Science.gov

Sample records for upregulated cellular genes

  1. TC1 (C8orf4) is upregulated by cellular stress and mediates heat shock response.

    PubMed

    Park, Juhee; Jung, Yusun; Kim, Jungtae; Kim, Ka-Young; Ahn, Sang-Gun; Song, Kyuyoung; Lee, Inchul

    2007-08-24

    TC1 (C8orf4) is associated with aggressive behavior and poor survival in cancer. We have recently reported that it is a target gene of NF-kappaB and regulates the Wnt/beta-catenin pathway. Here, we show that TC1 is upregulated by various cellular stresses and mediates heat shock response. Heat shock and other cellular stresses including H2O2, 12-O-tetradecanoylphorbol 13-acetate (TPA), lipopolysaccharide (LPS), and UV enhance TC1 transcription in HeLa, KATO-III, HEK293T, and HK cells. TC1 protein then moves into the nuclei independently of NF-kappaB activation. TC1 upregulates heat shock proteins, and TC1-knockdown inhibits stress-induced downstream regulation significantly. Heat shock factor 1(HSF1) and TC1 upregulate each other, suggesting a potential positive feedback in the heat shock response regulation. Our data suggest that TC1 is a novel heat shock response regulator.

  2. Ezrin Inhibition Up-regulates Stress Response Gene Expression.

    PubMed

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T; Minas, Tsion Z; Conn, Erin J; Hong, Sung-Hyeok; Pauly, Gary T; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A; Toretsky, Jeffrey A; Üren, Aykut

    2016-06-17

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes.

  3. Auxins upregulate nif and fix genes.

    PubMed

    Bianco, Carmen; Defez, Roberto

    2010-10-01

    In a recent publication we analyzed the global effects triggered by IAA overproduction in S. meliloti RD64 under free-living conditions by comparing the gene expression pattern of wild type 1021 with that of RD64 and 1021 treated with IAA and other four chemically or functionally related molecules. Among the genes differentially expressed in RD64 and IAA-treated 1021 cells we found two genes of pho operon, phoT and phoC. Based on this finding we examined the mechanisms for mineral P solubilization in RD64 and the potential ability of this strain to improve Medicago growth under P-starved conditions. Here, we further analyze the expression profiles obtained in microarray analysis and evaluate the specificity and the extent of overlap between all treatments. Venn diagrams indicated that IAA- and 2,4-D-regulated genes were closely related. Furthermore, most differentially expressed genes from pSymA were induced in 1021 cells treated with 2,4-D, ICA, IND and Trp as compared to the untreated 1021 cells. RT-PCR analysis was employed to analyze the differential expression patterns of nitrogen fixation genes under free-living and symbiotic conditions. Under symbiotic condition, the relative expression levels of nif and fix genes were significantly induced in Mt- RD64 plants and in Mt-1021 plants treated with IAA and 2,4-D whereas they were unchanged or repressed in Mt-1021 plants treated with the other selected compounds when compared to the untreated Mt-1021 plants.

  4. Upregulating endogenous genes by an RNA-programmable artificial transactivator

    PubMed Central

    Fimiani, Cristina; Goina, Elisa; Mallamaci, Antonello

    2015-01-01

    To promote expression of endogenous genes ad libitum, we developed a novel, programmable transcription factor prototype. Kept together via an MS2 coat protein/RNA interface, it includes a fixed, polypeptidic transactivating domain and a variable RNA domain that recognizes the desired gene. Thanks to this device, we specifically upregulated five genes, in cell lines and primary cultures of murine pallial precursors. Gene upregulation was small, however sufficient to robustly inhibit neuronal differentiation. The transactivator interacted with target gene chromatin via its RNA cofactor. Its activity was restricted to cells in which the target gene is normally transcribed. Our device might be useful for specific applications. However for this purpose, it will require an improvement of its transactivation power as well as a better characterization of its target specificity and mechanism of action. PMID:26152305

  5. Cancer gene therapy targeting cellular apoptosis machinery.

    PubMed

    Jia, Lin-Tao; Chen, Si-Yi; Yang, An-Gang

    2012-11-01

    The unraveling of cellular apoptosis machinery provides novel targets for cancer treatment, and gene therapy targeting this suicidal system has been corroborated to cause inflammation-free autonomous elimination of neoplastic cells. The apoptotic machinery can be targeted by introduction of a gene encoding an inducer, mediator or executioner of apoptotic cell death or by inhibition of anti-apoptotic gene expression. Strategies targeting cancer cells, which are achieved by selective gene delivery, specific gene expression or secretion of target proteins via genetic modification of autologous cells, dictate the outcome of apoptosis-based cancer gene therapy. Despite so far limited clinical success, gene therapy targeting the apoptotic machinery has great potential to benefit patients with threatening malignancies provided the availability of efficient and specific gene delivery and administration systems.

  6. miR-190 is upregulated in Epstein-Barr Virus type I latency and modulates cellular mRNAs involved in cell survival and viral reactivation.

    PubMed

    Cramer, Elizabeth M; Shao, Ying; Wang, Yan; Yuan, Yan

    2014-09-01

    Epstein-Barr Virus (EBV) is a prevalent human pathogen infecting over 90% of the population. Much of the success of the virus is attributed to its ability to maintain latency. The detailed mechanisms underlying the establishment and maintenance of EBV latency remain poorly understood. A microRNA profiling study revealed differential expression of many cellular miRNAs between types I and III latency cells, suggesting cellular miRNAs may play roles in regulating EBV latency. mir-190 is the most differentially up-regulated miRNA in type I latency cells as compared with type III latency cells and the up-regulation appears to be attributed to EBER RNAs that express in higher levels in type I latency cells than type III cells. With the aide of a lentiviral overexpression system and microarray analysis, several cellular mRNAs are identified as potential targets of mir-190. By targeting TP53INP1, miR-190 enhances cell survival by preventing apoptosis and relieving G0/G1 cell cycle arrest. Additionally, miR-190 down-regulates NR4A3, a cellular immediate-early gene for EBV reactivation, and inhibits the expression of the viral immediate-early gene bzlf1 and viral lytic DNA replication. Taken together, our data revealed a mechanism that EBV utilizes a cellular microRNA to promote host cell survival and prevent virus from entering lytic life cycle for latency maintenance.

  7. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.

    PubMed

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-12-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression.

  8. Cellular and Molecular Mechanisms of Heat Stress-Induced Up-Regulation of Occludin Protein Expression

    PubMed Central

    Dokladny, Karol; Ye, Dongmei; Kennedy, John C.; Moseley, Pope L.; Ma, Thomas Y.

    2008-01-01

    The heat stress (HS)-induced increase in occludin protein expression has been postulated to be a protective response against HS-induced disruption of the intestinal epithelial tight junction barrier. The aim of this study was to elucidate the cellular and molecular processes that mediate the HS-induced up-regulation of occludin expression in Caco-2 cells. Exposure to HS (39°C or 41°C) resulted in increased expression of occludin protein; this was preceded by an increase in occludin mRNA transcription and promoter activity. HS-induced activation of heat shock factor-1 (HSF-1) resulted in cytoplasmic-to-nuclear translocation of HSF-1 and binding to its binding motif in the occludin promoter region. HSF-1 activation was associated with an increase in occludin promoter activity, mRNA transcription, and protein expression; which were abolished by the HSF-1 inhibitor quercetin. Targeted HSF-1 knock-down by siRNA transfection inhibited the HSF-1-induced increase in occulin expression and junctional localization of occulin protein. Site-directed mutagenesis of the HSF-1 binding motif in the occludin promoter region inhibited HS-induced binding of HSF-1 to the occludin promoter region and subsequent promoter activity. In conclusion, our data show for the first time that the HS-induced increase in occludin protein expression is mediated by HSF-1 activation and subsequent binding of HSF-1 to the occludin promoter, which initiates a series of molecular and cellular events culminating in increased junctional localization of occludin protein. PMID:18276783

  9. DNA stabilization by the upregulation of estrogen signaling in BRCA gene mutation carriers.

    PubMed

    Suba, Zsuzsanna

    2015-01-01

    Currently available scientific evidence erroneously suggests that mutagenic weakness or loss of the BRCA1/2 genes may liberate the proliferative effects of estrogen signaling, which provokes DNA damage and genomic instability. Conversely, BRCA mutation seems to be an imbalanced defect, crudely inhibiting the upregulation of estrogen receptor expression and liganded transcriptional activity, whereas estrogen receptor-repressor functions become predominant. In BRCA-proficient cases, estrogen signaling orchestrates the activity of cell proliferation and differentiation with high safety, while upregulating the expression and DNA-stabilizing impact of BRCA genes. In turn, BRCA proteins promote estrogen signaling by proper estrogen synthesis via CYP19 gene regulation and by induction of the appropriate expression and transcriptional activity of estrogen receptors. In this exquisitely organized regulatory system, the dysfunction of each player may jeopardize genome stability and lead to severe chronic diseases, such as cancer development. Female organs, such as breast, endometrium, and ovary, exhibiting regular cyclic proliferative activity are particularly vulnerable in case of disturbances in either estrogen signaling or BRCA-mediated DNA repair. BRCA mutation carrier women may apparently be healthy or exhibit clinical signs of deficient estrogen signaling in spite of hyperestrogenism. Even women who enjoy sufficient compensatory DNA-defending activities are at risk of tumor development because many endogenous and environmental factors may jeopardize the mechanisms of extreme compensatory processes. Natural estrogens have numerous benefits in tumor prevention and therapy even in BRCA mutation carriers. There are no toxic effects even in sky-high doses and all physiologic cellular functions are strongly upregulated, while malignant tumor cells are recognized and killed in a Janus-faced manner.

  10. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells.

    PubMed

    Takebayashi, Shin-Ichiro; Tanaka, Hiroshi; Hino, Shinjiro; Nakatsu, Yuko; Igata, Tomoka; Sakamoto, Akihisa; Narita, Masashi; Nakao, Mitsuyoshi

    2015-08-01

    Metabolism is closely linked with cellular state and biological processes, but the mechanisms controlling metabolic properties in different contexts remain unclear. Cellular senescence is an irreversible growth arrest induced by various stresses, which exhibits active secretory and metabolic phenotypes. Here, we show that retinoblastoma protein (RB) plays a critical role in promoting the metabolic flow by activating both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) in cells that have undergone oncogene-induced senescence (OIS). A combination of real-time metabolic monitoring, and metabolome and gene expression analyses showed that OIS-induced fibroblasts developed an accelerated metabolic flow. The loss of RB downregulated a series of glycolytic genes and simultaneously reduced metabolites produced from the glycolytic pathway, indicating that RB upregulates glycolytic genes in OIS cells. Importantly, both mitochondrial OXPHOS and glycolytic activities were abolished in RB-depleted or downstream glycolytic enzyme-depleted OIS cells, suggesting that RB-mediated glycolytic activation induces a metabolic flux into the OXPHOS pathway. Collectively, our findings reveal that RB essentially functions in metabolic remodeling and the maintenance of the active energy production in OIS cells.

  11. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells

    PubMed Central

    Takebayashi, Shin-ichiro; Tanaka, Hiroshi; Hino, Shinjiro; Nakatsu, Yuko; Igata, Tomoka; Sakamoto, Akihisa; Narita, Masashi; Nakao, Mitsuyoshi

    2015-01-01

    Metabolism is closely linked with cellular state and biological processes, but the mechanisms controlling metabolic properties in different contexts remain unclear. Cellular senescence is an irreversible growth arrest induced by various stresses, which exhibits active secretory and metabolic phenotypes. Here, we show that retinoblastoma protein (RB) plays a critical role in promoting the metabolic flow by activating both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) in cells that have undergone oncogene-induced senescence (OIS). A combination of real-time metabolic monitoring, and metabolome and gene expression analyses showed that OIS-induced fibroblasts developed an accelerated metabolic flow. The loss of RB downregulated a series of glycolytic genes and simultaneously reduced metabolites produced from the glycolytic pathway, indicating that RB upregulates glycolytic genes in OIS cells. Importantly, both mitochondrial OXPHOS and glycolytic activities were abolished in RB-depleted or downstream glycolytic enzyme-depleted OIS cells, suggesting that RB-mediated glycolytic activation induces a metabolic flux into the OXPHOS pathway. Collectively, our findings reveal that RB essentially functions in metabolic remodeling and the maintenance of the active energy production in OIS cells. PMID:26009982

  12. DNA Demethylation Upregulated Nrf2 Expression in Alzheimer’s Disease Cellular Model

    PubMed Central

    Cao, Huimin; Wang, Li; Chen, Beibei; Zheng, Peng; He, Yi; Ding, Yubin; Deng, Yushuang; Lu, Xi; Guo, Xiuming; Zhang, Yuping; Li, Yu; Yu, Gang

    2016-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor in the defense against oxidative stress. Cumulative evidence has shown that oxidative stress plays a key role in the pathogenesis of Alzheimer’s disease (AD). Previous animal and clinical studies had observed decreased expression of Nrf2 in AD. However, the underlying regulation mechanisms of Nrf2 in AD remain unclear. Here, we used the DNA methyltransferases (Dnmts) inhibitor 5-aza-2′-deoxycytidine (5-Aza) to test whether Nrf2 expression was regulated by methylation in N2a cells characterizing by expressing human Swedish mutant amyloid precursor protein (N2a/APPswe). We found 5-Aza treatment increased Nrf2 at both messenger RNA and protein levels via downregulating the expression of Dnmts and DNA demethylation. In addition, 5-Aza-mediated upregulation of Nrf2 expression was concomitant with increased nuclear translocation of Nrf2 and higher expression of Nrf2 downstream target gene NAD(P)H:quinone oxidoreductas (NQO1). Our study showed that DNA demethylation promoted the Nrf2 cell signaling pathway, which may enhance the antioxidant system against AD development. PMID:26779013

