermost 50 km [4]. A stagnant lid forms rapidly because of the strong temperature dependence of the viscosity. This prevents the uppermost dense cumulates to sink, even when allowing for a plastic yielding mechanism. Below this dense stagnant lid, the mantle chemical gradient settles to a stable configuration. The convection pattern is dominated by small-scale structures, which are difficult to reconcile with the large-scale volcanic features observed over Mars' surface. Assuming that the stagnant lid will break, a stable density gradient is obtained, with the densest material and the entire amount of heat sources lying above the core-mantle-boundary. This leads to a strong overheating of the lowermost mantle, whose temperature increases to values that exceed the liquidus. Therefore a fractionated global and deep magma ocean is difficult to reconcile with observations. Different scenarios assuming, for instance, a hemispherical or shallow magma ocean will have to be considered. References [1] N. Tosi, D.A. Yuen and O. Dadek; EPSL (2010) (Yet Another Convection Code, https://code.google.com/p/yacc-convection/) [2] C. Huettig and K. Stemmer; PEPI (2008) [3] L.T. Elkins-Tanton, E.M. Parmentier and P.C. Hess; Meteoritic and Planetary Science (2003) [4] L.T. Elkins-Tanton, S.E. Zaranek, E.M. Parmentier and P.C. Hess; EPSL (2005)

  11. Gravity Spectra from the Density Distribution of Earth's Uppermost 435 km

    NASA Astrophysics Data System (ADS)

    Sebera, Josef; Haagmans, Roger; Floberghagen, Rune; Ebbing, Jörg

    2018-03-01

    The Earth masses reside in a near-hydrostatic equilibrium, while the deviations are, for example, manifested in the geoid, which is nowadays well determined by satellite gravimetry. Recent progress in estimating the density distribution of the Earth allows us to examine individual Earth layers and to directly see how the sum approaches the observed anomalous gravitational field. This study evaluates contributions from the crust and the upper mantle taken from the LITHO1.0 model and quantifies the gravitational spectra of the density structure to the depth of 435 km. This is done without isostatic adjustments to see what can be revealed with models like LITHO1.0 alone. At the resolution of 290 km (spherical harmonic degree 70), the crustal contribution starts to dominate over the upper mantle and at about 150 km (degree 130) the upper mantle contribution is nearly negligible. At the spatial resolution <150 km, the spectra behavior is driven by the crust, the mantle lid and the asthenosphere. The LITHO1.0 model was furthermore referenced by adding deeper Earth layers from ak135, and the gravity signal of the merged model was then compared with the observed satellite-only model GOCO05s. The largest differences are found over the tectonothermal cold and old (such as cratonic), and over warm and young areas (such as oceanic ridges). The misfit encountered comes from the mantle lid where a velocity-density relation helped to reduce the RMS error by 40%. Global residuals are also provided in terms of the gravitational gradients as they provide better spatial localization than gravity, and there is strong observational support from ESA's satellite gradiometry mission GOCE down to the spatial resolution of 80-90 km.

  12. Hydrous melt-rock reaction in the shallow mantle wedge

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Grove, T. L.

    2017-12-01

    In subduction zone magmatism, hotter, deeper hydrous mantle melts rise and interact with the shallower, cooler depleted mantle in the uppermost part of the mantle wedge. Here, we experimentally investigate these hydrous reactions using three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. At low ratios of melt/mantle (20:80 and 5:95), the crystallizing assemblages are dunites, harzburgites, and lherzolites (as a function of temperature). When the ratio of deeper melt to overlying mantle is 70:30, the crystallizing assemblage is a wehrlite. This shows that wehrlites, which are observed in ophiolites and mantle xenoliths, can be formed by large amounts of deeper melt fluxing though the mantle wedge during ascent. In all cases, orthopyroxene dissolves in the melt, and olivine crystallizes along with pyroxenes and spinel. The amount of reaction between deeper melts and overlying mantle, simulated here by the three starting compositions, imposes a strong influence on final melt compositions, particularly in terms of depletion. At the lowest melt/mantle ratios, the resulting melt is an extremely depleted Al-poor, high-Si andesite. As the fraction of melt to mantle increases, final melts resemble primitive basaltic andesites found in arcs globally. Wall rock temperature is a key variable; over a span of <80 °C, reaction with deeper melt creates the entire range of mantle lithologies from a depleted dunite to a harzburgite to a refertilized lherzolite. Together, the experimental phase equilibria, melt compositions, and calculated reaction coefficients provide a framework for understanding how melt-wall rock reaction occurs in the natural system during melt ascent in the mantle wedge.

  13. Constraints on Mercury's Core-Mantle Boundary Region

    NASA Astrophysics Data System (ADS)

    Hauck, S. A., II; Chabot, N. L.; Sun, P.; Jing, Z.; Johnson, C. L.; Margot, J. L.; Padovan, S.; Peale, S. J.; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Understanding the boundary between a planet's metallic core and silicate mantle is important for constraining processes that dominate on either side of this boundary. Geophysical measurements of the planet Mercury by the MESSENGER spacecraft have provided evidence of a core larger than earlier, less-constrained estimates. Further, these results, taken in concert with measurements of the elemental composition of the surface by MESSENGER, have led to the suggestion that the uppermost layer of the outer core may be highly enriched in sulfur, and the top of the core may consist of a solid sulfide layer. The low iron and relatively large sulfur contents of the surface indicate highly reducing conditions during planet formation, placing constraints on the potential composition of Mercury's core. Recent metal-silicate partitioning experiments have developed new limits on the amount of sulfur and silicon that may partition into the core as a function of sulfur abundance at the surface. Models for the planet's internal structure constrained by the current best estimates of the bulk density, normalized polar moment of inertia, and fraction of the polar moment of inertia of the solid layer that extends from the surface to the top of the liquid outer core provide an important view of the layering and bulk composition of Mercury. By combining the results of these internal structure models with the experimental relationship between core and mantle composition we place new limits on core composition and structure. Further, imposing measured compositional constraints on the miscibility of iron-sulfur-silicon alloys yields important limits on the presence or absence of an immiscible sulfur-rich liquid layer or a solid sulfide layer at the top of the core.

  14. Crustal structure between Lake Mead, Nevada, and Mono Lake, California

    USGS Publications Warehouse

    Johnson, Lane R.

    1964-01-01

    Interpretation of a reversed seismic-refraction profile between Lake Mead, Nevada, and Mono Lake, California, indicates velocities of 6.15 km/sec for the upper layer of the crust, 7.10 km/sec for an intermediate layer, and 7.80 km/sec for the uppermost mantle. Phases interpreted to be reflections from the top of the intermediate layer and the Mohorovicic discontinuity were used with the refraction data to calculate depths. The depth to the Moho increases from about 30 km near Lake Mead to about 40 km near Mono Lake. Variations in arrival times provide evidence for fairly sharp flexures in the Moho. Offsets in the Moho of 4 km at one point and 2 1/2 km at another correspond to large faults at the surface, and it is suggested that fracture zones in the upper crust may displace the Moho and extend into the upper mantle. The phase P appears to be an extension of the reflection from the top of the intermediate layer beyond the critical angle. Bouguer gravity, computed for the seismic model of the crust, is in good agreement with the measured Bouguer gravity. Thus a model of the crustal structure is presented which is consistent with three semi-independent sources of geophysical data: seismic-refraction, seismic-reflection, and gravity.

  15. Inheritance vs ongoing evolution of the passive margin lithosphere in the southeastern United States: A comparison of <50Ma tectonism with tomographically imaged lithospheric structures.

    NASA Astrophysics Data System (ADS)

    Wagner, L. S.; Fischer, K. M.; Hawman, R. B.; Hopper, E.; Howell, D.

    2017-12-01

    The southeastern United States is an archetypical passive margin, and yet significant evidence exists that this region, separated from the nearest plate boundary by thousands of kilometers and over 170 Ma, has experienced significant tectonism since the Eocene. This tectonism includes volcanism, uplift/deformation, and ongoing seismicity such as the 2011 Mw = 5.8 Mineral, VA earthquake and the 1886 M=7 Charleston, SC event. For each of these examples, numerous theories exist on their respective causes. However, there are two common themes that span all of these types of events: first, their proximity to regional terrane boundaries whose inherited structures could play a role; second, the nature of the mantle lithosphere underlying them. We present a recently completed inversion of seismic Rayleigh waves for the shear wave velocity structure of the uppermost 150 - 200 km beneath the southeastern United States. This inversion includes not only EarthScope Transportable Array data, but also the data from the 85 broadband stations installed as part of the Flex Array SouthEastern Suture of the Appalachian Mountains Experiment (SESAME). We find some evidence for structures inherited from previous episodes of rifting, accretion, and orogenesis. However, we also find several examples of mantle lithospheric structures that spatially correlate strongly with Eocene to recent tectonic activity, but do not correlate to any known inherited geometries. These examples include a small but pronounced sub-crustal low velocity anomaly beneath the Eocene volcanoes in western Virginia and eastern West Virginia, as well as evidence for mantle delamination beneath the Cape Fear Arch and uplifted portions of the Orangeburg Escarpment. We will discuss these, along with instances of recent tectonism in our study area that do not bear any obvious relationship to lithospheric structures, in order to shed light on the causes of ongoing tectonic activity in this supposedly "passive" margin setting.

  16. Large-scale variation in lithospheric structure along and across the Kenya rift

    USGS Publications Warehouse

    Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.

    1991-01-01

    The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.

  17. Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.

    2013-12-01

    Geodetic surface velocity data show that after an energetic but brief phase of postseismic deformation, surface deformation around most major strike-slip faults tends to be localized and stationary, and can be modeled with a buried elastic dislocation creeping at or near the Holocene slip rate. Earthquake-cycle models incorporating an elastic layer over a Maxwell viscoelastic halfspace cannot explain this, even when the earliest postseismic deformation is ignored or modeled (e.g., as frictional afterslip). Models with heterogeneously distributed low-viscosity materials or power-law rheologies perform better, but to explain all phases of earthquake-cycle deformation, Burgers viscoelastic materials with extreme differences between their Maxwell and Kelvin element viscosities seem to be required. I present a suite of earthquake-cycle models to show that postseismic and interseismic deformation may be reconciled for a range of lithosphere architectures and rheologies if finite rupture length is taken into account. These models incorporate high-viscosity lithosphere optionally cut by a viscous shear zone, and a lower-viscosity mantle asthenosphere (all with a range of viscoelastic rheologies and parameters). Characteristic earthquakes with Mw = 7.0 - 7.9 are investigated, with interseismic intervals adjusted to maintain the same slip rate (10, 20 or 40 mm/yr). I find that a high-viscosity lower crust/uppermost mantle (or a high viscosity per unit width viscous shear zone at these depths) is required for localized and stationary interseismic deformation. For Mw = 7.9 characteristic earthquakes, the shear zone viscosity per unit width in the lower crust and uppermost mantle must exceed about 10^16 Pa s /m. For a layered viscoelastic model the lower crust and uppermost mantle effective viscosity must exceed about 10^20 Pa s. The range of admissible shear zone and lower lithosphere rheologies broadens considerably for faults producing more frequent but smaller characteristic earthquakes. Thus, minimum lithosphere or shear zone effective viscosities inferred from interseismic GPS data and infinite-fault earthquake-cycle models may be too high. The finite-fault models show that relaxation of viscoelastic material in the mid crust (most likely along a viscous shear zone) may be consistent with near- to intermediate-field postseismic deformation typical of recent Mw = 7.4 to 7.9 earthquakes. This deformation is compatible with more localized and time-invariant deformation during most of the interseismic interval if (1) shear zone viscosity per unit width increases with depth or (2) the shear zone material has a Burgers viscoelastic rheology.

  18. Geophysical investigations of the area between the Mid-Atlantic Ridge and the Barents Sea: From water to the lithosphere-asthenosphere system

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Mjelde, Rolf; Krysiński, Lech; Czuba, Wojciech; Libak, Audun; Guterch, Aleksander

    2015-03-01

    As a part of the large international panel "IPY Plate Tectonics and Polar Gateways" within the "4th International Polar Year" framework, extensive geophysical studies were performed in the area of southern Svalbard, between the Mid-Atlantic Ridge and the Barents Sea. Seismic investigations were performed along three refraction and wide-angle reflection seismic lines. Integrated with gravity data the seismic data were used to determine the structure of the oceanic crust, the transition between continent and ocean (COT), and the continental structures down to the lithosphere-asthenosphere system (LAB). We demonstrate how modeling of multiple water waves can be used to determine the sound velocity in oceanic water along a seismic refraction profile. Our 2D seismic and density models documents 4-9 km thick oceanic crust formed at the Knipovich Ridge, a distinct and narrow continent-ocean transition (COT), the Caledonian suture zone between Laurentia and Barentsia, and 30-35 km thick continental crust beneath the Barents Sea. The COT west of southern Spitsbergen expresses significant excess density (more than 0.1 g/cm3 in average), which is characteristic for mafic/ultramafic and high-grade metamorphic rocks. The results of the gravity modeling show relatively weak correlation of the density with seismic velocity in the upper mantle, which suggests that the horizontal differences between oceanic and continental mantle are dominated by mineralogical changes, although a thermal effect is also present. The seismic velocity change with depth suggests lherzolite composition of the uppermost oceanic mantle, and dunite composition beneath the continental crust.

  19. Seismic properties of the upper mantle beneath Lanzarote (Canary Islands): Model predictions based on texture measurements by EBSD

    NASA Astrophysics Data System (ADS)

    Vonlanthen, Pierre; Kunze, Karsten; Burlini, Luigi; Grobety, Bernard

    2006-12-01

    We present a petrophysical analysis of upper mantle xenoliths, collected in the Quaternary alkali basalt fields (Series III and IV) from the island of Lanzarote. The samples consist of eight harzburgite and four dunite nodules, 5 to 15 cm in size, and exhibit a typical protogranular to porphyroclastic texture. An anomalous foliation resulting from strong recovery processes is observed in half of the specimens. The lattice preferred orientations (LPO) of olivine, orthopyroxene and clinopyroxene were measured using electron backscatter diffraction (EBSD). In most samples, olivine exhibits LPOs intermediate between the typical single crystal texture and the [100] fiber texture. Occasionally, the [010] fiber texture was also observed. Simultaneous occurrence of both types of fiber textures suggests the existence of more than one deformation regime, probably dominated by a simple shear component under low strain rate and moderate to high temperature. Orthopyroxene and clinopyroxene display a weaker but significant texture. The LPO data were used to calculate the seismic properties of the xenoliths at PT conditions obtained from geothermobarometry, and were compared to field geophysical data reported from the literature. The velocity of P-waves (7.9 km/s) obtained for a direction corresponding to the existing seismic transect is in good agreement with the most recent geophysical interpretation. Our results are consistent with a roughly W-E oriented fastest P-wave propagation direction in the uppermost mantle beneath the Canary Islands, and with the lithosphere structure proposed by previous authors involving a crust-mantle boundary at around 18 km in depth, overlaid by intermediate material between 11 and 18 km.

  20. Crust and Upper Mantle Structure of Antarctica from Rayleigh Wave Tomography

    NASA Astrophysics Data System (ADS)

    Wiens, D. A.; Heeszel, D. S.; Sun, X.; Chaput, J. A.; Aster, R. C.; Nyblade, A.; Anandakrishnan, S.; Wilson, T. J.; Huerta, A. D.

    2012-12-01

    We combine data from three temporary arrays of seismometers (AGAP/GAMSEIS 2007-2010, ANET/POLENET 2007-2012, TAMSEIS 2001-2003) deployed across Antarctica, along with permanent stations in the region, to produce a large scale shear velocity model of the continent extending from the Gamburtsev Subglacial Mountains (GSM) in East Antarctica, across the Transantarctic Mountains (TAM) and West Antarctic Rift System (WARS) to Marie Byrd Land (MBL) in West Antarctica. Our combined dataset consists of Rayleigh wave phase and amplitude measurements from 112 stations across the study region. We first invert for 2-D Rayleigh wave phase velocities using the two-plane wave method. These results are then inverted for shear velocity structure using crustal thicknesses derived from ambient noise tomography and teleseismic receiver functions. We refine our shear velocity model by performing a Monte Carlo simulation that explores the tradeoff between crustal thickness and upper mantle seismic velocities. The resulting model is higher resolution than previous studies (~150 km resolution length) and highlights significant differences in crustal and uppermost mantle structure between East and West Antarctica in greater detail than previously possible. East Antarctica is underlain by thick crust (reaching ~55 km beneath the GSM) and fast, cratonic lithosphere. West Antarctica is defined by thinner crust and slow upper mantle velocities indicative of its more recent tectonic activity. The observed boundary in crustal thickness closely follows the TAM front. MBL is underlain by a thicker lithosphere than that observed beneath the WARS, but slow mantle velocities persist to depths greater than 200 km, indicating a 'deep seated' (i.e. deeper than the deepest resolvable features of our model) thermal source for volcanism in the region. The slowest seismic velocities at shallow depths are observed in the Terror Rift region of the Ross Sea along an arc following the TAM front, where the most recent extension has occurred, and in another region of active volcanism. The Ellsworth-Whitmore Mountains are underlain by relatively thick crust and an intermediate thickness lithosphere, consistent with its hypothesized origin as a remnant Precambrian crustal block. We also produce upper mantle viscosity models for the study region using a temperature-dependent rheology, assuming that mantle seismic anomalies are dominated by temperature variations. Initial results closely correlate with the velocity model, with viscosities beneath West Antarctica inferred to be orders of magnitude lower than beneath East Antarctica. These viscosity results have important implications for our understanding of glacial isostatic adjustment, which is of particular interest in producing models of past and future changes in the Antarctic Ice Sheets.

  1. Integrated seismic model of the crust and upper mantle of the Trans-European Suture zone between the Precambrian craton and Phanerozoic terranes in Central Europe

    NASA Astrophysics Data System (ADS)

    Wilde-Piórko, Monika; Świeczak, Marzena; Grad, Marek; Majdański, Mariusz

    2010-01-01

    The structure and evolution of the Trans-European Suture zone (TESZ), contact between Precambrian Europe to the northeast and Phanerozoic terranes to the southwest is one of the main tectonic questions in Europe. The knowledge of the crustal structure, lithosphere-asthenosphere boundary and mantle transition zone between two seismic discontinuities at depths "410" and "660" km, is one of the most important issues to understand the Earth's dynamics. To create a mantle model of the TESZ and surroundings we used different seismic data collected along the 950 km long POLONAISE'97 profile P4. Previous results of 2-D ray-tracing and P-wave travel time modelling and new results of P-wave travel time residuals methods and receiver function sections provide facts about the seismic structure from the surface down to 900 km depth. In the TESZ a large basin, about 125 km wide, is filled with sedimentary strata (Vp < 6.0 km s - 1 ) to about 20 km depth. This basin is asymmetric with its northeast margin being most abrupt. The crystalline crust under this basin is only about 20 km thick today indicating that the lithosphere of Baltica was either thinned drastically or terminated along the northeast margin of the basin. The East European craton (EEC) has a ~ 45 km thick three-layered crust. The crust of the accreted terranes to the southwest is relatively thin (~ 30 km) and similar to that found in other non-cratonal areas of Western Europe. The lower crust is relatively fast (Vp > 7.0 km s - 1 ) along most of the P4 profile. However, lower values to the southwest may indicate the termination of Baltica. High velocity (~ 8.35 km s - 1 ) uppermost mantle lies beneath the Avalonia/Variscan terranes, and may be due to rifting and/or subduction. The seismic lithosphere thickness for the EEC is about 200 km, while it is only 90 km in the Palaeozoic platform (PP). The mantle transition zone is shallower and about 30 km thicker under the EEC, which could be due to thermal conditions (lower temperature) and/or the presence of water and FeO. The result of this paper is a new compiled and integrated seismic velocity model, available in digital form down to 900 km depth ( http://www.igf.fuw.edu.pl/p4-mantle), which can be used as a preliminary model of the crust and upper mantle in the TESZ area in Central Europe.

  2. Growth of the lower continental crust via the relamination of arc magma

    NASA Astrophysics Data System (ADS)

    He, Yumei; Zheng, Tianyu; Ai, Yinshuang; Hou, Guangbing; Chen, Qi-Fu

    2018-01-01

    How does continental crust transition from basaltic mantle-derived magmas into an andesitic composition? The relamination hypothesis has been presented as an alternative dynamical mechanism to classical delamination theory to explain new crust generation and has been supported by petrological and geochemical studies as well as by thermomechanical numerical modeling. However, direct evidence of this process from detailed seismic velocity structures is lacking. Here, we imaged the three-dimensional (3D) velocity structures of the crust and uppermost mantle beneath the geologically stable Ordos terrane of the North China Craton (NCC). We identify a region of continental crust that exhibits extreme growth using teleseismic data and an imaging technique that models the Common Conversion Point (CCP) stacking profiles. Our results show an approximately 400 × 400 km2 wide growth zone that underlies the primitive crust at depths of 30-50 km and exhibits a gradual increase of velocity with depth. The upper layer of the growth zone has a shear wave velocity of 3.6-3.9 km/s (Vp = 6.2-6.8 km/s), indicating felsic material, and the lower layer has a shear wave velocity of 4.1-4.3 km/s (Vp = 7.2-7.5 km/s), which corresponds to mafic material. We suggest that this vertical evolution of the layered structure could be created by relamination and that the keel structure formed by relamination may be the root of the supernormal stability of the ancient Ordos terrane.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoit, M H; Nyblade, A A; Pasyanos, M E

    The East African and Ethiopian Plateaus have long been recognized to be part of a much larger topographic anomaly on the African Plate called the African Superswell. One of the few places within the African Superswell that exhibit elevations of less than 1 km is southeastern Sudan and northern Kenya, an area containing both Mesozoic and Cenozoic rift basins. Crustal structure and uppermost mantle velocities are investigated in this area by modeling Rayleigh wave dispersion. Modeling results indicate an average crustal thickness of 25 {+-} 5 km, some 10-15 km thinner than the crust beneath the adjacent East African andmore » Ethiopian Plateaus. The low elevations can therefore be readily attributed to an isostatic response from crustal thinning. Low Sn velocities of 4.1-4.3 km/s also characterize this region.« less

  4. Pn wave velocities beneath the Tanzania Craton and adjacent rifted mobile belts, east Africa

    NASA Astrophysics Data System (ADS)

    Brazier, Richard A.; Nyblade, Andrew A.; Langston, Charles A.; Owens, Thomas J.

    2000-08-01

    P wave travel times from regional earthquakes recorded by the Tanzania Broadband Seismic Experiment have been inverted for long wavelength (>100 km) Pn velocity variations beneath Tanzania using a generalized inverse algorithm. Pn velocities, on average, are 8.40 to 8.45 km/s beneath the center of the Tanzania Craton, 8.30-8.35 km/s beneath the terminus of the Eastern Branch of the rift system, and 8.35-8.40 km/s beneath the Western Branch. These velocities indicate that there are no broad (>100 km wide) thermal anomalies in the uppermost mantle beneath areas of rifting in Tanzania, and suggest that thermal anomalies present deeper in the mantle have not yet reached the base of the crust.

  5. Effect of bend faulting on the hydration state of oceanic crust: Electromagnetic constraints from the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Naif, S.; Key, K.; Constable, S.; Evans, R. L.

    2017-12-01

    In Northern Central America, the portion of the incoming Cocos oceanic plate formed at the East Pacific Rise has a seafloor spreading fabric that is oriented nearly parallel to the trench axis, whereby flexural bending at the outer rise reactivates a dense network of dormant abyssal hill faults. If bending-induced normal faults behave as fluid pathways they may promote extensive mantle hydration and significantly raise the flux of fluids into the subduction system. Multi-channel seismic reflection data imaged bend faults that extend several kilometers beneath the Moho offshore Nicaragua, coincident with seismic refraction data showing significant P-wave velocity reductions in both the crust and uppermost mantle. Ignoring the effect of fracture porosity, the observed mantle velocity reduction is equivalent to an upper bound of 15-20% serpentinization (or 2.0-2.5 wt% H2O). Yet the impact of bend faulting on porosity structure and crustal hydration are not well known. Here, we present results on the electrical resistivity structure of the incoming Cocos plate offshore Nicaragua, the first controlled-source electromagnetic (CSEM) experiment at a subduction zone. The CSEM data imaged several sub-vertical conductive channels extending beneath fault scarps to 5.5 km below seafloor, providing independent evidence for fluid infiltration into the oceanic crust via bending faults. We applied Archie's Law to estimate porosity from the resistivity observations: the dike and gabbro layers increase from 2.7% and 0.7% porosity at 100 km to 4.8% and 1.7% within 20 km of the trench, respectively. In contrast the resistivity, and hence porosity, remain relatively unchanged at sub-Moho depths. Therefore, either the faults do not provide an additional flux of free water to the mantle or, in light of the reduced seismic velocities, the volumetric expansion resulting from mantle serpentinization rapidly consumes any fault-generated porosity. Since our crustal porosity estimates seaward of the outer rise are in very good agreement with drilling observations, we conclude that bending faults effectively double the subducted free water budget of the intrusive oceanic crust.

  6. Seismic anisotropy of 70 Ma Pacific-plate upper mantle

    NASA Astrophysics Data System (ADS)

    Mark, H. F.; Lizarralde, D.; Collins, J. A.; Miller, N. C.; Hirth, G.; Gaherty, J. B.; Evans, R. L.

    2017-12-01

    We present a new measurement of seismic anisotropy and velocity gradients in the Pacific-plate upper mantle based on data from the NoMelt experiment. The seismic velocity structure of oceanic lithosphere reflects the processes involved in its formation at mid-ocean ridges and subsequent evolution off-axis. Increasing mantle depletion with depth due to melt extraction predicts negative velocity gradients, as does cooling with age. Alignment of olivine by corner flow predicts azimuthal anisotropy. Some models predict the strength of anisotropy should decrease with depth. Measurements of uppermost mantle velocities have not fully verified these predictions. Observations of direct Pn phases demonstrate that positive velocity gradients exist; and anisotropy measurements, while consistent with strain-induced olivine alignment, vary widely and generally suggest weaker fabric development than is observed in ophiolite samples. These discrepancies raise questions about the extent to which mantle structure evolves through time due to processes such as cracking and alteration, and hinder the use of seismic measurements to make more detailed inferences on aspects of lithospheric formation processes. We have measured anisotropy and vertical velocity gradients to 10 km below the Moho on 70 Ma lithosphere between the Clarion and Clipperton fracture zones. The lithosphere at the study site has not been obviously affected by tectonic or magmatic events since its formation. We find 6.2% anisotropy at the Moho with a mean velocity of 8.14 km/s and the fast direction parallel to paleospreading. Velocity gradients are estimated at 0.02 km/s/km in the fast direction and near 0 km/s/km in the slow direction. The gradient estimates can be explained by aligned microcracks oriented perpendicular to spreading that close with depth. Cracks are expected to close by 10 km below the Moho. At that depth the strength of anisotropy increases to 9%, close to the strength estimated from ophiolite fabrics. These results are consistent with observed olivine fabrics and the predicted effects of lithospheric formation processes, and suggest that lithospheric evolution is modest even at 70 Ma, involving microcracks oriented by a stress field consistent with thermal contraction.

  7. Using P-wave Triplications to Constrain the Mantle Transition Zone beneath Central Iranian Plateau and Surrounding Area

    NASA Astrophysics Data System (ADS)

    Chi, H. C.; Tseng, T. L.

    2014-12-01

    The Iranian Plateau is a tectonically complex region resulting from the continental collision between the African and Eurasian plates. The convergence of the two continents created the Zagros Mountains, the high topography southwest of Iran, and active seismicity along the Zagros-Bitlis suture. Tomographic studies in Iran reveal low seismic speeds and high attenuation of Sn wave in the uppermost mantle beneath the Iranian Plateau relative to adjacent regions. The deeper structure, however, remains curiously inconclusive. By contrast, a prominent fast seismic anomaly is found under central Tibet near depth of 600 km in the mantle transition zone (TZ), and it is speculated to be the remnant of lithosphere detached during the continental collision. We conduct a comparative study that utilizes triplicate arrivals of high-resolution P waveforms to investigate the velocity structure of mantle beneath the central Iranian Plateau and surroundings. Due to the abrupt increase in seismic wave speeds and density across the 410- and 660-km discontinuities, seismic waves at epicentral distances of 15-30 degrees would form multiple arrivals and the relative times and amplitudes between them are most sensitive to the variations in seismic speeds near the TZ. We combine several broadband arrays to construct 8 seismic profiles, each about 800 km long, that mainly sample the TZ under central Iranian Plateau, Turan shield and part of South Caspian basin. Move-outs between arrivals are clear in the profiles. Relative timings suggest a slightly smaller 660-km contrast under stable Turan shield. In the next stage, it is necessary to model waveforms after the source effect being removed properly. Our preliminary tests show that the F-K method can efficiently calculate the synthetic seismograms. We will determine the 1D velocity model for each sampled sector by minimizing the overall misfits between observed and predicted waveforms. The lateral variations may be further explored by comparing adjacent sectors. The results are important for understanding the lithosphere-mantle interaction during the process of continental collision.

  8. Xenolith constraints on seismic velocities in the upper mantle beneath southern Africa

    NASA Astrophysics Data System (ADS)

    James, D. E.; Boyd, F. R.; Schutt, D.; Bell, D. R.; Carlson, R. W.

    2004-01-01

    We impose geologic constraints on seismic three-dimensional (3-D) images of the upper mantle beneath southern Africa by calculating seismic velocities and rock densities from approximately 120 geothermobarometrically calibrated mantle xenoliths from the Archean Kaapvaal craton and adjacent Proterozoic mobile belts. Velocity and density estimates are based on the elastic and thermal moduli of constituent minerals under equilibrium P-T conditions at the mantle source. The largest sources of error in the velocity estimates derive from inaccurate thermo-barometry and, to a lesser extent, from uncertainties in the elastic constants of the constituent minerals. Results are consistent with tomographic evidence that cratonic mantle is higher in velocity by 0.5-1.5% and lower in density by about 1% relative to off-craton Proterozoic samples at comparable depths. Seismic velocity variations between cratonic and noncratonic xenoliths are controlled dominantly by differences in calculated temperatures, with compositional effects secondary. Different temperature profiles between cratonic and noncratonic regions have a relatively minor influence on density, where composition remains the dominant control. Low-T cratonic xenoliths exhibit a positive velocity-depth curve, rising from about 8.13 km/s at uppermost mantle depths to about 8.25 km/s at 180-km depth. S velocities decrease slightly over the same depth interval, from about 4.7 km/s in the uppermost mantle to 4.65 km/s at 180-km depth. P and S velocities for high-T lherzolites are highly scattered, ranging from highs close to those of the low-T xenoliths to lows of 8.05 km/s and 4.5 km/s at depths in excess of 200 km. These low velocities, while not asthenospheric, are inconsistent with seismic tomographic images that indicate high velocity root material extending to depths of at least 250 km. One plausible explanation is that high temperatures determined for the high-T xenoliths are a nonequilibrium consequence of relatively recent thermal perturbation and compositional modification associated with emplacement of kimberlitic fluids into the deep tectospheric root. Seismic velocities and densities for cratonic xenoliths differ significantly from those predicted for both primitive mantle peridotite and mantle eclogite. A model primitive mantle under cratonic P-T conditions exhibits velocities about 1% lower for P and about 1.5% lower for S, a consequence of a more fertile composition and different modal composition. Primitive mantle is also about 2% more dense at 150-km depth than low-T garnet lherzolite at cratonic P-T conditions. Similar calculations based on an oceanic geotherm are consistent with the isopycnic hypothesis of comparable density columns beneath oceanic and cratonic regions. Calculations for a hypothetical "cratonic" eclogite (50:50 garnet/omphacite) with an assumed cratonic geotherm produce extremely high VP and VS (8.68 km/s and 4.84 km/s, respectively, at 150 km depth) as well as high density (˜3.54 gm/cc). The very high velocity of eclogite should render it seismically conspicuous in the cratonic mantle if present as large volume blocks or slabs. We discuss how the seismic velocity data we have compiled in this paper from both xenoliths and generic petrologic models of the upper mantle differ from commonly used standard earth models IASPEI and PREM.

  9. Seismic Evidence of Imprints of Malani and Deccan Volcanism in Northwestern India

    NASA Astrophysics Data System (ADS)

    Mohan, G.; Mangalampally, R. K.; Ahmad, F.

    2017-12-01

    The evolution of the Neoproterozoic (750 Ma) Malani igneous province(MIP), the site of the largest felsic magmatism in India is debatable with theories supporting extensional tectonics, mantle plume or subduction processes. The MIP that lies to the west of the Proterozoic Aravalli mountain range and east of the Late Mesozoic-Teritary Barmer-Sanchor rift systems, hosts acidic volcanics in an area of 0.5 million sq.km in northwestern India. In this study, the crustal and upper mantle structure beneath the MIP is investigated through a deployment of 12 broadband seismographs in phases, at 18 locations during a period of five years from 2011-2016. The P wave receiver function(RF) analysis was carried out to image the crust and the 410 km and 660 km mantle transition zone discontinuities. About 1500 teleseismic waveforms with signal to noise ratios > 2.5 are utilized. The RFs at most stations are marked by strong conversions from the base of the sediments and the Moho. The crustal thickness estimated through the Neighbourhood algorithm approach, ranges from 35 to 42km. The crustal Poisson's ratio ranges from 0.26 - 0.29. The crustal thickness and Poisson's ratio are observed to increase from west to east viz., from the rift zone to the mountain belt. A significant finding is the presence of a 5-10km thick mid-crustal low velocity zone with a reduced shear velocity of 3.0-3.2km/s. The Ps conversions from the 410km and 660km mantle discontinuities are delayed by about 1sec with respect to the timings predicted by the IASP91 standard earth model. The observed delays are attributed to the reduction in velocity due to compositional/thermal perturbations in the uppermost upper mantle above the 410km discontinuity. The presence of alkaline complexes in MIP which are of pre-Deccan age (68 Ma) led us to surmise that the low velocity anomalies observed in the upper mantle might be linked to the mantle source associated with the 65 Ma Deccan volcanism which erupted further south of MIP. It is likely that the mantle source may have overprinted or obliterated the mantle signatures of the Neoproterozoic tectonic event. However, the intracrustal low velocities overlying an underplated crust in MIP are interpreted to be the compositional imprints of the felsic magma associated with the bimodel Malani volcanism.

  10. Crust and uppermost-mantle structure of Greenland and the Northwest Atlantic from Rayleigh wave group velocity tomography

    NASA Astrophysics Data System (ADS)

    Darbyshire, Fiona A.; Dahl-Jensen, Trine; Larsen, Tine B.; Voss, Peter H.; Joyal, Guillaume

    2018-03-01

    The Greenland landmass preserves ˜4 billion years of tectonic history, but much of the continent is inaccessible to geological study due to the extensive inland ice cap. We map out, for the first time, the 3-D crustal structure of Greenland and the NW Atlantic ocean, using Rayleigh wave anisotropic group velocity tomography, in the period range 10-80 s, from regional earthquakes and the ongoing GLATIS/GLISN seismograph networks. 1-D inversion gives a pseudo-3-D model of shear wave velocity structure to depths of ˜100 km with a horizontal resolution of ˜200 km. Crustal thickness across mainland Greenland ranges from ˜25 km to over 50 km, and the velocity structure shows considerable heterogeneity. The large sedimentary basins on the continental shelf are clearly visible as low velocities in the upper ˜5-15 km. Within the upper continental basement, velocities are systematically lower in northern Greenland than in the south, and exhibit a broadly NW-SE trend. The thinning of the crust at the continental margins is also clearly imaged. Upper-mantle velocities show a clear distinction between typical fast cratonic lithosphere (Vs ≥4.6 km s-1) beneath Greenland and its NE margin and anomalously slow oceanic mantle (Vs ˜4.3-4.4 km s-1) beneath the NW Atlantic. We do not observe any sign of pervasive lithospheric modification across Greenland in the regions associated with the presumed Iceland hotspot track, though the average crustal velocity in this region is higher than that of areas to the north and south. Crustal anisotropy beneath Greenland is strong and complex, likely reflecting numerous episodes of tectonic deformation. Beneath the North Atlantic and Baffin Bay, the dominant anisotropy directions are perpendicular to the active and extinct spreading centres. Anisotropy in the subcontinental lithosphere is weaker than that of the crust, but still significant, consistent with cratonic lithosphere worldwide.

  11. The role of solid-solid phase transitions in mantle convection

    NASA Astrophysics Data System (ADS)

    Faccenda, Manuele; Dal Zilio, Luca

    2017-01-01

    With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine, Ringwoodite, pyroxene and pyrope garnet in the transition zone and uppermost lower mantle produces positive buoyancy forces that decrease the subduction velocity and may lead to slab stagnation in the transition zone. The presence of deep metastable portions is still debated, and should not be associated a-priori with a completely dry slab as field observations suggest that heterogeneously hydrated oceanic plates could contain metastable dry portions surrounded by transformed wet rocks.

  12. Measurement of Rayleigh wave Z/H ratio and joint inversion for a high-resolution S wave velocity model beneath the Gulf of Mexico passive margin

    NASA Astrophysics Data System (ADS)

    Miao, W.; Li, G.; Niu, F.

    2016-12-01

    Knowledge on the 3D sediment structure beneath the Gulf of Mexico passive margin is not only important to explore the oil and gas resources in the area, but also essential to decipher the deep crust and mantle structure beneath the margin with teleseismic data. In this study, we conduct a joint inversion of Rayleigh wave ellipticity and phase velocity at 6-40 s to construct a 3-D S wave velocity model in a rectangular area of 100°-87° west and 28°-37° north. We use ambient noise data from a total of 215 stations of the Transportable Array deployed under the Earthscope project. Rayleigh wave ellipticity, or Rayleigh wave Z/H (vertical to horizontal) amplitude ratio is mostly sensitive to shallow sediment structure, while the dispersion data are expected to have reasonably good resolution to uppermost mantle depths. The Z/H ratios measured from stations inside the Gulf Coastal Plain are distinctly lower in comparison with those measured from the inland stations. We also measured the phase velocity dispersion from the same ambient noise dataset. Our preliminary 3-D model is featured by strong low-velocity anomalies at shallow depth, which are spatially well correlated with Gulf Cost, East Texas, and the Lower Mississippi basins. We will discuss other features of the 3-D models once the model is finalized.

  13. Constraints on the structure of the crust and lithosphere beneath the Azores Islands from teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Spieker, Kathrin; Rondenay, Stéphane; Ramalho, Ricardo; Thomas, Christine; Helffrich, George

    2018-05-01

    The Azores Archipelago is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, resting on both sides of the ridge. Various methods including seismic reflection, gravity and passive seismic imaging have previously been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 and 30 km, but until now models of the more fine-scale crustal structure have been lacking. Pending questions include the thickness of the volcanic edifice beneath the islands and whether crustal intrusions or even underplating can be observed beneath any island. In this study, we use data from nine seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. Our results indicate that the base of the volcanic edifice is located approximately 1 to 4 km depth beneath the different islands and that the crust-mantle boundary has an average depth of ˜17 km. There is strong evidence for magmatic underplating beneath the island of São Jorge, and indications that the underplating is also present beneath São Miguel and possibly Santa Maria. Additionally, the seismological lithosphere-asthenosphere boundary, defined as a seismic velocity drop in the uppermost mantle, seems to deepen with increasing distance from the MAR. It has a depth of ˜45 km beneath the islands close to the MAR, compared to depths >70 km beneath the more distal islands.

  14. Seismic structure of the uppermost mantle beneath the Kenya rift

    USGS Publications Warehouse

    Keller, Gordon R.; Mechie, J.; Braile, L.W.; Mooney, W.D.; Prodehl, C.

    1994-01-01

    A major goal of the Kenya Rift International Seismic Project (KRISP) 1990 experiment was the determination of deep lithospheric structure. In the refraction/wide-angle reflection part of the KRISP effort, the experiment was designed to obtain arrivals to distances in excess of 400 km. Phases from interfaces within the mantle were recorded from many shotpoints, and by design, the best data were obtained along the axial profile. Reflected arrivals from two thin (< 10 km), high-velocity layers were observed along this profile and a refracted arrival was observed from the upper high-velocity layer. These mantle phases were observed on record sections from four axial profile shotpoints so overlapping and reversed coverage was obtained. Both high-velocity layers are deepest beneath Lake Turkana and become more shallow southward as the apex of the Kenya dome is approached. The first layer has a velocity of 8.05-8.15 km/s, is at a depth of about 45 km beneath Lake Turkana, and is observed at depths of about 40 km to the south before it disappears near the base of the crust. The deeper layer has velocities ranging from 7.7 to 7.8 km/s in the south to about 8.3 km/s in the north, has a similar dip as the upper one, and is found at depths of 60-65 km. Mantle arrivals outside the rift valley appear to correlate with this layer. The large amounts of extrusive volcanics associated with the rift suggest compositional anomalies as an explanation for the observed velocity structure. However, the effects of the large heat anomaly associated with the rift indicate that composition alone cannot explain the high-velocity layers observed. These layers require some anisotropy probably due to the preferred orientation of olivine crystals. The seismic model is consistent with hot mantle material rising beneath the Kenya dome in the southern Kenya rift and north-dipping shearing along the rift axis near the base of the lithosphere beneath the northern Kenya rift. This implies lithosphere thickening towards the north and is consistent with a thermal thinning of the lithosphere from below in the south changing to thinning of the lithosphere due to stretching in the north. ?? 1994.

  15. Seismic structure beneath the Tengchong volcanic area (southwest China) from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Li, Xuelei; Wang, Sheng

    2018-05-01

    Tengchong is a young volcanic area on the collision boundary between the Indian and Euro-Asian plates of the southeastern Tibetan margin. Holocene volcanoes are concentrated in the Tengchong basin, where they align an N-S trending string-like cluster. To study the magma activity and its relation with the volcanoes, we deployed a passive seismic observation across the volcanic area in northern Tengchong. Using tele-seismic data and receiver function technique, we determined the S-wave velocity structure beneath nine temporary stations. Results show that the Tengchong basin is underlain by prominent low-velocity zones that are associated with the magma chambers of the volcanoes. In the north, a small and less pronounced magma chamber lies beneath two crater lakes, with a depth range of 9-16 km and a lateral width of <8 km. To the south, an interconnected magma chamber is found between the Dayingshan (DYS) volcano and the Dakongshan (DKS) volcanic cluster, with a depth range of 6-15 km and a lateral width of <12 km. In the south, the Laoguipo (LGP) volcano is characterized by anomalous low velocities throughout the upper-mid crust. Combined with other studies, we infer that the DYS volcano shares the same magma chamber with the DKS volcanic cluster, whereas the heat flow beneath the LGP volcano belongs to another thermal system, probably relating to the magma activity beneath the Rehai geothermal field in the south or affected by the intersection between the Tengchong volcanic fault zone and the Dayingjiang fault zone. In addition, mantle intrusion has resulted in the Moho elevation beneath the DKS volcanic cluster, and the thick transition zones on the crust-mantle boundary imply a possible penetration of the heat flow from the uppermost mantle into the lower crust.

  16. New Pn and Sn tomographic images of the uppermost mantle beneath the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Gil, A.; Díaz, J.; Gallart, J.

    2012-04-01

    We present here new images of the seismic velocity and anisotropy variations in the uppermost mantle beneath the Mediterranean region, compiled from inversion of Pn and Sn phases. The method of Hearn (1996) has been applied to Pn and Sn lectures from the catalogs of the International Seismological Center and the Spanish Instituto Geografico Nacional. A total of 1,172,293 Pn arrivals coming from 16,527 earthquakes recorded at 1,657 stations with epicentral distances between 220 km and 1400 km have been retained (331,567 arrivals from 15,487events at 961 stations for Sn). Our results, grossly consistent with available 3D tomography images, show significant features well correlated with surface geology. The Pn velocities are high (>8.2 km/s) beneath major sedimentary basins (western Alboran Sea, Valencia Trough, Adriatic Sea, Aquitaine, Guadalquivir, Rharb, Aquitaine and Po basins), and low (<7.8 km/s) in orogenic areas (Betics, Pyrenees, Alps, Apennines, Dinarides, Helenides and Calabrian Arc), confirming the existence of marked variations in crustal thicknesses already documented in some active seismic experiments. The lowest velocity values are found under the Betics and the eastern and western Alps. Another low velocity anomaly is located below the south of Balearic Islands, probably related to a thermal anomaly associated to the westward displacement of the Alboran block along the Emile Baudot escarpment 16 Ma ago. The Pn anisotropic image shows consistent orientations sub-parallel to major orogenic structures, such as Betics, Apennines, Calabrian Arc and Alps. The station delays beneath Betic and Rif ranges are strongly negative, suggesting the presence of crustal thickening all along the Gibraltar Arc. However, only the Betics have a very strong low-velocity anomaly and a pronounced anisotropy pattern. The Sn tomographic image correlates well with the Pn image, even if some relevant differences can be observed beneath particular regions.

  17. Upper mantle and transition zone structure beneath Ethiopia: Regional evidence for the African Superplume

    NASA Astrophysics Data System (ADS)

    Benoit, M. H.; Nyblade, A. A.; Pasyanos, M.; Owens, T. J.

    2005-12-01

    Throughout much of the Cenozoic, Ethiopia has undergone extensive tectonism, including rifting, volcanism and uplift, and the origin of this tectonism remains enigmatic. While the cause of the tectonism has often been attributed to one or more mantle plumes, recent global tomographic studies suggest that the African Superplume, a broad, through-going mantle upwelling, may be related to the tectonism. To further understand the origin of the tectonism in Ethiopia, we employ a variety of methods, including an S wave travel time body wave tomography, receiver function analysis of the 410 and 660 km discontinuities, and surface wave tomography. Using data from the Ethiopia Broadband Seismic Experiment [2000-2002], we computed new S wave models of the upper mantle seismic velocity structure from 150 - 400 km depth. The S wave model revealed an elongated low wave speed region that is deep (> 300 km) and wide (> 500 km). The location of the low wave speed anomaly aligns with the Afar Depression and Main Ethiopian Rift in the uppermost mantle, but the center of the anomaly shifts to the west with depth. Results from receiver function stacking of the 410 and 660 km discontinuities show a shallow 660 beneath most of Ethiopia, implying that the low wave speed anomaly found in the S wave model likely extends to at least 660 km depth. This result suggests that the low velocity anomaly may be related to the African Superplume. A group velocity surface wave tomographic study of East Africa was also computed using data from permanent and temporary stations from Africa and Arabia. Results of this study reveal low Sn velocities beneath much of the region, and suggest that low elevations found in the region between the Ethiopian and East African Plateaus likely reflect an isostatic response to crustal thinning. If the crust in this region had not been thinned by approximately 10 - 15 km, then it is likely that the high elevation of the Ethiopian and East African Plateaus would be continuous and that these plateaus would not be viewed as separate, distinct regions of uplift. This finding further suggests that a large scale, buoyant feature, such as the African Superplume, exists in the mantle beneath the Ethiopia and East African Plateaus that contributes to the uplift of the region.

  18. Resolving Discrepancies Between Observed and Predicted Dynamic Topography on Earth

    NASA Astrophysics Data System (ADS)

    Richards, F. D.; Hoggard, M.; White, N. J.

    2017-12-01

    Compilations of well-resolved oceanic residual depth measurements suggest that present-day dynamic topography differs from that predicted by geodynamic simulations in two significant respects. At short wavelengths (λ ≤ 5,000 km), much larger amplitude variations are observed, whereas at long wavelengths (λ > 5,000 km), observed dynamic topography is substantially smaller. Explaining the cause of this discrepancy with a view to reconciling these different approaches is central to constraining the structure and dynamics of the deep Earth. Here, we first convert shear wave velocity to temperature using an experimentally-derived anelasticity model. This relationship is calibrated using a pressure and temperature-dependent plate model that satisfies age-depth subsidence, heat flow measurements, and seismological constraints on the depth to the lithosphere-asthenosphere boundary. In this way, we show that, at short-wavelengths, observed dynamic topography is consistent with ±150 ºC asthenospheric temperature anomalies. These inferred thermal buoyancy variations are independently verified by temperature measurements derived from geochemical analyses of mid-ocean ridge basalts. Viscosity profiles derived from the anelasticity model suggest that the asthenosphere has an average viscosity that is two orders of magnitude lower than that of the underlying upper mantle. The base of this low-viscosity layer coincides with a peak in azimuthal anisotropy observed in recent seismic experiments. This agreement implies that lateral asthenospheric flow is rapid with respect to the underlying upper mantle. We conclude that improved density and viscosity models of the uppermost mantle, which combine a more comprehensive physical description of the lithosphere-asthenosphere system with recent seismic tomographic models, can help to resolve spectral discrepancies between observed and predicted dynamic topography. Finally, we explore possible solutions to the long-wavelength discrepancy that exploit the velocity to density conversion described above combined with radial variation of mantle viscosity.

  19. A First Layered Crustal Velocity Model for the Western Solomon Islands: Inversion of Measured Group Velocity of Surface Waves using Ambient Noise Cross-Correlation

    NASA Astrophysics Data System (ADS)

    Ku, C. S.; Kuo, Y. T.; Chao, W. A.; You, S. H.; Huang, B. S.; Chen, Y. G.; Taylor, F. W.; Yih-Min, W.

    2017-12-01

    Two earthquakes, MW 8.1 in 2007 and MW 7.1 in 2010, hit the Western Province of Solomon Islands and caused extensive damage, but motivated us to set up the first seismic network in this area. During the first phase, eight broadband seismic stations (BBS) were installed around the rupture zone of 2007 earthquake. With one-year seismic records, we cross-correlated the vertical component of ambient noise recorded in our BBS and calculated Rayleigh-wave group velocity dispersion curves on inter-station paths. The genetic algorithm to invert one-dimensional crustal velocity model is applied by fitting the averaged dispersion curves. The one-dimensional crustal velocity model is constituted by two layers and one half-space, representing the upper crust, lower crust, and uppermost mantle respectively. The resulted thickness values of the upper and lower crust are 6.4 and 14.2 km, respectively. Shear-wave velocities (VS) of the upper crust, lower crust, and uppermost mantle are 2.53, 3.57 and 4.23 km/s with the VP/VS ratios of 1.737, 1.742 and 1.759, respectively. This first layered crustal velocity model can be used as a preliminary reference to further study seismic sources such as earthquake activity and tectonic tremor.

  20. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1998-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aid core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile, akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core; (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most 1.5 deg./yr.

  1. Shaping mobile belts by small-scale convection.

    PubMed

    Faccenna, Claudio; Becker, Thorsten W

    2010-06-03

    Mobile belts are long-lived deformation zones composed of an ensemble of crustal fragments, distributed over hundreds of kilometres inside continental convergent margins. The Mediterranean represents a remarkable example of this tectonic setting: the region hosts a diffuse boundary between the Nubia and Eurasia plates comprised of a mosaic of microplates that move and deform independently from the overall plate convergence. Surface expressions of Mediterranean tectonics include deep, subsiding backarc basins, intraplate plateaux and uplifting orogenic belts. Although the kinematics of the area are now fairly well defined, the dynamical origins of many of these active features are controversial and usually attributed to crustal and lithospheric interactions. However, the effects of mantle convection, well established for continental interiors, should be particularly relevant in a mobile belt, and modelling may constrain important parameters such as slab coherence and lithospheric strength. Here we compute global mantle flow on the basis of recent, high-resolution seismic tomography to investigate the role of buoyancy-driven and plate-motion-induced mantle circulation for the Mediterranean. We show that mantle flow provides an explanation for much of the observed dynamic topography and microplate motion in the region. More generally, vigorous small-scale convection in the uppermost mantle may also underpin other complex mobile belts such as the North American Cordillera or the Himalayan-Tibetan collision zone.

  2. Crustal and upper mantle investigations of the Caribbean-South American plate boundary

    NASA Astrophysics Data System (ADS)

    Bezada, Maximiliano J.

    The evolution of the Caribbean --- South America plate boundary has been a matter of vigorous debate for decades and many questions remain unresolved. In this work, and in the framework of the BOLIVAR project, we shed light on some aspects of the present state and the tectonic history of the margin by using different types of geophysical data sets and techniques. An analysis of controlled-source traveltime data collected along a boundary-normal profile at ˜65°W was used to build a 2D P-wave velocity model. The model shows that the Caribbean Large Igenous Province is present offshore eastern Venezuela and confirms the uniformity of the velocity structure along the Leeward Antilles volcanic belt. In contrast with neighboring profiles, at this longitude we see no change in velocity structure or crustal thickness across the San Sebastian - El Pilar fault system. A 2D gravity modeling methodology that uses seismically derived initial density models was developed as part of this research. The application of this new method to four of the BOLIVAR boundary-normal profiles suggests that the uppermost mantle is denser under the South American continental crust and the island arc terranes than under the Caribbean oceanic crust. Crustal rocks of the island arc and extended island arc terranes of the Leeward Antilles have a relatively low density, given their P-wave velocity. This may be caused by low iron content, relative to average magmatic arc rocks. Finally, an analysis of teleseismic traveltimes with frequency-dependent kernels produced a 3D P-wave velocity perturbation model. The model shows the structure of the mantle lithosphere under the study area and clearly images the subduction of the Atlantic slab and associated partial removal of the lower lithosphere under northern South America. We also image the subduction of a section of the Caribbean plate under South America with an east-southeast direction. Both the Atlantic and Caribbean subducting slabs penetrate the mantle transition zone, affecting the topography of the 410-km and 660-km discontinuities.

  3. Convective Differentiation of the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Schmalzl, J.; Stemmer, K.

    2007-05-01

    The differentiation of the Earth is likely to be influenced by convective motions within the early mantle. Double- diffusive convection (d.d.c), driven by thermally and compositionally induced density differences is considered as a vital mechanism behind the dynamic differentiation of the early mantle.. We demonstrate that d.d.c can lead to layer formation on a planetary scale in the diffusive regime where composition stabilizes the system whil heat provides the destabilizing force. Choosing initial conditions in which a stable compositional gradient overlies a hot reservoir we mimic the situation of a planet in a phase after core formation. Differently from earlier studies we fixed the temperature rather than the heat flux at the lower boundary, resembling a more realistic condition for the core-mantle boundary. We have carried out extended series of numerical experiments, ranging from 2D calculations in constant viscosity fluids to fully 3D experiments in spherical geometry with strongly temperature dependent viscosity. The buoyancy ratio R and the Lewis number Le are the important dynamical parameters. In all scenarios we could identify a parameter regime where the non-layered initial structure developed into a state consisting of several, mostly two layers. Initially plumes from the bottom boundary homogenize a first layer which subsequently thickens. The bottom layer heats up and then convection is initiated in the top layer. This creates dynamically (i.e. without jump in the material behavior) a stack of separately convecting layers. The bottom layer is significantly thicker than the top layer. Strongly temperature dependent viscosity leads to a more complex evolution The formation of the bottom layer is followed by the generation of several layers on top. Finally the uppermost layer starts to convect. In general, the multilayer structure collapses into a two layer system. We employed a numerical technique, allowing for a diffusion free treatment of the compositional field. In each case a similar evolution has been observed. This indicates that a temporary formation of layered structures in planetary interiors is a typical phenomenon. Moreover, in this scenario, plate tectonics appears only in later stages of the evolution.

  4. Shear Wave Structure in the Lithosphere of Texas from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Li, A.

    2014-12-01

    Texas contains several distinct tectonic provinces, the Laurentia craton, the Ouachita belt, and the Gulf coastal plain. Although numerous geophysical experiments have been conducted in Texas for petroleum exploration, the lithosphere structure of Texas has not been well studied. We present here the Texas-wide shear wave structure using seismic ambient noise data recorded at 87 stations from the Transportable Array of the USArray between March 2010 and February 2011. Rayleigh wave phase velocities between pairs of stations are obtained by cross-correlating long ambient noise sequences and are used to develop phase velocity maps from 6 to 40 s. These measured phase velocities are used to construct 1-D and 3-D shear wave velocity models, which consist of four crust layers and one upper mantle layer. Shear wave velocity maps reveal a close correlation with major geological features. From the surface to 25 km depth, Positive anomalies coincide with the Laurentia craton, and negative anomalies coincide with the continental margin. The boundary of positive-negative anomaly perfectly matches the Ouachita belt. The Llano Uplift is imaged as the highest velocity through the mid-crust because the igneous rock forming the uplift has faster seismic velocity than the normal continental crust. Similarly, three small high-velocity areas exist beneath the Waco Uplift, Devils River Uplift, and Benton Uplift, even though surface geological traces are absent in these areas. The lowest velocity at the shallow crust appears in northeastern and southeastern Texas separated by the San Marcos Arch, correlating with thick sediment layers. An exceptional low velocity is imaged in southernmost Texas in the lower crust and upper mantle, probably caused by subducted wet oceanic crust before the rifting in the Gulf of Mexico. In the uppermost mantle, positive shear wave anomalies extend southeastward from the Ouachita belt to the Gulf coast, likely evidencing the subducted oceanic lithosphere during the Ouachita orogeny. This observation need be further tested using long period surface wave dispersions from earthquakes, which help to improve model resolution in the upper mantle.

  5. Surface wave tomography applied to the North American upper mantle

    NASA Astrophysics Data System (ADS)

    van der Lee, Suzan; Frederiksen, Andrew

    Tomographic techniques that invert seismic surface waves for 3-D Earth structure differ in their definitions of data and the forward problem as well as in the parameterization of the tomographic model. However, all such techniques have in common that the tomographic inverse problem involves solving a large and mixed-determined set of linear equations. Consequently these inverse problems have multiple solutions and inherently undefinable accuracy. Smoother and rougher tomographic models are found with rougher (confined to great circle path) and smoother (finite-width) sensitivity kernels, respectively. A powerful, well-tested method of surface wave tomography (Partitioned Waveform Inversion) is based on inverting the waveforms of wave trains comprising regional S and surface waves from at least hundreds of seismograms for 3-D variations in S wave velocity. We apply this method to nearly 1400 seismograms recorded by digital broadband seismic stations in North America. The new 3-D S-velocity model, NA04, is consistent with previous findings that are based on separate, overlapping data sets. The merging of US and Canadian data sets, adding Canadian recordings of Mexican earthquakes, and combining fundamental-mode with higher-mode waveforms provides superior resolution, in particular in the US-Canada border region and the deep upper mantle. NA04 shows that 1) the Atlantic upper mantle is seismically faster than the Pacific upper mantle, 2) the uppermost mantle beneath Precambrian North America could be one and a half times as rigid as the upper mantle beneath Meso- and Cenozoic North America, with the upper mantle beneath Paleozoic North America being intermediate in seismic rigidity, 3) upper-mantle structure varies laterally within these geologic-age domains, and 4) the distribution of high-velocity anomalies in the deep upper mantle aligns with lower mantle images of the subducted Farallon and Kula plates and indicate that trailing fragments of these subducted oceanic plates still reside in the transition zone. The thickness of the high-velocity layer beneath Precambrian North America is estimated to be 250±70 km thick. On a smaller scale NA04 shows 1) high-velocities associated with subduction of the Pacific plate beneath the Aleutian arc, 2) the absence of expected high velocities in the upper mantle beneath the Wyoming craton, 3) a V-shaped dent below 150 km in the high-velocity cratonic lithosphere beneath New England, 4) the cratonic lithosphere beneath Precambrian North America being confined southwest of Baffin Bay, west of the Appalachians, north of the Ouachitas, east of the Rocky Mountains, and south of the Arctic Ocean, 5) the cratonic lithosphere beneath the Canadian shield having higher S-velocities than that beneath Precambrian basement that is covered with Phanerozoic sediments, 6) the lowest S velocities are concentrated beneath the Gulf of California, northern Mexico, and the Basin and Range Province.

  6. Seismic Structure of the Oceanic Plate Entering the Central Part of the Japan Trench Obtained from Ocean-Bottom Seismic Data

    NASA Astrophysics Data System (ADS)

    Ohira, A.; Kodaira, S.; Fujie, G.; No, T.; Nakamura, Y.; Miura, S.

    2017-12-01

    In trench-outer rise regions, the normal faults develop due to the bending of the incoming plate, which cause numerous normal-faulting earthquakes and systematic structural variations toward trenches. In addition to the effects on the bend-related normal fault, structural variations which are interpreted to be attributed to pseudofaults, a fracture zone, and petit-spot volcanic activities are observed in the oceanic plate entering the central part of the Japan Trench, off Miyagi. In May-June 2017, to understand detail structural variations and systematic structural changes of the oceanic plate toward the trench, we conducted an active-source seismic survey off Miyagi using R/V Kaimei, a new research vessel of JAMSTEC. Along a 100 km-long seismic profile which is approximately perpendicular to the trench axis, we deployed 40 ocean-bottom seismometers at intervals of 2 km and fired a large airgun array (total volume 10,600 cubic inches) with 100 m shooting intervals. Multi-channel seismic reflection data were also collected along the profile. On OBS records we observed refractions from the sedimentary layer and the oceanic crust (Pg), wide-angle reflections from the crust-mantle boundary (PmP), and refractions from the uppermost mantle (Pn). Pg is typically observed clearly at near offsets (approximately 20 km) but it highly attenuates at far offsets (> 20 km). A triplication of Pg-PmP-Pn with strong amplitudes is observed at ranges from 30 km to 60 km offsets. Pn is typically weak and its apparent velocity is approximately 8 km/sec. High attenuation of Pg and weak Pn may indicate the complex crustal structure related to petit-spot volcanic activities and/or a fracture zone, which are recognized in bathymetry data around the profile.

  7. Anisotropic feature inferred from receiver functions and S-wave splitting in and around the high strain rate zone, central Japan

    NASA Astrophysics Data System (ADS)

    Shiomi, K.; Takeda, T.; Sekiguchi, S.

    2012-12-01

    By the recent dense GPS observation, the high strain rate zone (HSRZ) crossing the central Japan was discovered. In the HSRZ, E-W compressive stress field is observed, and large earthquakes with M>6 are frequently occurred. In this study, we try to reveal depth-dependent anisotropic feature in this region by using teleseismic receiver functions (RFs) and S-wave splitting information. As a target, we select NIED Hi-net stations N.TGWH and N.TSTH, which are located inside and outside of the HSRZ respectively. For RF analysis, we choose M>5.5 teleseismic events from October 2000 to November 2011. Low-pass filters with fc = 1 and 2 Hz are applied to estimate RFs. In the radial RFs, we find clear positive phase arrivals at 4 to 4.5 s in delay time for both stations. Since this time delay corresponds to 35 km-depth velocity discontinuity existence, these phases may be the converted phases generated at the Moho discontinuity. Seeing the back-azimuth paste-ups of the transverse RFs, we can find polarity changes of later phases at 4 to 4.5 s in delay time at the N.TSTH station. This polarity change occurs for direction of N0E (north), N180E (south), and N270E (west). Although we have no data in N90E (east) direction, this feature implies that anisotropic rocks may exist around the Moho. In order to check this feature, we consider 6-layered subsurface model and compare synthetic RFs with the observation. The first three layers are for thick sediments and upper crust including a dipping velocity interface. The fourth, fifth and sixth layer corresponds to the mid crust, lower crust and uppermost mantle, respectively. The best model infers that the mid- and lower-crust beneath the N.TSTH station should have strong anisotropy whose fast axis directs to the N-S, though the fast axis in the uppermost mantle seems to show E-W direction. Moreover, to explain the observation, the symmetric axes in the lower crust and the uppermost mantle should be dipping about 20 degrees. To check anisotropic feature of this station, we also apply S-wave splitting analysis to the local events. In order to avoid contaminations of scattered phases, we select seismic waveforms with incident angle less than 35 degrees. We select good S/N records and apply 2-8 Hz butter-worth type band-pass filter to the waveforms. Then, we estimate the leading S wave polarization direction (LSPD) and delay time of each event. At the N.TSTH station, we can select crustal earthquakes (< 30 km in depth) and the deep earthquakes (> 90 km) which occur along the subducting Pacific slab. For deeper events, LSPD shows two possibilities: ENE-WSW or NNW-SSE. On the other hand, only for shallow events, LSPD indicates NS. This result is consistent with the feature of RFs. We can conclude that the crustal anisotropic feature beneath the station N.TSTH corresponds to the lineament on the ground surface, not to the E-W compressive stress field. The LSPD in the uppermost mantle reflects to the lattice-preferred orientation of anisotropic minerals beneath this station.

  8. Developing a Crustal and Upper Mantle Velocity Model for the Brazilian Northeast

    NASA Astrophysics Data System (ADS)

    Julia, J.; Nascimento, R.

    2013-05-01

    Development of 3D models for the earth's crust and upper mantle is important for accurately predicting travel times for regional phases and to improve seismic event location. The Brazilian Northeast is a tectonically active area within stable South America and displays one of the highest levels of seismicity in Brazil, with earthquake swarms containing events up to mb 5.2. Since 2011, seismic activity is routinely monitored through the Rede Sismográfica do Nordeste (RSisNE), a permanent network supported by the national oil company PETROBRAS and consisting of 15 broadband stations with an average spacing of ~200 km. Accurate event locations are required to correctly characterize and identify seismogenic areas in the region and assess seismic hazard. Yet, no 3D model of crustal thickness and crustal and upper mantle velocity variation exists. The first step in developing such models is to refine crustal thickness and depths to major seismic velocity boundaries in the crust and improve on seismic velocity estimates for the upper mantle and crustal layers. We present recent results in crustal and uppermost mantle structure in NE Brazil that will contribute to the development of a 3D model of velocity variation. Our approach has consisted of: (i) computing receiver functions to obtain point estimates of crustal thickness and Vp/Vs ratio and (ii) jointly inverting receiver functions and surface-wave dispersion velocities from an independent tomography study to obtain S-velocity profiles at each station. This approach has been used at all the broadband stations of the monitoring network plus 15 temporary, short-period stations that reduced the inter-station spacing to ~100 km. We expect our contributions will provide the basis to produce full 3D velocity models for the Brazilian Northeast and help determine accurate locations for seismic events in the region.

  9. From rifting to spreading - seismic structure of the rifted western Mariana extinct arc and the ParceVela back-arc basin

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Kodaira, Shuichi; Fujie, Gou; Takahashi, Narumi

    2017-04-01

    The proto Izu-Ogasawara (Bonin)-Mariana (IBM) Island arc was created when subduction of the Pacific plate began during the Eocene. Today, the Kyushu-Palau Ridge (KPR) at the centre of the Philippine Sea and the western Mariana Ridge (WMR) are considered to be a remnant of the proto IBM Island arc. The KPR and WMR were separated when back-arc spreading began at 30 to 29 Ma in the Shikoku Basin and ParceVela Basin (PVB). Volcanic activity along the arcs diminished at 27 Ma and there is little evidence of volcanic activity between 23-17 Ma. Arc volcanism was reactivated at 15 Ma, when the opening of the Shikoku Basin and PVB ceased. At about 5 Ma the Mariana Basin opened, rifting the WMR from the Mariana arc. Here, we report results from the seismic refraction and wide-angle profile MR101c shot in summer of 2003 by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) aboard the RV KAIYO during the cruise KY03-06, extending from the PVB across the WMR and terminating just to the east of the WMR. Along MR101c 46 OBS recorded shots from an airgun array of 12,000 cubic inches (197 litres); 44 OBS provided excellent P-wave data, including arrivals sampling the crust (Pg), the crust/mantle boundary (PmP), the uppermost mantle (Pn) and a deep reflection (PnP) under the WMR. To yield the seismic velocity structure, we used a joint reflection and refraction tomography, revealing the crustal and mantle P-wave velocity structure, the seismic Moho, and a deep-seated reflector. Distinct features are a 14 km thick crust forming the WMR, a high-velocity lower crust in both transition zones to the ParceVela Basin and Mariana Basin, and a reflector at 24 km depth, which shallows to 18 km in the transition zone to the Mariana Basin, perhaps reflecting rifting-related thinning of the entire lithosphere. The deep-reflector, however, did not occur under the PVB. Upper mantle velocity below the WMR is <7.5 km/s. High velocities of the lower crust of the WMR flanking the adjacent basins mimic the structure found in the Lau Basin - Tonga Arc system, perhaps indicating entrainment of hydrous melts from the adjacent arc governing early seafloor spreading when the spreading centre was at close distant to the volcanic arc. Upper mantle below the PVB shows typical mantle properties, supporting a P-wave velocity of >8 km/s. However, with respect to oceanic crust sampled in the Pacific Basin, PVB crust is with 5 km thinner and seismic velocities in the lower crust are with 6.7 km/s much lower.

  10. Arc Crustal Structure around Mount Rainier Constrained by Receiver Functions and Seismic Noise

    NASA Astrophysics Data System (ADS)

    Obrebski, M. J.; Abers, G. A.; Foster, A. E.

    2013-12-01

    Volcanic arcs along subduction zones are thought to be loci for continental growth. Nevertheless, the amount of material transferred from the mantle to crust and the associated magmatic plumbing are poorly understood. While partial melting of mantle peridotite produces basaltic melt, the average composition of continental crust is andesitic. Several models of magma production, migration and differentiation have been proposed to explain the average crust composition in volcanic arcs. The formation of mafic cumulate and restite during fractional crystallization and partial melting has potential to alter the structure of the crust-mantle interface (Moho). The computed composition and distribution of crust and mantle rocks based on these different models convert into distinctive vertical velocity profiles, which seismic imaging methods can unravel . With a view to put more constraints on magmatic processes in volcanic arc, we analyze the shear wave velocity (Vs) distribution in the crust and uppermost mantle below Mount Rainier, WA, in the Cascadia arc. We resolve the depth of the main velocity contrasts based on converted phases, for which detection in the P coda is facilitated by source normalization or receiver function (RF) analysis. To alleviate the trade-off between depth and velocity intrinsic to RF analysis, we jointly invert RF with frequency-dependent surface wave velocities. We analyze earthquake surface waves to constrain long period dispersion curves (20-100 s). For shorter period (5-20s), we use seismic noise cross-correlograms and Aki's spectral formulation, which allows longer periods for given path. We use a transdimensional Bayesian scheme to explore the model space (shear velocity in each layer, number of interfaces and their respective depths). This approach tends to minimize the number of layers required to fit the observations given their noise level. We apply this tool to a set of broad-band stations from permanent and EarthScope temporary stations, all within 35 km of Mt Rainier. The receiver functions significantly differ from one station to another, indicating short wavelength lateral contrast in the lithospheric structure. Below arc stations offset from Mount Rainier, preliminary models show a rather clear Moho transition around 40km, separating lower crust with 3.6-3.9 km/s shear velocity, from a ~ 20 km thick mantle lid with Vs ~ 4.2 km/s. In contrast, at station PANH located 9 km east of Mount Rainier, the exact location of the Moho is not clear. Shear velocity ranges from 3.3 to 3.9 km/s from the surface down to 55 km depth, with the exception of a fast layer imaged between 25 and 32 km depth with Vs ~ 4.2 km/s. It seems likely that partial melt in the mantle, combined with high-velocity underplated or differentiated lower crust, are acting in various ways to create a complicated structure around the Moho.

  11. S-Wave Velocity Models Under the Saudi Arabian Portable Broadband Deployment: Evidence for Lithospheric Erosion Beneath the Arabian Shield

    NASA Astrophysics Data System (ADS)

    Julià, J.; Ammon, C. J.; Herrmann, R. B.

    2002-12-01

    Models of crustal evolution strongly rely on our knowledge on the mineralogical composition of subsurface rocks, as well as pressure and temperature conditions. Direct sampling of subsurface rocks is often not possible, so that constraints have to be placed from indirect estimates of rock properties. Detailed seismic imaging of subsurface rocks has the potential for providing such constraints, and probe the extent at depth of surface geologic observations. In this study, we provide detailed S-wave velocity profiles for the crust and uppermost mantle beneath the Saudi Arabian Portable Broadband Deployment stations. Seismic velocities have been estimated from the joint inversion of receiver functions and fundamental mode group velocities. Receiver functions are sensitive to S-wave velocity contrasts and vertical travel times, and surface-wave dispersion is sensitive to vertical S-wave velocity averages, so that their combination bridge resolution gaps associated with each individual data set. Our resulting models correlate well with surface geology observations in the Arabian Shield and characterize its terranes at depth: the Asir terrane consists of a 10-km thick upper crust of 3.3~km/s overlying a lower crust with shear-wave velocities of 3.7-3.8 km/s; the Afif terrane is made of a 20-km thick upper crust with average velocity of 3.6 km/s and a lower crust with a shear-velocity of about 3.8~km/s; the Nabitah mobile belt has a gradational, 15-km thick upper crust up to 3.6 km/s overlying a gradational lower crust with velocities up to 4.0 km/s. The crust-mantle transition is sharper in terranes of continental affinity and more gradational beneath terranes of oceanic affinity. In the uppermost mantle, our models suggest a thin lid between up to 50-60 km depth overlying a low velocity zone beneath station TAIF, located close to a region of upwelling mantle material. Temperatures in the lid are estimated to be about 1000 C, which are in good agreement with independent xenolith data, and suggest that the lithosphere could be eroded to a thickness as little as 50~km under this station.