  13. Isolation of genes up-regulated by copper in a copper-tolerant birch (Betula pendula) clone.

    PubMed

    Keinänen, Sirpa I; Hassinen, Viivi H; Kärenlampi, Sirpa O; Tervahauta, Arja I

    2007-09-01

    Suppression subtractive hybridization (SSH) was used to isolate genes differentially expressed following exposure to copper (Cu) in a naturally selected Cu-tolerant birch (Betula pendula Roth.) clone originating from a disused lead/zinc smelter. Of the 352 cDNA fragments initially isolated, 108 were up-regulated by Cu, of which 55 showed over twofold induction by macroarray analysis. Searches against protein databases (Blastx) and sequence analysis provided the tentative identity of 21 genes. Three fragments lacked homology to any sequences in the databases. Most of the identified genes are involved in cellular transport, regulation or cell rescue and defense. Several genes have not previously been reported to be up-regulated by Cu, e.g., plasma intrinsic protein 2, glutamine synthetase and multi-drug resistance-associated protein (MRP4). The expression of MRP4, a vacuolar sorting receptor-like protein and an unidentified gene was studied in more detail by quantitative real-time PCR. These genes showed stronger up-regulation by Cu in the roots and shoots of the Cu-tolerant birch clone compared with a less tolerant clone. Clear clonal differences in gene expression were observed, e.g., for the regulator of chromosome condensation family protein, DnaJ protein homolog, vacuolar sorting receptor-like protein and MRP4. These findings contribute to our understanding of Cu tolerance in birch, a pioneer plant in metal-contaminated soils.

  14. Ethanol Upregulates Glucocorticoid-induced Leucine Zipper Expression and Modulates Cellular Inflammatory Responses in Lung Epithelial Cells

    PubMed Central

    Gomez, Marla; Raju, Sammeta V.; Viswanathan, Anand; Painter, Richard G.; Bonvillain, Ryan; Byrne, Patrick; Nguyen, Doan H.; Bagby, Gregory J.; Kolls, Jay K.; Nelson, Steve; Wang, Guoshun

    2010-01-01

    Alcohol abuse is associated with immunosuppressive and infectious sequelae. Particularly, alcoholics are more susceptible to pulmonary infections. In this report, gene transcriptional profiles of primary human airway epithelial cells, exposed to varying doses of alcohol (0, 50 and 100 mM), were obtained. Comparison of gene transcription levels between 0 mM and 50 mM alcohol treatments resulted in 2 genes being up-regulated and 16 genes down-regulated by at least two-fold. Moreover, 0 mM and 100 mM alcohol exposure led to the up-regulation of 14 genes and down-regulation of 157 genes. Among the up-regulated genes, glucocorticoid-induced leucine zipper (GILZ) responded to alcohol in a dose-dependent manner. Moreover, GILZ protein levels also correlated with this transcriptional pattern. Lentiviral expression of GILZ siRNA in human airway epithelial cells diminished the alcohol-induced upregulation, confirming that GILZ is indeed an alcohol-responsive gene. Gene-silencing of GILZ in A549 cells resulted in secretion of significantly higher amounts of inflammatory cytokines in response to IL-1β stimulation. The GILZ-silenced cells were more resistant to alcohol-mediated suppression of cytokine secretion. Further data demonstrated that the glucocorticoid receptor is involved in the regulation of GILZ by alcohol. Because GILZ is a key glucocorticoid-responsive factor mediating the anti-inflammatory and immunosuppressive actions of steroids, we propose that similar signaling pathways may play a role in the anti-inflammatory and immunosuppressive effects of alcohol. PMID:20382889

  15. Upregulation of cellular prion protein (PrPc) after focal cerebral ischemia and influence of lesion severity.

    PubMed

    Weise, Jens; Crome, Olaf; Sandau, Raoul; Schulz-Schaeffer, Walter; Bähr, Mathias; Zerr, Inga

    2004-11-30

    The pathological isoform of the prion protein (PrP(Sc)) has been identified to mediate transmissible spongiform encephalopathies like Creutzfeldt-Jakob disease (CJD). In contrast, the physiological function of the normal cellular prion protein (PrP(c)) is not yet understood. Recent findings suggest that PrP(c) may have neuroprotective properties and that its absence increases susceptibility to oxidative stress and neuronal injury. To determine whether PrP(c) is part of the cellular response to neuronal injury in vivo, we investigated PrP(c) regulation after severe and mild focal ischemic brain injury in mice using the thread occlusion stroke model. Western Blot and ELISA analysis showed a significant upregulation of PrP(c) in the ischemic hemisphere at 4 and 8h after onset of permanent focal ischemia, which was no longer detectable at 24h after lesion induction when compared to control animals. In contrast, transient focal ischemia (60 min) did only lead to slightly but not significantly elevated PrP(c) levels in the ischemic hemisphere when compared to controls. These results demonstrate that cerebral PrP(c) is upregulated early in response to focal cerebral ischemia. The extent of upregulation, however, seems to depend on the severity of ischemia and may therefore reflect the extent of ischemia induced neuronal damage. Given the known neuroprotective effects of PrP(c) in vitro, ischemia-induced upregulation of cerebral PrP(c) supports the hypothesis that, as part of an early adaptive cellular response to ischemic brain injury, PrP(c) may be involved in the regulation of ischemia-induced neuronal cell death in vivo.

  16. Melatonin-induced temporal up-regulation of gene expression related to ubiquitin/proteasome system (UPS) in the human malaria parasite Plasmodium falciparum.

    PubMed

    Koyama, Fernanda C; Azevedo, Mauro F; Budu, Alexandre; Chakrabarti, Debopam; Garcia, Célia R S

    2014-12-03

    There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS) interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS) in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  17. VIP Gene Deletion in Mice Causes Cardiomyopathy Associated with Upregulation of Heart Failure Genes

    PubMed Central

    Szema, Anthony M.; Hamidi, Sayyed A.; Smith, S. David; Benveniste, Helene

    2013-01-01

    Rationale Vasoactive Intestinal Peptide (VIP), a pulmonary vasodilator and inhibitor of vascular smooth muscle proliferation, is absent in pulmonary arteries of patients with idiopathic pulmonary arterial hypertension (PAH). We previously determined that targeted deletion of the VIP gene in mice leads to PAH with pulmonary vascular remodeling and right ventricular (RV) dilatation. Whether the left ventricle is also affected by VIP gene deletion is unknown. In the current study, we examined if VIP knockout mice (VIP−/−) develop both right (RV) and left ventricular (LV) cardiomyopathy, manifested by LV dilatation and systolic dysfunction, as well as overexpression of genes conducive to heart failure. Methods We examined VIP−/−and wild type (WT) mice using Magnetic Resonance Imaging (MRI) for evidence of cardiomyopathy associated with biventricular dilation and wall thickness changes. Lung tissue from VIP−/− and WT mice was subjected to whole-genome gene microarray analysis. Results Lungs from VIP−/− mice showed overexpression of cardiomyopathy genes: Myh1 was upregulated 224 times over WT, and Mylpf was increased 72 fold. Tnnt3 was increased 105 times and tnnc2 181 fold. Hearts were dilated in VIP−/− mice, with thinning of LV wall and increase in RV and LV chamber size, though RV enlargement varied. Weights of VIP−/− mice were consistently lower. Conclusions Critically-important heart failure-related genes are upregulated in VIP−/− mice associated with the spontaneous cardiomyopathy phenotype, involving both left and right ventricles, suggesting that loss of the VIP gene orchestrates a panoply of pathogenic genes which are detrimental to both left and right cardiac homeostasis. PMID:23700405

  18. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans

    PubMed Central

    Sadeghinejad, Lida; Cvitkovitch, Dennis G.; Siqueira, Walter L.; Santerre, J. Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG’s effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the

  19. Mechanically enhanced microcapsules for cellular gene therapy.

    PubMed

    Shen, F; Mazumder, M A J; Burke, N A D; Stöver, H D H; Potter, M A

    2009-07-01

    Microcapsules bearing a covalently cross-linked coating have been developed for cellular gene therapy as an improvement on alginate-poly(L-lysine)-alginate (APA) microcapsules that only have ionic cross-linking. In this study, two mutually reactive polyelectrolytes, a polycation (designated C70), poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride-co-2-aminoethyl methacrylate hydrochloride) and a polyanion (designated A70), poly(sodium methacrylate-co-2-(methacryloyloxy)ethyl acetoacetate), were used during the microcapsule fabrication. Ca-alginate beads were sequentially laminated with C70, A70, poly(L-lysine) (PLL), and alginate. The A70 reacts with both C70 and PLL to form a approximately 30 microm thick covalently cross-linked interpenetrating polymer network on the surface of the capsules. Confocal images confirmed the location of the C70/A70/PLL network and the stability of the network after 4 weeks implantation in mice. The mechanical and chemical resistance of the capsules was tested with a "stress test" where microcapsules were gently shaken in 0.003% EDTA for 15 min. APA capsules disappeared during this treatment, whereas the modified capsules, even those that had been retrieved from mice after 4-weeks implantation, remained intact. Analysis of solutions passing through model flat membranes showed that the molecular weight cut-off of alginate-C70-A70-PLL-alginate is similar to that of alginate-PLL-alginate. Recombinant cells encapsulated in APA and modified capsules were able to secrete luciferase into culture media. The modified capsules were found to capture some components of regular culture media used during preparation, causing an immune reaction in implanted mice, but use of UltraCulture serum-free medium was found to prevent this immune reaction. In vivo biocompatibility of the new capsules was similar to the APA capsules, with no sign of clinical toxicity on complete blood counts and liver function tests. The increased stability of the

  20. Transcriptional upregulation of the human MRP2 gene expression by serine/threonine protein kinase inhibitors.

    PubMed

    Pułaski, L; Szemraj, J; Uchiumi, T; Kuwano, M; Bartosz, G

    2005-01-01

    Transcriptional regulation by cellular signalling pathways of multidrug resistance proteins that pump anticancer drugs out of cells is one of key issues in the development of the multidrug resistance phenotype. In our study, we have used the reporter gene approach as well as determination of mRNA levels in two cancer cell lines of human origin, MCF-7 and A549, to study the regulation of multidrug resistance proteins 2 and 3 (MRP2 AND MRP3) by serine/threonine protein kinases. Since a prototypic PKC inducer, PMA, caused a marked upregulation of transcription from both human MRP2 and MRP3 promoters, a role for PKC isoforms in positive control of expression of these proteins could be postulated. Interestingly, broad-spectrum serine-threonine protein kinase inhibitors which also inhibit PKC, staurosporine and H-7, stimulated expression from the MRP2 promoter instead of inhibiting it. This effect was not seen for MRP3. MRP2 induction by staurosporine and H-7 was shown to have phenotypic consequences in whole cells, rendering them more resistant to etoposide and increasing their ability to export calcein through the plasma membrane. These results point to the involvement of serine/threonine protein kinases in negative regulation of the human MRP2 gene and to the necessity of testing novel anti-cancer drugs acting as protein kinase inhibitors with regard to their potential ability to induce multidrug resistance.

  1. Upregulation of the Coagulation Factor VII Gene during Glucose Deprivation Is Mediated by Activating Transcription Factor 4

    PubMed Central

    Cronin, Katherine R.; Mangan, Thomas P.; Carew, Josephine A.

    2012-01-01

    Background Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Methodology/Principal Findings Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/− SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/−15% to 188+/−27% and 100+/−8.8% to 176.3+/−17.3% respectively, p<0.001) at 24 hr of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Conclusions/Significance Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress. PMID:22848420

  2. Molecular crowding shapes gene expression in synthetic cellular nanosystems.

    PubMed

    Tan, Cheemeng; Saurabh, Saumya; Bruchez, Marcel P; Schwartz, Russell; Leduc, Philip

    2013-08-01

    The integration of synthetic and cell-free biology has made tremendous strides towards creating artificial cellular nanosystems using concepts from solution-based chemistry, where only the concentrations of reacting species modulate gene expression rates. However, it is known that macromolecular crowding, a key feature in natural cells, can dramatically influence biochemical kinetics via volume exclusion effects, which reduce diffusion rates and enhance binding rates of macromolecules. Here, we demonstrate that macromolecular crowding can increase the robustness of gene expression by integrating synthetic cellular components of biological circuits and artificial cellular nanosystems. Furthermore, we reveal how ubiquitous cellular modules, including genetic components, a negative feedback loop and the size of the crowding molecules can fine-tune gene circuit response to molecular crowding. By bridging a key gap between artificial and living cells, our work has implications for efficient and robust control of both synthetic and natural cellular circuits.

  3. Molecular crowding shapes gene expression in synthetic cellular nanosystems

    PubMed Central

    Tan, Cheemeng; Saurabh, Saumya; Bruchez, Marcel; Schwartz, Russell; LeDuc, Philip

    2013-01-01

    Summary The integration of synthetic and cell-free biology has made tremendous strides towards creating artificial cellular nanosystems using concepts from solution-based chemistry: only the concentrations of reacting species modulate gene expression rates. However, it is known that macromolecular crowding, a key feature of natural cells, can dramatically influence biochemical kinetics by volume exclusion effects that reduce diffusion rates and enhance binding rates of macromolecules. Here, we demonstrate that macromolecular crowding can increase the robustness of gene expression through integrating synthetic cellular components of biological circuits and artificial cellular nanosystems. In addition, we reveal how ubiquitous cellular modules, including genetic components, a negative feedback loop, and the size of crowding molecules, can fine tune gene circuit response to molecular crowding. By bridging a key gap between artificial and living cells, our work has implications for efficient and robust control of both synthetic and natural cellular circuits. PMID:23851358

  4. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation

    SciTech Connect

    Almeida, Luciana O.; Garcia, Cristiana B.; Matos-Silva, Flavia A.; Curti, Carlos; Leopoldino, Andréia M.

    2014-02-28

    Highlights: • hnRNPK is a new target of SET. • SET regulates hnRNPK. • SET and hnRNPK accumulation promotes tumorigenesis. • SET accumulation is a potential model to study genes regulated by SET-hnRNPK. - Abstract: SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET–hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.

  5. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes.

    PubMed

    Roman, Corina; Fuior, Elena V; Trusca, Violeta G; Kardassis, Dimitris; Simionescu, Maya; Gafencu, Anca V

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341-488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5'- and 3'-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain.

  6. Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray, proteomics and gene ontology analysis

    PubMed Central

    Ahn, Woong Shick; Kim, Ko-Woon; Bae, Su Mi; Yoon, Joo Hee; Lee, Joon Mo; Namkoong, Sung Eun; Kim, Jin Hong; Kim, Chong Kook; Lee, Young Joo; Kim, Yong-Wan

    2003-01-01

    This study utilized both cDNA microarray and two-dimensional protein gel electrophoresis technology to investigate the multiple interactions of genes and proteins involved in uterine leiomyoma pathophysiology. Also, the gene ontology analysis was used to systematically characterize the global expression profiles at cellular process levels. We profiled differentially expressed transcriptome and proteome in six-paired leiomyoma and normal myometrium. Screening up to 17 000 genes identified 21 upregulated and 50 downregulated genes. The gene-expression profiles were classified into mutually dependent 420 functional sets, resulting in 611 cellular processes according to the gene ontology. Also, protein analysis using two-dimensional gel electrophoresis identified 33 proteins (17 upregulated and 16 downregulated) of more than 500 total spots, which was classified into 302 cellular processes. Of these functional profilings, downregulations of transcriptomes and proteoms were shown in cell adhesion, cell motility, organogenesis, enzyme regulator, structural molecule activity and response to external stimulus functional activities that are supposed to play important roles in pathophysiology. In contrast, the upregulation was only shown in nucleic acid-binding activity. Taken together, potentially significant pathogenetic cellular processes were identified and showed that the downregulated functional profiling has a significant impact on the discovery of pathogenic pathway in leiomyoma. Also, the gene ontology analysis can overcome the complexity of expression profiles of cDNA microarray and two-dimensional protein analysis via its cellular process-level approach. Therefore, a valuable prognostic candidate gene with relevance to disease-specific pathogenesis can be found at cellular process levels. PMID:14748746

  7. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    SciTech Connect

    Hamm, Rebecca; Zeino, Maen; Frewert, Simon; Efferth, Thomas

    2014-11-15

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.

  8. Protein splicing: selfish genes invade cellular proteins.

    PubMed

    Neff, N F

    1993-12-01

    Protein splicing is a series of enzymatic events involving intramolecular protein breakage, rejoining and intron homing, in which introns are able to promote the recombinative transposition of their own coding sequences. Eukaryotic and prokaryotic spliced proteins have conserved similar gene structure, but little amino acid identity. The genes coding for these spliced proteins contain internal in-frame introns that encode polypeptides that apparently self-excise from the resulting host protein sequences. Excision of the 'protein intron' is coupled with joining of the two flanking protein regions encoded by exons of the host gene. Some introns of this type encode DNA endonucleases, related to Group I RNA intron gene products, that stimulate gene conversion and self-transmission.

  9. 78 FR 70307 - Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Investigational Cellular and Gene Therapy Products; Availability AGENCY: Food and Drug Administration, HHS. ACTION... entitled ``Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy... and Gene Therapies (OCTGT). The product areas covered by this guidance are cellular therapy,...

  10. Sucrose prevents up-regulation of senescence-associated genes in carnation petals.

    PubMed

    Hoeberichts, Frank A; van Doorn, Wouter G; Vorst, Oscar; Hall, Robert D; van Wordragen, Monique F

    2007-01-01

    cDNA microarrays were used to characterize senescence-associated gene expression in petals of cut carnation (Dianthus caryophyllus) flowers, sampled from anthesis to the first senescence symptoms. The population of PCR fragments spotted on these microarrays was enriched for flower-specific and senescence-specific genes, using subtractive hybridization. About 90% of the transcripts showed a large increase in quantity, approximately 25% transiently, and about 65% throughout the 7 d experiment. Treatment with silver thiosulphate (STS), which blocks the ethylene receptor and prevented the normal senescence symptoms, prevented the up-regulation of almost all of these genes. Sucrose treatment also considerably delayed visible senescence. Its effect on gene expression was very similar to that of STS, suggesting that soluble sugars act as a repressor of ethylene signal transduction. Two fragments that encoded a carnation EIN3-like (EIL) protein were isolated, some of which are key transcription factors that control ethylene response genes. One of these (Dc-EIL3) was up-regulated during senescence. Its up-regulation was delayed by STS and prevented by sucrose. Sucrose, therefore, seems to repress ethylene signalling, in part, by preventing up-regulation of Dc-EIL3. Some other transcription factors displayed an early increase in transcript abundance: a MYB-like DNA binding protein, a MYC protein, a MADS-box factor, and a zinc finger protein. Genes suggesting a role in senescence of hormones other than ethylene encoded an Aux/IAA protein, which regulate transcription of auxin-induced genes, and a cytokinin oxidase/dehydrogenase, which degrades cytokinin. Taken together, the results suggest a master switch during senescence, controlling the co-ordinated up-regulation of numerous ethylene response genes. Dc-EIL3 might be (part of) this master switch.

  11. PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions.

    PubMed

    Corbeil-Girard, Louis-Philippe; Klein, Arnaud F; Sasseville, A Marie-Josée; Lavoie, Hugo; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Duranceau, André; Codère, François; Bouchard, Jean-Pierre; Karpati, George; Rouleau, Guy A; Massie, Bernard; Langelier, Yves; Brais, Bernard

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease caused by expanded (GCN)12-17 stretches encoding the N-terminal polyalanine domain of the poly(A) binding protein nuclear 1 (PABPN1). OPMD is characterized by intranuclear inclusions (INIs) in skeletal muscle fibers, which contain PABPN1, molecular chaperones, ubiquitin, proteasome subunits, and poly(A)-mRNA. We describe an adenoviral model of PABPN1 expression that produces INIs in most cells. Microarray analysis revealed that PABPN1 overexpression reproducibly changed the expression of 202 genes. Sixty percent of upregulated genes encode nuclear proteins, including many RNA and DNA binding proteins. Immunofluorescence microscopy revealed that all tested nuclear proteins encoded by eight upregulated genes colocalize with PABPN1 within the INIs: CUGBP1, SFRS3, FKBP1A, HMG2, HNRPA1, PRC1, S100P, and HSP70. In addition, CUGBP1, SFRS3, and FKBP1A were also found in OPMD muscle INIs. This study demonstrates that a large number of nuclear proteins are sequestered in OPMD INIs, which may compromise cellular function.

  12. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation.

    PubMed

    Almeida, Luciana O; Garcia, Cristiana B; Matos-Silva, Flavia A; Curti, Carlos; Leopoldino, Andréia M

    2014-02-28

    SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET-hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.

  13. Laughter up-regulates the genes related to NK cell activity in diabetes.

    PubMed

    Hayashi, Takashi; Tsujii, Satoru; Iburi, Tadao; Tamanaha, Tamiko; Yamagami, Keiko; Ishibashi, Rieko; Hori, Miyo; Sakamoto, Shigeko; Ishii, Hitoshi; Murakami, Kazuo

    2007-12-01

    To elucidate the sustainable effects of laughter on gene expression, we recruited type 2 diabetic patients who were in-patient for receiving self-management education and examined time-dependent regulation for gene expression by laughter. Two-day experiment was performed. On one day, the patients watched comic video and laughed together with hospital staffs. On the other day, they participated in an inpatient diabetes educational program. Blood samples were collected before and 1.5, 4 h after watching comic video or spending lecture time, and changes in gene expression were comprehensively analyzed by microarray technique. Of the 41,000 genes analyzed, the laughter relatively up-regulated 39 genes, among which, 27 genes were relatively increased in the expression for all the observation period after watching comic video. By functional classification of these genes, 14 genes were found to be related to natural killer cell activity. No genes were included that are directly involved in blood glucose regulation, though successive suppression of postprandial blood glucose levels was observed. These results suggest that the laughter influences the expression of many genes classified into immune responses, and may contribute to amelioration of postprandial blood glucose elevation through a modulation of NK cell activity caused by up-regulation of relating genes.

  14. Microarray and KOG analysis of Acanthamoeba healyi genes up-regulated by mouse-brain passage.

    PubMed

    Moon, Eun-Kyung; Xuan, Ying-Hua; Kong, Hyun-Hee

    2014-08-01

    Long-term cultivation in a laboratory could reduce the virulence of Acanthamoeba. To identify virulence factors of Acanthamoeba, the authors compared the transcription profiles of long-term cultivated Acanthamoeba healyi (OLD) and three times mouse-brain passaged A. healyi (MBP) using microarray analysis and eukaryotic orthologous group (KOG) assignments. Microarray analysis revealed that 601 genes were up-regulated by mouse-brain passage. The results of real-time PCR of 8 randomly selected genes up-regulated in the MBP strain confirmed microarray analysis findings. KOG assignments showed relatively higher percentages of the MBP strain up-regulated genes in T article (signal transduction mechanism), O article (posttranslational modification, protein turnover, chaperones), C article (energy production and conversion), and J article (translation, ribosomal structure and biogenesis). In particular, the MBP strain showed higher expressions of cysteine protease and metalloprotease. A comparison of KOG assignments by microarray analysis and previous EST (expressed sequence tags) analysis showed similar populations of up-regulated genes. These results provide important information regarding the identification of virulence factors of pathogenic Acanthamoeba.

  15. MDP up-regulates the gene expression of type I interferons in human aortic endothelial cells.

    PubMed

    Lv, Qingshan; Yang, Mei; Liu, Xueting; Zhou, Lina; Xiao, Zhilin; Chen, Xiaobin; Chen, Meifang; Xie, Xiumei; Hu, Jinyue

    2012-03-23

    Muramyldipeptide (MDP), the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2). Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs) with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF) 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  16. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth.

    PubMed

    Chaillou, Thomas; Jackson, Janna R; England, Jonathan H; Kirby, Tyler J; Richards-White, Jena; Esser, Karyn A; Dupont-Versteegden, Esther E; McCarthy, John J

    2015-01-01

    The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading.

  17. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages

    PubMed Central

    Sotoodehnejadnematalahi, Fattah; Staples, Karl J.; Chrysanthou, Elvina; Pearson, Helen; Ziegler-Heitbrock, Loems; Burke, Bernard

    2015-01-01

    Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM), and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold) by long term hypoxia (5 days) than by 1 day of hypoxia (48 fold). We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K), LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression. PMID:26057378

  18. Gene Expression Profiling Reveals Early Cellular Responses to Intracellular Magnetic Labeling with Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Kedziorek, Dorota A.; Muja, Naser; Walczak, Piotr; Ruiz-Cabello, Jesus; Gilad, Assaf A.; Jie, Chunfa C.; Bulte, Jeff W. M.