  12. Thermal evolution of flattening slab and formation of wet plume: Insight into intraplate volcanism in East Asia

    NASA Astrophysics Data System (ADS)

    He, L.

    2016-12-01

    Geophysical observations imply the intraplate volcanism in East Asia is related to dehydration of slab stagnating in the transition zone. To better understand the dynamics of such process, a thermochemical mantle convection model is constructed to simulate numerically the thermal evolution of slab and the transportation of water in the process of subduction. Equation of water transfer is explicitly included, and water effects on density and viscosity are considered. Modeling results indicate that behavior of water transport relates closely to the transient thermal state and viscosities both of the slab and the surrounding mantle. Generally, initiation of wet plume is mainly influenced by the viscosity of the wet layer in the uppermost slab, whereas the horizontal distance of water transport and its ascending rate is affected strongly by the viscosity of the big mantle wedge. Whether water can be carried successfully by slab into the mantle transition zone and trigger wet plume at the surface of flattening slab depends on the viscosity contrast between wet layer and surrounding mantle. The complex fluid flow superposed by corner flow and free thermal convection controls the water transport pattern in the upper mantle. Modeling results together with previous modeling infer three stages of water circulation in the big mantle wedge: 1) water is brought into the mantle transition zone by downward subducting slab when water layer viscosity is much higher than the wedge viscosity, otherwise water is released at shallow depth near wedge tip; 2) wet plume generates from surface of warm flattening slab if containing water, which arrives at the lithospheric base and induces melting; and 3) water spreads all over the big mantle wedge, mantle convection within the big mantle wedge becomes more active, leading to upwelling of asthenosphere and erosion of the overriding continental lithosphere. Wet plume from the flattening Pacific Plate can explain the intraplate Cenozoic volcanoes in East Asia.

  13. Seismic imaging of the lithosphere beneath Hudson Bay: Episodic growth of the Laurentian mantle keel

    NASA Astrophysics Data System (ADS)

    Darbyshire, Fiona A.; Eaton, David W.; Bastow, Ian D.

    2013-07-01

    The Hudson Bay basin in northern Canada conceals one of the major collisional zones of the Canadian Shield, the Trans-Hudson Orogen (THO), which marks the Paleoproterozoic collision between the Archean Superior and Western Churchill cratons at ˜1.9-1.8Ga. Improved knowledge of upper mantle structure beneath the region is essential to establish the nature of the THO, specifically whether Himalayan-style plate tectonics operated in Paleoproterozoic times. Detailed seismological constraints on lithospheric architecture are also required to advance our understanding of the mechanism and timing of keel formation. We use surface wave tomography to illuminate new details of the lithospheric architecture of the Hudson Bay region, resolving both seismic wavespeed and azimuthal anisotropy. Phase velocity maps are calculated from fundamental-mode Rayleigh wave dispersion curves, then used to construct a 3D model exploring upper mantle structure to depths of ˜300km. Fast shear wavespeeds suggest a lithospheric thickness varying from ˜180km to almost 280 km beneath the Hudson Bay region. The new study confirms previous inferences that there is no correlation between crustal ages and lithospheric thickness. Patterns of shear wavespeed and azimuthal anisotropy indicate a layered lithosphere. In the uppermost mantle, both the highest velocities and the anisotropic fast directions wrap around the Bay. This structure is likely related to the formation processes of the Paleozoic intracratonic basin. At greater depth (˜70-150km) we resolve two high-wavespeed cores separated by a relatively narrow near-vertical lower-velocity curtain. This internal architecture is suggested to result from the terminal phase of a modern-style plate-tectonic collision between the Archean Superior and Churchill cratons during the Trans-Hudson orogeny, entrapping juvenile Proterozoic material. The lower lithosphere (≥160km depth) has a relatively homogeneous wavespeed structure across the region, with distinct patterns of anisotropy closely resembling the subsurface geometry of the THO. We interpret this basal layer as juvenile or reworked material accreted to the base of the existing cratonic lithosphere during or soon after the Trans-Hudson orogeny. The formation of the Laurentian keel thus likely occurred in multiple phases, with a basal layer developing in post-Archean times, during the THO.

  14. High-Resolution 3D P-Wave Velocity Model in the Trans-European Suture Zone in Poland

    NASA Astrophysics Data System (ADS)

    Polkowski, M.; Grad, M.; Ostaficzuk, S.

    2014-12-01

    Poland is located on conjunction of major European tectonic units - the Precambrian East European Craton and the Paleozoic Platform of Central and Western Europe. This conjunction is known as Trans-European Suture Zone (TESZ). Geological and seismic structure under area of Poland is well studied by over one hundred thousand boreholes, over thirty deep seismic refraction and wide angle reflection profiles and other methods: vertical seismic profiling, magnetic, gravity, magnetotelluric, thermal. Compilation of these studies allows creation of detailed, high-resolution 3D P-wave velocity model for entire Earth's crust in the area of Poland. Model provides detailed six layer sediments (Tertiary and Quaternary, Cretaceous, Jurassic, Triassic, Permian, old Paleozoic), consolidated / crystalline crust and uppermost mantle. Continental suturing is a fundamental part of the plate tectonic cycle, and knowing its detailed structure allows understanding plate tectonic cycle. We present a set of crustal cross sections through the TESZ, illustrating differentiation in the structure between Precambrian and Wariscan Europe. National Science Centre Poland provided financial support for this work by NCN grant DEC- 2011/02/A/ST10/00284.

  15. Waveform inversion for 3-D earth structure using the Direct Solution Method implemented on vector-parallel supercomputer

    NASA Astrophysics Data System (ADS)

    Hara, Tatsuhiko

    2004-08-01

    We implement the Direct Solution Method (DSM) on a vector-parallel supercomputer and show that it is possible to significantly improve its computational efficiency through parallel computing. We apply the parallel DSM calculation to waveform inversion of long period (250-500 s) surface wave data for three-dimensional (3-D) S-wave velocity structure in the upper and uppermost lower mantle. We use a spherical harmonic expansion to represent lateral variation with the maximum angular degree 16. We find significant low velocities under south Pacific hot spots in the transition zone. This is consistent with other seismological studies conducted in the Superplume project, which suggests deep roots of these hot spots. We also perform simultaneous waveform inversion for 3-D S-wave velocity and Q structure. Since resolution for Q is not good, we develop a new technique in which power spectra are used as data for inversion. We find good correlation between long wavelength patterns of Vs and Q in the transition zone such as high Vs and high Q under the western Pacific.

  16. Continental margin subsidence from shallow mantle convection: Example from West Africa

    NASA Astrophysics Data System (ADS)

    Lodhia, Bhavik Harish; Roberts, Gareth G.; Fraser, Alastair J.; Fishwick, Stewart; Goes, Saskia; Jarvis, Jerry

    2018-01-01

    Spatial and temporal evolution of the uppermost convecting mantle plays an important role in determining histories of magmatism, uplift, subsidence, erosion and deposition of sedimentary rock. Tomographic studies and mantle flow models suggest that changes in lithospheric thickness can focus convection and destabilize plates. Geologic observations that constrain the processes responsible for onset and evolution of shallow mantle convection are sparse. We integrate seismic, well, gravity, magmatic and tomographic information to determine the history of Neogene-Recent (<23 Ma) upper mantle convection from the Cape Verde swell to West Africa. Residual ocean-age depths of +2 km and oceanic heat flow anomalies of +16 ± 4 mW m-2 are centered on Cape Verde. Residual depths decrease eastward to zero at the fringe of the Mauritania basin. Backstripped wells and mapped seismic data show that 0.4-0.8 km of water-loaded subsidence occurred in a ∼500 × 500 km region centered on the Mauritania basin during the last 23 Ma. Conversion of shear wave velocities into temperature and simple isostatic calculations indicate that asthenospheric temperatures determine bathymetry from Cape Verde to West Africa. Calculated average excess temperatures beneath Cape Verde are > + 100 °C providing ∼103 m of support. Beneath the Mauritania basin average excess temperatures are < - 100 °C drawing down the lithosphere by ∼102 to 103 m. Up- and downwelling mantle has generated a bathymetric gradient of ∼1/300 at a wavelength of ∼103 km during the last ∼23 Ma. Our results suggest that asthenospheric flow away from upwelling mantle can generate downwelling beneath continental margins.

  17. Hydrogeologic framework of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    USGS Publications Warehouse

    Thamke, Joanna N.; LeCain, Gary D.; Ryter, Derek W.; Sando, Roy; Long, Andrew J.

    2014-01-01

    Regionally, water in the lower Tertiary and Upper Cretaceous aquifer systems flows in a northerly or northeasterly direction from the Powder River structural basin to the Williston structural basin. Groundwater flow in the Williston structural basin generally is easterly or northeasterly. Flow in the uppermost hydrogeologic units generally is more local and controlled by topography where unglaciated in the Williston structural basin than is flow in the glaciated part and in underlying aquifers. Groundwater flow in the Powder River structural basin generally is northerly with local variations greatest in the uppermost aquifers. Groundwater is confined, and flow is regional in the underlying aquifers.

  18. Velocity and Attenuation Structure of the Earth's Inner Core Boundary From Semi-Automatic Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Jin, J.; Song, X.; Sun, D.; Helmberger, D. V.

    2013-12-01

    The structure of the Earth's inner core boundary (ICB) is complex. Hemispherical differences and local variations of velocity and attenuation structures, as well as the ICB topography have been reported in previous studies. We are using an automatic waveform modeling method to improve the resolution of the ICB structures. The full waveforms of triplicated PKP phases at distance ranges from 120 to 165 degrees are used to model the lowermost 200 km of the outer core and the uppermost 600km of the inner core. Given a 1D velocity and attenuation model, synthetic seismograms are generated by Generalized Ray Theory. We are also experimenting 2D synthetic methods (WKM, AXISEM, and 2D FD) for 2D models (in the mantle and the inner core). The source time function is determined by observed seismic data. We use neighborhood algorithm to search for a group of models that minimize the misfit between predictions and observations. Tests on synthetic data show the efficiency of this method in resolving detailed velocity and attenuation structures of the ICB simultaneously. We are analyzing seismic record sections at dense arrays along different paths and will report our modeling and inversion results in the meeting.

  19. Transient rheology of the uppermost mantle beneath the Mojave Desert, California

    USGS Publications Warehouse

    Pollitz, F.F.

    2003-01-01

    Geodetic data indicate that the M7.1 Hector Mine, California, earthquake was followed by a brief period (a few weeks) of rapid deformation preceding a prolonged phase of slower deformation. We find that the signal contained in continuous and campaign global positioning system data for 2.5 years after the earthquake may be explained with a transient rheology. Quantitative modeling of these data with allowance for transient (linear biviscous) rheology in the lower crust and upper mantle demonstrates that transient rheology in the upper mantle is dominant, its material properties being typified by two characteristic relaxation times ???0.07 and ???2 years. The inferred mantle rheology is a Jeffreys solid in which the transient and steady-state shear moduli are equal. Consideration of a simpler viscoelastic model with a linear univiscous rheology (2 fewer parameters than a biviscous model) shows that it consistently underpredicts the amplitude of the first ???3 months signal, and allowance for a biviscous rheology is significant at the 99.0% confidence level. Another alternative model - deep postseismic afterslip beneath the coseismic rupture - predicts a vertical velocity pattern opposite to the observed pattern at all time periods considered. Despite its plausibility, the advocated biviscous rheology model is non-unique and should be regarded as a viable alternative to the non-linear mantle rheology model for governing postseismic flow beneath the Mojave Desert. Published by Elsevier B.V.

  20. Modeling Seismic Anisotropy From the Top to the Bottom of the Mantle

    NASA Astrophysics Data System (ADS)

    Ribe, N. M.; Castelnau, O.

    2011-12-01

    Understanding the origin of seismic anisotropy in the mantle requires quantifying the link between the strain history experienced by a rock and the evolving orientation distribution of its constituent crystals (`crystal preferred orientation' or CPO). The fundamental quantity of interest in any model of CPO is the vector spin ω(g, d) of the crystallographic axes of each crystal, which depends on the crystal's orientation g and on the velocity gradient tensor d of the aggregate-scale deformation. Existing methods for determining ω(g, d) rely on unwieldy discrete representations of the crystal orientation distribution in terms of 103-104 individual grains. We propose a new method based on (1) an analytical expression for ω(g, d) and (2) a representation of CPO in terms of a small number (N≤4) of continuous functions of g (`structured basis functions' or SBFs) each of which satisfies the hyperbolic partial differential equation governing the evolution of CPO when only a single slip system is active. The SBFs are then combined via an appropriate weighting scheme to represent a realistic CPO produced by the simultaneous activity of several slip systems.The approach yields a set of N coupled ordinary differential equations for the temporal evolution of the coefficients of the SBFs, which can be solved numerically for an arbitrary strain history at a computational cost ≈10-6 that of homogenization methods such as VPSC. Example calculations will be shown for model mineralogies and strain histories appropriate for the uppermost and lowermost mantles.

  1. A Comprehensive View Of Taiwan Orogeny From TAIGER Perspective

    NASA Astrophysics Data System (ADS)

    Wu, F. T.; Kuochen, H.; McIntosh, K. D.; Okaya, D. A.; Lavier, L. L.

    2012-12-01

    Arc-continent collision is one of the basic mechanisms for building continental masses. Taiwan is young and very active. Based on known geology a multi-disciplinary geophysical experiment was designed to image the orogeny in action. Logistics for R/V Langseth, OBS and PASSCAL instruments was complex; nevertheless the field works were completed within the project period. The resulting dataset allows us to map the structures of the shallow crust and the upper mantle. The amount of data gathered is large; some key observations and current interpretations are: (I) Observation: Crustal roots on both Eurasian and Philippine Sea plates, with a high velocity rise in between. Interpretation: Deformation throughout lithosphere on both sides of the initial suture; shortening of lithosphere near plate boundary produce high velocity rise. (II) Observation: Upper mantle high velocity anomaly coincides with a steep east-dippping Wadati-Benioff seismicity in southern Taiwan; the anomaly continues part of the way to central Taiwan but it is aseismic; under northern Taiwan the anomaly is very weak and disorganized. Interpretation: Active subduction in the south (up to 22.8°N) and may be eclogitization in the lower crust and delamination in central Taiwan. (III) Observation: Low Vp/Vs, low resistivity in the core of Central Range. Interp: dry, felsic rocks at relatively high temper (up to 750OC). (IV) Obs: Strong SKS splitting (~2 sec) with trend-parallel fast axis. Interp: Shearing throughout uppermost mantle. Preliminary 2-D geodynamic modeling produces the primary observed features from simple initial model of an arc impinging on continental margin.

  2. Next-generation seismic experiments: wide-angle, multi-azimuth, three-dimensional, full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Bell, Rebecca; Morgan, Joanna; Warner, Michael

    2016-04-01

    There are many outstanding plate-tectonic scale questions that require us to know information about sub-surface physical properties, for example ascertaining the geometry and location of magma chambers and estimating the effective stress along plate boundary faults. These important scientific targets are often too deep, impractical and expensive for extensive academic drilling. Full-waveform inversion (FWI) is an advanced seismic imaging technique that has recently become feasible in three dimensions, and has been widely adopted by the oil and gas industry to image reservoir-scale targets at shallow-to-moderate depths. In this presentation we explore the potential for 3-D FWI, when combined with appropriate marine seismic acquisition, to recover high-resolution high-fidelity P-wave velocity models for sub-sedimentary targets within the crystalline crust and uppermost mantle. Using existing geological and geophysical models, we construct P-wave velocity models over three potential sub-sedimentary targets: the Soufrière Hills Volcano on Montserrat and its associated crustal magmatic system, the downgoing oceanic plate beneath the Nankai subduction margin, and the oceanic crust-uppermost mantle beneath the East Pacific Rise mid-ocean ridge. We use these models to generate realistic multi-azimuth 3-D synthetic seismic data, and attempt to invert these data to recover the original models. We explore the resolution and accuracy, sensitivity to noise and acquisition geometry, ability to invert elastic data using acoustic inversion codes, and the trade-off between low frequencies and starting velocity model accuracy. We will show that FWI applied to multi-azimuth, refracted, wide-angle, low-frequency data can resolve features in the deep crust and uppermost mantle on scales that are significantly better than can be achieved by any other geophysical technique, and that these results can be obtained using relatively small numbers (60-90) of ocean-bottom receivers combined with large numbers of air-gun shots. We demonstrate that multi-azimuth 3-D FWI is robust in the presence of noise, that acoustic FWI can invert elastic data successfully, and that the typical errors to be expected in starting models derived using travel times will not be problematic for FWI given appropriately designed acquisition. In this presentation we will also discuss a recent field-example of the use of FWI to image the Endeavour spreading centre in the northeastern Pacific. FWI is a rapidly maturing technology; its transfer from the petroleum sector to tackle a broader range of targets now appears entirely achievable.

  3. Imaging the Western Iberia Seismic Structure from the Crust to the Upper Mantle from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Silveira, Graça; Kiselev, Sergey; Stutzmann, Eleonore; Schimmel, Martin; Haned, Abderrahmane; Dias, Nuno; Morais, Iolanda; Custódio, Susana

    2015-04-01

    Ambient Noise Tomography (ANT) is now widely used to image the subsurface seismic structure, with a resolution mainly dependent on the seismic network coverage. Most of these studies are limited to Rayleigh waves for periods shorter than 40/45 s and, as a consequence, they can image only the crust or, at most, the uppermost mantle. Recently, some studies successfully showed that this analysis could be extended to longer periods, thus allowing a deeper probing. In this work we present the combination of two complementary datasets. The first was obtained from the analysis of ambient noise in the period range 5-50 sec, for Western Iberia, using a dense temporary seismic network that operated between 2010 and 2012. The second one was computed for a global study, in the period range 30-250 sec, from analysis of 150 stations of the global networks GEOSCOPE and GSN. In both datasets, the Empirical Green Functions are computed by phase cross-correlation. The ambient noise phase cross-correlations are stacked using the time-frequency domain phase weighted stack (Schimmel et al. 2011, Geoph. J. Int., 184, 494-506). A bootstrap approach is used to measure the group velocities between pairs of stations and to estimate the corresponding error. We observed a good agreement between the dispersion measurements on both short period and long period datasets for most of the grid nodes. They are then inverted to obtain the 3D S-wave model from the crust to the upper mantle, using a bayesian approach. A simulated annealing method is applied, in which the number of splines that describes the model is adapted within the inversion. We compare the S-wave velocity model at some selected profiles with the S-wave velocity models gathered from Ps and Sp receiver functions joint inversion. Both results, issued from ambient noise tomography and body wave's analysis for the crust and upper mantle are consistent. This work is supported by project AQUAREL (PTDC/CTEGIX/116819/2010) and is a contribution to project QuakeLoc-PT (PTDC/GEO-FIQ/3522/2012).

  4. Thermal, Petrologic, and Structural Conditions for the September 2017 M=8.2 and M=7.1 intra-slab earthquakes in Mexico

    NASA Astrophysics Data System (ADS)

    Wang, K.; Gao, X.; Rogers, G. C.

    2017-12-01

    The M=8.2 Tehuantepec and M=7.1 Puebla earthquakes of September 2017 are similar to the 1999 Oaxaca (M=7.5, Mexico), 2001 Geiyo (M=6.7, Nankai), and 2001 Nisqually (M=6.8, Cascadia) earthquakes. All these events are normal-faulting events in the 40-60 km depth range within young and warm subducting slabs. They all ruptured the mantle part of the slab. To investigate the thermal and petrologic conditions of these earthquakes, we have developed finite element thermal models in the areas of the two September events. Along the northern transect for the M=7.1 event, where the age of the incoming plate is 13.5 Ma, the slab geometry is well constrained by previous receiver function and earthquake location studies. Two available hypocenter locations of the main shock fall within or at the lower boundary of our model-predicted zone of serpentine (antigorite) stability in the slab mantle. Along the southern transect for the M=8.2 event, where the age of the incoming plate is 25.5 Ma, the slab geometry is less well known, and we have considered two published geometrical models. Several available hypocenter locations of the main shock are within or below the serpentine stability zone, depending on which slab geometry is assumed. Most of the rupture zone is shallower than the hypocenter. The model results support the following hypothesis. The two September earthquakes probably ruptured pre-existing normal faults that extended into the oceanic mantle and had been locally hydrated prior to and during the beginning phase of subduction. The earthquakes may have initiated at the dehydration boundary of antigorite or chlorite, facilitated by elevated pore fluid pressure (dehydration embrittlement). Most of the rupture was in the uppermost mantle part of the slab but may have involved parts of the slab crust. That large intra-slab earthquakes of this type tend to involve mantle rupture has been explained as due to the structural condition caused by warm-slab metamorphism (Wang et al., 2004): The upper crust of the slab is too fragmented due to metamorphic densification, but hydrated deep-cutting faults can produce large earthquakes in the more coherent mantle and lower crust. Wang, K., J. F. Cassidy, I. Wada, and A. J. Smith (2004), Effects of metamorphic crustal densification on earthquake size in warm slabs, Geophys. Res. Lett., 31, L01605, doi:10.1029/2003GL018644.

  5. On gravity from SST, geoid from Seasat, and plate age and fracture zones in the Pacific

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.; Marsh, J. G.; Williamson, R. G. (Principal Investigator)

    1984-01-01

    A composite map produced by combining 90 passes of SST data show good agreement with conventional GEM models. The SEASAT altimeter data were deduced and found to agree with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Comparison with regional bathymetric data shows a remarkedly close correlation with plate age. Most anomalies in the east half of the Pacific could be partly caused by regional differences in plate age. The amplitude of these geoid or gravity anomalies caused by age differences should decrease with absolute plate age, and large anomalies (approximately 3 m) over old, smooth sea floor may indicate a further deeper source within or perhaps below the lithosphere. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantle without complete thermal equilibration was considered. A plume emanating from a buoyant layer 100 km thick and 10,000 times less viscous than the surrounding mantle should have a diameter of about 400 km and must ascend at about 10 cm/yr to arrive still anomalously hot in the uppermost mantle.

  6. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  7. Noble gas systematics of the Skaergaard intrusion

    NASA Astrophysics Data System (ADS)

    Horton, F.; Farley, K. A.; Taylor, H. P.

    2017-12-01

    The noble gas isotopic compositions of olivines from the Skaergaard layered mafic intrusion in Greenland reveal that magmas readily exchange noble gases with their environment after emplacement. Although Skaergaard magmas are thought to have derived from the upper mantle, all of the olivine separates we analyzed have 3He/4He ratios less than that of the upper mantle ( 8 Ra, where Ra = 3He/4He of the atmosphere, 1.39 x 10-6). This suggests that crustal and/or atmospheric noble gases have contaminated all Skaergaard magmas to some extent. We obtained the highest 3He/4He ratios ( 2 Ra) from olivines found in the lowermost exposed layers of the intrusion away from the margins. Excess radiogenic 4He (indicated by Ra<1) along the margin of the intrusion indicates that noble gases from the Archean host-rock were incorporated into the cooling magma chamber, probably via magmatic assimilation. Noble gases in olivines from the upper portions of the intrusion have atmospheric isotopic compositions, but higher relative helium abundances than the atmosphere. We suggest that post-crystallization hydrothermal circulation introduced atmosphere-derived noble gases into uppermost layers of the intrusion. Such high temperature exchanges of volatiles between plutons and their immediate surroundings may help explain why so few mantle-derived rocks retain mantle-like noble gas signatures.

  8. Southern Africa seismic structure and source studies

    NASA Astrophysics Data System (ADS)

    Zhao, Ming

    1998-09-01

    The upper mantle seismic velocity structure beneath southern Africa is investigated using travel time and waveform data. Waveform and travel time data used in this study come mainly from a large mine tremor in South Africa (msb{b} 5.6) recorded on stations of the southern Africa and the Tanzania Broadband Seismic Experiment. Auxiliary data along similar profiles are obtained from other moderate events within eastern and southern Africa. The waveform data from the large tremor show upper mantle triplications for both the 400 and 670-km discontinuities between 18sp° and 27sp° distance. The most notable feature of the data is a large, late P phase that propagates to at least 27sp°. This phase is striking because of its late arrival time (as much as 15 seconds after direct P at 27sp°) and high amplitude relative to the first arrival. Travel times from all available stations are used to invert for the P wave velocity structure down to 800 km depth and S wave velocity structure down to 200 km using the Wiechert-Herglotz (W-H) inversion technique. The P wave velocities from the uppermost mantle down to 300 km are as much as 3% higher than the global average and are slightly slower than the global average between 300 and 400 km depths. The velocity gradient between 300 and 400 km is 0.0015 1/s. The S wave travel time data yield fast velocities above 200-km depth. The S wave velocity structure appears inconsistent with the P wave structure model indicating varying Poisson's ratio in the upper mantle. Little evidence is found for a pronounced upper mantle low velocity zone. Both sharp and gradual-change 400-km discontinuities are favored by the waveform data. The 670-km discontinuity appears as a gradual-change zone. The source mechanism of the mb 5.6 mining tremor itself is important for seismic discrimination and insight into mining tremor sources. Source parameters for this event as well as some other large mining tremors from the South African gold mines are studied using detailed waveform modeling. All these events (mb > 4.8) indicate normal-faulting slip with P wave nodal planes striking approximately NS. Tectonic stress is essential to control the mining seismicity of large magnitude. Mining geometry also plays an important role in influencing the seismicity. The crustal velocity structure at the study area is investigated in detail using teleseismic receiver function and regional surface wave dispersion data. The results indicate some lateral variation in the shallow crust. The thickness of the crust beneath the GSN station BOSA is 33-36 km. Gradually increasing velocities with depth in the crust are preferred. A thin layer with rather low velocity at the top of the crust beneath BOSA is important for generating the regional waveforms. The crust beneath LBTB is a few kilometers thicker than at BOSA and the Moho there is likely to be dipping. (Abstract shortened by UMI.)

  9. Crust And Upper Mantle Structure Of The Bengal Basin And Bay Of Bengal From Surface Wave Group Velocity Dispersion Studies

    NASA Astrophysics Data System (ADS)

    Dhali, K. K.; Majhi, S.; Mitra, S.; Priestley, K.

    2007-12-01

    Fundamental mode Rayleigh and Love wave group velocity dispersion for paths crossing the Bay of Bengal have been calculated for earthquakes in the Indo-Burman arc and the Andaman-Sumatra subduction zone recorded at seismographs in the eastern part of Peninsula India and Sri Lanka. The ray-path coverage in this study provides a better spatial sampling than any previous studies of the region. The individual dispersion curves range from 12 to 70~s and have been clustered in four spatial groups to form average dispersion curves representative of the Bengal basin, northern, central and southern Bay of Bengal. These average dispersion curves for Rayleigh and Love waves are jointly inverted to obtain shear wave velocity structure of the lithosphere. The higher frequencies/shorter periods (12--30~s) used in the inversion constrains the sediment shear wave speed and thickness while the longer periods provide information of the upper mantle structure. The results show a remarkable increase in the sediments thickness along the Bengal Fan from south to north ranging from 6 km, around the southern tip of India, to 23 km beneath the Bengal basin. The shear wave velocity models reveal a sediment saturation beyond 7-10 km of burial leading to metamorphism and eventual increase in velocity to continent like material with depth. The average crustal thickness (loose sediments overlying consolidated sediments followed by metasediments and oceanic crust) is anomalously continental (~20-36 km) rather than being simply oceanic crust overlain by sediments. The average shear wave velocity is about 3.5-3.8 km/s which is more representative of continental crusts. Finally the low velocity zone in the uppermost mantle is possibly an effect of the expected increase in temperature due to blanketing of the fan sediments over the Bay of Bengal crust. The misfits to parts of the dispersion data using a 1D isotropic model provides an indication of the presence of polarization anisotropy in the lithosphere and sets a good starting point for modeling the anisotropic structure.

  10. Crustal structure of the Sunda-Banda arc transition: results from marine geophysical investigations offshore eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Planert, L.; Shulgin, A.; Kopp, H.; Lueschen, E.; Mueller, C.; Flueh, E.; Djajadihardja, Y.; Engels, M.

    2009-04-01

    The Sunda-Banda arc transition, the easternmost portion of the Indonesian convergent margin, presents a probably unique natural laboratory to study lower plate variability and related upper plate deformation in the so-called ‘subduction factory' for a deeper understanding of forearc evolution. In neighboring margin segments, we can observe strong changes of the incoming plate (transition from an oceanic to a continental lower plate, increasing plate age to the East, presence/absence of an oceanic plateau, variability in plate roughness) as well as a wide range of corresponding forearc structures, including large sedimentary basins and an accretionary prism/outer arc high of variable size and shape. During RV Sonne cruise SO190 in 2006 (SINDBAD: Seismic and Geoacoustic Investigations along the Sunda-Banda Arc Transition), we acquired a combination of seismic wide-angle OBH/OBS refraction, multichannel streamer and gravity data in order to study the seismic velocity structure of the subducting crust and the overriding island arc along a number of trench normal corridors located between 113°E and 121°E. Additionally, a number of trench parallel profiles were conducted which mainly focus on the internal structure of the large sedimentary basins and which were also intended for further clarifying the type of underlying forearc crust and mantle respectively. We used a tomographic approach for refracted and reflected phases to obtain seismic velocity models which again were used for prestack depth-migration of the MCS data. In turn, we incorporated the highly resolved sedimentary portions as a priori structure in our tomography. The results show the seismic velocity structure of the incoming plate, starting 100 km seaward of the trench, and the adjoining forearc down to depths of 20-28 km, i.e. well into the upper mantle, and at the same time fit the gravity data very well, using simple velocity-density relations. In the Argo abyssal plain, the models show 8.0-8.5 km thick oceanic crust. The velocities in the crust and uppermost mantle are reduced within distances of ~50 km seaward of the trench, which coincides with the onset of normal faulting on the incoming oceanic plate. Anomalously low mantle velocities of 7.5 km/s directly beneath the Moho are possibly due to the intrusion of seawater and subsequent serpentinisation of mantle peridotite. Landward of the trench in the outer arc high, velocities do not exceed 5.5 km/s down to the top of the subducting slab, which can be traced over ~70 km length beneath the forearc down to ~13 km depth. The plate boundary is of irregular shape, obviously imprinted by the complex deformation of the oceanic basement prior to subduction, which is further amplified as response to thrusting/downbending of the dissected oceanic blocks. Offshore Lombok island, our models reveal the geometry of the Lombok basin as well as the forearc Moho in ~16 km depth. Reduced upper mantle velocities suggest a hydrated shallow mantle wedge for this corridor. Further east offshore Sumba island, where the Java trench terminates and the transition to the collisional regime further east occurs, our models show a subducting oceanic plate of similar thickness and structure. But different to the situation offshore Lombok, we find no evidence for a shallow mantle wedge beneath the forearc; crustal-type velocities are found down to depths of ~20 km. The different forearc regime is most likely related to the collision with the Sumba block. Our results give a detailed view into the complex structure in both the deeper and shallower portions of this convergent margin.

  11. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies

    NASA Astrophysics Data System (ADS)

    Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed

    2017-04-01

    Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary layer on top of the silicate mantle. Such a contrasted dynamics in the aqueous-ice VI-ice VII system would greatly influence the migration of nutrients towards the uppermost liquid ocean, thus controlling the habitability of moderate to large H2O-rich planetary bodies in our solar system (e.g., Ganymede, Titan, Calisto) and beyond.

  12. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition

    USGS Publications Warehouse

    Hyndman, Roy D.; McCrory, Patricia A.; Wech, Aaron; Kao, Han; Ague, Jay

    2015-01-01

    In this study we first summarize the constraints that on the Cascadia subduction thrust, there is a 70 km gap downdip between the megathrust seismogenic zone and the Episodic Tremor and Slip (ETS) that lies further landward; there is not a continuous transition from unstable to conditionally stable sliding. Seismic rupture occurs mainly offshore for this hot subduction zone. ETS lies onshore. We then suggest what does control the downdip position of ETS. We conclude that fluids from dehydration of the downgoing plate, focused to rise above the fore-arc mantle corner, are responsible for ETS. There is a remarkable correspondence between the position of ETS and this corner along the whole margin. Hydrated mineral assemblages in the subducting oceanic crust and uppermost mantle are dehydrated with downdip increasing temperature, and seismic tomography data indicate that these fluids have strongly serpentinized the overlying fore-arc mantle. Laboratory data show that such fore-arc mantle serpentinite has low permeability and likely blocks vertical expulsion and restricts flow updip within the underlying permeable oceanic crust and subduction shear zone. At the fore-arc mantle corner these fluids are released upward into the more permeable overlying fore-arc crust. An indication of this fluid flux comes from low Poisson's Ratios (and Vp/Vs) found above the corner that may be explained by a concentration of quartz which has exceptionally low Poisson's Ratio. The rising fluids should be silica saturated and precipitate quartz with decreasing temperature and pressure as they rise above the corner.

  13. An Anisotropic Contrast in the Lithosphere Across the Central San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Jiang, Chengxin; Schmandt, Brandon; Clayton, Robert W.

    2018-05-01

    Seismic anisotropy of the lithosphere and asthenosphere was investigated with a dense broadband seismic transect nearly orthogonal to the central San Andreas fault (SAF). A contrast in SK(K)S splitting was found across the SAF, with a clockwise rotation of the fast orientation 26° closer to the strike of the SAF and greater delay times for stations located within 35 km to the east. Dense seismograph spacing requires heterogeneous anisotropy east of the SAF in the uppermost mantle or crust. Based on existing station coverage, such a contrast in splitting orientations across the SAF may be unusual along strike and its location coincides with the high-velocity Isabella anomaly in the upper mantle. If the Isabella anomaly is a fossil slab fragment translating with the Pacific plate, the anomalous splitting east of the SAF could indicate a zone of margin-parallel shear beneath the western edge of North America.

  14. Two lithospheric profiles across southern California derived from gravity and seismic data

    USGS Publications Warehouse

    Romanyuk, T.; Mooney, W.D.; Detweiler, S.

    2007-01-01

    We present two detailed 2-D density transects for the crust and uppermost mantle across southern California using a linear gravity inversion technique. This technique parameterizes the crust and upper mantle as a set of blocks that are based on published geologic and seismic models. Each block can have a range of densities that are constrained where possible by borehole measurements, seismic velocities, and petrologic data. To further constrain the models, it is assumed that the lithosphere is close to isostatic equilibrium at both ends of the profiles, in the deep ocean and east of the Mojave Desert. We calculate the lithostatic pressure variations field for the whole cross section to rule out the geophysically insignificant solutions. In the linear equation, ?? = a + bV (V, seismic P-wave velocity; ??, density), which approximates the mantle density-velocity (??-V) relationship, different coefficients for b were evaluated. Lower coefficients (b 0.3) imply that other effects, such as composition and/or metamorphic changes, play an important role in the mantle. Density models were constructed with the coefficient b ranging from 0 to 0.6. The results indicate that a high b value in the mantle ??-V relationship is associated with less dense crust in the Mojave block and more dense crust in the Catalina schist block. In the less dense Mojave block, the average density of the whole crust is ???2.75 g/cm3, while that of the lower crust is ???2.72 g/cm3. These densities imply a high silica content in the crust, and a minor fraction of basic rock in the lower crust, or perhaps the absence of a basaltic layer altogether. By comparison, the average density of a typical continental stable platform is ???2.85 g/cm3. Models with higher b coefficients (0.5-0.6) are characterized by a large isostatic imbalance. On the other hand, lower b values (0-0.2) require a consolidated whole crust density in the Mojave Desert of ???2.78 g/cm3, and a lower crust density of ???2.89 g/cm3 with mostly basaltic composition. This contradicts the observed, lower Vp/Vs-ratio in the Mojave Desert associated with mostly felsic and low-density crust. Models with lower b coefficients (0.1-0.2) are characterized by an absence of local Airy compensation beneath the San Gabriel Mountains at the LARSE-1 profile. These, and other non-gravity arguments, suggest optimal solutions to the mantle ??-V relation of b ??? 0.2-0.4. This, in turn, means that both thermal and petrological effects occur inside the downwelling of the uppermost mantle high velocity body located beneath the Transverse Ranges. During the development of this mantle downwelling, the basaltic layer of the Mojave block was likely eroded and pulled down into the high velocity body. Those basaltic fragments may have been transformed into eclogites, and this metamorphic change implies a higher b-coefficient density-velocity relationship than would be expected for a purely thermal process.

  15. S-wave velocity down to the uppermost mantle below the East European Craton in northern Poland from the inversion of ambient noise recorded at "13 BB star" seismic array

    NASA Astrophysics Data System (ADS)

    Lepore, S.; Polkowski, M.; Grad, M.

    2016-12-01

    The East European Craton (EEC) occupies the northeastern half of Europe. In the most external sedimentary crust (SC), the P-wave velocity (Vp) raises from 2.5 to 4.3 km/s. In the underlying upper crust (UC) the Vp ranges within 6.1-6.4 km/s, 6.5-6.8 km/s in the middle crust (MC), and 6.9-7.2 km/s in the lower crust (LC). The Moho, whose depth is 40-45 km, shows a relatively flat topography, which is advantageous when studying the deep velocity structure. The Vp in the uppermost mantle (UM) down to 100 km is 8.3 km/s. Seismic experiments conducted in Poland along refraction profiles provided significant information about the structure in any layer, but not sufficient for the study of the S-wave velocity (Vs). Thus, Vs and Vp/Vs profiles down to 100 m were evaluated by the Monte Carlo inversion of surface wave velocity dispersion (SWVD) curves retrieved from the crosscorrelation (CC) of ambient noise recorded in northern Poland. The records were carried out during 2014 at the "13 BB star" array equipped with thirteen broadband stations installed during 2013 and scheduled to operate until the end of 2016. Those stations, covering an area of 120 km in diameter, are arranged in a circular, regular geometry, allowing a thorough study of the deep structures. The extraction of the SWVD was performed in the 0.1-1 Hz and 0.02-0.1 Hz frequency bands, to have a good resolution within 0-20 km and 20-100 km. The dispersion curves show different modes because remarkable changes of surface wave attenuation are present in the different layers. All the modes of the SWVD curves were together inverted assuming the characteristics and the Vp values in every layer as known. The Vs [km/s] ranges within 1.0-2.4 in SC, 3.1-3.6 in UC, 3.2-4.3 in MC, 3.2-4.3 in LC, and 4.5-5.1 in UM; Vp/Vs within 1.8-2.0 in SC, 1.7-2.0 in UC, 1.5-2.1 in MC, 1.8-2.1 in LC, and 1.6-1.8 in UM. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  16. Crustal and uppermost mantle structure in the Middle East: assessing constraints provided by jointly modelling Ps and Sp receiver functions and Rayleigh wave group velocity dispersion curves

    NASA Astrophysics Data System (ADS)

    Agrawal, Mohit; Pulliam, Jay; Sen, Mrinal K.; Dutta, Utpal; Pasyanos, Michael E.; Mellors, Robert

    2015-05-01

    Seismic velocity models are found, along with uncertainty estimates, for 11 sites in the Middle East by jointly modelling Ps and Sp receiver functions and surface (Rayleigh) wave group velocity dispersion. The approach performs a search for models that satisfy goodness-of-fit criteria guided by a variant of simulated annealing and uses statistical tools to assess these products of searches. These tools, a parameter correlation matrix and marginal posterior probability density (PPD) function, allow us to evaluate quantitatively the constraints that each data type imposes on model parameters and to identify portions of each model that are well-constrained relative to other portions. This joint modelling technique, which we call `multi-objective optimization for seismology', does not require a good starting solution, although such a model can be incorporated easily, if available, and can reduce the computation time significantly. Applying the process described above to broadband seismic data reveals that crustal thickness varies from 15 km beneath Djibouti (station ATD) to 45 km beneath Saudi Arabia (station RAYN). A pronounced low velocity zone for both Vp and Vs is present at a depth of ˜12 km beneath station KIV located in northern part of greater Caucasus, which may be due to the presence of a relatively young volcano. Similarly, we also noticed a 6-km-thick low velocity zone for Vp beginning at 20 km depth beneath seismic station AGIN, on the Anatolian plateau, while positive velocity gradients prevail elsewhere in eastern Turkey. Beneath station CSS, located in Cyprus, an anomalously slow layer is found in the uppermost mantle, which may indicate the presence of altered lithospheric material. Crustal P- and S-wave velocities beneath station D2, located in the northeastern portion of central Zagros, range between 5.2-6.2 and 3.2-3.8 km s-1, respectively. In Oman, we find a Moho depth of 34.0 ± 1.0 km and 25.0 ± 1.0 to 30.0 ± 1.0 km beneath stations S02 and S04, respectively.

  17. Pockets, conduits, channels, and plumes: links to volcanism and orogeny in the rollback dominated western Mediterranean

    NASA Astrophysics Data System (ADS)

    Miller, Meghan S.; Sun, Daoyuan; O'Driscoll, Leland; Becker, Thorsten W.; Holt, Adam; Diaz, Jordi; Thomas, Christine

    2015-04-01

    Detailed mantle and lithospheric structure from the Canary Islands to Iberia have been imaged with data from recent temporary deployments and select permanent stations from over 300 broadband seismometers. The stations extended across Morocco and Spain as part of the PICASSO, IberArray, and Morocco-Münster experiments. We present results from S receiver functions (SRF), shear wave splitting, waveform modeling, and geodynamic models that help constrain the tectonic evolution of the westernmost Mediterranean, including orogenesis of the Atlas Mountains and occurrence of localized alkaline volcanism. Our receiver function images, in agreement with previous geophysical modeling, show that the lithosphere is thin (~65 km) beneath the Atlas, but thickens (~100 km) over a very short length scale at the flanks of the mountains. We find that these dramatic changes in lithospheric thickness also correspond to dramatic decreases in delay times inferred from S and SKS splitting observations of seismic anisotropy. Pockets and conduits of low seismic velocity material below the lithosphere extend along much of the Atlas to Southern Spain and correlate with the locations of Pliocene-Quaternary magmatism. Waveform analysis from the USC linear seismic array across the Atlas Mountains constrains the position, shape, and physical characteristics of one localized, low velocity conduit that extends from the uppermost mantle (~200 km depth) up to the volcanoes in the Middle Atlas. The shape, position and temperature of these seismically imaged low velocity anomalies, topography of the base of the lithosphere, morphology of the subducted slab beneath the Alboran Sea, position of the West African Craton and correlation with mantle flow inferred from shear wave splitting suggest that the unusually high topography of the Atlas Mountains and isolated recent volcanics are due to active mantle support that may be from material channeled from the Canary Island plume.

  18. A Preliminary Teleseismic Investigation of the Crust and Mantle Lithosphere Obtained from BISN in the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Schaeffer, A. J.; Snyder, D. B.; Cairns, S.; Elliot, B.; Audet, P.; Esteve, C.; Murray-Bergquist, L.; Falck, H.

    2016-12-01

    The tectonic evolution of the Beaufort Sea continental margin has contributed to the maturation of these rocks into a major petroleum reservoir. Recent shallow offshore seismic reflection data suggest that Banks Island represents thin crust along a rifted margin established during the opening of the Arctic Ocean. In this case, rifting of the margin caused Banks Island to subside and accumulate sediments rich in petroleum source material. The cooling history and further subsidence of these sediments is important for understanding the thermal maturation of petroleum products. Recently published surface-wave velocity models of North America indicate seismic velocities at 100-150 km depths similar to those beneath Canada's diamond mines in the central Slave craton north of Yellowknife. These results imply that Banks Island is part of the Canadian Shield and that any kimberlites found thereon might contain diamonds. However, the fast velocities are inconsistent with this being a tectonically disrupted and thinned lithosphere along the Arctic margin of the Canada Basin. The problem is therefore to reconcile mantle structure typical of the Canadian Shield with crust typical of a rifted passive margin. Possibly related seismicity beneath the Mackenize River Delta and offshore in the Beaufort Sea has been observed for decades but its origin remains unknown, although has been suggested as due to incipient subduction of oceanic lithosphere beneath the North American craton. Resolving these questions requires high-resolution 3-D seismic models obtained from an array of broadband seismograph stations. Here we present preliminary results on the structure of the crust and uppermost mantle underlying the western Canadian Arctic. These results are generated using new data from the Banks Island Seismograph Network (BISN), three stations installed over the summer of 2014 and 2015; augmented with several USArray Transportable Array stations and older POLARIS and CNSN stations on neighbouring Arctic Islands.

  19. Rayleigh and S wave tomography constraints on subduction termination and lithospheric foundering in central California

    USGS Publications Warehouse

    Jiang, Chengxin; Schmandt, Brandon; Hansen, Steven M.; Dougherty, Sara L.; Clayton, Robert W.; Farrell, Jamie; Lin, Fan-Chi

    2018-01-01

    The crust and upper mantle structure of central California have been modified by subduction termination, growth of the San Andreas plate boundary fault system, and small-scale upper mantle convection since the early Miocene. Here we investigate the contributions of these processes to the creation of the Isabella Anomaly, which is a high seismic velocity volume in the upper mantle. There are two types of hypotheses for its origin. One is that it is the foundered mafic lower crust and mantle lithosphere of the southern Sierra Nevada batholith. The alternative suggests that it is a fossil slab connected to the Monterey microplate. A dense broadband seismic transect was deployed from the coast to the western Sierra Nevada to fill in the least sampled areas above the Isabella Anomaly, and regional-scale Rayleigh and S wave tomography are used to evaluate the two hypotheses. New shear velocity (Vs) tomography images a high-velocity anomaly beneath coastal California that is sub-horizontal at depths of ∼40–80 km. East of the San Andreas Fault a continuous extension of the high-velocity anomaly dips east and is located beneath the Sierra Nevada at ∼150–200 km depth. The western position of the Isabella Anomaly in the uppermost mantle is inconsistent with earlier interpretations that the Isabella Anomaly is connected to actively foundering foothills lower crust. Based on the new Vs images, we interpret that the Isabella Anomaly is not the dense destabilized root of the Sierra Nevada, but rather a remnant of Miocene subduction termination that is translating north beneath the central San Andreas Fault. Our results support the occurrence of localized lithospheric foundering beneath the high elevation eastern Sierra Nevada, where we find a lower crustal low Vs layer consistent with a small amount of partial melt. The high elevations relative to crust thickness and lower crustal low Vs zone are consistent with geological inferences that lithospheric foundering drove uplift and a ∼3–4 Ma pulse of basaltic magmatism.

  20. Rayleigh and S wave tomography constraints on subduction termination and lithospheric foundering in central California

    NASA Astrophysics Data System (ADS)

    Jiang, Chengxin; Schmandt, Brandon; Hansen, Steven M.; Dougherty, Sara L.; Clayton, Robert W.; Farrell, Jamie; Lin, Fan-Chi

    2018-04-01

    The crust and upper mantle structure of central California have been modified by subduction termination, growth of the San Andreas plate boundary fault system, and small-scale upper mantle convection since the early Miocene. Here we investigate the contributions of these processes to the creation of the Isabella Anomaly, which is a high seismic velocity volume in the upper mantle. There are two types of hypotheses for its origin. One is that it is the foundered mafic lower crust and mantle lithosphere of the southern Sierra Nevada batholith. The alternative suggests that it is a fossil slab connected to the Monterey microplate. A dense broadband seismic transect was deployed from the coast to the western Sierra Nevada to fill in the least sampled areas above the Isabella Anomaly, and regional-scale Rayleigh and S wave tomography are used to evaluate the two hypotheses. New shear velocity (Vs) tomography images a high-velocity anomaly beneath coastal California that is sub-horizontal at depths of ∼40-80 km. East of the San Andreas Fault a continuous extension of the high-velocity anomaly dips east and is located beneath the Sierra Nevada at ∼150-200 km depth. The western position of the Isabella Anomaly in the uppermost mantle is inconsistent with earlier interpretations that the Isabella Anomaly is connected to actively foundering foothills lower crust. Based on the new Vs images, we interpret that the Isabella Anomaly is not the dense destabilized root of the Sierra Nevada, but rather a remnant of Miocene subduction termination that is translating north beneath the central San Andreas Fault. Our results support the occurrence of localized lithospheric foundering beneath the high elevation eastern Sierra Nevada, where we find a lower crustal low Vs layer consistent with a small amount of partial melt. The high elevations relative to crust thickness and lower crustal low Vs zone are consistent with geological inferences that lithospheric foundering drove uplift and a ∼3-4 Ma pulse of basaltic magmatism.

  1. Anisotropy and tectonic deformation in the Ordos basin revealed by an active source seismic experiment

    NASA Astrophysics Data System (ADS)

    Jun, W. S.; Wang, F.; Xu, T.

    2016-12-01

    With the purpose of exploring the Ordos block, western North China Craton, two controlled-source deep seismic transects were conducted across this region. The first one is a 650 km long profile oriented N-S; the second is 1530 km and is oriented E-W. The upper mantle P wave-velocity derived from these profiles features a 0.25 km/s difference between them. Being the E-W higher that the N-S. The results obtained from both seismic profiles indicate that the upper mantle beneath the Ordos block presents seismic anisotropy in terms of discrepancy in Pn-wave velocity, such as the apparent seismic velocities observed along the two reference profiles demonstrate. This result is consistent with SKS-wave splitting measurements in the interior of the Ordos block. This indicates that the compressive stress state in Ordos during the Mesozoic became an extensional stress state in the Cenozoic. The high-velocity anomaly in the uppermost mantle under the west-east profile suggests that the lithospheric mantle is still not water-rich. Unlike what happened in the NCC to east of the Taihang Mountains, where the lithosphere experienced its thinning and destruction since the Mesozoic, the lithosphere in the interior of Ordos has suffered less deformation and remained tectonically stable. Keywords: wide-angle seismic profiling, Pn phase, high-velocity anomaly, upper mantle anisotropy, Ordos block, North China Craton. ReferencesChen L., 2009. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration. Phys. Earth Planet. Inter. 173, 216-227. Gao S., Rudnick R.L., Xu W.L., et al., 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet. Sci. Lett. 270, 41-53. Xu T., Zhang Z.J., Gao E.G., et al., 2010. Segmentally iterative ray tracing in complex 2D and 3D heterogeneous block models. Bull. Seism. Soc. Am. 100, 841-850. Zhu R.X., Zheng T.Y., 2009. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics. Chinese Sci. Bull. 54(14), 1950-1961 (in Chinese).

  2. Evolution and hydration of the Juan de Fuca crust and uppermost mantle: a plate-scale seismic investigation from ridge to trench

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Canales, J.; Carton, H. D.; Nedimovic, M. R.; Han, S.; Marjanovic, M.; Gibson, J. C.; Janiszewski, H. A.; Horning, G.; Delescluse, M.; Watremez, L.; Farkas, A.; Biescas Gorriz, B.; Bornstein, G.; Childress, L. B.; Parker, B.

    2012-12-01

    The evolution of oceanic lithosphere involves incorporation of water into the physical and chemical structure of the crust and shallow mantle through fluid circulation, which initiates at the mid-ocean ridge and continues on the ridge flanks long after crustal formation. At subduction zones, water stored and transported with the descending plate is gradually released at depth, strongly influencing subduction zone processes. Cascadia is a young-lithosphere end member of the global subduction system where relatively little hydration of the downgoing Juan de Fuca (JdF) plate is expected due to its young age and presumed warm thermal state. However, numerous observations support the abundant presence of water within the subduction zone, suggesting that the JdF plate is significantly hydrated prior to subduction. Knowledge of the state of hydration of the JdF plate is limited, with few constraints on crustal and upper mantle structure. During the Cascadia Ridge-to-Trench experiment conducted in June-July 2012 over 4000 km of active source seismic data were acquired as part of a study of the evolution and state of hydration of the crust and shallow mantle of the JdF plate prior to subduction at the Cascadia margin. Coincident long-streamer (8 km) multi-channel seismic (MCS) and wide-angle ocean bottom seismometer (OBS) data were acquired in a two-ship program with the R/V Langseth (MGL1211), and R/V Oceanus (OC1206A). Our survey included two ridge-perpendicular transects across the full width of the JdF plate, a long trench-parallel line ~10 km seaward of the Cascadia deformation front, as well as three fan lines to study mantle anisotropy. The plate transects were chosen to provide reference sections of JdF plate evolution over the maximum range of JdF plate ages (8-9 Ma), offshore two contrasting regions of the Cascadia Subduction zone, and provide the first continuous ridge-to-trench images acquired at any oceanic plate. The trench-parallel line was designed to characterize variations in plate structure and hydration linked to JdF plate segmentation for over 450 km along the margin. Shipboard brute stacks of the MCS data reveal evidence for reactivation of abyssal hill faulting in the plate interior far from the trench. Ridgeward-dipping lower crustal reflectors are observed, similar to those observed in mature Pacific crust elsewhere, as well as conjugate reflectivity near the deformation front along the Oregon transect. Bright intracrustal reflectivity is also observed along the trench-parallel transect with marked changes in reflectivity along the Oregon and Washington margins. Initial inspection of the OBS record sections indicate good quality data with the expected oceanic crustal and upper mantle P-wave arrivals: Ps and Pg refractions through sedimentary and igneous layers, respectively, PmP wide-angle reflections from the crust-mantle transition zone, and Pn upper mantle refractions. The Pg-PmP-Pn triplication is typically observed at 40-50 km source-receiver offsets. Pn characteristics show evidence for upper mantle azimuthal anisotropic propagation: along the plate transects Pn is typically weaker and difficult to observe beyond ~80 km offsets, while along the trench-parallel transect Pn arrivals have higher amplitude and are easily observed up to source-receiver offsets of 160-180 km. An overview on the Cascadia Ridge to Trench data acquisition program and preliminary results will be presented.

  3. Sub-crustal seismic activity beneath Klyuchevskoy Volcano

    NASA Astrophysics Data System (ADS)

    Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.

    2013-12-01

    Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep events observed at a site closest to the epicenter to delay times of Ps phases in RFs that we associate with the crust-mantle transition. Both observations are essentially differences between travel times of S and P waves originating at the same place, and traversing the same velocity structure. Consequently, the uncertainty of the velocity structure beneath the KVG does not influence the comparison. For all events nominally located at 28-30 km beneath KVG the S-P time at the nearest site (CIR) significantly exceeds 4 seconds. Given that crust-mantle boundary Ps times at nearby sites are ~3 s, these earthquakes take place in the upper mantle. Both recent RFs and wide-angle reflection (Deep Seismic Sounding) studies in the late 1970s identified additional boundaries beneath KVG at depths in excess of 40 km. The nature of these boundaries is unclear, however their sharpness suggests chemical changes or the presence of fluids or melts. Chemistry of Klyuchevskoy lavas suggests sub-crustal origin with no clear magma chamber within the crust. Sub-crustal earthquakes we describe show that processes in the magma conduit at the base of the crust beneath KVG are vigorous enough to promote brittle failure in the surrounding mantle rock. The complex seismic structure of the uppermost mantle beneath KVG may reflect a history of magma injection that is accompanied by seismic energy release.

  4. Stratification of Seismic Anisotropy Beneath Hudson Bay

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Eaton, D. W.; Bastow, I. D.

    2012-12-01

    The Hudson Bay region has a complex tectonic history spanning ~4 Ga of Earth's evolution. During the ~1.8 Ga Trans-Hudson orogeny, the Archean Superior and Western Churchill cratons collided following the subduction of a Pacific-scale ocean. It is thought that a significant amount of juvenile material is preserved in the Trans-Hudson Orogen, in part due to the complex double-indentor geometry of the Superior-Churchill collision. In the region of interest, the orogen lies beneath a large but shallow Paleozoic intra-cratonic basin. Studies of the crust and upper mantle beneath this region have been enabled through the HuBLE (Hudson Bay Lithospheric Experiment) project, through the deployment of broadband seismographs around the Bay and across the islands to the north. A surface-wave tomography study has taken advantage of the data coverage, providing new information on phase velocity heterogeneity and anisotropy for wave periods of 25-200 seconds (equivalent to depths from the lower crust to ~300 km). On a large scale, our results show that the entire region is underlain by a seismically fast lithospheric lid corresponding to the continental keel. The lithospheric thickness ranges from ~180km in the northeast, beneath a zone of Paleozoic rifting, to ~280km beneath central Hudson Bay. Within the lithosphere, seismic velocities vary laterally, including high-velocity material wrapping around the Bay in the uppermost mantle. In the mid-lithosphere, two high-velocity cores are imaged, with a zone of lower velocity between them beneath the Bay. We interpret these high-velocity structures to represent the strongest central cores of the Superior and Churchill cratons, with more-juvenile material preserved between them. The near-vertical geometry of the lower-velocity zone suggests that it is only the effects of terminal collision of the cratonic cores, rather than any preceding subduction, that is preserved today. The lowermost lithosphere has a more uniform velocity, and may represent a pervasive zone of metasomatism or underplating. Anisotropy patterns across the region also vary with depth, suggesting ~3 layers of stratification of lithospheric fabric. At the shallowest depths, anisotropic fast directions wrap around the Bay in a similar fashion to the patterns of isotropic wavespeed. The upper lithospheric mantle below is characterized by relatively weak and incoherent anisotropy; however the mid-to-lower lithosphere shows stronger anisotropy, with a pattern of fast directions broadly consistent with the tectonics of the Superior-Churchill collision as inferred from potential-field data. This may suggest some degree of coherency of deformation between the crust, uppermost mantle and lower lithosphere. These models of seismic wavespeed variation beneath the Hudson Bay region reveal the preservation of a major collision zone during the assembly of the Laurentian continental mass, and also suggest that the Archean cratons can be subdivided into different lithospheric domains that reflect their tectonic history but do not necessarily correspond to surface geological boundaries.

  5. Towards Crustal Structure of Java Island (Sunda Arc) from Ambient Seismic Noise Tomography

    NASA Astrophysics Data System (ADS)

    Widiyantoro, Sri; Zulhan, Zulfakriza; Martha, Agustya; Saygin, Erdinc; Cummins, Phil

    2015-04-01

    In our previous studies, P- and S-wave velocity structures beneath the Sunda Arc were successfully imaged using a global data set and a nested regional-global tomographic method was employed. To obtain more detailed P- and S-wave velocity structures beneath Java, in the central part of the Sunda Arc, we then used local data sets, i.e. newline from the MErapi AMphibious EXperiment (MERAMEX) and the Meteorological, Climatological and Geophysical Agency (MCGA), as well as employed a double-difference technique for tomographic imaging. The results of the imaging show e.g. that P- and S-wave velocities are significantly reduced in the uppermost mantle beneath central Java. In order to obtain detailed crustal structure information beneath Java, the Ambient Noise Tomography (ANT) method was used. The application of this method to the MERAMEX data has produced a good crustal model beneath central Java. We continue our experiment to image crustal structure of eastern Java. We have used seismic waveform data recorded by 22 MCGA stationary seismographic stations and 25 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms of cross-correlated noise between pairs of seismographic stations. Our preliminary results presented here indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly (as shown by our tomographic images). In future work we will install more seismographic stations in eastern Java as well as in western Java to conduct ANT imaging for the whole of Java Island. The expected result combined with the mantle velocity models resulting from our body wave tomography will allow for accurate location of earthquake hypocenters and determination of regional tectonic structures. Both of these are valuable for understanding seismic hazard in Java, the most densely populated island in the world.

  6. P-wave velocity structure of the uppermost mantle beneath Hawaii from traveltime tomography

    USGS Publications Warehouse

    Tilmann, F.J.; Benz, H.M.; Priestley, K.F.; Okubo, P.G.

    2001-01-01

    We examine the P-wave velocity structure beneath the island of Hawaii using P-wave residuals from teleseismic earthquakes recorded by the Hawaiian Volcano Observatory seismic network. The station geometry and distribution of events makes it possible to image the velocity structure between ~ 40 and 100 km depth with a lateral resolution of ~ 15 km and a vertical resolution of ~ 30 km. For depths between 40 and 80 km, P-wave velocities are up to 5 per cent slower in a broad elongated region trending SE-NW that underlies the island between the two lines defined by the volcanic loci. No direct correlation between the magnitude of the lithospheric anomaly and the current level of volcanic activity is apparent, but the slow region is broadened at ~ 19.8??N and narrow beneath Kilauea. In the case of the occanic lithosphere beneath Hawaii, slow seismic velocities are likely to be related to magma transport from the top of the melting zone at the base of the lithosphere to the surface. Thermal modelling shows that the broad elongated low-velocity zone cannot be explained in terms of conductive heating by one primary conduit per volcano but that more complicated melt pathways must exist.

  7. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain

    NASA Astrophysics Data System (ADS)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine

    2015-12-01

    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  8. Formation and evolution of a metasomatized lithospheric root at the motionless Antarctic plate: the case of East Island, Crozet Archipelago (Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Meyzen, Christine; Marzoli, Andrea; Bellieni, Giuliano; Levresse, Gilles

    2016-04-01

    Sitting atop the nearly stagnant Antarctic plate (ca. 6.46 mm/yr), the Crozet archipelago midway between Madagascar and Antarctica constitutes a region of unusually shallow (1543-1756 m below sea level) and thickened oceanic crust (10-16.5 km), high geoid height, and deep low-velocity zone, which may reflect the surface expression of a mantle plume. Here, we present new major and trace element data for Quaternary sub-aerial alkali basalts from East Island, the easterly and oldest island (ca. 9 Ma) of the Crozet archipelago. Crystallization at uppermost mantle depth and phenocryst accumulation have strongly affected their parental magma compositions. Their trace element patterns show a large negative K anomaly relative to Ta-La, moderate depletions in Rb and Ba with respect to Th-U, and heavy rare earth element (HREE) depletions relative to light REE. These characteristics allow limits to be placed upon the composition and mineralogy of their mantle source. The average trace element spectrum of East Island basalts can be matched by melting of about 2 % of a garnet-phlogopite-bearing peridotite source. The stability field of phlogopite restricts melting depth to lithospheric levels. The modelled source composition requires a multistage evolution, where the mantle has been depleted by melt extraction before having been metasomatized by alkali-rich plume melts. The depleted mantle component may be sourced by residual mantle plume remnants stagnated at the melting locus due to a weak lateral flow velocity inside the melting regime, whose accumulation progressively edifies a depleted lithospheric root above the plume core. Low-degree alkali-rich melts are likely derived from the plume source. Such a mantle source evolution may be general to both terrestrial and extraterrestrial environments where the lateral component velocity of the mantle flow field is extremely slow.

  9. A geophysical perspective on mantle water content and melting: Inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles

    NASA Astrophysics Data System (ADS)

    Khan, A.; Shankland, T. J.

    2012-02-01

    This paper applies electromagnetic sounding methods for Earth's mantle to constrain its thermal state, chemical composition, and "water" content. We consider long-period inductive response functions in the form of C-responses from four stations distributed across the Earth (Europe, North America, Asia and Australia) covering a period range from 3.9 to 95.2 days and sensitivity to ~ 1200 km depth. We invert C-responses directly for thermo-chemical state using a self-consistent thermodynamic method that computes phase equilibria as functions of pressure, temperature, and composition (in the Na2O-CaO-FeO-MgO-Al2O3-SiO2 model system). Computed mineral modes are combined with recent laboratory-based electrical conductivity models from independent experimental research groups (Yoshino (2010) and Karato (2011)) to compute bulk conductivity structure beneath each of the four stations from which C-responses are estimated. To reliably allocate water between the various mineral phases we include laboratory-measured water partition coefficients for major upper mantle and transition zone minerals. This scheme is interfaced with a sampling-based algorithm to solve the resulting non-linear inverse problem. This approach has two advantages: (1) It anchors temperatures, composition, electrical conductivities, and discontinuities that are in laboratory-based forward models, and (2) At the same time it permits the use of geophysical inverse methods to optimize conductivity profiles to match geophysical data. The results show lateral variations in upper mantle temperatures beneath the four stations that appear to persist throughout the upper mantle and parts of the transition zone. Calculated mantle temperatures at 410 and 660 km depth lie in the range 1250-1650 °C and 1500-1750 °C, respectively, and generally agree with the experimentally-determined temperatures at which the measured phase reactions olivine → β-spinel and γ-spinel → ferropericlase + perovskite occur. The retrieved conductivity structures beneath the various stations tend to follow trends observed for temperature with the strongest lateral variations in the uppermost mantle; for depths > 300 km conductivities appear to depend less on the particular conductivity database. Conductivities at 410 km and at 660 km depth are found to agree overall with purely geophysically-derived global and semi-global one-dimensional conductivity models. Both electrical conductivity databases point to < 0.01 wt.% H2O in the upper mantle. For transition zone minerals results from the laboratory database of Yoshino (2010) suggest that a much higher water content (up to 2 wt.% H2O) is required than in the other database (Karato, 2011), which favors a relatively "dry" transition zone (< 0.01 wt.% H2O). Incorporating laboratory measurements of hydrous silicate melting relations and available conductivity data allows us to consider the possibility of hydration melting and a high-conductivity melt layer above the 410-km discontinuity. The latter appears to be 1) regionally localized and 2) principally a feature from the Yoshino (2010) database. Further, there is evidence of lateral heterogeneity: The mantle beneath southwestern North America and central China appears "wetter" than that beneath central Europe or Australia.

  10. Recent studies of time variations of natural electromagnetic fields in Scotland

    NASA Astrophysics Data System (ADS)

    Hutton, V. R. S.; Dawes, G.; Ingham, M.; Kirkwood, S.; Mbipom, E. W.; Sik, J.

    1981-01-01

    A series of geomagnetic induction studies has been undertaken in Scotland since 1973. It includes the operation of two geomagnetic arrays, one over northern Scotland and the other over southern Scotland, subsequent individual station and small-scale geomagnetic array studies, and three sets of magnetotelluric soundings which traverse Scotland from the Lewisian Foreland to the English border. The problems associated with the interpretation of induction data from an island located in the subauroral region are discussed qualitatively and the manner in which both coast and source field effects can be accounted for, is described. The geomagnetic deep sounding data (GDS) from all the observation sites have been collated, and examples of hypothetical event contour maps and traverses across the Great Glen and of individual events from the northern array are presented. They indicate that significant lateral variations in electrical conductivity structure within the crust and upper mantle are associated with the major geological faults in the region. Examples of the results of the magnetotelluric soundings are also presented, together with an outline of the procedure used for one- and two-dimensional modelling. Models of the geo-electric structure in both northern and southern Scotland have been obtained. These show distinctive features which are compatible with the qualitative interpretation of the magnetovariational data. For example, the major granitic blocks are highly resistive while regions of relatively low resistivity exist at upper crustal depths near the Great Glen, Highland boundary and Southern Uplands faults. A zone of low resistivity exists at lower crust-uppermost mantle depths throughout much of the region, the lowest value occurring under the Southern Uplands.

  11. Surface-Wave Tomographic Studies of the Hudson Bay Lithosphere: Implications for Paleoproterozoic Tectonic Processes and the Assembly of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.

    2015-12-01

    Hudson Bay is a shallow intracratonic basin that partially conceals the Trans-Hudson Orogen (THO) in northern Canada. The THO is thought to be a Himalayan-scale Paleoproterozoic orogenic event that was an important component of assembly of the Canadian Shield, marking the collision of the Archean Superior and Western Churchill plates. Until recently, only global and continental-scale seismic tomographic models had imaged the upper-mantle structure of the region, giving a broad but relatively low-resolution picture of the thick lithospheric keel. The Hudson Bay Lithospheric Experiment (HuBLE) investigated the present-day seismic structure beneath Hudson Bay and its surroundings, using a distributed broadband seismograph network installed around the periphery of the Bay and complemented by existing permanent and temporary seismographs further afield. This configuration, though not optimal for body-wave studies which use subvertical arrivals, is well-suited to surface wave tomographic techniques, with many paths crossing the Bay. As there is little seismicity in the region around the Canadian Shield, two-station measurements of teleseismic Rayleigh wave phase velocity formed the principal data set for lithospheric studies. The interstation measurements were combined in a linearized tomographic inversion for maps of phase velocity and azimuthal anisotropy at periods of 20-200 s; these maps were then used to calculate a pseudo-3D anisotropic upper-mantle shear-wavespeed model of the region. The model shows thick (~180-260 km), seismically fast lithosphere across the Hudson Bay region, with a near-vertical 'curtain' of lower wavespeeds trending NE-SW across the Bay, likely associated with more juvenile material trapped between the Archean Superior and Churchill continental cores during the THO. The lithosphere is layered, suggesting a 2-stage formation process. Seismic anisotropy patterns vary with depth; a circular pattern in the uppermost mantle wrapping around the Hudson Bay basin is superseded in the lower lithosphere by a pattern that mirrors THO-related structures within the crust; the lower layer thus likely formed when stress patterns related to the THO were still active.

  12. Crustal and upper mantle structure of the north-east of Egypt and the Afro-Arabian plate boundary region from Rayleigh-wave analysis

    NASA Astrophysics Data System (ADS)

    Corchete, V.; Chourak, M.; Hussein, H. M.; Atiya, K.; Timoulali, Y.

    2017-05-01

    The crustal and mantle structure of the north-eastern part of Egypt and the surrounding area is shown by means of S-velocity maps for depths ranging from zero to 45 km, determined by the regionalization and inversion of Rayleigh-wave dispersion. This analysis shows several types of crust with an average S-velocity ranging from 2.5 to 3.9 km/s. The values of S-velocity range from 2.5 km/s at the surface to 3.4 km/s at 10 km depth for the Sinai Peninsula, Gulf of Aqaba, Gulf of Suez, Red Sea, Dead Sea, western part of Dead sea and Arabian Plate. In the lower crust, the values of the S-velocity reach 4.0 km/s. In the uppermost mantle, the S-velocities range from 4.4 to 4.7 km/s. The crustal thickness ranges from the oceanic thin crust (around 15-20 km of thickness), for Red Sea and the extended continental margins, to 35-45 km of thickness for the Arabian plate. A gradual increasing crustal thickness is observed from north-east to south-west. While the Moho is located at 30-35 km of depth under the Sinai Peninsula, Gulf of Aqaba, Dead Sea Fault (DSF) and Dead Sea, a thinner crust (20-25 km of thickness) is found at the east of DSF and under the northern and the southern part of the Gulf of Suez. The crustal thickness varies within Sinai from the southern edge to the north, which provided an evidence for the presence of an Early Mesozoic passive margin with thinned continental crust in the north of Sinai. The change of crustal structure between the Gulf of Aqaba and the Gulf of Suez is due to the different tectonic and geodynamic processes affecting Sinai. In general, our results are consistent with surface geology and the Moho depth inferred from reflection and refraction data, receiver function, surface-wave analysis and P-S tomography. The strong variations in the base of the Moho reflect the complex evolution of the African and Arabian plate boundary region.

  13. Incipient mantle delamination, active tectonics and crustal thickening in Northern Morocco: Insights from gravity data and numerical modeling

    NASA Astrophysics Data System (ADS)

    Baratin, Laura-May; Mazzotti, Stéphane; Chéry, Jean; Vernant, Philippe; Tahayt, Abdelilah; Mourabit, Taoufik

    2016-11-01

    The Betic-Rif orocline surrounding the Alboran Sea, the westernmost tip of the Mediterranean Sea, accommodates the NW-SE convergence between the Nubia and Eurasia plates. Recent GPS observations indicate a ∼4 mm/yr SW motion of the Rif Mountains, relative to stable Nubia, incompatible with a simple two-plate model. New gravity data acquired in this study define a pronounced negative Bouguer anomaly south of the Rif, interpreted as a ∼40 km-thick crust in a state of non-isostatic equilibrium. We study the correlation between these present-day kinematic and geodynamic processes using a finite-element code to model in 2-D the first-order behavior of a lithosphere affected by a downward normal traction (representing the pull of a high-density body in the upper mantle). We show that intermediate viscosities for the lower crust and uppermost mantle (1021-1022Pas) allow an efficient coupling between the mantle and the base of the brittle crust, thus enabling (1) the conversion of vertical movement, resulting from the downward traction, to horizontal movement and (2) shortening in the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to slab pull, can explain the present-day abnormal tectonics, contribute to the gravity anomaly observed in northern Morocco, and give insight into recent tectonics in the Western Mediterranean region.

  14. Mountain building at northeastern boundary of Tibetan Plateau and craton reworking at Ordos block from joint inversion of ambient noise tomography and receiver functions

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Chen, Yongshun John

    2017-04-01

    We have obtained a high resolution 3-D crustal and uppermost mantle velocity model of the Ordos block and its surrounding areas by joint inversion of ambient noise tomography and receiver functions using seismic recordings from 320 stations. The resulting model shows wide-spread low velocity zone (Vs ≤ 3.4 km/s) in the mid-to-lower crust beneath northeastern Tibet Plateau, which may favor crustal ductile flow within the plateau. However, our model argues against the eastward crustal ductile flow beneath the Qinling belt from the Tibetan Plateau. We find high velocities in the middle part of Qinling belt which separate the low velocities in the mid-to-lower crust of the eastern Qinling belt from the low velocity zone in eastern Tibetan Plateau. More importantly, we observe significant low velocities and thickened lower crust at the Liupanshan thrust belt as the evidence for strong crustal shortening at this boundary between the northeastern Tibetan Plateau and Ordos block. The most important finding of our model is the upper mantle low velocity anomalies surrounding the Ordos block, particularly the one beneath the Trans North China Craton (TNCO) that is penetrating into the southern margin of the Ordos block for ∼100 km horizontally in the depth range of ∼70 km and at least 100 km. We propose an on-going lithospheric mantle reworking at the southernmost boundary of the Ordos block due to complicated mantle flow surrounding the Ordos block, that is, the eastward asthenospheric flow from the Tibet Plateau proposed by recent SKS study and mantle upwelling beneath the TNCO from mantle transition zone induced by the stagnant slabs of the subducted Pacific plate.

  15. Seismicity and Structure of the Incoming Pacific Plate Subducting into the Japan Trench off Miyagi

    NASA Astrophysics Data System (ADS)

    Obana, K.; Fujie, G.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Sato, T.; Yamashita, M.; Nakamura, Y.; Miura, S.

    2015-12-01

    Stresses within the oceanic plate in trench axis and outer-rise region have been characterized by shallow extension and deep compression due to the bending of the plate subducting into the trench. The stress state within the incoming/subducting oceanic plate is an important factor not only for the occurrence of shallow intraplate normal-faulting earthquakes in the trench-outer rise region but also the hydration of the oceanic plate through the shallow normal faults cutting the oceanic lithosphere. We investigate seismic velocity structure and stress state within the incoming/subducting Pacific Plate in the Japan Trench based on the OBS aftershock observations for the December 2012 intraplate doublet, which consists of a deep reverse faulting (Mw 7.2) and a shallow normal faulting (Mw 7.2) earthquake, in the Japan Trench off Miyagi. Hypocenter locations and seismic velocity structures were estimated from the arrival time data of about 3000 earthquakes by using double-difference tomography method (Zhang and Thurber, 2003). Also, focal mechanisms were estimated from first motion polarities by using the program HASH by Hardebeck and Shearer (2002). The results show that the earthquakes occurred mainly within the oceanic crust and the uppermost mantle. The deepest event was located at a depth of about 60 km. Focal mechanisms of the earthquakes shallower than a depth of 40 km indicate normal-faulting with T-axis normal to the trench. On the other hand, first motion polarities of the events at depths between 50 and 60 km can be explained a reverse faulting. The results suggest that the neutral plane of the stress between shallow extension and deep compression locates at 40 to 50 km deep. Seismic velocity structures indicate velocity decrease in the oceanic mantle toward the trench. Although the velocity decrease varies with locations, the results suggest the bending-related structure change could extend to at least about 15 km below the oceanic Moho in some locations.

  16. Transdimensional inversion of scattered body waves for 1D S-wave velocity structure - Application to the Tengchong volcanic area, Southwestern China

    NASA Astrophysics Data System (ADS)

    Li, Mengkui; Zhang, Shuangxi; Bodin, Thomas; Lin, Xu; Wu, Tengfei

    2018-06-01

    Inversion of receiver functions is commonly used to recover the S-wave velocity structure beneath seismic stations. Traditional approaches are based on deconvolved waveforms, where the horizontal component of P-wave seismograms is deconvolved by the vertical component. Deconvolution of noisy seismograms is a numerically unstable process that needs to be stabilized by regularization parameters. This biases noise statistics, making it difficult to estimate uncertainties in observed receiver functions for Bayesian inference. This study proposes a method to directly invert observed radial waveforms and to better account for data noise in a Bayesian formulation. We illustrate its feasibility with two synthetic tests having different types of noises added to seismograms. Then, a real site application is performed to obtain the 1-D S-wave velocity structure beneath a seismic station located in the Tengchong volcanic area, Southwestern China. Surface wave dispersion measurements spanning periods from 8 to 65 s are jointly inverted with P waveforms. The results show a complex S-wave velocity structure, as two low velocity zones are observed in the crust and uppermost mantle, suggesting the existence of magma chambers, or zones of partial melt. The upper magma chambers may be the heart source that cause the thermal activity on the surface.

  17. Fertile lithospheric mantle beneath the northwestern North China and its implication for the subduction of the Paleo-Asian Ocean

    NASA Astrophysics Data System (ADS)

    Dai, H. K.; Zheng, J.; Su, Y. P.; Xiong, Q.; Pan, S. K.

    2017-12-01

    The nature of the sub-continental lithospheric mantle (SCLM) beneath the western North China Craton (NCC) is poorly known, which hinders understanding the cratonic response to the southward subduction of the Paleo-Asian Ocean. Mineral chemical data of spinel lherzolite xenoliths from newly discovered Cenozoic Langshan basalts in the northwestern part of the craton have been integrated with data from other localities across the western NCC, to put constrains on the SCLM nature and to explore the reworking processes involved. Compositions of mineral cores (i.e., Mg# in olivine = 88 91) and P-T estimates ( 1.2 GPa, 950 oC) suggest the Langshan xenoliths/xenocrysts represent fragments of the uppermost SCLM and experienced <15% melt extraction. These characteristics are similar to those of mantle xenoliths from other locaties (Siziwangqi and Hannuoba) along the northern margin of the western NCC. Disequilibrium characteristics are observed in xenoliths/xenocrysts in this study, including pyroxene spongy coronae and compositionally zoned olivine. They are interpreted to be induced by partial melting and by ironic diffusion with silicate melts in the mantle respectively, shortly before the eruption of host basalt. Metasomatism is recorded in clinopyroxene cores by concomitant enrichments in light rare earth elements and high field strength elements and was likely related to the migration of silicate melts derived from a mantle modified by slab melts during the Paleozoic time. The SCLM along the northern margin of the western NCC is fertile in nature constrained by mantle xenoliths from several localities (Langshan in this study, Siziwangqi and Hannuoba in references). Considering 1) the coexistence of fertile lithospheric mantle (similar to the Phanerozoic SCLM of the eastern NCC) and the overlying ancient continental crust, and 2) the sharp decrease in lithospheric thickness from the inner part to the northern margin of the western NCC, the SCLM beneath the northwestern part should have been strongly rejuvenated or replaced by fertile and non-cratonic mantle. Combined with other geological evidence on the northwestern margin, the mantle replacement and metasomatism were likely triggered by southward subduction of the Paleo-Asian Ocean.

  18. Rifting an Archaean Craton: Insights from Seismic Anisotropy Patterns in E. Africa

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Tiberi, C.; Currie, C. A.; van Wijk, J.; Albaric, J.

    2016-12-01

    Few places worldwide offer opportunities to study active deformation of deeply-keeled cratonic lithosphere. The magma-rich Eastern rift transects the eastern edge of the Archaean Tanzania craton in northeastern Tanzania, which has been affected by a large-scale mantle upwelling. Abundant xenolith locales offer constraints on mantle age, composition, and physical properties. Our aim is to evaluate models for magmatic fluid-alteration (metasomatism) and deformation of mantle lithosphere along the edge of cratons by considering spatial variations in the direction and magnitude of seismic anisotropy, which is strongly influenced by mantle flow patterns along lithosphere-asthenosphere topography, fluid-filled cracks (e.g., dikes), and pre-existing mantle lithosphere strain fabrics. Waveforms of teleseismic earthquakes (SKS, SKKS) recorded on the 39-station CRAFTI-CoLiBREA broadband array in southern Kenya and northern Tanzania are used to determine the azimuth and amount of shear-wave splitting accrued as seismic waves pass through the uppermost mantle and lithosphere at the craton edge. Lower crustal earthquakes enable evaluation of seismic anisotropy throughout the crust along the rift flanks and beneath the heavily intruded Magadi and Natron basins, and the weakly intruded Manyara basin. Our results and those of earlier studies show a consistent N50E splitting direction within the craton, with delay times of ca. 1.5 s, and similar direction east of the rift in thinner Pan-African lithosphere. Stations within the rift zone are rotated to a N15-35E splitting, with the largest delay times of 2.5 s at the margin of the heavily intruded Magadi basin. The short length scale of variations and rift-parallel splitting directions are similar to patterns in the Main Ethiopian rift attributed to melt-filled cracks or oriented pockets rising from the base of the lithosphere. The widespread evidence for mantle metasomatism and magma intrusion to mid-crustal levels suggests that LAB topography enhances melt production and guides fluid pathways, destabilizing cratonic edges.

  19. Terrestrial aftermath of the Moon-forming impact.

    PubMed

    Sleep, Norman H; Zahnle, Kevin J; Lupu, Roxana E

    2014-09-13

    Much of the Earth's mantle was melted in the Moon-forming impact. Gases that were not partially soluble in the melt, such as water and CO2, formed a thick, deep atmosphere surrounding the post-impact Earth. This atmosphere was opaque to thermal radiation, allowing heat to escape to space only at the runaway greenhouse threshold of approximately 100 W m(-2). The duration of this runaway greenhouse stage was limited to approximately 10 Myr by the internal energy and tidal heating, ending with a partially crystalline uppermost mantle and a solid deep mantle. At this point, the crust was able to cool efficiently and solidified at the surface. After the condensation of the water ocean, approximately 100 bar of CO2 remained in the atmosphere, creating a solar-heated greenhouse, while the surface cooled to approximately 500 K. Almost all this CO2 had to be sequestered by subduction into the mantle by 3.8 Ga, when the geological record indicates the presence of life and hence a habitable environment. The deep CO2 sequestration into the mantle could be explained by a rapid subduction of the old oceanic crust, such that the top of the crust would remain cold and retain its CO2. Kinematically, these episodes would be required to have both fast subduction (and hence seafloor spreading) and old crust. Hadean oceanic crust that formed from hot mantle would have been thicker than modern crust, and therefore only old crust underlain by cool mantle lithosphere could subduct. Once subduction started, the basaltic crust would turn into dense eclogite, increasing the rate of subduction. The rapid subduction would stop when the young partially frozen crust from the rapidly spreading ridge entered the subduction zone. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Pn anisotropy beneath the South Island of New Zealand and implications for distributed deformation in continental lithosphere

    NASA Astrophysics Data System (ADS)

    Collins, John A.; Molnar, Peter

    2014-10-01

    Pn travel times from regional earthquakes recorded both by stations on New Zealand and by ocean bottom seismographs deployed offshore indicate anisotropy in the uppermost mantle beneath the region. The largest anisotropy of ~8% (±2%, 1σ) lies beneath the deforming part of the South Island to just off its West Coast, a zone roughly 100-200 km wide. The fastest propagation is aligned N60°E (±3°), essentially parallel to the largely strike-slip relative plate motion since 20 Ma, also ~ N60°E. The magnitude of anisotropy decreases abruptly northwest and southeast of this zone, and on the southeast side of the island, the orientation of fastest propagation is between N32°W and N-S. The ~ N60°E orientation of fast propagation is consistent with finite strain within the uppermost part of the mantle lithosphere if the measured 850 km of displacement of the Pacific plate past the Australia plate is spread over a region with a width of 100-200 km. The agreement of this orientation of fast propagation with the orientation or relative plate motion suggests the possibility of but does not require some dynamic recrystallization in rock as cold as 500-800°C, where Peierls creep seems to be the likely deformation mechanism. Such a strain distribution matches deformation of a thin viscous sheet that obeys a constitutive relationship of the form ɛ>˙ ~ τn, where ɛ>˙ is the average strain rate and τ is the operative deviatoric stress, with an average value of n ≈ 3-10. Presumably, the NW-SE fast propagation in the region southeast of the island results from strain that precedes the Cenozoic deformation that has shaped the island.

  1. Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas; Kennett, Brian L. N.; Igel, Heiner; Bunge, Hans-Peter

    2009-12-01

    We present a full seismic waveform tomography for upper-mantle structure in the Australasian region. Our method is based on spectral-element simulations of seismic wave propagation in 3-D heterogeneous earth models. The accurate solution of the forward problem ensures that waveform misfits are solely due to as yet undiscovered Earth structure and imprecise source descriptions, thus leading to more realistic tomographic images and source parameter estimates. To reduce the computational costs, we implement a long-wavelength equivalent crustal model. We quantify differences between the observed and the synthetic waveforms using time-frequency (TF) misfits. Their principal advantages are the separation of phase and amplitude misfits, the exploitation of complete waveform information and a quasi-linear relation to 3-D Earth structure. Fréchet kernels for the TF misfits are computed via the adjoint method. We propose a simple data compression scheme and an accuracy-adaptive time integration of the wavefields that allows us to reduce the storage requirements of the adjoint method by almost two orders of magnitude. To minimize the waveform phase misfit, we implement a pre-conditioned conjugate gradient algorithm. Amplitude information is incorporated indirectly by a restricted line search. This ensures that the cumulative envelope misfit does not increase during the inversion. An efficient pre-conditioner is found empirically through numerical experiments. It prevents the concentration of structural heterogeneity near the sources and receivers. We apply our waveform tomographic method to ~1000 high-quality vertical-component seismograms, recorded in the Australasian region between 1993 and 2008. The waveforms comprise fundamental- and higher-mode surface and long-period S body waves in the period range from 50 to 200 s. To improve the convergence of the algorithm, we implement a 3-D initial model that contains the long-wavelength features of the Australasian region. Resolution tests indicate that our algorithm converges after around 10 iterations and that both long- and short-wavelength features in the uppermost mantle are well resolved. There is evidence for effects related to the non-linearity in the inversion procedure. After 11 iterations we fit the data waveforms acceptably well; with no significant further improvements to be expected. During the inversion the total fitted seismogram length increases by 46 per cent, providing a clear indication of the efficiency and consistency of the iterative optimization algorithm. The resulting SV-wave velocity model reveals structural features of the Australasian upper mantle with great detail. We confirm the existence of a pronounced low-velocity band along the eastern margin of the continent that can be clearly distinguished against Precambrian Australia and the microcontinental Lord Howe Rise. The transition from Precambrian to Phanerozoic Australia (the Tasman Line) appears to be sharp down to at least 200 km depth. It mostly occurs further east of where it is inferred from gravity and magnetic anomalies. Also clearly visible are the Archean and Proterozoic cratons, the northward continuation of the continent and anomalously low S-wave velocities in the upper mantle in central Australia. This is, to the best of our knowledge, the first application of non-linear full seismic waveform tomography to a continental-scale problem.

  2. High-Pressure γ-CaMgSi2O6: Does Penta-Coordinated Silicon Exist in the Earth's Mantle?

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Kiefer, Boris; Bina, Craig R.; Zhang, Dongzhou; Dera, Przemeslaw K.

    2017-11-01

    In situ X-ray diffraction experiments with natural Fe- and Al- bearing diopside single crystals and density functional theory (DFT) calculations on diopside end-member composition indicate the existence of a new high-pressure γ-diopside polymorph with rare penta-coordinated silicon. On compression α-diopside transforms to the γ-phase at ˜50 GPa, which in turn, on decompression is observed to convert to the known β-phase below 47 GPa. The new γ-diopside polymorph constitutes another recent example of penta-coordinated silicon (VSi) in overcompressed metastable crystalline silicates, suggesting that VSi may exist in the transition zone and the uppermost lower mantle in appreciable quantities, not only in silicate glass and melts but also in crystalline phases contained in the coldest parts of subducted stagnant slabs. VSi may have significant influences on buoyancy, wave velocity anomalies, deformation mechanisms, chemical reactivity of silicate rocks, and seismicity within the slab.

  3. Upper Crustal Structure of Taiwan Constrained by the Ellipticity of the Noise-derived Rayleigh Waves

    NASA Astrophysics Data System (ADS)

    Chien, C. C.; Chen, Y. N.; Gung, Y.; Liang, W. T.

    2016-12-01

    In the last decade, the noise interferometry has been a popular technique, and widely applied to constraint the crust and uppermost mantle structure, bringing in revolutionary resolution in area with dense seismic network, including Taiwan. However, limited by the available frequency band of the noise-derived surface waves, the near surface (<5km) structure is much less resolved as compared to the rest of the crust in Taiwan. Such limitation may be lifted by using the ZH ratio of Rayleigh waves, because, for the same period, the ZH ratio of Rayleigh waves is much more sensitive to the shallower structure than those provided by the corresponding phase or group velocities. In this study, aiming to better constraint the seismic structure of the shallow crust of Taiwan, we measure the ZH ratios of the Rayleigh waves derived by noise interferometry. Continuous records from two major seismic networks in Taiwan are used. In total, data from 63 short period stations and 48 broadband stations are used to derived the four combinations (ZZ, ZR, RZ, RR) of cross-correlation functions (CCF). We then measure the ZH ratios of the derived Rayleigh waves. We present the measured results, invert for the local 1-D structure for sites with stable measurements. We then compare the results with the published tomographic models and discuss their geological implications.

  4. Tomographic Imaging of the Seismic Structure Beneath the East Anatolian Plateau, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Gökalp, Hüseyin

    2012-10-01

    The high level of seismic activity in eastern Turkey is thought to be mainly associated with the continuing collision of the Arabian and Eurasian tectonic plates. The determination of a detailed three-dimensional (3D) structure is crucial for a better understanding of this on-going collision or subduction process; therefore, a body wave tomographic inversion technique was performed on the region. The tomographic inversion used high quality arrival times from earthquakes occurring in the region from 1999 to 2001 recorded by a temporary 29 station broadband IRIS-PASSCAL array operated by research groups from the Universities of Boğaziçi (Turkey) and Cornell (USA). The data was inverted and consisted of 3,114 P- and 2,298 S-wave arrival times from 252 local events with magnitudes ( M D) ranging from 2.5 to 4.8. The stability and resolution of the results were qualitatively assessed by two synthetic tests: a spike test and checkerboard resolution test and it was found that the models were well resolved for most parts of the imaged domain. The tomographic inversion results reveal significant lateral heterogeneities in the study area to a depth of ~20 km. The P- and S-wave velocity models are consistent with each other and provide evidence for marked heterogeneities in the upper crustal structure beneath eastern Turkey. One of the most important features in the acquired tomographic images is the high velocity anomalies, which are generally parallel to the main tectonic units in the region, existing at shallow depths. This may relate to the existence of ophiolitic units at shallow depths. The other feature is that low velocities are widely dispersed through the 3D structure beneath the region at deeper crustal depths. This feature can be an indicator of the mantle upwelling or support the hypothesis that the Anatolian Plateau is underlain by a partially molten uppermost mantle.

  5. New Insights on the Rheology of Olivine Deformed under Lithospheric Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Cordier, P.; Demouchy, S. A.; Mussi, A.; Tommasi, A.

    2014-12-01

    Rheology of mantle rocks at lithospheric temperatures remains poorly constrained, since most experimental studies on creep mechanisms of olivine single crystals ((MgFe)2SiO4, Pbnm) and polycrystalline olivine aggregates were performed at high-temperatures (T >> 1200oC). In this study, we report results from deformation experiments on oriented single crystals of San Carlos olivine and polycrystalline olivine aggregate at temperatures relevant of the uppermost mantle (ranging from 800o to 1090oC) in tri-axial compression. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at various constant strain rates (from 7 x 10-6 s-1 to 1 x 10-4 s-1). Mechanical tests show that mantle lithosphere is actually weaker than previously inferred from the extrapolation of high-temperature experiments. In this study, we present characterization of dislocation microstructures based on transmission electron microscopy and electron tomography. It is shown that below 1000°C, dislocation activity is restricted to [001] glide with a strong predominance of {110} as glide planes. We observe recovery mechanisms which suggest that the mechanical properties observed in laboratory experiments represent an upper bound for the actual behavior of olivine under lithospheric mantle conditions. Moreover, the drastic reduction in slip system activity observed questions the ability of deforming olivine aggregates in the ductile regime at such temperatures. We show that ductility is preserved thanks to the activation of alternative deformation mechanisms in grain boundaries involving disclinations.

  6. Moho geometry along a north-south passive seismic transect through Central Australia

    NASA Astrophysics Data System (ADS)

    Sippl, Christian

    2016-04-01

    Receiver functions from a temporary deployment of 25 broadband stations along a north-south transect through Central Australia are used to retrieve crustal and uppermost mantle structural constraints from a combination of different methods. Using H-K stacking as well as receiver function inversion, overall thick crust with significant thickness variation along the profile (40 to ≥ 55 km) is found. Bulk crustal vp/vs values are largely in the felsic to intermediate range, with the southernmost stations on the Gawler Craton exhibiting higher values in excess of 1.8. A common conversion point (CCP) stacking profile shows three major discontinuities of the crust-mantle boundary: (1) a two-sided Moho downwarp beneath the Musgrave Province, which has previously been associated with the Neoproterozoic to early Cambrian Petermann Orogeny, (2) a Moho offset along the Redbank Shear Zone further north attributed to the Middle to Late Paleozoic Alice Springs Orogeny, and (3) another Moho offset further north, located at the boundary between the Davenport and Warramunga Provinces, which has not been imaged before. In all cases, the difference in crustal thickness between the two sides of the offset is > 8-10 km. Unlike the two southern Moho offsets, the northernmost one does not coincide with a prominent gravity anomaly. Its location and the absence of known reactivation events in the region make it likely that it belongs to a Proterozoic suture zone that marks a previously unknown block boundary within the North Australian Craton.

  7. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents

    NASA Astrophysics Data System (ADS)

    Hacker, Bradley R.; Abers, Geoffrey A.; Peacock, Simon M.

    2003-01-01

    We present a new compilation of physical properties of minerals relevant to subduction zones and new phase diagrams for mid-ocean ridge basalt, lherzolite, depleted lherzolite, harzburgite, and serpentinite. We use these data to calculate H2O content, density and seismic wave speeds of subduction zone rocks. These calculations provide a new basis for evaluating the subduction factory, including (1) the presence of hydrous phases and the distribution of H2O within a subduction zone; (2) the densification of the subducting slab and resultant effects on measured gravity and slab shape; and (3) the variations in seismic wave speeds resulting from thermal and metamorphic processes at depth. In considering specific examples, we find that for ocean basins worldwide the lower oceanic crust is partially hydrated (<1.3 wt % H2O), and the uppermost mantle ranges from unhydrated to ˜20% serpentinized (˜2.4 wt % H2O). Anhydrous eclogite cannot be distinguished from harzburgite on the basis of wave speeds, but its ˜6% greater density may render it detectable through gravity measurements. Subducted hydrous crust in cold slabs can persist to several gigapascals at seismic velocities that are several percent slower than the surrounding mantle. Seismic velocities and VP/VS ratios indicate that mantle wedges locally reach 60-80% hydration.

  8. Elasticity of superhydrous phase B at the mantle temperature and pressure: Implications for 800-km discontinuity and water flow into lower mantle

    NASA Astrophysics Data System (ADS)

    Yang, D.; Wang, W.; Wu, Z.

    2017-12-01

    Plate subduction can transport the water to the Earth's interior by forming hydrous phases and water can exert important effects on global dynamics and many processes within the deep Earth. Superhydrous phase B (ShyB), as an important candidate for transporting water into the mantle transition zone and lower mantle, is stable up to 31 GPa and will decompose into bridgmanite, periclase and water at a depth of 800 km [Komabayashi and Omori, 2006]. The decomposition of ShyB may be related to the seismic discontinuity at the depth of 800 km in Western-Pacific Subduction Zones [Liu et al., 2016; Porritt and Yoshioka, 2016]. The detail discussions on this topic require the elasticity of ShyB at the P-T conditions of the transition zone and lower mantle. In this contribution, we obtained the thermal elasticity of ShyB using first-principles calculations. ShyB shows a very low velocity and density compared to the bridgmanite and periclase, the major minerals in the lower mantle. The accumulation of ShyB will generate the low-velocity anomaly in the uppermost lower mantle. The dehydration of ShyB will cause the Vp, Vs, and density increase by 7.5%, 15.0% and 12%, respectively. It means that a slab with 10% ShyB could cause an impedance contrast of 2.7% at a depth of 800 km for shear wave. Furthermore, the released waters by the dehydration of ShyB probably migrate upward and promote the partial melt to reduce the sound velocity at shallower depth, which can further explain the low-velocity zones just above 800-km discontinuity in Western-Pacific Subduction Zones [Liu et al., 2016]. Komabayashi, T., and S. Omori (2006), Internally consistent thermodynamic data set for dense hydrous magnesium silicates up to 35GPa, 1600°C: Implications for water circulation in the Earth's deep mantle, Physics of the Earth and Planetary Interiors, 156(1-2), 89-107. Liu, Z., J. Park, and S. I. Karato (2016), Seismological detection of low-velocity anomalies surrounding the mantle transition zone in Japan subduction zone, Geophysical Research Letters, 43(6), 2480-2487. Porritt, R. W., and S. Yoshioka (2016), Slab pileup in the mantle transition zone and the 30 May 2015 Chichi-jima earthquake, Geophysical Research Letters, 43(10), 4905-4912.

  9. The interior structure of Ceres as revealed by surface topography

    NASA Astrophysics Data System (ADS)

    Fu, Roger R.; Ermakov, Anton I.; Marchi, Simone; Castillo-Rogez, Julie C.; Raymond, Carol A.; Hager, Bradford H.; Zuber, Maria T.; King, Scott D.; Bland, Michael T.; Cristina De Sanctis, Maria; Preusker, Frank; Park, Ryan S.; Russell, Christopher T.

    2017-10-01

    Ceres, the largest body in the asteroid belt (940 km diameter), provides a unique opportunity to study the interior structure of a volatile-rich dwarf planet. Variations in a planetary body's subsurface rheology and density affect the rate of topographic relaxation. Preferential attenuation of long wavelength topography (≥150 km) on Ceres suggests that the viscosity of its crust decreases with increasing depth. We present finite element (FE) geodynamical simulations of Ceres to identify the internal structures and compositions that best reproduce its topography as observed by the NASA Dawn mission. We infer that Ceres has a mechanically strong crust with maximum effective viscosity ∼1025 Pa s. Combined with density constraints, this rheology suggests a crustal composition of carbonates or phyllosilicates, water ice, and at least 30 volume percent (vol.%) low-density, high-strength phases most consistent with salt and/or clathrate hydrates. The inference of these crustal materials supports the past existence of a global ocean, consistent with the observed surface composition. Meanwhile, we infer that the uppermost ≥60 km of the silicate-rich mantle is mechanically weak with viscosity <1021 Pa s, suggesting the presence of liquid pore fluids in this region and a low temperature history that avoided igneous differentiation due to late accretion or efficient heat loss through hydrothermal processes.

  10. The interior structure of Ceres as revealed by surface topography

    USGS Publications Warehouse

    Fu, Roger R.; Ermakov, Anton; Marchi, Simone; Castillo-Rogez, Julie C.; Raymond, Carol A.; Hager, Bradford; Zuber, Maria; King, Scott D.; Bland, Michael T.; De Sanctis, Maria Cristina; Preusker, Frank; Park, Ryan S.; Russell, Christopher T.

    2017-01-01

    Ceres, the largest body in the asteroid belt (940 km diameter), provides a unique opportunity to study the interior structure of a volatile-rich dwarf planet. Variations in a planetary body's subsurface rheology and density affect the rate of topographic relaxation. Preferential attenuation of long wavelength topography (≥150 km) on Ceres suggests that the viscosity of its crust decreases with increasing depth. We present finite element (FE) geodynamical simulations of Ceres to identify the internal structures and compositions that best reproduce its topography as observed by the NASA Dawn mission. We infer that Ceres has a mechanically strong crust with maximum effective viscosity ∼1025 Pa s. Combined with density constraints, this rheology suggests a crustal composition of carbonates or phyllosilicates, water ice, and at least 30 volume percent (vol.%) low-density, high-strength phases most consistent with salt and/or clathrate hydrates. The inference of these crustal materials supports the past existence of a global ocean, consistent with the observed surface composition. Meanwhile, we infer that the uppermost ≥60 km of the silicate-rich mantle is mechanically weak with viscosity <1021 Pa s, suggesting the presence of liquid pore fluids in this region and a low temperature history that avoided igneous differentiation due to late accretion or efficient heat loss through hydrothermal processes.

  11. Multiple mantle upwellings through the transition zone beneath the Afar Depression?

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Thompson, D. A.; Ebinger, C. J.; Keir, D.; Ayele, A.; Goitom, B.; Ogubazghi, G.

    2012-12-01

    Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 7 other regional experiments and global network stations across Kenya, Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S-wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. Estimates of transition zone thickness suggest that this is unlikely to be an artefact of mantle discontinuity topography as a transition zone of normal thickness underlies the majority of Afar and surrounding regions. However, a low velocity layer is evident directly above the 410 discontinuity, co-incident with some of the lowest seismic velocities suggesting that smearing of a strong low velocity layer of limited depth extent may contribute to the tomographic models in north-east Afar. The combination of seismic constraints suggests that small low temperature (<50K) upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. These, combined with possible evidence of melt above the 410 discontinuity can explain the seismic velocity models. Our images of secondary upwellings suggest that there is no evidence for a plume in the classical sense (i.e. a narrow conduit). Instead, we propose that secondary upwellings rise from the base of the transition zone and connect with the northeast flowing African superswell in the upper mantle.

  12. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere.

    PubMed

    Lin, Pei-Ying Patty; Gaherty, James B; Jin, Ge; Collins, John A; Lizarralde, Daniel; Evans, Rob L; Hirth, Greg

    2016-07-28

    Convective flow in the mantle and the motions of tectonic plates produce deformation of Earth's interior, and the rock fabric produced by this deformation can be discerned using the anisotropy of the seismic wave speed. This deformation is commonly inferred close to lithospheric boundaries beneath the ocean in the uppermost mantle, including near seafloor-spreading centres as new plates are formed via corner flow, and within a weak asthenosphere that lubricates large-scale plate-driven flow and accommodates smaller scale convection. Seismic models of oceanic upper mantle differ as to the relative importance of these deformation processes: seafloor spreading fabric is very strong just beneath the crust-mantle boundary (the Mohorovičić discontinuity, or Moho) at relatively local scales, but at the global and ocean-basin scales, oceanic lithosphere typically appears weakly anisotropic when compared to the asthenosphere. Here we use Rayleigh waves, recorded across an ocean-bottom seismograph array in the central Pacific Ocean (the NoMelt Experiment), to provide unique localized constraints on seismic anisotropy within the oceanic lithosphere-asthenosphere system in the middle of a plate. We find that azimuthal anisotropy is strongest within the high-seismic-velocity lid, with the fast direction coincident with seafloor spreading. A minimum in the magnitude of azimuthal anisotropy occurs within the middle of the seismic low-velocity zone, and then increases with depth below the weakest portion of the asthenosphere. At no depth does the fast direction correlate with the apparent plate motion. Our results suggest that the highest strain deformation in the shallow oceanic mantle occurs during corner flow at the ridge axis, and via pressure-driven or buoyancy-driven flow within the asthenosphere. Shear associated with motion of the plate over the underlying asthenosphere, if present, is weak compared to these other processes.

  13. Physical and chemical consequences of crustal melting in fossil mature intra-oceanic arcs

    NASA Astrophysics Data System (ADS)

    Berger, J.; Burg, J.-P.

    2012-04-01

    Seismic velocity models of active intra-oceanic arcs show roots with densities and P-wave velocities intermediate to classical lower oceanic crust (density; ~3.0, Vp: ~7.0 km/s) and uppermost harzburgitic mantle (density: 3.2-3.3, Vp: 7.9-8.0 km/s). Most studies on active and fossil exhumed island arcs interpret the petrological nature of this root as ultramafic cumulates crystallized from primitive melts and/or as pyroxenites formed via basalt-peridotite reactions. Igneous cumulates and pyroxenites have densities close to or above that of uppermost mantle rocks; they can consequently undergo gravity-driven delamination, a process thought to drive the bulk composition of the arc toward an andesitic, continental crust-like composition. Dehydration and melting reactions are reported from exposed arc roots (Jijal complex in Kohistan; Amalaoulaou arc in Mali; Fiordland arc in New-Zealand). Intense influx of mantle-derived basaltic magmas at high pressure in a thickening island arc can enable lower crustal rocks to locally cross the dehydration-melting solidus of hydrous subalkaline basalts. Thermodynamic modeling using Perple_X, geochemical analysis and compilation of experimental and field data have been combined to constrain processes, conditions and consequences of intra-arc melting. The position of the solidus in a P-T grid is strongly dependent of the bulk water content: at 1 GPa, it is as low as 750 °C for water saturated hornblende-gabbros (>1 wt% H2O) and 830°C for gabbros with 0.1 wt% H2O. Incipient melting (F <10 %) near the solidus produces trondhjemitic melt and garnet granulites residue. The latter has composition very close to that of igneous precursors but is characterized by contrasted physical properties (density: 3.2-3.3, Vp: 6.9-7.4 km/s). Higher partial melting degrees (F: 10-20 %) lead to the formation of anorthositic melts in equilibrium with garnet-clinopyroxene-rutile residues (density: up to 3.45, Vp: up to 7.7 km/s). These melts are rich in LILE (Rb, Ba, Sr) and LREE but strongly depleted in HREE and Y, while the residues are moderately enriched in Ti, Zr, Nb, HREE and Y but depleted in LREE relative to their igneous precursors. Compared to depleted mantle values, the residues also have low Rb/Sr but high Sm/Nd and Lu/Hf ratios. Partial melting in the lowermost oceanic arc crust thus produces the conditions to trigger gravity-driven delamination of the root and could lead to introduction of fertile arc garnet pyroxenites within the upper mantle. However, in Kohistan and at Amalaoulaou, the dense garnet-clinopyroxene residues are dispersed in the arc roots; they are intermingled with hornblendite and pyroxenite bodies. The small density contrast between garnet granulites and the harzburgitic mantle, and the low volumes of garnet-clinopyroxene residues preclude massive delamination of the partial melting residues. Further numerical modeling of physical modifications induced by dehydration-melting together with igneous mineral segregation in arc roots will help constraining fundamental parameters (mantle and arc crust rheology and density, composition, P-T conditions, volume and rate of incoming basaltic fluxes…) that control the stability of the lowermost arc crust.

  14. Betwixt and Between: Structure and Evolution of Central Mongolia

    NASA Astrophysics Data System (ADS)

    Meltzer, A.; Ancuta, L. D.; Carlson, R. W.; Caves, J. K.; Chamberlain, C. P.; Gosse, J. C.; Idleman, B. D.; Ionov, D. A.; McDannell, K. T.; Tamra, M.; Mix, H.; Munkhuu, U.; Russo, R.; Sabaj-Perez, M.; Sahagian, D. L.; Sjostrom, D. J.; Smith, S. G.; Stachnik, J. C.; Tsagaan, B.; Wegmann, K. W.; Winnick, M. J.; Zeitler, P. K.; Prousevitch, A.

    2015-12-01

    Central Mongolia sits deep in the Asian continental interior between the Siberian craton to the north, the edge of the India-Asia collision to the south, and far-field subduction of the Pacific plate to the east. It has a complex geologic history comprising Archean to Early Proterozoic crystalline rocks modified by accretionary events in the Paleozoic, and Cenozoic deformation and basalt volcanism that continues today. Within central Mongolia, the broad domal Hangay upland is embedded in the greater Mongolian Plateau. Elevations within the dome average ~1.5 km above the regional trend and locally reach ~4000 m. This elevated landscape hosts a low-relief surface cut into crystalline basement, and a 30 Ma record of intermittent basalt magmatism. Here we integrate observations from geomorphology, geochronology, paleoaltimetry, biogeography, petrology, geochemistry, and seismology to document the timing, rate, and pattern of surface uplift in the Hangay and more broadly to understand the geodynamics of the Mongolian plateau. Results from mantle and crustal xenoliths, seismology, thermochronology, and basalt geochemistry are consistent with: a high geothermal gradient with temperatures reaching ~900°C at 60 km depth, intercepting the mantle adiabat at ~90 km depth; an uppermost mantle composed mostly of fertile peridotites; low-volume Cenozoic basaltic magmatism sourced below the lithosphere, with isotopic characteristics similar to much east-Asian Cenozoic mafic volcanism; a 42-57 km-thick crust of island-arc affinity formed during accretion of the Central Asia Orogenic Belt; elevations supported primarily by crustal isostasy; slow exhumation (30-100 m/My) over hundreds of millions of years; and long-term thermal stability of the upper crust and relief lowering since the Mesozoic. Results from geomorphology, paleoaltimetry, fish genetics, and basalt geochronology imply that drainage divides are stable since the mid-Miocene with modest surface uplift (up to 1 km) and topographic relief up to 800 m remaining largely unchanged since ~10 Ma. Surprisingly, this area of remarkable stability over significant time and space sits above a shallow convecting mantle and hosts some of the largest recorded intracontinental earthquakes.

  15. Tomography and Dynamics of Western-Pacific Subduction Zones

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2012-01-01

    We review the significant recent results of multiscale seismic tomography of the Western-Pacific subduction zones and discuss their implications for seismotectonics, magmatism, and subduction dynamics, with an emphasis on the Japan Islands. Many important new findings are obtained due to technical advances in tomography, such as the handling of complex-shaped velocity discontinuities, the use of various later phases, the joint inversion of local and teleseismic data, tomographic imaging outside a seismic network, and P-wave anisotropy tomography. Prominent low-velocity (low-V) and high-attenuation (low-Q) zones are revealed in the crust and uppermost mantle beneath active arc and back-arc volcanoes and they extend to the deeper portion of the mantle wedge, indicating that the low-V/low-Q zones form the sources of arc magmatism and volcanism, and the arc magmatic system is related to deep processes such as convective circulation in the mantle wedge and dehydration reactions in the subducting slab. Seismic anisotropy seems to exist in all portions of the Northeast Japan subduction zone, including the upper and lower crust, the mantle wedge and the subducting Pacific slab. Multilayer anisotropies with different orientations may have caused the apparently weak shear-wave splitting observed so far, whereas recent results show a greater effect of crustal anisotropy than previously thought. Deep subduction of the Philippine Sea slab and deep dehydration of the Pacific slab are revealed beneath Southwest Japan. Significant structural heterogeneities are imaged in the source areas of large earthquakes in the crust, subducting slab and interplate megathrust zone, which may reflect fluids and/or magma originating from slab dehydration that affected the rupture nucleation of large earthquakes. These results suggest that large earthquakes do not strike anywhere, but in only anomalous areas that may be detected with geophysical methods. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The Pacific slab becomes stagnant in the mantle transition zone under East Asia, and a big mantle wedge (BMW) has formed above the stagnant slab. Convective circulations and fluid and magmatic processes in the BMW may have caused intraplate volcanism (e.g., Changbai and Wudalianchi), reactivation of the North China craton, large earthquakes, and other active tectonics in East Asia. Deep subduction and dehydration of continental plates (such as the Eurasian plate, Indian plate and Burma microplate) are also found, which have caused intraplate magmatism (e.g., Tengchong) and geothermal anomalies above the subducted continental plates. Under Kamchatka, the subducting Pacific slab shortens toward the north and terminates near the Aleutian-Kamchatka junction. The slab loss was induced by friction with the surrounding asthenosphere, as the Pacific plate rotated clockwise 30 Ma ago, and then it was enlarged by the slab-edge pinch-off by the asthenospheric flow. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle. Suggestions are also made for future directions of the seismological research of subduction zones.

  16. Sampling the Uppermost Surface of Airless Bodies

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.

    2011-01-01

    The uppermost surface of an airless body is a critical source of ground-truth information for the various remote sensing techniques that only penetrate nanometers to micrometers into the surface. Such samples will also be vital for understanding conditions at the surface and acquiring information about how the body interacts with its environment, including solar wind interaction, grain charging and levitation [1]. Sampling the uppermost surface while preserving its structure (e.g. porosity, grain-to-grain contacts) however, is a daunting task that has not been achieved on any sample return mission to date.

  17. Difference of the seismic structure between the Hyuga-nada and the Nankai seismogenic segments

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Obana, K.; Takahashi, T.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.

    2010-12-01

    In the Nankai Trough, three major seismogenic zones of megathrust earthquake exist (Tokai, Tonankai and Nankai earthquake regions). The Hyuga-nada region was distinguished from these seismogenic zones because of the lack of megathrust earthquake. In the Hyuga-nada region, interplate earthquakes of M~7 occur repeatedly at intervals of about 20 years whereas no megathrust (M > 8) earthquakes had been recognized up to now. However, recent studies show the possibility of simultaneous rupture of the Tokai, Tonankai, Nankai and Hyuga-nada segments was also pointed out [e.g., Hori et al., 2009 AOGS]. To understand the possibility of seismic linkage of Nankai and Hyuga-nada segments, Japan Agency for Marine-Earth Science and Technology has been carried out a wide-angle active source survey and local seismic observation in the western end of the Nankai seismogenic zone, as a part of Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. Nakanishi et al [2009, AGU] showed that subducting Philippine Sea Plate can be divided into three zones and there is the zone of the thin oceanic crust of the subducting Philippine Sea Plate between Nankai segment and Kyushu-Palau Ridge segment by analyzing of the active source survey. Deep structure of the subducting slab is also important to consider the possibility of the seismic linkage and the location of the boundary among three zones described above. To obtain the deep seismic image, we performed a three-dimensional seismic tomography using the local seismic data recorded on 158 ocean bottom seismographs and 105 land seismic stations. From these data, we could detect 1141 earthquakes in the Hyuga-nada region. From the result of hypocenter relocation, microseismicity near the trough axis is active on the western part of the ‘thin oceanic crust’, whereas inactive on the eastern part. Besides, velocity structure of the uppermost part of the subducting slab mantle shows spatial heterogeneities. In the thin oceanic crust zone, high velocity slab mantle is imaged from near the trough to coastline. On the other hands, there is low velocity zone in the slab mantle near the trough axis in the Kyusyu-Palau Ridge segment. This low velocity zone may be related to the location of the eastern end of subducted Kyusyu-Palau Ridge.

  18. Preliminary Shear Velocity Tomography of Mt St Helens, Washington from iMUSH Array

    NASA Astrophysics Data System (ADS)

    Crosbie, K.; Abers, G. A.; Creager, K. C.; Moran, S. C.; Denlinger, R. P.; Ulberg, C. W.

    2015-12-01

    The imaging Magma Under Mount St Helens (iMUSH) experiment will illuminate the crust beneath Mt St Helens volcano. The ambient noise tomography (ANT) component of this experiment measures shear velocity structure, which is more sensitive than P velocity to the presence of melt and other pore fluids. Seventy passive-source broadband seismometers for iMUSH were deployed in the summer of 2014 in a dense array of 100 Km diameter with a 10 km station spacing. We cross correlated ambient noise in 120 s windows and summed the result over many months for pairs of stations. Then frequency-domain methods on these cross correlations are employed to measure the phase velocities (Ekström et al. Geophys Rev Lett, 2009). Unlike velocities attained by group velocity methods, velocities for path lengths as small as one wavelength can be measured, enabling analysis of higher frequency signals and increasing spatial resolution. The minimum station spacing from which signals can be recovered ranges from 12 km at 0.18 Hz, a frequency that dominantly samples the upper crust to 20 km, to 37 km at 0.04 Hz, a frequency sensitive to structure through the crust and uppermost mantle, with lower spacing at higher frequencies. These phase velocities are tomographically inverted to obtain shear velocity maps for each frequency, assuming ray theory. Initial shear velocity maps for frequencies between 0.04-0.18 Hz reveal low-velocity sediments in the Puget Lowland west of Mount St Helens at 0.16-0.18 Hz, and a low velocity zone near 0.10 Hz between Mt Rainier and Mt Adams, east of Mount St Helens. The latter may reflect large-scale crustal plumbing of the arc between volcanic centers. In subsequent analyses these ANT results will be jointly inverted with receiver functions in order to further resolve crustal and upper mantle structure.

  19. Seismic velocity structure of the crust and upper mantle beneath the Texas-Gulf of Mexico margin from joint inversion of Ps and Sp receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Agrawal, M.; Pulliam, J.; Sen, M. K.

    2013-12-01

    The seismic structure beneath Texas Gulf Coast Plain (GCP) is determined via velocity analysis of stacked common conversion point (CCP) Ps and Sp receiver functions and surface wave dispersion. The GCP is a portion of a ocean-continental transition zone, or 'passive margin', where seismic imaging of lithospheric Earth structure via passive seismic techniques has been rare. Seismic data from a temporary array of 22 broadband stations, spaced 16-20 km apart, on a ~380-km-long profile from Matagorda Island, a barrier island in the Gulf of Mexico, to Johnson City, Texas were employed to construct a coherent image of the crust and uppermost mantle. CCP stacking was applied to data from teleseismic earthquakes to enhance the signal-to-noise ratios of converted phases, such as Ps phases. An inaccurate velocity model, used for time-to-depth conversion in CCP stacking, may produce higher errors, especially in a region of substantial lateral velocity variations. An accurate velocity model is therefore essential to constructing high quality depth-domain images. To find accurate velocity P- and S-wave models, we applied a joint modeling approach that searches for best-fitting models via simulated annealing. This joint inversion approach, which we call 'multi objective optimization in seismology' (MOOS), simultaneously models Ps receiver functions, Sp receiver functions and group velocity surface wave dispersion curves after assigning relative weights for each objective function. Weights are computed from the standard deviations of the data. Statistical tools such as the posterior parameter correlation matrix and posterior probability density (PPD) function are used to evaluate the constraints that each data type places on model parameters. They allow us to identify portions of the model that are well or poorly constrained.

  20. On the temporal evolution of long-wavelength mantle structure of the Earth since the early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Rudolph, Maxwell L.

    2015-05-01

    The seismic structure of the Earth's lower mantle is characterized by a dominantly degree-2 pattern with the African and Pacific large low shear velocity provinces (i.e., LLSVP) that are separated by circum-Pacific seismically fast anomalies. It is important to understand the origin of such a degree-2 mantle structure and its temporal evolution. In this study, we investigated the effects of plate motion history and mantle viscosity on the temporal evolution of the lower mantle structure since the early Paleozoic by formulating 3-D spherical shell models of thermochemical convection. For convection models with realistic mantle viscosity and no initial structure, it takes about ˜50 Myr to develop dominantly degree-2 lower mantle structure using the published plate motion models for the last either 120 Ma or 250 Ma. However, it takes longer time to develop the mantle structure for more viscous mantle. While the circum-Pangea subduction in plate motion history models promotes the formation of degree-2 mantle structure, the published pre-Pangea plate motions before 330 Ma produce relatively cold lower mantle in the African hemisphere and significant degree-1 structure in the early Pangea (˜300 Ma) or later times, even if the lower mantle has an initially degree-2 structure and a viscosity as high as 1023 Pas. This suggests that the African LLSVP may not be stationary since the early Paleozoic. With the published plate motion models and lower mantle viscosity of 1022 Pas, our mantle convection models suggest that the present-day degree-2 mantle structure may have largely been formed by ˜200 Ma.

  1. Implications of the earthquake cycle for inferring fault locking on the Cascadia megathrust

    USGS Publications Warehouse

    Pollitz, Fred; Evans, Eileen

    2017-01-01

    GPS velocity fields in the Western US have been interpreted with various physical models of the lithosphere-asthenosphere system: (1) time-independent block models; (2) time-dependent viscoelastic-cycle models, where deformation is driven by viscoelastic relaxation of the lower crust and upper mantle from past faulting events; (3) viscoelastic block models, a time-dependent variation of the block model. All three models are generally driven by a combination of loading on locked faults and (aseismic) fault creep. Here we construct viscoelastic block models and viscoelastic-cycle models for the Western US, focusing on the Pacific Northwest and the earthquake cycle on the Cascadia megathrust. In the viscoelastic block model, the western US is divided into blocks selected from an initial set of 137 microplates using the method of Total Variation Regularization, allowing potential trade-offs between faulting and megathrust coupling to be determined algorithmically from GPS observations. Fault geometry, slip rate, and locking rates (i.e. the locking fraction times the long term slip rate) are estimated simultaneously within the TVR block model. For a range of mantle asthenosphere viscosity (4.4 × 1018 to 3.6 × 1020 Pa s) we find that fault locking on the megathrust is concentrated in the uppermost 20 km in depth, and a locking rate contour line of 30 mm yr−1 extends deepest beneath the Olympic Peninsula, characteristics similar to previous time-independent block model results. These results are corroborated by viscoelastic-cycle modelling. The average locking rate required to fit the GPS velocity field depends on mantle viscosity, being higher the lower the viscosity. Moreover, for viscosity ≲ 1020 Pa s, the amount of inferred locking is higher than that obtained using a time-independent block model. This suggests that time-dependent models for a range of admissible viscosity structures could refine our knowledge of the locking distribution and its epistemic uncertainty.

  2. Constraints on the Amount of deeply subducted Water from numerical Models in comparison with natural Samples

    NASA Astrophysics Data System (ADS)

    Konrad-Schmolke, M.; Halama, R.

    2014-12-01

    The subduction of hydrated slab mantle to beyond-arc depths is the most important and yet weakly constrained factor in the quantification of the Earth's deep geologic water cycle. During subduction of hydrated oceanic lithosphere, dehydration reactions in the downgoing plate lead to a partitioning of water between upper and lower plate. Water retained in the slab is recycled into the mantle where it controls its rheology and thus plate tectonic velocities. Hence, quantification of the water partitioning in subduction zones is crucial for the understanding of mass transfer between the Earth's surface and the mantle. Combined thermomechanical and thermodynamic models yield quantitative constraints on the water cycle in subduction zones, but unless model results can be linked to natural observations, the reliability of such models remains speculative. We present combined thermomechanical, thermodynamic and geochemical models of active and paleo-subduction zones, whose results can be tested with independent geochemical features in natural rocks. In active subduction zones, evidence for the validity of our model comes from the agreement between modeled and observed across-arc trends of boron concentrations and isotopic compositions in arc volcanic rocks. In the Kamchatkan subduction zone, for example, the model successfully predicts complex geochemical patterns and the spatial distribution of arc volcanoes. In paleo-subduction zones (e.g. Western Gneiss Region and Western Alps), constraints on the water budget and dehydration behavior of the subducting slab come from trace element zoning patterns in ultra-high pressure (UHP) garnets. Distinct enrichments of Cr, Ni and REE in the UHP zones of the garnets can be reconciled by our models that predict intense rehydration and trace element re-enrichment of the eclogites at UHP conditions by fluids released from the underlying slab mantle. Models of present-day subduction zones indicate the presence of 2.5-6 wt.% of water within the uppermost 15 km of the subducted slab mantle. Depending on hydration depth, between 25 and 90% of this water is recycled into the deeper mantle. The Lower Devonian example from the Western Gneiss Region indicates that subduction of water into the Earth's deeper mantle is an active process at least since the middle Paleozoic.

  3. Permeability of serpentinites and implication for the oceanic mantle hydration along the outer rise faults

    NASA Astrophysics Data System (ADS)

    Hatakeyama, K.; Katayama, I.

    2016-12-01

    Recent geophysical surveys indicate that hydration (serpentinization) of oceanic mantle is related to outer-rise faulting prior to subduction (e.g., Fujie et al., 2013, Shilington et al., 2015). The serpentinization of oceanic mantle influences the generation of intermediate-depth earthquakes (e.g., Seno and Yamanaka, 1996) and the subduction water flux (e.g., Hacker, 2008). Since the chemical reactions that produce serpentinite are geologically rapid at low temperatures (Martin and Fyfe, 1970), the rate of water delivery to the reaction front likely controls the extent of serpentinization (Macdonald and Fyfe, 1985). Because the water through existing serpentinite is supplied to reaction front, permeability of serpentinite has important role of the extent of serpentinization along the outer-rise fault. In this study, we measured permeability of low-temperature serpentinites composed of lizardite and chrysotile, and calculated the extent of serpentinization along an outer-rise fault from Darcy's law. Our experimental results show that the permeability of serpnetinites decreases with increasing confining pressure, and reaches to 10-19 m2 to 10-21 m2 at confining pressure of 100 MPa. In extrapolating our experimental results to pressure of oceanic mantle, permeability of serpentinite can be as low as 10-22 m2 at the top of oceanic mantle (7 km depth beneath seafloor). If we assume that the time scale of water supply to the reaction front of 1.0 My, the lateral extent of serpentinization is approximately 9 km along the outer-rise fault in the uppermost oceanic mantle. Based on these estimate, we calculated the global water flux carried by serpentinized oceanic mantle to be 3.4×1012 kg/year, which is markedly higher than the water flux of hydrated oceanic crust (1.3×1012 kg/year). Since the subduction water flux is much greater than the output flux through magmatic degassing, the amount of present-day ocean might be decreasing, and this may result in the disappearance of the Earth's oceans in the future.

  4. Quantitative Restoration of the Evolution of Mantle Structures Using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Schubert, G.; Tsepelev, I.

    2008-12-01

    Rapid progress in imaging deep Earth structures and in studies of physical and chemical properties of mantle rocks facilitates research in assimilation of data related to mantle dynamics. We present a quantitative approach to assimilation of geophysical and geodetic data, which allows for incorporating observations and unknown initial conditions for mantle temperature and flow into a three-dimensional dynamic model in order to determine the initial conditions in the geological past. Once the conditions are determined the evolution of mantle structures can be restore backward in time. We apply data assimilation techniques to model the evolution of mantle plumes and lithospheric slabs. We show that the geometry of the mantle structures changes with time diminishing the degree of surface curvature of the structures, because the heat conduction smoothes the complex thermal surfaces of mantle bodies with time. Present seismic tomography images of mantle structures do not allow definition of the sharp shapes of these structures. Assimilation of mantle temperature and flow to the geological past instead provides a quantitative tool to restore thermal shapes of prominent structures in the past from their diffusive shapes at present.

  5. Lithospheric flexural strength and effective elastic thicknesses of the Eastern Anatolia (Turkey) and surrounding region

    NASA Astrophysics Data System (ADS)

    Oruç, Bülent; Gomez-Ortiz, David; Petit, Carole

    2017-12-01

    The Lithospheric structure of Eastern Anatolia and the surrounding region, including the northern part of the Arabian platform is investigated via the analysis and modeling of Bouguer anomalies from the Earth Gravitational Model EGM08. The effective elastic thickness of the lithosphere (EET) that corresponds to the mechanical cores of the crust and lithospheric mantle is determined from the spectral coherence between Bouguer anomalies and surface elevation data. Its average value is 18.7 km. From the logarithmic amplitude spectra of Bouguer anomalies, average depths of the lithosphere-asthenosphere boundary (LAB), Moho, Conrad and basement in the study area are constrained at 84 km, 39 km, 16 km and 7 km, respectively. The geometries of the LAB and Moho are then estimated using the Parker-Oldenburg inversion algorithm. We also present a lithospheric strength map obtained from the spatial variations of EET determined by Yield Stress Envelopes (YSE). The EET varies in the range of 12-23 km, which is in good agreement with the average value obtained from spectral analysis. Low EET values are interpreted as resulting from thermal and flexural lithospheric weakening. According to the lithospheric strength of the Eastern Anatolian region, the rheology model consists of a strong but brittle upper crust, a weak and ductile lower crust, and a weak lower part of the lithosphere. On the other hand, lithosphere strength corresponds to weak and ductile lower crust, a strong upper crust and a strong uppermost lithospheric mantle for the northern part of the Arabian platform.

  6. Metasomatism and the Weakening of Cratons: A Mechanism to Rift Cratons

    NASA Astrophysics Data System (ADS)

    Wenker, Stefanie; Beaumont, Christopher

    2016-04-01

    The preservation of cratons is a demonstration of their strength and resistance to deformation. However, several cratons are rifting now (e.g. Tanzania and North China Craton) or have rifted in the past (e.g. North Atlantic Craton). To explain this paradox, we suggest that widespread metasomatism of the originally cold depleted dehydrated craton mantle lithosphere root can act as a potential weakening mechanism. This process, particularly melt metasomatism, increases root density through a melt-peridotite reaction, and reduces root viscosity by increasing the temperature and rehydrating the cratonic mantle lithosphere. Using 2D numerical models, we model silicate-melt metasomatism and rehydration of cold cratonic mantle lithosphere that is positioned beside standard Phanerozoic lithosphere. The models are designed to investigate when a craton is sufficiently weakened to undergo rifting and is no longer protected by the initially weaker adjacent standard Phanerozoic lithosphere. Melt is added to specified layers in the cratonic mantle lithosphere at a uniform volumetric rate determined by the duration of metasomatism (3 Myr, 10 Myr or 30 Myr), until a total of ~30% by volume of melt has been added. During melt addition heat and mass are properly conserved and the density and volume increase by the respective amounts required by the reaction with the peridotite. No extensional boundary conditions are applied to the models during the metasomatism process. As expected, significant refertilization leads to removal and thinning of progressively more gravitationally unstable cratonic mantle lithosphere. We show that the duration of metasomatism dictates the final temperature in the cratonic upper mantle lithosphere. Consequently, when extensional boundary conditions are applied in our rifting tests in most cases the Phanerozoic lithosphere rifts. The craton rifts only in the models with the hottest cratonic upper mantle lithosphere. Our results indicate rifting of cratons depends on the timing of extension, with respect to metasomatism. The key effect is the associated increase in temperature which must have time to reach peak values in the initially cold and strongest, uppermost mantle lithosphere. However, it remains true that the model cratons mostly remain strong and only rift when subjected to intensive metasomatism. This may explain why so many cratons have survived and only a few have rifted. An additional effect is that the craton surface subsides isostatically to balance the increasing density of craton mantle lithosphere where it is moderately metasomatized. We suggest that this is the mechanism that forms intracratonic basins. If correct, subsidence and subsequent uplift of intracratonic basins, and cratonic rifting constitute evidence of progressive metasomatism of cratonic mantle lithosphere.

  7. P-wave and S-wave traveltime residuals in Caledonian and adjacent units of Northern Europe and Greenland

    NASA Astrophysics Data System (ADS)

    Hejrani, Babak; Balling, Niels; Holm Jacobsen, Bo; Kind, Rainer; Tilmann, Frederik; England, Richard; Bom Nielsen, Søren

    2014-05-01

    This work combines P-wave and S-wave travel time residuals from in total 477 temporary and 56 permanent stations deployed across Caledonian and adjacent units in Northern Europe and Greenland (Tor, Gregersen et al. 2002; SVEKALAPKO, Sandoval et al., 2003; CALAS, Medhus et al, 2012a; MAGNUS, Weidle et al. 2010; SCANLIPS south, England & Ebbing 2012; SCANLIPS north, Hejrani et al. 2012; JULS Hejrani et al. 2013; plus permanent stations in the region). We picked data from 2002 to 2012 (1221 events) using a cross correlation technique on all waveforms recorded for each event. In this way we achieve maximum consistency of relative residuals over the whole region (Medhus et al. 2012b). On the European side 18362 P-wave travel time residuals was delivered. In East Greenland 1735 P-wave residuals were recovered at the Central Fjord array (13 stations) and 2294 residuals from the sparse GLISN-array (23 stations). Likewise, we picked a total of 6034 residuals of the SV phase (For the Tor and SVEKALAPKO projects we used data from Amaru et al. 2008). Relative residuals within the region are mainly due to sub-crustal uppermost mantle velocity anomalies. A dominant subvertical boundary was detected by Medhus et al. (2012), running along the Tornquist zone, east of the Oslo Graben and crossing under high topography of the southern Scandes. We delineated this boundary in more detail, tracking it towards the Atlantic margin north of Trondheim. Further north (Scanlips north), a similar subvertical upper mantle boundary seems to be present close to the coast, coinciding with the edge of the stretched crust. The North German Caledonides were probed by the new JULS (JUtland Lower Saxony) profile which closes the gap between Tor and CALAS arrays. Mantle structure found by the Tor project was confirmed, and modelling was extended to the eastern edge of the North Sea. References: Amaru, M. L., Spakman, W., Villaseñor, A., Sandoval, S., Kissling, E., 2008, A new absolute arrival time data set for Europe.Geophysical Journal International, 173, 465-472. England, R. W.; Ebbing, J., 2012, Crustal structure of central Norway and Sweden from integrated modelling of teleseismic receiver functions and the gravity anomaly.GEOPHYSICAL JOURNAL INTERNATIONAL, 191, 1-11. Gregersen S., Voss P., TOR Working Group, 2002. Summary of project TOR: delineation of a stepwise, sharp, deep lithosphere transition across Germany-Denmark-Sweden, Tectonophysics, 360, 61-73. Hejrani, B., Jacobsen, B. H., Balling,N. and England, R. W.. 2012, A seismic tomography study of lithospheric structure under the Norwegian Caledonides.Geophysical Research Abstracts, 14, 4334. Hejrani, B.; Jacobsen, B.H.; Balling, N.;Tilmann, F.; Kind, R., 2013, Upper-mantle velocity structure beneathJutland, Denmark and northern Germany:Preliminary results. Joint Assembly Gothenburg Abstract S401S2.01, Medhus, A. B., Balling, N., Jacobsen, B. H., Weidle, C., England, R. W., Kind, R., Thybo, H., Voss, P. (2012a): Upper-mantle structure beneath the Southern Scandes Mountains and the Northern Tornquist Zone revealed by P-wave traveltime tomography. Geophysical Journal International, 189, 3, 1315-1334. Medhus, Jacobsen, B. H.,A. B., Balling, N., 2012b, Bias Problems in Existing Teleseismic Travel Time Databases: Ignore or Repair? Seismological Research Letters, 83, 1030-1037. Sandoval, S., Kissling, E. &Ansorge, J., 2003.High-resolution body wave tomography beneath the SVEKALAPKO array: I. A priori three-dimensional crustal model and associated traveltime effects on teleseismic wave fronts, Geophys. J. Int., 153, 75-87. Weidle, C., Maupin, V., Ritter, J.,Kværna, T., Schweitzer J., Balling, N.,Thybo, H.,Faleide, J. I.,and,Wenzel, F., 2010, MAGNUS-A Seismological Broadband Experiment to Resolve Crustal and Upper Mantle Structure beneath the Southern Scandes Mountains in Norway. SEISMOLOGICAL RESEARCH LETTERS, 81, 76-84.

  8. Experimental Phase Relations of Hydrous, Primitive Melts: Implications for variably depleted mantle melting in arcs and the generation of primitive high-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Weaver, S.; Wallace, P. J.; Johnston, A.

    2010-12-01

    There has been considerable experimental and theoretical work on how the introduction of H2O-rich fluids into the mantle wedge affects partial melting in arcs and chemical evolution of mantle melts as they migrate through the mantle. Studies aimed at describing these processes have become largely quantitative, with an emphasis on creating models that suitably predict the production and evolution of melts and describe the thermal state of arcs worldwide. A complete experimental data set that explores the P-T conditions of melt generation and subsequent melt extraction is crucial to the development, calibration, and testing of these models. This work adds to that data set by constraining the P-T-H2O conditions of primary melt extraction from two end-member subduction zones, a continental arc (Mexico) and an intraoceanic arc (Aleutians). We present our data in context with primitive melts found worldwide and with other experimental studies of melts produced from fertile and variably depleted mantle sources. Additionally, we compare our experimental results to melt compositions predicted by empirical and thermodynamic models. We used a piston-cylinder apparatus and employed an inverse approach in our experiments, constraining the permissible mantle residues with which our melts could be in equilibrium. We confirmed our inverse approach with forced saturation experiments at the P-T-H2O conditions of melt-mantle equilibration. Our experimental results show that a primitive, basaltic andesite melt (JR-28) from monogenetic cinder cone Volcan Jorullo (Central Mexico) last equilibrated with a harzburgite mantle residue at 1.2-1.4 GPa and 1150-1175°C with H2O contents in the range of 5.5-7 wt% H2O prior to ascent and eruption. Phase relations of a tholeiitic high-MgO basaltic melt (ID-16) from the Central Aleutians (Okmok) show the conditions of last equilibration with a fertile lherzolite mantle residue at shallower (1.2 GPa) but hotter (1275°C) conditions with approximately 2 wt% H2O. Given the estimated crustal thicknesses of these two regions, our data suggest that both samples equilibrate with mantle minerals just below the Moho. Recent viscosity dependent thermal models that account for slab geometry suggest that JR-28 melts last equilibrate with harzburgite in a cooler region of the mantle wedge. In contrast, ID-16 equilibrated with a fertile source near the hotter core of the mantle wedge. Our results support the hypothesis that lherzolite melting (wet or dry) produces essentially basaltic melts, whereas more Si-rich primitive melts require shallow hydrous melting of harzburgite or reequilibration of basaltic melts with harzburgite in the uppermost part of the wedge.

  9. Using seismically constrained magnetotelluric inversion to recover velocity structure in the shallow lithosphere

    NASA Astrophysics Data System (ADS)

    Moorkamp, M.; Fishwick, S.; Jones, A. G.

    2015-12-01

    Typical surface wave tomography can recover well the velocity structure of the upper mantle in the depth range between 70-200km. For a successful inversion, we have to constrain the crustal structure and assess the impact on the resulting models. In addition,we often observe potentially interesting features in the uppermost lithosphere which are poorly resolved and thus their interpretationhas to be approached with great care.We are currently developing a seismically constrained magnetotelluric (MT) inversion approach with the aim of better recovering the lithospheric properties (and thus seismic velocities) in these problematic areas. We perform a 3D MT inversion constrained by a fixed seismic velocity model from surface wave tomography. In order to avoid strong bias, we only utilize information on structural boundaries to combine these two methods. Within the region that is well resolved by both methods, we can then extract a velocity-conductivity relationship. By translating the conductivitiesretrieved from MT into velocities in areas where the velocity model is poorly resolved, we can generate an updated velocity model and test what impactthe updated velocities have on the predicted data.We test this new approach using a MT dataset acquired in central Botswana over the Okwa terrane and the adjacent Kaapvaal and Zimbabwe Cratons togetherwith a tomographic models for the region. Here, both datasets have previously been used to constrain lithospheric structure and show some similarities.We carefully asses the validity of our results by comparing with observations and petrophysical predictions for the conductivity-velocity relationship.

  10. Major Element Geochemistry of Peridotites from Santa Elena Ophiolite Complex, NW Costa Rica and Their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Wright, S.; Snow, J. E.; Gazel, E.; Sisson, V.

    2010-12-01

    The Santa Elena Ophiolite Complex (SEOC) is located on the west coast of Northern Costa Rica, near the Nicaraguan border. It consists primarily of preserved oceanic crustal rocks and underlying upper mantle thrust onto an accretionary complex. The petrogenesis and tectonic origin of this complex have widely been interpreted to be either a preserved mantle portion of the Caribbean Large Igneous Province (CLIP) as it drifted between North and South America from the Galapagos hotpot into the present day Caribbean Ocean around 80 Ma or as the mantle section to the nearby Nicoya complex. Previous structural work suggests that SEOC is a supra-subduction complex, not related to the CLIP or Nicoya. Our preliminary results agree. Mantle peridotites collected from the Santa Elena Ophiolite Complex consist primarily of spinel lherzolite (61 %) with minor amounts of harzburgite and dunite (22 % and 16 % respectively). Spinel Cr# [molar Cr / (Cr+Al)*100] is widely accepted to constrain mantle partial melting and lithospheric melt stagnation. Cr# of spinels within Santa Elena lherzolites fall between 12 and 35, suggesting an extent of 3 % to 13 % partial melting. Cr# of harzburgites range from 35 to 39, suggesting 13 % to 14 % partial melting. This range of partial melting suggests only modest depletion of this exposed portion of the ancient uppermost mantle. TiO2 concentrations of the lherzolite and harzburgite range from 0.004% to 0.128%, with the exception of one sample, SE10 - 17 (0.258%), and fall within the normal melting trend for mantle peridotites. The presence of dunite indicates that melt flow and associated melt - rock reaction with the surrounding peridotite took place within this portion of the mantle. A Cr# of 84.5 from one of these dunite samples indicate that significant melt rock reaction with refractory melts took place. Such results are rarely found in mid-ocean ridge abyssal peridotite settings, and are currently found primarily in forearc tectonic settings. However, due to the overall "normal" TiO2 concentrations in all but one spinel peridotite requires that if melt flow did occur, that the melt be nearly depleted in titanium. The relatively low Cr#'s and TiO2 concentrations of spinel in these peridotites that suggest low degrees of partial melting along with the paleo presence of melt flow and melt-rock reaction by low titanium melts, such as boninites, point toward a young fore-arc model for the tectonic origin of this ophiolite body rather than a preserved mantle portion of the CLIP. Additionally, two lines of evidence suggest SEOC was emplaced prior to the collision of the CLIP with North and South America. The SEOC is 1) capped by a Campanian (83.5 - 70.6 Ma) rudist limestone and 2) lies uncomformably atop Cenomanian (93.6 - 99.6 Ma) radiolarite beds. This suggests that the mantle portion of the SEOC was emplaced and exposed at the Caribbean ocean floor prior to the Late Cretaceous (Campanian), but no earlier than the Cenomanian. This combined tectonic and geochemical evidence suggests SEOC may be a portion of the proto-arc that existed between the Americas in the Cretaceous prior to assault by the CLIP.

  11. A resolved mantle anomaly as the cause of the Australian-Antarctic Discordance

    NASA Astrophysics Data System (ADS)

    Ritzwoller, M. H.; Shapiro, N. M.; Leahy, G. M.

    2003-12-01

    We present evidence for the existence of an Australian-Antarctic Mantle Anomaly (AAMA), which trends northwest-southeast (NW-SE) through the Australian-Antarctic Discordance (AAD) on the Southeast Indian Ridge (SEIR), is confined to the upper 120 km of the mantle beneath the AAD, and dips shallowly to the west so that it extends to a depth of about 150 km west of the AAD. Average temperatures within the AAMA are depressed about 100°C relative to surrounding lithosphere and suggest very rapid cooling of newly formed lithosphere at the AAD to an effective thermal age between 20 and 30 Ma. A convective down welling beneath the AAD is not consistent with the confinement of the AAMA in the uppermost mantle. In substantial agreement with the model of [1998], we argue that the AAMA is the suspended remnant of a slab that subducted at the Gondwanaland-Pacific convergent margin more than 100 Myr ago, foundered in the deeper mantle, and then ascended into the shallow mantle within the past 30 Myr, cutting any ties to deeper roots. The stability of the AAMA and its poor correlation with residual topography and gravity imply that it is approximately neutrally buoyant. The thermally induced density anomaly can be balanced by bulk iron depletion of less than 0.8%, consistent with the warmer conditions of formation for the Pacific than Indian lithosphere. We hypothesize that the low temperatures in the AAMA inhibit crustal formation and the AAD depth anomaly is formed at the intersection of the SEIR and the AAMA. The northward migration of the SEIR overriding the cold NW-SE trending AAMA therefore presents a simple kinematic explanation for both the V-shaped residual depth anomaly in the southeast Indian Ocean and the western migration of the AAD along the SEIR. Neither explanation requires the Pacific asthenospheric mantle to push westward and displace Indian asthenosphere. The AAMA may also act as a barrier to large-scale flows in the shallow asthenosphere and may therefore define a boundary for mantle convection and between the Indian and Pacific isotopic provinces. The westward dip of the AAMA would also favor along-axis flow from the Indian Ocean asthenosphere to the AAD that may contribute to the penetration of Indian Ocean mid-ocean ridge basalts into the AAD.

  12. Determination of the 8° discontinuity beneath the major tectonic units of Central Europe from regional seismicity in Europe and northern Africa

    NASA Astrophysics Data System (ADS)

    Nita, B.; Perchuc, E.; Thybo, H.; Maguire, P.; Denton, P.

    2004-12-01

    We evaluate the existence and the depth of the '8° discontinuity' beneath the Alpine orogen using the natural seismicity of Europe and northern Africa as well as events induced by mining activity. For this analysis, the regional events (1) must have epicenters further than 1000 km from the structure being imaged, and (2) the magnitude of body waves must be higher than 4.0 to obtain a favourable signal to noise ratio. The events satisfying the above conditions have epicentres in Algeria, Spain, Bulgaria, Greece and in the Lubin Copper Basin in Poland. The last region is characterised by high seismicity resulting from mining activity. We base our analysis on P-wave traveltime residuals compared to the general iasp91 model. The 8° discontinuity seems to be attributed to the observed P-wave traveltime delays at epicentral distances around 800 km. The analysis of events from the Lubin Coper Basin and the events from other regions mentioned above, gives P-wave delays of 3 s at the Alpine stations in comparison with stations in the Variscan areas to further north. We attribute this variation in travel time to the difference between 'fast' and 'slow' uppermost mantle structures in Europe.