    2010-01-01

    With MRI (stem) cell tracking having entered the clinic, studies on the cellular genomic response toward labeling are warranted. Gene expression profiling was applied to C17.2 neural stem cells following superparamagnetic iron oxide/PLL (poly-L-lysine) labeling over the course of 1 week. Relative to unlabeled cells, less than 1% of genes (49 total) exhibited greater than 2-fold difference in expression in response to superparamagnetic iron oxide/PLL labeling. In particular, transferrin receptor 1 (Tfrc) and heme oxygenase 1 (Hmox1) expression was downregulated early, whereas genes involved in lysosomal function (Sulf1) and detoxification (Clu, Cp, Gstm2, Mgst1) were upregulated at later time points. Relative to cells treated with PLL only, cells labeled with superparamagnetic iron oxide/PLL complexes exhibited differential expression of 1399 genes. Though these differentially expressed genes exhibited altered expression over time, the overall extent was limited. Gene ontology analysis of differentially expressed genes showed that genes encoding zinc-binding proteins are enriched after superparamagnetic iron oxide/PLL labeling relative to PLL only treatment, whereas members of the apoptosis/ programmed cell death pathway did not display increased expression. Overexpression of the differentially expressed genes Rnf138 and Abcc4 were confirmed by quantitative real-time polymerase chain reaction. These results demonstrate that, although early reactions responsible for iron homeostasis are induced, overall neural stem cell gene expression remains largely unaltered following superparamagnetic iron oxide/PLL labeling. PMID:20373404

  19. Cellular expansion and gene expression in the developing grape (Vitis vinifera L.).

    PubMed

    Schlosser, J; Olsson, N; Weis, M; Reid, K; Peng, F; Lund, S; Bowen, P

    2008-01-01

    Expression profiles of genes involved in cell wall metabolism and water transport were compared with changes in grape (Vitis vinifera L.) berry growth, basic chemical composition, and the shape, size, and wall thickness of cells within tissues of the berry pericarp. Expression of cell wall-modifying and aquaporin genes in berry pericarp tissues generally followed a bimodal expression profile with high levels of expression coinciding with the two periods of rapid berry growth, stages I and III, and low levels of expression corresponding to the slow-growth period, stage II. Cellular expansion was observed throughout all tissues during stage I, and only mesocarp cellular expansion was observed during stage III. Expansion of only exocarp cells was evident during transition between stages II and III. Cell wall-modifying and aquaporin gene expression profiles followed similar trends in exocarp and mesocarp tissues throughout berry development, with the exception of the up-regulation of pectin methylesterase, pectate lyase, two aquaporin genes (AQ1 and AQ2), and two expansin genes (EXP3 and EXPL) during stage II, which was delayed in the exocarp tissue compared with mesocarp tissue. Exocarp endo-(1-->3)-beta-glucanase and expansin-like gene expression was concurrent with increases in epidermal and hypodermal cell wall thickness. These results indicate a potential role of the grape berry skin in modulating grape berry growth.

  20. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration.

    PubMed

    Zaytseva, Yekaterina Y; Harris, Jennifer W; Mitov, Mihail I; Kim, Ji Tae; Butterfield, D Allan; Lee, Eun Y; Weiss, Heidi L; Gao, Tianyan; Evers, B Mark

    2015-08-07

    Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC. We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and maintain energy homeostasis. Increased FASN expression is associated with a decrease in activation of energy-sensing pathways and accumulation of lipid droplets in CRC cells and orthotopic CRCs. Immunohistochemical evaluation demonstrated increased expression of FASN and p62, a marker of autophagy inhibition, in primary CRCs and liver metastases compared to matched normal colonic mucosa. Our findings indicate that overexpression of FASN plays a crucial role in maintaining energy homeostasis in CRC via increased oxidation of endogenously synthesized lipids. Importantly, activation of fatty acid oxidation and consequent downregulation of stress-response signaling pathways may be key adaptation mechanisms that mediate the effects of FASN on cancer cell survival and metastasis, providing a strong rationale for targeting this pathway in advanced CRC.

  1. Molecular cloning and functional analysis of a novel oncogene, cancer-upregulated gene 2 (CUG2)

    SciTech Connect

    Lee, Soojin . E-mail: leesoojin@cnu.ac.kr; Gang, Jingu; Jeon, Sun Bok; Jung, Jinyoung; Song, Si Young; Koh, Sang Seok . E-mail: sskoh@kribb.re.kr

    2007-08-31

    We examined genome-wide differences in gene expression between tumor biopsies and normal tissues in order to identify differentially regulated genes in tumors. Cancer-upregulated gene 2 (CUG2) was identified as an expressed sequence tag (EST) that exhibits significant differential expression in multiple human cancer types. CUG2 showed weak sequence homology with the down-regulator of transcription 1 (DR1) gene, a human transcription repressor. We found that EGFP-CUG2 fusion proteins were predominantly localized in the nucleus, suggesting their putative role in gene regulation. In addition, CUG2-overexpressing mouse fibroblast cells exhibited distinct cancer-specific phenotypes in vitro and developed into tumors in nude mice. Taken together, these findings suggest that CUG2 is a novel tumor-associated gene that is commonly activated in various human cancers and exhibits high transforming activities; it possibly belongs to a transcription regulator family that is involved in tumor biogenesis.

  2. Zoledronic acid and geranylgeraniol regulate cellular behaviour and angiogenic gene expression in human gingival fibroblasts.

    PubMed

    Zafar, S; Coates, D E; Cullinan, M P; Drummond, B K; Milne, T; Seymour, G J

    2014-10-01

    The mevalonate pathway (MVP) and the anti-angiogenic effect of bisphosphonates have been shown to play a role in the pathogenesis of bisphosphonate-related osteonecrosis of the jaw (BRONJ). This study determined the effect of the bisphosphonate, zoledronic acid and the replenishment of the MVP by geranylgeraniol on human gingival fibroblasts. Cell viability, apoptosis, morphological analysis using transmission electron microscopy, and gene expression for vascular endothelial growth factor A, bone morphogenic protein 2, ras homologue gene family member B, epiregulin and interferon-alpha were conducted. Results showed cellular viability was decreased in the presence of zoledronic acid and the co-addition of zoledronic acid with geranylgeraniol restored cell viability to control levels. Caspase 3/7 was detected in zoledronic-acid-treated cells indicating apoptosis. Transmission electron microscopy revealed dilation of the rough endoplasmic reticulum with zoledronic acid and the appearance of multiple lipid-like vesicles following the addition of geranylgeraniol. Zoledronic acid significantly (P < 0.05, FR > ± 2) up-regulated vascular endothelial growth factor A, bone morphogenic protein 2, ras homologue gene family member B and epiregulin at one or more time points but not interferon-alpha. Addition of geranylgeraniol resulted in a reduction in the expression of all five genes compared with zoledronic-acid-treated human gingival fibroblasts. The study concluded geranylgeraniol partially reversed the effects of zoledronic acid in human gingival fibroblasts both at the cellular and genetic levels, suggesting the regulation of these genes is mediated via the mevalonate pathway.

  3. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis

    PubMed Central

    Powell, Nicole D.; Sloan, Erica K.; Bailey, Michael T.; Arevalo, Jesusa M. G.; Miller, Gregory E.; Chen, Edith; Kobor, Michael S.; Reader, Brenda F.; Sheridan, John F.; Cole, Steven W.

    2013-01-01

    Across a variety of adverse life circumstances, such as social isolation and low socioeconomic status, mammalian immune cells have been found to show a conserved transcriptional response to adversity (CTRA) involving increased expression of proinflammatory genes. The present study examines whether such effects might stem in part from the selective up-regulation of a subpopulation of immature proinflammatory monocytes (Ly-6chigh in mice, CD16− in humans) within the circulating leukocyte pool. Transcriptome representation analyses showed relative expansion of the immature proinflammatory monocyte transcriptome in peripheral blood mononuclear cells from people subject to chronic social stress (low socioeconomic status) and mice subject to repeated social defeat. Cellular dissection of the mouse peripheral blood mononuclear cell transcriptome confirmed these results, and promoter-based bioinformatic analyses indicated increased activity of transcription factors involved in early myeloid lineage differentiation and proinflammatory effector function (PU.1, NF-κB, EGR1, MZF1, NRF2). Analysis of bone marrow hematopoiesis confirmed increased myelopoietic output of Ly-6chigh monocytes and Ly-6cintermediate granulocytes in mice subject to repeated social defeat, and these effects were blocked by pharmacologic antagonists of β-adrenoreceptors and the myelopoietic growth factor GM-CSF. These results suggest that sympathetic nervous system-induced up-regulation of myelopoiesis mediates the proinflammatory component of the leukocyte CTRA dynamic and may contribute to the increased risk of inflammation-related disease associated with adverse social conditions. PMID:24062448

  4. Screening of upregulated genes induced by high density in the vetch aphid Megoura crassicauda.

    PubMed

    Ishikawa, Asano; Ishikawa, Yuki; Okada, Yasukazu; Miyazaki, Satoshi; Miyakawa, Hitoshi; Koshikawa, Shigeyuki; Brisson, Jennifer A; Miura, Toru

    2012-03-01

    Aphids exhibit several polyphenisms in which discontinuous, alternative phenotypes are produced depending on environmental conditions. One representative example is the wing polyphenism, where winged and wingless females are produced through parthenogenesis. Previous work has shown that, in some aphid species, the density condition sensed by the mother aphid determines the developmental fate of embryos in her ovary, with high densities leading to winged progeny and low densities to wingless progeny. However, little is known about the molecular and physiological mechanisms underlying the wing polyphenism. To identify genes involved in the wing-morph determination in the vetch aphid, Megoura crassicauda, we compared maternal and embryonic transcripts between high- and low-density conditions using differential display, followed by quantitative real-time PCR (qRT-PCR). Under the high-density condition, two genes (Uba1 and Naca) were found to be upregulated in maternal tissues without ovaries, while one gene (ClpP) was upregulated in ovaries containing embryos. Uba1 and Naca encode factors that function in protein modification or transcriptional/translational regulation, respectively. In addition to differential display, candidate gene approaches focusing on morphogenetic and endocrine genes, i.e., wg, dpp, ap, hh, InR, IRS, Foxo, EcR, and USP, were also carried out. We found that wg was upregulated in maternal tissues under the high-density condition. The identified genes from both approaches are candidates for further study of their involvement in the transduction of density signals in mother aphids and/or the initial process of wing differentiation in embryos.

  5. Increase in gene-transcript levels as indicators of up-regulation of the unfolded protein response in spontaneous canine tumors.

    PubMed

    Elliot, Kirsten; MacDonald-Dickinson, Valerie; Linn, Kathleen; Simko, Elemir; Misra, Vikram

    2014-07-01

    The unfolded protein response (UPR), a conserved cellular response to stressors such as hypoxia and nutrient deprivation, is associated with angiogenesis and metastasis in tumor cells. This article discusses a pilot study conducted to determine whether components of the UPR could be identified in spontaneous canine tumors and whether they were up-regulated within tumor tissue compared with adjacent normal tissue. Tissue samples of various spontaneous canine neoplasms were taken from 13 dogs shortly after surgical excision or euthanasia; control samples were taken from adjacent normal tissue. RNA purification and real-time quantitative reverse-transcription polymerase chain reaction were done to measure the expression of 4 genes associated with the UPR (HERP, CHOP, GRP78, and XBP1s). The results indicated that UPR gene expression can be identified in spontaneous canine tumors and that the UPR is up-regulated, as indicated by significantly increased expression of CHOP and GRP78 within the tumor.

  6. Stably Expressed Genes Involved in Basic Cellular Functions

    PubMed Central

    Wang, Kejian; Fuscoe, James C.

    2017-01-01

    Stably Expressed Genes (SEGs) whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age) in both sexes of F344 rats (n = 4/group; 320 samples). Expression changes (calculated as the maximum expression / minimum expression for each gene) of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination), RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics) or exogenous agents (e.g., drugs, environmental factors) may cause serious adverse effects. PMID:28125669

  7. Upregulation of alpha-skeletal muscle actin and myosin heavy polypeptide gene products in degenerating rotator cuff muscles.

    PubMed

    Fuchs, Bruno; Zumstein, Matthias; Regenfelder, Felix; Steinmann, Patrick; Fuchs, Thomas; Husmann, Knut; Hellermann, Jens; Jost, Bernhard; Hodler, Jürg; Born, Walter; Gerber, C

    2008-07-01

    Impaired function of shoulder muscles, resulting from rotator cuff tears, is associated with abnormal deposition of fat in muscle tissue, but corresponding cellular and molecular mechanisms, likely reflected by altered gene expression profiles, are largely unknown. Here, an analysis of muscle gene expression was carried out by semiquantitative RT-PCR in total RNA extracts of supraspinatus biopsies collected from 60 patients prior to shoulder surgery. A significant increase of alpha-skeletal muscle actin (p = 0.0115) and of myosin heavy polypeptide 1 (p = 0.0147) gene transcripts was observed in parallel with progressive fat deposition in the muscle, assessed on parasagittal T1-weighted turbo-spin-echo magnetic resonance images according to Goutallier. Upregulation of alpha-skeletal muscle actin and of myosin heavy polypeptide-1 has been reported to be associated with increased muscle tissue metabolism and oxidative stress. The findings of the present study, therefore, challenge the hypothesis that increased fat deposition in rotator cuff muscle after injury reflects muscle degeneration.

  8. Bacterial Cellular Engineering by Genome Editing and Gene Silencing

    PubMed Central

    Nakashima, Nobutaka; Miyazaki, Kentaro

    2014-01-01

    Genome editing is an important technology for bacterial cellular engineering, which is commonly conducted by homologous recombination-based procedures, including gene knockout (disruption), knock-in (insertion), and allelic exchange. In addition, some new recombination-independent approaches have emerged that utilize catalytic RNAs, artificial nucleases, nucleic acid analogs, and peptide nucleic acids. Apart from these methods, which directly modify the genomic structure, an alternative approach is to conditionally modify the gene expression profile at the posttranscriptional level without altering the genomes. This is performed by expressing antisense RNAs to knock down (silence) target mRNAs in vivo. This review describes the features and recent advances on methods used in genomic engineering and silencing technologies that are advantageously used for bacterial cellular engineering. PMID:24552876

  9. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    SciTech Connect

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-05-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  10. Gene Essentiality Is a Quantitative Property Linked to Cellular Evolvability.

    PubMed

    Liu, Gaowen; Yong, Mei Yun Jacy; Yurieva, Marina; Srinivasan, Kandhadayar Gopalan; Liu, Jaron; Lim, John Soon Yew; Poidinger, Michael; Wright, Graham Daniel; Zolezzi, Francesca; Choi, Hyungwon; Pavelka, Norman; Rancati, Giulia

    2015-12-03

    Gene essentiality is typically determined by assessing the viability of the corresponding mutant cells, but this definition fails to account for the ability of cells to adaptively evolve to genetic perturbations. Here, we performed a stringent screen to assess the degree to which Saccharomyces cerevisiae cells can survive the deletion of ~1,000 individual "essential" genes and found that ~9% of these genetic perturbations could in fact be overcome by adaptive evolution. Our analyses uncovered a genome-wide gradient of gene essentiality, with certain essential cellular functions being more "evolvable" than others. Ploidy changes were prevalent among the evolved mutant strains, and aneuploidy of a specific chromosome was adaptive for a class of evolvable nucleoporin mutants. These data justify a quantitative redefinition of gene essentiality that incorporates both viability and evolvability of the corresponding mutant cells and will enable selection of therapeutic targets associated with lower risk of emergence of drug resistance.

  11. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival.

    PubMed

    Panfil, Amanda R; Al-Saleem, Jacob; Howard, Cory M; Mates, Jessica M; Kwiek, Jesse J; Baiocchi, Robert A; Green, Patrick L

    2015-12-30

    Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2-3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5) on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i) in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  12. Urban Air Pollution Produces Up-Regulation of Myocardial Inflammatory Genes and Dark Chocolate Provides Cardioprotection

    PubMed Central

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2010-01-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM2.5) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: Southwest (SW) and Northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real time polymerase chain reaction. Also explored were target NFκB (Nuclear Factor κ B), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures. PMID:20932730

  13. Upregulation of Gene Expression in Reward-Modulatory Striatal Opioid Systems by Sleep Loss

    PubMed Central

    Baldo, Brian A; Hanlon, Erin C; Obermeyer, William; Bremer, Quentin; Paletz, Elliott; Benca, Ruth M

    2013-01-01

    Epidemiological studies have shown a link between sleep loss and the obesity ‘epidemic,' and several observations indicate that sleep curtailment engenders positive energy balance via increased palatable-food ‘snacking.' These effects suggest alterations in reward-modulatory brain systems. We explored the effects of 10 days of sleep deprivation in rats on the expression of striatal opioid peptide (OP) genes that subserve food motivation and hedonic reward, and compared effects with those seen in hypothalamic energy balance-regulatory systems. Sleep-deprived (Sleep-Dep) rats were compared with yoked forced-locomotion apparatus controls (App-Controls), food-restricted rats (Food-Restrict), and unmanipulated controls (Home-Cage). Detection of mRNA levels with in situ hybridization revealed a subregion-specific upregulation of striatal preproenkephalin and prodynorhin gene expression in the Sleep-Dep group relative to all other groups. Neuropeptide Y (NPY) gene expression in the hippocampal dentate gyrus and throughout neocortex was also robustly upregulated selectively in the Sleep-Dep group. In contrast, parallel gene expression changes were observed in the Sleep-Dep and Food-Restrict groups in hypothalamic energy-sensing systems (arcuate nucleus NPY was upregulated, and cocaine- and amphetamine-regulated transcript was downregulated), in alignment with leptin suppression in both groups. Together, these results reveal a novel set of sleep deprivation-induced transcriptional changes in reward-modulatory peptide systems, which are dissociable from the energy-balance perturbations of sleep loss or the potentially stressful effects of the forced-locomotion procedure. The recruitment of telencephalic food-reward systems may provide a feeding drive highly resistant to feedback control, which could engender obesity through the enhancement of palatable feeding. PMID:23864029

  14. Gene and functional up-regulation of the BCRP/ABCG2 transporter in hepatocellular carcinoma

    PubMed Central

    2012-01-01

    Background The Breast Cancer Resistance Protein (BCRP/ABCG2) is one member of ABC transporters proteins super family responsible of drug resistance. Since data on ABCG2 expression in liver malignances are scanty, here we report the expression of ABCG2 in adult human hepatocellular carcinoma (HCC) in both in vivo and in vitro models with different degree of malignancy. Methods In cell lines derived from human hepatocellular carcinoma, ABCG2 gene expression was assessed by reverse transcription quantitative real time PCR and function by Hoechst 33342 efflux assay; protein content was assessed by SDS-PAGE Western blot. Results ABCG2 expression was found to be highest in the most undifferentiated cell lines, and this was related with a higher functional activity. ABCG2 expression was sensitive to antineoplastic drugs since exposure to 5 μM doxorubicin for 24 hours resulted in significant up-regulations of ABCG2 in all cell lines, particularly in those lines with low basal ABCG2 expression (p<0.01). The gene expression was also investigated in 51 adult liver tissues with HCC and related cirrhosis; normal liver tissue was used as control. ABCG2 gene expression was higher in HCC than both cirrhotic paired tissue and normal tissue. This up-regulation was greater (p<0.05) in pathological poorly differentiated grade G3/G4 than in well-differentiated G1/G2 HCC. Conclusions Our results suggest a correlation of ABCG2 gene expression and differentiation stage both in human and HCC derived cell lines. The rapid up-regulation of ABCG2 to exposure to doxorubicin emphasizes the importance of this transporter in accounting for drug resistance in liver tumors. PMID:23153066

  15. Upregulation of gene expression in reward-modulatory striatal opioid systems by sleep loss.

    PubMed

    Baldo, Brian A; Hanlon, Erin C; Obermeyer, William; Bremer, Quentin; Paletz, Elliott; Benca, Ruth M

    2013-12-01

    Epidemiological studies have shown a link between sleep loss and the obesity 'epidemic,' and several observations indicate that sleep curtailment engenders positive energy balance via increased palatable-food 'snacking.' These effects suggest alterations in reward-modulatory brain systems. We explored the effects of 10 days of sleep deprivation in rats on the expression of striatal opioid peptide (OP) genes that subserve food motivation and hedonic reward, and compared effects with those seen in hypothalamic energy balance-regulatory systems. Sleep-deprived (Sleep-Dep) rats were compared with yoked forced-locomotion apparatus controls (App-Controls), food-restricted rats (Food-Restrict), and unmanipulated controls (Home-Cage). Detection of mRNA levels with in situ hybridization revealed a subregion-specific upregulation of striatal preproenkephalin and prodynorhin gene expression in the Sleep-Dep group relative to all other groups. Neuropeptide Y (NPY) gene expression in the hippocampal dentate gyrus and throughout neocortex was also robustly upregulated selectively in the Sleep-Dep group. In contrast, parallel gene expression changes were observed in the Sleep-Dep and Food-Restrict groups in hypothalamic energy-sensing systems (arcuate nucleus NPY was upregulated, and cocaine- and amphetamine-regulated transcript was downregulated), in alignment with leptin suppression in both groups. Together, these results reveal a novel set of sleep deprivation-induced transcriptional changes in reward-modulatory peptide systems, which are dissociable from the energy-balance perturbations of sleep loss or the potentially stressful effects of the forced-locomotion procedure. The recruitment of telencephalic food-reward systems may provide a feeding drive highly resistant to feedback control, which could engender obesity through the enhancement of palatable feeding.

  16. Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection.

    PubMed

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2012-05-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM(2.5)) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: southwest (SW) and northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real-time polymerase chain reaction. Also explored were target NFκB (nuclear factor κB), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures.

  17. Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation

    NASA Technical Reports Server (NTRS)

    Davies, E.; Vian, A.; Vian, C.; Stankovic, B.

    1997-01-01

    When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.

  18. Ciona intestinalis interleukin 17-like genes expression is upregulated by LPS challenge.

    PubMed

    Vizzini, Aiti; Di Falco, Felicia; Parrinello, Daniela; Sanfratello, Maria Antonietta; Mazzarella, Claudia; Parrinello, Nicolò; Cammarata, Matteo

    2015-01-01

    In humans, IL-17 is a proinflammatory cytokine that plays a key role in the clearance of extracellular bacteria promoting cell infiltration and production of several cytokines and chemokines. Here, we report on three Ciona intestinalis IL-17 homologues (CiIL17-1, CiIL17-2, CiIL17-3). The gene organization, phylogenetic tree and modeling supported the close relationship with the mammalian IL-17A and IL-17F suggesting that the C. intestinalis IL-17 genes share a common ancestor in the chordate lineages. Real time PCR analysis showed a prompt expression induced by LPS inoculation suggesting that they are involved in the first phase of inflammatory response. In situ hybridization assays disclosed that the genes transcription was upregulated in the pharynx, the main organ of the ascidian immune system, and expressed by hemocytes (granulocytes and univacuolar refractile granulocyte) inside the pharynx vessels.

  19. Genetic determinants and cellular constraints in noisy gene expression

    PubMed Central

    Sanchez, Alvaro; Golding, Ido

    2014-01-01

    In individual cells, transcription is a random process obeying single-molecule kinetics. Often, it occurs in a bursty, intermittent manner. The frequency and size of these bursts affect the magnitude of temporal fluctuations in mRNA and protein content within a cell, creating variation or “noise” in gene expression. It is still unclear to what degree transcriptional kinetics are specific to each gene and determined by its promoter sequence. Alternative scenarios have been proposed, where the kinetics of transcription are governed by cellular constraints and follow universal rules across the genome. Evidence from genome-wide noise studies and from systematic perturbations of promoter sequences suggest that both scenarios—namely gene-specific versus genome-wide regulation of transcription kinetics— may be present to different degrees in bacteria, yeast and animal cells. PMID:24311680

  20. Zinc pyrithione impairs zinc homeostasis and upregulates stress response gene expression in reconstructed human epidermis

    PubMed Central

    Lamore, Sarah D.

    2014-01-01

    Zinc ion homeostasis plays an important role in human cutaneous biology where it is involved in epidermal differentiation and barrier function, inflammatory and antimicrobial regulation, and wound healing. Zinc-based compounds designed for topical delivery therefore represent an important class of cutaneous therapeutics. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in over-the-counter topical antimicrobials, and has also been examined as an investigational therapeutic targeting psoriasis and UVB-induced epidermal hyperplasia. Recently, we have demonstrated that cultured primary human skin keratinocytes display an exquisite sensitivity to nanomolar ZnPT concentrations causing induction of heat shock response gene expression and poly(ADP-ribose) polymerase (PARP)-dependent cell death (Cell Stress Chaperones 15:309–322, 2010). Here we demonstrate that ZnPT causes rapid accumulation of intracellular zinc in primary keratinocytes as observed by quantitative fluorescence microscopy and inductively coupled plasma mass spectrometry (ICP-MS), and that PARP activation, energy crisis, and genomic impairment are all antagonized by zinc chelation. In epidermal reconstructs (EpiDerm™) exposed to topical ZnPT (0.1–2% in Vanicream™), ICP-MS demonstrated rapid zinc accumulation, and expression array analysis demonstrated upregulation of stress response genes encoding metallothionein-2A (MT2A), heat shock proteins (HSPA6, HSPA1A, HSPB5, HSPA1L, DNAJA1, HSPH1, HSPD1, HSPE1), antioxidants (SOD2, GSTM3, HMOX1), and the cell cycle inhibitor p21 (CDKN1A). IHC analysis of ZnPT-treated EpiDerm™ confirmed upregulation of Hsp70 and TUNEL-positivity. Taken together our data demonstrate that ZnPT impairs zinc ion homeostasis and upregulates stress response gene expression in primary keratinocytes and reconstructed human epidermis, activities that may underlie therapeutic and toxicological effects of this topical drug. PMID:21424779

  1. Zinc pyrithione impairs zinc homeostasis and upregulates stress response gene expression in reconstructed human epidermis.

    PubMed

    Lamore, Sarah D; Wondrak, Georg T

    2011-10-01

    Zinc ion homeostasis plays an important role in human cutaneous biology where it is involved in epidermal differentiation and barrier function, inflammatory and antimicrobial regulation, and wound healing. Zinc-based compounds designed for topical delivery therefore represent an important class of cutaneous therapeutics. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in over-the-counter topical antimicrobials, and has also been examined as an investigational therapeutic targeting psoriasis and UVB-induced epidermal hyperplasia. Recently, we have demonstrated that cultured primary human skin keratinocytes display an exquisite sensitivity to nanomolar ZnPT concentrations causing induction of heat shock response gene expression and poly(ADP-ribose) polymerase (PARP)-dependent cell death (Cell Stress Chaperones 15:309-322, 2010). Here we demonstrate that ZnPT causes rapid accumulation of intracellular zinc in primary keratinocytes as observed by quantitative fluorescence microscopy and inductively coupled plasma mass spectrometry (ICP-MS), and that PARP activation, energy crisis, and genomic impairment are all antagonized by zinc chelation. In epidermal reconstructs (EpiDerm™) exposed to topical ZnPT (0.1-2% in Vanicream™), ICP-MS demonstrated rapid zinc accumulation, and expression array analysis demonstrated upregulation of stress response genes encoding metallothionein-2A (MT2A), heat shock proteins (HSPA6, HSPA1A, HSPB5, HSPA1L, DNAJA1, HSPH1, HSPD1, HSPE1), antioxidants (SOD2, GSTM3, HMOX1), and the cell cycle inhibitor p21 (CDKN1A). IHC analysis of ZnPT-treated EpiDerm™ confirmed upregulation of Hsp70 and TUNEL-positivity. Taken together our data demonstrate that ZnPT impairs zinc ion homeostasis and upregulates stress response gene expression in primary keratinocytes and reconstructed human epidermis, activities that may underlie therapeutic and toxicological effects of this topical drug.