  13. Regional three-dimensional seismic velocity model of the crust and uppermost mantle of northern California

    USGS Publications Warehouse

    Thurber, C.; Zhang, H.; Brocher, T.; Langenheim, V.

    2009-01-01

    We present a three-dimensional (3D) tomographic model of the P wave velocity (Vp) structure of northern California. We employed a regional-scale double-difference tomography algorithm that incorporates a finite-difference travel time calculator and spatial smoothing constraints. Arrival times from earthquakes and travel times from controlled-source explosions, recorded at network and/or temporary stations, were inverted for Vp on a 3D grid with horizontal node spacing of 10 to 20 km and vertical node spacing of 3 to 8 km. Our model provides an unprecedented, comprehensive view of the regional-scale structure of northern California, putting many previously identified features into a broader regional context and improving the resolution of a number of them and revealing a number of new features, especially in the middle and lower crust, that have never before been reported. Examples of the former include the complex subducting Gorda slab, a steep, deeply penetrating fault beneath the Sacramento River Delta, crustal low-velocity zones beneath Geysers-Clear Lake and Long Valley, and the high-velocity ophiolite body underlying the Great Valley. Examples of the latter include mid-crustal low-velocity zones beneath Mount Shasta and north of Lake Tahoe. Copyright 2009 by the American Geophysical Union.

  14. Understanding the geodynamic setting of São Miguel, Azores: A peculiar bit of mantle in the Central Atlantic

    NASA Astrophysics Data System (ADS)

    Wilson, M.; Houlie, N.; Khan, A.; Lithgow-Bertelloni, C. R.

    2012-12-01

    The Azores Plateau and Archipelago in the Central Atlantic Ocean has traditionally been considered as the surface expression of a deep mantle plume or hotspot that has interacted with a mid-ocean ridge. It is geodynamically associated with the triple junction between the North American, African and Eurasian plates. (Yang et al., 2006) used finite frequency seismic tomography to demonstrate the presence of a zone of low P-wave velocities (peak magnitude -1.5%) in the uppermost 200km of the mantle beneath the plateau. The tomographic model is consistent with SW deflection of a mantle plume by regional upper mantle shear flow driven by absolute plate motions. The volcanic island of Sao Miguel is located within the Terceira Rift, believed to represent the boundary between the African and Eurasian plates; magmatic activity has been characterised by abundant basaltic eruptions in the past 30,000 years. The basalts are distinctive within the spectrum of global ocean island basalts for their wide range in isotopic composition, particularly in 87Sr/86Sr. Their Sr-Nd-Pb isotopic compositions show systematic variations from west to east across the island which can be interpreted in terms of melting of a two-component mantle source. The low melting point (enriched) component in the source has been attributed to recycled ancient (~3 Ga) oceanic crust(Elliott et al., 2007). Using the thermo-barometry approach of (Lee et al., 2009) we demonstrate that the pressure and temperature of magma generation below Sao Miguel increase from west (2 GPa, 1425 °C) to east (3.8 GPa, 1575 °C), consistent with partial melting along a mantle geotherm with a potential temperature of ~ 1500 °C. This is consistent with the magnitude of the thermal anomaly beneath the Azores Plateau (ΔT ~ 150-200 °C) inferred on the basis of the seismic tomography study. The site of primary magma generation extends from the base of the local lithosphere (~ 50 km) to ~ 125 km depth. To understand the geodynamic setting of the Sao Miguel magmatism we combine GPS data and mantle convection models with our interpretation of the geochemistry of the basalts. We demonstrate strong south-westerly and downward flow in the asthenospheric mantle above the Transition Zone (410 km seismic discontinuity), consistent with a zone of upper mantle shearing below the base of the lithosphere. The maximum flow velocity is broadly consistent with the depth of magma generation. The advection of the mantle with respect to the oceanic plate "moves" an isotopically distinct mantle source component beneath the active volcanoes of Sao Miguel and carries its previous melting residues to the south-west. We discuss the nature of this mantle source and its contribution to the mantle velocity anomalies determined by seismic tomography. This study opens-up new perspectives for seismic tomography and potentially new connections between the fields of geophysics and geochemistry in oceanic domains.

  15. Crustal and uppermost mantle S-wave velocity below the East European Craton in northern Poland from the inversion of ambient-noise records

    NASA Astrophysics Data System (ADS)

    Lepore, Simone; Polkowski, Marcin; Grad, Marek

    2018-02-01

    The P-wave velocities (V p) within the East European Craton in Poland are well known through several seismic experiments which permitted to build a high-resolution 3D model down to 60 km depth. However, these seismic data do not provide sufficient information about the S-wave velocities (V s). For this reason, this paper presents the values of lithospheric V s and P-wave-to-S-wave velocity ratios (V p/V s) calculated from the ambient noise recorded during 2014 at "13 BB star" seismic array (13 stations, 78 midpoints) located in northern Poland. The 3D V p model in the area of the array consists of six sedimentary layers having total thickness within 3-7 km and V p in the range 1.85.3 km/s, a three-layer crystalline crust of total thickness 40 km and V p within 6.15-7.15 km/s, and the uppermost mantle, where V p is about 8.25 km/s. The V s and V p/V s values are calculated by the inversion of the surface-wave dispersion curves extracted from the noise cross correlation between all the station pairs. Due to the strong velocity differences among the layers, several modes are recognized in the 0.021 Hz frequency band: therefore, multimodal Monte Carlo inversions are applied. The calculated V s and V p/V s values in the sedimentary cover range within 0.992.66 km/s and 1.751.97 as expected. In the upper crust, the V s value (3.48 ± 0.10 km/s) is very low compared to the starting value of 3.75 ± 0.10 km/s. Consequently, the V p/V s value is very large (1.81 ± 0.03). To explain that the calculated values are compared with the ones for other old cratonic areas.

  16. Detailed seismic velocity structure beneath the Hokkaido corner, NE Japan: Collision process of the forearc sliver

    NASA Astrophysics Data System (ADS)

    Kita, S.; Hasegawa, A.; Okada, T.; Nakajima, J.; Matsuzawa, T.; Katsumata, K.

    2010-12-01

    1. Introduction In south-eastern Hokkaido, the Kuril forearc sliver is colliding with the northeastern Japan arc due to the oblique subduction of the Pacific plate. This collision causes the formation of the Hidaka mountain range since the late Miocene (Kimura, 1986) and delamination of the lower-crust materials of the Kuril forearc sliver, which would be expected to descend into the mantle wedge below (e.g., Ito 2000; Ito and Iwasaki, 2002). In this study, we precisely investigated the three-dimensional seismic velocity structure beneath the Hokkaido corner to examine the collision of two forearcs in this area by using both of data from a dense temporary seismic network deployed in this area (Katsumata et al. [2006]) and those from the Kiban observation network, which covers the entire Japanese Islands with a station separation of 15-20 km. 2. Data and method The double-difference tomography method (Zhang and Thurber, 2003; 2006) was applied to a large number of arrival time data of 201,527 for P-waves and 150,963 for S-waves that were recorded at 125 stations from 10,971 earthquakes that occurred from 1999 to 2010. Grid intervals were set at 10 km in the along-arc direction, 12.5 km perpendicular to it, and 5-10 km in the vertical direction. 3. Results and discussion Inhomogeneous seismic velocity structure was clearly imaged in the Hokkaido corner at depths of 0-120 km. A high-velocity anomaly of P- and S- waves with a volume of 20 km x 90 km x 35km was detected just beneath the main zone of the Hidaka metamorphic belt at depths of 0-35 km. This high-velocity anomaly is continuously distributed from the depths of the mantle wedge to the surface. The western edge of the anomaly exactly corresponds to the Hidaka main thrust (HMT) at the surface. The highest velocity value in the anomaly corresponds to those of the uppermost mantle material (e.g. peridotite). The location of them at depths of 0-35km is also consistent with that of the Horoman-Peridotite belt, which is located at the southwestern edge of the main zone of the Hidaka metamorphic belt.On the other hand, a low-velocity anomaly of P- and S- waves with a volume of 80 km x 100 km x 50 km is distributed to the west of the Hidaka metamorphic belt at depths of 35-90km. This low-velocity anomaly seems to be continuously distributed from the continental crust of the NE Japan forearc. The velocity values of this low-V anomaly correspond to those of crustal materials, which is consistent with results of the tomographic study of Kita et al. [2010, EPSL] and Takanami et al. [1982]. Comparison with the results of seismic reflection surveys of Ito [2000] shows that the boundary between anomalous high-velocity mantle materials and low-velocity continental crustal materials just beneath the Hidaka main thrust (HMT) presently obtained is exactly consistent with the locations of reflection planes of their study. Moreover, our study also suggests that the anomalous low-velocity crustal materials at the mantle wedge depth appears to belong to the NE Japan forearc crust, which does not support the expectation of the previous studies that the delaminated lower-crust materials of the Kuril forearc sliver descends into the mantle wedge due to the collision.

  17. Using the heterogeneity distribution in Earth's mantle to study structure and flow

    NASA Astrophysics Data System (ADS)

    Rost, S.; Frost, D. A.; Bentham, H. L.

    2016-12-01

    The Earth's interior contains heterogeneities on many scale-lengths ranging from continent sized structures such as Large-Low Shear Velocity Provinces (LLSVPs) to grain-sized anomalies resolved using geochemistry. Sources of heterogeneity in Earth's mantle are for example the recycling of crustal material through the subduction process as well as partial melting and compositional variations. The subduction and recycling of oceanic crust throughout Earth's history leads to strong heterogeneities in the mantle that can be detected using seismology and geochemistry. Current models of mantle convection show that the subducted crustal material can be long-lived and is transported passively throughout the mantle by convective flows. Settling and entrainment is dependent on the density structure of the heterogeneity. Imaging heterogeneities throughout the mantle therefore allows imaging mantle flow especially in areas of inhibited flow due to e.g. viscosity changes or changes in composition or dynamics. The short-period seismic wavefield is dominated by scattered seismic energy partly originating from scattering at small-scale heterogeneities in Earth's mantle. Using specific raypath configurations we are able to sample different depths throughout Earth's mantle for the existence and properties of heterogeneities. These scattering probes show distinct variations in energy content with frequency indicating dominant heterogeneity length-scales in the mantle. We detect changes in heterogeneity structure both in lateral and radial directions. The radial heterogeneity structure requires changes in mantle structure at depths of 1000 km and 1800 to 2000 km that could indicate a change in viscosity structure in the mid mantle partly changing the flow of subducted crustal material into the deep mantle. Lateral changes in heterogeneity structure close to the core mantle boundary indicate lateral transport inhibited by the compositional anomalies of the LLSVPs.

  18. Effect of water on the fluorine and chlorine partitioning behavior between olivine and silicate melt.

    PubMed

    Joachim, Bastian; Stechern, André; Ludwig, Thomas; Konzett, Jürgen; Pawley, Alison; Ruzié-Hamilton, Lorraine; Clay, Patricia L; Burgess, Ray; Ballentine, Christopher J

    2017-01-01

    Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth's mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280 °C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F-Cl-Br-I-H 2 O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H 2 O (D Cl ol/melt = 1.6 ± 0.9 × 10 -4 ) to 0.33 (6) wt% H 2 O (D Cl ol/melt = 2.2 ± 1.1 × 10 -4 ). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65-78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F-Cl-Br-I-H 2 O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280 °C and 0.3 GPa with ( R 2  = 0.99): [Formula: see text]. The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287-295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65-78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth's mantle minerals and silicate melt is vital for a correct estimation of fluorine abundances in OIB source regions. Estimates for MORB source fluorine concentrations as well as chlorine abundances in both mantle source regions are within uncertainty not affected by the presence of water.

  19. Imaging the lithospheric structure of the Central Andes from the joint inversion of multiple seismic data sets

    NASA Astrophysics Data System (ADS)

    Ward, Kevin Michael

    A lingering question in Cordilleran tectonics is how high plateaus form in the absence of continental collision. The type example of an active Cordilleran high plateau is found in the Central Andes of Peru, Bolivia, Argentina, and Chile. Along this section of the South American Cordillera, tectonics are primarily driven by subduction of the oceanic Nazca Plate beneath the continental South American Plate. Extending over 1,800 km along the active continental margin, the Central Andean Plateau (CAP) reaches a maximum width of around 400 km with several peaks in excess of 6 km. Numerous morphotectonic subdivisions of the CAP highlight the complex along-strike variability of the Plateau providing a natural laboratory for investigating the relative contribution of tectonic processes involved in building and maintaining Cordilleran high plateaus. The scale of this problem extends far beyond the scope of any one geoscientific discipline requiring a multidisciplinary approach. Our contribution to this scientific problem and the focus of the work presented in this dissertation is to better understand the current lithospheric and uppermost mantle structure along the CAP. This is achieved by integrating recent advances in seismic imaging techniques with a growing availability of high-quality seismic data into three distinct studies across the South American continent. In the first study, we present a shear-wave velocity model for the crust below the Altiplano-Puna Volcanic Complex (APVC). The target of this study is to constrain the crustal volume of a large magma reservoir inferred to exist below the APVC. When combined with geological and petrological constraints, the large-volume magma reservoir imaged in this study suggests a significant magmatic contribution to the growth of the Plateau in excess of one kilometer over the last ten million years. In addition to the tectonic contributions of this work, we introduce a new method of jointly inverting surface-wave dispersion data and receiver functions to generate a three-dimensional velocity model. In the second study, we combine Rayleigh-wave dispersion data from ambient noise and earthquake-generated surface waves to invert for a shear-wave velocity model of the lithosphere and uppermost mantle below the Bolivian Orocline. The target of this study is to identify any possible mantle contributions to the uplift history along the northern CAP. The highlight of this study is a high-velocity feature that extends from the base of the crust to 120 km depth below the Altiplano basin. We interpret this feature using a simple isostatic model and suggest it is responsible for the relatively low topography of the Altiplano basin. In the third and final study, we extend the seismic model of the APVC crust to cover the entire Puna Plateau (southern CAP). The target of this study is to assess the uniqueness of the APMB and to look for additional magma reservoirs in the crust. A highlight of this work is the nearly one-to-one spatial correlation between the long-wavelength topography, ignimbrite deposits, long-wavelength Bouguer gravity anomalies, and four additional mid-crustal low-velocity zones imaged in the southern Puna Plateau. When placed in the context of existing geological and petrological constraints, we suggest the contribution of magmatic addition as an uplift mechanism in Cordilleran systems is much larger than is currently accepted.

  20. Mantle viscosity structure constrained by joint inversions of seismic velocities and density

    NASA Astrophysics Data System (ADS)

    Rudolph, M. L.; Moulik, P.; Lekic, V.

    2017-12-01

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle upwellings, sinking of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Modeling the long-wavelength dynamic geoid allows us to constrain the radial viscosity profile of the mantle. Typically, in inversions for the mantle viscosity structure, wavespeed variations are mapped into density variations using a constant- or depth-dependent scaling factor. Here, we use a newly developed joint model of anisotropic Vs, Vp, density and transition zone topographies to generate a suite of solutions for the mantle viscosity structure directly from the seismologically constrained density structure. The density structure used to drive our forward models includes contributions from both thermal and compositional variations, including important contributions from compositionally dense material in the Large Low Velocity Provinces at the base of the mantle. These compositional variations have been neglected in the forward models used in most previous inversions and have the potential to significantly affect large-scale flow and thus the inferred viscosity structure. We use a transdimensional, hierarchical, Bayesian approach to solve the inverse problem, and our solutions for viscosity structure include an increase in viscosity below the base of the transition zone, in the shallow lower mantle. Using geoid dynamic response functions and an analysis of the correlation between the observed geoid and mantle structure, we demonstrate the underlying reason for this inference. Finally, we present a new family of solutions in which the data uncertainty is accounted for using covariance matrices associated with the mantle structure models.

  1. Time-dependent heat transfer in the spherical Earth: Implications on the power and thermal evolution of the core

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.; Criss, R. E.

    2015-12-01

    We quantitatively investigate the time-dependence of heat conduction for a post-core, spherical Earth that is not convecting, due to compositional layering, based on hundreds of measurements of thermal diffusivity (D) for insulators and metals. Consistency of our solutions for widely ranging input parameters indicates how additional heat transfer mechanisms (mantle magmatism and convection) affect thermal evolution of the core. We consider 1) interior starting temperatures (T) of 273-5000 K, which represent variations in primordial heat, 2) different distributions and decay of long-lived radioactive isotopes, 3) additional heat sources in the core (primordial or latent heat), and 4) variable depth-T dependence of D. Our new analytical solution for cooling of a constant D sphere validates our numerical results. The bottom line is that the thermally insulating nature of minerals, combined with constraints of spherical geometry, limits steep thermal gradients to the upper mantle, consistent with the short length scale (x ~700 km) of cooling over t = 4.5 Ga indicated by dimensional analysis [x2 ~ 4Dt], and with plate tectonics. Consequently, interior temperatures vary little so the core has remained hot and is possibly warming. Findings include: 1) Constant vs. variable D affects thermal profiles only in detail, with D for the metallic core being inconsequential. 2) The hottest zone in Earth may lie in the uppermost lower mantle; 3) Most radiogenic heat is released in Earth's outermost 1000 km thereby driving an active outer shell; 4) Earth's core is essentially isothermal and is thus best described by the liquid-solid phase boundary; 5) Deeply sequestered radioactivity or other heat will melt the core rather than by run the dynamo (note that the heat needed to have melted the outer core is 10% of radiogenic heat generated over Earth's history); 6) Inefficient cooling of an Earth-sized mass means that heat essentially remains where it is generated, until it is removed by magmatism; 7) Importantly, the observed plate velocities are consistent with a Nusselt number of 1, i.e. the present day cooling is essentially conductive. Conductive cooling plus magmatism largely governs Earth's thermal structure and dynamics, below a unicellular upper mantle. Core dynamics and magnetism are likely driven by rotational effects.

  2. Inclusions of crichtonite-group minerals in Cr-pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: Crystal chemistry, parageneses and relationships to mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Rezvukhin, Dmitriy I.; Malkovets, Vladimir G.; Sharygin, Igor S.; Tretiakova, Irina G.; Griffin, William L.; O'Reilly, Suzanne Y.

    2018-05-01

    Cr-pyrope xenocrysts and associated inclusions of crichtonite-group minerals from the Internatsionalnaya kimberlite pipe were studied to provide new insights into processes in the lithospheric mantle beneath the Mirny kimberlite field, Siberian craton. Pyropes are predominantly of lherzolitic paragenesis (Cr2O3 2-6 wt%) and have trace-element spectra typical for garnets from fertile mantle (gradual increase in chondrite-normalized values from LREE to MREE-HREE). Crichtonite-group minerals commonly occur as monomineralic elongated inclusions, mostly in association with rutile, Mg-ilmenite and Cr-spinel within individual grains of pyrope. Sample INT-266 hosts intergrowth of crichtonite-group mineral and Cl-apatite, while sample INT-324 contains polymineralic apatite- and dolomite-bearing assemblages. Crichtonite-group minerals are Al-rich (1.1-4.5 wt% Al2O3), moderately Zr-enriched (1.3-4.3 wt% ZrO2), and are Ca-, Sr-, and occasionally Ba-dominant in terms of A-site occupancy; they also contain significant amounts of Na and LREE. T-estimates and chemical composition of Cr-pyropes imply that samples represent relatively low-T peridotite assemblages with ambient T ranging from 720 to 820°С. Projected onto the 35 mW/m2 cratonic paleogeotherm for the Mirny kimberlite field (Griffin et al., 1999b. Tectonophysics 310, 1-35), temperature estimates yield a P range of 34-42 kbar ( 110-130 km), which corresponds to a mantle domain in the uppermost part of the diamond stability field. The presence of crichtonite-group minerals in Cr-pyropes has petrological and geochemical implications as evidence for metasomatic enrichment of some incompatible elements in the lithospheric mantle beneath the Mirny kimberlite field. The genesis of Cr-pyropes with inclusions of crichtonite-group minerals is attributed to the percolation of Ca-Sr-Na-LREE-Zr-bearing carbonate-silicate metasomatic agents through Mg- and Cr-rich depleted peridotite protoliths. The findings of several potentially new members of the crichtonite group as inclusions in garnet extend existing knowledge on the compositions and occurrences of exotic titanates stable in the lithospheric mantle.

  3. Isostatic GOCE Moho model for Iran

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Ebadi, Sahar; Tenzer, Robert

    2017-05-01

    One of the major issues associated with a regional Moho recovery from the gravity or gravity-gradient data is the optimal choice of the mean compensation depth (i.e., the mean Moho depth) for a certain area of study, typically for orogens characterised by large Moho depth variations. In case of selecting a small value of the mean compensation depth, the pattern of deep Moho structure might not be reproduced realistically. Moreover, the definition of the mean compensation depth in existing isostatic models affects only low-degrees of the Moho spectrum. To overcome this problem, in this study we reformulate the Sjöberg and Jeffrey's methods of solving the Vening-Meinesz isostatic problem so that the mean compensation depth contributes to the whole Moho spectrum. Both solutions are then defined for the vertical gravity gradient, allowing estimating the Moho depth from the GOCE satellite gravity-gradiometry data. Moreover, gravimetric solutions provide realistic results only when a priori information on the crust and upper mantle structure is known (usually from seismic surveys) with a relatively good accuracy. To investigate this aspect, we formulate our gravimetric solutions for a variable Moho density contrast to account for variable density of the uppermost mantle below the Moho interface, while taking into consideration also density variations within the sediments and consolidated crust down to the Moho interface. The developed theoretical models are applied to estimate the Moho depth from GOCE data at the regional study area of the Iranian tectonic block, including also parts of surrounding tectonic features. Our results indicate that the regional Moho depth differences between Sjöberg and Jeffrey's solutions, reaching up to about 3 km, are caused by a smoothing effect of Sjöberg's method. The validation of our results further shows a relatively good agreement with regional seismic studies over most of the continental crust, but large discrepancies are detected under the Oman Sea and the Makran subduction zone. We explain these discrepancies by a low quality of seismic data offshore.

  4. The African and Pacific Superplume Structures Constrained by Assembly and Breakup of Pangea

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Zhong, S.; Leng, W.; Li, Z.

    2009-12-01

    Seismic tomography studies indicate that the Earth’s mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a globally spherical harmonic degree-2 structure). McNamara and Zhong (2005) have demonstrated that the African and Pacific superplume structures result from dynamic interaction between mantle convection and surface plate motion history in the last 120 Ma. However, their models produce slightly stronger degree 3 structure than degree 2 near the CMB. Here, we construct a proxy model of plate motions for the African hemisphere for the last 450 Ma since the Early Paleozoic using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations. Using this proxy model for plate motion history as the time-dependent surface boundary conditions for a 3-dimensional spherical model of thermochemical mantle convection, we calculate the present-day mantle structure and explore the evolution of mantle structures since the Early Paleozoic. Our model calculations reproduce well the present-day mantle structure including the African and Pacific superplumes. The power spectra of our calculated present-day temperature field shows that the strongest power occurs at degree 2 in the lower mantle while in the upper mantle the strongest power is at degree 3. The degree correlation between tomography model S20RTS and our calculated temperature field shows a high correlation at the degree 1 and degree 2 in the lower mantle while the upper mantle and the short wavelength structures do not correlate well. The summed degree correlation for the lower mantle shows a relatively good correlation for the bottom 300 km of the mantle but the correlation is significantly reduced at depth 600 km above the CMB. For the evolution of mantle structures, we focus on the evolution of the African superplume. Our results suggest that the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia and the cold Africa hemisphere changes to hot due to the return flows from the circum-Pangea subduction after Pangea formation. Based on our results, we suggest that the African superplume structure may be formed no earlier than ~230 Ma ago (i.e., ~100 Ma after the assembly of Pangea).

  5. Deep Roots of Cratons From Surface-wave Tomography

    NASA Astrophysics Data System (ADS)

    Cara, M.; Debayle, E.; Lévêque, J. J.

    Thanks to the application of multimode waveform inversion techniques to various sets of surface wave seismograms recorded on global networks of broad-band seismome- ters, either permanent (IRIS, Geoscope) or temporary (PASSCAL, INSU), unprece- dented lateral- and depth-resolution can be achieved in upper-mantle surface-wave tomography. With a depth-resolution around 50 km and a lateral resolution around 250 km in the upper mantle, Sv velocity models beneath Australia, South-America, Eurasia and East-Africa show fast velocity anomalies associated with shield generally confined to the uppermost 200 km of the mantle. We show on cross-sections taken across different continents that there is no evidence so far for "thermal and/or com- positional" lithospheric roots extending deeper than 300 km in the continental regions we have investigated. In addition, surface wave azimuthal anisotropy can be used as an indicator of the me- chanical thickness of the lithosphere when a clear change in the pattern of anisotropic directions is observed with depth. The fast moving Australian plate shows the clear- est example of such a change occuring at relatively shallow depths (150 km) within the high seismic velocity lid. This suggests that seismic anisotropy defines a "me- chanical" lithosphere that does not coincide with the "thermal and/or compositional" lithosphere probably imaged by velocity anomalies. However, beneath other slowly moving plates, such a change in pattern is less clear and there is a tendency of seismic anisotropy to disappear at the bottom of the lid.

  6. Volcanism on Mars controlled by early oxidation of the upper mantle

    NASA Astrophysics Data System (ADS)

    Tuff, J.; Wade, J.; Wood, B. J.

    2013-06-01

    Detailed information about the chemical composition and evolution of Mars has been derived principally from the SNC (shergottite-nakhlite-chassignite) meteorites, which are genetically related igneous rocks of Martian origin. They are chemically and texturally similar to terrestrial basalts and cumulates, except that they have higher concentrations of iron and volatile elements such as phosphorus and chlorine and lower concentrations of nickel and other chalcophile (sulphur-loving) elements. Most Martian meteorites have relatively young crystallization ages (1.4 billion years to 180 million years ago) and are considered to be derived from young, lightly cratered volcanic regions, such as the Tharsis plateau. Surface rocks from the Gusev crater analysed by the Spirit rover are much older (about 3.7 billion years old) and exhibit marked compositional differences from the meteorites. Although also basaltic in composition, the surface rocks are richer in nickel and sulphur and have lower manganese/iron ratios than the meteorites. This has led to doubts that Mars can be described adequately using the `SNC model'. Here we show, however, that the differences between the compositions of meteorites and surface rocks can be explained by differences in the oxygen fugacity during melting of the same sulphur-rich mantle. This ties the sources of Martian meteorites to those of the surface rocks through an early (>3.7 billion years ago) oxidation of the uppermost mantle that had less influence on the deeper regions, which produce the more recent volcanic rocks.

  7. Eutectic melting temperature of the lowermost Earth's mantle

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings, and changes in the relation between sample-temperature and laser-power. In this work, we show that temperatures higher than 4000 K are necessary for melting mean mantle at the 135 GPa pressure found at the core mantle boundary (CMB). Such temperature is much higher than that from estimated actual geotherms. Therefore, melting at the CMB can only occur if (i) pyrolitic mantle resides for a very long time in contact with the outer core, (ii) the mantle composition is severely affected by additional elements depressing the solidus such as water or (iii) the temperature gradient in the D" region is amazingly steep. Other implications for the temperature state and the lower mantle properties will be presented. References (1) Ito et al., Phys. Earth Planet. Int., 143-144, 397-406, 2004 (2) Ohtani et al., Phys. Earth Planet. Int., 100, 97-114, 1997 (3) Zerr et al., Science, 281, 243-246, 1998 (4) Holland and Ahrens, Science, 275, 1623-1625, 1997 (5) Schultz et al., High Press. Res., 25, 1, 71-83, 2005.

  8. Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Dapeng

    2017-09-01

    The Japan Sea is a part of the western Pacific trench-arc-backarc system and has a complex bathymetry and intense seismic activities in the crust and upper mantle. Local seismic tomography revealed strong lateral heterogeneities in the crust and uppermost mantle beneath the eastern margin of the Japan Sea, which was determined using P and S wave arrival times of suboceanic earthquakes relocated precisely with sP depth phases. Ambient-noise tomography revealed a thin crust and a thin lithosphere beneath the Japan Sea and significant low-velocity (low-V) anomalies in the shallow mantle beneath the western and eastern margins of the Japan Sea. Observations with ocean-bottom seismometers and electromagnetometers revealed low-V and high-conductivity anomalies at depths of 200-300 km in the big mantle wedge (BMW) above the subducting Pacific slab, and the anomalies are connected with the low-V zone in the normal mantle wedge beneath NE Japan, suggesting that both shallow and deep slab dehydrations occur and contribute to the arc and back-arc magmatism. The Pacific slab has a simple geometry beneath the Japan Sea, and earthquakes occur actively in the slab down to a depth of ∼600 km beneath the NE Asian margin. Teleseismic P and S wave tomography has revealed that the Philippine Sea plate has subducted aseismically down to the mantle transition zone (MTZ, 410-660 km) depths beneath the southern Japan Sea and the Tsushima Strait, and a slab window is revealed within the aseismic Philippine Sea slab. Seismic anisotropy tomography revealed a NW-SE fast-velocity direction in the BMW, which reflects corner flows induced by the fast deep subduction of the Pacific slab. Large deep earthquakes (M > 7.0; depth > 500 km) occur frequently beneath the Japan Sea western margin, which may be related to the formation of the Changbai and Ulleung intraplate volcanoes. A metastable olivine wedge is revealed within the cold core of the Pacific slab at the MTZ depth, which may be related to the deep seismicity. However, many of these results are still preliminary, due to the lack of seismic stations in the Japan Sea. The key to resolving these critical geoscientific issues is seismic instrumentation in the Japan Sea, for which international cooperation of geoscience communities in the East Asian countries is necessary.

  9. 100 years of seismic research on the Moho

    NASA Astrophysics Data System (ADS)

    Prodehl, Claus; Kennett, Brian; Artemieva, Irina M.; Thybo, Hans

    2013-12-01

    The detection of a seismic boundary, the “Moho”, between the outermost shell of the Earth, the Earth's crust, and the Earth's mantle by A. Mohorovičić was the consequence of increased insight into the propagation of seismic waves caused by earthquakes. This short history of seismic research on the Moho is primarily based on the comprehensive overview of the worldwide history of seismological studies of the Earth's crust using controlled sources from 1850 to 2005, by Prodehl and Mooney (2012). Though the art of applying explosions, so-called “artificial events”, as energy sources for studies of the uppermost crustal layers began in the early 1900s, its effective use for studying the entire crust only began at the end of World War II. From 1945 onwards, controlled-source seismology has been the major approach to study details of the crust and underlying crust-mantle boundary, the Moho. The subsequent description of history of controlled-source crustal seismology and its seminal results is subdivided into separate chapters for each decade, highlighting the major advances achieved during that decade in terms of data acquisition, processing technology, and interpretation methods. Since the late 1980s, passive seismology using distant earthquakes has played an increasingly important role in studies of crustal structure. The receiver function technique exploiting conversions between P and SV waves at discontinuities in seismic wavespeed below a seismic station has been extensively applied to the increasing numbers of permanent and portable broad-band seismic stations across the globe. Receiver function studies supplement controlled source work with improved geographic coverage and now make a significant contribution to knowledge of the nature of the crust and the depth to Moho.

  10. Deep seismic reflection images of the Wharton Basin oceanic crust and uppermost mantle offshore Northern Sumatra: Relation with active and past deformation

    NASA Astrophysics Data System (ADS)

    Carton, Hélène; Singh, Satish C.; Hananto, Nugroho D.; Martin, James; Djajadihardja, Yusuf S.; Udrekh; Franke, Dieter; Gaedicke, Christoph

    2014-01-01

    present deep seismic reflection images along two profiles collected in 2006 in the Wharton Basin offshore Northern Sumatra. The main profile is located subparallel to the Sumatran trench at a distance of 32-66 km. Faulting of the entire sedimentary section (strike-slip deformation sometimes accompanied by a dip-slip component) is imaged over two fracture zones of the extinct Wharton Spreading Center that prior studies have shown to be reactivated as left-lateral faults. The western fracture zone is associated with a wide region of strong basement topography, a difference in crustal thickness of 1.5 km, and an age offset of 9 Ma. The epicenters of the 11 April 2012 Mw 8.6 great strike-slip earthquake, its Mw 7.2 foreshock, and Mw 8.2 aftershock align along this major structure > 100 km south of the profile intersection. Our high-quality long-offset seismic reflection data also reveal bright dipping reflections extending down to a maximum of 24 km into the oceanic mantle ( 37 km below sea level). Apparent dips are mostly 25-35°, corresponding to 30-55° along either N-S to NNE-SSW or E-W to WNW-ESE directions, which encompass the directions of plate fabric and nodal planes of the Mw 8.6 event. We suggest that these enigmatic reflections arise from presently inactive dip-slip fault planes reaching for the deepest ones to the base of the brittle layer. Possible origins include extension related to plate bending or an episode of now inactive thrust-type deformation reactivating paleonormal faults, similar to that taking place in the Central Indian Basin.

  11. Elasticity of single-crystal NAL phase at high pressure: A potential source of the seismic anisotropy in the lower mantle

    NASA Astrophysics Data System (ADS)

    Wu, Ye; Yang, Jing; Wu, Xiang; Song, Maoshuang; Yoshino, Takashi; Zhai, Shuangmeng; Qin, Shan; Huang, Haijun; Lin, Jung-Fu

    2016-08-01

    The new hexagonal aluminous phase, named the NAL phase, is expected to be stable at depths of <1200 km in subducted slabs and believed to constitute 10~30 wt% of subducted mid-ocean ridge basalt together with the CaFe2O4-type aluminous phase. Here elasticity of the single-crystal NAL phase is investigated using Brillouin light scattering coupled with diamond anvil cells up to 20 GPa at room temperature. Analysis of the results shows that the substitution of iron lowers the shear modulus of the NAL phase by ~5% (~6 GPa) but does not significantly affect the adiabatic bulk modulus. The NAL phase exhibits high-velocity anisotropies with AVP = 14.7% and AVS = 15.12% for the Fe-bearing phase at ambient conditions. The high AVS of the NAL phase mainly results from the high anisotropy of the faster VS1 (13.9~15.8%), while the slower VS2 appears almost isotropic (0.1~2.8%) at ambient and high pressures. The AVP and AVS of the NAL phase decrease with increasing pressure but still have large values with AVP = 11.4% and AVS = 14.12% for the Fe-bearing sample at 20.4 GPa. The extrapolated AVP and AVS of the Fe-free and Fe-bearing NAL phases at 40 GPa are larger than those of bridgmanite at the same pressure. Together with its spin transition of iron and structural transition to the CF phase, the presence of the NAL phase with high-velocity anisotropies may contribute to the observed seismic anisotropy around subducted slabs in the uppermost lower mantle.

  12. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Zheng, Y.; Xie, Z.; Ritzwoller, M. H.

    2011-12-01

    The Tibetan Plateau results from the convergence between the Indian and Eurasian plates. However, the physical processes that have controlled the deformation history of Tibet, particularly the potential localization of deformation either in the vertical or horizontal directions remain subject to debate. There are a growing list and wide variety of observations that suggest that the Tibetan crust is warm and presumably ductile. Some of observations are often taken as prima facie evidence for the existence of partial melt or aqueous fluids in the middle or deep crust beneath Tibet and in some cases for the decoupling or partitioning of strain between the upper crust and uppermost mantle. However, most of this evidence is highly localized along nearly linear seismic or magneto-telluric profiles. This motivates the two questions addressed by this study. First, how pervasive across Tibet are the phenomena on which inferences of the existence of crustal partial melt rest? In particular, how pervasive are mid-crustal low velocity zones across Tibet? Second, what is the geometry or inter-connectivity of the crustal low velocity zones observed across Tibet? In this study, we address these questions by producing a new 3-D model of crustal and uppermost mantle shear wave speeds inferred from Rayleigh wave dispersion observed on cross-correlations of long time series of ambient seismic noise. Broadband seismic data from about 600 stations (Chinese Provincial networks, FDSN, several PASSCAL experiments including the INDEPTH IV experiment) yield about 50,000 inter-station paths, which are used to generate Rayleigh wave phase velocity maps from 10 sec to 50 sec period. The time series lengths in the cross-correlations range from 1 to 2 years in duration. The resulting Rayleigh wave phase velocity maps are inverted for a 3D Vsv model of crustal and upper most mantles. The major results from our model are summarized below: (1) A crustal LVZ exists across most of the high Tibetan Plateau. (2) The distribution of the amplitude of the LVZ is not uniform. In fact, the largest amplitudes (i.e., lowest mid-crustal shear wave speeds) are found predominantly around the periphery of Tibet. (3) The lateral distribution of strong LVZs are coincident with the distribution of strong radial anisotropy in the middle crust, suggesting LVZs of Vsv in the middle crust may be mostly due to the strong radial anisotropy rather than the presence of partial melt or aqueous fluids.

  13. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    NASA Astrophysics Data System (ADS)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated stress). While this can increase strain rate by another factor of 1000, another process must generate the lithospheric thickness variation in the first place. One possibility is serpentinization, which reduces the strength of the brittle crust, especially when coupled with the development of a fabric in brittle faults.

  14. The effect of plumes and a free surface on mantle dynamics with continents and self-consistent plate tectonics

    NASA Astrophysics Data System (ADS)

    Jain, Charitra; Rozel, Antoine; Tackley, Paul

    2014-05-01

    Rolf et al. (EPSL, 2012) and Coltice et al. (Science, 2012) investigated the thermal and dynamical influences of continents on plate tectonics and the thermal state of Earth's mantle, but they did not explicitly consider the influence of mantle plumes. When present, strong mantle plumes arising from the deep mantle can impose additional stresses on the continents, thereby facilitating continental rifting (Storey, Nature 1995; Santosh et al., Gondwana Research 2009) and disrupting the supercontinent cycle (Philips and Bunge, Geology 2007). In recent years, several studies have characterized the relation between the location of the plumes and the continents, but with contradicting observations. While Heron and Lowman (GRL, 2010; Tectonophysics, 2011) propose regions where downwelling has ceased (irrespective of overlying plate) as the preferred location for plumes, O'Neill et al. (Gondwana Research, 2009) show an anti-correlation between the average positions of subducting slabs at continental margins, and mantle plumes at continental/oceanic interiors. Continental motion is attributed to the viscous stresses imparted by the convecting mantle and the extent of this motion depends on the heat budget of the mantle. Core-mantle boundary (CMB) heat flux, internal heating from decay of radioactive elements, and mantle cooling contribute to this heat budget. Out of these sources, CMB heat flux is not well defined; however, the recent determination that the core's thermal conductivity is much higher than previously thought requires a CMB heat flow of at least 12 TW (de Koker et al., PNAS 2012; Pozzo et al., Nature 2012; Gomi et al., PEPI 2013), much higher than early estimates of 3-4 TW (Lay et al., Nature 2008). Thus, it is necessary to characterize the effect of increased CMB heat flux on mantle dynamics. In almost all mantle convection simulations, the top boundary is treated as a free-slip surface whereas Earth's surface is a deformable free surface. With a free-slip boundary condition, the uppermost part of the model is not allowed to move vertically. In contrast, a free surface boundary condition allows for the development of topography and leads to realistic single-sided (asymmetric) subduction (Crameri et al., GJI 2012; Crameri et al., GRL 2012). A free-slip surface may also create incorrect stresses in the model continents, forcing them to spread horizontally along the boundary to minimize the gravitational potential. This is something we aim to test here. Here, we test (i) the impact of increased basal heating on mantle dynamics with continents and self-consistent plate tectonics, including whether plumes prefer to develop under continents; (ii) the influence of a free surface on continents in the context of self-consistent plate tectonics. The existing model from Rolf et al. (EPSL 2012) is developed further but with weaker continents. A 'sticky-air' approach is used, in which a low density and a small viscosity fluid layer is added to the top of the model. We study these using StagYY code (Tackley, PEPI 2008), which uses a finite-volume discretization, a multigrid solver to obtain a velocity-pressure solution at each timestep on a staggered grid and tracers to track composition.

  15. Plume-driven plumbing and crustal formation in Iceland

    USGS Publications Warehouse

    Allen, R.M.; Nolet, G.; Morgan, W.J.; Vogfjord, K.; Nettles, M.; Ekstrom, G.; Bergsson, B.H.; Erlendsson, P.; Foulger, G.R.; Jakobsdottir, S.; Julian, B.R.; Pritchard, M.; Ragnarsson, S.; Stefansson, R.

    2002-01-01

    Through combination of surface wave and body wave constraints we derive a three-dimensional (3-D) crustal S velocity model and Moho map for Iceland. It reveals a vast plumbing system feeding mantle plume melt into upper crustal magma chambers where crustal formation takes place. The method is based on the partitioned waveform inversion to which we add additional observations. Love waves from six local events recorded on the HOTSPOT-SIL networks are fitted, Sn travel times from the same events measured, previous observations of crustal thickness are added, and all three sets of constraints simultaneously inverted for our 3-D model. In the upper crust (0-15 km) an elongated low-velocity region extends along the length of the Northern, Eastern and Western Neovolcanic Zones. The lowest velocities (-7%) are found at 5-10 km below the two most active volcanic complexes: Hekla and Bardarbunga-Grimsvotn. In the lower crust (>15 km) the low-velocity region can be represented as a vertical cylinder beneath central Iceland. The low-velocity structure is interpreted as the thermal halo of pipe work which connects the region of melt generation in the uppermost mantle beneath central Iceland to active volcanoes along the neovolcanic zones. Crustal thickness in Iceland varies from 15-20 km beneath the Reykjanes Peninsula, Krafla and the extinct Snfellsnes rift zone, to 46 km beneath central Iceland. The average crustal thickness is 29 km. The variations in thickness can be explained in terms of the temporal variation in plume productivity over the last ~20 Myr, the Snfellsnes rift zone being active during a minimum in plume productivity. Variations in crustal thickness do not depart significantly from an isostatically predicted crustal thickness. The best fit linear isostatic relation implies an average density jump of 4% across the Moho. Rare earth element inversions of basalt compositions on Iceland suggest a melt thickness (i.e., crustal thickness) of 15-20 km, given passive upwelling. The observed crustal thickness of up to 46 km implies active fluxing of source material through the melt zone by the mantle plume at up to 3 times the passive rate.

  16. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?

    NASA Astrophysics Data System (ADS)

    Keranen, Katie M.; Klemperer, Simon L.; Julia, Jordi; Lawrence, Jesse F.; Nyblade, Andy A.

    2009-05-01

    The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ≤4.3 km/s in the uppermost mantle, both ˜0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (˜400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are the primary control on the mode of extension.

  17. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?

    USGS Publications Warehouse

    Keranen, K.M.; Klemperer, S.L.; Julia, J.; Lawrence, J. F.; Nyblade, A.A.

    2009-01-01

    [1] The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ???4.3 km/s in the uppermost mantle, both ??0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (??400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are the primary control on the mode of extension. ?? 2009 by the American Geophysical Union.

  18. Shear wave velocities in the upper mantle of the Western Alps: new constraints using array analysis of seismic surface waves

    NASA Astrophysics Data System (ADS)

    Lyu, Chao; Pedersen, Helle A.; Paul, Anne; Zhao, Liang; Solarino, Stefano

    2017-07-01

    It remains challenging to obtain absolute shear wave velocities of heterogeneities of small lateral extension in the uppermost mantle. This study presents a cross-section of Vs across the strongly heterogeneous 3-D structure of the western European Alps, based on array analysis of data from 92 broad-band seismic stations from the CIFALPS experiment and from permanent networks in France and Italy. Half of the stations were located along a dense sublinear array. Using a combination of these stations and off-profile stations, fundamental-mode Rayleigh wave dispersion curves were calculated using a combined frequency-time beamforming approach. We calculated dispersion curves for seven arrays of approximately 100 km aperture and 14 arrays of approximately 50 km aperture, the latter with the aim of obtaining a 2-D vertical cross-section of Vs beneath the western Alps. The dispersion curves were inverted for Vs(z), with crustal interfaces imposed from a previous receiver function study. The array approach proved feasible, as Vs(z) from independent arrays vary smoothly across the profile length. Results from the seven large arrays show that the shear velocity of the upper mantle beneath the European plate is overall low compared to AK135 with the lowest velocities in the internal part of the western Alps, and higher velocities east of the Alps beneath the Po plain. The 2-D Vs model is coherent with (i) a ∼100 km thick eastward-dipping European lithosphere west of the Alps, (ii) very high velocities beneath the Po plain, coherent with the presence of the Alpine (European) slab and (iii) a narrow low-velocity anomaly beneath the core of the western Alps (from the Briançonnais to the Dora Maira massif), and approximately colocated with a similar anomaly observed in a recent teleseismic P-wave tomography. This intriguing anomaly is also supported by traveltime variations of subvertically propagating body waves from two teleseismic events that are approximately located on the profile great circle.

  19. The evolution of rifting process in the tectonic history of the Earth

    NASA Technical Reports Server (NTRS)

    Milanovsky, E. E.; Nikishin, A. M.

    1985-01-01

    The continental rifting is the response of the lithosphere to the oriented tension. The distribution of viscosity in the lithosphere plays an essential role during all stages of the rifting. The viscosity is a function of the temperature, the lithostatic pressure, the rock composition, the deformation rate and other factors. The temperature is the most important factor. The vertical section of continental lithosphere of the rift zone may be divided into the following layers: the upper crust, in which brittle deformation prevails; the medialcrust, in which the role of plastic deformation increases; the lower crust, in which plastic deformation prevails; and the uppermost plastic part of the mantle overlapping asthenosphere. The depth of the boundaries in the crust layers are mainly controlled by the temperature.

  20. The role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki

    2014-05-01

    Previous numerical studies of mantle convection focusing on subduction dynamics have indicated that the viscosity contrast between the subducting plate and the surrounding mantle have a primary effect on the behavior of subducting plates. The seismically observed plate stagnation at the base of the mantle transition zone (MTZ) under the Western Pacific and Eastern Eurasia is considered to mainly result from a viscosity increase at the ringwoodite to perovskite + magnesiowüstite (Rw→Pv+Mw) phase decomposition boundary, i.e., the boundary between the upper and lower mantle. The harzburgite layer, which is sandwiched between basaltic crust and depleted peridotite (lherzolite) layers, is a key component of highly viscous, cold oceanic plates. However, the possible sensitivity of the effective viscosity of harzburgite layers in the morphology of subducting plates that are flattened in the MTZ and/or penetrated in the lower mantle has not been examined systematically in previous three-dimensional (3D) numerical modeling studies that consider the viscosity increase at the boundary between the upper and lower mantle. In this study, in order to investigate the role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers, I performed a series of numerical simulations of mantle convection with semi-dynamic plate subduction in 3D regional spherical-shell geometry. The results show that a buckled crustal layer is observed under the "heel" of the stagnant slab that begins to penetrate into the lower mantle, regardless of the magnitude of the viscosity contrast between the harzburgite layer and the underlying mantle, when the factor of viscosity increase at the boundary of the upper and lower mantle is larger than 60-100. As the viscosity contrast between the harzburgite layer and the underlying mantle increases, the curvature of buckling is larger. When the viscosity increase at the boundary of the upper and lower mantle and the viscosity contrast between the harzburgite layer and the underlying mantle are larger, the volumes of crustal and harzburgite materials trapped in the mantle transition zone (MTZ) are also larger, although almost all of the materials penetrate into the lower mantle. These materials are trapped in the MTZ for over tens of millions of years. The bending of crustal layers numerically observed in the present study is consistent with seismological evidence that there is a piece of subducted oceanic crust in the uppermost lower mantle beneath the subducting slab under the Mariana trench [Niu et al., 2003, JGR]. The results of the present study suggest that when the viscosity increase at the boundary of the upper and lower mantle is larger than 60-100, a seismically observed stagnant slab is reproduced. This result is consistent with the previous independent geodynamic studies. For instance, a 2D geodynamic model with lateral viscosity variations suggested that it would need to be substantially greater than 30, say, around 100, to explain the positive geoid anomaly in the subduction zones where the subducting slab reaches the boundary between the upper and lower mantle such as that of the western Pacific [Tosi et al., 2009, GJI]. References: [1] Tajima, F. Yoshida, M. and Ohtani, E., Conjecture with water and rheological control for subducting slab in the mantle transition zone, Geoscience Frontiers, doi:10.1016/j.gsf.2013.12.005, 2014. [2] Yoshida, M. The role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers, Geophys. Res. Lett., 40(20), 5387-5392, doi:10.1002/2013GL057578, 2013. [3] Yoshida, M. and Tajima, F., On the possibility of a folded crustal layer stored in the hydrous mantle transition zone, Phys. Earth Planet. Inter., 219, 34-48, doi:10.1016/j.pepi.2013.03.004, 2013.

  1. Precise hypocenter distribution and earthquake generating and stress in and around the upper-plane seismic belt in the subducting Pacific slab beneath NE Japan

    NASA Astrophysics Data System (ADS)

    Kita, S.; Okada, T.; Nakajima, J.; Matsuzawa, T.; Uchida, N.; Hasegawa, A.

    2007-12-01

    1. Introduction We found an intraslab seismic belt (upper-plane seismic belt) in the upper plane of the double seismic zone within the Pacific slab, running interface at depths of 70-100km beneath the forearc area. The location of the deeper limits of this belt appears to correspond to one of the facies boundaries (from jadeite lawsonite blueschist to lawsonite amphibole eclogite) in the oceanic crust [Kita et al., 2006, GRL]. In this study, we precisely relocated intraslab earthquakes by using travel time differences calculated by the waveform cross-spectrum analysis to obtain more detailed distribution of the upper plane-seismic belt within the Pacific slab beneath NE Japan. We also discuss the stress field in the slab by examining focal mechanisms of the earthquakes. 2. Data and Method We relocated events at depths of 50-00 km for the period from March 2003 to November 2006 from the JMA earthquake catalog. We applied the double-difference hypocenter location method (DDLM) by Waldhauser and Ellsworth (2000) to the arrival time data of the events. We use relative earthquake arrival times determined both by the waveform cross-spectrum analysis and by the catalog-picking data. We also determine focal mechanisms using the P wave polarity. 3. Spatial distribution of relocated hypocenters In the upper portion of the slab crust, seismicity is very active and distributed relatively homogeneously at depths of about 70-100km parallel to the volcanic front, where the upper-plane seismic belt has been found. In the lower portion of slab crust and/or the uppermost portion of the slab mantle, seismicity is spatially very limited to some small areas (each size is about 20 x 20km) at depths around 65km. Two of them correspond to the aftershock area of the 2003 Miyagi (M7.1) intraslab earthquake and that of the 1987 Iwaizumi (M6.6) intraslab earthquake, respectively. Based on the dehydration embrittelment hypothesis, the difference of the spatial distribution of the seismicity in the slab should correspond to the difference of the spatial distribution of the hydrated minerals and their dehydration reactions. In the upper slab crust, the upper-plane seismic belt is found because the hydrated minerals could be distributed homogeneously and the dehydration reaction (from jadeite lawsonite blueschist to lawsonite amphibole eclogite [Hacker et al., 2003b]) occurs perhaps largely at depth of 70-100km. Our result also suggests that in the lower portion of the slab crust and/or the uppermost portion of the slab mantle, the hydrated minerals could be inhomogeneously distributed and the seismicity occurs at depths around 65km, where another dehydration reaction may exist. 4. Characteristics of the focal mechanisms We examined the stress distribution within the slab by using focal mechanisms of the upper plane, interplane and lower plane events. From the plate interface to about 20 km below it, downdip-compressional (DC) type events are dominant. Below 20km from the plate interface, downdip-tensional (DT) type events are dominant. Many of interplane events have DC type focal mechanisms because of their locations in the uppermost portions of the slab mantle. These results indicate that the stress neutral plane from the DC type to DT type could be located at depth of about 20km from the plate interface.

  2. Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging

    USGS Publications Warehouse

    Bleibinhaus, F.; Hole, J.A.; Ryberg, T.; Fuis, G.S.

    2007-01-01

    A seismic reflection and refraction survey across the San Andreas Fault (SAF) near Parkfield provides a detailed characterization of crustal structure across the location of the San Andreas Fault Observatory at Depth (SAFOD). Steep-dip prestack migration and frequency domain acoustic waveform tomography were applied to obtain highly resolved images of the upper 5 km of the crust for 15 km on either side of the SAF. The resulting velocity model constrains the top of the Salinian granite with great detail. Steep-dip reflection seismic images show several strong-amplitude vertical reflectors in the uppermost crust near SAFOD that define an ???2-km-wide zone comprising the main SAF and two or more local faults. Another prominent subvertical reflector at 2-4 km depth ???9 km to the northeast of the SAF marks the boundary between the Franciscan terrane and the Great Valley Sequence. A deep seismic section of low resolution shows several reflectors in the Salinian crust west of the SAF. Two horizontal reflectors around 10 km depth correlate with strains of seismicity observed along-strike of the SAF. They represent midcrustal shear zones partially decoupling the ductile lower crust from the brittle upper crust. The deepest reflections from ???25 km depth are interpreted as crust-mantle boundary. Copyright 2007 by the American Geophysical Union.

  3. Seismological structure of the 1.8 Ga Trans-Hudson Orogen of North America

    NASA Astrophysics Data System (ADS)

    Gilligan, Amy; Bastow, Ian D.; Darbyshire, Fiona A.

    2016-06-01

    Precambrian tectonic processes are debated: what was the nature and scale of orogenic events on the younger, hotter, and more ductile Earth? Northern Hudson Bay records the Paleoproterozoic collision between the Western Churchill and Superior plates—the ˜1.8 Ga Trans-Hudson Orogeny (THO)—and is an ideal locality to study Precambrian tectonic structure. Integrated field, geochronological, and thermobarometric studies suggest that the THO was comparable to the present-day Himalayan-Karakoram-Tibet Orogen (HKTO). However, detailed understanding of the deep crustal architecture of the THO, and how it compares to that of the evolving HKTO, is lacking. The joint inversion of receiver functions and surface wave data provides new Moho depth estimates and shear velocity models for the crust and uppermost mantle of the THO. Most of the Archean crust is relatively thin (˜39 km) and structurally simple, with a sharp Moho; upper-crustal wave speed variations are attributed to postformation events. However, the Quebec-Baffin segment of the THO has a deeper Moho (˜45 km) and a more complex crustal structure. Observations show some similarity to recent models, computed using the same methods, of the HKTO crust. Based on Moho character, present-day crustal thickness, and metamorphic grade, we support the view that southern Baffin Island experienced thickening during the THO of a similar magnitude and width to present-day Tibet. Fast seismic velocities at >10 km below southern Baffin Island may be the result of partial eclogitization of the lower crust during the THO, as is currently thought to be happening in Tibet.

  4. Interactions of multi-scale heterogeneity in the lithosphere: Australia

    NASA Astrophysics Data System (ADS)

    Kennett, B. L. N.; Yoshizawa, K.; Furumura, T.

    2017-10-01

    Understanding the complex heterogeneity of the continental lithosphere involves a wide variety of spatial scales and the synthesis of multiple classes of information. Seismic surface waves and multiply reflected body waves provide the main constraints on broad-scale structure, and bounds on the extent of the lithosphere-asthenosphere transition (LAT) can be found from the vertical gradients of S wavespeed. Information on finer-scale structures comes through body wave studies, including detailed seismic tomography and P-wave reflectivity extracted from stacked autocorrelograms of continuous component records. With the inclusion of deterministic large-scale structure and realistic medium-scale stochastic features fine-scale variations are subdued. The resulting multi-scale heterogeneity model for the Australian region gives a good representation of the character of observed seismograms and their geographic variations and matches the observations of P-wave reflectivity. P reflections in the 0.5-3.0 Hz band in the uppermost mantle suggest variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. Interference of waves reflected or converted at sequences of such modest variations in physical properties produce relatively simple behaviour for lower frequencies, which can suggest simpler structures than are actually present. Vertical changes in the character of fine-scale heterogeneity can produce apparent discontinuities. In Central Australia a 'mid-lithospheric discontinuity' can be tracked via changes in frequency content of station reflectivity, with links to the broad-scale pattern of wavespeed gradients and, in particular, the gradients of radial anisotropy. Comparisons with xenolith results from southeastern Australia indicate a strong tie between geochemical stratification and P-wave reflectivity.

  5. Electrical conductivity imaging in the western Pacific subduction zone

    NASA Astrophysics Data System (ADS)

    Utada, Hisashi; Baba, Kiyoshi; Shimizu, Hisayoshi

    2010-05-01

    Oceanic plate subduction is an important process for the dynamics and evolution of the Earth's interior, as it is regarded as a typical downward flow of the mantle convection that transports materials from the near surface to the deep mantle. Recent seismological study showed evidence suggesting the transportation of a certain amount of water by subduction of old oceanic plate such as the Pacific plate down to 150-200 km depth into the back arc mantle. However it is not well clarified how deep into the mantle the water can be transported. The electromagnetic induction method to image electrical conductivity distribution is a possible tool to answer this question as it is known to be sensitive to the presence of water. Here we show recent result of observational study from the western Pacific subduction zone to examine the electrical conductivity distribution in the upper mantle and in the mantle transition zone (MTZ), which will provide implications how water distributes in the mantle. We take two kinds of approach for imaging the mantle conductivity, (a) semi-global and (b) regional induction approaches. Result may be summarized as follows: (a) Long (5-30 years) time series records from 8 submarine cables and 13 geomagnetic observatories in the north Pacific region were analyzed and long period magnetotelluric (MT) and geomagnetic deep sounding (GDS) responses were estimated in the period range from 1.7 to 35 days. These frequency dependent response functions were inverted to 3-dimensional conductivity distribution in the depth range between 350 and 850 km. Three major features are suggested in the MTZ depth such as, (1) a high conductivity anomaly beneath the Philippine Sea, (2) a high conductivity anomaly beneath the Hawaiian Islands, and (3) a low conductivity anomaly beneath and in the vicinity of northern Japan. (b) A three-year long deployment of ocean bottom electro-magnetometers (OBEM's) was conducted in the Philippine Sea and west Pacific Ocean from 2005 to 2008. As a preliminary investigation, MT response functions from 20 sites in the Philippine Sea and 4 sites in the west Pacific basin in the period range between 300 and 80000 sec were respectively inverted to one-dimensional (1-D) profile of electrical conductivity by quantitatively considering the effect of the heterogeneous conductivity distribution (ocean and lands) at the surface. The resultant 1-D models show three main features: (1) Strong contrast in the conductivity for the shallower 200 km of the upper mantle depths is recognized between the two regions, which is qualitatively consistent with the difference in lithospheric age. (2) The conductivity at 200-300 km depth is more or less similar to each other at about 0.3 S /m. (3) The conductivity around the MTZ depth is higher for the Philippine Sea mantle than for the Pacific mantle, which is consistent with the implication obtained from a semi-global approach (a). As already suggested in our previous work, the high conductivity in the MTZ below the Philippine Sea can be explained by the excess conduction due to the presence of hydrogen (water) in wadesleyite or in ringwoodite. Therefore, it implies a large scale circulation of water in the back arc mantle not only in the upper mantle but also down to the MTZ depth. However, our interpretation indicates that the high conductivity of the Philippine Sea uppermost upper mantle cannot be explained only by the effect of hydrogen conduction in olivine, but that additional conduction enhancement such as the presence of partial melt is required.

  6. Evidences of a Stalled-slab Beneath the Coast Ranges, California, From Seismicity and Converted Phases

    NASA Astrophysics Data System (ADS)

    Cao, A.; Liu, K. H.; Gao, S. S.

    2001-12-01

    In spite of numerous geophysical studies, the existence and geometry of a stalled slab beneath the Coast Ranges remains vague. In this study we use the distribution of mantle earthquakes and P-to-S converted phases from tilt interfaces to address the problem. Based on the CNSS catalog, in the period between 01/1960 and 04/2001, there were about 450 earthquakes occurred at depth larger than 35 km in the vicinity of the Coast Ranges. When plotted along east-west cross-sections, those earthquakes show a clear slab-like image, similar to the upper part of classic Benioff zones along subducting oceanic slabs. One of such cross-sections, which has a width of 20 km and a latitude of 39N, is located in the so-called 'slabless window' suggested by several previous geologic and geophysic studies, implying the existence of a stalled-slab along the cross-section. The mantle earthquakes can be explained as the result of stress concentration caused by heterogeneities in elastic properties associated with the cold slab, and of changes in mineralogical phases in the upper-most mantle in and around the slab. The existence of the slab is supported by clear azimuthal variations of the amplitude and arrival time of P-to-S converted phases from a tilt interface at about 70 km depth recorded by a broadband seismic station in the area. Our analysis shows that the converted phase is probably from a subducted oceanic lithosphere dipping to the east. The strike of the slab is approximately parallel to the Coast Ranges.

  7. Absolute Plate Motion Control Since the Triassic from the Cocos Slab and its Associated Subduction Record in Mexico

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.; Spakman, W.

    2017-12-01

    A positive wave speed anomaly interpreted as the Cocos slab stretches from the uppermost mantle at the Middle America trench in the west, to the lowermost mantle below the Atlantic in the east. The length and continuity of this slab indicates long-lived, uninterrupted eastward subduction of the attached Cocos Plate and its predecessor, the Farallon Plate. The geological record of Mexico contains Triassic to present day evidence of subduction, of which the post-Late Cretaceous phase is of continental margin-style. Interpretations of the pre-Upper Cretaceous subduction-related rock assemblages are under debate, and vary from far-travelled exotic intra-oceanic island arc character to in-situ extended continental margin origin. We present new paleomagnetic data that show that Triassic, Jurassic and Cretaceous subduction-related rocks from the Vizcaíno Peninsula and the Guerrero terrane have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. The entire Triassic-present day subduction record, and hence, reconstructed trench location, can therefore be linked to the Cocos slab, which provides control on longitudinal plate motion of North America since the time of Pangea. Compared to the latest state of the art mantle frames, in which longitudes are essentially unconstrained for pre-Cretaceous times, our reconstructed absolute position of North America requires a significant westward longitudinal shift for Mesozoic times.

  8. Correlation between deep fluids, tremor and creep along the central San Andreas fault

    USGS Publications Warehouse

    Becken, M.; Ritter, O.; Bedrosian, P.A.; Weckmann, U.

    2011-01-01

    The seismicity pattern along the San Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and chemical weakening are considered possible causes of an anomalously weak fault northwest of Parkfield. Non-volcanic tremor from lower-crustal and upper-mantle depths is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth. Here we present geophysical evidence of fluids migrating into the creeping section of the San Andreas fault that seem to originate in the region of the uppermost mantle that also stimulates tremor, and evidence that along-strike variations in tremor activity and amplitude are related to strength variations in the lower crust and upper mantle. Interconnected fluids can explain a deep zone of anomalously low electrical resistivity that has been imaged by magnetotelluric data southwest of the Parkfield-Cholame segment. Near Cholame, where fluids seem to be trapped below a high-resistivity cap, tremor concentrates adjacent to the inferred fluids within a mechanically strong zone of high resistivity. By contrast, subvertical zones of low resistivity breach the entire crust near the drill hole of the San Andreas Fault Observatory at Depth, northwest of Parkfield, and imply pathways for deep fluids into the eastern fault block, coincident with a mechanically weak crust and the lower tremor amplitudes in the lower crust. Fluid influx to the fault system is consistent with hypotheses of fault-weakening high fluid pressures in the brittle crust.

  9. Constraining the Fore-Arc Flux Along the Central America Margin

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Barry, P. H.; Ramirez, C. J.; Kulongoski, J. T.; Patel, B. S.; Blackmon, K.

    2014-12-01

    The transport of carbon to the deep mantle via subduction zones is interrupted by outputs via the fore-arc, volcanic front, and back-arc regions. Whereas output fluxes for the front and back-arc locales are well constrained for Central America (CA) [1], the fore-arc flux via cold seeps and groundwaters is virtually unknown. We present new He and CO2 data for the inner fore-arc of Costa Rica and western Panama to complement our study [2] of offshore CO2fluxes on the outer-forearc. On the Nicoya Peninsula, the Costa Rica Pacific coastline (including the Oso Peninsula) and the Talamanca Mountain Range, as well as coastal seeps in Panama, coupled CO2-He studies allow recognition of mantle (3He/4He up to 6RA) and crustal inputs to the volatile inventory. We associate the crustal component with CO2 derived from limestone (L) and organic sediments (S) on the subducting slab, and see a decrease in the L/S ratio trench-ward with the lowest values akin to those of diatomaceous ooze in the uppermost sequence of the subducting sediment package. This observation is consistent with the removal of the uppermost organic-rich sediment from deep subduction by under-plating. As the input carbon fluxes of the individual sedimentary layers are well constrained [3], we can limit the potential steady-state flux of carbon loss at the subaerial fore-arc to ~ 6 × 107 gCkm-1yr-1, equivalent to ~88% of the input flux of C associated with the ooze, or <4% of the total incoming sedimentary C. This study confirms that the greatest loss of slab-derived carbon at the CA margin occurs at the volcanic front with recycling efficiencies between 12% (Costa Rica) and 29% (El Salvador) of the sedimentary input [1]. It also demonstrates the utility of the coupled He-CO2approach for mass balance studies at subduction zones. [1] De Leeuw et al., EPSL, 2007; [2] Furi et al., G-cubed, 2010; [3] Li and Bebout, JGR, 2005.

  10. Teleseismic array analysis of upper mantle compressional velocity structure. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Walck, M. C.

    1984-01-01

    Relative array analysis of upper mantle lateral velocity variations in southern California, analysis techniques for dense data profiles, the P-wave upper mantle structure beneath an active spreading center: the Gulf of California, and the upper mantle under the Cascade ranges: a comparison with the Gulf of California are presented.

  11. A model for the evolution of the Earth's mantle structure since the Early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Zhong, Shijie; Leng, Wei; Li, Zheng-Xiang

    2010-06-01

    Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a globally spherical harmonic degree 2 structure). However, the cause for and time evolution of the African and Pacific superplumes and the degree 2 mantle structure remain poorly understood with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Myr and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma) and the mantle in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree 1 structure before the Pangea formation). Here, we construct a proxy model of plate motions for the African hemisphere for the last 450 Myr since the Early Paleozoic using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations. Coupled with assumed oceanic plate motions for the Pacific hemisphere, this proxy model for the plate motion history is used as time-dependent surface boundary condition in three-dimensional spherical models of thermochemical mantle convection to study the evolution of mantle structure, particularly the African mantle structure, since the Early Paleozoic. Our model calculations reproduce well the present-day mantle structure including the African and Pacific superplumes and generally support the second proposal with a dynamic cause for the superplume structure. Our results suggest that while the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of the African superplume structure can be formed before ˜230 Ma (i.e., ˜100 Myr after the assembly of Pangea). Particularly, the last 120 Myr plate motion plays an important role in generating the African superplume. Our models have implications for understanding the global-scale magmatism, tectonics, mantle dynamics, and thermal evolution history for the Earth since the Early Paleozoic.

  12. Chemical heterogeneities in the interior of terrestrial bodies

    NASA Astrophysics Data System (ADS)

    Plesa, Ana-Catalina; Maurice, Maxime; Tosi, Nicola; Breuer, Doris

    2016-04-01

    Mantle chemical heterogeneities that can strongly influence the interior dynamics have been inferred for all terrestrial bodies of the Solar System and range from local to global scale. Seismic data for the Earth, differences in surface mineral compositions observed in data sets from space missions, and isotopic variations identified in laboratory analyses of meteorites or samples indicate chemically heterogeneous systems. One way to generate large scale geochemical heterogeneities is through the fractional crystallization of a liquid magma ocean. The large amount of energy available in the early stages of planetary evolution can cause melting of a significant part or perhaps even the entire mantle of a terrestrial body resulting in a liquid magma ocean. Assuming fractional crystallization, magma ocean solidification proceeds from the core-mantle boundary to the surface where dense cumulates tend to form due to iron enrichment in the evolving liquid. This process leads to a gravitationally unstable mantle, which is prone to overturn. Following cumulate overturn, a stable stratification may be reached that prevents efficient material transport. As a consequence, mantle reservoirs may be kept separate, possibly for the entire thermo-chemical evolution of a terrestrial body. Scenarios assuming fractional crystallization of a liquid magma ocean have been suggested to explain lavas with distinct composition on Mercury's surface [1], the generation of the Moon's mare basalts by sampling a reservoir consisting of overturned ilmenite-bearing cumulates [2], and the preservation of Mars' geochemical reservoirs as inferred by isotopic analysis of the SNC meteorites [3]. However, recent studies have shown that the style of the overturn as well as the subsequent density stratification are of extreme importance for the subsequent thermo-chemical evolution of a planetary body and may have a major impact on the later surface tectonics and volcanic history. The rapid formation of a stagnant lid that traps the uppermost dense cumulates close to the surface and prevents them from sinking into the mantle or the difficulty to initiate thermal convection because of the stable compositional gradient established after the overturn are difficult to reconcile with observations [4, 5]. More recent results show that the crystallization achieved upon solidification of a liquid magma ocean is considerably more complex than previously assumed. In fact, the onset of solid-state convection prior to complete crystallization of the mantle can efficiently reduce mantle chemical heterogeneities [5]. We thus conclude that mantle mixing may partly or even completely erase the effects of fractional crystallization well before complete solidification. Nevertheless, the subsequent differentiation caused by partial melting, may introduce additional heterogeneities between residual and primitive mantle that could explain compositional differences observed over the surface of terrestrial bodies [6]. References: [1] Charlier et al., 2013, EPSL; [2] Elkins-Tanton et al., 2011, EPSL; [3] Elkins-Tanton et al., 2005, JGR; [4] Tosi et al., 2013, JGR; [5] Plesa et al., 2014, EPSL; [5] Maurice et al, 2015, EGU; [6] Plesa & Breuer, 2014, PSS.

  13. Toroidal, Counter-Toroidal, and Upwelling Flow in the Mantle Wedge of the Rivera and Cocos Plates: Implications for IOB Geochemistry in the Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Neumann, Florian; Vásquez-Serrano, Alberto; Tolson, Gustavo; Negrete-Aranda, Raquel; Contreras, Juan

    2016-10-01

    We carried out analog laboratory modeling at a scale 1:4,000,000 and computer rendering of the flow patterns in a simulated western Middle American subduction zone. The scaled model consists of a transparent tank filled with corn syrup and housing two conveyor belts made of polyethylene strips. One of the strips dips 60° and moves at a velocity of 30 mm/min simulating the Rivera plate. The other one dips 45°, moves at 90 mm/min simulating the subduction of the Cocos plate. Our scaled subduction zone also includes a gap between the simulated slabs analogous to a tear recently observed in shear wave tomography studies. An acrylic plate 3 mm thick floats on the syrup in grazing contact with the polyethylene strips and simulates the overriding North America plate. Our experiments reveal a deep toroidal flow of asthenospheric mantle through the Cocos-Rivera separation. The flow is driven by a pressure gradient associated with the down-dip differential-motion of the slabs. Similarly, low pressure generated by the fast-moving Cocos plate creates a shallow counter-toroidal flow in the uppermost 100 km of the mantle wedge. The flow draws mantle beneath the western Trans-Mexican Volcanic Belt to the Jalisco block, then plunges into the deep mantle by the descending poloidal cell of the Cocos slab. Moreover, our model suggests a hydraulic jump causes an ~250 km asthenosphere upwelling around the area where intra-arc extensional systems converge in western Mexico. The upwelling eventually merges with the shallow counter-toroidal flow describing a motion in 3D space similar to an Archimedes' screw. Our results indicate the differential motion between subducting slabs drives mixing in the mantle wedge of the Rivera plate and allows the slab to steepen and retreat. Model results are in good agreement with seismic anisotropy studies and the geochemistry of lavas erupted in the Jalisco block. The model can explain the eruption of OIB lavas in the vicinity of the City of Guadalajara in western Mexico, and the south shoulder in the central part of the Tepic-Zacoalco fault system.

  14. Investigating melting induced mantle heterogeneities in plate driven mantle convection models

    NASA Astrophysics Data System (ADS)

    Price, M.; Davies, H.; Panton, J.