  2. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses.

  3. 77 FR 65693 - Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... Register of October 17, 2012, FDA announced that a meeting of the Cellular, Tissue and Gene Therapies..., Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, FDA. On...

  4. 78 FR 44133 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... on guidance documents issued from the Office of Cellular, Tissue and Gene Therapies, Center...

  5. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... Industry: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance document provides manufacturers of cellular and gene therapy (CGT) products with recommendations for developing... document entitled ``Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products''...

  6. 77 FR 71194 - Draft Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... Investigational Cellular and Gene Therapy Products; Availability AGENCY: Food and Drug Administration, HHS. ACTION... for Biologics Research and Evaluation (CBER), Office of Cellular, Tissue, and Gene Therapies (OCTGT). The product areas covered by this guidance are cellular therapy, gene therapy, therapeutic...

  7. c-Jun Gene-Modified Schwann Cells: Upregulating Multiple Neurotrophic Factors and Promoting Neurite Outgrowth

    PubMed Central

    Huang, Liangliang; Quan, Xin; Liu, Zhongyang; Ma, Teng; Wu, Yazhen; Ge, Jun; Zhu, Shu; Yang, Yafeng; Liu, Liang; Sun, Zhen

    2015-01-01

    Genetically modified Schwann cells (SCs) that overexpress neurotrophic factors (NFs), especially those that overexpress multiple NFs, hold great potential for promoting nerve regeneration. Currently, only one NF can be upregulated in most genetically modified SCs, and simultaneously upregulating multiple NFs in SCs remains challenging. In this study, we found that the overexpression of c-Jun, a component of the AP-1 transcription factor, effectively upregulated the expression and secretion of multiple NFs, including glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, artemin, leukemia inhibitory factor, and nerve growth factor. The c-Jun gene-modified SCs showed a normal morphology in scanning electron microscopy and fluorescent staining analysis. In addition, the c-Jun-modified SCs showed enhanced proliferation and migration abilities compared with vector control cells. We used transwell chambers to establish coculture systems imitating the in vivo conditions in which transplanted SCs might influence native SCs and neurons. We found that the c-Jun-modified SCs enhanced native SC migration and promoted the proliferation of native SCs in the presence of axons. Further analysis revealed that in the c-Jun group, the average length and the total area of neurites divided by the total area of the explant body were μm 1180±25 and 6.4±0.4, respectively, which were significantly greater compared with the other groups. These findings raise the possibility of constructing an optimal therapeutic alternative for nerve repair using c-Jun-modified SCs, which have the potential to promote axonal regeneration and functional recovery by upregulating multiple NFs. In addition, these cells exhibit enhanced migration and proliferation abilities, enhance the biological functions of native SCs, and promote neurite outgrowth. PMID:25588149

  8. 125 INCOMPLETE COMPENSATORY UP-REGULATION OF X-LINKED GENES IN BOVINE GERMLINE, EARLY EMBRYOS, AND SOMATIC TISSUES.

    PubMed

    Duan, J; Jue, N K; Jiang, Z; O'Neill, R; Wolf, E; Blomberg, L A; Dong, H; Zheng, X; Chen, J; Tian, X

    2016-01-01

    The maintenance of a proper gene dosage is essential in cellular networks. To resolve the dosage imbalance between eutherian females (XX) and male (XY), X chromosome inactivation (XCI) occurs in females, while X-chromosome dosage compensation up-regulates the active X to balance its expression with that of autosome pairs [Ohno's hypothesis; Ohno 1967 Sex Chromosomes and Sex-linked Genes (Springer-Verlag), p. 99]. These phenomena have been well studied in humans and mice, despite many controversies over the existence of such up-regulation. Using RNA sequencing data, we determined X chromosome dosage compensation in the bovine by analysing the global expression profiles of germ cells, embryos, and somatic tissues. Eight bovine RNA-seq data sets were obtained in from the Gene Expression Omnibus, covering bovine immature/mature oocytes (GSE59186 and GSE52415), pre-implantation conceptuses (GSE59186, GSE52415, and GSE56513), extra-embryonic tissues (PRJNA229443), and male/female somatic tissues (GSE74076, GSE63509, PRJEB6377, and GSE65125). The RNAseq data were trimmed and non-uniquely (paralogs included) mapped to the bovine reference genome assembly UMD3.1.1 using Hisat2 (version 2.0.5) aligner. The mRNA level of each gene, estimated by transformed transcripts per kilobase million was quantified by IsoEM (version 1.1.5). These RNA-seq data sets represented 4 chromosome scenarios in cells: XXXX:AAAA (diploid immature oocyte with DNA duplication), XX:AA (haploid mature oocyte with DNA duplication), XX:AA and X:AA (gradual changed X status in bovine pre-implantation conceptuses), and X:AA (extra-embryonic tissues and somatic cells in female with one active X or XY male) were analysed for dosage compensation. A total of 959 X-linked genes and 20,316 autosome genes were used to calculate the relative X to autosomal gene (A) expression (RXE): log2 (X expression) - log2 (A expression). The following dosage determinations were made: RXE values ≥ 0: complete dosage

  9. Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum).

    PubMed

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-19

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification.

  10. Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum)

    PubMed Central

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-01

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification. PMID:25607733

  11. Korean Red Ginseng Up-regulates C21-Steroid Hormone Metabolism via Cyp11a1 Gene in Senescent Rat Testes.

    PubMed

    Kim, In-Hye; Kim, Si-Kwan; Kim, Eun-Hye; Kim, Sung-Won; Sohn, Sang-Hyun; Lee, Soo Cheol; Choi, Sangdun; Pyo, Suhkneung; Rhee, Dong-Kwon

    2011-09-01

    Ginseng (Panax ginseng Meyer) has been shown to have anti-aging effects in animal and clinical studies. However, the molecular mechanisms by which ginseng exerts these effects remain unknown. Here, the anti-aging effect of Korean red ginseng (KRG) in rat testes was examined by system biology analysis. KRG water extract prepared in feed pellets was administered orally into 12 month old rats for 4 months, and gene expression in testes was determined by microarray analysis. Microarray analysis identified 33 genes that significantly changed. Compared to the 2 month old young rats, 13 genes (Rps9, Cyp11a1, RT1-A2, LOC365778, Sv2b, RGD1565959, RGD1304748, etc.) were up-regulated and 20 genes (RT1-Db1, Cldn5, Svs5, Degs1, Vdac3, Hbb, LOC684355, Svs5, Tmem97, Orai1, Insl3, LOC497959, etc.) were down-regulated by KRG in the older rats. Ingenuity Pathway Analysis of untreated aged rats versus aged rats treated with KRG showed that the affected most was Cyp11a1, responsible for C21-steroid hormone metabolism, and the top molecular and cellular functions are organ morphology and reproductive system development and function. When genes in young rat were compared with those in the aged rat, sperm capacitation related genes were down-regulated in the old rat. However, when genes in the old rat were compared with those in the old rat treated with KRG, KRG treatment up-regulated C21-steroid hormone metabolism. Taken together, Cyp11a1 expression is decreased in the aged rat, however, it is up-regulated by KRG suggesting that KRG seems enhance testes function via Cyp11a1.

  12. Molecular cloning and functional characterization of a mouse gene upregulated by lipopolysaccharide treatment reveals alternative splicing

    SciTech Connect

    Du, Kejun; Chen, Yaoming; Dai, Zongming; Bi, Yuan; Cai, Tongjian; Hou, Lichao; Chai, Yubo; Song, Qinghe; Chen, Sumin; Luo, Wenjing; Chen, Jingyuan

    2010-01-01

    Treatment of mouse cells with lipopolysaccharide (LPS) potently initiates an inflammatory response, but the underlying mechanisms are unclear. We therefore sought to characterize cDNA sequences of a new mouse LPS-responsive gene, and to evaluate the effects of MLrg. Full-length cDNAs were obtained from LPS-treated NIH3T3 cells. We report that the MLrg gene produces two alternative splice products (GenBank Accession Nos. (DQ316984) and (DQ320011)), respectively, encoding MLrgW and MLrgS polypeptides. Both proteins contain zinc finger and leucine zipper domains and are thus potential regulators of transcription. Expression of MLrgW and MLrgS were robustly upregulated following LPS treatment, and the proteins were localized predominantly in the nuclear membrane and cytoplasm. In stable transfectants over-expressing MLrgW the proportion of cells in G1 phase was significantly reduced, while in cells over-expressing MLrgS the proportion of cells in G2 was significantly increased; both proteins are thus potential regulators of cell cycle progression. Upregulation of MLrgW and MLrgS may be an important component of the LPS inflammatory pathway and of the host response to infection with GNB.

  13. Exercise-induced up-regulation of MMP-1 and IL-8 genes in endurance horses

    PubMed Central

    Cappelli, Katia; Felicetti, Michela; Capomaccio, Stefano; Pieramati, Camillo; Silvestrelli, Maurizio; Verini-Supplizi, Andrea

    2009-01-01

    Background The stress response is a critical factor in the training of equine athletes; it is important for performance and for protection of the animal against physio-pathological disorders. In this study, the molecular mechanisms involved in the response to acute and strenuous exercise were investigated using peripheral blood mononuclear cells (PBMCs). Results Quantitative real-time PCR (qRT-PCR) was used to detect modifications in transcription levels of the genes for matrix metalloproteinase-1 (MMP-1) and interleukin 8 (IL-8), which were derived from previous genome-wide expression analysis. Significant up-regulation of these two genes was found in 10 horses that had completed a race of 90–120 km in a time-course experimental design. Conclusion These results suggest that MMP-1 and IL-8 are both involved in the exercise-induced stress response, and this represents a starting point from which to understand the adaptive responses to this phenomenon. PMID:19552796

  14. Functional up-regulation of KCNA gene family expression in murine mesenteric resistance artery smooth muscle

    PubMed Central

    Fountain, S J; Cheong, A; Flemming, R; Mair, L; Sivaprasadarao, A; Beech, D J

    2004-01-01

    This study focused on the hypothesis that KCNA genes (which encode KVα1 voltage-gated K+ channels) have enhanced functional expression in smooth muscle cells of a primary determinant of peripheral resistance – the small mesenteric artery. Real-time PCR methodology was developed to measure cell type-specific in situ gene expression. Profiles were determined for arterial myocyte expression of RNA species encoding KVα1 subunits as well as KVβ1, KVα2.1, KVγ9.3, BKCaα1 and BKCaβ1. The seven major KCNA genes were expressed and more readily detected in endothelium-denuded mesenteric resistance artery compared with thoracic aorta; quantification revealed dramatic differential expression of one to two orders of magnitude. There was also four times more RNA encoding KVα2.1 but less or similar amounts encoding KVβ1, KVγ9.3, BKCaα1 and BKCaβ1. Patch-clamp recordings from freshly isolated smooth muscle cells revealed dominant KVα1 K+ current and current density twice as large in mesenteric cells. Therefore, we suggest the increased RNA production of the resistance artery impacts on physiological function, although there is quantitatively less K+ current than might be expected. The mechanism conferring up-regulated expression of KCNA genes may be common to all the gene family and play a functional role in the physiological control of blood pressure. PMID:14742730

  15. Expression profile of rat hippocampal neurons treated with the neuroprotective compound 2,4-dinitrophenol: up-regulation of cAMP signaling genes.

    PubMed

    Sebollela, Adriano; Freitas-Corrêa, Léo; Oliveira, Fábio F; Mendes, Camila T; Wasilewska-Sampaio, Ana Paula; Camacho-Pereira, Juliana; Galina, Antonio; Brentani, Helena; Passetti, Fabio; De Felice, Fernanda G; Dias-Neto, Emmanuel; Ferreira, Sérgio T

    2010-08-01

    2,4-Dinitrophenol (DNP) is classically known as a mitochondrial uncoupler and, at high concentrations, is toxic to a variety of cells. However, it has recently been shown that, at subtoxic concentrations, DNP protects neurons against a variety of insults and promotes neuronal differentiation and neuritogenesis. The molecular and cellular mechanisms underlying the beneficial neuroactive properties of DNP are still largely unknown. We have now used DNA microarray analysis to investigate changes in gene expression in rat hippocampal neurons in culture treated with low micromolar concentrations of DNP. Under conditions that did not affect neuronal viability, high-energy phosphate levels or mitochondrial oxygen consumption, DNP induced up-regulation of 275 genes and down-regulation of 231 genes. Significantly, several up-regulated genes were linked to intracellular cAMP signaling, known to be involved in neurite outgrowth, synaptic plasticity, and neuronal survival. Differential expression of specific genes was validated by quantitative RT-PCR using independent samples. Results shed light on molecular mechanisms underlying neuroprotection by DNP and point to possible targets for development of novel therapeutics for neurodegenerative disorders.