    2017-12-01

    Observations from geochemistry and seismology continue to suggest a range of complex heterogeneity in Earth's mantle. In the deep mantle, two large low velocity provinces (LLVPs) have been regularly observed in seismic studies, with their longevity, composition and density compared to the surrounding mantle debated. The cause of these observed LLVPs is equally uncertain, with previous studies advocating either thermal or thermo-chemical causes. There is also evidence that these structures could provide chemically distinct reservoirs within the mantle, with recent studies also suggesting there may be additional reservoirs in the mantle, such as bridgmanite-enriched ancient mantle structures (BEAMS). One way to test these hypotheses is using computational models of the mantle, with models that capture the full 3D system being both complex and computationally expensive. Here we present results from our global mantle model TERRA. Using our model, we can track compositional variations in the convecting mantle that are generated by self-consistent, evolving melting zones. Alongside the melting, we track trace elements and other volatiles which can be partitioned during melting events, and expelled and recycled at the surface. Utilising plate reconstruction models as a boundary condition, the models generate the tectonic features observed at Earth's surface, while also organising the lower mantle into recognisable degree-two structures. This results in our models generating basaltic `oceanic' crusts which are then brought into the mantle at tectonic boundaries, providing additional chemical heterogeneity in the mantle volume. Finally, by utilising thermodynamic lookup tables to convert the final outputs from the model to seismic structures, together with resolution filters for global tomography models, we are able to make direct comparisons between our results and observations. By varying the parameters of the model, we investigate a range of current hypotheses for heterogeneity in the mantle. Our work attempts to reconcile the many proposed current ideas for the deep mantle, giving additional insight from modelling on the latest observations from other Deep Earth disciplines.

  15. Clinopyroxenite dykes within a banded unit in the basal mantle section of the northern part of the Oman ophiolite: A record of the latest deep-seated magmatism

    NASA Astrophysics Data System (ADS)

    Ishimaru, Satoko; Arai, Shoji; Tamura, Akihiro

    2017-11-01

    We found clinopyroxenite dykes in a banded harzburgite block within the Sumeini area in the uppermost part of the metamorphic sole of the northern part of the Oman ophiolite. The dykes clearly cut the deformational structure of the harzburgite and contain its fragments, indicating dyke formation during obduction of the ophiolite. The Mg# [= Mg / (Mg + total Fe)] of clinopyroxenes in the dykes ranges from 0.81 to 0.91, and increases up to 0.93 proximal to harzburgite fragments. Mantle minerals in the harzburgite fragments were modified chemically through interaction with the magma that formed the dyke, yielding lower clinopyroxene and spinel Mg#, and spinels with higher TiO2 contents than those in the unaltered harzburgite. These geochemical features indicate that the clinopyroxenite dykes are cumulates derived from a relatively deep-seated primitive magma enriched in light rare earth elements (LREE) with an ocean island basalt (OIB)-like affinity, geochemically similar to the V3 lavas of an off-ridge origin. Combining these data with geological observations suggests that the clinopyroxenite dykes represent root system of the V3 lavas. Our analyses of the clinopyroxenite dykes testify to the external nature of the V3 magmas, which was added to the sliced oceanic lithosphere from the outside. It is likely that the V3 magma underwent deep-seated crystallization of clinopyroxene and had limited interaction with mantle peridotite en route to the surface. The mode of occurrence of the Sumeini clinopyroxenites (i.e., emplaced into a banded harzburgite block surrounded by garnet amphibolite) is consistent with the generation of OIB-like magmas (V3 lava) beneath the Oman ophiolite resulting from the break-off of the "subducting slab" and subsequent infiltration of hot asthenospheric mantle. This view is consistent with the limited distribution of V3-related rocks in the Oman ophiolite. The production of such OIB-like magmas during ophiolite obduction is not a rare event, especially during the subduction of young and hot oceanic lithosphere. Footnote: Mg#, Mg/(Mg + Fe total) atomic ratio; Cr#, Cr/(Cr + Al) atomic ratio; YAl, Al/(Al + Cr + Fe3 +) atomic ratio; YCr, Al/(Al + Cr + Fe3 +) atomic ratio; YFe, Al/(Al + Cr + Fe3 +) atomic ratio. RSD: relative standard deviation. Ref. values: Reference values of JEOL_Kfs from a JEOL database.

  16. Mantle transition zone thinning beneath eastern Africa: Evidence for a whole-mantle superplume structure

    NASA Astrophysics Data System (ADS)

    Mulibo, Gabriel D.; Nyblade, Andrew A.

    2013-07-01

    to S conversions from the 410 and 660 km discontinuities observed in receiver function stacks reveal a mantle transition zone that is ~30-40 km thinner than the global average in a region ~200-400 km wide extending in a SW-NE direction from central Zambia, across Tanzania and into Kenya. The thinning of the transition zone indicates a ~190-300 K thermal anomaly in the same location where seismic tomography models suggest that the lower mantle African superplume structure connects to thermally perturbed upper mantle beneath eastern Africa. This finding provides compelling evidence for the existence of a continuous thermal structure extending from the core-mantle boundary to the surface associated with the African superplume.

  17. Electrically Anisotropic 35 Ma Pacific Lithosphere

    NASA Astrophysics Data System (ADS)

    Chesley, C. J.; Key, K.; Constable, S.; Behrens, J.; MacGregor, L.

    2017-12-01

    Geophysical studies of anisotropy in the oceanic lithosphere and asthenosphere can yield crucial insights into the processes of plate formation and evolution as the plate cools and thickens. While most previous studies have employed seismic methods to investigate anisotropy, here we examine the electrical conductivity anisotropy as constrained by controlled-source electromagnetic (CSEM) data collected during the Anisotropy and Physics of the Pacific Lithosphere Experiment (APPLE). Unlike passive magnetotelluric data, which are not particularly sensitive to the resistive part of the lithosphere or its anisotropy, CSEM data are highly sensitive to anisotropy in both the resistive crust and uppermost mantle. The APPLE data include a 30 km radius circular deep-tow of a Horizontal Electric Dipole (HED) transmitter around orthogonal pairs of HED receivers. The circular tow was optimized to measure azimuthal anisotropy, while radially oriented data at ranges from 14 to 70 km provided constraints on depth dependence of bulk conductivity. We inverted these data with a nonlinear anisotropic inversion that allows for laterally transverse isotropy, with the vertical plane of isotropy aligned orthogonal to the paleo-spreading direction. Our best model shows at least an order of magnitude resistivity difference between the paleo-spreading and paleo-ridge strike directions in both the crust and upper mantle. In the crust, conductivity is higher in the paleo-ridge and vertical directions. The opposite is true in the upper mantle, where conductivity is ten times higher in the paleo-spreading direction. Since the study area is centered on 35 Ma lithosphere, it is unlikely that melt plays a role in the observed anisotropy. Instead we propose that the crustal anisotropy is due to conductive clay minerals in normal faults promoted by hydration during paleo-extension close to the mid-ocean ridge. The upper mantle anisotropy potentially results from a crystal preferred orientation of olivine induced by shear deformation. These findings offer clues about the processes associated with oceanic spreading and may be of import to ophiolite studies.

  18. Initiation and evolution of the Oligo-Miocene rift basins of southwestern Europe: Contribution of deep seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Bois, C.

    1993-11-01

    Southwestern European Oligo-Miocene rift basins have recently been investigated by deep seismic reflection profiling. The study of these data, together with other geophysical and geological data, shows that the rifts, which run from the Rhinegraben to the western Mediterranean, do not form a single clearcut system. The N-trending rifts (Rhinegraben, Bresse and Limagne) were developed on a cold and rigid lithosphere affected by the Alpine collision. The NE-trending rifts (southeastern France, Gulf of Lions and Valencia Trough) were formed slightly later in a backarc basin associated with an active segment of the European-Iberian plate that was heated, affected by widespread calcalkaline volcanism and probably weakened. All the southwestern European rifts and basins together may, however, be related to a common heritage represented by the boundary between the European-Iberian and African-Apulian plates that was created in the Jurassic with the initiation of the Tethys Ocean. The present features of the southwestern European Oligo-Miocène rift basins may be explained by a combination of three geodynamic mechanisms: mechanical stretching of the lithosphere, active mantle uplifting, and subordinate lithospheric flexuring. All the rifts were probably initiated by passive stretching. A systematic discrepancy between stretching derived from fault analysis and attenuation of the crust has been observed in all the rifts. This suggests that these rifts were subsequently reworked by one or several active mantle upwelling events associated with late shoulder uplift, asthenosphere upwelling and anomalous P-wave velocities in the lowermost crust and the uppermost mantle. Crustal attenuation may have been achieved by mantle intrusion, metamorphism of the deep crust and/or its delamination. Some of the rifts were affected by lithospheric flexuring. Combinations, in various proportions, of a small number of geodynamic mechanisms probably controlled many basins in the world. This explains the unique characteristics of each basin, difficulties in basin classification and the frequent failure of single-mechanism models to explain the geological observations.

  19. Crustal accretion along the global mid-ocean ridge system based on basaltic glass and olivine-hosted melt inclusion compositions

    NASA Astrophysics Data System (ADS)

    Wanless, V. D.; Behn, M. D.

    2015-12-01

    The depth and distribution of crystallization at mid-ocean ridges controls the overall architecture of the oceanic crust, influences hydrothermal circulation, and determines geothermal gradients in the crust and uppermost mantle. Despite this, there is no overall consensus on how crystallization is distributed within the crust/upper mantle or how this varies with spreading rate. Here, we examine crustal accretion at mid-ocean ridges by combining crystallization pressures calculated from major element barometers on mid-ocean ridge basalt (MORB) glasses with vapor-saturation pressures from melt inclusions to produce a detailed map of crystallization depths and distributions along the global ridge system. We calculate pressures of crystallization from >11,500 MORB glasses from the global ridge system using two established major element barometers (1,2). Additionally, we use vapor-saturation pressures from >400 olivine-hosted melt inclusions from five ridges with variable spreading rates to constrain pressures and distributions of crystallization along the global ridge system. We show that (i) crystallization depths from MORB glasses increase and become less focused with decreasing spreading rate, (ii) maximum glass pressures are greater than the maximum melt inclusion pressure, which indicates that the melt inclusions do not record the deepest crystallization at mid-ocean ridges, and (iii) crystallization occurs in the lower crust/upper mantle at all ridges, indicating accretion is distributed throughout the crust at all spreading rates, including those with a steady-state magma lens. Finally, we suggest that the remarkably similar maximum vapor-saturation pressures (~ 3000 bars) in melt inclusion from all spreading rates reflects the CO2 content of the depleted upper mantle feeding the global mid-ocean ridge system. (1) Michael, P. & W. Cornell (1998), Journal of Geophysical Research, 103(B8), 18325-18356; (2) Herzberg, C. (2004), Journal of Petrology, 45(12), 2389.

  20. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc

    NASA Astrophysics Data System (ADS)

    Arculus, Richard J.; Ishizuka, Osamu; Bogus, Kara A.; Gurnis, Michael; Hickey-Vargas, Rosemary; Aljahdali, Mohammed H.; Bandini-Maeder, Alexandre N.; Barth, Andrew P.; Brandl, Philipp A.; Drab, Laureen; Do Monte Guerra, Rodrigo; Hamada, Morihisa; Jiang, Fuqing; Kanayama, Kyoko; Kender, Sev; Kusano, Yuki; Li, He; Loudin, Lorne C.; Maffione, Marco; Marsaglia, Kathleen M.; McCarthy, Anders; Meffre, Sebastién; Morris, Antony; Neuhaus, Martin; Savov, Ivan P.; Sena, Clara; Tepley, Frank J., III; van der Land, Cees; Yogodzinski, Gene M.; Zhang, Zhaohui

    2015-09-01

    The initiation of tectonic plate subduction into the mantle is poorly understood. If subduction is induced by the push of a distant mid-ocean ridge or subducted slab pull, we expect compression and uplift of the overriding plate. In contrast, spontaneous subduction initiation, driven by subsidence of dense lithosphere along faults adjacent to buoyant lithosphere, would result in extension and magmatism. The rock record of subduction initiation is typically obscured by younger deposits, so evaluating these possibilities has proved elusive. Here we analyse the geochemical characteristics of igneous basement rocks and overlying sediments, sampled from the Amami Sankaku Basin in the northwest Philippine Sea. The uppermost basement rocks are areally widespread and supplied via dykes. They are similar in composition and age--as constrained by the biostratigraphy of the overlying sediments--to the 52-48-million-year-old basalts in the adjacent Izu-Bonin-Mariana fore-arc. The geochemical characteristics of the basement lavas indicate that a component of subducted lithosphere was involved in their genesis, and the lavas were derived from mantle source rocks that were more melt-depleted than those tapped at mid-ocean ridges. We propose that the basement lavas formed during the inception of Izu-Bonin-Mariana subduction in a mode consistent with the spontaneous initiation of subduction.

  1. The distribution of particulate material on Mars

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.

    1991-01-01

    The surface materials on Mars were extensively studied using a variety of spacecraft and Earth-based remote sensing observations. These measurements include: (1) diurnal thermal measurements, used to determine average particle size, rock abundance, and the presence of crusts; (2) radar observations, used to estimate the surface slope distributions, wavelength scale roughness, and density; (3) radio emission observations, used to estimate subsurface density; (4) broadband albedo measurements, used to study the time variation of surface brightness and dust deposition and removal; and (5) color observations, used to infer composition, mixing, and the presence of crusts. Remote sensing observations generally require some degree of modeling to interpret, making them more difficult to interpret than direct observations from the surface. They do, however, provide a means for examining the surface properties over the entire planet and a means of sampling varying depths within the regolith. Albedo and color observations only indicate the properties of the upper-most few microns, but are very sensitive to thin, sometimes emphemeral dust coatings. Thermal observations sample the upper skin depth, generally 2 to 10 cm. Rock abundance measurements give an indirect indication of surface mantling, where the absence of rocks suggests mantles of several meters. Finally, radar and radio emission data can penetrate several meters into the surface, providing an estimate of subsurface density and roughness.

  2. Linkage between mantle and crustal structures and its bearing on inherited structures in northwestern Scotland

    USGS Publications Warehouse

    Snyder, D.B.; England, R.W.; McBride, J.H.

    1997-01-01

    Deep seismic reflection profiles in Scotland reveal mantle structures beneath a crust with a polyphase tectonic history that resulted in several generations of structures. Continuum mechanics suggests that coeval mantle and crustal structures must be kinematically linked. Inherited structures imply relative ages for the reflectors, ages that can be placed into the context of the geological history of the near-surface rocks of northern Scotland. Thus, some mantle reflectors are assigned Triassic ages related to the opening of the West Orkney and related marginal basins of the Atlantic Ocean. Other mantle reflectors are cut by late Caledonian structures associated with the Great Glen Fault Zone and therefore older than c. 400 Ma. Many of these structures also track the late Precambrian margin of Laurentia and may be related to either the opening (900-600 Ma) or closing (500-400 Ma) of the Iapetus Ocean. Some reflective structures may also be attributed to 1800-1700 Ma Laxfordian deformation that was part of a global-scale orogenic belt.

  3. Variations in Melt Generation and Migration along the Aleutian Arc (Invited)

    NASA Astrophysics Data System (ADS)

    Plank, T. A.; Van Keken, P. E.

    2013-12-01

    The generation and ascent of mantle melt beneath volcanic arcs sets the course for how magmas differentiate to form the continental crust and erupt explosively from volcanoes. Although the basic framework of melting at subduction zones is understood to involve the convective influx of hot mantle (Tp ≥ 1300°C) and advective transport of water-rich fluids from the subducting slab, the P-T paths that melts follow during melt generation and migration are still not well known. The Aleutian Arc provides an opportunity to explore the conditions of mantle melting in the context of volcanoes that span an unusually large range in the depth to the slab, from Seguam island, with among the shallowest depths to the slab worldwide (~65 km, [1]) to Bogoslof island, behind the main volcanic front and twice the depth to the slab (~130 km). Here we combine thermal models tuned to Aleutian subduction parameters [after 2] with petrological estimates of the T and P of mantle-melt equilibration, using a major element geothermometer [3] and estimates of H2O and fO2 from olivine-hosted melt inclusion measurements [4] for basaltic magmas from 6 volcanoes in the central Aleutians (Korovin, Seguam, Bogoslof, Pakushin, Akutan, Shishaldin). We find mantle-melt equilibration conditions to vary systematically as a function of the depth to the slab, from 30 km and 1220°C (for Seguam) to 60 km and 1300°C (for Bogoslof). Such shallow depths, which extend up to the Moho, define a region perched well above the hot core of the mantle wedge predicted from thermal models, even considering the shallow depths of slab-mantle coupling (< 60 km) required to supply hot mantle beneath Seguam. Thus, even though the greatest melt production will occur in the hot core of the wedge (50-100 km depth), melts apparently ascend and re-equilibrate in the shallowest mantle. Volcanoes that overlie the greatest depth to the slab, and lie furthest from the wedge corner, stall at greater depths (~60 km), at the base of the conductive upper plate (i.e., lithosphere). The conductive lid and isotherms shallow toward the wedge corner. This leads to shallower depths of melt equilibration at shallower depths to the slab. A second effect is infiltration of melt into the thinning lithosphere, likely due to the increase in strain-rate toward the wedge corner, which favors melt segregation, migration, and shallow equilibration [5]. Such a process is developed most beneath Seguam, where melts collect at the Moho (~ 30km), but are still > 1200°C. Such equilibration depths in the uppermost mantle (30-60 km) and temperatures typical of the base of the conductive lid appear to characterize most modeled primary arc magmas [6], and point to a final re-setting point in the mantle that controls the composition of bulk arc crust. [1] Syracuse & Abers, 2006, G3. [2] Syracuse, van Keken, Abers, (2010) PEPI. [3] Lee, Luffi, Plank, Dalton, Leeman (2009) EPSL. [4] Zimmer et al. (2010) J.Pet. [5] Holzman & Kendall (2010). [6] Ruscitto et al. (2012) G3.

  4. Seasonal Surface Loading Helps Constrain Short-Term Viscosity of the Asthenosphere

    NASA Astrophysics Data System (ADS)

    Clarke, Peter J.

    2018-03-01

    Earth materials may display a range of rheological behaviors at different depths and over different timescales. The situation is particularly complex for postseismic relaxation in the uppermost mantle and lower crust, where it can be difficult to distinguish widespread viscous behavior from earthquake afterslip or localized deformation in shear zones over timescales of weeks to decades. By analyzing geodetic observations of seasonal surface mass loads and Earth's surface deformation in response, Chanard et al. (2018, https://doi.org/10.1002/2017GL076451) have established a globally averaged lower bound of 5 × 1017 Pa s for the transient viscosity of a Burgers-rheology asthenosphere. This implies that lower viscosities inferred by some studies of postseismic relaxation must result from local departures from this global value, or be an artifact of additional afterslip or shear zone deformation.

  5. A Model for Earth's Mantle Dynamic History for The Last 500 Ma and Its Implications for Continental Vertical Motions and Geomagnetism

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Olson, P.; Zhang, N.

    2012-12-01

    Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., thermochemical piles) and circum Pacific seismically fast anomalies (i.e., degree 2) in the lower mantle. Mantle convection calculations including plate motion history for the last 120 Ma suggest that these degree 2 thermochemical structures result from plate subduction history (e.g., McNamara and Zhong, 2005). Given the important controls of mantle structure and dynamics on surface tectonics and volcanism and geodynamo in the core, an important question is the long-term evolution of mantle structures, for example, was the mantle structure in the past similar to the present-day's degree 2 structure, or significantly different from the present day? To address this question, we constructed a proxy model of plate motions for the African hemisphere for the last 450 Ma using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations (e.g., Pangea assembly and breakup). Coupled with assumed oceanic plate motions for the Pacific hemisphere before 120 Ma, this proxy model for the plate motion history is used in three dimensional spherical models of mantle convection to study the evolution of mantle structure since the Early Paleozoic. Our model calculations reproduce well the present day degree 2 mantle structure including the African and Pacific thermochemical piles, and present-day surface heat flux, bathymetry and dynamic topography. Our results suggest that while the mantle in the African hemisphere before the assembly of Pangea is dominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of the African superplume structure can be formed before ˜230 Ma. Particularly, the last 120 Ma plate motion plays an important role in generating the African thermochemical pile. We reconstruct temporal evolution of the surface and CMB heat fluxes and continental vertical motions since the Paleozoic. The predicted vertical motion histories for the Slave and Kaapvaal cratons are consistent with those inferred from thermochronology studies. The predicted CMB heat fluxes were used as time-dependent boundary conditions for geodynamo simulations. And the geodynamo modelling shows that the time-dependent CMB heat fluxes may explain to the first order the frequencies of geomagnetic polarity reversals (e.g., superchrons).

  6. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle

    NASA Astrophysics Data System (ADS)

    Niu, Yaoling; O'Hara, Michael J.

    2009-09-01

    We have examined the high quality data of 306 mid-ocean ridge basalt (MORB) glass samples from the East Pacific Rise (EPR), near-EPR seamounts, Pacific Antarctic Ridge (PAR), near-PAR seamounts, Mid-Atlantic Ridge (MAR), and near-MAR seamounts. The data show a correlated variation between Eu/Eu* and Sr/Sr*, and both decrease with decreasing MgO, pointing to the effect of plagioclase crystallization. The observation that samples with MgO > 9.5 wt.% (before plagioclase on the liquidus) show Eu/Eu* > 1 and Sr/Sr* > 1 and that none of the major phases (i.e., olivine, orthopyroxene, clinopyroxene, spinel and garnet) in the sub-ridge mantle melting region can effectively fractionate Eu and Sr from otherwise similarly incompatible elements indicates that the depleted MORB mantle (DMM) possesses excess Sr and Eu, i.e., [Sr/Sr*]DMM > 1 and [Eu/Eu*]DMM > 1. Furthermore, the well-established observation that DNb ≈ DTh, DTa ≈ DU and DTi ≈ DSm during MORB mantle melting, yet primitive MORB melts all have [Nb/Th]PMMORB > 1, [Ta/U]PMMORB > 1 and [Ti/Sm]PMMORB > 1 (where PM indicates primitive mantle normalized), also points to the presence of excess Nb, Ta and Ti in the DMM, i.e., [Nb/Th]PMDMM > 1, [Ta/U]PMDMM > 1 and [Ti/Sm]PMDMM > 1. The excesses of Eu, Sr, Nb, Ta and Ti in the DMM complement the well-known deficiencies of these elements in the bulk continental crust (BCC). These new observations, which support the notion that the DMM and BCC are complementary in terms of the overall abundances of incompatible elements, offer new insights into the crust-mantle differentiation. These observations are best explained by partial melting of amphibolite of MORB protolith during continental collision, which produces andesitic melts with a remarkable compositional (major and trace element abundances as well as key elemental ratios) similarity to the BCC, as revealed by andesites in southern Tibet produced during the India-Asia continental collision. An average amphibolite of MORB protolith consists of ~ 66.4% amphibole, ~ 29.2% plagioclase and 4.4% ilmenite. In terms of simple modal melting models, the bulk distribution coefficient ratios D2Eu/(Sm + Gd) = 1.21, D2Sr/(Pr + Nd) = 1.04, DNb/Th = 44, DTa/U = 57, DTi/Sm = 3.39 and DNb/Ta = 1.30 readily explains the small but significant negative Eu and Sr anomalies, moderate negative Ti anomaly and huge negative Nb and Ta anomalies as well as the more sub-chondritic Nb/Ta ratio in the syncollisional andesitic melt that is characteristic of and contributes to the continental crust mass. These results support the hypothesis that continental collision zones are primary sites of net continental crust growth, whereas the standard "island arc" model has many more difficulties than certainties. That is, it is the continental collision (vs. "island arc magmatism" or "episodic super mantle avalanche events") that produces and preserves the juvenile crust, and hence maintains net continental growth. The data also allow us to establish the robust composition of depleted and most primitive (or "primary") MORB melt with 13% MgO. This, together with the estimated positive Eu and Sr anomalies in the DMM, further permits estimation that the DMM may occupy the uppermost ~ 680 km of the convective mantle following the tradition that the DMM lies in the shallowest mantle. However, the tradition may be in error. The seismic low velocity zone (LVZ) may be compositionally stratified with small melt fractions concentrated towards the interface with the growing lithosphere because of buoyancy. Such small melt fractions, enriched in volatiles and incompatible elements, continue to metasomatize the growing lithosphere before it reaches the full thickness after ~ 70 Myrs. Hence, the oceanic mantle lithosphere is a huge enriched geochemical reservoir. On the other hand, deep portions of the LVZ, which are thus relatively depleted, become the primary source feeding the ridge because of ridge-suction-driven lateral material supply to form the crust and much of the lithosphere at and in the vicinity of the ridge.

  7. An 1-2-1 Cyclic Model for the Evolution of Mantle Structure

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Zhang, N.

    2006-12-01

    The present-day Earth`s mantle is predominated by long-wavelength structures including circum-Pacific subducted slabs and Africa and Pacific super-plumes. These long-wavelength structures are largely controlled by the history of plate tectonic motion. Although it dictates the evolution of mantle structure, global plate tectonic history prior to 120 Ma is poorly constrained except for continental motions that can be reliably traced back to >1 Ga. An important observation of continental motions in the last 1 Ga is the two episodes of formation and breakup of super-continents Pangea and Rodinia. We formulated 3D global models of mantle convection with temperature- and depth-dependent viscosity to study the formation of mantle structure. We found that for the upper mantle with 30 times smaller viscosity than the lower mantle, in the absence of continents, mantle convection is characterized by a hemispherically asymmetric structure in which one hemisphere is largely upwellings, while the other hemisphere contains downwellings (i.e., degree-1 convection). This is the first study in which degree-1 mantle convection is observed in mobile-lid/plate-tectonic convection regime at high Rayleigh number. This result suggests that degree-1 convection is a dynamically preferred state for the Earth`s mantle. We suggest that the evolution of mantle structure is controlled by a cyclic process of formation and breakdown of degree-1 convection modulated strongly by continents. The formation and breakup of supercontinents are surface manifestation of this cyclic process. During the degree-1 convection state, the upwellings in one hemisphere push all continents into the other hemisphere with the downwellings to form a supercontinent. The non-subducting nature of continents dictates that subduction in the downwelling hemisphere occurs along the edge of the supercontinent upon its formation. The insulating effect of a supercontinent and return flow from the circum-supercontinent subduction should heat up sub-continental mantle and lead to formation of another upwelling system below the supercontinent and eventually to breakup of the supercontinent. After the breakup of a supercontinent, the mantle with two large upwellings, similar to that for the present-day Earth, is then evolved back to degree-1 convection state. We will also discuss the geological and geophysical consequences of our proposed model.

  8. Chemical interactions in the subduction factory: New insights from an in situ trace element and hydrogen study of the Ichinomegata and Oki-Dogo mantle xenoliths (Japan)

    NASA Astrophysics Data System (ADS)

    Satsukawa, Takako; Godard, Marguerite; Demouchy, Sylvie; Michibayashi, Katsuyoshi; Ildefonse, Benoit

    2017-07-01

    The uppermost mantle in back arc regions is the site of complex interactions between partial melting, melt percolation, and fluid migration. To constrain these interactions and evaluate their consequences on geochemical cycles, we carried out an in situ trace element and water study of a suite of spinel peridotite xenoliths from two regions of the Japan back arc system, Ichinomegata (NE Japan) and Oki-Dogo (SW Japan), using LA-ICPMS and FTIR spectrometry, respectively. This study provides the first full dataset of trace element and hydrogen compositions in peridotites including analyses of all their main constitutive silicate minerals: olivine, orthopyroxene and clinopyroxene. The Ichinomegata peridotites sample a LREE-depleted refractory mantle (Mg# olivine = 0.90; Cr# spinel = 0.07-0.23; Yb clinopyroxene = 7.8-13.3 × C1-chondrite, and La/Yb clinopyroxene = 0.003-0.086 × C1-chondrite), characterized by Th-U positive anomalies and constant values of Nb/Ta. The composition of the studied Ichinomegata samples is consistent with that of an oceanic mantle lithosphere affected by cryptic metasomatic interactions with hydrous/aqueous fluids (crypto-hydrous metasomatism). In contrast, the Oki-Dogo peridotites have low Mg# olivine (0.86-0.93) and a broad range of compositions with clinopyroxene showing "spoon-shaped" to flat, and LREE-enriched patterns. They are also characterized by their homogeneous compositions in the most incompatible LILE (e.g., Rb clinopyroxene = 0.01-0.05 × primitive mantle) and HFSE (e.g., Nb clinopyroxene = 0.01-2.16 × primitive mantle). This characteristic is interpreted as resulting from various degrees of melting and extensive melt-rock interactions. FTIR spectroscopy shows that olivine in both Ichinomegata and Oki-Dogo samples has low water contents ranging from 2 to 7 ppm wt. H2O. In contrast, the water contents of pyroxenes from Ichinomegata peridotites (113-271 ppm wt. H2O for orthopyroxene, and 292-347 ppm wt. H2O for clinopyroxene) are significantly higher than in Oki-Dogo peridotites (9-35 ppm wt. H2O for orthopyroxene, and 15-98 ppm wt. H2O for clinopyroxene). This indicates a relationship between melt-rock interaction and water concentrations in pyroxenes. Our study suggests that the water content of the Japan mantle wedge is controlled by the late melt/fluid/rock interactions evidenced by trace element geochemistry: a mechanism triggered by magma-rock interactions may have acted as an efficient dehydrating process in the Oki-Dogo region while the Ichinomegata mantle water content is controlled by slab-derived crypto-hydrous metasomatism.

  9. Seismic crustal structure of the Limpopo mobile belt, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Stuart, G. W.; Zengeni, T. G.

    1987-12-01

    A 145 km N-S seismic traverse was deployed to determine the crustal structure of the Limpopo mobile belt in southern Zimbabwe and the nature of its northern boundary with the Zimbabwean craton. Rockbursts from South African gold mines to the south and regional seismicity from the Kariba-South Zambia belt to the north were used as seismic sources. P-wave relative teleseismic residuals were also measured to assess whether any velocity contrast between the craton and the mobile belt extended into the upper mantle. Interpretation of reduced travel times from the local Buchwa iron-ore mine blasts, which were broadside to the traverse, revealed an upper crustal interface in the Limpopo mobile belt at a depth of 5.8 ± 0.6 km, dividing material with a velocity of about 5.8 km/s from that of about 6.4 km/s. On the craton, arrivals from the same source showed a 4.4 ± 0.5 km thick 5.5 km/s layer overlying crust of about velocity 6.5 km/s. P-wave arrivals from the regional seismicity were used to construct a crustal cross-section. Absolute crustal thickness was tentatively estimated from the identification of a Moho reflection on the mine blast recordings. To the south of Rutenga, the crust thins from around 34 km to 29 km in association with a positive gravity anomaly centred over the late-Karoo Nuanetsi Igneous Province and Karoo Tuli Syncline. North of Rutenga to the boundary with the Zimbabwean craton, the crust is about 34 km thick. The craton boundary was found to be a steeply southerly dipping zone associated with high-velocity material, which could either be deep-seated greenstones or mafic material associated with the margin in the region studied. This zone divides cratonic crust, which was found to be about 40 km thick, from that typical of the mobile belt and implies a step in the Moho of around 6 km. Analysis of relative teleseismic residuals showed that the velocity contrasts are not confined to the crust but extend into the uppermost upper mantle with the cratonic lithosphere being about 4% faster than that of the Limpopo mobile belt. The resolution of the technique is such that it is difficult to ascertain whether these differences are features of Precambrian evolution or are due to reactivation of the upper mantle during Karoo igneous and tectonic activity.

  10. Lithosphere structure across the Dead Sea Transform as constrained by Rayleigh waves observed during the DESERT experiment

    NASA Astrophysics Data System (ADS)

    Laske, G.; Weber, M.

    2008-05-01

    The interdisciplinary Dead Sea Rift Transect (DESERT) project that was conducted in Israel, the Palestine Territories and Jordan has provided a rich palette of data sets to examine the crust and uppermost mantle beneath one of Earth's most prominent fault systems, the Dead Sea Transform (DST). As part of the passive seismic component, thirty broad-band sensors were deployed in 2000 across the DST for roughly one year. During this deployment, we recorded 115 teleseismic earthquakes that are suitable for a fundamental mode Rayleigh wave analysis at intermediate periods (35-150s). Our initial analysis reveals overall shear velocities that are reduced by up to 4 per cent with respect to reference Earth model PREM. To the west of the DST, we find a seismically relatively fast but thin lid that is about 80 km thick. Towards the east, shallow seismic velocities are low while a deeper low velocity zone is not detected. This contradicts the currently favoured thermomechanical model for the DST that predicts lithospheric thinning through mechanical erosion by an intruding plume from the Red Sea. On the other hand, our current results are somewhat inconclusive regarding asthenosphere velocities east of the DST due to the band limitation of the recording equipment in Jordan.

  11. Supercontinent Pangea, Mantle Dynamics, and Reference Frame of Global Plate Motions

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Rudolph, M. L.; Liu, X.

    2014-12-01

    Arguably the most important and challenging goal in geodynamics is to understand the two-way dynamics between tectonic plates and mantle convection. While it has long been recognized that the present-day degree-2 mantle structure as imaged seismically is closely related to the plate motions (Hager and O'Connell, 1981) and their history (<119 Ma) (Ricard et al., 1993; McNamara and Zhong, 2005), recent studies have expanded this concept, from two different perspectives, by seeking connections between Pangea assembly and breakup and mantle structure and dynamics. First, it has been proposed that the large igneous provinces (LIPs) and kimberlite volcanism erupted mainly along the edges of the two major seismically slow anomalies above the core-mantle boundary (often referred to as the Africa and Pacific LLSVPs) (Torsvik et al, 2010). This has led to the proposal that the present-day degree-2 mantle structure has existed for >500 Ma (Torsvik et al., 2014), although its statistical significance has been challenged (Austermann et al., 2013). The proposals of the spatially stable Africa and Pacific LLSVPs and of the LIP eruptions along their edges have also been exploited in attempts to build global plate motion models since the Pangea assembly by providing a plate motion reference frame or inferring true polar wander (TPW) corrections to the plate motions (Torsvik et al., 2014). Second, mantle dynamics studies indicate that degree-1 mantle convection, which is expected with realistic lithospheric and mantle viscosity, may be needed for assembly of a supercontinent (e.g., Pangea) (Zhong et al., 2007). This suggests that the present degree-2 mantle structure may have been formed only after the Pangea assembly from an initially degree-1 structure - a scenario that is consistent with convection calculations with a proxy plate motion model that considers Pangea process (Zhang et al., 2010). In this presentation, in addition to critically reviewing these arguments, we will discuss calculations of long-wavelength geoid for the mantle with thermochemical piles and LLSVPs and their potential effects on TPW determinations and hence reconstruction of plate motion (i.e., net lithospheric rotation). We will also present additional calculations of mantle structure evolution using different plate motion history models.

  12. Interaction of extended mantle plume head with ancient lithosphere: evidence from deep-seated xenoliths in basalts and lamprophyre diatremes in Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2016-04-01

    The Middle Cretaceous lamprophyric diatremes of the Jabel Ansaria Ridge contain xenoliths of ancient lower crustal rocks mainly represented by the suite of partly altered garnet granulite and eclogite-like rocks, which were formed at the expense of ferrogabbros and ferroclinopyroxenites most likely in the course of underplating of Fe-Ti basalt. Garnet (Alm26Grs11Py63) megacrysts and coarse-granular garnet-clinopyroxene intergrowths are most likely the varieties of rocks of this series. Garnet megacrysts are represented by large (up to 10 cm in diameter) round "nodules," often molten from the surface. Garnet is usually fractured, and the kelyphite material similar to that in rocks of the eclogite-granulite series occurs in fractures. In addition, we found several intergrowths of garnet with large (up to 3-5 cm in length) crystals of high-Al augite with the low of Ti and Na contents like in rocks of the eclogite-granulite suite. Coarse-grained garnet-clinopyroxene-hornblende rocks with spinel, as well as megacrysts of Al-Ti augite with kaersutite, form the second group in prevalence. This group is close to mantle xenoliths of the "black series" in alkali Fe-Ti basalt worldwide. Kaersutite in these rocks contains gaseous cavities, which provides evidence for the origin of rocks at the expense of a strongly fluidized melt/fluid. In contrast to rocks of the eclogite-granulite series, these rocks did not undergo alteration. Garnet Alm19-26Grs12-13.5Py59-67.5 usually associates with dark opaque spinel. In contrast, the Late Cenozoic plateaubasalts of the region practically do not contain lower crustal xenoliths, whereas xenoliths of mantle spinel lherzolite (fragments of the upper cooled rim of the plume head) are widely abundant. According to data of mineralogical thermobarometry, rocks of the eclogite-granulite suite were formed at 13.5-15.4 kbar (depths of 45-54 km) and 965-1115°C. Rocks of this suite are typical representatives of the continental lower crust. Formation of clinopyroxene-hornblende rocks (analogs of the "black series" of mantle xenoliths in basalt) occurred at close P-T parameters: 12.6 kbar, 1100°C. Judging from the absence of deformations in the rocks, their parental melts were intruded into the stabilized lower crust. Hence, it follows that the ancient continental lower crust existed there in the mid-Cretaceous, but in the Late Cenozoic it was replaced by the spreading mantle plume head. In other words, the deep structure of the region was reconstructed radically in the Late Cenozoic, and only the uppermost horizon of the ancient lithosphere (sialic crust) was not changed. According to the geological and petrological data, the heads of mantle plumes reached the base of the upper sialic crust, and the level of the lower crust of the continents (30-40 km) is optimal for abundant adiabatic melting of the mantle plume head. If this level was not reached, melting was limited, and an excess of volatile components appeared, which resulted in the formation of lamprophyric and even kimberlitic diatremes. The work was supported by grant RFBR # 14-05-00468 and Project of ONZ RAS # 8.

  13. The Caribbean-South American plate boundary at 65°W: Results from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Bezada, M. J.; Magnani, M. B.; Zelt, C. A.; Schmitz, M.; Levander, A.

    2010-08-01

    We present the results of the analysis of new wide-angle seismic data across the Caribbean-South American plate boundary in eastern Venezuela at about 65°W. The ˜500 km long profile crosses the boundary in one of the few regions dominated by extensional structures, as most of the southeastern Caribbean margin is characterized by the presence of fold and thrust belts. A combination of first-arrival traveltime inversion and simultaneous inversion of PmP and Pn arrivals was used to develop a P wave velocity model of the crust and the uppermost mantle. At the main strike-slip fault system, we image the Cariaco Trough, a major pull-apart basin along the plate boundary. The crust under the Southern Caribbean Deformed Belt exhibits a thickness of ˜15 km, suggesting that the Caribbean Large Igneous Province extends to this part of the Caribbean plate. The velocity structures of basement highs and offshore sedimentary basins imaged by the profile are comparable to those of features found in other parts of the margin, suggesting similarities in their tectonic history. We do not image an abrupt change in Moho depth or velocity structure across the main strike-slip system, as has been observed elsewhere along the margin. It is possible that a terrane of Caribbean island arc origin was accreted to South America at this site and was subsequently bisected by the strike-slip fault system. The crust under the continental portion of the profile is thinner than observed elsewhere along the margin, possibly as a result of thinning during Jurassic rifting.

  14. Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis

    NASA Astrophysics Data System (ADS)

    Xia, B.; Thybo, H.; Artemieva, I. M.

    2017-07-01

    We present a new digital model (NCcrust) of the seismic crustal structure of the Neoarchean North China Craton (NCC) and its surrounding Paleozoic-Mesozoic orogenic belts (30°-45°N, 100°-130°E). All available seismic profiles, complemented by receiver function interpretations of crustal thickness, are used to constrain a new comprehensive crustal model NCcrust. The model, presented on a 0.25° × 0.25°grid, includes the Moho depth and the internal structure (thickness and velocity) of the crust specified for four layers (the sedimentary cover, upper, middle, and lower crust) and the Pn velocity in the uppermost mantle. The crust is thin (30-32 km) in the east, while the Moho depth in the western part of the NCC is 38-44 km. The Moho depth of the Sulu-Dabie-Qinling-Qilian orogenic belt ranges from 31 km to 51 km, with a general westward increase in crustal thickness. The sedimentary cover is 2-5 km thick in most of the region, and typical thicknesses of the upper crust, middle crust, and lower crust are 16-24 km, 6-24 km, and 0-6 km, respectively. We document a general trend of westward increase in the thickness of all crustal layers of the crystalline basement and as a consequence, the depth of the Moho. There is no systematic regional pattern in the average crustal Vp velocity and the Pn velocity. We examine correlation between the Moho depth and topography for seven tectonic provinces in the North China Craton and speculate on mechanisms of isostatic compensation.

  15. The Caucasus Seismic Network (CNET): Seismic Structure of the Greater and Lesser Caucasus

    NASA Astrophysics Data System (ADS)

    Sandvol, E. A.; Mackey, K. G.; Nabelek, J.; Yetermishli, G.; Godoladze, T.; Babayan, H.; Malovichko, A.

    2017-12-01

    The Greater Caucasus are a portion of the Alpine-Himalayan mountain belt that has undergone rapid uplift in the past 5 million years, thus serving as a unique natural laboratory to study the early stages of orogenesis. Relatively lower resolution seismic velocity models of this region show contradictory lateral variability. Furthermore, recent waveform modeling of seismograms has clearly demonstrated the presence of deep earthquakes (with a maximum hypocentral depth of 175 km) below the Greater Caucasus. The region has been largely unexplored in terms of the detailed uppermost mantle and crustal seismic structure due in part to the disparate data sets that have not yet been merged as well as key portions being sparsely instrumented. We have established collaborative agreements across the region. Building on these agreements we recently deployed a major multi-national seismic array across the Greater Caucasus to address fundamental questions about the nature of continental deformation in this poorly understood region. Our seismic array has two components: (1) a grid of stations spanning the entire Caucasus and (2) two seismic transects consisting of stations spaced at distances of less than 10 km that cross the Greater Caucasus. In addition to the temporary stations, we are working to integrate data from the national networks to produce high resolution images of the seismic structure. Using data from over 106 new seismic stations in Azerbaijan, Armenia, Russia, and Georgia, we hope to gain a better understanding of the recent uplift ( 5 Ma) of the Greater Caucasus and the nature of seismogenic deformation in the region.

  16. The upper-mantle transition zone beneath the Chile-Argentina flat subduction zone

    NASA Astrophysics Data System (ADS)

    Bagdo, Paula; Bonatto, Luciana; Badi, Gabriela; Piromallo, Claudia

    2016-04-01

    The main objective of the present work is the study of the upper mantle structure of the western margin of South America (between 26°S and 36°S) within an area known as the Chile-Argentina flat subduction zone. For this purpose, we use teleseismic records from temporary broad band seismic stations that resulted from different seismic experiments carried out in South America. This area is characterized by on-going orogenic processes and complex subduction history that have profoundly affected the underlying mantle structure. The detection and characterization of the upper mantle seismic discontinuities are useful to understand subduction processes and the dynamics of mantle convection; this is due to the fact that they mark changes in mantle composition or phase changes in mantle minerals that respond differently to the disturbances caused by mantle convection. The discontinuities at a depth of 410 km and 660 km, generally associated to phase changes in olivine, vary in width and depth as a result of compositional and temperature anomalies. As a consequence, these discontinuities are an essential tool to study the thermal and compositional structure of the mantle. Here, we analyze the upper-mantle transition zone discontinuities at a depth of 410 km and 660 km as seen from Pds seismic phases beneath the Argentina-Chile flat subduction.

  17. A Hybrid Approach to Data Assimilation for Reconstructing the Evolution of Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Liu, Lijun

    2017-11-01

    Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation approach that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics the best.

  18. A Hybrid Forward-Adjoint Data Assimilation Method for Reconstructing the Temporal Evolution of Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Liu, L.

    2017-12-01

    Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation method that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics to the best.

  19. Tectonics, Deep-Seated Structure and Recent Geodynamics of the Caucasus

    NASA Astrophysics Data System (ADS)

    Amanatashvili, I.; Adamia, Sh.; Lursmanashvili, N.; Sadradze, N.; Meskhia, V.; Koulakov, I.; Zabelina, I.; Jakovlev, A.

    2012-04-01

    The tectonics and deep-seated structure of the Caucasus are determined by its position between the still converging Eurasian and Africa-Arabian plates, within a wide zone of continental collision. The region in the Late Proterozoic - Early Cenozoic belonged to the Tethys Ocean and its Eurasian and Africa-Arabian margins. During Oligocene-Middle Miocene and Late Miocene-Quaternary time as a result of collision back-arc basins were inverted to form fold-thrust mountain belts and the Transcaucasian intermontane lowlands. The Caucasus is divided into platform and fold-thrust units, and forelands superimposed mainly on the rigid platform zones. The youngest structural units composed of Neogene-Quaternary continental volcanic formations of the Armenian and Javakheti highlands and extinct volcanoes of the Great Caucasus. As a result of detailed geophysical study of the gravity, magnetic, seismic, and thermal fields, the main features of the deep crustal structure of the Caucasus have been determined. Knowledge on the deep lithospheric structure of the Caucasus region is based on surface geology and deep and super deep drilling data combined with gravity, seismic, heat flow, and magnetic investigations. Close correlation between the geology and its deep-seated structures appears in the peculiarities of spatial distribution of gravitational, thermal and magnetic fields, particularly generally expressed in orientation of regional anomalies that is in good agreement with general tectonic structures. In this study we present two tomographic models derived for the region based on two different tomographic approaches. In the first case, we use the travel time data on regional seismicity recorded by networks located in Caucasus. The tomographic inversion is based on the LOTOS code which enables simultaneous determination of P and S velocity distributions and source locations. The obtained model covers the crustal and uppermost mantle depths. The second model, which is constructed for the upper mantle down to 700 km depth, is based on the data from the global ISC catalogue. We use travel times corresponding to rays which travel, at least partly, through the study volume. These data include rays from events in the study area recorded by worldwide stations, as well as teleseismic data recorded at regional stations. The computed seismic models reveal some deep traces of recent tectonic processes in the Caucasus: • For the 5, 15, 25 and 60-km-depth, there appears a clear coincidence between anomalous low velocities of P and S-waves with the fold-thrust mountainous belts of the Great and Lesser Caucasus, and also connection of high-velocity anomalies with the Trasncaucasian forelands. • Lowest-velocity anomalies are characteristic of the areas of Neogene-Quaternary volcanism of the Great and Lesser Caucasus. Areas with the lowest velocities of P- and S-waves coincide with the mountainous-folded belts, whereas the areas of high-velocity predominantly coincide with the platformal structures and forelands, as well as with basins of the Black and Caspian Seas. • Clear spatial correlation of the areas of lowest values of P- and S-velocities with the areas of Neogene-Quaternary volcanism occurs up to the depth of 150-200km that evidences location of magma sources within the crust - upper mantle - asthenosphere. • Tomographic data unambiguously confirm spatial unity of the main structures of the Caucasus and its basement, the location of the structures in situ in Late Cenozoic and connection of the volcanic constructions with their roots - magma chambers.

  20. The thermal regimes of the upper mantle beneath Precambrian and Phanerozoic structures up to the thermobarometry data of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.

    2004-05-01

    The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.

  1. Mantle Circulation Models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, H.; Hagelberg, C.; Travis, B.

    2002-12-01

    EarthScope will deliver data on structure and dynamics of continental North America and the underlying mantle on an unprecedented scale. Indeed, the scope of EarthScope makes its mission comparable to the large remote sensing efforts that are transforming the oceanographic and atmospheric sciences today. Arguably the main impact of new solid Earth observing systems is to transform our use of geodynamic models increasingly from conditions that are data poor to an environment that is data rich. Oceanographers and meteorologists already have made substantial progress in adapting to this environment, by developing new approaches of interpreting oceanographic and atmospheric data objectively through data assimilation methods in their models. However, a similarly rigorous theoretical framework for merging EarthScope derived solid Earth data with geodynamic models has yet to be devised. Here we explore the feasibility of data assimilation in mantle convection studies in an attempt to fit global geodynamic model calculations explicitly to tomographic and tectonic constraints. This is an inverse problem not quite unlike the inverse problem of finding optimal seismic velocity structures faced by seismologists. We derive the generalized inverse of mantle convection from a variational approach and present the adjoint equations of mantle flow. The substantial computational burden associated with solutions to the generalized inverse problem of mantle convection is made feasible using a highly efficient finite element approach based on the 3-D spherical fully parallelized mantle dynamics code TERRA, implemented on a cost-effective topical PC-cluster (geowulf) dedicated specifically to large-scale geophysical simulations. This dedicated geophysical modeling computer allows us to investigate global inverse convection problems having a spatial discretization of less than 50 km throughout the mantle. We present a synthetic high-resolution modeling experiment to demonstrate that mid-Cretaceous mantle structure can be inferred accurately from our inverse approach assuming present-day mantle structure is well-known, even if an initial first guess assumption about the mid-Cretaceous mantle involved only a simple 1-D radial temperature profile. We suggest that geodynamic inverse modeling should make it possible to infer a number of flow parameters from observational constraints of the mantle.

  2. Stratification of earth's outermost core inferred from SmKS array data

    NASA Astrophysics Data System (ADS)

    Kaneshima, Satoshi; Matsuzawa, Takanori

    2015-12-01

    S mKS arrivals recorded by large-scale broadband seismometer arrays are analyzed to investigate the depth profile of P wave speed ( V p ) in the outermost core. The V p structure of the upper 700 km of the outer core has been determined using S mKS waves of Fiji-Tonga events recorded at stations in Europe. According to a recent outer core model (KHOMC), the V p value is 0.45 % slower at the core mantle boundary (CMB) than produced by the Preliminary Reference Earth Model (PREM), and the slow anomaly gradually diminishes to insignificant values at ˜300 km below the CMB. In this study, after verifying these KHOMC features, we show that the differential travel times measured for S mKS waves that are recorded by other large-scale arrays sampling laterally different regions are well matched by KHOMC. We also show that KHOMC precisely fits the observed relative slowness values between S2KS, S3KS, and S4KS (S mKS waves with m= 2, 3, and 4). Based on these observations, we conclude that S mKS predominantly reflect the outer core structure. Then we evaluate biases of secondary importance which may be caused by mantle heterogeneity. The KHOMC V p profile can be characterized by a significant difference in the radial V p gradient between the shallower 300 km and the deeper part of the upper 700 km of the core. The shallower part has a V p gradient of -0.0018 s -1, which is steeper by 0.0001 s -1 when compared to the deeper core presented by PREM. The steeper V p gradient anomaly of the uppermost core corresponds to a radial variation in the pressure derivative of the bulk modulus, K '= d K/ d P. The K ' value is 3.7, which is larger by about 0.2 than that of the deeper core. The radial variation in K ' is too large to have a purely thermal origin, according to recent ab initio calculations on liquid iron alloys, and thus requires a thick and compositionally stratified layering at the outermost outer core.

  3. Role of deep crustal fluids in the genesis of intraplate earthquakes in the Kachchh region, northwestern India

    NASA Astrophysics Data System (ADS)

    Pavan Kumar, G.; Mahesh, P.; Nagar, Mehul; Mahender, E.; Kumar, Virendhar; Mohan, Kapil; Ravi Kumar, M.

    2017-05-01

    Fluids play a prominent role in the genesis of earthquakes, particularly in intraplate settings. In this study, we present evidence for a highly heterogeneous nature of electrical conductivity in the crust and uppermost mantle beneath the Kachchh rift basin of northwestern India, which is host to large, deadly intraplate earthquakes. We interpret our results of high conductive zones inferred from magnetotelluric and 3-D local earthquake tomography investigations in terms of a fluid reservoir in the upper mantle. The South Wagad Fault (SWF) imaged as a near-vertical north dipping low resistivity zone traversing the entire crust and an elongated south dipping conductor demarcating the North Wagad Fault (NWF) serve as conduits for fluid flow from the reservoir to the middle to lower crustal depths. Importantly, the epicentral zone of the 2001 main shock is characterized as a fluid saturated zone at the rooting of NWF onto the SWF.Plain Language SummaryFluids play a significant role in generation of earthquakes in intraplate and interplate settings. However, knowledge of the nature, origin, and localization of crustal fluids in stable continental interiors (intraplate) remains uncertain. The Kachchh rift basin of northwestern India is host to large, deadly intraplate earthquakes like those in 1819 (Mw7.8) and 2001 (Mw7.7). In the present study we carried out extensive geophysical investigations to understand the cause for seismic activity in the region. The study provides the evidence for the presence of fluids in the seismically active intraplate region of northwest India. This study demonstrates that the dynamics of mantle fluids controlled by geological faults could lead to large and moderate-sized earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GGG....17.2298H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GGG....17.2298H"><span>Melt-rock interactions and fabric development of peridotites from North Pond in the Kane area, Mid-Atlantic Ridge: Implications of microstructural and petrological analyses of peridotite samples from IODP Hole U1382A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harigane, Yumiko; Abe, Natsue; Michibayashi, Katsuyoshi; Kimura, Jun-Ichi; Chang, Qing</p> <p>2016-06-01</p> <p>North Pond is an isolated sedimentary pond on the western flank of the Kane area along the Mid-Atlantic Ridge. Drill-hole U1382A of IODP Expedition 336 recovered peridotite and gabbro samples from a sedimentary breccia layer in the pond, from which we collected six fresh peridotite samples. The peridotite samples came from the southern slope of the North Pond where an oceanic core complex is currently exposed. The samples were classified as spinel harzburgite, plagioclase-bearing harzburgite, and a vein-bearing peridotite that contains tiny gabbroic veins. No obvious macroscopic shear deformation related to the formation of a detachment fault was observed. The spinel harzburgite with a protogranular texture was classified as refractory peridotite. The degree of partial melting of the spinel harzburgite is estimated to be ˜17%, and melt depletion would have occurred at high temperatures in the uppermost mantle beneath the spreading axis. The progressive melt-rock interactions between the depleted spinel harzburgite and the percolating melts of Normal-Mid Ocean Ridge Basalt (N-MORB) produced the plagioclase-bearing harzburgite and the vein-bearing peridotite at relatively low temperatures. This implies that the subsequent refertilization occurred in an extinct spreading segment of the North Pond after spreading at the axis. Olivine fabrics in the spinel and plagioclase-bearing harzburgites are of types AG, A, and D, suggesting the remnants of a mantle flow regime beneath the spreading axis. The initial olivine fabrics appear to have been preserved despite the later melt-rock interactions. The peridotite samples noted above preserve evidence of mantle flow and melt-rock interactions beneath a spreading ridge that formed at ˜8 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811691C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811691C"><span>Ice cap melting and low viscosity crustal root explain narrow geodetic uplift of the Western Alps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chery, Jean; Genti, Manon; Vernant, Philippe</p> <p>2016-04-01</p> <p>More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Three uplift mechanisms have been proposed so far: (1) the isostatic response to denudation. However this process is responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting. This process leads to a broader uplifting region than the one evidenced by geodetic observations. (3) a deep source motion associated with slab motion or some deep isostatic unbalance. Using a numerical model accounting for crustal and mantle rheology of the Alps and its foreland, we model the response to Wurmian ice cap melting. We show that a crustal viscosity contrast between the foreland and the central part of the Alps, the later being weaker with a viscosity of 1021 Pa.s, is needed to produce a narrow uplift. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly thanks to the continuity between the low viscosity parts of the crust and mantle. References: Champagnac, J.-D., F. Schlunegger, K. Norton, F. von Blanckenburg, L. M. Abbühl, and M. Schwab (2009), Erosion-driven uplift of the modern Central Alps, Tectonophysics, 474(1-2), 236-249. Vernant, P., F. Hivert, J. Chéry, P. Steer, R. Cattin, and A. Rigo (2013), Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges, geology, 41(4), 467-470.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V34A..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V34A..03M"><span>Direct evidence of hydration into mantle during shearing below a trasform fault: Prince Edward transform fault, Southwest Indian Ridge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michibayashi, K.; Kakihata, Y.; Dick, H. J.</p> <p>2017-12-01</p> <p>Southwest Indian Ridge (SWIR) is located to the southwest of Rodriguez Triple Junction, where three Indian ocean ridges meet (Zhou & Dick, 2013, Nature). SWIR is one of the slowest spreading ocean ridges in the world. In this study, we studied microstructural development of 21 peridotite samples obtained from Prince Edward transform fault of SWIR by PROTEA5 cruise in 1983. The peridotites consist dominantly of olivine, orthopyroxene and clinopyroxene with minor amounts of amphibole and plagioclase as well as secondary minerals such as serpentine and magnetite. The peridotites were classified into four groups based on their microstructures: 3 ultramylonites mostly consisting of extremely fine crystals (3-5µm), 13 heterogeneous tectonites consisting of coarse-grained crystals and fine-grained matrix, 1 cataclasite and 4 intensely serpentinized peridotites. Olivine Mg# is 0.90-0.91 and spinel Cr# is 0.1-0.35. Amphibole crystals have chemical compositions of tremolite and magnesio-hornblende and they were intensely deformed within the ultramylonites and the heterogeneous tectonites, indicating that they have occurred before or during intense shearing in mantle. Moreover, extremely fine grain sizes of olivine and microboudin textures in both pyroxene and spinel crystals suggest that these peridotites have been sheared under high stress conditions. Furthermore, olivine crystal-fabrics within the amphibole bearing peridotites have B and E types that could be developed under hydrous conditions, whereas olivine fabrics within the other peridotites have A and D types that could be developed under anhydrous conditions (Karato et al., 2008, Annu. Rev. Earth Planet. Sci.). Consequently, the petrophysical characteristics of peridotites in this study indicate that the uppermost mantle below the Prince Edward transform fault has been locally but intensely hydrated during shearing due to transform movement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.716..121R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.716..121R"><span>Upper mantle structure at Walvis Ridge from Pn tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ryberg, Trond; Braeuer, Benjamin; Weber, Michael</p> <p>2017-10-01</p> <p>Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break-up. Within the LISPWAL (LIthospheric Structure of the Namibian continental Passive margin at the intersection with the Walvis Ridge from amphibious seismic investigations) project, combined on- and offshore seismic experiments were designed to characterize the Southern African passive margin at the Walvis Ridge in northern Namibia. In addition to extensive analysis of the crustal structures, we carried out seismic investigations targeting the velocity structure of the upper mantle in the landfall region of the Walvis Ridge with the Namibian coast. Upper mantle Pn travel time tomography from controlled source, amphibious seismic data was used to investigate the sub-Moho upper mantle seismic velocity. We succeeded in imaging upper mantle structures potentially associated with continental break-up and/or the Tristan da Cunha hotspot track. We found mostly coast-parallel sub-Moho velocity anomalies, interpreted as structures which were created during Gondwana break-up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMDI43A4346R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMDI43A4346R"><span>Of Mantle Plumes, Their Existence, and Their Nature: Insights from Whole Mantle SEM-Based Seismic Waveform Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romanowicz, B. A.; French, S. W.</p> <p>2014-12-01</p> <p>Many questions remain on the detailed morphology of mantle convection patterns. While high resolution P wave studies show a variety of subducted slab behaviors, some stagnating in the transition zone, others penetrating into the lower mantle (e.g. Fukao & Obayashi, 2013), low velocity structures - the upwelling part of flow - are more difficult to resolve at the same scale. Indeed, depth extent and morphology of the low velocity roots of hotspot volcanoes is still debated, along with the existence of "mantle plumes". Using spectral element waveform tomography, we previously constructed a global, radially anisotropic, upper mantle Vs model (SEMum2, French et al., 2013) and have now extended it to the whole mantle by adding shorter period waveform data (SEMUCB-WM1, French & Romanowicz, GJI, in revision). This model shows long wavelength structure in good agreement with other recent global Vs models derived under stronger approximations (Ritsema et al. 2011; Kustowski, et al. 2008), but exhibits better focused, finer scale structure throughout the mantle. SEMUCB-WM1 confirms the presence in all major ocean basins of the quasi-periodic, upper mantle low velocity anomalies, previously seen in SEMum2. At the same time, lower mantle low velocity structure is dominated by a small number (~15 globally) of quasi-vertical anomalies forming discrete "column"" rooted at the base of the mantle. Most columns are positioned near major hotspots, as defined by buoyancy flux, and are wider (~800-1000 km diameter) than expected from the thermal plume model - suggestive of thermo-chemical plumes, which may be stable for long times compared to purely thermal ones. Some columns reach the upper mantle, while others deflect horizontally near 1000 km - the same depth where many slabs appear to stagnate. As they reach the transition zone, the wide columnar structure can be lost, as these "plumes" appear to meander through the upper mantle, perhaps entrained by more vigorous, lower viscosity, convection. Most "plumes" in the Pacific LLSVP region appear as isolated columns rising from the CMB, such as beneath Hawaii (rooted near a known ultra low velocity zone, Cottaar & Romanowicz, 2012). Conversely, the African LLSVP region appears more massive up to mid-mantle depths, with isolated "plumes" at its borders, including that beneath Iceland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910033978&hterms=ductile&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dductile','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910033978&hterms=ductile&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dductile"><span>Mantle flow tectonics - The influence of a ductile lower crust and implications for the formation of topographic uplands on Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bindschadler, Duane L.; Parmentier, E. Marc</p> <p>1990-01-01</p> <p>The crust and mantle of Venus can be represented by a model of a layered structure stratified in both density and viscosity. This structure consists of a brittle-elastic upper crustal layer; a ductile weaker crustal layer; a strong upper mantle layer, about 10 percent denser than the crust; and a weaker substrate, representing the portion of the mantle in which convective flow occurs which is a primary source of large-scale topographic and tectonic features. This paper examines the interactions between these four layers and the mantle flow driven by thermal or compositional variations. Solutions are found for a flow driven by a buoyancy-force distribution within the mantle and by relief at the surface and crust-mantle boundary. It is shown that changes in crustal thickness are driven by vertical normal stresses due to mantle flow and by shear coupling of horizontal mantle flow into the crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......106L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......106L"><span>Dynamics of Compressible Convection and Thermochemical Mantle Convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Xi</p> <p></p> <p>The Earth's long-wavelength geoid anomalies have long been used to constrain the dynamics and viscosity structure of the mantle in an isochemical, whole-mantle convection model. However, there is strong evidence that the seismically observed large low shear velocity provinces (LLSVPs) in the lowermost mantle are chemically distinct and denser than the ambient mantle. In this thesis, I investigated how chemically distinct and dense piles influence the geoid. I formulated dynamically self-consistent 3D spherical convection models with realistic mantle viscosity structure which reproduce Earth's dominantly spherical harmonic degree-2 convection. The models revealed a compensation effect of the chemically dense LLSVPs. Next, I formulated instantaneous flow models based on seismic tomography to compute the geoid and constrain mantle viscosity assuming thermochemical convection with the compensation effect. Thermochemical models reconcile the geoid observations. The viscosity structure inverted for thermochemical models is nearly identical to that of whole-mantle models, and both prefer weak transition zone. Our results have implications for mineral physics, seismic tomographic studies, and mantle convection modelling. Another part of this thesis describes analyses of the influence of mantle compressibility on thermal convection in an isoviscous and compressible fluid with infinite Prandtl number. A new formulation of the propagator matrix method is implemented to compute the critical Rayleigh number and the corresponding eigenfunctions for compressible convection. Heat flux and thermal boundary layer properties are quantified in numerical models and scaling laws are developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012E%26PSL.319...23H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012E%26PSL.319...23H"><span>Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: Implications for the origin of Cenozoic Afro-Arabian tectonism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, Samantha E.; Nyblade, Andrew A.; Benoit, Margaret H.</p> <p>2012-02-01</p> <p>While the Cenozoic Afro-Arabian Rift System (AARS) has been the focus of numerous studies, it has long been questioned if low-velocity anomalies in the upper mantle beneath eastern Africa and western Arabia are connected, forming one large anomaly, and if any parts of the anomalous upper mantle structure extend into the lower mantle. To address these questions, we have developed a new image of P-wave velocity variations in the Afro-Arabian mantle using an adaptively parameterized tomography approach and an expanded dataset containing travel-times from earthquakes recorded on many new temporary and permanent seismic networks. Our model shows a laterally continuous, low-velocity region in the upper mantle beneath all of eastern Africa and western Arabia, extending to depths of ~ 500-700 km, as well as a lower mantle anomaly beneath southern Africa that rises from the core-mantle boundary to at least ~ 1100 km depth and possibly connects to the upper mantle anomaly across the transition zone. Geodynamic models which invoke one or more discrete plumes to explain the origin of the AARS are difficult to reconcile with the lateral and depth extent of the upper mantle low-velocity region, as are non-plume models invoking small-scale convection passively induced by lithospheric extension or by edge-flow around thick cratonic lithosphere. Instead, the low-velocity anomaly beneath the AARS can be explained by the African superplume model, where the anomalous upper mantle structure is a continuation of a large, thermo-chemical upwelling in the lower mantle beneath southern Africa. These findings provide further support for a geodynamic connection between processes in Earth's lower mantle and continental break-up within the AARS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S33A2062R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S33A2062R"><span>Crustal structure of the Pannonian-Carpathian region, Central Europe, from ambient noise tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Y.; Stuart, G. W.; Houseman, G. A.; Carpathian Basins Project Working Group</p> <p>2010-12-01</p> <p>The Pannonian Basin of Central Europe is a major extensional basin surrounded by the Carpathian Mountains. During the evolution of the Carpathian-Pannonian region, extension of the crust and lithosphere created several inter-related basins of which the Pannonian basin is the largest. Imaging the seismic velocity structure of the crust and the upper mantle may help us understand the structure and geodynamic evolution of this part of central Europe. Here, we use ambient noise tomography to investigate the crust and uppermost mantle structure in the region. We have collected and processed continuous data from 56 temporary stations deployed in the Carpathian Basins Project (CBP) for 16 months (2005-2007) and 41 permanent broadband stations; this dataset enables the most well-resolved images of the S-wave structure of the region yet obtained. We computed the cross-correlation between vertical component seismograms from pairs of stations and stacked the correlated waveforms over 1-2 years to estimate the Rayleigh wave Green’s function. Frequency-time analysis is used to measure the group velocity dispersion curves, which are then inverted for the group velocity maps. Our 4-10 s group velocity maps exhibit low velocity anomalies which clearly defined the major sediment depo-centers in the Carpathian region. A broad low velocity anomaly in the center of the 5 s group velocity map can be associated with the Pannonian Basin, whereas an anomaly in the southeastern region is related to the Moesian platform. Further east, the Vienna Basin can also be seen on our maps. A fast anomaly in the central region can be associated with the Mid-Hungarian line. At periods from 18 to 24 seconds, group velocities become increasingly sensitive to crustal thickness. The maps also reveal low-velocity anomalies associated with the Carpathians. The low velocity anomalies are probably caused by deeper crustal roots beneath the mountain ranges which occur due to isostatic compensation. CBP working group: G. Houseman, G. Stuart, Y. Ren, B. Dando, P. Lorinczi, School of Earth and Environment, University of Leeds, UK; E. Hegedus, A. Kovács, I. Török, I. László, R. Csabafi, Eötvös Loránd Geophysical Institute, Budapest, Hungary; E. Brüeckl, H. Hausmann, W. Loderer, T-U Wien, Vienna, Austria; S. Radovanovic, V. Kovacevic, D. Valcic, S. Petrovic-Cacic, G. Krunic, Seismological Survey of Serbia, Belgrade, Serbia; A. Brisbourne, D. Hawthorn, A. Horleston, V. Lane, SEIS-UK, Leicester University, UK.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13G..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13G..02H"><span>The changing face of the lithosphere-asthenosphere boundary: Imaging continental-scale patterns in upper mantle structure across the contiguous U.S. with Sp converted waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hopper, E.; Fischer, K. M.</p> <p>2017-12-01</p> <p>The contiguous U.S.A. is a rich tapestry of tectonism spanning over two billion years. On the broadest scale, this complex history can be simplified to three regimes: the tectonically active western U.S., the largely quiescent Archean and Proterozoic cratons of the central U.S., and the Phanerozoic orogen and rifted margin of the eastern U.S. The transitions between these regions can be clearly observed with Sp converted wave images of the uppermost mantle. We use common conversion point stacked Sp waves recorded by EarthScope's Transportable Array and other permanent and temporary broadband stations to image the transition from a strong, sharp velocity decrease in the shallow upper mantle of the western U.S. (the lithosphere-asthenosphere boundary, or LAB) to deeper, more diffuse features moving east that largely lie within the lithosphere. Only sparse, localized, weak phases are seen at LAB depths beneath the cratonic interior. This transition is clearly revealed by cluster analysis, which also shows the eastern U.S. as more similar to the western U.S. than the ancient interior, particularly beneath New England. In the western U.S., the observed strong LAB indicates a large enough velocity decrease to imply that melt has ponded beneath the lithosphere. We compare western U.S. LAB properties to the age distribution of most recent volcanism from NavDat. While LAB properties vary widely within a given age range, their distributions indicate a relationship between age of surface volcanism and LAB phase strength and breadth. LAB depth does not appear to have a clear correlation. In general, the LAB is strongest and broadest beneath zones that have been magmatically active in the last 50 Myr, suggesting an observable fraction of melt that is distributed over a depth range of 10's of kilometers, perhaps due to variations in the degree of thermochemical erosion of the lithosphere even on very local scales. The LAB is strongest and broadest for magmatic ages of 5-10 Ma, but beneath the youngest volcanism (<5 Ma), the LAB is seen as significantly weaker, suggesting more complete destruction of the high velocity lid. The timescale of these changes in LAB character suggests the presence and possibly production of melt in the asthenosphere for many 10's of Myr after surface volcanism ceases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........35T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........35T"><span>Ambient Noise Tomography and Microseism Directionalities across the Juan de Fuca Plate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tian, Ye</p> <p></p> <p>Ambient noise tomography has been well developed over the past decade and proven to be effective in studying the crust and upper mantle structure beneath the Earth’s continents. With new seismic array deployments beginning in the oceans, the application of the tomographic methods based on ambient noise observed at ocean bottom seismometers (OBSs) has become an important topic for research. In this thesis, I investigate the application of ambient noise tomography to oceanic bottom seismic data recorded by the Cascadia Initiative experiment across the Juan de Fuca plate. With higher local noise levels recorded by OBSs, I find that traditional data processing procedures used in ambient noise tomography produce measurable Rayleigh wave Green’s functions between deep ocean stations, whereas the shallow water stations are severely contaminated by both tilt noise and compliance noise and require new methods of processing. Because the local noise level varies across the study region, four semi-independent studies are conducted to both utilize the quieter deep-water stations and to address the problem posed by noisy shallow water stations. First, I construct an age-dependent shear wave speed model of the crust and uppermost mantle with 18 deep-water stations near the Juan de Fuca Ridge. The model possess a shallow low shear velocity zone near the ridge and has its sedimentary thickness, lithospheric thickness, and mantle shear wave speeds increase systematically with age Second, I investigate the locations and mechanisms of microseism generation using ambient noise cross-correlations constructed between 61 OBSs and 42 continental stations near the western US coast and find that the primary and secondary microseisms are generated at different locations and possibly have different physical mechanisms. Third, I show that tilt and compliance noise on the vertical components of the OBSs can be reduced substantially using the horizontal components and the differential pressure gauge records. Removal of these types of noise improves the signal-to-noise ratio of ambient noise cross-correlations significantly at beyond 10 sec period. Lastly, I present a new single-station method to estimate the microseism Rayleigh wave strength and directionality based on the horizontal-to-vertical transfer function. The high spatial and temporal resolution of this method may open up the microseism Rayleigh waves for a wider range of studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.3193C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.3193C"><span>Ice cap melting and low-viscosity crustal root explain the narrow geodetic uplift of the Western Alps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chéry, J.; Genti, M.; Vernant, P.</p> <p>2016-04-01</p> <p>More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Two uplift mechanisms have been proposed: (1) the isostatic response to denudation responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting which predicts a broader uplifting region than the one evidenced by geodetic observations. Using a numerical model to fit the geodetic data, we show that a crustal viscosity contrast between the foreland and the central part of the Alps, the latter being weaker with a viscosity of 1021 Pa s, is needed. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly over the entire lithosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S33A0836A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S33A0836A"><span>Possible Different Rifting Mechanisms Between South and North Part of the Fenhe-Weihe Rift Zone Revealed by Shear Velocity Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ai, S.; Zheng, Y.</p> <p>2017-12-01</p> <p>As an active intraplate continental rift, FWR plays an important role in accommodating the trans-tension in the Trans North China Craton (TNCO). Velocity field derived from GPS measurements reveals that the northern part of FWR is still under extension in N105°E direction at a rate of 4±2 mm/yr [Shen et al., 2000]. Actually, the FWR has been the most seismically active region in NCC. Bouguer gravity profile and seismic sounding lines [Xu and Ma, 1992] revealed a 2-3 km uplift of Moho depth beneath Taiyuan basin and 5-6 km beneath the Southwestern rift zone, those geophysical observations give clues to the un-evenly upwelling of the asthenosphere beneath the rift system and the different rifting process of the FWR. Therefore, studying the extension process of FWR is meaningful to understanding the NCC geodynamics associated with rifting tectonism. Using vertical continuous waveforms recorded during 2014 from CEarray, we construct a reliable and detailed 3-D crustal and uppermost mantle S-wave velocity structure of FWR, using a Bayesian Monte-Carlo method to jointly interpret teleseismic P-wave receiver functions and Rayleigh wave dispersions [Shen et al., 2013]. In the upmost crust, FWR appear as awful low velocity anomaly zone (LVZ), while the Taihang and Lvliang mountain ranges are imaged as strong high velocity anomaly zones(HVZ). In the middle crust, the low velocity zones still keep their LVZ features Additionally, nearly the whole FWR appears as a linearly LVZ line separating Taihang Uplift and Lvliang Uplift, except beneath Shilingguan and Linshi blocks that separate the Xinxian, Taiyuan and Linfen Basins, consisting with the high seismicity there. The velocity of the lower crust beneath Taiyuan and Weihe Basin are relatively higher than the rest rift regions, we interpret them as the limited mafic underplating beneath the TNCO. From the lower crust to upper mantle, the Datong volcanic zone display robust low velocity features, though the lowest velocity location varies as depth changes. Associated with previous geochemistry studies, we propose an on-going asthenosphere upwelling near Datong volcanic field. Overall, the shear wave velocity structures between north and south part of the FWR is different,and imply the different rifting mechanisms between the two sides of FWR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.T33A1137K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.T33A1137K"><span>Spatial Relationship Between Crustal Structure and Mantle Seismicity in the Vrancea Seismogenic Zone of Romania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knapp, C. C.; Enciu, D. M.; Knapp, J. H.</p> <p>2007-12-01</p> <p>Active crustal deformation and subsidence in the Southeast Carpathian foreland has previously been attributed to active foundering of thickened continental lithosphere beneath the Carpathian bend region (Knapp et al, 2005). The present study involves integration of active and passive-source seismic data in order to place constraints on the duration, timing, and scale of crustal deformation in the Carpathian foreland, and in particular to assess the genetic relationship with the Vrancea intermediate-depth seismogenic zone (VSZ). Relocated crustal earthquakes and focal mechanisms were correlated with four deep industry seismic profiles, the reprocessed DACIA PLAN deep seismic profile, and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles. Projection of foreland crustal hypocenters onto the deep seismic lines correlates well with previously identified crustal faults such as the Trotus and Sinaia, as well as the newly identified Ialomita Fault. Specifically, results of this study (1) image the full crustal and uppermost mantle structure of the Focsani Basin in the close proximity of the VSZ, (2) show evidence for a sub-horizontal, slightly east-dipping Moho in the vicinity of the VSZ and thinning of the crust towards the Carpathian orogen, (3) illustrate the conspicuous absence of west-dipping fabrics or structures in the crust and across the Moho, (4) present evidence that the Trotus Fault is a crustal-scale active fault with a dextral sense of motion, (5) suggest that the Paleozoic age Peceneaga-Camena and Capidava-Ovidiu Faults have not been active in post-Paleozoic time, and (6) show evidence for a new active crustal scale sinistral fault, named the Ialomita fault. Both the seismogenic Vrancea body and deformation in the Focsani Basin appear to be concentrically bound by the Trotus Fault in the north and east and the Sinaia-Ialomita Fault in the south, suggesting a coupled deformation between the VSZ and the foreland deformation, possibly accommodated on these two major fault systems. These results contradict both the "subduction-in-place" and "slab- break-off" hypotheses as feasible explanations for VSZ intermediate-depth seismicity, and lend additional support to a lithospheric delamination model to explain both the origin of the VSZ and the crustal architecture of the Southeast Carpathian foreland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoJI.185.1022K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoJI.185.1022K"><span>Velocity-depth ambiguity and the seismic structure of large igneous provinces: a case study from the Ontong Java Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korenaga, Jun</p> <p>2011-05-01</p> <p>The seismic structure of large igneous provinces provides unique constraints on the nature of their parental mantle, allowing us to investigate past mantle dynamics from present crustal structure. To exploit this crust-mantle connection, however, it is prerequisite to quantify the uncertainty of a crustal velocity model, as it could suffer from considerable velocity-depth ambiguity. In this contribution, a practical strategy is suggested to estimate the model uncertainty by explicitly exploring the degree of velocity-depth ambiguity in the model space. In addition, wide-angle seismic data collected over the Ontong Java Plateau are revisited to provide a worked example of the new approach. My analysis indicates that the crustal structure of this gigantic plateau is difficult to reconcile with the melting of a pyrolitic mantle, pointing to the possibility of large-scale compositional heterogeneity in the convecting mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PEPI..168..134L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PEPI..168..134L"><span>Seismic images under the Beijing region inferred from P and PmP data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lei, Jianshe; Xie, Furen; Lan, Congxin; Xing, Chengqi; Ma, Shizhen</p> <p>2008-07-01</p> <p>In this study a new tomographic method is applied to over 1500 high-quality PmP (Moho reflected wave) travel-time data as well as over 38,500 high-quality first P-wave arrivals to determine a detailed 3D crustal velocity structure under Beijing and adjacent areas. Results of detailed resolution analyses show that the PmP data can significantly improve the resolution of the model in the middle and lower crust. After the PmP data are included in the tomographic inversion, our new model not only displays the tectonic feature appeared in the previous studies, but also reveals some new features. The Zhangjiakou-Bohai Sea fault zone (Zhang-Bo zone) is imaged as prominent and continuous low-velocity (low-V) anomalies in the shallower crust, while in the middle and lower crust it shows intermittent low-V anomalies extending down to the uppermost mantle. Furthermore, the pattern of low-V anomalies is different along the Zhang-Bo zone from the southeast to the northwest, indicating that there exist large differences in the dynamic evolution of Taihangshan and Yanshan uplifts and North China depression basin. Prominent low-V anomalies are visible under the source area of the 4 July 2006 Wen-An earthquake (M 5.1), suggesting that the occurrence of the Wen-An earthquake is possibly related to the effect of the crustal fluids probably caused by the upwelling of the hot and wet asthenospheric materials due to the deep dehydration of the stagnant Pacific slab in the mantle transition zone. The fluids in the lower crust may cause the weakening of the seismogenic layer in the upper and middle crust and thus contribute to the initiation of the Wen-An earthquake. This is somewhat similar to the cause of the 1695 Sanhe-Pinggu earthquake and the 1976 Tangshan earthquake in the region, as well as the 1995 Kobe earthquake in Japan and the 2001 Bhuj earthquake in India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT........11B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT........11B"><span>Structure and seismicity of the upper mantle using deployments of broadband seismographs in Antarctica and the Mariana Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barklage, Mitchell</p> <p></p> <p>We determine shear wave splitting parameters of teleseismic SKS and SKKS phases recorded at 43 broadband seismometers deployed in South Victoria Land as part of the Transantarctic Mountains seismic experiment (TAMSEIS) from 2000-2003. We use an eigenvalue technique to linearize the rotated and shifted shear wave particle motions and determine the best splitting parameters. The data show a fairly consistent fast direction of azimuthal anisotropy oriented approximately N60°E with splitting times of about 1 second. Based on a previous study of the azimuthal variations of Rayleigh wave phase velocities which show a similar fast direction, we suggest the anisotropy is localized in the uppermost mantle, with a best estimate of 3% anisotropy in a layer of about 150 km thickness. We suggest that the observed anisotropy near the Ross Sea coast, a region underlain by thin lithosphere, results either from upper mantle flow related to Cenozoic Ross Sea extension or to edge-driven convection associated with a sharp change in lithospheric thickness between East and West Antarctica. Both hypotheses are consistent with the more E-W fast axis orientation for stations on Ross Island and along the coast, sub-parallel to the extension direction and the lithospheric boundary. Anisotropy in East Antarctica, which is underlain by cold thick continental lithosphere, must be localized within the lithospheric upper mantle and reflect a relict tectonic fabric from past deformation events. Fast axes for the most remote stations in the Vostok Highlands are rotated by 20° and are parallel to splitting measurements at South Pole. These observations seem to delineate a distinct domain of lithospheric fabric, which may represent the extension of the Darling Mobile Belt or Pinjarra Orogen into the interior of East Antarctica. Seismic tomography imaging provides an opportunity to constrain mantle wedge processes associated with subduction, volatile transport, arc volcanism, and back-arc spreading. We investigate seismic velocity structure of the upper mantle across the Central Mariana subduction system using data from the 2003-2004 Mariana Subduction Factory Imaging Experiment. This 11-month experiment consisted of 20 broadband seismic stations deployed on islands and 58 semi-broadband ocean bottom seismographs deployed across the forearc, island arc, and back-arc spreading center. We determine Vp and Vp/Vs structure on a three dimensional grid using over 25,000 local travel time observations as well as over 2000 teleseismic arrival times determined by waveform cross correlation. The mantle wedge is characterized by a region of low velocity and high Vp/Vs beneath the forearc, an inclined zone of low velocity underlying the volcanic front, and a broad region of low velocity beneath the back-arc spreading center. The slow velocity anomalies are strongest at roughly 20-30 km depth in the forearc, 60-70 km depth beneath the volcanic arc, and 20-30 km beneath the back-arc spreading center. The slow velocity anomalies beneath the arc and back-arc appear as separate and distinct features in our images, with a small channel of connectivity occurring at approximately 75 km depth. The subducting Pacific plate is characterized by high seismic velocities. An exception occurs in the forearc beneath the big blue seamount and at the top of the slab at roughly 80 km depth where slow velocities are observed. We interpret the forearc anomalies to represent a region of large scale serpentinization of the mantle whereas the arc and back-arc anomalies represent regions of high temperature with a small amount of increased water content and/or melt and constrain the source regions in the mantle for arc and back-arc lavas. We investigate the double seismic zone (dsz) beneath the Central Mariana Arc using data from a land-sea array of 58 ocean bottom seismographs and 20 land seismographs deployed during 2003-2004. Nearly 600 well-recorded earthquakes were located using a P and S wave arrival times and a double difference relocation technique. The double seismic zone is well imaged from the forearc region to a depth of nearly 200 km. The width of the dsz is approximately 30 km at shallow depths and gradually becomes narrower with depth until it is now longer resolvable at depths greater than 180-200 km. Focal mechanisms determined from P and S wave polarities and amplitudes indicate that events from 70-150 km depth show along strike extension, whereas events greater than 150 km show downdip extension. Both the upper and lower zones of the dsz show similar focal mechanisms, demonstrating that the dsz is not caused by bending or unbending stresses. Along-strike tension may result from stresses related to the increasing curvature of the Mariana slab over the past few million years, as indicated by plate reconstructions. Downdip extension may result from slab pull forces consistent with the strong density anomaly of an old, cold plate relative to the surrounding mantle.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970021180','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970021180"><span>An Inversion of Gravity and Topography for Mantle and Crustal Structure on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kiefer, Walter S.; Bills, Bruce G.; Nerem, R. Steven</p> <p>1996-01-01</p> <p>Analysis of the gravity and topography of Mars presently provides our primary quantitative constraints on the internal structure of Mars. We present an inversion of the long-wavelength (harmonic degree less than or equal to 10) gravity and topography of Mars for lateral variations of mantle temperature and crustal thickness. Our formulation incorporates both viscous mantle flow (which most prior studies have neglected) and isostatically compensated density anomalies in the crust and lithosphere. Our nominal model has a 150-km-thick high-viscosity surface layer over an isoviscous mantle, with a core radius of 1840 km. It predicts lateral temperature variations of up to a few hundred degrees Kelvin relative to the mean mantle temperature, with high temperature under Tharsis and to a lesser extent under Elysium and cool temperatures elsewhere. Surprisingly, the model predicts crustal thinning beneath Tharsis. If correct, this implies that thinning of the crust by mantle shear stresses dominates over thickening of the crust by volcanism. The major impact basins (Hellas, Argyre, Isidis, Chryse, and Utopia) are regions of crustal thinning, as expected. Utopia is also predicted to be a region of hot mantle, which is hard to reconcile with the surface geology. An alternative model for Utopia treats it as a mascon basin. The Utopia gravity anomaly is consistent with the presence of a 1.2 to 1.6 km thick layer of uncompensated basalt, in good agreement with geologic arguments about the amount of volcanic fill in this area. The mantle thermal structure is the dominant contributor to the observed geoid in our inversion. The mantle also dominates the topography at the longest wavelengths, but shorter wavelengths (harmonic degrees greater than or equal to 4) are dominated by the crustal structure. Because of the uncertainty about the appropriate numerical values for some of the model's input parameters, we have examined the sensitivity of the model results to the planetary structural model (core radius and core and mantle densities), the mantle's viscosity stratification, and the mean crustal thickness. The model results are insensitive to the specific thickness or viscosity contrast of the high-viscosity surface layer and to the mean crustal thickness in the range 25 to 100 km. Models with a large core radius or with an upper mantle low-viscosity zone require implausibly large lateral variations in mantle temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoJI.204.1237N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoJI.204.1237N"><span>Total meltwater volume since the Last Glacial Maximum and viscosity structure of Earth's mantle inferred from relative sea level changes at Barbados and Bonaparte Gulf and GIA-induced J˙2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakada, Masao; Okuno, Jun'ichi; Yokoyama, Yusuke</p> <p>2016-02-01</p> <p>Inference of globally averaged eustatic sea level (ESL) rise since the Last Glacial Maximum (LGM) highly depends on the interpretation of relative sea level (RSL) observations at Barbados and Bonaparte Gulf, Australia, which are sensitive to the viscosity structure of Earth's mantle. Here we examine the RSL changes at the LGM for Barbados and Bonaparte Gulf ({{RSL}}_{{L}}^{{{Bar}}} and {{RSL}}_{{L}}^{{{Bon}}}), differential RSL for both sites (Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}}) and rate of change of degree-two harmonics of Earth's geopotential due to glacial isostatic adjustment (GIA) process (GIA-induced J˙2) to infer the ESL component and viscosity structure of Earth's mantle. Differential RSL, Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}} and GIA-induced J˙2 are dominantly sensitive to the lower-mantle viscosity, and nearly insensitive to the upper-mantle rheological structure and GIA ice models with an ESL component of about (120-130) m. The comparison between the predicted and observationally derived Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}} indicates the lower-mantle viscosity higher than ˜2 × 1022 Pa s, and the observationally derived GIA-induced J˙2 of -(6.0-6.5) × 10-11 yr-1 indicates two permissible solutions for the lower mantle, ˜1022 and (5-10) × 1022 Pa s. That is, the effective lower-mantle viscosity inferred from these two observational constraints is (5-10) × 1022 Pa s. The LGM RSL changes at both sites, {{RSL}}_{{L}}^{{{Bar}}} and {{RSL}}_{{L}}^{{{Bon}}}, are also sensitive to the ESL component and upper-mantle viscosity as well as the lower-mantle viscosity. The permissible upper-mantle viscosity increases with decreasing ESL component due to the sensitivity of the LGM sea level at Bonaparte Gulf ({{RSL}}_{{L}}^{{{Bon}}}) to the upper-mantle viscosity, and inferred upper-mantle viscosity for adopted lithospheric thicknesses of 65 and 100 km is (1-3) × 1020 Pa s for ESL˜130 m and (4-10) × 1020 Pa s for ESL˜125 m. The former solution of (1-3) × 1020 Pa s is consistent with the inferences from the postglacial differential RSL changes in the Australian region and also inversion study of far-field sea-level data. The inference of the viscosity structure based on these four observational constraints is, however, relatively insensitive to the viscosity structure of D″ layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMMR33C..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMMR33C..03G"><span>Synchrotron in-situ deformation experiments of perovskite + (Mg,Fe)O aggregates under shallow lower mantle conditions (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Girard, J.; Amulele, G.; Farla, R. J.; Liu, Z.; Mohiuddin, A.; Karato, S.</p> <p>2013-12-01</p> <p>Experimental studies on rheological properties of mantle's minerals are crucial to understand the dynamics of Earth's interior, but direct experimental studies under the relevant lower mantle conditions are challenging. Most of the earlier studies were performed at lower mantle pressures but low temperatures using DAC (diamond anvil cell) (e.g., Merkel et al., 2003)), and in DAC experiments strain-rate and stress are unknown. Some previous studies were carried out under high pressures and high temperatures (e.g, Cordier et al., 2004) , but quantitative results on rheological behaviour of said minerals were not obtained. Here we present the results of the first in-situ deformation experiments of perovskite + (Mg,Fe)O (Pv + fp) aggregates using RDA (rotational Drickamer apparatus). The RDA has a better support for the anvils at high pressure than the more commonly used D-DIA apparatus and hence we can reach higher pressures and temperatures than the D-DIA. We have recently made new modifications to the cell assembly to reach the lower mantle conditions with less interference in X-ray diffraction patterns by the surrounding materials. The starting material was ringwoodite synthesized using a multi-anvil. In-situ deformation experiments were then carried at pressure up to 28 GPa (calculated from thermal EOS of Pt) and estimated temperatures up to 2200 K using RDA. Under these conditions, ringwoodite transformed to Pv + fp. We subsequently deformed the sample between strain rates of 10-4 to 10-5 s-1. Stress and strain were measured in-situ using X-ray synchrotron beam. The recovered sample analyses show evidence of perovskite+(Mg,Fe)O microstructure (Fig. 1). The radial X-ray diffraction data are being analysed to determine the stress levels of two minerals. Also microstructures of deformed specimens are studied to understand the deformation mechanisms and strain partitioning. The results will contribute towards our understanding of the rheological properties of the lower mantle including the creep strength, seismic anisotropy and possible role of strain partitioning leading to strain weakening. References Cordier, P., Ungar, T., Zsoldos, L., Tichy, G., 2004. Dislocation creep in MgSiO3 perovskite at conditions of the earth's uppermost lower mantle. Nature 428, 837-840. Merkel, S., Wenk, H.R., Badro, J., Montagnac, G., Gillet, P., Mao, H.-k., Hemley, R.J., 2003. Deformation of (Mg0.9,Fe0.1)SiO3 perovskite aggregates up to 32 GPa. Earth Planet. Sci. Lett. 209, 351-360. Fig. 1: RDA recovered sample SEM Back scattering images, Eutectoid-like appearance of perovskite and (Mg,Fe)O alternated lamellae.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMDI51A..03Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMDI51A..03Z"><span>Time Evolution of the Mantle Thermal Structure in the African Hemisphere Before and After the Formation of Pangea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, N.; Zhong, S.</p> <p>2008-12-01</p> <p>The present-day mantle structure is characterized by the African and Pacific superplumes surrounded by subduction slabs. This structure has been demonstrated to result from dynamic interaction between mantle convection and surface plate motion history in the last 120 Ma. With similar techniques, mantle structure has been constructed back to about 100 Ma ago. However, due to the lack in global plate motion reconstructions further back in time, mantle structure for earlier times is poorly understood, despite of their importance in understanding the continental tectonics and volcanisms. Zhong et al. (2007) suggested that the mantle structures alternate between spherical harmonic degrees-1 and -2 structures, modulated by supercontinent processes. In their model, a supercontinent forms in the hemisphere with cold downwellings, and after supercontinent formation, the cold downwellings are replaced with hot upwellings due to return flows associated with circum-supercontinent subduction. This model implies that the African superplume is younger than 330 Ma when Pangea was formed, which is supported by volcanic activities recorded on continents around Pangea time. By using paleomagnetic-geologically reconstructed continental motions between 500 and 200 Ma in a three-dimensional spherical models of mantle convection, this study, for the first time, investigates the time evolution of mantle structures in the African hemisphere associated with Pangea formation. We show that cold downwellings first develop in the mantle between the colliding Laurentia and Gondwana, and that the downwellings are then replaced by upwellings after the formation of Pangea and as circum-Pangea subduction is initiated, consistent with Zhong et al. (2007) and Li et al. (2008). We find that the return flows in response to the circum-Pangea subduction are responsible for the upwellings below Pangea. We also find that even if the mantle in the African hemisphere is initially occupied by hot upwellings, the cold downwellings associated with convergence between Laurentia and Gondwana would destroy the hot upwellings and cause the hemisphere to be cold. These results are insensitive to model parameters such as convective vigor, internal heating rate, and the plate motions in the oceanic hemisphere. We therefore suggest that the African superplume is younger than 330 Ma when Pangea was formed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMDI21B1960Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMDI21B1960Z"><span>The Evolution of the Earth's Mantle Structure and Surface and Core-mantle Boundary Heat Flux since the Paleozoic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, N.; Zhong, S.</p> <p>2010-12-01</p> <p>The cause for and time evolution of the seismically observed African and Pacific slow anomalies (i.e., superplumes) are still unclear with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Ma and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma ago) and the mantle in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree-1 structure before the Pangea formation). Here, we construct a plate motion history back to 450 Ma and use it as time-dependent surface boundary conditions in 3-dimensional spherical models of thermochemical mantle convection to study the evolution of mantle structure as well as the surface and core-mantle boundary heat flux. Our results for the mantle structures suggest that while the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of the African superplume structure can be formed before ~240 Ma (i.e., ~100 Ma after the assembly of Pangea). The evolution of mantle structure has implications for heat flux at the surface and core-mantle boundary (CMB). Our results show that while the plate motion controls the surface heat flux, the major cold downwellings control the core-mantle boundary heat flux. A notable feature in surface heat flux from our models is that the surface heat flux peaks at ~100 Ma ago but decreases for the last 100 Ma due to the breakup of Pangea and its subsequent plate evolution. The CMB heat flux in the equatorial regions shows two minima during period 320-250 Ma and period 120-84 Ma. The first minimum clearly results from the disappearance of a major cold downwelling above the CMB below the Pangea after the assembly of Pangea ends the subduction and convergence between Gondwana and Laurussia. The second minimum arises because the break-up of Pangea leads to subduction of much smaller and younger oceanic lithosphere in the equatorial regions of the CMB. Considering the recent suggestion that CMB heat flux in the equatorial regions controls the frequency of magnetic polarity reversals (Olson et al., 2010), our results have important implications for the Kaiman Reversal Superchron and Cretaceous Normal Superchron.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.T53G..02I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.T53G..02I"><span>Kinematic signature of India/Australia plates break-up</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iaffaldano, G.; Bunge, H.</p> <p>2008-12-01</p> <p>The paradigm of Plate Tectonics states that the uppermost layer of the Earth is made of a number of quasi- rigid blocks moving at different rates in different directions, while most of the deformation is focused along their boundaries. Perhaps one of the most interesting and intriguing processes in Plate Tectonics is the generation of new plate boundaries. The principle of inertia implies that any such event would invariably trigger changes in plate motions, because the budget of mantle basal-drag and plate-boundary forces would be repartitioned. A recent episode is thought to have occurred in the Indian Ocean, where a variety of evidences - including localized seismicity along the Nienty East Ridge, compression-generated unconformities of ocean-floor sediments, and identified paleomagnetic isochrones - suggest the genesis of a boundary separating the India and Australia plates. Here we use global numerical models of the coupled mantle/lithosphere system to show for the first time that an event of separation between India and Australia, having occurred sometime between 11 and 8 Myrs ago, has left a distinct signature in the observed record of plate motions. Specifically, while motions of India and Australia relative to fixed Eurasia are almost indistinguishable prior to 11 Myrs ago, their convergence to Eurasia since then differs significantly, by as much as 2 cm/yr. Finally, we speculate about possible causes for the separation between India and Australia plates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1111647I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1111647I"><span>Kinematic signature of India/Australia plates break-up</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iaffaldano, G.; Bunge, H.-P.</p> <p>2009-04-01</p> <p>The paradigm of Plate Tectonics states that the uppermost layer of the Earth is made of a number of quasi-rigid blocks moving at different rates in different directions, while most of the deformation is focused along their boundaries. Perhaps one of the most interesting and intriguing processes in Plate Tectonics is the generation of new plate boundaries. The principle of inertia implies that any such event would invariably trigger changes in plate motions, because the budget of mantle basal-drag and plate-boundary forces would be repartitioned. A recent episode is thought to have occurred in the Indian Ocean, where a variety of evidences - including localized seismicity along the Nienty East Ridge, compression-generated unconformities of ocean-floor sediments, and identified paleomagnetic isochrones - suggest the genesis of a boundary separating the India and Australia plates. Here we use global numerical models of the coupled mantle/lithosphere system to show for the first time that an event of separation between India and Australia, having occurred sometime between 11 and 8 Myrs ago, has left a distinct signature in the observed record of plate motions. Specifically, while motions of India and Australia relative to fixed Eurasia are almost indistinguishable prior to 11 Myrs ago, their convergence to Eurasia since then differs significantly, by as much as 2 cm/yr. Finally, we speculate about possible causes for the separation between India and Australia plates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984CoMP...87..407T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984CoMP...87..407T"><span>Nd and Sr isotopic variations in acidic rocks from Japan: significance of upper-mantle heterogeneity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Terakado, Yasutaka; Nakamura, Noboru</p> <p>1984-10-01</p> <p>Initial Nd and Sr isotopic ratios have been measured for Cretaceous acidic and related intermediate rocks (24 volcanic and two plutonic rocks) from the Inner Zone of Southwest Japan (IZSWJ) to investigate the genesis of acidic magmas. The initial Nd and Sr isotopic ratios for these rocks show three interesting features: (1) ɛ Nd values for acidic rocks (+2 to -9) are negatively correlated with ɛ Sr values (+10 to +90) together with those for intermediate rocks ( ɛ Nd=+3 to -8; ɛ Sr=0 to +65). (2) The ɛ Nd values for silica rich rocks (>60% SiO2) correlate with the longitude of the sample locality, decreasing from west to east in a stepwise fashion: Four areas characterized by uniform ɛ Nd values are discriminated. (3) Low silica rocks (<60% SiO2) in a certain area have distinctly different ɛ Nd values from those of the high silica rocks in the same area. These results as well as those deduced from the additional samples collected, for comparison, from other provinces in Japan suggest that the acidic rocks can be formed neither by fractional crystallization processes from more basic magmas nor by crustal assimilation processes. The isotopic variations of the acidic rocks may reflect regional isotopic heterogeneity in the lower crust, and this heterogeneity may ultimately be attributed to the regional heterogeneity of the uppermost-mantle beneath the Japanese Islands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19...95W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19...95W"><span>A new perspective on the generation of the 2016 M6.7 Kaohsiung earthquake, southwestern Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Zhi</p> <p>2017-04-01</p> <p>In order to investigate the likely generation mechanism of the 2016 M6.7 Kaohsiung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and σgodels. In this way, multi-geophysical parameter imaging revealed that the 2016 Kaohsiung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-σ body that has high ɛ and somewhat high ζ anomalies above the hypocenter under the Coastal Plain represents fluids contained in the young fold-and-thrust belt associated with the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson's ratio, crack density and saturate fracturegnomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the Coastal Plain and Western Foothills as far as the southeastern lower crust under the Central Range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson's ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake. PIC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T31A0601W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T31A0601W"><span>A new perspective on the generation of the 2016 M6.4 Meilung earthquake, southwestern Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Z.</p> <p>2017-12-01</p> <p>In order to investigate the likely generation mechanism of the 2016 M6.4 Meilung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and s models. In this way, multi-geophysical parameter imaging revealed that the 2016 Meilung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-Poisson ratio body that has high-crack density and somewhat high-saturate fracture anomalies above the hypocenter under the coastal plain represents fluids contained in the young fold-and-thrust belt relative to the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson ratio, crack density and saturate fracture anomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the coastal plain and western foothills as far as the southeastern lower crust under the central range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt associated with the passive Asian continental margin in the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11C0359P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11C0359P"><span>Where do arc magmas differentiate? A seismic and geochemical search for active, deep crustal MASH zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pu, X.; Delph, J. R.; Shimizu, K.; Rasmussen, D. J.; Ratschbacher, B. C.</p> <p>2017-12-01</p> <p>Deep zones of mixing, assimilation, storage, and homogenization (MASH) are thought to be one of the primary locations where primitive arc magmas stall, interact with crustal material, and differentiate. Support for deep crustal MASH zones is found in exposed crustal sections, where mafic-ultramafic lithologies occur in the lower crust. However, geophysical observations of active deep MASH zones are rare, and their ubiquity is difficult to assess solely based on geochemistry. Using a multidisciplinary approach, we investigate the role of deep crustal processing by investigating two contrasting arcs: the Central Volcanic Zone (CVZ) of the Andes, characterized by thick crust ( 60 km) and large volume silicic eruptions that extend into the back arc, and the Cascadia arc, characterized by thinner crust ( 40 km) and less evolved eruptions. In the southern Puna region of the CVZ, shear-wave velocities in the uppermost mantle are slow ( 3.9 km/s) compared to the minimum expected shear velocity for melt-free mantle lithosphere ( 4.2 km/s). This is consistent with the presence of a melt-bearing MASH zone near the crust-mantle transition. Sr isotopes indicate the magmas interacted with continental crust, and elevated Dy/Yb ratios suggest this process occurred in the garnet stability field (> 1 GPa). Major element signatures (e.g., ASI vs. SiO2) also suggest contribution from partial melting of the lower crust. The signature of lower crustal differentiation (high Dy/Yb) is also observed in the nearby ignimbrites from Cerro Galan, despite the presence of a large slow velocity body at depths too shallow for garnet stability, suggesting that the geochemical signatures of deep MASH zones may be retained regardless of whether magmas stall at shallower depths. Similarly elevated Dy/Yb ratios and slow shear-wave velocities in the upper mantle are common in the CVZ, implying deep MASH zones are pervasive there. A similar approach is applied to Cascadia, where seismic and geochemical signatures of lower crustal processing are weaker than those in the CVZ. The strongest evidence for a deep MASH zone is found at Rainier, where upper mantle velocities are slow and slightly elevated Dy/Yb ratios in evolved melts indicate differentiation in the presence of garnet. Our results suggest deep MASH zones are more common in the CVZ than Cascadia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992E%26PSL.114..193S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992E%26PSL.114..193S"><span>Fossil plume head beneath the Arabian lithosphere?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stein, Mordechai; Hofmann, Albrecht W.</p> <p>1992-12-01</p> <p>Phanerozoic alkali basalts from Israel, which have erupted over the past 200 Ma, have isotopic compositions similar to PREMA ("prevalent mantle") with narrow ranges of initial ɛ Nd(T) = +3.9-+5.9; 87Sr/ 86Sr(T)= 0.70292-0.70334; 206Pb/ 204Pb(T)= 18.88-19.99; 207Pb/ 204Pb(T)= 15.58-15.70; and 208Pb/ 204Pb(T)= 38.42-39.57. Their Nb/U(43 ± 9) and Ce/Pb(26 ± 6) ratios are identical to those of normal oceanic basalts, demonstrating that the basalts are essentially free of crustal contamination. Overall, the basalts are chemically and isotopically indistinguishable from many ordinary plume basalts, but no plume track can be identified. We propose that these and other, similar, magmas from the Arabian plate originated from a "fossilized" head of a mantle plume, which was unable to penetrate the continental lithosphere and was therefore trapped and stored beneath it. The plume head was emplaced some time between the late Proterozoic crust formation and the initiation of the Phanerozoic magmatic cycles. Basalts from rift environments in other continental localities show similar geochemistry to that of the Arabian basalts and their sources may also represent fossil plume heads trapped below the continents. We suggest that plume heads are, in general, characterized by the PREMA isotopic mantle signature, because the original plume sources (which may have HIMU or EM-type composition) have been diluted by overlying mantle material, which has been entrained by the plume heads during ascent. On the Arabian plate, rifting and thinning of the lithosphere caused partial melting of the stored plume, which led to periodic volcanism. In the late Cenozoic, the lithosphere broke up and the Red Sea opened. N-MORB tholeiites are now erupting in the central trough of the Red Sea, where the lithosphere has moved apart and the fossil plume has been exhausted, whereas E-MORBs are erupting in the northern and southern troughs, still tapping the plume reservoir. Fossil plumes, which are temporarily trapped at the base of the lithosphere, may explain why the uppermost mantle normally appears enriched when it is sampled by continental rift zones but depleted when it is sampled by MORB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SolE....8.1211V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SolE....8.1211V"><span>Constraints on the rheology of the lower crust in a strike-slip plate boundary: evidence from the San Quintín xenoliths, Baja California, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der Werf, Thomas; Chatzaras, Vasileios; Marcel Kriegsman, Leo; Kronenberg, Andreas; Tikoff, Basil; Drury, Martyn R.</p> <p>2017-12-01</p> <p>The rheology of lower crust and its transient behavior in active strike-slip plate boundaries remain poorly understood. To address this issue, we analyzed a suite of granulite and lherzolite xenoliths from the upper Pleistocene-Holocene San Quintín volcanic field of northern Baja California, Mexico. The San Quintín volcanic field is located 20 km east of the Baja California shear zone, which accommodates the relative movement between the Pacific plate and Baja California microplate. The development of a strong foliation in both the mafic granulites and lherzolites, suggests that a lithospheric-scale shear zone exists beneath the San Quintín volcanic field. Combining microstructural observations, geothermometry, and phase equilibria modeling, we estimated that crystal-plastic deformation took place at temperatures of 750-890 °C and pressures of 400-560 MPa, corresponding to 15-22 km depth. A hot crustal geotherm of 40 ° C km-1 is required to explain the estimated deformation conditions. Infrared spectroscopy shows that plagioclase in the mafic granulites is relatively dry. Microstructures are interpreted to show that deformation in both the uppermost lower crust and upper mantle was accommodated by a combination of dislocation creep and grain-size-sensitive creep. Recrystallized grain size paleopiezometry yields low differential stresses of 12-33 and 17 MPa for plagioclase and olivine, respectively. The lower range of stresses (12-17 MPa) in the mafic granulite and lherzolite xenoliths is interpreted to be associated with transient deformation under decreasing stress conditions, following an event of stress increase. Using flow laws for dry plagioclase, we estimated a low viscosity of 1.1-1.3×1020 Pa ṡ s for the high temperature conditions (890 °C) in the lower crust. Significantly lower viscosities in the range of 1016-1019 Pa ṡ s, were estimated using flow laws for wet plagioclase. The shallow upper mantle has a low viscosity of 5.7×1019 Pa ṡ s, which indicates the lack of an upper-mantle lid beneath northern Baja California. Our data show that during post-seismic transients, the upper mantle and the lower crust in the Pacific-Baja California plate boundary are characterized by similar and low differential stress. Transient viscosity of the lower crust is similar to the viscosity of the upper mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4570G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4570G"><span>Reconstructing mantle heterogeneity with data assimilation based on the back-and-forth nudging method: Implications for mantle-dynamic fitting of past plate motions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glišović, Petar; Forte, Alessandro</p> <p>2016-04-01</p> <p>The paleo-distribution of density variations throughout the mantle is unknown. To address this question, we reconstruct 3-D mantle structure over the Cenozoic era using a data assimilation method that implements a new back-and-forth nudging algorithm. For this purpose, we employ convection models for a compressible and self-gravitating mantle that employ 3-D mantle structure derived from joint seismic-geodynamic tomography as a starting condition. These convection models are then integrated backwards in time and are required to match geologic estimates of past plate motions derived from marine magnetic data. Our implementation of the nudging algorithm limits the difference between a reconstruction (backward-in-time solution) and a prediction (forward-in-time solution) on over a sequence of 5-million-year time windows that span the Cenozoic. We find that forward integration of reconstructed mantle heterogeneity that is constrained to match past plate motions delivers relatively poor fits to the seismic-tomographic inference of present-day mantle heterogeneity in the upper mantle. We suggest that uncertainties in the past plate motions, related for example to plate reorganization episodes, could partly contribute to the poor match between predicted and observed present-day heterogeneity. We propose that convection models that allow tectonic plates to evolve freely in accord with the buoyancy forces and rheological structure in the mantle could provide additional constraints on geologic estimates of paleo-configurations of the major tectonic plates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2308F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2308F"><span>Reconstructing mantle flow and long-wavelength dynamic topography since the Jurassic Period (GD Division Outstanding ECS Award Lecture)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flament, Nicolas</p> <p>2017-04-01</p> <p>Global tectonic reconstructions can be used as boundary conditions of forward mantle convection models to simulate past mantle flow and long-wavelength dynamic topography. The predictions of such models can be compared to seismic tomography, to estimates of residual topography and to geological indicators of past vertical motions. Here we present models that reproduce the present-day structure of the lower mantle, including two large structures that resemble the Pacific and African Large Low Shear Velocity Provinces (LLSVPs, ˜15,000 km in diameter) and a smaller structure that resembles the recently discovered Perm Anomaly (˜1,000 km in diameter). The match between predicted and seismically inferred lower mantle structure is quantified across a series of mantle flow and tomography models. In the models, the Perm-like anomaly forms in isolation within a closed and long-lived subduction network (East Asia, Northern Tethys and Mongol-Okhotsk) ˜22,000 km in circumference before migrating ˜1,500 km westward at an average rate of 1 cm yr-1 since 150 million years ago. These results indicate a greater mobility of deep mantle structures than previously recognized, and illustrate that the predictive power of mantle flow models has significantly increased over the last thirty years. We suggest that the mobile Perm Anomaly could be linked to the ˜258 Ma Emeishan volcanics, in contrast to the previously proposed ˜251 Ma Siberian Traps. We also compare the present-day dynamic topography predicted by forward mantle flow models to residual topography models, and show that radial and lateral viscosity variations significantly influence the distribution of power of predicted dynamic topography as a function of spherical harmonic degree. We finally show how past vertical motions preserved in the geological record and the present-day position of slabs in the mantle inferred from seismic tomography may be used to constrain tectonic reconstructions and mantle rheology, including examples focusing on the large-scale topographic asymmetry of the South Atlantic domain and on the uplift history of the eastern highlands of Australia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5467B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5467B"><span>Link of grabens and reactivated mantle boundaries in western Bohemian Massif</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babuska, Vladislav; Plomerova, Jaroslava; Vecsey, Ludek; Munzarova, Helena</p> <p>2015-04-01</p> <p>To study relations between mantle and crustal fabrics in the Bohemian Massif (BM), we model 3D anisotropy of the mantle lithosphere by inverting and interpreting jointly P-wave travel-time deviations and shear-wave splitting parameters of teleseismic waves recorded at portable and permanent stations operating in the BM for more than 20 years. Changes in orientation of the large-scale anisotropy in the mantle lithosphere, caused by systematic preferred orientation of olivine, identify boundaries of domains representing original micro-plates assembled during the Variscan orogeny. Consistent anisotropy of the mantle-lithosphere domains, with distinct changes at their boundaries, documents rigidity and a long memory of pervasive olivine fabrics. Some of the palaeo-plate boundaries represent weak elements of the assemblage that can be later rejuvenated. This is why graben structures in the western BM developed above the identified mantle boundaries. The Eger (Ohře) Rift (ER) originated above the ENE oriented mantle suture between the Saxothuringian (ST) in the north-west and the Moldanubian (MD) and Teplá-Barrandian (TB) in the south-east. The most significant graben structure, accompanied by a rich Cenozoic volcanic activity, developed above the central part of the ST/TB suture that witnessed a subduction down to ~150 km, as documented by findings of microdiamonds in ST granulites. The smaller-scale NNW oriented Cheb-Domažlice Graben (CDG) is located above the mantle boundary between the western rim of the TB and the MD. Unlike the suture beneath the ER, this boundary does not show any sign of a deep subduction and it is characterized by a less well developed graben structure and a weak volcanic activity. In both grabens we observe local shifts between the equivalent crustal and mantle boundaries of the units as large as ~20 km. The shift indicates a Variscan detachment of the crust from the mantle lithosphere. Cenozoic rifting and the graben structures developed preferably above the mantle boundaries, often away from the boundaries of the crustal units.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910018331','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910018331"><span>Lateral variation in upper mantle temperature and composition beneath mid-ocean ridges inferred from shear-wave propagation, geoid, and bathymetry. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sheehan, Anne Francis</p> <p>1991-01-01</p> <p>Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI11A0256M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI11A0256M"><span>Constraints on mantle viscosity from convection models with plate motion history</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mao, W.; Zhong, S.</p> <p>2017-12-01</p> <p>The Earth's long-wavelength geoid and dynamic topography are mainly controlled by the mantle buoyancy and viscosity structure. Previous dynamical models for the geoid provide constraints on the 1-D mantle viscosity, using mantle buoyancy derived from seismic topography models. However, it is a challenge in these studies on how to convert seismic velocity to density anomalies and mantle buoyancy. Furthermore, these studies provide constraints only on relative viscosity variations but not on absolute magnitude of viscosity. In this study, we formulate time-dependent 3-D spherical mantle convection models with imposed plate motion history and seek constraints on mantle viscosity structure for both its radial relative variations and its absolute magnitude (i.e., Rayleigh number), using the geoid from the convection models. We found that the geoid at intermediate wavelengths of degrees 4-9 is mainly controlled by the subducted slabs in the upper mantle and the upper part of lower mantle that result from subduction from the last 50 Myr or the Cenozoic. To fit the degrees 4-9 geoid, we need viscosity contrast β defined as the ratio of the lower mantle viscosity and the asthenospheric viscosity to be larger than 2000 and Ra to be 1e8 (defined by the Earth's radius). The best fit model leads to 57% variance reduction and 76% correlation between the model and the observations. However, the long-wavelength geoid at degrees 2-3 is controlled by the lower mantle structure which requires much longer time scale to develop, as seen from our modeling. The preferred viscosity structure and Rayleigh number as constrained by the Cenozoic plate motion and the degrees 4-9 geoid no longer provide adequate fit to the geoid in models with the plate motion history for the last 450 Myr. The degrees 4-9 geoid amplitude is smaller for the models with longer plate motion history and a smaller Ra is required to fit the observation. In order to satisfy the relative amplitude between degrees 2-3 and degrees 4-9 geoid, either a gradually increase of viscosity in the upper part of lower mantle or larger thermal expansivity in the lower mantle is needed. We also consider thermo-chemical models to examine the effects of the African and Pacific thermochemical piles (i.e., LLSVPSs) on the geoid and the inferred mantle viscosity and Ra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title16-vol2/pdf/CFR-2010-title16-vol2-sec1511-5.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title16-vol2/pdf/CFR-2010-title16-vol2-sec1511-5.pdf"><span>16 CFR 1511.5 - Structural integrity tests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Structural integrity tests. 1511.5 Section 1511.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... lowest position in the cylinder. If the uppermost edge of the component or fragment is below the plane of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28098137','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28098137"><span>Origin and evolution of the deep thermochemical structure beneath Eurasia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Flament, N; Williams, S; Müller, R D; Gurnis, M; Bower, D J</p> <p>2017-01-18</p> <p>A unique structure in the Earth's lowermost mantle, the Perm Anomaly, was recently identified beneath Eurasia. It seismologically resembles the large low-shear velocity provinces (LLSVPs) under Africa and the Pacific, but is much smaller. This challenges the current understanding of the evolution of the plate-mantle system in which plumes rise from the edges of the two LLSVPs, spatially fixed in time. New models of mantle flow over the last 230 million years reproduce the present-day structure of the lower mantle, and show a Perm-like anomaly. The anomaly formed in isolation within a closed subduction network ∼22,000 km in circumference prior to 150 million years ago before migrating ∼1,500 km westward at an average rate of 1 cm year -1 , indicating a greater mobility of deep mantle structures than previously recognized. We hypothesize that the mobile Perm Anomaly could be linked to the Emeishan volcanics, in contrast to the previously proposed Siberian Traps.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1750O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1750O"><span>Mantle properties and the MOR process: a new and versatile model for mid-ocean ridges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osmaston, Miles</p> <p>2014-05-01</p> <p>Introduction. First I summarize the reasons why a radical departure from the current MOR model is now essential. I then outline the new model and its apparent versatility, not only in providing the observed contrasting spreading-rate-dependent characteristics but also some of the other common features of the MOR system which warrant clearer explanation. Ophiolites have been thought to provide on-land guidance but turn out to be a non-mid-ocean variant, outside the scope of this presentation. Seismic anisotropy and mantle mobility. Ever since the 1969 discovery [1] of seismic anisotropy in the uppermost oceanic mantle, this has been attributed to the shearing of olivine in a convectively driven MOR-divergent flow beneath the flanks. This would imply a high degree of rheological mobility of this mantle, but new constraints on its rheological properties and dynamical behaviour have come from two directions and need to be taken into account in forming a model. 1. Contrary to the seismologists' rule-book, the oceanic seismological Low Velocity Zone (LVZ) is no longer to be thought of as mobile, because the presence of interstitial melt strips out the water-weakening of the mineral structure [2, 3]. So we require a substitute for the divergent-flow model for MORs which, we find, also has other, apparently unrecognized, dynamical inconsistencies. One of these [4] is that there are in the record many rapid changes of spreading rate and direction, and ridge jumps. This cannot happen with a process driven by slow-to-change body forces, such as thermal convection. 2. My work on the global dynamic pattern for the past 150Ma (I will show examples) has shown [4 - 7] that the tectospheres of cratons must extend to very close to the bottom of the upper mantle (660km). The metasomatism of kimberlite xenoliths from >180km depth suggests that the reason for this downwards extent of 'keels' is the same as [3]. Phase changes. Another geodynamically important property apparently overlooked by mantle modellers is the presence of two phase-changes (PCs) in the uppermost mantle - (a) garnet peridotite-to-spinel peridotite at say 90km depth; (b) spinel peridotite-to-plagioclase peridotite at say 10km depth. The total density change across the (a) boundary can approximate that of 800K change by pure thermal expansivity, so should never be ignored by modellers [4]. Primary features of the new model. This has a deep, narrow subaxial crack between walls of now-stiff LVZ mantle, to which thermal accretion from the magma ascending the crack offsets the separation rate. This crack (20 cm nominal) offers special properties:- (i) Cooling-controlled differential accretion to the opposite walls of a non-straight crack will make the MOR segment become straight and orthogonally segmented [8]; (ii) Columnar growth of olivine at the crack walls, due to its high a-axis thermal conductivity [9], emphasized by the low thermal conductivity of surrounding melt [10] will, by crystallization, build in seismic anisotropy at the start. Olivine crystals that chance to have their a-axis perpendicular to the wall will extract latent heat and grow fastest, giving columnar structure [8, 11]. Crystals with other orientation get crowded out. Also seen at margins of exhumed magma chambers (CH Donaldson pers comm 1997). Magma segregation - Log-jam segregation of magma rising in the crack. Upward-decreasing wall temperature increases cooling of the flow; the solids grow again by cumulate intergrowth until they form a jam in the crack through which the melt is forced diapirically [12, 13]. PT at the jam depth defines the major-element composition. Accreting crack walls are very hot, so the jam forms at shallow depth and tholeiite is the result. Ridge-push mechanism - Solid-state phase-change (PC) push-apart of the walls. A fresh eruption up the crack will heat the walls. Thermodynamic calculations show that these PCs cause >50 times more volume increase/joule than thermal expansivity, so the walls bulge inward and make contact at the PC level, forcing open the crack along strike. This, alternating along strike, induces flow into the crack intermittently and also creates the suction that we will show is required by plate dynamics. The solid-state recrystallization mechanism gives our MOR model >10-fold greater ridge-push than the divergent flow models, and the plate is thick enough to transmit it without crumpling. Structural dependence on spreading rate. (A) Medium rate, e.g. MAR. The push-apart PC is the gt-sp (a) at ~90km depth. Above that the walls are laterally unsupported, normal faulting occurs and a rift valley is formed. The volume increase at PC depth is partly and intermittently relieved upward to uplift the valley sides and create the rugged flank topography. (B) Fast, e.g. EPR. The high rate results in high temperature around the crest, so the sp-plag PC is involved in push-apart at shallow depth, little or no rift faulting occurs and the flanks have the rounded abyssal hill topography. (C) Ultraslow, e.g. Gakkel, SWIR. The low rate at which mantle is drawn into the crack means melting is insufficient for the log-jam mechanism to work, so there is no segregated basalt, negligible crust, but wide peridotite extrusion (very wide crack), laced with melt veins, appears at surface. Again, because melting in the crack is so low, the two wall-accretion consequences (axis straightness and orthogonal segmentation; seismic anisotropy by crystallization from melt) are weak or absent. Push-apart force is highest for ultraslow because of the near-solidity of the material involved in the push-apart action. Other properties. (i) Axis curvature at ridge-transform intersections (RTIs). The differential wall-accretion we propose as responsible for axial straightness actually orients the crack perpendicular to the lateral cooling gradient. At RTIs, additional cooling is coming from the older plate across the transform. (ii) Offset spreading centres (OSCs). The curvature at RTIs signifies asymmetrical wall-accretion. At some point between a pair of similar-handed RTIs that asymmetry must swap sides, resulting in an OSC. (iii) Fracture Ridges. These rise rapidly as they come opposite a heat-providing MOR axis, and fade later. The gt-sp PC at ~90km depth is likely responsible, implying the plate there is at least that thick. Acknowledgment. R. Batiza is thanked for extensive correspondence. [1] Raitt RW et al. (1969) Anisotropy of the Pacific upper mantle. JGR 74, 3095-3109. [2] Karato S (1986) Does partial melting reduce the creep strength of the upper mantle? Nature 319, 309. [3] Hirth G & Kohlstedt DL (1996) Water in the oceanic upper mantle: implication for rheology, melt extraction, and the evolution of the lithosphere. EPSL 144, 93-108. [4] Osmaston MF (2010) On the actual variety of plate dynamical mechanisms and how mantle evolution affected them through time, from core formation to the Indian collision. GRA 12, EGU2010-6101. [5] Osmaston MF (2006) Global tectonic actions emanating from Arctic opening in the circumstances of a two-layer mantle and a thick-plate paradigm involving deep cratonic tectospheres: the Eurekan (Eocene) compressive motion of Greenland and other examples. In Proc. ICAM IV, 2003 (ed. R Scott & D Thurston). OCS Study MMS 2006-003, p.105-124: Also at: http://www.mms.gov/alaska/icam. [6] Osmaston MF (2009) Deep cratonic keels and a 2-layer mantle? Tectonic basis for some far-reaching new insights on the dynamical properties of the Earth's mantle: example motions from Mediterranean, Atlantic-Arctic and India. GRA 11, EGU2009-6359. Session SM6.2 (Solicited). [7] Osmaston MF (2012) Did clockwise rotation of Antarctica cause the break-up of Gondwanaland? An investigation in the 'deep-keeled cratons' frame for global dynamics. GRA 14, EGU2012-2170. [8] Osmaston MF (1995) A straightness mechanism for MORs: a new view of ocean plate genesis and evolution. In IUGG XXI Gen. Assy, Boulder, COL. Abstracts p. A472. [9] Chai M et al. (1996) Thermal diffusivity of mantle minerals. Phys. & Chem. of Minerals 23, 470-475. [10] Snyder D et al. (1994) Experimental determination of the thermal conductivity of molten CaMgSi2O6 and the transport of heat through magmas. JGR 99, 15503-15516. [11] Osmaston M. (2013) Seismic anisotropy; a window on how the Earth works: multiple mechanisms and sites, from shallow mantle to inner core. GRA 15, EGU2013-2621. [12] Osmaston MF (1999) Intrusive-splitting of tectonic plates and log-jam segregation of magmas: a new mechanism for intraplate magmatism on Earth and in other terrestrial bodies. In IUGG99, Birmingham, UK. A113. [13] Osmaston MF (2005) A new mechanism for intraplate magmagenesis and petrogenetic variation: the importance of process. GCA 69(10S), A439. Goldschmidt 2005, Moscow, Idaho.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006GeCoA..70.1231I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006GeCoA..70.1231I"><span>Trace element distribution in peridotite xenoliths from Tok, SE Siberian craton: A record of pervasive, multi-stage metasomatism in shallow refractory mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ionov, Dmitri A.; Chazot, Gilles; Chauvel, Catherine; Merlet, Claude; Bodinier, Jean-Louis</p> <p>2006-03-01</p> <p>Spinel peridotite xenoliths in alkali basalts at Tok, SE Siberian craton range from fertile lherzolites to harzburgites and wehrlites; olivine-rich (70-84%) rocks are dominant. REE patterns in the lherzolites range from nearly flat for fertile rocks (14-17% cpx) to LREE-enriched; the enrichments are positively correlated with modal olivine, consistent with high-permeability of olivine-rich rocks during melt percolation. Clinopyroxene in olivine-rich Tok peridotites typically has convex-upward trace element patterns (La/Nd PM < 1 and Nd/Yb PM ≫ 1), which we consider as evidence for equilibration with evolved silicate liquids (with higher REE and lower Ti contents than in host basalts). Whole-rock patterns of the olivine-rich xenoliths range from convex-upward to LREE-enriched (La/Nd PM > 1); the LREE-enrichments are positively correlated with phosphorus abundances and are mainly hosted by accessory phosphates and P-rich cryptocrystalline materials. In addition to apatite, some Tok xenoliths contain whitlockite (an anhydrous, halogen-poor and Na-Mg-rich phosphate), which is common in meteorites and lunar rocks, but has not been reported from any terrestrial mantle samples. Some olivine-rich peridotites have generations of clinopyroxene with distinct abundances of Na, LREE, Sr and Zr. The mineralogical and trace element data indicate that the lithospheric mantle section represented by the xenoliths experienced a large-scale metasomatic event produced by upward migration of mafic silicate melts followed by percolation of low- T, alkali-rich melts and fluids. Chromatographic fractionation and fractional crystallisation of the melts close to the percolation front produced strong LREE-enrichments, which are most common in the uppermost mantle and are related to carbonate- and P 2O 5-rich derivatives of the initial melt. Reversal and gradual retreat of the percolation front during thermal relaxation to ambient geotherm ("retrograde" metasomatism) caused local migration and entrapment of small-volume residual fluids and precipitation of volatile-rich accessory minerals. A distinct metasomatic episode, which mainly produced "anhydrous" late-stage interstitial materials was concomitant with the alkali basaltic magmatism, which brought the xenoliths to the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T22A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T22A..05M"><span>Scaling of Viscous Shear Zones with Depth Dependent Viscosity and Power Law Stress-strain Rate Dependence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meltzer, A.; Ancuta, L. D.; Carlson, R. W.; Caves, J. K.; Chamberlain, C. P.; Gosse, J. C.; Idleman, B. D.; Ionov, D. A.; McDannell, K. T.; Tamra, M.; Mix, H.; Munkhuu, U.; Russo, R.; Sabaj-Perez, M.; Sahagian, D. L.; Sjostrom, D. J.; Smith, S. G.; Stachnik, J. C.; Tsagaan, B.; Wegmann, K. W.; Winnick, M. J.; Zeitler, P. K.; Prousevitch, A.</p> <p>2014-12-01</p> <p>Central Mongolia sits deep in the Asian continental interior between the Siberian craton to the north, the edge of the India-Asia collision to the south, and far-field subduction of the Pacific plate to the east. It has a complex geologic history comprising Archean to Early Proterozoic crystalline rocks modified by accretionary events in the Paleozoic, and Cenozoic deformation and basalt volcanism that continues today. Within central Mongolia, the broad domal Hangay upland is embedded in the greater Mongolian Plateau. Elevations within the dome average ~1.5 km above the regional trend and locally reach ~4000 m. This elevated landscape hosts a low-relief surface cut into crystalline basement, and a 30 Ma record of intermittent basalt magmatism. Here we integrate observations from geomorphology, geochronology, paleoaltimetry, biogeography, petrology, geochemistry, and seismology to document the timing, rate, and pattern of surface uplift in the Hangay and more broadly to understand the geodynamics of the Mongolian plateau. Results from mantle and crustal xenoliths, seismology, thermochronology, and basalt geochemistry are consistent with: a high geothermal gradient with temperatures reaching ~900°C at 60 km depth, intercepting the mantle adiabat at ~90 km depth; an uppermost mantle composed mostly of fertile peridotites; low-volume Cenozoic basaltic magmatism sourced below the lithosphere, with isotopic characteristics similar to much east-Asian Cenozoic mafic volcanism; a 42-57 km-thick crust of island-arc affinity formed during accretion of the Central Asia Orogenic Belt; elevations supported primarily by crustal isostasy; slow exhumation (30-100 m/My) over hundreds of millions of years; and long-term thermal stability of the upper crust and relief lowering since the Mesozoic. Results from geomorphology, paleoaltimetry, fish genetics, and basalt geochronology imply that drainage divides are stable since the mid-Miocene with modest surface uplift (up to 1 km) and topographic relief up to 800 m remaining largely unchanged since ~10 Ma. Surprisingly, this area of remarkable stability over significant time and space sits above a shallow convecting mantle and hosts some of the largest recorded intracontinental earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S41A2706Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S41A2706Z"><span>Application of Microtremor Survey Methods to Determine the Shallow Crustal S-wave Velocity Structure beneath the Wudalianchi Weishan Volcano Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, B.; LI, Z.; Chu, R.</p> <p>2015-12-01</p> <p>Ambient noise has been proven particularly effective in imaging Earth's crust and uppermost mantle on local, regional and global scales, as well as in monitoring temporal variations of the Earth interior and determining earthquake ground truth location. Previous studies also have shown that the Microtremor Survey Method is effective to map the shallow crustal structure. In order to obtain the shallow crustal velocity structure beneath the Wudalianchi Weishan volcano area, an array of 29 new no-cable digital geophones were deployed for three days at the test site (3km×3km) for recording continuously seismic noise. Weishan volcano is located in the far north of Wudalianchi Volcanoes, the volcanic cone is composed of basaltic lava and the volcano area covered by a quaternary sediments layer (gray and black loam, brown and yellow loam, sandy loam). Accurate shallow crustal structure, particularly sedimentary structure model can improve the accuracy of location of volcanic earthquakes and structural imaging. We use ESPAC method, which is one of Microtremor Survey Methods, to calculate surface wave phase velocity dispersion curves between station pairs. A generalized 2-D linear inversion code that is named Surface Wave Tomography (SWT) is adopted to invert phase velocity tomographic maps in 2-5 Hz periods band. On the basis of a series of numerical tests, the study region is parameterized with a grid spacing of 0.1km×0.1km, all damping parameters and regularization are set properly to ensure relatively smooth results and small data misfits as well. We constructed a 3D Shallow Crustal S-wave Velocity model in the area by inverting the phase velocity dispersion curves at each node adopting an iterative linearized least-square inversion scheme of surf96. The tomography model is useful in interpreting volcanic features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Tectp.658...14H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Tectp.658...14H"><span>Mantle structure and tectonic history of SE Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, Robert; Spakman, Wim</p> <p>2015-09-01</p> <p>Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs that detached in the Early Miocene such as the Sula slab, now found in the lower mantle north of Lombok, and the Proto-South China Sea slab now at depths below 700 km curving from northern Borneo to the Philippines. Based on our tectonic model we interpret virtually all features seen in upper mantle and lower mantle to depths of at least 1200 km to be the result of Cenozoic subduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51F0547B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51F0547B"><span>African Cenozoic hotpot tectonism: new insights from continent-scale body-wave tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bastow, I. D.; Boyce, A.; Caunt, E.; Guilloud De Courbeville, J.; Desai, S.; Kounoudis, R.; Golos, E. M.; Burdick, S.; van der Hilst, R. D.