  16. Wheat VIN3-like PHD finger genes are up-regulated by vernalization.

    PubMed

    Fu, Daolin; Dunbar, Mignon; Dubcovsky, Jorge

    2007-03-01

    The term 'vernalization' describes the acceleration of the transition between the vegetative and reproductive stages after exposing plants to an extended period of low temperature. In Arabidopsis, vernalization promotes flowering by silencing the flowering repressor gene FLOWERING LOCUS C (FLC). Mitotically stable repression of FLC is the result of chromatin modifications mediated by the Vernalization-INsensitive 3 (VIN3) and VIN3-Like (VIL) proteins. In this study, we identified and characterized three VIL genes in diploid wheat (Triticum monococcum L.), named TmVIL1, TmVIL2, and TmVIL3. Similar to Arabidopsis VIN3, all three wheat VIL proteins carry three conserved domains including a plant homeodomain finger motif (PHD), a fibronectin type III domain (FNIII), and a VIN3 interacting domain (VID). Genetic mapping placed TmVIL1, TmVIL2, and TmVIL3 loci in the centromeric regions of chromosome 5, 6, and 1, respectively. The chromosome location of TmVIL1 is close to that of the vernalization gene VRN-D5, but more precise mapping information is required to validate this relationship. Transcription of the wheat VIL genes was up-regulated by vernalization, with a peak after 4-6 weeks of cold treatment. When transferred back to warm conditions, transcript levels of the wheat VIL genes returned to pre-vernalization levels. In addition, the transcript levels of wheat VIL genes are affected by photoperiod. This study indicates that wheat VIL genes have retained a similar structure and transcriptional regulation as their Arabidopsis VIN3/VIL homologues, suggesting that they might have retained some of their functions.

  17. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    SciTech Connect

    Cheng, Chi-Chih; Hsueh, Chi-Mei; Chen, Chiu-Yuan; Chen, Tzu-Hsiu; Hsu, Shih-Lan

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.

  18. VIP Gene Deletion in Mice Causes Cardiomyopathy Associated with Upregulation of Heart Failure Genes

    SciTech Connect

    Szema, Anthony M.; Hamidi, Sayyed A.; Smith, S. David; Benveniste, Helene; Katare, Rajesh Gopalrao

    2013-05-20

    Vasoactive Intestinal Peptide (VIP), a pulmonary vasodilator and inhibitor of vascular smooth muscle proliferation, is absent in pulmonary arteries of patients with idiopathic pulmonary arterial hypertension (PAH). We previously determined that targeted deletion of the VIP gene in mice leads to PAH with pulmonary vascular remodeling and right ventricular (RV) dilatation. Whether the left ventricle is also affected by VIP gene deletion is unknown. In the current study, we examined if VIP knockout mice (VIP-/-) develop both right (RV) and left ventricular (LV) cardiomyopathy, manifested by LV dilatation and systolic dysfunction, as well as overexpression of genes conducive to heart failure.

  19. Forkhead Transcription Factor 3a (FOXO3a) Modulates Hypoxia Signaling via Up-regulation of the von Hippel-Lindau Gene (VHL).

    PubMed

    Liu, Xing; Cai, Xiaolian; Hu, Bo; Mei, Zhichao; Zhang, Dawei; Ouyang, Gang; Wang, Jing; Zhang, Wei; Xiao, Wuhan

    2016-12-02

    FOXO3a, a member of the forkhead homeobox type O (FOXO) family of transcriptional factors, regulates cell survival in response to DNA damage, caloric restriction, and oxidative stress. The von Hippel-Lindau (VHL) tumor suppressor gene encodes a component of the E3 ubiquitin ligase complex that mediates hypoxia-inducible factor α degradation under aerobic conditions, thus acting as one of the key regulators of hypoxia signaling. However, whether FOXO3a impacts cellular hypoxia stress remains unknown. Here we show that FOXO3a directly binds to the VHL promoter and up-regulates VHL expression. Using a zebrafish model, we confirmed the up-regulation of vhl by foxo3b, an ortholog of mammalian FOXO3a Furthermore, by employing the clustered regularly interspaced short palindromic repeats (CRISPR)-associated RNA-guided endonuclease Cas9 (CRISPR/Cas9) technology, we deleted foxo3b in zebrafish and determined that expression of hypoxia-inducible genes was affected under hypoxia. Moreover, foxo3b-null zebrafish exhibited impaired acute hypoxic tolerance, resulting in death. In conclusion, our findings suggest that, by modulating hypoxia-inducible factor activity via up-regulation of VHL, FOXO3a (foxo3b) plays an important role in survival in response to hypoxic stress.

  20. Downregulation of protein tyrosine phosphatase PTPL1 alters cell cycle and upregulates invasion-related genes in prostate cancer cells.

    PubMed

    Castilla, Carolina; Flores, M Luz; Conde, José M; Medina, Rafael; Torrubia, Francisco J; Japón, Miguel A; Sáez, Carmen

    2012-04-01

    PTPL1, a non-receptor type protein tyrosine phosphatase, has been involved in the regulation of apoptosis and invasiveness of various tumour cell types, but its role in prostate cancer remained to be investigated. We report here that downregulation of PTPL1 by small interfering RNA in PC3 cells decreases cell proliferation and concomitantly reduces the expression of cell cycle-related proteins such as cyclins E and B1, PCNA, PTTG1 and phospho-histone H3. PTPL1 downregulation also increases the invasion ability of PC3 cells through Matrigel coated membranes. cDNA array of PTPL1-silenced PC3 cells versus control cells showed an upregulation of invasion-related genes such as uPA, uPAR, tPA, PAI-1, integrin α6 and osteopontin. This increased expression was also confirmed in PTPL1-silenced DU145 prostate cancer cells by quantitative real time PCR and western blot. These findings suggest that PTPL1 is an important mediator of central cellular processes such as proliferation and invasion.

  1. Hibiscus chlorotic ringspot virus coat protein upregulates sulfur metabolism genes for enhanced pathogen defense.

    PubMed

    Gao, Ruimin; Ng, Florence Kai Lin; Liu, Peng; Wong, Sek-Man

    2012-12-01

    In both Hibiscus chlorotic ringspot virus (HCRSV)-infected and HCRSV coat protein (CP) agroinfiltrated plant leaves, we showed that sulfur metabolism pathway related genes-namely, sulfite oxidase (SO), sulfite reductase, and adenosine 5'-phosphosulfate kinase-were upregulated. It led us to examine a plausible relationship between sulfur-enhanced resistance (SED) and HCRSV infection. We broadened an established method to include different concentrations of sulfur (0S, 1S, 2S, and 3S) to correlate them to symptom development of HCRSV-infected plants. We treated plants with glutathione and its inhibitor to verify the SED effect. Disease resistance was induced through elevated glutathione contents during HCRSV infection. The upregulation of SO was related to suppression of symptom development induced by sulfur treatment. In this study, we established that HCRSV-CP interacts with SO which, in turn, triggers SED and leads to enhanced plant resistance. Thus, we have discovered a new function of SO in the SED pathway. This is the first report to demonstrate that the interaction of a viral protein and host protein trigger SED in plants. It will be interesting if such interaction applies generally to other host-pathogen interactions that will lead to enhanced pathogen defense.

  2. Grb7 Upregulation Is a Molecular Adaptation to HER2 Signaling Inhibition Due to Removal of Akt-Mediated Gene Repression

    PubMed Central

    Nencioni, Alessio; Cea, Michele; Garuti, Anna; Passalacqua, Mario; Raffaghello, Lizzia; Soncini, Debora; Moran, Eva; Zoppoli, Gabriele; Pistoia, Vito; Patrone, Franco; Ballestrero, Alberto

    2010-01-01

    The efficacy of anti-HER2 therapeutics, such as lapatinib and trastuzumab, is limited by primary and acquired resistance. Cellular adaptations that allow breast cancer cell to survive prolonged HER2 inhibition include de-repression of the transcription factor FOXO3A with consequent estrogen receptor activation, and/or increased HER3 signaling. Here, we used low-density arrays, quantitative PCR, and western blotting to determine how HER2 signaling inhibition with lapatinib or PI3K inhibitors affects the expression of genes involved in breast cancer metastatic spread and overall prognosis. Retroviral transgenesis was used to express constitutively active forms of Akt in the HER2+ breast cancer cell line SKBR3, and Grb7 in MCF7 cells. Specific gene silencing was obtained by siRNAs transfection. A murine BT474 xenograft cancer model was used to assess the effect of lapatinib on gene expression in vivo. We found that lapatinib induces upregulation of Grb7, an adaptor protein involved in receptor tyrosine kinase signaling and promoting cell survival and cell migration. Grb7 upregulation induced by lapatinib was found to occur in cancer cells in vitro and in vivo. We demonstrate that Grb7 upregulation is recreated by PI3K inhibitors while being prevented by constitutively active Akt. Thus, Grb7 is repressed by PI3K signaling and lapatinib-mediated Akt inhibition is responsible for Grb7 de-repression. Finally, we show that Grb7 removal by RNA-interference reduces breast cancer cell viability and increases the activity of lapatinib. In conclusion, Grb7 upregulation is a potentially adverse consequence of HER2 signaling inhibition. Preventing Grb7 accumulation and/or its interaction with receptor tyrosine kinases may increase the benefit of HER2-targeting drugs. PMID:20126311

  3. Activation of cryptic 3' splice sites within introns of cellular genes following gene entrapment.

    PubMed

    Osipovich, Anna B; White-Grindley, Erica K; Hicks, Geoffrey G; Roshon, Michael J; Shaffer, Christian; Moore, Jason H; Ruley, H Earl

    2004-01-01

    Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3'-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3' splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3' splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3' splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3' splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3' splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3' splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3' processing and polyadenylation of cellular transcripts.

  4. Activation of cryptic 3′ splice sites within introns of cellular genes following gene entrapment

    PubMed Central

    Osipovich, Anna B.; White-Grindley, Erica K.; Hicks, Geoffrey G.; Roshon, Michael J.; Shaffer, Christian; Moore, Jason H.; Ruley, H. Earl

    2004-01-01

    Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3′-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3′ splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3′ splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3′ splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3′ splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3′ splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3′ splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3′ processing and polyadenylation of cellular transcripts. PMID:15155860

  5. Bioefficacy of Graviola leaf extracts in scavenging free radicals and upregulating antioxidant genes.

    PubMed

    Son, Yu-Ra; Choi, Eun-Hye; Kim, Goon-Tae; Park, Tae-Sik; Shim, Soon-Mi

    2016-02-01

    The aims of this study were to determine bioactive components of Graviola leaf extracts and to examine the radical scavenging capacity, gene expression and transcription factors of antioxidant enzymes. Rutin, kaempferol-rutinoside, and vitamin U were identified from the steaming and 50% EtOH extracts of Graviola leaves. Graviola leaf extracts effectively scavenged peroxy and nitrogen radicals. 50% EtOH of Graviola leaves provided a 1-2.9 times higher trolox equivalent than the steaming extract. It also had a higher VCEAC. Graviola leaf extracts reduced the generation of reactive oxygen species (ROS) induced by H2O2 in a dose-dependent manner. The 50% EtOH extract of Graviola leaves upregulated SOD1 and Nrf2, but catalase and HMOX1 were not altered by the 50% EtOH extract of Graviola leaves.

  6. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves.

    PubMed

    Hoeberichts, Frank A; ten Have, Arjen; Woltering, Ernst J

    2003-07-01

    Programmed cell death (PCD) in plant cells is often accompanied by biochemical and morphological hallmarks similar to those of animal apoptosis. However, orthologs of animal caspases, cysteinyl aspartate-specific proteases that constitute the core component of animal apoptosis, have not yet been identified in plants. Recent studies have revealed the presence of a family of genes encoding proteins with distant homology to mammalian caspases, designated metacaspases, in the Arabidopsis thaliana genome. Here, we describe the isolation of LeMCA1, a type-II metacaspase cDNA clone from tomato (Lycopersicon esculentum Mill.). BLAST analysis demonstrated that the LeMCA1 gene is located in close vicinity of several genes that have been linked with PCD. Southern analysis indicated the existence of at least one more metacaspase in the tomato genome. LeMCA1 mRNA levels rapidly increased upon infection of tomato leaves with Botrytis cinerea, a fungal pathogen that induces cell death in several plant species. LeMCA1 was not upregulated during chemical-induced PCD in suspension-cultured tomato cells.