</p> <p>2017-12-01</p> <p>The African plate is an ideal study locale for mantle plumes and Cenozoic hotspot tectonism. On the eastern side of the continent, the uplifted East African and Ethiopian plateaus, and the 30Ma Ethiopian Traps, are widely considered to be the result of the African Superplume: a broad thermochemical anomaly that originates below southern Africa. Precisely where and how the superplume traverses the mantle transition zone is debated however. On the western side of the continent, the Cameroon Volcanic Line is a hotspot track with no age-progression; it is less easily attributed to the effects of a mantle plume. Central to our understanding of these issues is an improved picture of mantle seismic structure. Body-wave studies of African mantle wave-speed structure are typically limited to regional relative arrival-time studies that utilize data from temporary seismograph networks of aperture less than 1000km. The resulting tomographic images are higher resolution than continent-scale surface-wave models, but anomaly amplitudes cannot be compared from region to region using the relative arrival-time approach: the 0% contour in each region refers to the regional, not global mean. The challenge is thus to incorporate the often-noisy body-wave data from temporary seismograph networks into a continent-scale absolute delay-time model. We achieve this using the new Absolute Arrival-time Recovery Method (AARM) method of Boyce et. al., (2017) and the tomographic inversion approach described by Li et. al., (2008). We invert for mantle wavespeed structure using data recorded since 1990 by temporary networks in the Atlas Mountains, Cameroon, South Africa, East African Rift system, Ethiopia and Madagascar. Our model is well resolved to lower mantle depths beneath these temporary networks, and offers the most detailed picture yet of mantle wavespeed structure beneath Africa. The contrast between East African and Cameroon mantle structure suggests multiple development mechanisms for hotspot tectonism across the African continent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998Tectp.296...15D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998Tectp.296...15D"><span>Stability and growth of continental shields in mantle convection models including recurrent melt production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.</p> <p>1998-10-01</p> <p>The long-term growth and stability of compositionally layered continental upper mantle has been investigated by numerical modelling. We present the first numerical model of a convecting mantle including differentiation through partial melting resulting in a stable compositionally layered continental upper mantle structure. This structure includes a continental root extending to a depth of about 200 km. The model covers the upper mantle including the crust and incorporates physical features important for the study of the continental upper mantle during secular cooling of the Earth since the Archaean. Among these features are: a partial melt generation mechanism allowing consistent recurrent melting, time-dependent non-uniform radiogenic heat production, and a temperature- and pressure-dependent rheology. The numerical results reveal a long-term growth mechanism of the continental compositional root. This mechanism operates through episodical injection of small diapiric upwellings from the deep layer of undepleted mantle into the continental root which consists of compositionally distinct depleted mantle material. Our modelling results show the layered continental structure to remain stable during at least 1.5 Ga. After this period mantle differentiation through partial melting ceases due to the prolonged secular cooling and small-scale instabilities set in through continental delamination. This stable period of 1.5 Ga is related to a number of limitations in our model. By improving on these limitations in the future this stable period will be extended to more realistic values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.U42A..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.U42A..02H"><span>Mantle structure: The message from scattered seismic waves (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helffrich, G. R.; Kaneshima, S.</p> <p>2009-12-01</p> <p>When Francis Birch named the Transition Zone, the deep mantle became a dull place. It was homogeneous material simply becoming denser as pressure increased with depth. No more respect was accorded to it by geochemists than by geophysicists. For geochemists, the deep mantle was simply a dark box in which chemical components were held until needed for delicate flavoring of various sorts of rock cocktails. It deserves more respect. Though it may be dregs, the part of the mantle in contact with the core is rich in seismologically annoying structural detail. This might be written off as an observational quirk due to a mendacious Earth or investigative incompetence, except that more of the lower mantle is grudgingly revealing structure as well. The structural details are fine-scale, at characteristic sizes of around one to one hundred kilometers. The details are emerging from studies of scattered seismic waves. These are unscheduled arrivals in the timetable following an earthquake. They don't arise in a uniform or even a layered Earth. Rather, they originate from the wave field's interactions with sub-wavelength roughness in Earth structure. A lot of data is needed to be sure those arrivals are real and repeatable, but networks of hundreds of seismometers such as the ones in existence in Asia, Europe and North America can provide or have provided the necessary redundancy for confident detection. The results of studies of S-to-P and P-to-P scattering to date show that some lower mantle heterogeneity is associated with present subduction. Some is also found at sites of past subduction, but it is difficult to generalize to all heterogeneity. Scattering strength varies with depth: the shallowest lower mantle is rougher than the deeper parts. The peak scattering strength is around 1600 km deep in the mantle, followed by a slow decline. The roughness clusters, too, with individual groups separated by around 100 km. Individual clusters appear to have particular fabrics that influence their scattering characteristics. Because the km- to 100 km-length scales are present in oceanic plates in their layer thicknesses and plate thickness, these features strongly suggest that the scattered waves emanate from solid material injected into the lower mantle by subduction. They also suggest that the deep mantle is not strongly layered in viscosity or density because scattering strength depth profiles do not change abruptly. A real puzzle is the material identity of the heterogeneity. Seismic wavespeeds must change by more than 5% within a kilometer. Clearly, this is no thermal signal, but compositional differences that extreme in mantle mineralogies require extreme variations in silica or a very broad pressure-dependent phase transition to change properties that significantly. Only about 2% of the lower mantle volume has been explored to date. Much of the mantle away from subduction zones will never be visible. Different methods will be needed to see all of the mantle's structure details, even using scattering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7194W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7194W"><span>Thermal structure of the Kanto region, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wada, Ikuko; He, Jiangheng</p> <p>2017-07-01</p> <p>Using a 3-D numerical thermal model, we investigate the thermal structure of the Kanto region of Japan where two oceanic plates subduct. In a typical subduction setting with one subducting slab, the motion of the slab drives solid-state mantle flow in the overlying mantle wedge, bringing in hot mantle from the back-arc toward the forearc. Beneath Kanto, however, the presence of the subducting Philippine Sea plate between the overlying North American plate and the subducting Pacific plate prevents a typical mantle wedge flow pattern, resulting in a cooler condition. Further, frictional heating and the along-margin variation in the maximum depth of slab-mantle decoupling along the Pacific slab surface affect the thermal structure significantly. The model provides quantitative estimates of spatial variations in the temperature condition that are consistent with the observed surface heat flow pattern and distributions of interplate seismicity and arc volcanoes in Kanto.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EaSci..25...65S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EaSci..25...65S"><span>Peeling linear inversion of upper mantle velocity structure with receiver functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Xuzhang; Zhou, Huilan</p> <p>2012-02-01</p> <p>A peeling linear inversion method is presented to study the upper mantle (from Moho to 800 km depth) velocity structures with receiver functions. The influences of the crustal and upper mantle velocity ratio error on the inversion results are analyzed, and three valid measures are taken for its reduction. This method is tested with the IASP91 and the PREM models, and the upper mantle structures beneath the stations GTA, LZH, and AXX in northwestern China are then inverted. The results indicate that this inversion method is feasible to quantify upper mantle discontinuities, besides the discontinuities between 3 h M ( h M denotes the depth of Moho) and 5 h M due to the interference of multiples from Moho. Smoothing is used to overcome possible false discontinuities from the multiples and ensure the stability of the inversion results, but the detailed information on the depth range between 3 h M and 5 h M is sacrificed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T43B2644P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T43B2644P"><span>Rayleigh wave phase velocity maps from the ambient noise tomography in central Mongolia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, J.; Wu, Q.; Gao, M.; Li, Y.; Demberel, S. G.; Munkhuu, U.</p> <p>2013-12-01</p> <p>The study area (103°E-111°E, 44°N-49°N) located in the Mongolian fold belts and situated at the southeast of Baikal rift zone which is known as one of the most active regions on the Earth due to integrated influence of the India-Asia collision and compression and the subduction of the Pacific Plate. Additionally, it also located in the north of South-North earthquake belts of China. So, it is believed to be an ideal site for understanding intraplate dynamics. Seismic ambient noise tomography has been performed all over the world these years, and it has been proved it's a powerful way to image and study the structure of crust and uppermost mantle due to its exclusive capability to extract estimated Green's functions for short period surface waves. Compared with traditional earthquake tomography methods of surface waves, ambient noise tomography hasn't limitations related to the distribution of earthquakes as well as errors in earthquake locations and source mechanisms. A new scientific project was carried out in 2011 by Institute of Geophysics of China Earthquake Administration (IGP-CEA) and Research center of Astronomy and Geophysics of Mongolian Academy of Science (RCAG-MAS). In the seismic sub-project 60 portable seismic stations were deployed in central Mongolia in August 2011. Continuous time-series of vertical component between August 2011 and July 2012 have been collected and cross-correlated to obtain estimated Green's functions (EGF) of Rayleigh wave. Using the frequency and time analysis technique based on continuous wavelet transformation, 1258 of phase velocity dispersion curves of Rayleigh wave were extracted from EGFs. High resolution phase velocity maps at periods of 5, 10, 20 and 30 s were reconstructed with grid size 0.5°x0.5° by utilizing a generalized 2-D-linear inversion method developed by Ditmar & Yanovskaya. The tomography results reveal lateral heterogeneity of shear wave structure in the crust and upper mantle in the study region. For periods shorter than 10 s, the phase velocity variations are well correlated with the principal geological units, with low-speed anomalies corresponding to the sedimentary basins and high-speed anomalies coinciding with the main mountain ranges. Within the period range from 20 s to 30 s, phase velocity distribution is correlated to the crust thickness. However, the value of phase velocities have little lateral changes with ~0.15km/s on each map for the whole period band ranging from 5 s to 30 s, indicating that it doesn't have big lateral heterogeneity for shear wave structure in the crust and upper mantle in the study region.This study was supported by the international cooperation project of the Ministry of Science and Technology of China (2011DFB20120) and NSFC (41104029)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvD..95k3004R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvD..95k3004R"><span>Matter density versus distance for the neutrino beam from Fermilab to Lead, South Dakota, and comparison of oscillations with variable and constant density</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roe, Byron</p> <p>2017-06-01</p> <p>This paper is divided into two parts. In the first part, the material densities passed through for neutrinos going from FNAL to Sanford Laboratory are calculated using two recent density tables, Crustal [G. Laske, G. Masters, Z. Ma, and M. Pasyanos, Update on CRUST1.0—A 1-degree global model of Earth's crust, Geophys. Res. Abstracts 15, EGU2013-2658 (2013),; For the programs and tables, see the website: http://igppweb.ucsd.edu/ gabi/crust1.html.] and Shen-Ritzwoller [W. Shen and M. H. Ritzwoller, Crustal and uppermost mantle structure beneath the United States, J. Geophys. Res.: Solid Earth 121, 4306 (2016)], as well as the values from an older table PEMC [A. M. Dziewonski, A. L. Hales, and E. R. Lapwood, Parametrically simple earth models consistent with geophysical data, Phys. Earth Plan. Int. 10, 12 (1975); For further information see the website: http://ds.iris.edu/ds/products/emc-pem/.]. In the second part, neutrino oscillations at Sanford Laboratory are examined for the variable density table of Shen-Ritzwoller. These results are then compared with oscillation results using the mean density from the Shen-Ritzwoller tables and with one other fixed density. For the tests made here, the mean density results are quite similar to the results using the variable density vs distance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T23F0670C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T23F0670C"><span>Imaging the Eastern Trans-Mexican Volcanic Belt and the Veracruz Basin with Ambient Seismic noise and Earthquake Body Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castillo, J.; Clayton, R. W.</p> <p>2017-12-01</p> <p>The Trans-Mexican Volcanic Belt (TMVB) is a prominent and enigmatic feature of the subduction system in Mexico. Its volcanic style diversity and oblique orientation to the trench are explained by the large along-strike variations in the subduction parameters of the Rivera and Cocos plates. However, the abrupt termination of the TMVB on its eastern end with the Pico de Orizaba volcano is puzzling as the current slab model suggests that the transition of the Cocos flat-slab geometry to normal subduction is smooth through this region. There is evidence that suggests that a tear in the slab might be developing, but it is unclear how this feature can support the unusually large topographic gradient that connects the volcanic high peaks with the Veracruz basin just south of the volcanic front. To provide further insight into the transition anatomy of this portion of the slab, and its relation with surface topography, we present a detailed and unified model of the structure of the crust and uppermost mantle built from fundamental-mode Rayleigh and Love surface waves, and high-quality arrival-time data of regional and teleseismic earthquakes. The anisotropic behavior of the subsurface of this region and its relation with present and past flow of material is also quantified and integrated into the model to explain the tectonic evolution of this area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007GeoJI.169..170S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007GeoJI.169..170S"><span>Seismic anisotropy of the Slave craton, NW Canada, from joint interpretation of SKS and Rayleigh waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snyder, David; Bruneton, Marianne</p> <p>2007-04-01</p> <p>Teleseismic events recorded at a 25-element array in NW Canada between 2001 and 2006 provided sufficient distribution in back azimuth to demonstrate birefringence in SKS and SKKS waves as well as directional dependence of Rayleigh-wave phase velocities. Typical delays between orthogonally polarized SKS waves are 0.8-1.2 s, and modelling of azimuthal dependence indicates two nearly horizontal layers of anisotropy within the mantle. Anisotropy of Rayleigh waves is generally consistent with models of layered Vs anisotropies that increase with depth from 1 per cent at the Moho to 9 per cent at 200 km but vary between subarrays. Consistency between the SKS and Rayleigh wave anisotropies in one subarray suggests that the assumption of symmetry about a horizontal axis is valid there but is not fully valid in other parts of the craton. The upper layer of anisotropy occupies approximately the uppermost 120 km in which the fast polarization direction strikes generally north-south, coinciding with regional-scale fold axes mapped at the surface. The fast polarization direction of the deeper layer aligns with current North America plate motion, but its correlation with trends of coeval kimberlite eruptions within the Lac de Gras field suggests it can be at least partly attributed to structural preferred orientation of vertical dykes inferred to exist to depths of 200 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28514353','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28514353"><span>[Mantle dentin as biomodel of materials for structural teeth restoration].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Starodubova, A V; Vinnichenko, Yu A; Pourovskaya, I Ya; Rusanov, F S</p> <p></p> <p>The article describes a structural element of natural teeth - mantle dentin. It has been shown that the presence of this element in the structure of a natural tooth largely ensures its strength under the influence of repeated loads in a functional oral environment and arrests crack growth at the enamel/dentine interface. This later effect is explained by the influence of a thin layer of mantle dentine, which has physical and mechanical characteristics different from that of the main dentin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S12B..03A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S12B..03A"><span>High resolution seismic tomography imaging of Ireland with quarry blast data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arroucau, P.; Lebedev, S.; Bean, C. J.; Grannell, J.</p> <p>2017-12-01</p> <p>Local earthquake tomography is a well established tool to image geological structure at depth. That technique, however, is difficult to apply in slowly deforming regions, where local earthquakes are typically rare and of small magnitude, resulting in sparse data sampling. The natural earthquake seismicity of Ireland is very low. That due to quarry and mining blasts, on the other hand, is high and homogeneously distributed. As a consequence, and thanks to the dense and nearly uniform coverage achieved in the past ten years by temporary and permanent broadband seismological stations, the quarry blasts offer an alternative approach for high resolution seismic imaging of the crust and uppermost mantle beneath Ireland. We detected about 1,500 quarry blasts in Ireland and Northern Ireland between 2011 and 2014, for which we manually picked more than 15,000 P- and 20,000 S-wave first arrival times. The anthropogenic, explosive origin of those events was unambiguously assessed based on location, occurrence time and waveform characteristics. Here, we present a preliminary 3D tomographic model obtained from the inversion of 3,800 P-wave arrival times associated with a subset of 500 events observed in 2011, using FMTOMO tomographic code. Forward modeling is performed with the Fast Marching Method (FMM) and the inverse problem is solved iteratively using a gradient-based subspace inversion scheme after careful selection of damping and smoothing regularization parameters. The results illuminate the geological structure of Ireland from deposit to crustal scale in unprecedented detail, as demonstrated by sensitivity analysis, source relocation with the 3D velocity model and comparisons with surface geology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRB..122.7311R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRB..122.7311R"><span>Crustal-Scale Seismic Structure From Trench to Forearc in the Cascadia Subduction Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rathnayaka, Sampath; Gao, Haiying</p> <p>2017-09-01</p> <p>The (de)hydration process and the amount of hydrated sediment carried by the downgoing oceanic plate play a key role in the subduction dynamics. A high-resolution shear velocity model from the crust down to the uppermost mantle, extending from trench to forearc, is constructed in the northern Cascadia subduction zone to investigate seismic characteristics related to slab deformation and (de)hydration at the plate boundary. A total of 220 seismic stations are used, including the Cascadia Initiative Amphibious Array and inland broadband and short-period stations. The empirical Green's functions extracted from continuous ambient noise data from 2006 to 2014 provide high-quality Rayleigh wave signals at periods of 4-50 s. We simulate wave propagation using finite difference method to generate station Strain Green's Tensors and synthetic waveforms. The phase delays of Rayleigh waves between the observed and synthetic data are measured at multiple period ranges. We then invert for the velocity perturbations from the reference model and progressively improve the model resolution. Our tomographic imaging shows many regional- and local-scale low-velocity features, which are possibly related to slab (de)hydration from the oceanic plate to the overriding plate. Specifically, we observe (1) NW-SE oriented linear low-velocity features across the trench, indicating hydration of the oceanic plate induced by bending-related faultings; (2) W-E oriented fingerlike low-velocity structures off the continental margins due to dehydration of the Juan de Fuca plate; and (3) seismic lows atop the plate interface beneath the Washington forearc, indicating fluid-rich sediments subducted and overthrusted at the accretionary wedge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRB..121.2521B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRB..121.2521B"><span>Assessing waveform predictions of recent three-dimensional velocity models of the Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bao, Xueyang; Shen, Yang</p> <p>2016-04-01</p> <p>Accurate velocity models are essential for both the determination of earthquake locations and source moments and the interpretation of Earth structures. With the increasing number of three-dimensional velocity models, it has become necessary to assess the models for accuracy in predicting seismic observations. Six models of the crustal and uppermost mantle structures in Tibet and surrounding regions are investigated in this study. Regional Rayleigh and Pn (or Pnl) waveforms from two ground truth events, including one nuclear explosion and one natural earthquake located in the study area, are simulated by using a three-dimensional finite-difference method. Synthetics are compared to observed waveforms in multiple period bands of 20-75 s for Rayleigh waves and 1-20 s for Pn/Pnl waves. The models are evaluated based on the phase delays and cross-correlation coefficients between synthetic and observed waveforms. A model generated from full-wave ambient noise tomography best predicts Rayleigh waves throughout the data set, as well as Pn/Pnl waves traveling from the Tarim Basin to the stations located in central Tibet. In general, the models constructed from P wave tomography are not well suited to predict Rayleigh waves, and vice versa. Possible causes of the differences between observed and synthetic waveforms, and frequency-dependent variations of the "best matching" models with the smallest prediction errors are discussed. This study suggests that simultaneous prediction for body and surface waves requires an integrated velocity model constructed with multiple seismic waveforms and consideration of other important properties, such as anisotropy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7738W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7738W"><span>Seismic Constraints on the Mantle Viscosity Structure beneath Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiens, Douglas; Heeszel, David; Aster, Richard; Nyblade, Andrew; Wilson, Terry</p> <p>2015-04-01</p> <p>Lateral variations in upper mantle viscosity structure can have first order effects on glacial isostatic adjustment. These variations are expected to be particularly large for the Antarctic continent because of the stark geological contrast between ancient cratonic and recent tectonically active terrains in East and West Antarctica, respectively. A large misfit between observed and predicted GPS rates for West Antarctica probably results in part from the use of a laterally uniform viscosity structure. Although not linked by a simple relationship, mantle seismic velocities can provide important constraints on mantle viscosity structure, as they are both largely controlled by temperature and water content. Recent higher resolution seismic models for the Antarctic mantle, derived from data acquired by new seismic stations deployed in the AGAP/GAMSEIS and ANET/POLENET projects, offer the opportunity to use the seismic velocity structure to place new constraints on the viscosity of the Antarctic upper mantle. We use an Antarctic shear wave velocity model derived from array analysis of Rayleigh wave phase velocities [Heeszel et al, in prep] and examine a variety of methodologies for relating seismic, thermal and rheological parameters to compute a suite of viscosity models for the Antarctic mantle. A wide variety of viscosity structures can be derived using various assumptions, but they share several robust common elements. There is a viscosity contrast of at least two orders of magnitude between East and West Antarctica at depths of 80-250 km, reflecting the boundary between cold cratonic lithosphere in East Antarctica and warm upper mantle in West Antarctica. The region beneath the Ellsworth-Whitmore Mtns and extending to the Pensacola Mtns. shows intermediate viscosity between the extremes of East and West Antarctica. There are also significant variations between different parts of West Antarctica, with the lowest viscosity occurring beneath the Marie Byrd Land (MBL). The MBL Dome and adjacent coastal areas show extremely low viscosity (~1018Pa-s) for most parameterizations, suggesting that low mantle viscosity may produce a very rapid response to ice mass loss in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12460476','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12460476"><span>Mantle shear-wave tomography and the fate of subducted slabs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grand, Steven P</p> <p>2002-11-15</p> <p>A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's mantle is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the mantle, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower mantle, whereas in other regions tabular high-velocity structures seem to extend to the deepest mantle. The base of the mantle shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of mantle flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest mantle, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12460477','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12460477"><span>Chemical and seismological constraints on mantle heterogeneity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Helffrich, George</p> <p>2002-11-15</p> <p>Recent seismological studies that use scattered waves to detect heterogeneities in the mantle reveal the presence of a small, distributed elastic heterogeneity in the lower mantle which does not appear to be thermal in nature. The characteristic size of these heterogeneities appears to be ca. 8 km, suggesting that they represent subducted recycled oceanic crust. With this stimulus, old ideas that the mantle is heterogeneous in structure, rather than stratified, are reinterpreted and a simple, end-member model for the heterogeneity structure is proposed. The volumetrically largest components in the model are recycled oceanic crust, which contains the heat-producing elements, and mantle depleted of these and other incompatible trace elements. About 10% of the mantle's mass is made up of recycled oceanic crust, which is associated with the observed small-scale seismic heterogeneity. The way this heterogeneity is distributed is in convectively stretched and thinned bodies ranging downwards in size from 8 km. With the present techniques to detect small bodies through scattering, only ca. 55% of the mantle's small-scale heterogeneities are detectable seismically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15729338','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15729338"><span>Lithospheric structure of the Rio Grande rift.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilson, David; Aster, Richard; West, Michael; Ni, James; Grand, Steve; Gao, Wei; Baldridge, W Scott; Semken, Steve; Patel, Paresh</p> <p>2005-02-24</p> <p>A high-resolution, regional passive seismic experiment in the Rio Grande rift region of the southwestern United States has produced new images of upper-mantle velocity structure and crust-mantle topography. Synthesizing these results with geochemical and other geophysical evidence reveals highly symmetric lower-crustal and upper-mantle lithosphere extensional deformation, suggesting a pure-shear rifting mechanism for the Rio Grande rift. Extension in the lower crust is distributed over a region four times the width of the rift's surface expression. Here we propose that the laterally distributed, pure shear extension is a combined effect of low strain rate and a regionally elevated geotherm, possibly abetted by pre-existing lithospheric structures, at the time of rift initiation. Distributed extension in the lower crust and mantle has induced less concentrated vertical mantle upwelling and less vigorous small-scale convection than would have arisen from more localized deformation. This lack of highly focused mantle upwelling may explain a deficit of rift-related volcanics in the Rio Grande rift compared to other major rift systems such as the Kenya rift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.426..130A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.426..130A"><span>Variation of the subsidence parameters, effective thermal conductivity, and mantle dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adam, C.; King, S. D.; Vidal, V.; Rabinowicz, M.; Jalobeanu, A.; Yoshida, M.</p> <p>2015-09-01</p> <p>The subsidence of young seafloor is generally considered to be a passive phenomenon related to the conductive cooling of the lithosphere after its creation at mid-oceanic ridges. Recent alternative theories suggest that the mantle dynamics plays an important role in the structure and depth of the oceanic lithosphere. However, the link between mantle dynamics and seafloor subsidence has still to be quantitatively assessed. Here we provide a statistical study of the subsidence parameters (subsidence rate and ridge depth) for all the oceans. These parameters are retrieved through two independent methods, the positive outliers method, a classical method used in signal processing, and through the MiFil method. From the subsidence rate, we compute the effective thermal conductivity, keff, which ranges between 1 and 7 W m-1 K-1. We also model the mantle flow pattern from the S40RTS tomography model. The density anomalies derived from S40RTS are used to compute the instantaneous flow in a global 3D spherical geometry. We show that departures from the keff = 3 Wm-1K-1 standard value are systematically related to mantle processes and not to lithospheric structure. Regions characterized by keff > 3 Wm-1K-1 are associated with mantle uplifts (mantle plumes or other local anomalies). Regions characterized by keff < 3 Wm-1K-1 are related to large-scale mantle downwellings such as the Australia-Antarctic Discordance (AAD) or the return flow from the South Pacific Superswell to the East Pacific Rise. This demonstrates that mantle dynamics plays a major role in the shaping of the oceanic seafloor. In particular, the parameters generally considered to quantify the lithosphere structure, such as the thermal conductivity, are not only representative of this structure but also incorporate signals from the mantle convection occurring beneath the lithosphere. The dynamic topography computed from the S40RTS tomography model reproduces the subsidence pattern observed in the bathymetry. Overall we find a good correlation between the subsidence parameters derived from the bathymetry and the dynamic topography. This demonstrates that these parameters are strongly dependent on mantle dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T41E2957B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T41E2957B"><span>Gravity model for the North Atlantic ocean mantle: results, uncertainties and links to regional geodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barantsrva, O.; Artemieva, I. M.; Thybo, H.</p> <p>2015-12-01</p> <p>We present the results of gravity modeling for the North Atlantic region based on interpretation of GOCE gravity satellite data. First, to separate the gravity signal caused by density anomalies within the crust and the upper mantle, we subtract the lower harmonics in the gravity field, which are presumably caused by deep density structure of the Earth (the core and the lower mantle). Next, the gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crustal model. Our "basic model" is constrained by a recent regional seismic model EUNAseis for the crustal structure (Artemieva and Thybo, 2013); for bathymetry and topography we use a global ETOPO1 model by NOAA. We test sensitivity of the results to different input parameters, such as bathymetry, crustal structure, and gravity field. For bathymetry, we additionally use GEBCO data; for crustal correction - a global model CRUST 1.0 (Laske, 2013); for gravity - EGM2008 (Pavlis, 2012). Sensitivity analysis shows that uncertainty in the crustal structure produces the largest deviation from "the basic model". Use of different bathymetry data has little effect on the final results, comparable to the interpolation error. The difference in mantle residual gravity models based on GOCE and EMG2008 gravity data is 5-10 mGal. The results based on two crustal models have a similar pattern, but differ significantly in amplitude (ca. 250 mGal) for the Greenland-Faroe Ridge. The results demonstrate the presence of a strong gravity and density heterogeneity in the upper mantle in the North Atlantic region. A number of mantle residual gravity anomalies are robust features, independent of the choice of model parameters. This include (i) a sharp contrast at the continent-ocean transition, (ii) positive mantle gravity anomalies associated with continental fragments (microcontinents) in the North Atlantic ocean; (iii) negative mantle gravity anomalies which mark regions with anomalous oceanic mantle and the Mid-Atlantic Ridge. To understand better a complex geodynamics mosaic in the region, we compare our results with regional geochemical data (Korenaga and Klemen, 2000), and find that residual mantle gravity anomalies are well correlated with anomalies in epsilon-Nd and iron-depletion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.296..623S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.296..623S"><span>Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Solarino, Stefano; Malusà, Marco G.; Eva, Elena; Guillot, Stéphane; Paul, Anne; Schwartz, Stéphane; Zhao, Liang; Aubert, Coralie; Dumont, Thierry; Pondrelli, Silvia; Salimbeni, Simone; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang</p> <p>2018-01-01</p> <p>In continental subduction zones, the behaviour of the mantle wedge during exhumation of (ultra)high-pressure [(U)HP] rocks provides a key to distinguish among competing exhumation mechanisms. However, in spite of the relevant implications for understanding orogenic evolution, a high-resolution image of the mantle wedge beneath the Western Alps is still lacking. In order to fill this gap, we perform a detailed analysis of the velocity structure of the Alpine belt beneath the Dora-Maira (U)HP dome, based on local earthquake tomography independently validated by receiver function analysis. Our results point to a composite structure of the mantle wedge above the subducted European lithosphere. We found that the Dora-Maira (U)HP dome lays directly above partly serpentinized peridotites (Vp 7.5 km/s; Vp/Vs = 1.70-1.72), documented from 10 km depth down to the top of the eclogitized lower crust of the European plate. These serpentinized peridotites, possibly formed by fluid release from the subducting European slab to the Alpine mantle wedge, are juxtaposed against dry mantle peridotites of the Adriatic upper plate along an active fault rooted in the lithospheric mantle. We propose that serpentinized mantle-wedge peridotites were exhumed at shallow crustal levels during late Eocene transtensional tectonics, also triggering the rapid exhumation of (U)HP rocks, and were subsequently indented under the Alpine metamorphic wedge in the early Oligocene. Our findings suggest that mantle-wedge exhumation may represent a major feature of the deep structure of exhumed continental subduction zones. The deep orogenic levels here imaged by seismic tomography may be exposed today in older (U)HP belts, where mantle-wedge serpentinites are commonly associated with coesite-bearing continental metamorphic rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=34063','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=34063"><span>Mantle dynamics and seismic tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tanimoto, Toshiro; Lay, Thorne</p> <p>2000-01-01</p> <p>Three-dimensional imaging of the Earth's interior, called seismic tomography, has achieved breakthrough advances in the last two decades, revealing fundamental geodynamical processes throughout the Earth's mantle and core. Convective circulation of the entire mantle is taking place, with subducted oceanic lithosphere sinking into the lower mantle, overcoming the resistance to penetration provided by the phase boundary near 650-km depth that separates the upper and lower mantle. The boundary layer at the base of the mantle has been revealed to have complex structure, involving local stratification, extensive structural anisotropy, and massive regions of partial melt. The Earth's high Rayleigh number convective regime now is recognized to be much more interesting and complex than suggested by textbook cartoons, and continued advances in seismic tomography, geodynamical modeling, and high-pressure–high-temperature mineral physics will be needed to fully quantify the complex dynamics of our planet's interior. PMID:11035784</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0729216','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0729216"><span>Crustal Structure in Southeastern Norway from Seismic Refraction Measurements,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>the depth of the mantle and the surface elevation and between the depth of the mantle and the Bouguer anomaly. The density contrast between the crust and mantle was determined to be 0.50 g/cu cm. (Author)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMDI41B1801Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMDI41B1801Y"><span>Whole-mantle P-wave velocity structure and azimuthal anisotropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, Y.; Zhao, D.</p> <p>2009-12-01</p> <p>There are some hotspot volcanoes on Earth, such as Hawaii and Iceland. The mantle plume hypothesis was proposed forty years ago to explain hotspot volcanoes (e.g., Wilson, 1963; Morgan, 1971). Seismic tomography is a powerful technique to detect mantle plumes and determine their detailed structures. We determined a new whole-mantle 3-D P-wave velocity model (Tohoku model) using a global tomography method (Zhao, 2004, 2009). A flexible-grid approach with a grid interval of ~200 km is adopted to conduct the tomographic inversion. Our model shows that low-velocity (low-V) anomalies with diameters of several hundreds of kilometers are visible from the core-mantle boundary (CMB) to the surface under the major hotspot regions. Under South Pacific where several hotspots including Tahiti exist, there is a huge low-V anomaly from the CMB to the surface. This feature is consistent with the previous models. We conducted extensive resolution tests in order to understand whether this low-V anomaly shows a single superplume or a plume cluster. Unfortunately this problem is still not resolved because the ray path coverage in the mantle under South Pacific is not good enough. A network of ocean bottom seismometers is necessary to solve this problem. To better understand the whole-mantle structure and dynamics, we also conducted P-wave tomographic inversions for the 3-D velocity structure and azimuthal anisotropy. At each grid node there are three unknown parameters: one represents the isotropic velocity, the other two represent the azimuthal anisotropy. Our results show that in the shallow part of the mantle (< ~200 km depth) the fast velocity direction (FVD) is almost the same as the plate motion direction. For example, the FVD in the western Pacific is NWW-SEE, which is normal to the Japan trench axis. In the Tonga subduction zone, the FVD is also perpendicular to the trench axis. Under the Tibetan region the FVD is NE-SW, which is parallel to the direction of the India-Asia collision. In the deeper part of the upper mantle and in the lower mantle, the amplitude of anisotropy is reduced. One interesting feature is that the FVD aligns in a radiated fashion centered in the South-Central Pacific at the bottom of the mantle, which may reflect the mantle upwelling of the Pacific superplume as well as the Hawaiian plume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMDI41A2589F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMDI41A2589F"><span>Geodynamic constraints on deep-mantle buoyancy: Implications for thermochemical structure of LLSVP and large-scale upwellings under the Pacific Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forte, A. M.; Glisovic, P.; Grand, S. P.; Lu, C.; Simmons, N. A.; Rowley, D. B.</p> <p>2015-12-01</p> <p>Convection-related data constrain lower-mantle density anomalies that contribute to mantle convective flow. These include global gravity and topography anomalies, plate motions and excess ellipticity of the core-mantle boundary (CMB). Each datum possesses differing wavelength and depth dependent resolution of heterogeneity and thus the strongest constraints on density anomalies are obtained by jointly inverting all data in combination. The joint-inversions employ viscous response functions (i.e. geodynamic kernels) for a flowing mantle. Non-uniqueness is greatly reduced by including seismic and mineral physics data into the joint inversions. We present the results of inversions where seismic and geodynamic data are singly and jointly inverted to map density anomalies. Employing mineral physical data we estimate thermal and compositional contributions to density anomalies. We evaluate the extent to which "Large Low Shear Velocity Provinces" (LLSVP) are anomalous and we determine their impact on the global pattern of convective flow. The inversions yield consistent maps of lower-mantle flow (see figure) that are dominated by two large upwellings, under the Western Pacific (next to the Caroline microplate) and Eastern Pacific (under the East Pacific Rise). These hot upwellings effectively delimit the margins of the Pacific LLSVP, suggesting intrinsic negative buoyancy within this structure impedes large-scale upwellings in the mantle above. These two upwellings do not resemble classical mantle "plumes" found in simple isoviscous and isochemical convection models but their contribution to mass and heat transport across the lower mantle is significant and thus behave similarly to plumes. The large scale of these upwellings may be understood in terms of the high viscosity in the lower mantle, inferred from geodynamic constraints on mantle rheology. Very-long time convection simulations initiated with present-day structure inferred from these inversions show the two Pacific upwellings possess remarkable geographic fixity and longevity extending over several hundred million years, again a consequence of the high viscosity in the lower mantle. These upwellings are fed by large heat flux across the CMB (from 12 to 20 TW) and should play a major role in the thermal evolution of the mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25186903','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25186903"><span>Asymmetric three-dimensional topography over mantle plumes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burov, Evgueni; Gerya, Taras</p> <p>2014-09-04</p> <p>The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Sci...355..613G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Sci...355..613G"><span>On the deep-mantle origin of the Deccan Traps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glišović, Petar; Forte, Alessandro M.</p> <p>2017-02-01</p> <p>The Deccan Traps in west-central India constitute one of Earth’s largest continental flood basalt provinces, whose eruption played a role in the Cretaceous-Paleogene extinction event. The unknown mantle structure under the Indian Ocean at the start of the Cenozoic presents a challenge for connecting the event to a deep mantle origin. We used a back-and-forth iterative method for time-reversed convection modeling, which incorporates tomography-based, present-day mantle heterogeneity to reconstruct mantle structure at the start of the Cenozoic. We show a very low-density, deep-seated upwelling that ascends beneath the Réunion hot spot at the time of the Deccan eruptions. We found a second active upwelling below the Comores hot spot that likely contributed to the region of partial melt feeding the massive eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3923I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3923I"><span>Radial and Azimuthal Anisotropy Tomography of the NE Japan Subduction Zone: Implications for the Pacific Slab and Mantle Wedge Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishise, Motoko; Kawakatsu, Hitoshi; Morishige, Manabu; Shiomi, Katsuhiko</p> <p>2018-05-01</p> <p>We investigate slab and mantle structure of the NE Japan subduction zone from P wave azimuthal and radial anisotropy using travel time tomography. Trench normal E-W-trending azimuthal anisotropy (AA) and radial anisotropy (RA) with VPV > VPH are found in the mantle wedge, which supports the existence of small-scale convection in the mantle wedge with flow-induced LPO of mantle minerals. In the subducting Pacific slab, trench parallel N-S-trending AA and RA with VPH > VPV are obtained. Considering the effect of dip of the subducting slab on apparent anisotropy, we suggest that both characteristics can be explained by the presence of laminar structure, in addition to AA frozen-in in the subducting plate prior to subduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.296..382H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.296..382H"><span>Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoang, Thi Hong Anh; Choi, Sung Hi; Yu, Yongjae; Pham, Trung Hieu; Nguyen, Kim Hoang; Ryu, Jong-Sik</p> <p>2018-01-01</p> <p>This study presents a comprehensive analysis of the major and trace element, mineral, and Sr, Nd, Pb and Mg isotopic compositions of late Cenozoic intraplate basaltic rocks from central and southern Vietnam. The Sr, Nd, and Pb isotopic compositions of these basalts define a tight linear array between Indian mid-ocean-ridge basalt (MORB)-like mantle and enriched mantle type 2 (EM2) components. These basaltic rocks contain low concentrations of CaO (6.4-9.7 wt%) and have high Fe/Mn ratios (> 60) and FeO/CaO-3MgO/SiO2 values (> 0.54), similar to partial melts derived from pyroxenite/eclogite sources. This similarity is also supported by the composition of olivine within these samples, which contains low concentration of Ca and high concentrations of Ni, and shows high Fe/Mn ratios. The basaltic rocks have elevated Dy/Yb ratios that fall within the range of melts derived from garnet lherzolite material, although their Yb contents are much higher than those of modeled melts derived from only garnet lherzolite material and instead plot near the modeled composition of eclogite-derived melts. The Vietnamese basaltic rocks have lighter δ26Mg values (- 0.38 ± 0.06‰) than is expected for the normal mantle (- 0.25 ± 0.07‰), and these values decrease with decreasing Hf/Hf* and Ti/Ti* ratios, indicating that these basalts were derived from a source containing carbonate material. On primitive mantle-normalized multi-element variation diagrams, the central Vietnamese basalts are characterized by positive Sr, Eu, and Ba anomalies. These basalts also plot within the pelagic sediment field in Pbsbnd Pb isotopic space. This suggests that the mantle source of the basalts contained both garnet peridotite and recycled oceanic crust. A systematic analysis of variations in geochemical composition in basalts from southern to central Vietnam indicates that the recycled oceanic crust (possibly the paleo-Pacific slab) source material contains varying proportions of gabbro, basalt, and sediment. The basalts from south-central Vietnam (12°N-14°N) may be dominated by the lowest portion of the residual slab that contains rutile-bearing plagioclase-rich gabbroic eclogite, whereas the uppermost portion of the recycled slab, including sediment and basaltic material with small amounts of gabbro, may be a major constituent of the source for the basalts within the central region of Vietnam (14°N-16°N). Finally, the southern region (10°N-12°N) contains basalts sourced mainly from recycled upper oceanic crust that is basalt-rich and contains little or no sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.432..176F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.432..176F"><span>Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Freymuth, Heye; Vils, Flurin; Willbold, Matthias; Taylor, Rex N.; Elliott, Tim</p> <p>2015-12-01</p> <p>The fate of crustal material recycled into the convecting mantle by plate tectonics is important for understanding the chemical and physical evolution of the planet. Marked isotopic variability of Mo at the Earth's surface offers the promise of providing distinctive signatures of such recycled material. However, characterisation of the behaviour of Mo during subduction is needed to assess the potential of Mo isotope ratios as tracers for global geochemical cycles. Here we present Mo isotope data for input and output components of the archetypical Mariana arc: Mariana arc lavas, sediments from ODP Sites 800, 801 and 802 near the Mariana trench and the altered mafic, oceanic crust (AOC), from ODP Site 801, together with samples of the deeper oceanic crust from ODP Site 1256. We also report new high precision Pb isotope data for the Mariana arc lavas and a dataset of Pb isotope ratios from sediments from ODP Sites 800, 801 and 802. The Mariana arc lavas are enriched in Mo compared to elements of similar incompatibility during upper mantle melting, and have distinct, isotopically heavy Mo (high 98Mo/95Mo) relative to the upper mantle, by up to 0.3 parts per thousand. In contrast, the various subducting sediment lithologies dominantly host isotopically light Mo. Coupled Pb and Mo enrichment in the Mariana arc lavas suggests a common source for these elements and we further use Pb isotopes to identify the origin of the isotopically heavy Mo. We infer that an aqueous fluid component with elevated [Mo], [Pb], high 98Mo/95Mo and unradiogenic Pb is derived from the subducting, mafic oceanic crust. Although the top few hundred metres of the subducting, mafic crust have a high 98Mo/95Mo, as a result of seawater alteration, tightly defined Pb isotope arrays of the Mariana arc lavas extrapolate to a fluid component akin to fresh Pacific mid-ocean ridge basalts. This argues against a flux dominantly derived from the highly altered, uppermost mafic crust or indeed from an Indian-like mantle wedge. Thus we infer that the Pb and Mo budgets of the fluid component are dominated by contributions from the deeper, less altered (cooler) portion of the subducting Pacific crust. The high 98Mo/95Mo of this flux is likely caused by isotopic fractionation during dehydration and fluid flow in the slab. As a result, the residual mafic crust becomes isotopically lighter than the upper mantle from which it was derived. Our results suggest that the continental crust produced by arc magmatism should have an isotopically heavy Mo composition compared to the mantle, whilst a contribution of deep recycled oceanic crust to the sources of some ocean island basalts might be evident from an isotopically light Mo signature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSAH14A0021Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSAH14A0021Z"><span>Transcriptomics Provide Insight Into Mussel (Mytilus galloprovincialis) Mantle Function And Its Role In Biomineralization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaghdoudi-Allan, N.; Yarra, T.; Churcher, A.; Felix, R. C.; Cardoso, J.; Clark, M.; Power, D. M.</p> <p>2016-02-01</p> <p>With over 90,000 extant species, the Mollusca is one of the most successful and species-rich phyla, comprising 23% of known marine fauna. Common to all molluscs, the mantle is a multi-functional highly muscular tissue that contacts the shell and envelops vital organs. In bivalves, the epithelial cells of the mantle secrete the external shell by a complex network of mechanisms that remain poorly understood. To date, the bulk of the work on Mytilus mantle has focused on two of its features: the mantle edge and the pallial mantle and relatively little is known about the factors regulating its function. We hypothesize that the mantle edge in Mytilus species is heterogeneous in cellular structure and function and use next generation sequencing to mine for receptors involved in biomineralization. The mantle edge of the Mediterranean mussel (Mytilus galloprovincialis) was sectioned into three parts and sequenced using the Illumina platform. The transcriptome sequences generated assembled into 179,879 transcripts with a 34% GC content, congruent with other bivalve asssemblies. The transcriptome was annotated and String analysis (http://www.string-db.org) was used for a preliminary characterisation of biological processes. To test our hypothesis, we compared the transcripts from the 3 mantle segments and the expression levels of putative receptors such as the G -protein coupled receptors (GPCRs) in the sectioned mantle of 6 individuals using qPCR. Candidates were chosen based on their regulatory function and potential involvement in shell formation. Our results show differences in transcript abundance and cellular function amongst the three mantle sections. Combining our transcriptomic study with histological studies of the mantle tissue, we present evidence of both molecular and structural heterogeneity of the mussel mantle and identify several putative regulatory networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.212.2206N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.212.2206N"><span>Inference of viscosity jump at 670 km depth and lower mantle viscosity structure from GIA observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakada, Masao; Okuno, Jun'ichi; Irie, Yoshiya</p> <p>2018-03-01</p> <p>A viscosity model with an exponential profile described by temperature (T) and pressure (P) distributions and constant activation energy (E_{{{um}}}^{{*}} for the upper mantle and E_{{{lm}}}^* for the lower mantle) and volume (V_{{{um}}}^{{*}} and V_{{{lm}}}^*) is employed in inferring the viscosity structure of the Earth's mantle from observations of glacial isostatic adjustment (GIA). We first construct standard viscosity models with an average upper-mantle viscosity ({\\bar{η }_{{{um}}}}) of 2 × 1020 Pa s, a typical value for the oceanic upper-mantle viscosity, satisfying the observationally derived three GIA-related observables, GIA-induced rate of change of the degree-two zonal harmonic of the geopotential, {\\dot{J}_2}, and differential relative sea level (RSL) changes for the Last Glacial Maximum sea levels at Barbados and Bonaparte Gulf in Australia and for RSL changes at 6 kyr BP for Karumba and Halifax Bay in Australia. Standard viscosity models inferred from three GIA-related observables are characterized by a viscosity of ˜1023 Pa s in the deep mantle for an assumed viscosity at 670 km depth, ηlm(670), of (1 - 50) × 1021 Pa s. Postglacial RSL changes at Southport, Bermuda and Everglades in the intermediate region of the North American ice sheet, largely dependent on its gross melting history, have a crucial potential for inference of a viscosity jump at 670 km depth. The analyses of these RSL changes based on the viscosity models with {\\bar{η }_{{{um}}}} ≥ 2 × 1020 Pa s and lower-mantle viscosity structures for the standard models yield permissible {\\bar{η }_{{{um}}}} and ηlm (670) values, although there is a trade-off between the viscosity and ice history models. Our preferred {\\bar{η }_{{{um}}}} and ηlm (670) values are ˜(7 - 9) × 1020 and ˜1022 Pa s, respectively, and the {\\bar{η }_{{{um}}}} is higher than that for the typical value of oceanic upper mantle, which may reflect a moderate laterally heterogeneous upper-mantle viscosity. The mantle viscosity structure adopted in this study depends on temperature distribution and activation energy and volume, and it is difficult to discuss the impact of each quantity on the inferred lower-mantle viscosity model. We conclude that models of smooth depth variation in the lower-mantle viscosity following η ( z ) ∝ {{ exp}}[ {( {E_{{{lm}}}^* + P( z )V_{{{lm}}}^*} )/{{R}}T( z )} ] with constant E_{{{lm}}}^* and V_{{{lm}}}^* are consistent with the GIA observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........22J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........22J"><span>Three-dimensional shear wave velocity structure in the Atlantic upper mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>James, Esther Kezia Candace</p> <p></p> <p>Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for the Pacific, phase velocities for the Atlantic are not consistent with a half-space cooling model but are best explained by a plate-cooling model with thickness of 75 km and mantle temperature of 1400°C. Comparison with data such as basalt chemistry and seafloor elevation helps to separate thermal and compositional effects on shear velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T41A2849F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T41A2849F"><span>Inferred Rheology and Petrology of Southern California and Northwest Mexico Mantle from Postseismic Deformation following the 2010 El Mayor-Cucapah Earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Freed, A. M.; Dickinson, H.; Huang, M. H.; Fielding, E. J.; Burgmann, R.; Andronicos, C.</p> <p>2015-12-01</p> <p>The Mw 7.2 El Mayor-Cucapah (EMC) earthquake ruptured a ~120 km long series of faults striking northwest from the Gulf of California to the Sierra Cucapah. Five years after the EMC event, a dense network of GPS stations in southern California and a sparse array of sites installed after the earthquake in northern Mexico measure ongoing surface deformation as coseismic stresses relax. We use 3D finite element models of seismically inferred crustal and mantle structure with earthquake slip constrained by GPS, InSAR range change and SAR and SPOT image sub-pixel offset measurements to infer the rheologic structure of the region. Model complexity, including 3D Moho structure and distinct geologic regions such as the Peninsular Ranges and Salton Trough, enable us to explore vertical and lateral heterogeneities of crustal and mantle rheology. We find that postseismic displacements can be explained by relaxation of a laterally varying, stratified rheologic structure controlled by temperature and crustal thickness. In the Salton Trough region, particularly large postseismic displacements require a relatively weak mantle column that weakens with depth, consistent with a strong but thin (22 km thick) crust and high regional temperatures. In contrast, beneath the neighboring Peninsular Ranges a strong, thick (up to 35 km) crust and cooler temperatures lead to a rheologically stronger mantle column. Thus, we find that the inferred rheologic structure corresponds with observed seismic structure and thermal variations. Significant afterslip is not required to explain postseismic displacements, but cannot be ruled out. Combined with isochemical phase diagrams, our results enable us to go beyond rheologic structure and infer some basic properties about the regional mantle, including composition, water content, and the degree of partial melting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoJI.190..785G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoJI.190..785G"><span>Time-dependent convection models of mantle thermal structure constrained by seismic tomography and geodynamics: implications for mantle plume dynamics and CMB heat flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glišović, P.; Forte, A. M.; Moucha, R.</p> <p>2012-08-01</p> <p>One of the outstanding problems in modern geodynamics is the development of thermal convection models that are consistent with the present-day flow dynamics in the Earth's mantle, in accord with seismic tomographic images of 3-D Earth structure, and that are also capable of providing a time-dependent evolution of the mantle thermal structure that is as 'realistic' (Earth-like) as possible. A successful realization of this objective would provide a realistic model of 3-D mantle convection that has optimal consistency with a wide suite of seismic, geodynamic and mineral physical constraints on mantle structure and thermodynamic properties. To address this challenge, we have constructed a time-dependent, compressible convection model in 3-D spherical geometry that is consistent with tomography-based instantaneous flow dynamics, using an updated and revised pseudo-spectral numerical method. The novel feature of our numerical solutions is that the equations of conservation of mass and momentum are solved only once in terms of spectral Green's functions. We initially focus on the theory and numerical methods employed to solve the equation of thermal energy conservation using the Green's function solutions for the equation of motion, with special attention placed on the numerical accuracy and stability of the convection solutions. A particular concern is the verification of the global energy balance in the dissipative, compressible-mantle formulation we adopt. Such validation is essential because we then present geodynamically constrained convection solutions over billion-year timescales, starting from present-day seismically constrained thermal images of the mantle. The use of geodynamically constrained spectral Green's functions facilitates the modelling of the dynamic impact on the mantle evolution of: (1) depth-dependent thermal conductivity profiles, (2) extreme variations of viscosity over depth and (3) different surface boundary conditions, in this case mobile surface plates and a rigid surface. The thermal interpretation of seismic tomography models does not provide a radial profile of the horizontally averaged temperature (i.e. the geotherm) in the mantle. One important goal of this study is to obtain a steady-state geotherm with boundary layers which satisfies energy balance of the system and provides the starting point for more realistic numerical simulations of the Earth's evolution. We obtain surface heat flux in the range of Earth-like values : 37 TW for a rigid surface and 44 TW for a surface with tectonic plates coupled to the mantle flow. Also, our convection simulations deliver CMB heat flux that is on the high end of previously estimated values, namely 13 TW and 20 TW, for rigid and plate-like surface boundary conditions, respectively. We finally employ these two end-member surface boundary conditions to explore the very-long-time scale evolution of convection over billion-year time windows. These billion-year-scale simulations will allow us to determine the extent to which a 'memory' of the starting tomography-based thermal structure is preserved and hence to explore the longevity of the structures in the present-day mantle. The two surface boundary conditions, along with the geodynamically inferred radial viscosity profiles, yield steady-state convective flows that are dominated by long wavelengths throughout the lower mantle. The rigid-surface condition yields a spectrum of mantle heterogeneity dominated by spherical harmonic degree 3 and 4, and the plate-like surface condition yields a pattern dominated by degree 1. Our exploration of the time-dependence of the spatial heterogeneity shows that, for both types of surface boundary condition, deep-mantle hot upwellings resolved in the present-day tomography model are durable and stable features. These deeply rooted mantle plumes show remarkable longevity over very long geological time spans, mainly owing to the geodynamically inferred high viscosity in the lower mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910058405&hterms=Honda&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DHonda','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910058405&hterms=Honda&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DHonda"><span>Development of diapiric structures in the upper mantle due to phase transitions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, M.; Yuen, D. A.; Zhao, W.; Honda, S.</p> <p>1991-01-01</p> <p>Solid-state phase transition in time-dependent mantle convection can induce diapiric flows in the upper mantle. When a deep mantle plume rises toward phase boundaries in the upper mantle, the changes in the local thermal buoyancy, local heat capacity, and latent heat associated with the phase change at a depth of 670 kilometers tend to pinch off the plume head from the feeding stem and form a diapir. This mechanism may explain episodic hot spot volcanism. The nature of the multiple phase boundaries at the boundary between the upper and lower mantle may control the fate of deep mantle plumes, allowing hot plumes to go through and retarding the tepid ones.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900005420','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900005420"><span>Workshop on the Archean Mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ashwal, L. D. (Editor)</p> <p>1989-01-01</p> <p>The Workshop on the Archaen mantle considers and discusses evidence for the nature of earth's Archaen mantle, including its composition, age and structure, influence on the origin and evolution of earth's crust, and relationship to mantle and crustal evolution of the other terrestrial planets. The summaries of presentations and discussions are based on recordings made during the workshop and on notes taken by those who agreed to serve as summarizers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S43D0888F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S43D0888F"><span>Characterizing crustal and uppermost mantle anisotropy with a depth-dependent tilted hexagonally symmetric elastic tensor: theory and examples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, L.; Xie, J.; Ritzwoller, M. H.</p> <p>2017-12-01</p> <p>Two major types of surface wave anisotropy are commonly observed by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We describe a method of inversion that interprets simultaneous observations of radial and azimuthal anisotropy under the assumption of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip and strike angles. With a full-waveform numerical solver based on the spectral element method (SEM), we verify the validity of the forward theory used for the inversion. We also present two examples, in the US and Tibet, in which we have successfully applied the tomographic method to demonstrate that the two types of apparent anisotropy can be interpreted jointly as a tilted hexagonally symmetric medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5504290','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5504290"><span>Sea level fall during glaciation stabilized atmospheric CO2 by enhanced volcanic degassing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hasenclever, Jörg; Knorr, Gregor; Rüpke, Lars H.; Köhler, Peter; Morgan, Jason; Garofalo, Kristin; Barker, Stephen; Lohmann, Gerrit; Hall, Ian R.</p> <p>2017-01-01</p> <p>Paleo-climate records and geodynamic modelling indicate the existence of complex interactions between glacial sea level changes, volcanic degassing and atmospheric CO2, which may have modulated the climate system’s descent into the last ice age. Between ∼85 and 70 kyr ago, during an interval of decreasing axial tilt, the orbital component in global temperature records gradually declined, while atmospheric CO2, instead of continuing its long-term correlation with Antarctic temperature, remained relatively stable. Here, based on novel global geodynamic models and the joint interpretation of paleo-proxy data as well as biogeochemical simulations, we show that a sea level fall in this interval caused enhanced pressure-release melting in the uppermost mantle, which may have induced a surge in magma and CO2 fluxes from mid-ocean ridges and oceanic hotspot volcanoes. Our results reveal a hitherto unrecognized negative feedback between glaciation and atmospheric CO2 predominantly controlled by marine volcanism on multi-millennial timescales of ∼5,000–15,000 years. PMID:28681844</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMDI41A2587Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMDI41A2587Y"><span>Fine Scale Structure of Low and Ultra-Low Velocity Patches in the Lowermost Mantle: Some Case Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, K.; Romanowicz, B. A.; French, S.</p> <p>2015-12-01</p> <p>The lowermost part of the mantle, which is roughly halfway to the center of the earth, plays a key role as a thermal and chemical boundary layer between the solid, silicate mantle and fluid, iron outer core. Constraining the seismic velocity structure in this region provides important insights on mantle dynamics, and core-mantle interactions. Recently, global shear wave velocity tomography has confirmed the presence of broad plume conduits extending vertically through the lower mantle in the vicinity of major hotspots (SEMUCB-WM1, French and Romanowicz, 2015). These conduits are rooted in D" in patches of strongly reduced shear velocity, at least some of which, such as Hawaii, appear to contain known ultra low velocity zones (e.g. Cottaar and Romanowicz, 2012). We seek to determine whether these patches generally contain ULVZs, and to contrast them with less extreme structures such as the PERM anomaly (Lekic et al., 2012). Because global tomography cannot resolve such fine scale structure, we apply forward modeling of higher frequency (10-20s) Sdiff waveforms in 3D complex structures using the Spectral Element Method. We focus on Iceland, Hawaii and the PERM anomaly, and Sdiff observations at USArray and/or dense broadband arrays in Europe. In all three cases, Sdiff waveforms are clearly distorted by these anomalies, with either a complex coda and/or evidence for amplitude focusing. As a start, we design simple cylindrical models of shear velocity reduction, and contrast the best fitting ones at each location considered in terms of diameter, height above the core-mantle boundary and strength of velocity reduction. We refine previously obtained models for Hawaii and the Perm Anomaly. For Iceland, the waveforms show a strong azimuthally dependent post-cursor, with maximum travel time delay of ~20s and focusing effects. The preliminary best fitting model shows a structure of 700km in diameter, ~15% reduction in shear wave velocity, extending ~40 km above the core-mantle boundary, in a location close to the Iceland hotspot which is in agreement with the low velocity patch in model SEMUCB_WM1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GMS...160....9H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GMS...160....9H"><span>Noble gas models of mantle structure and reservoir mass transfer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harrison, Darrell; Ballentine, Chris J.</p> <p></p> <p>Noble gas observations from different mantle samples have provided some of the key observational data used to develop and support the geochemical "layered" mantle model. This model has dominated our conceptual understanding of mantle structure and evolution for the last quarter of a century. Refinement in seismic tomography and numerical models of mantle convection have clearly shown that geochemical layering, at least at the 670 km phase change in the mantle, is no longer tenable. Recent adaptations of the mantle-layering model that more successfully reconcile whole-mantle convection with the simplest data have two common features: (i) the requirement for the noble gases in the convecting mantle to be sourced, or "fluxed", by a deep long-lived volatile-rich mantle reservoir; and (ii) the requirement for the deep mantle reservoirs to be seismically invisible. The fluxing requirement is derived from the low mid-ocean ridge basalt (MORB)-source mantle 3He concentration, in turn calculated from the present day 3He flux from mid-ocean ridges into the oceans (T½ ˜ 1,000 yr) and the ocean crust generation rate (T½ ˜ 108 yr). Because of these very different residence times we consider the 3He concentration constraint to be weak. Furthermore, data show 3He/22Ne ratios derived from different mantle reservoirs to be distinct and require additional complexities to be added to any model advocating fluxing of the convecting mantle from a volatile-rich mantle reservoir. Recent work also shows that the convecting mantle 20Ne/22Ne isotopic composition is derived from an implanted meteoritic source and is distinct from at least one plume source system. If Ne isotope heterogeneity between convecting mantle and plume source mantle is confirmed, this result then excludes all mantle fluxing models. While isotopic heterogeneity requires further quantification, it has been shown that higher 3He concentrations in the convecting mantle, by a factor of 3.5, remove the need for the noble gases in the convecting mantle to be sourced from such a deep hidden reservoir. This "zero paradox" concentration [Ballentine et al., 2002] is then consistent with the different mantle source 3He/22Ne and 20Ne/22Ne heterogeneities. Higher convecting mantle noble gas concentrations also eliminate the requirement for a hidden mantle 40Ar rich-reservoir and enables the heat/4He imbalance to be explained by temporal variance in the different mechanisms of heat vs. He removal from the mantle system—two other key arguments for mantle layering. Confirmation of higher average convecting mantle noble gas concentrations remains the key test of such a concept.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR43A0445A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR43A0445A"><span>Depth of Formation of Ferropericlase Included in Super-Deep Diamonds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anzolini, C.; Nestola, F.; Gianese, A.; Nimis, P.; Harris, J. W.</p> <p>2017-12-01</p> <p>Super-deep diamonds are believed to have formed at depths of at least 300 km depth (Harte, 2010). A common mineral inclusion in these diamonds is ferropericlase, (Mg,Fe)O (see Kaminsky, 2012 and references therein). Ferropericlase (fPer) is the second most abundant mineral in the lower mantle, comprising approximately 16-20 wt% (660 to 2900 km depth), and inclusions of fPer in diamond are often considered to indicate a lower-mantle origin (Harte et al., 1999). Samples from São Luiz/Juina, Brazil, are noteworthy for containing nanometer-sized magnesioferrite (Harte et al., 1999; Wirth et al., 2014; Kaminsky et al., 2015; Palot et al., 2016). Based upon a phase diagram valid for 1 atm, such exsolutions would place the origin of this assemblage in the uppermost part of the lower mantle. However, a newly reported phase diagram for magnesioferrite demonstrates that the latter is not stable at such pressures and, thus, it cannot exsolve directly from fPer at lower-mantle conditions (Uenver-Thiele et al., 2017). Here we report the investigation of two fPer inclusions, extracted from a single São Luiz diamond, by single-crystal X-ray diffraction and field emission scanning electron microscopy. Both techniques showed micrometer-sized exsolutions of magnesioferrite within the two fPers. We also completed elastic geobarometry (see Angel et al., 2015), which determined an estimate for the depth of entrapment of the two ferropericlase - diamond pairs. In the temperature range between 1273 and 1773 K, pressures varied between 9.88 and 12.34 GPa (325-410 km depth) for one inclusion and between 10.69 and 13.16 GPa (350-440 km depth) for the other one. These results strengthen the hypothesis that solitary fPer inclusions might not be reliable markers for a lower-mantle provenance. This work was supported by Fondazione CaRiPaRo and ERC-2012-StG 307322 to FN. Angel, R.J., et al. (2015) Russ Geol Geophys, 56, 211-220; Harte, B. (2010) Mineral Mag, 74, 189-215; Harte, B., et al. (1999) The Geochemical Society, Special Publication, 6, 125-153; Kaminsky, F. (2012) Earth-Sci Rev, 110, 127-147; Kaminsky, F., et al. (2015) Earth Planet Sci Lett, 417, 49-56; Palot, M., et al. (2016) Lithos, 265, 237-243; Uenver-Thiele, L., et al. (2017) Am Mineral, 102, 632-642; Wirth, R., et al. (2014) Earth Planet Sci Lett, 404, 365-375.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T14B..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T14B..08L"><span>In-Situ Lithospheric Rheology Measurement Using Isostatic Response and Geophysical State</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lowry, A. R.; Becker, T. W.; Buehler, J. S.; ma, X.; Miller, M. S.; Perez-Gussinye, M.; Ravat, D.; Schutt, D.</p> <p>2013-12-01</p> <p>Measurements of effective elastic thickness, Te, from flexural isostatic modeling are sensitive to flow rheology of the lithosphere. Nevertheless, Te has not been widely used to estimate in-situ rheology. Past methodological controversies regarding Te measurement are partly to blame for under-utilization of isostatic response in rheology studies, but these controversies are now largely resolved. The remaining hurdles include uncertainties in properties of geophysical state such as temperature, lithology, and water content. These are ambiguous in their relative contributions to total strength, and the unknown state-of-stress adds to ambiguity in the rheology. Dense seismic and other geophysical arrays such as EarthScope's USArray are providing a wealth of new information about physical state of the lithosphere, however, and these data promise new insights into rheology and deformation processes. For example, new estimates of subsurface mass distributions derived from seismic data enable us to examine controversial assumptions about the nature of lithospheric loads. Variations in crustal lithology evident in bulk crustal velocity ratio, vP/vS, contribute a surprisingly large fraction of total loading. Perhaps the most interesting new information on physical state derives from imaging of uppermost mantle velocities using refracted mantle phases, Pn and Sn, and depths to negative velocity gradients imaged as converted phases in receiver functions (so-called seismic lithosphere-asthenosphere boundary, 'LAB', and mid-lithosphere discontinuity, 'MLD'). Imaging of the ~580°C isotherm associated with the phase transition from alpha- to beta-quartz affords another exciting new avenue for investigation, in part because the transition closely matches the Curie temperature thought to control magnetic bottom in some continental crust. Reconciling seismic estimates of temperature variations with measurements of Te and upper-mantle negative velocity gradients in the US requires that we invoke variations in lithology, water concentrations, and/or membrane stress. In deforming lithosphere, Te and Pn are best-reconciled using a wet quartz crustal lithology, wet olivine mantle lithology, and large membrane stress. More stable lithosphere to the east is best-modeled with a dry feldspar or pyroxene crustal lithology and dry olivine in the mantle. Greater crustal quartz abundance in deforming lithosphere (and in ancient orogens further east) is observed independently in measurements of bulk-crustal vP/vS. Independent evidence also supports the inference of variable water concentrations. Taken together, these lines of evidence suggest that lithology and water abundance are at least as important as temperature variation in determining rheological behavior of the lithosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JGRE..11112009C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JGRE..11112009C"><span>Long-period seismology on Europa: 1. Physically consistent interior models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cammarano, F.; Lekic, V.; Manga, M.; Panning, M.; Romanowicz, B.</p> <p>2006-12-01</p> <p>In order to examine the potential of seismology to determine the interior structure and properties of Europa, it is essential to calculate seismic velocities and attenuation for the range of plausible interiors. We calculate a range of models for the physical structure of Europa, as constrained by the satellite's composition, mass, and moment of inertia. We assume a water-ice shell, a pyrolitic or a chondritic mantle, and a core composed of pure iron or iron plus 20 weight percent of sulfur. We consider two extreme mantle thermal states: hot and cold. Given a temperature and composition, we determine density, seismic velocities, and attenuation using thermodynamical models. While anelastic effects will be negligible in a cold mantle and the brittle part of the ice shell, strong dispersion and dissipation are expected in a hot convective mantle and the bulk of the ice shell. There is a strong relationship between different thermal structures and compositions. The ``hot'' mantle may maintain temperatures consistent with a liquid core made of iron plus light elements. For the ``cold scenarios,'' the possibility of a solid iron core cannot be excluded, and it may even be favored. The depths of the ocean and core-mantle boundary are determined with high precision, 10 km and 40 km, respectively, once we assume a composition and thermal structure. Furthermore, the depth of the ocean is relatively insensitive (4 km) to the core composition used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614263T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614263T"><span>Reconstructing the plumbing system of Krakatau volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troll, Valentin R.; Dahrén, Börje; Deegan, Frances M.; Jolis, Ester M.; Blythe, Lara S.; Harris, Chris; Berg, Sylvia E.; Hilton, David R.; Freda, Carmela</p> <p>2014-05-01</p> <p>Crustal contamination of ascending arc magmas is generally thought to be significant at lower- to mid-crustal magma storage levels where magmas inherit their chemical and isotopic character by blending, assimilation and differentiation [1]. Anak Krakatau, like many other volcanoes, erupts shallow-level crustal xenoliths [2], indicating a potential role for upper crustal modification and hence late-stage changes to magma rheology and thus eruptive behaviour. Distinguishing deep vs. shallow crustal assimilation processes at Krakatau, and elsewhere, is therefore crucial to understand and assess pre-eruptive magmatic conditions and their associated hazard potential. Here we report on a multi-disciplinary approach to unravel the crustal plumbing system of the persistently-active and dominantly explosive Anak Krakatau volcano [2, 3]. We employ rock-, mineral- and gas-isotope geochemistry and link these results with seismic tomography [4]. We show that pyroxene crystals formed at mid- and lower-crustal levels (9-11 km) and carry almost mantle-like isotope signatures (O, Sr, Nd, He), while feldspar crystals formed dominantly at shallow levels (< 5km) and display unequivocal isotopic evidence for late stage contamination (O, Sr, Nd). Coupled with tomographic evidence, the petrological and geochemical data place a significant element of magma-crust interaction (and hence magma storage) into the uppermost, sediment-rich crust beneath the volcano. Magma - sediment interaction in the uppermost crust offers a likely explanation for the compositional variations in recent Krakatau magmas and most probably provides extra impetus to increased explosivity at Anak Krakatau. [1] Annen, et al., 2006. J. Petrol. 47, 505-539. [2] Gardner, et al., 2013. J. Petrol. 54, 149-182. [3] Dahren, et al., 2012. Contrib. Mineral. Petrol. 163, 631-651. [4] Jaxybulatov, et al., 2011. J. Volcanol. Geoth. Res. 206, 96-105.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V52B..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V52B..06T"><span>Shallow-level magma-sediment interaction and explosive behaviour at Anak Krakatau (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troll, V. R.; Jolis, E. M.; Dahren, B.; Deegan, F. M.; Blythe, L. S.; Harris, C.; Berg, S. E.; Hilton, D. R.; Freda, C.</p> <p>2013-12-01</p> <p>Crustal contamination of ascending arc magmas is generally thought to be a significant process which occurs at lower- to mid-crustal magma storage levels where magmas inherit their chemical and isotopic character by blending, assimilation and differentiation [1]. Anak Krakatau, like many other volcanoes, erupts shallow-level crustal xenoliths [2], indicating a potential role for upper crustal modification and hence late-stage changes to magma rheology and thus potential eruptive behaviour. Distinguishing deep vs. shallow crustal contamination processes at Krakatau, and elsewhere, is therefore crucial to understand and assess pre-eruptive magmatic conditions and their associated hazard potential. Here we report on a multi-disciplinary approach to unravel the crustal plumbing system of the persistently-active and dominantly explosive Anak Krakatau volcano [2, 3], employing rock-, mineral- and gas-isotope geochemistry and link these results with seismic tomography [4]. We show that pyroxene crystals formed at mid- and lower-crustal levels (9-11 km) and carry almost mantle-like isotope signatures (O, Sr, Nd, He), while feldspar crystals formed dominantly at shallow levels (< 5km) and display unequivocal isotopic evidence for late stage contamination (O, Sr, Nd). This obeservation places a significant element of magma-crust interaction into the uppermost, sediment-rich crust beneath the volcano. Magma storage in the uppermost crust can thus offer a possible explanation for the compositional modifications of primitive Krakatau magmas, and likely provides extra impetus to increased explosivity at Anak Krakatau. [1] Annen, et al., 2006. J. Petrol. 47, 505-539. [2] Gardner, et al., 2013. J. Petrol. 54, 149-182. [3] Dahren, et al., 2012. Contrib. Mineral. Petrol. 163, 631-651. [4] Jaxybulatov, et al., 2011. J. Volcanol. Geoth. Res. 206, 96-105.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI33A..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI33A..01L"><span>Preservation of Primordial Mantle in the Aftermath of a Giant Impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lock, S. J.; Stewart, S. T.; Mukhopadhyay, S.</p> <p>2016-12-01</p> <p>Terrestrial planets experience a number of giant impacts in the final stages of accretion. These highly energetic events force planets into hot, partially vaporized, and occasionally rapidly-rotating states. However, recent measurements of Xe and W isotopes in mantle plume-derived basalts imply that the terrestrial mantle was not homogenized during this violent stage of Earth's accretion. Understanding the physical structure of post-impact states is key for interpreting these primitive mantle signatures. Post-impact states are highly thermally stratified: the lowermost mantle has lower entropy than the rest of the mantle. Usually, the lowermost mantle is near the solidus or partially molten. The high-entropy portion of the mantle is super-liquidus, smoothly grading to a silicate vapor atmosphere. Here, we consider the competing processes acting on these distinct layers as the mantle establishes a single thermal gradient. If the whole mantle chemically mixed during cooling, then any pre-impact chemical signature would be erased. Previous work has neglected the critical time period between the highly vaporized post-impact state and a fully-condensed silicate body, i.e., a separated magma ocean and atmosphere. The post-impact structure cools rapidly by radiation from the photosphere, causing contraction of the body and redistribution of mass and angular momentum. One consequence of contraction is that the pressure in the mantle increases significantly (on the order of several to 10s GPa at the core mantle boundary) over 10s-1000s years. The increased pressure causes part of the mantle to solidify. Significantly, the timescale for pressure-induced freezing is shorter than the timescale for thermal equilibration between the low and high entropy mantle layers and the timescale for melt percolation (both >100s yrs). Therefore, pressure-induced freezing in the aftermath of a giant impact may be an important factor in preserving primordial Xe and W signatures in the lower mantle. Pressure-induced freezing of the lower mantle predicts a different chemistry than that produced by fractional crystallization of a magma ocean. The post-impact planet could inherit chemical signatures from portions of the mantles of the impacting bodies that did not re-equilibrate with the metal core or outgas volatiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR52A..03X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR52A..03X"><span>Effect of Al on stability of DHMS up to the uppermost lower mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, C.; Inoue, T.</p> <p>2017-12-01</p> <p>Water plays an important role on Earth. It influences the physical and chemical property of minerals and melts, which further effects the evolution of the Earth. A series of dense hydrous magnesium silicate (DHMS) phases such as phase A (PhA), phase E (PhE), superhydrous phase B (SUB) and phase D (PhD) have been suggested as potential water carriers to transition zone and even to the lower mantle under the conditions present in the cold subducting slabs [e.g. Kawamoto, 2004; Komabayashi and Omori, 2006]. Because of its importance, the DHMS have been widely studied by using different starting materials in MgO-SiO2-H2O system. Recently, the newly reported Al-PhD is stable at temperatures up to 2,000 °C at 26 GPa, which indicates aluminum increases stability regions of DHMS [e.g. Pamato et al., 2015]. To systematically study the effect of Al on the stability of hydrous phases, we use Kawai-type high pressure apparatus to investigate nature clinochlore, which contains about 15 wt% H2O and about 14 wt% Al2O3. The Al-bearing hydrous PhE, SUB and PhD were observed with P-T increasing. Following the P-T path of cold subduction, the phase assemblage PhE + PhD is stable at 14-23 GPa, and even a trace of PhE is detected at 1150°C and 25 GPa coexisting with PhD. The phase SUB is stable between 16-22 GPa coexisting with PhE + PhD. Following the P-T path of hot subduction, the phase assemblage PhE + Gt is observed at 14-18 GPa coexisting with fluid or melt. The phase assemblage SUB + PhD is stable at 18-25 GPa, which may extend to higher pressures and temperatures. Therefore, it is obvious that Al enhances the stabilities of these three hydrous minerals, which are stable even in the hot subducting conditions. On the other hand, the Al substitution mechanism in PhE, SUB and PhD were clarified according to chemical compositional relationship between Mg, Si, Al. This shows that they can hold a significant amount of H (water) in their structure. Our results may indicate that the wide stabilities of Al-bearing DHMS increase the chance of water transportation to deeper mantle after antigorite (serpentine) decomposition at the shallow region of the subduction zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28183974','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28183974"><span>On the deep-mantle origin of the Deccan Traps.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Glišović, Petar; Forte, Alessandro M</p> <p>2017-02-10</p> <p>The Deccan Traps in west-central India constitute one of Earth's largest continental flood basalt provinces, whose eruption played a role in the Cretaceous-Paleogene extinction event. The unknown mantle structure under the Indian Ocean at the start of the Cenozoic presents a challenge for connecting the event to a deep mantle origin. We used a back-and-forth iterative method for time-reversed convection modeling, which incorporates tomography-based, present-day mantle heterogeneity to reconstruct mantle structure at the start of the Cenozoic. We show a very low-density, deep-seated upwelling that ascends beneath the Réunion hot spot at the time of the Deccan eruptions. We found a second active upwelling below the Comores hot spot that likely contributed to the region of partial melt feeding the massive eruption. Copyright © 2017, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Litho.102...12O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Litho.102...12O"><span>Dynamics of cratons in an evolving mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Neill, C. J.; Lenardic, A.; Griffin, W. L.; O'Reilly, Suzanne Y.</p> <p>2008-04-01</p> <p>The tectonic quiescence of cratons on a tectonically active planet has been attributed to their physical properties such as buoyancy, viscosity, and yield strength. Previous modelling has shown the conditions under which cratons may be stable for the present, but cast doubt on how they survived in a more energetic mantle of the past. Here we incorporate an endothermic phase change at 670 km, and a depth-dependent viscosity structure consistent with post-glacial rebound and geoid modelling, to simulate the dynamics of cratons in an "Earth-like" convecting system. We find that cratons are unconditionally stable in such systems for plausible ranges of viscosity ratios between the root and asthenosphere (50-150) and the root/oceanic lithosphere yield strength ratio (5-30). Realistic mantle viscosity structures have limited effect on the average background cratonic stress state, but do buffer cratons from extreme stress excursions. An endothermic phase change at 670 km introduces an additional time-dependence into the system, with slab breakthrough into the lower mantle associated with 2-3 fold stress increases at the surface. Under Precambrian mantle conditions, however, the dominant effect is not more violent mantle avalanches, or faster mantle/plate velocities, but rather the drastic viscosity drop which results from hotter mantle conditions in the past. This results in a large decrease in the cratonic stress field, and promotes craton survival under the evolving mantle conditions of the early Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.V32B..05P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.V32B..05P"><span>Towards driving mantle convection by mineral physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piazzoni, A. S.; Bunge, H.; Steinle-Neumann, G.</p> <p>2005-12-01</p> <p>Models of mantle convection have become increasingly sophisticated over the past decade, accounting, for example, for 3 D spherical geometry, and changes in mantle rheology due to variations in temperature and stress. In light of such advances it is surprising that growing constraints on mantle structure derived from mineral physics have not yet been fully brought to bear on mantle convection models. In fact, despite much progress in our understanding of mantle mineralogy a partial description of the equation of state is often used to relate density changes to pressure and temperature alone, without taking into account compositional and mineralogical models of the mantle. Similarly, for phase transitions an incomplete description of thermodynamic constraints is often used, resulting in significant uncertainties in model behavior. While a number of thermodynamic models (some with limited scope) have been constructed recently, some lack the rigor in thermodynamics - for example with respect to the treatment of solid solution - that is needed to make predictions about mantle structure. Here we have constructed a new thermodynamic database for the mantle and have coupled the resulting density dynamically with mantle convection models. The database is build on a self-consistent Gibb's free energy minimization of the system MgO-FeO-SiO2-CaO-Al2O3 that is appropriate for standard (dry) chemical models of the Earth's mantle for relevant high pressure and temperature phases. We have interfaced the database with a high-resolution 2-D convection code (2DTERRA), dynamically coupling the thermodynamic model (density) with the conservation equations of mantle flow. The coupled model is run for different parameterizations of viscosity, initial temperature conditions, and varying the internal vs. external heating. We compare the resulting flow and temperature fields to cases with the Boussinesq approximation and other classical descriptions of the equation of state in mantle dynamics to assess the influence of realistic mineralogical density on mantle convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002APS..CCP.E1003B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002APS..CCP.E1003B"><span>Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bunge, Hans-Peter</p> <p>2002-08-01</p> <p>Earth's mantle overturns itself about once every 200 Million years (myrs). Prima facie evidence for this overturn is the motion of tectonic plates at the surface of the Earth driving the geologic activity of our planet. Supporting evidence also comes from seismic tomograms of the Earth's interior that reveal the convective currents in remarkable clarity. Much has been learned about the physics of solid state mantle convection over the past two decades aided primarily by sophisticated computer simulations. Such simulations are reaching the threshold of fully resolving the convective system globally. In this talk we will review recent progress in mantle dynamics studies. We will then turn our attention to the fundamental question of whether it is possible to explicitly reconstruct mantle flow back in time. This is a classic problem of history matching, amenable to control theory and data assimilation. The technical advances that make such approach feasible are dramatically increasing compute resources, represented for example through Beowulf clusters, and new observational initiatives, represented for example through the US-Array effort that should lead to an order-of-magnitude improvement in our ability to resolve Earth structure seismically below North America. In fact, new observational constraints on deep Earth structure illustrate the growing importance of of improving our data assimilation skills in deep Earth models. We will explore data assimilation through high resolution global adjoint models of mantle circulation and conclude that it is feasible to reconstruct mantle flow back in time for at least the past 100 myrs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI14A..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI14A..03J"><span>A New Global Model Of Plates Motion Over The Mantle For The Last 300MA: Link Between Mantle Structures, Volcanism and Plate Tectonics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jean, B.; Sophie, V. D. G.; Greff-Lefftz, M.; Frizon de Lamotte, D.; Lescanne, M.; Leparmentier, F.</p> <p>2017-12-01</p> <p>We compare several models of hot spot reference frames published in the litterature retracing the kinematics of the lithosphere over the mantle for the last 120Ma. We then propose a new model between 130 and 300Ma, based on the comparison of various surface indicators (geological, thermal data from boreholes and compilation of global surface volcanism), a reassessment of hot spots classification and paleomagnetic data. We discuss the implication of our model on the location and timing of several types of surface volcanism (subductions, intracontinental volcanism, rifting and LIPS, kimberlites) that we link to deep structures interpreted from tomographic images. A clear degree two permanent organization of mantle convection during this period of time is obvious, and the subduction rate appears to be episodic. We finally deduce from our model mantle TPW (True Polar Wander), the shifting of the entire mantle relative to the earth's spin axis over the last 300 million years. The inferred global motion of the mantle deduced occurs around a Euler pole which axis is close to the earth equator but varies significantly in longitude with respect to time showing complex tridimensional mass reorganizations in the mantle, probably linked to both LLSVPs and slabs effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=318766','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=318766"><span>Atmospheric environment associated with animal flight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Descriptions of the physical structure and processes in the “aeroecological environment”, which comprises the planetary boundary layer and the uppermost atmospheric extent of flying animals, are written with a biological audience in mind. The chapter describes processes and temporal development of ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T23C0626Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T23C0626Y"><span>Geophysical constraints on the mantle structure of the Canadian Cordillera and North America Craton</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, T. C.; Currie, C. A.; Unsworth, M. J.</p> <p>2017-12-01</p> <p>In western Canada, geophysical data indicate that there is a pronounced contrast in mantle structure between the Canadian Cordillera (CC) and North America craton (NAC). The CC is characterized by lower mantle seismic velocity, higher surface heat flow, lower mantle electrical resistivity and lower effective elastic thickness. These observations are consistent with two distinct thermal regimes: the CC has hot and thin lithosphere, while the NAC lithosphere is cool and thick. The boundary between the CC and NAC coincides with the south-north trending Rocky Mountain Trench - Tintina Fault system. Earlier studies have hypothesized that the thin CC lithosphere is maintained by small-scale convection of hydrated mantle, whereas the NAC lithosphere is dry and resistant to thinning. Here, we test this hypothesis through a detailed examination of two independent data sets: (1) seismic shear-wave (Vs) tomography models and (2) magnetotelluric (MT) measurements of mantle electrical resistivity. We analyze tomography model NA07 at 50-250 km depth and create a mapping of Vs to temperature based on mantle composition (via Perple_X) and a correction for anelasticity. For the CC, the calculated temperature is relatively insensitive to mantle composition but strongly depends on the water content and anelastic correction. With a laboratory-based correction, the estimated temperature is 1150 °C at 100 km depth for wet mantle, compared to 1310 °C for dry mantle; no melt is predicted in either case. An empirical anelastic correction predicts a 115 °C hotter mantle and likely some melt. In contrast, composition is the main control on the calculated temperature for the NAC, especially at depths < 125 km. At 100 km depth, estimated temperatures are 690 °C for a pyrolite mantle and 760 °C for a dunite mantle. In the seismic analysis, there is a trade-off between temperature and water content for the CC; the observed velocities are consistent with a warm wet mantle and a hot dry mantle. To resolve this uncertainty, future work will analyze MT data, as electrical resistivity is sensitive to mantle temperature and hydration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10856206','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10856206"><span>Mantle convection and plate tectonics: toward an integrated physical and chemical theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tackley</p> <p>2000-06-16</p> <p>Plate tectonics and convection of the solid, rocky mantle are responsible for transporting heat out of Earth. However, the physics of plate tectonics is poorly understood; other planets do not exhibit it. Recent seismic evidence for convection and mixing throughout the mantle seems at odds with the chemical composition of erupted magmas requiring the presence of several chemically distinct reservoirs within the mantle. There has been rapid progress on these two problems, with the emergence of the first self-consistent models of plate tectonics and mantle convection, along with new geochemical models that may be consistent with seismic and dynamical constraints on mantle structure.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.3592K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.3592K"><span>Investigating Segmentation in Cascadia: Anisotropic Crustal Structure and Mantle Wedge Serpentinization from Receiver Functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krueger, Hannah E.; Wirth, Erin A.</p> <p>2017-10-01</p> <p>The Cascadia subduction zone exhibits along-strike segmentation in structure, processes, and seismogenic behavior. While characterization of seismic anisotropy can constrain deformation processes at depth, the character of seismic anisotropy in Cascadia remains poorly understood. This is primarily due to a lack of seismicity in the subducting Juan de Fuca slab, which limits shear wave splitting and other seismological analyses that interrogate the fine-scale anisotropic structure of the crust and mantle wedge. We investigate lower crustal anisotropy and mantle wedge structure by computing P-to-S receiver functions at 12 broadband seismic stations along the Cascadia subduction zone. We observe P-to-SV converted energy consistent with previously estimated Moho depths. Several stations exhibit evidence of an "inverted Moho" (i.e., a downward velocity decrease across the crust-mantle boundary), indicative of a serpentinized mantle wedge. Stations with an underlying hydrated mantle wedge appear prevalent from northern Washington to central Oregon, but sparse in southern Oregon and northern California. Transverse component receiver functions are complex, suggesting anisotropic and/or dipping crustal structure. To constrain the orientation of crustal anisotropy we compute synthetic receiver functions using manual forward modeling. We determine that the lower crust shows variable orientations of anisotropy along-strike, with highly complex anisotropy in northern Cascadia, and generally NW-SE and NE-SW orientations of slow-axis anisotropy in central and southern Cascadia, respectively. The orientations of anisotropy from this work generally agree with those inferred from shear wave splitting of tremor studies at similar locations, lending confidence to this relatively new method of inferring seismic anisotropy from slow earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..276..159W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..276..159W"><span>The anisotropic signal of topotaxy during phase transitions in D″</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walker, Andrew M.; Dobson, David P.; Wookey, James; Nowacki, Andy; Forte, Alessandro M.</p> <p>2018-03-01</p> <p>While observations and modelling of seismic anisotropy in the lowermost mantle offers the possibility of imaging mantle flow close to the core-mantle boundary, current models do not explain all observations. Here, we seek to explain a long-wavelength pattern of shear wave anisotropy observed in anisotropic tomography where vertically polarised shear waves travel faster than horizontally polarised shear waves in the central Pacific and under Africa but this pattern is reversed elsewhere. In particular, we test an explanation derived from experiments on analogues, which suggest that texture may be inherited during phase transitions between bridgmanite (perovskite structured MgSiO3) and post-perovskite, and that such texture inheritance may yield the long-wavelength pattern of anisotropy. We find that models that include this effect correlate better with tomographic models than those that assume deformation due to a single phase in the lowermost mantle, supporting the idea that texture inheritance is an important factor in understanding lowermost mantle anisotropy. It is possible that anisotropy could be used to map the post-perovskite stability field in the lowermost mantle, and thus place constraints on the temperature structure above the core-mantle boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008epsc.conf..369R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008epsc.conf..369R"><span>Improvements on the interior structure of Mercury expected from geodesy measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rivoldini, A.; van Hoolst, T.; Verhoeven, O.</p> <p>2008-09-01</p> <p>ABSTRACT We assess the improvements on the interior structure of Mercury provided by expected data from geodesy experiments to be performed with the MESSENGER and BepiColombo orbiters. The observation of obliquity will allow estimating the moment of inertia, whereas measurements of libration will determine the moment of inertia of the silicate shell (mantle and crust). Tidal measurements will constrain the Love numbers that characterize the response of Mercury to the solar tidal forcing. Here, we construct depth-dependent interior structure models of Mercury for several plausible chemical compositions of the core and of the mantle using recent data on core and mantle materials. In particular we study the core structure for different mantle mineralogies and two different temperature profiles. We investigate the influence of the core light element concentration, temperature, and melting law on core state and inner core size. We compute libration amplitude, obliquity, tidal deformation, and tidal changes in the external potential for our models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMDI11C2615S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMDI11C2615S"><span>Upper Mantle Discontinuity Structure Beneath the Western Atlantic Ocean and Eastern North America from SS Precursors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmerr, N. C.; Beghein, C.; Kostic, D.; Baldridge, A. M.; West, J. D.; Nittler, L. R.; Bull, A. L.; Montesi, L.; Byrne, P. K.; Hummer, D. R.; Plescia, J. B.; Elkins-Tanton, L. T.; Lekic, V.; Schmidt, B. E.; Elkins, L. J.; Cooper, C. M.; ten Kate, I. L.; Van Hinsbergen, D. J. J.; Parai, R.; Glass, J. B.; Ni, J.; Fuji, N.; McCubbin, F. M.; Michalski, J. R.; Zhao, C.; Arevalo, R. D., Jr.; Koelemeijer, P.; Courtier, A. M.; Dalton, H.; Waszek, L.; Bahamonde, J.; Schmerr, B.; Gilpin, N.; Rosenshein, E.; Mach, K.; Ostrach, L. R.; Caracas, R.; Craddock, R. A.; Moore-Driskell, M. M.; Du Frane, W. L.; Kellogg, L. H.</p> <p>2015-12-01</p> <p>Seismic discontinuities within the mantle arise from a wide range of mechanisms, including changes in mineralogy, major element composition, melt content, volatile abundance, anisotropy, or a combination of the above. In particular, the depth and sharpness of upper mantle discontinuities at 410 and 660 km depth are attributed to solid-state phase changes sensitive to both mantle temperature and composition, where regions of thermal heterogeneity produce topography and chemical heterogeneity changes the impedance contrast across the discontinuity. Seismic mapping of this topography and sharpness thus provides constraint on the thermal and compositional state of the mantle. The EarthScope USArray is providing unprecedented access to a wide variety of new regions previously undersampled by the SS precursors. This includes the boundary between the oceanic plate in the western Atlantic Ocean and continental margin of eastern North America. Here we use a seismic array approach to image the depth, sharpness, and topography of the upper mantle discontinuities, as well as other possible upper mantle reflectors beneath this region. This array approach utilizes seismic waves that reflect off the underside of a mantle discontinuity and arrive several hundred seconds prior to the SS seismic phase as precursory energy. In this study, we collected high-quality broadband data SS precursors data from shallow focus (< 30 km deep), mid-Atlantic ridge earthquakes recorded by USArray seismometers in Alaska. We generated 4th root vespagrams to enhance the SS precursors and determine how they sample the mantle. Our data show detection of localized structure on the discontinuity boundaries as well as additional horizons, such as the X-discontinuity and a potential reflection from a discontinuity near the depth of the lithosphere-asthenosphere boundary. These structures are related to the transition from predominantly old ocean lithosphere to underlying continental lithosphere, as while deeper reflectors are associated with the subduction of the ancient Farallon slab. A comparison of the depth of upper mantle discontinuities to changes in seismic velocity and anisotropy will further quantify the relationship to mantle flow, compositional layering, and phases changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.7073L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.7073L"><span>Seismic anisotropy in the lowermost mantle near the Perm Anomaly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Long, Maureen D.; Lynner, Colton</p> <p>2015-09-01</p> <p>The lower mantle is dominated by two large structures with anomalously low shear wave velocities, known as Large Low-Shear Velocity Provinces (LLSVPs). Several studies have documented evidence for strong seismic anisotropy at the base of the mantle near the edges of the African LLSVP. Recent work has identified a smaller structure with similar low-shear wave velocities beneath Eurasia, dubbed the Perm Anomaly. Here we probe lowermost mantle anisotropy near the Perm Anomaly using the differential splitting of SKS and SKKS phases measured at stations in Europe. We find evidence for lowermost mantle anisotropy in the vicinity of the Perm Anomaly, with geographic trends hinting at lateral variations in anisotropy across the boundaries of the Perm Anomaly as well as across a previously unsampled portion of the African LLSVP border. Our observations suggest that deformation is concentrated at the boundaries of both the Perm Anomaly and the African LLSVP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760050607&hterms=accounting+law&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Daccounting%2Blaw','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760050607&hterms=accounting+law&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Daccounting%2Blaw"><span>Mantle plumes - A boundary layer approach for Newtonian and non-Newtonian temperature-dependent rheologies. [modeling for island chains and oceanic aseismic ridges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yuen, D. A.; Schubert, G.</p> <p>1976-01-01</p> <p>Stress is placed on the temperature dependence of both a linear Newtonian rheology and a nonlinear olivine rheology in accounting for narrow mantle flow structures. The boundary-layer theory developed incorporates an arbitrary temperature-dependent power-law rheology for the medium, in order to facilitate the study of mantle plume dynamics under real conditions. Thermal, kinematic, and dynamic structures of mantle plumes are modelled by a two-dimensional natural-convection boundary layer rising in a fluid with a temperature-dependent power-law relationship between shear stress and strain rate. An analytic similarity solution is arrived at for upwelling adjacent to a vertical isothermal stress-free plane. Newtonian creep as a deformation mechanism, thermal anomalies resulting from chemical heterogeneity, the behavior of plumes in non-Newtonian (olivine) mantles, and differences in the dynamics of wet and dry olivine are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JGR...104.4783Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JGR...104.4783Z"><span>Upper mantle velocity structure beneath southern Africa from modeling regional seismic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Ming; Langston, Charles A.; Nyblade, Andrew A.; Owens, Thomas J.</p> <p>1999-03-01</p> <p>The upper mantle seismic velocity structure beneath southern Africa is investigated using travel time and waveform data which come from a large mine tremor in South Africa (mb 5.6) recorded by the Tanzania broadband seismic experiment and by several stations in southern Africa. The waveform data show upper mantle triplications for both the 410- and 670-km discontinuities between distances of 2100 and 3000 km. Auxiliary travel time data along similar profiles obtained from other moderate events are also used. P wave travel times are inverted for velocity structure down to ˜800-km depth using the Wiechert-Herglotz technique, and the resulting model is evaluated by perturbing it at three depth intervals and then testing the perturbed model against the travel time and waveform data. The results indicate a typical upper mantle P wave velocity structure for a shield. P wave velocities from the top of the mantle down to 300-km depth are as much as 3% higher than the global average and are slightly slower than the global average between 300- and 420-km depth. Little evidence is found for a pronounced low-velocity zone in the upper mantle. A high-velocity gradient zone is required above the 410-km discontinuity, but both sharp and smooth 410-km discontinuities are permitted by the data. The 670-km discontinuity is characterized by high-velocity gradients over a depth range of ˜80 km around 660-km depth. Limited S wave travel time data suggest fast S wave velocities above ˜150-km depth. These results suggest that the bouyant support for the African superswell does not reside at shallow depths in the upper mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.S22C1040P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.S22C1040P"><span>Teleseismic surface wave study of S-wave velocity structure in Southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prindle-Sheldrake, K. L.; Tanimoto, T.</p> <p>2002-12-01</p> <p>We report on a 3D S-wave velocity structure derived from teleseismic Rayleigh and Love waves using TriNet broadband seismic data. Phase velocity maps, constructed between 20 and 55 mHz for Rayleigh waves and between 25 and 45 mHz for Love waves, were inverted for S-wave velocity structure at depth. Our starting model is SCEC 2.2, which has detailed crustal structure, but laterally homogeneous upper mantle structure. Depth resolution from the data set is good from the surface to approximately 100 km, but deteriorates rapidly beyond this depth. Our analysis indicates that, while Rayleigh wave data are mostly sensitive to mantle structure, Love wave data require some modifications of crustal structure from SCEC 2.2 model. Various regions in Southern California have different seismic-velocity signatures in terms of fast and slow S-wave velocities: In the Southern Sierra, both the crust and mantle are slow. In the Mojave desert, mid-crustal depths tend to show slow velocities, which are already built into SCEC 2.2. In the Transverse Ranges, the lower crust and mantle are both fast. Our Love wave results require much faster crustal velocity than those in SCEC 2.2 in this region. In the Peninsular ranges, both the crust and mantle are fast with mantle fast velocity extending to about 70 km. This is slightly more shallow than the depth extent under the Transverse Ranges, yet it is surprisingly deep. Under the Salton Sea, the upper crust is very slow and the upper mantle is also slow. However, these two slow velocity layers are separated by faster velocity lower crust which creates a distinct contrast with respect to the adjacent slow velocity regions. Existence of such a relatively fast layer, sandwiched by slow velocities, are related to features in phase velocity maps, especially in the low frequency Love wave phase velocity map (25 mHz) and the high frequency Rayleigh wave phase velocity maps (above 40 mHz). Such a feature may be related to partial melting processes under the Salton Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMDI31B2181O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMDI31B2181O"><span>Slab Penetration vs. Slab Stagnation: Mantle Reflectors as an Indicator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Okeler, A.; Gu, Y. J.; Schultz, R.; Contenti, S. M.</p> <p>2011-12-01</p> <p>Subducting oceanic lithosphere along convergent margins may stagnate near the base of the upper mantle or penetrate into the lower mantle. These dynamic processes cause extensive thermal and compositional variations, which can be observed in terms of impedance contrast (reflectivity) and topography of mantle transition zone (MTZ) discontinuities, i.e., 410- and 660-km discontinuities. In this study, we utilize ~ 15000 surface-reflected shear waves (SS) and their precursory arrivals (S410S and S660S) to analyze subduction related deformations on mantle reflectivity structure. We apply pre-stack, time-to-depth migration technique to SS precursors, and move weak underside reflections using PREM-predicted travel-time curves. Common Mid-point gathers are formed to investigate structure under the western Pacific, south America, and Mediterranean convergent boundaries. In general, mantle reflectivity structures are consistent with previous seismic tomography models. In regions of slab penetration (e.g., southern Kurile arc, Aegean Sea), our results show 1) a substantial decrease in S660S amplitude, and 2) strong lower mantle reflector(s) at ~ 900 km depth. These reflective structures are supported by zones of high P and S velocities extending into the lower mantle. Our 1-D synthetic simulations suggest that the decreasing S660S amplitudes are, at least partially, associated with shear wave defocusing due to changes in reflector depth (by ±20 km) within averaging bin. Assuming a ~500 km wide averaging area, a dipping reflector with 6-8 % slope can reduce the amplitude of a SS precursor by ~50%. On the other hand, broad depressions with strong impedance contrast at the base of the MTZ characterize the regions of slab stagnation, such as beneath the Tyrrhenian Sea and northeastern China. For the latter region, substantial topography on the 660-km discontinuity west of the Wadati-Benioff zone suggests that the stagnant part of the Pacific plate across Honshu arc is not nearly as flat as previously suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMDI33A2612D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMDI33A2612D"><span>Probing the Inner Core with P'P'</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Day, E. A.; Irving, J. C. E.</p> <p>2015-12-01</p> <p>Geophysical observations of the inner core today improve our understanding not just of the processes occurring in the core at the present, but also those that have occurred in the past. As the inner core freezes it may record clues as to the state of the Earth at the time of growth, although the texture of the inner core may also be modified through post-solidification mechanisms. The seismic structure of the inner core is not simple; the dominant pattern is one of anisotropic and isotropic differences between the Eastern and Western 'hemispheres' of the inner core. Additionally, there is evidence for an innermost inner core, layering of the uppermost inner core, and possibly super-rotation of the inner core relative to the mantle. Most body wave studies of inner core structure use PKP-PKIKP differential travel times to constrain velocity variations within the inner core. However, body wave studies are inherently limited by the geometry of fixed sources and stations, and thus there are some areas of the inner core that are relatively under-sampled, even in today's data-rich world. Here, we examine the differential travel times of the different branches of P'P' (PKIKPPKIKP and PKPPKP), comparing the arrival time of inner core sensitive branch, P'P'df, with the arrival times of branches that only reach the outer core. By using P'P' we are able to exploit alternative ray geometries and sample different regions of the inner core to those areas accessible to studies which utilize PKIKP. We use both linear and non-linear stacking methods to make observations of small amplitude P'P' phases. These measurements match the broad scale hemispherical pattern of anisotropy in the inner core.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoJI.197..396L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoJI.197..396L"><span>Mantle transition zone structure beneath India and Western China from migration of PP and SS precursors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lessing, Stephan; Thomas, Christine; Rost, Sebastian; Cobden, Laura; Dobson, David P.</p> <p>2014-04-01</p> <p>We investigate the seismic structure of the upper-mantle and mantle transition zone beneath India and Western China using PP and SS underside reflections off seismic discontinuities, which arrive as precursors to the PP and SS arrival. We use high-resolution array seismic techniques to identify precursory energy and to map lateral variations of discontinuity depths. We find deep reflections off the 410 km discontinuity (P410P and S410S) beneath Tibet, Western China and India at depths of 410-440 km and elevated underside reflections of the 410 km discontinuity at 370-390 km depth beneath the Tien Shan region and Eastern Himalayas. These reflections likely correspond to the olivine to wadsleyite phase transition. The 410 km discontinuity appears to deepen in Central and Northern Tibet. We also find reflections off the 660 km discontinuity beneath Northern China at depths between 660 and 700 km (P660P and S660S) which could be attributed to the mineral transformation of ringwoodite to magnesiowuestite and perovskite. These observations could be consistent with the presence of cold material in the middle and lower part of the mantle transition zone in this region. We also find a deeper reflector between 700 and 740 km depth beneath Tibet which cannot be explained by a depressed 660 km discontinuity. This structure could, however, be explained by the segregation of oceanic crust and the formation of a neutrally buoyant garnet-rich layer beneath the mantle transition zone, due to subduction of oceanic crust of the Tethys Ocean. For several combinations of sources and receivers we do not detect arrivals of P660P and S660S although similar combinations of sources and receivers give well-developed P660P and S660S arrivals. Our thermodynamic modelling of seismic structure for a range of compositions and mantle geotherms shows that non-observations of P660P and S660S arrivals could be caused by the dependence of underside reflection coefficients on the incidence angle of the incoming seismic waves. Apart from reflections off the 410 and 660 km discontinuities, we observe intermittent reflectors at 300 and 520 km depth. The discontinuity structure of the study region likely reflects lateral thermal and chemical variations in the upper-mantle and mantle transition zone connected to past and present subduction and mantle convection processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9200V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9200V"><span>Tectonic evolution and mantle structure of the Caribbean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Benthem, Steven; Govers, Rob; Spakman, Wim; Wortel, Rinus</p> <p>2013-04-01</p> <p>In the broad context of investigating the relationship between deep structure & processes and surface expressions, we study the Caribbean plate and underlying mantle. We investigate whether predictions of mantle structure from tectonic reconstructions are in agreement with a detailed tomographic image of seismic P-wave velocity structure under the Caribbean region. In the upper mantle, positive seismic anomalies are imaged under the Lesser Antilles and Puerto Rico. These anomalies are interpreted as remnants of Atlantic lithosphere subduction and confirm tectonic reconstructions that suggest at least 1100 km of convergence at the Lesser Antilles island arc during the past ~45 Myr. The imaged Lesser-Antilles slab consists of a northern and southern anomaly, separated by a low velocity anomaly across most of the upper mantle, which we interpret as the subducted North-South America plate boundary. The southern edge of the imaged Lesser Antilles slab agrees with vertical tearing of South America lithosphere. The northern Lesser Antilles slab is continuous with the Puerto Rico slab along the northeastern plate boundary. This results in an amphitheater-shaped slab and it is interpreted as westward subducting North America lithosphere that remained attached to the surface along the northern boundary. At the Muertos Trough, however, material is imaged until a depth of only 100 km, suggesting a small amount of subduction. The location and length of the imaged South Caribbean slab agrees with proposed subduction of Caribbean lithosphere under the northern South America plate. An anomaly related to proposed Oligocene subduction at the Nicaragua rise is absent in the tomographic model. Beneath Panama, a subduction window exists across the upper mantle, which is related to the cessation of subduction of the Nazca plate under Panama since 9.5 Ma and possibly the preceding subduction of the extinct Cocos-Nazca spreading center. In the lower mantle two large anomaly patterns are imaged. The westernmost anomaly agrees with the subduction of Farallon lithosphere. The second lower mantle anomaly is found east of the Farallon anomaly and is interpreted as a remnant of the late Mesozoic subduction of North and South America oceanic lithosphere at the Greater Antilles, Aves ridge and Leeward Antilles. The imaged mantle structure does not allow us to discriminate between an 'Intra-Americas' origin and a 'Pacific origin' of the Caribbean plate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021976','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021976"><span>Transect across the West Antarctic rift system in the Ross Sea, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Trey, H.; Cooper, A. K.; Pellis, G.; Della, Vedova B.; Cochrane, G.; Brancolini, Giuliano; Makris, J.</p> <p>1999-01-01</p> <p>In 1994, the ACRUP (Antarctic Crustal Profile) project recorded a 670-km-long geophysical transect across the southern Ross Sea to study the velocity and density structure of the crust and uppermost mantle of the West Antarctic rift system. Ray-trace modeling of P- and S-waves recorded on 47 ocean bottom seismograph (OBS) records, with strong seismic arrivals from airgun shots to distances of up to 120 km, show that crustal velocities and geometries vary significantly along the transect. The three major sedimentary basins (early-rift grabens), the Victoria Land Basin, the Central Trough and the Eastern Basin are underlain by highly extended crust and shallow mantle (minimum depth of about 16 km). Beneath the adjacent basement highs, Coulman High and Central High, Moho deepens, and lies at a depth of 21 and 24 km, respectively. Crustal layers have P-wave velocities that range from 5.8 to 7.0 km/s and S-wave velocities from 3.6 to 4.2 km/s. A distinct reflection (PiP) is observed on numerous OBS from an intra-crustal boundary between the upper and lower crust at a depth of about 10 to 12 km. Local zones of high velocities and inferred high densities are observed and modeled in the crust under the axes of the three major sedimentary basins. These zones, which are also marked by positive gravity anomalies, may be places where mafic dikes and sills pervade the crust. We postulate that there has been differential crustal extension across the West Antarctic rift system, with greatest extension beneath the early-rift grabens. The large amount of crustal stretching below the major rift basins may reflect the existence of deep crustal suture zones which initiated in an early stage of the rifting, defined areas of crustal weakness and thereby enhanced stress focussing followed by intense crustal thinning in these areas. The ACRUP data are consistent with the prior concept that most extension and basin down-faulting occurred in the Ross Sea during late Mesozoic time, with relatively small extension, concentrated in the western half of the Ross Sea, during Cenozoic time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSM.T22A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSM.T22A..05M"><span>Seismological observations at the Northern Andean region of Colombia: Evidence for a shallowly subducting Caribbean Slab and an extensional regime in the upper plate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monsalve, G.; Cardona, A.; Yarce, J.; Alvira, D.; Poveda, E.</p> <p>2013-05-01</p> <p>A number of seismological observations, among which we can mention teleseismic travel time residuals, P to S receiver functions and Pn velocity quantification, suggest a clear distinction between the seismic structure of the crust and uppermost mantle between the plains on the Caribbean coast of Colombia and the mountains at the Northern Andean region. Absolute and relative travel time residuals indicate the presence of a seismically fast material in the upper mantle beneath northern Colombia; preliminary results of Pn studies show a region of relatively slow Pn velocities (between 7.8 and 7.9 km/s) underneath the Caribbean coast, contrasting with values greater than 8 km/s beneath the Central and Western cordilleras of Colombia, and the Pacific coast; receiver functions suggest a significantly thinner crust beneath the Caribbean coast, with a crustal thickness between 25 and 30 km, than beneath the Northern Andean zone at the cordilleras of Colombia, where it exceeds 40 km and reaches about 57 km at the location of Bogota. Besides the obviuos discrepancies that appear in response to different topography, we think that the seismological observations are a consequence of the presence of two very distinct slab segments beneath Colombia and contrasting behaviors of the upper plate, which correspond to Caribbean and Nazca subductions. Our seismic observations can be explained by a shallowly subducting Caribbean Plate, in the absence of an asthenospheric wedge, that steepens at about the location of the Bucaramanga nest, and a thinned continental crust that reflects an extensional component linked to oblique convergence of the Caribbean, which contrasts with the crustal thickening in the Andean Cordillera linked to crustal shortening and Nazca plate subuction. These new data are consistent with the idea of of a relatively warm Nazca slab of Neogene age which seems to have a relatively frontal convergence, and a colder, more buoyant Caribbean slab which represents an oceanic plateau of Cretaceous age that is characterized by an oblique convergence relation that has promoted extensional tectonics in the upper plate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.U34A..04A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.U34A..04A"><span>The survival of geochemical mantle heterogeneities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albarede, F.</p> <p>2004-12-01</p> <p>The last decade witnessed major changes in our perception of the geochemical dynamics of the mantle. Data bases such as PETDB and GEOROC now provide highly constrained estimates of the geochemical properties of dominant rock types and of their statistics, while the new generation of ICP mass spectrometers triggered a quantum leap in the production of high-precision isotopic and elemental data. Such new advances offer a fresh view of mantle heterogeneities and their survival through convective mixing. A vivid example is provided by the new high-density coverage of the Mid-Atlantic ridge by nearly 500 Pb, Nd, and Hf isotopic data. This new data set demonstrates a rich harmonic structure which illustrates the continuing stretching and refolding of subducted plates by mantle convection. Just as for oceanic chemical variability, the survival of mantle geochemical heterogeneities though mantle circulation can be seen as a competition between stirring and renewal. The modern residence (renewal) times of the incompatible lithophile elements in the mantle calculated using data bases vary within a rather narrow range (4-9 Gy). The mantle is therefore not currently at geochemical steady-state and the effect of its primordial layering on modern mantle geochemistry is still strong. Up to 50 percent of incompatible lithophile elements may never have been extracted into the oceanic crust, which generalizes a conclusion reached previously for 40Ar. A balance between the buoyancy flux and viscous dissipation provides frame-independent estimates of the rates of mixing by mantle convection: primordial geochemical anomalies with initial length scales comparable to mantle depths of plate lengths are only marginally visible at the scale of mantle melting underneath mid-ocean ridges (≈~50~km). They may show up, however, in hot spot basalts and even more in melt inclusions. Up to 50 percent primordial material may be present in the mantle, but scattered throughout as small (<~10~km) domains, strongly sheared and refolded, and interlayered with younger recycled material. The exploration of the fine-scale geochemical structure of the mantle and the quest for preserved remnants of very old mantle arise as the strongest priorities of deep Earth geochemistry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR43C0474Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR43C0474Z"><span>Single-crystal structure determination of hydrous minerals and insights into a wet deep lower mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, L.; Yuan, H.; Meng, Y.; Popov, D.</p> <p>2017-12-01</p> <p>Water enters the Earth's interior through hydrated subducting slabs. How deep within the lower mantle (670-2900 km depth) can water be transported down and stored depends upon the availability of hydrous phases that is thermodynamically stable under the high P-T conditions and have a sufficiently high density to sink through the lower mantle. Phase H [MgSiH2O4] (1) and the δ-AlOOH (2) form solid solutions that are stable in the deep lower mantle (3), but the solid solution phase is 10% lighter than the corresponding lower mantle. Recent experimental discoveries of the pyrite (Py) structured FeO2 and FeOOH (4-6) suggest that these Fe-enriched phases can be transported to the deepest lower mantle owing to their high density. We have further discovered a very dense hydrous phase in (Fe,Al)OOH with a previously unknown hexagonal symmetry and this phase is stable relative to the Py-phase under extreme high P-T conditions in the deep lower mantle. Through in situ multigrain analysis (7) and single-crystal structure determination of the hydrous minerals at P-Tconditions of the deep lower mantle, we can obtain detailed structure information of the hydrous phases and therefore provide insights into the hydration mechanism in the deep lower mantle. These highly stable hydrous minerals extend the water cycle at least to the depth of 2900 km. 1. M. Nishi et al., Nature Geoscience 7, 224-227 (2014). 2. E. Ohtani, K. Litasov, A. Suzuki, T. Kondo, Geophysical Research Letters 28, 3991-3993 (2001). 3. I. Ohira et al., Earth and Planetary Science Letters 401, 12-17 (2014). 4. Q. Hu et al., Proceedings of the National Academy of Sciences of the United States of America 114, 1498-1501 (2017). 5. M. Nishi, Y. Kuwayama, J. Tsuchiya, T. Tsuchiya, Nature 547, 205-208 (2017). 6. Q. Hu et al., Nature 534, 241-244 (2016). 7. L. Zhang et al., American Mineralogist 101, 231-234 (2016).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915509H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915509H"><span>The nature of the lithosphere-asthenosphere boundary from laboratory investigations of olivine anisotropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, Lars; Qi, Chao; Warren, Jessica; Kohlstedt, David; Holtzman, Benjamin; Wallis, David</p> <p>2017-04-01</p> <p>The nature of the lithosphere-asthenosphere boundary (LAB) determines the mechanical coupling between rigid plates and the underlying convecting mantle. Seismological studies reveal distinct reflectors (G discontinuity) in the uppermost oceanic mantle that are sometimes interpreted as the LAB. The discontinuity in seismic velocity is suggested to arise from abrupt changes in composition, including the melt fraction. Interestingly, these reflectors roughly correlate with the location of discontinuities in radial seismic anisotropy, but do not correlate with the location of discontinuities in azimuthal anisotropy. To investigate the correlation between these datasets, we draw on recent laboratory measurements of crystallographic texture development in olivine-rich rocks. The textural evolution of dry olivine aggregates has been well described in recent experiments, while micromechanical models are available for incorporating these observations into larger-scale models of upper-mantle flow. Unfortunately, the systematics of textural evolution in melt-bearing olivine aggregates have not been similarly described. Here we present a new experimental data set detailing the evolution of anisotropy during deformation of partially molten peridotite. Torsion experiments were conducted on samples composed of San Carlos olivine and basaltic melt at a temperature of 1473 K and a confining pressure of 300 MPa. Seismically fast axes of olivine tend to lie at a high angle to the flow direction in a manner similar to previous experiments. The anisotropy in these samples is weak compared to that in dry, melt-free olivine deformed to similar strains. The anisotropy also exhibits relatively little change in strength and orientation with progressive deformation. Detailed microstructural analyses allow us to distinguish between competing models for the grain-scale deformation processes, favoring one in which crystallographically controlled grain shapes govern grain rotations. We incorporate results for dry and melt-bearing olivine into a 1-D, time-dependent flow model to predict the anisotropic structure of the Pacific upper mantle. Flow occurring outside of the melting region below the ridge axis is assumed to generate a texture similar to that observed in our dry olivine experiments. This flow generates a discontinuity in azimuthal anisotropy in agreement with seismological observations. The predicted discontinuity also coincides with the base of a high viscosity region and, therefore, acts as a proxy for the rheological LAB. Flow occurring within the melting region beneath the ridge axis is assumed to generate a texture similar to that observed in our melt-bearing experiments. This subset of the model yields a discontinuity in radial anisotropy at shallow depths that is also in agreement with seismological observations. The depth of this discontinuity in radial anisotropy is set by the maximum depth at which melting occurs beneath the ridge axis. We conclude that, following a rheological definition of the lithosphere, the LAB is best defined by a discontinuity in azimuthal anisotropy that is coincident with a thermal boundary layer. The discontinuity in radial anisotropy appears related to melting near the ridge axis, which is consistent with the nature of the associated sharp reflectors. We suggest that these reflectors and the discontinuity in radial anisotropy do not represent the LAB but instead represent intralithospheric structure that does not significantly modify the rheological behavior of the lithosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S54B..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S54B..06M"><span>A harmonic analysis approach to joint inversion of P-receiver functions and wave dispersion data in high dense seismic profiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Molina-Aguilera, A.; Mancilla, F. D. L.; Julià, J.; Morales, J.</p> <p>2017-12-01</p> <p>Joint inversion techniques of P-receiver functions and wave dispersion data implicitly assume an isotropic radial stratified earth. The conventional approach invert stacked radial component receiver functions from different back-azimuths to obtain a laterally homogeneous single-velocity model. However, in the presence of strong lateral heterogeneities as anisotropic layers and/or dipping interfaces, receiver functions are considerably perturbed and both the radial and transverse components exhibit back azimuthal dependences. Harmonic analysis methods exploit these azimuthal periodicities to separate the effects due to the isotropic flat-layered structure from those effects caused by lateral heterogeneities. We implement a harmonic analysis method based on radial and transverse receiver functions components and carry out a synthetic study to illuminate the capabilities of the method in isolating the isotropic flat-layered part of receiver functions and constrain the geometry and strength of lateral heterogeneities. The independent of the baz P receiver function are jointly inverted with phase and group dispersion curves using a linearized inversion procedure. We apply this approach to high dense seismic profiles ( 2 km inter-station distance, see figure) located in the central Betics (western Mediterranean region), a region which has experienced complex geodynamic processes and exhibit strong variations in Moho topography. The technique presented here is robust and can be applied systematically to construct a 3-D model of the crust and uppermost mantle across large networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V23A1229T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V23A1229T"><span>Transition Metal Systematics of Opx-Enriched Harzburgites From the Cascades Arc With Implications for the Origin of Cratonic Peridotites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turner, S. J.</p> <p>2007-12-01</p> <p>A number of peridotite xenoliths collected from the Simcoe volcanic field region of the Cascades arc exhibit notable enrichment of modal orthopyroxene. The process driving this enrichment is most likely metasomatism of the mantle wedge by Si-rich fluids derived ultimately from the underlying slab. By investigating the resultant elemental systematics associated with subduction zone metasomatism of this type, we hope to shed light on the origin of other opx-rich peridotites, such as those seen in many cratonic xenolith suites. The xenoliths found in the Simcoe volcanic field provide a rare opportunity to examine the composition of sub arc mantle, as it is unusual to find mantle xenoliths in volcanic arc lavas. The samples were analyzed using laser ablation ICPMS and their bulk compositions were reconstructed from point-counted mineral modes. Two-pyroxene mineral thermometry of the samples yield temperatures of approximately 1000 degrees C, corresponding to a depth of origin at uppermost mantle pressures if typical arc geotherms are assumed. Most of the peridotites are harzburgites or olivine-orthopyroxenites (Mg#s 0.88-0.9; opx mode 0.15-0.9), with small amounts of clinopyroxene (<0.02). Clinopyroxenes are significantly enriched in the light rare earths, consistent with a metasomatic origin for these opx-rich harzburgites. Of note is the counterintuitive systematics of Zn. Whole-rock Zn decreases with opx, but Zn in olivine also decreases with opx mode while Zn in opx increases with opx mode, hence the decrease in whole- rock Zn is not simply due to mechanical segregation of harzburgite into opx- and ol-rich zones. In summary, the REE signatures suggest the subducting slab as the most likely candidate for the source of the fluids that caused the opx enrichment. The opx-enrichment itself and the unusual trends in Zn suggest a reaction between a silicic fluid and normal harzburgite. Moreover, the concomitant decrease in olivine and whole-rock Zn with opx mode suggests significant leaching of Zn from the peridotite during this process. Because the bulk partitioning of Zn in anhydrous peridotite melting is unity, low Zn contents are anomalous. The best explanation for these low values is that Zn partition coefficients decrease in hydrous environments. Many opx-enriched Archean cratonic peridotite xenoliths have anomalously low Zn contents, supporting the suggestion that such peridotites formed in arc environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910811H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910811H"><span>The mantle lithosphere and the Wilson Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heron, Philip; Pysklywec, Russell; Stephenson, Randell</p> <p>2017-04-01</p> <p>In the view of the conventional theory of plate tectonics (e.g., the Wilson Cycle), crustal inheritance is often considered important in tectonic evolution. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Deep seismic imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures, and as such linked to the Wilson Cycle and inheritance. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, characteristic of stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in controlling deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics. We outline the difficulty in unravelling the causes of tectonic deformation, alongside discussing the role of deep lithosphere processes in plate tectonics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995PEPI...88..117G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995PEPI...88..117G"><span>On seismic resolution of lateral heterogeneity in the Earth's outermost core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garnero, Edward J.; Helmberger, Donald V.</p> <p>1995-03-01</p> <p>Issues concerning resolution of seismically determined outermost core properties are presented with an example from three earthquakes in the Fiji-Tonga region. Travel time behavior of the commonly used family of S mKS waves, which travel as S in the mantle, P in the core, reflecting m - 1 times at the underside of the core-mantle boundary (CMB), are analyzed over a large distance range (125-165°). Data having wavepaths through an area of known D″ heterogeneity (±2%) exhibit systematic anomalies in S mKS differential times. Two-dimensional wave propagation experiments demonstrate how large-scale lower-mantle velocity perturbations can explain long-wavelength behavior of such anomalous S mKS times, though heterogeneity on smaller scales may be responsible for the observed scatter about these trends. If lower-mantle heterogeneity is not properly accounted for in deriving a core model, misfit of the mantle model maps directly into core structure. The existence of outermost core heterogeneity is difficult to resolve at present, owing to uncertainties in global lower-mantle structure. Resolving a one-dimensional chemically stratified outermost core also remains difficult, owing to the same uncertainties. Inclusion of the slowly accruing broadband data should help in this regard. Restricting study to higher multiples of S mKS ( m = 2, 3, 4) can help reduce the effect of mantle heterogeneity, because of the closeness of the mantle legs of the wavepaths. S mKS waves are ideal in providing additional information on the details of lower-mantle heterogeneity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT.......122P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT.......122P"><span>Upper mantle seismic velocity structure beneath the Kenya Rift and the Arabian Shield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Yongcheol</p> <p></p> <p>Upper mantle structure beneath the Kenya Rift and Arabian Shield has been investigated to advance our understanding of the origin of the Cenozoic hotspot tectonism found there. A new seismic tomographic model of the upper mantle beneath the Kenya Rift has been obtained by inverting teleseismic P-wave travel time residuals. The model shows a 0.5--1.5% low velocity anomaly below the Kenya Rift extending to about 150 km depth. Below ˜150 km depth, the anomaly broadens to the west toward the Tanzania Craton, suggesting a westward dip to the structure. The P- and S-wave velocity structure beneath the Arabian Shield has been investigated using travel-time tomography. Models for the seismic velocity structure of the upper mantle between 150 and 400 depths reveal a low velocity region (˜1.5% in the P model and ˜3% in the S model) trending NW-SE along the western side of the Arabian Shield and broadening to the northeast beneath the MMN volcanic line. The models have limited resolution above 150 km depth everywhere under the Shield, and in the middle part of the Shield the resolution is limited at all depths. Rayleigh wave phase velocity measurements have been inverted to image regions of the upper mantle under the Arabian Shield not well resolved by the body wave tomography. The shear wave velocity model obtained shows upper mantle structure above 200 km depth. A broad low velocity region in the lithospheric mantle (depths of ≤ ˜100 km) across the Shield is observed, and below ˜150 km depth a region of low shear velocity is imaged along the Red Sea coast and MMN volcanic line. A westward dipping low velocity zone beneath the Kenya Rift is consistent with an interpretation by Nyblade et al. [2000] suggesting that a plume head is located under the eastern margin of the Tanzania Craton, or alternatively a superplume rising from the lower mantle from the west and reaching the surface under Kenya [e.g., Debayle et al., 2001; Grand et al., 1997; Ritsema et al., 1999]. For the Arabian Shield, the models are not consistent with a two plume model [Camp and Roobol, 1992] because there is a continuous low velocity zone at depths ≥ 150 km along the western side of the Shield and not separate anomalies. The NW-SE trending low velocity anomaly beneath the western side of the Shield supports the Ebinger and Sleep [1998] model invoking plume flow channeled by thinner lithosphere along the Red Sea coast. The NW-SE low velocity structure beneath the western side of the Shield could also be the northern-most extent of the African Superplume. A low velocity anomaly beneath Ethiopia [Benoit et al., 2006a,b] dips to the west and may extend through the mantle transition zone. The observed low velocities in the upper mantle beneath the Arabian Shield could be caused by hot mantle rock rising beneath Ethiopia and flowing to the north under the Arabian Shield.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMDI51C1883T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMDI51C1883T"><span>Mantle transition zone structure beneath the Canadian Shield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, D. A.; Helffrich, G. R.; Bastow, I. D.; Kendall, J. M.; Wookey, J.; Eaton, D. W.; Snyder, D. B.</p> <p>2010-12-01</p> <p>The Canadian Shield is underlain by one of the deepest and most laterally extensive continental roots on the planet. Seismological constraints on the mantle structure beneath the region are presently lacking due to the paucity of stations in this remote area. Presented here is a receiver function study on transition zone structure using data from recently deployed seismic networks from the Hudson Bay region. High resolution images based on high signal-to-noise ratio data show clear arrivals from the 410 km and 660 km discontinuities, revealing remarkably little variation in transition zone structure. Transition zone thickness is close to the global average (averaging 245 km across the study area), and any deviations in Pds arrival time from reference Earth models can be readily explained by upper-mantle velocity structure. The 520 km discontinuity is not a ubiquitous feature, and is only weakly observed in localised areas. These results imply that the Laurentian root is likely confined to the upper-mantle and if any mantle downwelling exists, possibly explaining the existence of Hudson Bay, it is also confined to the upper 400 km. Any thermal perturbations at transition zone depths associated with the existence of the root, whether they be cold downwellings or elevated temperatures due to the insulating effect of the root, are thus either non-existent or below the resolution of the study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031972&hterms=model+geological&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmodel%2Bgeological','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031972&hterms=model+geological&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmodel%2Bgeological"><span>A kinematic model for the late Cenozoic development of southern California crust and upper mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Humphreys, Eugene D.; Hager, Bradford H.</p> <p>1990-01-01</p> <p>A model is developed for the young and ongoing kinematic deformation of the southern California crust and upper mantle. The kinematic model qualitatively explains both the overall seismic structure of the upper mantle and much of the known geological history of the late Cenozoic as consequences of ongoing convection beneath southern California. In this model, the high-velocity upper-mantle anomaly of the Transverse ranges is created through the convergence and sinking of the entire thickness of subcrustal lihtosphere, and the low-velocity upper-mantle anomaly beneath the Salton Trough region is attributed to high temperatures and 1-4 percent partial melt related to adiabatic decompression during mantle upwelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........14Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........14Z"><span>Quantum phases and phase transitions in disordered low-dimensional systems: thin film superconductors, bilayer two-dimensional electron systems, and one-dimensional optical lattices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Nan</p> <p></p> <p>Understanding the Earth's evolution is a fundamental goal of geophysics. The mantle plays the key role in understanding the Earth's evolution. The convective planform of the mantle influences the energy exchange of the core on the core-mantle boundary (CMB) and hence the geodynamo process, determines the heat release and hence the thermal evolution of the Earth, and shapes the long wavelength topography on the surface of the Earth. Given the observationally constrained mantle viscosity structure, and realistic convective vigor and internal heating rate, the numerical modeling of mantle convection shows that the mobile-lid mantle convection is characterized by either a spherical harmonic degree-1 planform with a major upwelling in one hemisphere and a major downwelling in the other hemisphere when continents are absent, or a degree-2 planform with two antipodal major upwellings when a supercontinent is present. The Earth's mantle evolves from one to the other of these two modes due to modulation of continents, causing the cyclic processes of assembly and breakup of supercontinents. However, to constrain the realistically temporal evolution of mantle convection, other observations such as the time-dependent plate motion and geological records are needed. I reconstruct a proxy model for global plate motion for the last 450 Myr. Using the proxy plate motion model as time dependent boundary conditions, I reproduce well the basic features of the present-day mantle structure including the African and Pacific superplumes and chemical piles, and a predominantly degree 2 structure throughout the lower mantle. I further demonstrate that the mantle in the African hemisphere around the Pangea time is predominated by cold downwellings resulting from the convergence between Gondwana and Laurussia, consistent with the 1-2-1 cyclic model from the numerical modeling of mantle convection. Based on the evolution of the three-dimensional mantle structures, I reconstruct tempo-spatial evolutions of the surface and CMB heat fluxes, and the dynamic topography since the Paleozoic. My result shows that the surface heat flux increases by ~16% from 200 to 120 Ma ago as a result of Pangea breakup and the equatorial CMB heat flux has two minima that coincide with the Kiaman (316-262 Ma) and Cretaceous (118-83 Ma) Superchrons, respectively, and may be responsible for the Superchrons. My results of the dynamic topography show that the Slave Craton subsided when the major downwelling occupied the mantle beneath North America, while Sao Francisco Craton, Kaapvaal Craton, and Yilgarn Craton were supported by the large scale upwellings in the mantle beneath the very south of Pangea around 330 Ma during Pangea formation. After Pangea formed, Slave Craton started to uplift as the major downwelling heated up with time and were controlled by the subductions close to it. Sao Francisco Craton and Kaapvaal Craton kept uplifting due to the returning African Superplume. My reconstructed dynamic topography history compares well with the vertical motion history of Slave Craton indicated by the thermochronometry study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoJI.195.1576S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoJI.195.1576S"><span>A novel anisotropic inversion approach for magnetotelluric data from subsurfaces with orthogonal geoelectric strike directions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmoldt, Jan-Philipp; Jones, Alan G.</p> <p>2013-12-01</p> <p>The key result of this study is the development of a novel inversion approach for cases of orthogonal, or close to orthogonal, geoelectric strike directions at different depth ranges, for example, crustal and mantle depths. Oblique geoelectric strike directions are a well-known issue in commonly employed isotropic 2-D inversion of MT data. Whereas recovery of upper (crustal) structures can, in most cases, be achieved in a straightforward manner, deriving lower (mantle) structures is more challenging with isotropic 2-D inversion in the case of an overlying region (crust) with different geoelectric strike direction. Thus, investigators may resort to computationally expensive and more limited 3-D inversion in order to derive the electric resistivity distribution at mantle depths. In the novel approaches presented in this paper, electric anisotropy is used to image 2-D structures in one depth range, whereas the other region is modelled with an isotropic 1-D or 2-D approach, as a result significantly reducing computational costs of the inversion in comparison with 3-D inversion. The 1- and 2-D versions of the novel approach were tested using a synthetic 3-D subsurface model with orthogonal strike directions at crust and mantle depths and their performance was compared to results of isotropic 2-D inversion. Structures at crustal depths were reasonably well recovered by all inversion approaches, whereas recovery of mantle structures varied significantly between the different approaches. Isotropic 2-D inversion models, despite decomposition of the electric impedance tensor and using a wide range of inversion parameters, exhibited severe artefacts thereby confirming the requirement of either an enhanced or a higher dimensionality inversion approach. With the anisotropic 1-D inversion approach, mantle structures of the synthetic model were recovered reasonably well with anisotropy values parallel to the mantle strike direction (in this study anisotropy was assigned to the mantle region), indicating applicability of the novel approach for basic subsurface cases. For the more complex subsurface cases, however, the anisotropic 1-D inversion approach is likely to yield implausible models of the electric resistivity distribution due to inapplicability of the 1-D approximation. Owing to the higher number of degrees of freedom, the anisotropic 2-D inversion approach can cope with more complex subsurface cases and is the recommended tool for real data sets recorded in regions with orthogonal geoelectric strike directions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12460480','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12460480"><span>Mantle-circulation models with sequential data assimilation: inferring present-day mantle structure from plate-motion histories.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bunge, Hans-Peter; Richards, M A; Baumgardner, J R</p> <p>2002-11-15</p> <p>Data assimilation is an approach to studying geodynamic models consistent simultaneously with observables and the governing equations of mantle flow. Such an approach is essential in mantle circulation models, where we seek to constrain an unknown initial condition some time in the past, and thus cannot hope to use first-principles convection calculations to infer the flow history of the mantle. One of the most important observables for mantle-flow history comes from models of Mesozoic and Cenozoic plate motion that provide constraints not only on the surface velocity of the mantle but also on the evolution of internal mantle-buoyancy forces due to subducted oceanic slabs. Here we present five mantle circulation models with an assimilated plate-motion history spanning the past 120 Myr, a time period for which reliable plate-motion reconstructions are available. All models agree well with upper- and mid-mantle heterogeneity imaged by seismic tomography. A simple standard model of whole-mantle convection, including a factor 40 viscosity increase from the upper to the lower mantle and predominantly internal heat generation, reveals downwellings related to Farallon and Tethys subduction. Adding 35% bottom heating from the core has the predictable effect of producing prominent high-temperature anomalies and a strong thermal boundary layer at the base of the mantle. Significantly delaying mantle flow through the transition zone either by modelling the dynamic effects of an endothermic phase reaction or by including a steep, factor 100, viscosity rise from the upper to the lower mantle results in substantial transition-zone heterogeneity, enhanced by the effects of trench migration implicit in the assimilated plate-motion history. An expected result is the failure to account for heterogeneity structure in the deepest mantle below 1500 km, which is influenced by Jurassic plate motions and thus cannot be modelled from sequential assimilation of plate motion histories limited in age to the Cretaceous. This result implies that sequential assimilation of past plate-motion models is ineffective in studying the temporal evolution of core-mantle-boundary heterogeneity, and that a method for extrapolating present-day information backwards in time is required. For short time periods (of the order of perhaps a few tens of Myr) such a method exists in the form of crude 'backward' convection calculations. For longer time periods (of the order of a mantle overturn), a rigorous approach to extrapolating information back in time exists in the form of iterative nonlinear optimization methods that carry assimilated information into the past through the use of an adjoint mantle convection model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMDI11A2192X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMDI11A2192X"><span>Exploring Sources of Uncertainties in Global Radial Anisotropy Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xing, Z.; Beghein, C.; Yuan, K.</p> <p>2013-12-01</p> <p>We investigate sources of uncertainties in radial anisotropy models with a focus on the transition zone (TZ). Radial anisotropy describes the velocity difference between horizontally (SH) and vertically (SV) polarized shear waves. Its presence in the top 200 km of the mantle is well documented and thought of as an indicator of deformation by dislocation creep due to mantle shear. There is however no consensus regarding its presence at larger depths, which affects our understanding of deep upper mantle deformation. Several of the models that display radial anisotropy in the TZ are characterized by SH waves faster than SV waves (VSH>VSV) at these depths. Model VTLK08 (Visser et al., 2008) is however characterized by VSV>VSH in the TZ. The first part of this study aims at determining the origin of this discrepancy and the robustness of the VSV>VSH TZ signal in VTLK08. We used the global phase velocity maps of Visser et al (2008) for fundamental and higher mode Love and Rayleigh waves, which provide sensitivity to structure well below the TZ. We first tested the effect of imposing prior crustal corrections instead of inverting for the Moho depth as in VTLK08. We applied non-linear crustal corrections to the data on a 5 by 5 degree grid using CRUST2.0, and calculated laterally varying sensitivity kernels to account for the effect of the crust on the partial derivatives. We employed a depth parametrization in terms of cubic splines of varying depth spacing defined between the local Moho and 1400 km depth. We applied similar prior relationships between P- and S-wave elastic parameters as in VTLK08, and solved the problem using both a traditional inversion method and the same Neighbourhod Algorithm (NA) forward modeling approach as in VTLK08. The first stage of the NA enables us to randomly sample the model space, including the null space. The second stage describes each model parameter with probability density functions, thereby providing quantitative model uncertainties. Our preliminary results show that the TZ signal in VTLK08 is not strongly dependent on crustal corrections or on the inversion method employed. In both cases, we obtained average anisotropy and velocity profiles consistent with VTLK08, with 2% VSV>VSH anisotropy in the TZ for the best fitting model obtained with NA. The 3-D anisotropy anomalies are in agreement with VTLK08 at most depths. However the models differ in the TZ under the central Pacific where we found a positive anisotropy signal that does not appear in VTLK08. With the model uncertainties provided by the second stage of the NA, we will be able to determine whether the significance of this positive signal. The next phase of our work will consist in analyzing the effect of assuming that P- and S-wave anisotropies are proportional, an assumption often made to deal with model non-uniqueness. These prior constraints do not strongly affect the most likely model in the uppermost 200km of the mantle (Beghein, 2010) but they may affect mantle models at greater depths. The use of the NA will enable us to determine whether the introduction of such prior significantly affects the range of models compatible with the data, which in turn will enable us to determine whether the TZ signal of VTLK08 is well constrained by the data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2530Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2530Y"><span>A relatively reduced Hadean continental crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xiaozhi; Gaillard, Fabrice; Scaillet, Bruno</p> <p>2014-05-01</p> <p>Among the physical and chemical parameters used to characterize the Earth, oxidation state, as reflected by its prevailing oxygen fugacity (fO2), is a particularly important one. It controls many physicochemical properties and geological processes of the Earth's different reservoirs, and affects the partitioning of elements between coexisting phases and the speciation of degassed volatiles in melts. In the past decades, numerous studies have been conducted to document the evolution of mantle and atmospheric oxidation state with time and in particular the possible transition from an early reduced state to the present oxidized conditions. So far, it has been established that the oxidation state of the uppermost mantle is within ±2 log units of the quartz-fayalite-magnetite (QFM) buffer, probably back to ~4.4 billion years ago (Ga) based on trace-elements studies of mantle-derived komatiites, kimberlites, basalts, volcanics and zircons, and that the O2 levels of atmosphere were initially low and rose markedly ~2.3 Ga known as the Great Oxidation Event (GOE), progressively reaching its present oxidation state of ~10 log units above QFM. In contrast, the secular evolution of oxidation state of the continental crust, an important boundary separating the underlying upper mantle from the surrounding atmosphere and buffering the exchanges and interactions between the Earth's interior and exterior, has rarely been addressed, although the presence of evolved crustal materials on the Earth can be traced back to ~4.4 Ga, e.g. by detrital zircons. Zircon is a common accessory mineral in nature, occurring in a wide variety of igneous, sedimentary and metamorphic rocks, and is almost ubiquitous in crustal rocks. The physical and chemical durability of zircons makes them widely used in geochemical studies in terms of trace-elements, isotopes, ages and melt/mineral inclusions; in particular, zircons are persistent under most crustal conditions and can survive many secondary processes such as metamorphism, weathering and erosion. Thus, zircons in granites of shallow crust may record the chemical/isotopic composition of the deep crust that is otherwise inaccessible, and offer robust records of the magmatic and crust-forming events preserved in the continental crust. In fact, due to the absence of suitable rock records (in particular for periods older than ~4.0 Ga), studies in recent years concerning the nature, composition, growth and evolution of the continental crust, and especially the Hadean crust, have heavily relied on inherited/detrital zircons. Natural igneous zircons incorporate rare-earth elements (REE) and other trace elements in their structure at concentrations controlled by the temperature, pressure, fO2 and composition of their crystallization environment. Petrological observations and recent experiments have shown that the concentration of Ce relative to other REE in igneous zircons can be used to constrain the fO2 during their growth. By combining available trace-elements data of igneous zircons of crustal origin, we show that the Hadean continental crust was significantly more reduced than its modern counterpart and experienced progressive oxidation till ~3.6 billions years ago. We suggest that the increase in the oxidation state of the Hadean continental crust is related to the progressive decline in the intensity of meteorite impacts during the late veneer. Impacts of carbon- and hydrogen-rich materials during the formation of Hadean granitic crust must have favoured strongly reduced magmatism. The conjunction of cold, wet and reduced granitic magmatism during the Hadean implies the degassing of methane and water. When impacts ended, magma produced by normal decompression melting of the mantle imparted more oxidizing conditions to erupted lavas and the related crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910012282','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910012282"><span>Report of the panel on earth structure and dynamics, section 6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dziewonski, Adam M.; Mcadoo, David C.; Oconnell, Richard J.; Smylie, Douglas E.; Yoder, Charles F.</p> <p>1991-01-01</p> <p>The panel identified problems related to the dynamics of the core and mantle that should be addressed by NASA programs. They include investigating the geodynamo based on observations of the Earth's magnetic field, determining the rheology of the mantle from geodetic observations of post-glacial vertical motions and changes in the gravity field, and determining the coupling between plate motions and mantle flow from geodetic observations of plate deformation. Also emphasized is the importance of support for interdisciplinary research to combine various data sets with models which couple rheology, structure and dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.716...52B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.716...52B"><span>Marine magnetotellurics imaged no distinct plume beneath the Tristan da Cunha hotspot in the southern Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baba, Kiyoshi; Chen, Jin; Sommer, Malte; Utada, Hisashi; Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion</p> <p>2017-10-01</p> <p>The Tristan da Cunha (TDC) is a volcanic island located above a prominent hotspot in the Atlantic Ocean. Many geological and geochemical evidences support a deep origin of the mantle material feeding the hotspot. However, the existence of a plume has not been confirmed as an anomalous structure in the mantle resolved by geophysical data because of lack of the observations in the area. Marine magnetotelluric and seismological observations were conducted in 2012-2013 to examine the upper mantle structure adjacent to TDC. The electrical conductivity structure of the upper mantle beneath the area was investigated in this study. Three-dimensional inversion analysis depicted a high conductive layer at 120 km depth but no distinct plume-like vertical structure. The conductive layer is mostly flat independently on seafloor age and bulges upward beneath the lithospheric segment where the TDC islands are located compared to younger segment south of the TDC Fracture Zone, while the bathymetry is rather deeper than prediction for the northern segment. The apparent inconsistency between the absence of vertical structure in this study and geochemical evidences on deep origin materials suggests that either the upwelling is too small and/or weak to be resolved by the current data set or that the upwelling takes place elsewhere outside of the study area. Other observations suggest that 1) the conductivity of the upper mantle can be explained by the fact that the mantle above the high conductivity layer is depleted in volatiles as the result of partial melting beneath the spreading ridge, 2) the potential temperature of the segments north of the TDC Fracture Zone is lower than that of the southern segment at least during the past 30 Myr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI31A2609K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI31A2609K"><span>A Global Upper-Mantle Tomographic Model of Shear Attenuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karaoglu, H.; Romanowicz, B. A.</p> <p>2016-12-01</p> <p>Mapping anelastic 3D structure within the earth's mantle is key to understanding present day mantle dynamics, as it provides complementary constraints to those obtained from elastic structure, with the potential to distinguish between thermal and compositional heterogeneity. For this, we need to measure seismic wave amplitudes, which are sensitive to both elastic (through focusing and scattering) and anelastic structure. The elastic effects are less pronounced at long periods, so previous global upper-mantle attenuation models are based on teleseismic surface wave data, sometimes including overtones. In these studies, elastic effects are considered either indirectly, by eliminating data strongly contaminated by them (e.g. Romanowicz, 1995; Gung and Romanowicz, 2004), or by correcting for elastic focusing effects using an approximate linear approach (Dalton et al., 2008). Additionally, in these studies, the elastic structure is held fixed when inverting for intrinsic attenuation . The importance of (1) having a good starting elastic model, (2) accurate modeling of the seismic wavefield and (3) joint inversion for elastic and anelastic structure, becomes more evident as the targeted resolution level increases. Also, velocity dispersion effects due to anelasticity need to be taken into account. Here, we employ a hybrid full waveform inversion method, inverting jointly for global elastic and anelastic upper mantle structure, starting from the latest global 3D shear velocity model built by our group (French and Romanowicz, 2014), using the spectral element method for the forward waveform modeling (Capdeville et al., 2003), and normal-mode perturbation theory (NACT - Li and Romanowicz, 1995) for kernel computations. We present a 3D upper-mantle anelastic model built by using three component fundamental and overtone surface waveforms down to 60 s as well as long period body waveforms down to 30 s. We also include source and site effects to first order as frequency independent scalar factors. The robustness of the inversion method is assessed through synthetic and resolution tests. We discuss salient features of the resulting anelastic model and in particular the well-resolved strong correlation with tectonics observed in the first 200 km of the mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyC..550...52F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyC..550...52F"><span>New proposal of mechanical reinforcement structures to annular REBaCuO bulk magnet for compact and cryogen-free NMR spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujishiro, H.; Takahashi, K.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.</p> <p>2018-07-01</p> <p>We have proposed new reinforcement structures using an aluminum alloy ring to the annular REBaCuO bulks applicable to compact and cryogen-free 400 MHz (9.4 T) nuclear magnetic resonance (NMR) spectrometer using a numerical simulation of mechanical stress. The thermal compressive stress, σθcool, which was applied to the annular bulks during cooling due to the difference of thermal expansion coefficient between bulk and aluminum alloy, became fairly enhanced at the surface of the uppermost bulk for the new reinforcement structures, compared to the conventional reinforcement with the same height as the annular bulk, in which the compressive σθcool value was reduced. During field-cooled magnetization (FCM), the electromagnetic hoop stress, σθFCM, became the maximum at the innermost edge of the uppermost ring bulk at intermediate time step. The actual total hoop stress, σθ (= σθcool + σθFCM), due to both cooling and FCM processes was also analyzed and the new ring structures are fairly effective to reduce the σθ value and became lower than the fracture strength of the bulk. The new reinforcement structures have a possibility to avoid the fracture of the bulks and to realize a 400 MHz NMR spectrometer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100017336','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100017336"><span>Examining the Uppermost Surface of the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Noble, Sarah K.</p> <p>2010-01-01</p> <p>Understanding the properties of the uppermost lunar surface is critical as it is the optical surface that is probed by remote-sensing data, like that which is and will be generated by instruments on orbiting missions (e.g. M3, LRO). The uppermost material is also the surface with which future lunar astronauts and their equipment will be in direct contact, and thus understanding its properties will be important for dust mitigation and toxicology issues. Furthermore, exploring the properties of this uppermost surface may provide insight into conditions at this crucial interface, such as grain charging and levitation</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRB..121.4955B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRB..121.4955B"><span>Grain size-sensitive viscoelastic relaxation and seismic properties of polycrystalline MgO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnhoorn, A.; Jackson, I.; Fitz Gerald, J. D.; Kishimoto, A.; Itatani, K.</p> <p>2016-07-01</p> <p>Torsional forced-oscillation experiments on a suite of synthetic MgO polycrystals, of high-purity and average grain sizes of 1-100 µm, reveal strongly viscoelastic behavior at temperatures of 800-1300°C and periods between 1 and 1000 s. The measured shear modulus and associated strain energy dissipation both display monotonic variations with oscillation period, temperature, and grain size. The data for the specimens of intermediate grain size have been fitted to a generalized Burgers creep function model that is also broadly consistent with the results for the most coarse-grained specimen. The mild grain size sensitivity for the relaxation time τL, defining the lower end of the anelastic absorption band, is consistent with the onset of elastically accommodated grain boundary sliding. The upper end of the anelastic absorption band, evident in the highest-temperature data for one specimen only, is associated with the Maxwell relaxation time τM marking the transition toward viscous behavior, conventionally ascribed a stronger grain size sensitivity. Similarly pronounced viscoelastic behavior was observed in complementary torsional microcreep tests, which confirm that the nonelastic strains are mainly recoverable, i.e., anelastic. With an estimated activation volume for the viscoelastic relaxation, the experimentally constrained Burgers model has been extrapolated to the conditions of pressure and temperature prevailing in the Earth's uppermost lower mantle. For a plausible grain size of 10 mm, the predicted dissipation Q-1 ranges from 10-3 to 10-2 for periods of 3-3000 s. Broad consistency with seismological observations suggests that the lower mantle ferropericlase phase might account for much of its observed attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711589T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711589T"><span>Lithospheric models of the North American continent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tesauro, Magdala; Kaban, Mikhail; Mooney, Walter; Cloetingh, Sierd</p> <p>2015-04-01</p> <p>We constructed NACr14, a 3D model of the North American (NA) crust, based on the most recent seismic data from the USGS database. In comparison with the global crustal model CRUST 1.0, NACr14 is more heterogeneous, showing a larger spatial variability of the thickness and average velocities of the crustal layers. Velocities of the lower crust vary in a larger range than those of the other layers, while the thickness of all the three layers is on average between 11 and 13 km. The largest velocities of the crystalline crust (>6.6 km/s) reflect the presence of a 7.x layer (>7.0 km/s) in the lowermost part of the crust. Using NACr2014, a regional (NA07) and a global (SL201sv) tomography model, and gravity data, we apply an iterative technique, which jointly interprets seismic tomography and gravity data, to estimate temperature and compositional variations in the NA upper mantle. The results obtained demonstrate that temperature of the cratonic mantle is up to 150°C higher than when using a uniform compositional model. The differences between the two tomography models influence the results more strongly than possible changes of the depth distribution of compositional variations. Strong negative compositional density anomalies, corresponding to Mg # >92, characterize the upper mantle of the northwestern part of the Superior craton and the central part of the Slave and Churchill craton. The Proterozoic upper mantle of the western and more deformed part of the NA cratons, appears weakly depleted (Mg# ~91) when NA07 is used, in agreement with the results based on the interpretation of xenolith data. When we use SL2013sv, the same areas are locally characterized by high density bodies, which might be interpreted as the effect due to fragments of subducted slabs, as those close to the suture of the Appalachians and Grenville province. We used the two thermal models to estimate the integrated strength and the effective elastic thickness (Te) of the lithosphere. In the peripheral parts of the cratons, as the Proterozoic Canadian Platform and Grenville, the integrated strength for model NA07 is ten times larger than in model SL2013sv, due to a model-dependent temperature difference of >200˚C in the uppermost mantle. In both models, Proterozoic regions reactivated by Meso-Cenozoic tectonics (e.g., Rocky Mountains and the Mississippi Embayment) show a weak lithosphere due to the absence of the mechanically strong part of the mantle lithospheric layer. Intraplate earthquakes are distributed along the edges of the cratons, characterized by a weak lithosphere or pronounced variations in integrated lithospheric strength and Te. In addition, the sum of the seismic moments shows that most of the energy is released by the weak lithosphere. These results suggest that the edges of the cratons are more prone to accumulation of tectonic stress and subsequent release by earthquakes, in comparison with the stable cratonic regions which resist deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009Litho.109..145L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009Litho.109..145L"><span>The Sandvik peridotite, Gurskøy, Norway: Three billion years of mantle evolution in the Baltica lithosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lapen, Thomas J.; Medaris, L. Gordon, Jr.; Beard, Brian L.; Johnson, Clark M.</p> <p>2009-05-01</p> <p>The Sandvik ultramafic body, Island of Gurskøy, Western Gneiss Region, Norway, is a mantle fragment that contains polymetamorphic mineral assemblages and affords a unique view into the response of subcontinental lithospheric mantle to repeated orogenic/magmatic events. The Sandvik peridotite body and nearby outcrops record four paragenetic stages: 1) pre-exsolution porphyroclasts of ol + grt + opx (high-Ca ) + cpx (low-Ca), which equilibrated at 1100-1200 °C and 6.5-7.0 GPa; 2) kelyphite containing ol + grt + spl +opx (low-Ca) + am (high-Al), as well as exsolved pyroxene containing opx + cpx + spl in equilibrium with matrix olivine, at 725 °C and 1.5 GPa; 3) granoblastic matrix of ol + spl + opx (low-Ca) + am (high-Al), at 700 °C and 1.0 GPa. A nearby outcrop contains a fourth assemblage consisting of ol + chl + opx + am. Lu-Hf and Re-Os model ages of garnet peridotite indicate melt depletion at 3.3 Ga [Beyer, E.E., Brueckner, H.K., Griffin, W.L., O'Reilly, S.Y., Graham, S., 2004. Archean mantle fragments in Proterozoic crust, Western Gneiss Region, Norway. Geology 32, 609-612.; Lapen, T.J., Medaris, L.G. Jr., Johnson, C.M., and Beard, B.L., 2005. Archean to Middle Proterozoic evolution of Baltica subcontinental lithosphere: evidence from combined Sm-Nd and Lu-Hf isotope analyses of the Sandvik ultramafic body, Norway. Contributions to Mineralogy and Petrology 150, 131-145.], marking the time of separation from the convecting mantle. Lu-Hf whole rock and mineral isochron ages of constituent garnet peridotite and garnet pyroxenite layers in the Sandvik body reflect cooling and emplacement at ~ 1.25 Ga and ~ 1.18 Ga, respectively, whereas Sm-Nd whole rock and mineral ages of the garnet pyroxenite layers and the garnet peridotite are consistent with metasomatic alteration at ~ 1.15 Ga [Lapen, T.J., Medaris, L.G. Jr., Johnson, C.M., and Beard, B.L., 2005. Archean to Middle Proterozoic evolution of Baltica subcontinental lithosphere: evidence from combined Sm-Nd and Lu-Hf isotope analyses of the Sandvik ultramafic body, Norway. Contributions to Mineralogy and Petrology 150, 131-145.]. The isochron ages likely record lithospheric modification associated with the 1.25-1.00 Ga Sveconorwegian orogeny and represent the youngest age of the Stage 1 mineral assemblage equilibration. A 606 ± 39 Ma Sm-Nd isochron age of the Stage 2 kelyphite assemblage is consistent with partial re-equilibration of the porphyroclastic assemblage during continental rifting associated with opening of the Iapetus Ocean between Baltica and Laurentia at ~ 600 Ma, or extension between Baltica and Siberia that may have been associated with opening of the Ægir Sea. The age of kelyphite, therefore, places the Sandvik peridotite in the uppermost mantle prior to Silurian shortening between the Baltic and Laurentian continents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MinPe.tmp...24S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MinPe.tmp...24S"><span>Ferropericlase inclusions in ultradeep diamonds from Sao Luiz (Brazil): high Li abundances and diverse Li-isotope and trace element compositions suggest an origin from a subduction mélange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seitz, Hans-Michael; Brey, Gerhard P.; Harris, Jeffrey W.; Durali-Müller, Soodabeh; Ludwig, Thomas; Höfer, Heidi E.</p> <p>2018-05-01</p> <p>The most remarkable feature of the inclusion suite in ultradeep alluvial and kimberlitic diamonds from Sao Luiz (Juina area in Brazil) is the enormous range in Mg# [100xMg/(Mg + Fe)] of the ferropericlases (fper). The Mg-richer ferropericlases are from the boundary to the lower mantle or from the lower mantle itself when they coexist with ringwoodite or Mg- perovskite (bridgmanite). This, however, is not an explanation for the more Fe-rich members and a lowermost mantle or a "D" layer origin has been proposed for them. Such a suggested ultra-deep origin separates the Fe-rich fper-bearing diamonds from the rest of the Sao Luiz ultradeep diamond inclusion suite, which also contains Ca-rich phases. These are now thought to have an origin in the uppermost lower mantle and in the transition zone and to belong either to a peridotitic or mafic (subducted oceanic crust) protolith lithology. We analysed a new set of more Fe-rich ferropericlase inclusions from 10 Sao Luiz ultradeep alluvial diamonds for their Li isotope composition by solution MC-ICP-MS (multi collector inductively coupled plasma mass spectrometry), their major and minor elements by EPMA (electron probe micro-analyser) and their Li-contents by SIMS (secondary ion mass spectrometry), with the aim to understand the origin of the ferropericlase protoliths. Our new data confirm the wide range of ferropericlase Mg# that were reported before and augment the known lack of correlation between major and minor elements. Four pooled ferropericlase inclusions from four diamonds provided sufficient material to determine for the first time their Li isotope composition, which ranges from δ7Li + 9.6 ‰ to -3.9 ‰. This wide Li isotopic range encompasses that of serpentinized ocean floor peridotites including rodingites and ophicarbonates, fresh and altered MORB (mid ocean ridge basalt), seafloor sediments and of eclogites. This large range in Li isotopic composition, up to 5 times higher than `primitive upper mantle' Li-abundances, and an extremely large and incoherent range in Mg# and Cr, Ni, Mn, Na contents in the ferropericlase inclusions suggests that their protoliths were members of the above lithologies. This mélange of altered rocks originally contained a variety of carbonates (calcite, magnesite, dolomite, siderite) and brucite as the secondary products in veins and as patches and Ca-rich members like rodingites and ophicarbonates. Dehydration and redox reactions during or after deep subduction into the transition zone and the upper parts of the lower mantle led to the formation of diamond and ferropericlase inclusions with variable compositions and a predominance of the Ca-rich, high-pressure silicate inclusions. We suggest that the latter originated from peridotites, mafic rocks and sedimentary rocks as redox products between calcite and SiO2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024302','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024302"><span>Upper-mantle origin of the Yellowstone hotspot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Christiansen, R.L.; Foulger, G.R.; Evans, J.R.</p> <p>2002-01-01</p> <p>Fundamental features of the geology and tectonic setting of the northeast-propagating Yellowstone hotspot are not explained by a simple deep-mantle plume hypothesis and, within that framework, must be attributed to coincidence or be explained by auxiliary hypotheses. These features include the persistence of basaltic magmatism along the hotspot track, the origin of the hotspot during a regional middle Miocene tectonic reorganization, a similar and coeval zone of northwestward magmatic propagation, the occurrence of both zones of magmatic propagation along a first-order tectonic boundary, and control of the hotspot track by preexisting structures. Seismic imaging provides no evidence for, and several contraindications of, a vertically extensive plume-like structure beneath Yellowstone or a broad trailing plume head beneath the eastern Snake River Plain. The high helium isotope ratios observed at Yellowstone and other hotspots are commonly assumed to arise from the lower mantle, but upper-mantle processes can explain the observations. The available evidence thus renders an upper-mantle origin for the Yellowstone system the preferred model; there is no evidence that the system extends deeper than ???200 km, and some evidence that it does not. A model whereby the Yellowstone system reflects feedback between upper-mantle convection and regional lithospheric tectonics is able to explain the observations better than a deep-mantle plume hypothesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007E%26PSL.261..551Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007E%26PSL.261..551Z"><span>Supercontinent cycles, true polar wander, and very long-wavelength mantle convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhong, Shijie; Zhang, Nan; Li, Zheng-Xiang; Roberts, James H.</p> <p>2007-09-01</p> <p>We show in this paper that mobile-lid mantle convection in a three-dimensional spherical shell with observationally constrained mantle viscosity structure, and realistic convective vigor and internal heating rate is characterized by either a spherical harmonic degree-1 planform with a major upwelling in one hemisphere and a major downwelling in the other hemisphere when continents are absent, or a degree-2 planform with two antipodal major upwellings when a supercontinent is present. We propose that due to modulation of continents, these two modes of mantle convection alternate within the Earth's mantle, causing the cyclic processes of assembly and breakup of supercontinents including Rodinia and Pangea in the last 1 Ga. Our model suggests that the largely degree-2 structure for the present-day mantle with the Africa and Pacific antipodal superplumes, is a natural consequence of this dynamic process of very long-wavelength mantle convection interacting with supercontinent Pangea. Our model explains the basic features of true polar wander (TPW) events for Rodinia and Pangea including their equatorial locations and large variability of TPW inferred from paleomagnetic studies. Our model also suggests that TPW is expected to be more variable and large during supercontinent assembly, but small after a supercontinent acquires its equatorial location and during its subsequent dispersal.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>