  7. Biomechanical signals upregulate myogenic gene induction in the presence or absence of inflammation

    PubMed Central

    Chandran, Ravi; Knobloch, Thomas J.; Anghelina, Mirela; Agarwal, Sudha

    2016-01-01

    Inflammation of the muscle invariably leads to muscle cell damage and impaired regeneration. Biomechanical signals play a vital role in the regulation of myogenesis in healthy and inflamed muscle. We hypothesized that biomechanical signals counteract the actions of proinflammatory mediators and upregulate the basic helix-loop-helix and MADS box transcription enhancer factor 2 (MEF2) families of transcription factors, leading to increased myogenesis in inflamed muscle cells. For this purpose, C2C12 cells plated on collagenized silastic membranes were subjected to equibiaxial cyclic tensile strain (CTS) in the presence or absence of TNF-α, and the myogenic gene induction was examined over a period of 72 h. Exposure of cells to CTS resulted in a significant upregulation of mRNA expressions and synthesis of myogenic regulatory factors, MYOD1, myogenin (MYOG), MEF2A, and cyclin-dependent kinase inhibitor 1A (CDKN1A; p21) as well as muscle structural proteins like myosin heavy chain (MYHC) isoforms (MYH1, MYH2, and MYH4) and α-tropomyosin (TPM1), eventually leading to an increase in myotube formation. Contrarily, TNF-α suppressed the expression of all of the above differentiation-inducing factors in C2C12 cells. Further results revealed that simultaneous exposure of C2C12 cells to CTS and TNF-α abrogated the TNF-α-mediated downregulation of myogenic differentiation. In fact, the mRNA expression and protein synthesis of all myogenic factors (Myod1, Myog, Mef2a, Cdkn1a, Myh1, Myh2, Myh4, and Tpm1) were increased in stretched C2C12 cells despite the sustained presence of TNF-α. These results demonstrate that mechanotransduction regulates multiple signaling molecules involved in C2C12 cell differentiation. On one hand, these signals are potent transducers of myotube phenotype in myoblasts; on the other, these signals counteract catabolic actions of proinflammatory cytokines like TNF-α and allow the expression of myogenic genes to upregulate muscle cell differentiation

  8. Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma

    PubMed Central

    Kodama, Takahiro; Newberg, Justin Y.; Kodama, Michiko; Rangel, Roberto; Yoshihara, Kosuke; Tien, Jean C.; Parsons, Pamela H.; Wu, Hao; Finegold, Milton J.; Copeland, Neal G.; Jenkins, Nancy A.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets. PMID:27247392

  9. D-Psicose induces upregulation of defense-related genes and resistance in rice against bacterial blight.

    PubMed

    Kano, Akihito; Hosotani, Kouji; Gomi, Kenji; Yamasaki-Kokudo, Yumiko; Shirakawa, Chikage; Fukumoto, Takeshi; Ohtani, Kouhei; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ishida, Yutaka; Nishizawa, Yoko; Ichimura, Kazuya; Tada, Yasuomi; Akimitsu, Kazuya

    2011-10-15

    We examined rice responses to a rare sugar, d-psicose. Rice growth was inhibited by d-psicose but not by common sugars. Microarray analysis revealed that d-psicose treatment caused an upregulation of many defense-related genes in rice, and dose-dependent upregulation of these genes was confirmed by quantitative reverse-transcription polymerase chain reaction. The level of upregulation of defense-related genes by d-psicose was low compared with that by d-allose, which is another rare sugar known to confer induction of resistance to rice bacterial blight in rice. Treatment with d-psicose conferred resistance to bacterial blight in rice in a dose-dependent manner, and the results indicate that d-psicose might be a candidate plant activator for reducing disease development in rice.

  10. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes.

    PubMed

    Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E

    2007-01-22

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working Global System for Mobile Communication (GSM) cell phone rated at a frequency of 1900MHz. Primary cultures were exposed to cell phone emissions for 2h. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Up-regulation occurred in both "on" and "stand-by" modes in neurons, but only in "on" mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons or astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes.

  11. Exposure to Cell Phone Radiation Up-Regulates Apoptosis Genes in Primary Cultures of Neurons and Astrocytes

    PubMed Central

    Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E.

    2007-01-01

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working GSM (Global System for Mobile Communication) cell phone rated at a frequency of 1900 MHz. Primary cultures were exposed to cell phone emissions for 2 hrs. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Upregulation occurred in both “on” and “stand-by” modes in neurons, but only in “on” mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons and astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes. PMID:17187929

  12. The Effect of Gravity Fields on Cellular Gene Expression

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1999-01-01

    Early theoretical analysis predicted that microgravity effects on the isolated cell would be minuscule at the subcellular level; however, these speculations have not proven true in the real world. Astronauts experience a significant bone and muscle loss in as little as 2 weeks of spaceflight and changes are seen at the cellular level soon after exposure to microgravity. Changes in biological systems may be primarily due to the lack of gravity and the resulting loss of mechanical stress on tissues and cells. Recent ground and flight studies examining the effects of gravity or mechanical stress on cells demonstrate marked changes in gene expression when relatively small changes in mechanical forces or gravity fields were made. Several immediate early genes (IEG) like c-fos and c-myc are induced by mechanical stimulation within minutes. In contrast, several investigators report that the absence of mechanical forces during space flight result in decreased sera response element (SRE) activity and attenuation of expression of IEGs such as c-fos, c-jun and cox-2 mRNAs. Clearly, these early changes in gene expression may have long term consequences on mechanically sensitive cells. In our early studies on STS-56, we reported four major changes in the osteoblast; 1) prostaglandin synthesis in flight, 2) changes in cellular morphology, 3) altered actin cytoskeleton and 4) reduced osteoblast growth after four days exposure to microgravity. Initially, it was believed that changes in fibronectin (FN) RNA, FN protein synthesis or subsequent FN matrix formation might account for the changes in cytoskeleton and/ or reduction of growth. However our recent studies on Biorack (STS-76, STS-81 and STS-84), using ground and in-flight 1-G controls, demonstrated that fibronectin synthesis and matrix formation were normal in microgravity. In addition, in our most recent Biorack paper, our laboratory has documented that relative protein synthesis and mRNA synthesis are not changed after 24

  13. Cellular unfolded protein response against viruses used in gene therapy

    PubMed Central

    Sen, Dwaipayan; Balakrishnan, Balaji; Jayandharan, Giridhara R.

    2014-01-01

    Viruses are excellent vehicles for gene therapy due to their natural ability to infect and deliver the cargo to specific tissues with high efficiency. Although such vectors are usually “gutted” and are replication defective, they are subjected to clearance by the host cells by immune recognition and destruction. Unfolded protein response (UPR) is a naturally evolved cyto-protective signaling pathway which is triggered due to endoplasmic reticulum (ER) stress caused by accumulation of unfolded/misfolded proteins in its lumen. The UPR signaling consists of three signaling pathways, namely PKR-like ER kinase, activating transcription factor 6, and inositol-requiring protein-1. Once activated, UPR triggers the production of ER molecular chaperones and stress response proteins to help reduce the protein load within the ER. This occurs by degradation of the misfolded proteins and ensues in the arrest of protein translation machinery. If the burden of protein load in ER is beyond its processing capacity, UPR can activate pro-apoptotic pathways or autophagy leading to cell death. Viruses are naturally evolved in hijacking the host cellular translation machinery to generate a large amount of proteins. This phenomenon disrupts ER homeostasis and leads to ER stress. Alternatively, in the case of gutted vectors used in gene therapy, the excess load of recombinant vectors administered and encountered by the cell can trigger UPR. Thus, in the context of gene therapy, UPR becomes a major roadblock that can potentially trigger inflammatory responses against the vectors and reduce the efficiency of gene transfer. PMID:24904562

  14. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling

    PubMed Central

    2014-01-01

    Background Salt stress usually causes crop growth inhibition and yield decrease. Epigenetic regulation is involved in plant responses to environmental stimuli. The epigenetic regulation of the cell wall related genes associated with the salt-induced cellular response is still little known. This study aimed to analyze cell morphological alterations in maize roots as a consequence of excess salinity in relation to the transcriptional and epigenetic regulation of the cell wall related protein genes. Results In this study, maize seedling roots got shorter and displayed swelling after exposure to 200 mM NaCl for 48 h and 96 h. Cytological observation showed that the growth inhibition of maize roots was due to the reduction in meristematic zone cell division activity and elongation zone cell production. The enlargement of the stele tissue and cortex cells contributed to root swelling in the elongation zone. The cell wall is thought to be the major control point for cell enlargement. Cell wall related proteins include xyloglucan endotransglucosylase (XET), expansins (EXP), and the plasma membrane proton pump (MHA). RT-PCR results displayed an up-regulation of cell wall related ZmEXPA1, ZmEXPA3, ZmEXPA5, ZmEXPB1, ZmEXPB2 and ZmXET1 genes and the down-regulation of cell wall related ZmEXPB4 and ZmMHA genes as the duration of exposure was increased. Histone acetylation is regulated by HATs, which are often correlated with gene activation. The expression of histone acetyltransferase genes ZmHATB and ZmGCN5 was increased after 200 mM NaCl treatment, accompanied by an increase in the global acetylation levels of histones H3K9 and H4K5. ChIP experiment showed that the up-regulation of the ZmEXPB2 and ZmXET1 genes was associated with the elevated H3K9 acetylation levels on the promoter regions and coding regions of these two genes. Conclusions These data suggested that the up-regulation of some cell wall related genes mediated cell enlargement to possibly mitigate the

  15. 76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... gene therapy products for the treatment of retinal disorders. Topics to be considered include...

  16. 77 FR 63840 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee..., Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and..., Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, and...

  17. 78 FR 79699 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... No. FDA-2013-N-0001] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting... the public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory Committee. General..., Tissue, and Gene Therapies, Center for Biologics Evaluation and Research (CBER), FDA. On February...

  18. 75 FR 66381 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... Lentiviral Vector Based Gene Therapy Products. FDA intends to make background material available to...

  19. Isolation and characterization of a novel gene sfig in rat skeletal muscle up-regulated by spaceflight (STS-90)

    NASA Technical Reports Server (NTRS)

    Kano, Mihoko; Kitano, Takako; Ikemoto, Madoka; Hirasaka, Katsuya; Asanoma, Yuki; Ogawa, Takayuki; Takeda, Shinichi; Nonaka, Ikuya; Adams, Gregory R.; Baldwin, Kenneth M.; Oarada, Motoko; Kishi, Kyoichi; Nikawa, Takeshi

    2003-01-01

    We obtained the skeletal muscle of rats exposed to weightless conditions during a 16-day-spaceflight (STS-90). By using a differential display technique, we identified 6 up-regulated and 3 down-regulated genes in the gastrocnemius muscle of the spaceflight rats, as compared to the ground control. The up-regulated genes included those coding Casitas B-lineage lymphoma-b, insulin growth factor binding protein-1, titin and mitochondrial gene 16 S rRNA and two novel genes (function unknown). The down-regulated genes included those encoding RNA polymerase II elongation factor-like protein, NADH dehydrogenase and one novel gene (function unknown). In the present study, we isolated and characterized one of two novel muscle genes that were remarkably up-regulated by spaceflight. The deduced amino acid sequence of the spaceflight-induced gene (sfig) comprises 86 amino acid residues and is well conserved from Drosophila to Homo sapiens. A putative leucine-zipper structure located at the N-terminal region of sfig suggests that this gene may encode a transcription factor. The up-regulated expression of this gene, confirmed by Northern blot analysis, was observed not only in the muscles of spaceflight rats but also in the muscles of tail-suspended rats, especially in the early stage of tail-suspension when gastrocnemius muscle atrophy initiated. The gene was predominantly expressed in the kidney, liver, small intestine and heart. When rat myoblastic L6 cells were grown to 100% confluence in the cell culture system, the expression of sfig was detected regardless of the cell differentiation state. These results suggest that spaceflight has many genetic effects on rat skeletal muscle.

  20. De-repressing LncRNA-Targeted Genes to Upregulate Gene Expression: Focus on Small Molecule Therapeutics.

    PubMed

    Fatemi, Roya Pedram; Velmeshev, Dmitry; Faghihi, Mohammad Ali

    2014-11-18

    Non-protein coding RNAs (ncRNAs) make up the overwhelming majority of transcripts in the genome and have recently gained attention for their complex regulatory role in cells, including the regulation of protein-coding genes. Furthermore, ncRNAs play an important role in normal development and their expression levels are dysregulated in several diseases. Recently, several long noncoding RNAs (lncRNAs) have been shown to alter the epigenetic status of genomic loci and suppress the expression of target genes. This review will present examples of such a mechanism and focus on the potential to target lncRNAs for achieving therapeutic gene upregulation by de-repressing genes that are epigenetically silenced in various diseases. Finally, the potential to target lncRNAs, through their interactions with epigenetic enzymes, using various tools, such as small molecules, viral vectors and antisense oligonucleotides, will be discussed. We suggest that small molecule modulators of a novel class of drug targets, lncRNA-protein interactions, have great potential to treat some cancers, cardiovascular disease, and neurological disorders.

  1. Emerging cellular and gene therapies for congenital anemias.

    PubMed

    Ludwig, Leif S; Khajuria, Rajiv K; Sankaran, Vijay G

    2016-12-01

    Congenital anemias comprise a group of blood disorders characterized by a reduction in the number of peripherally circulating erythrocytes. Various genetic etiologies have been identified that affect diverse aspects of erythroid physiology and broadly fall into two main categories: impaired production or increased destruction of mature erythrocytes. Current therapies are largely focused on symptomatic treatment and are often based on transfusion of donor-derived erythrocytes and management of complications. Hematopoietic stem cell transplantation represents the only curative option currently available for the majority of congenital anemias. Recent advances in gene therapy and genome editing hold promise for the development of additional curative strategies for these blood disorders. The relative ease of access to the hematopoietic stem cell compartment, as well as the possibility of genetic manipulation ex vivo and subsequent transplantation in an autologous manner, make blood disorders among the most amenable to cellular therapies. Here we review cell-based and gene therapy approaches, and discuss the limitations and prospects of emerging avenues, including genome editing tools and the use of pluripotent stem cells, for the treatment of congenital forms of anemia. © 2016 Wiley Periodicals, Inc.

  2. A novel gene IC53 stimulates ECV304 cell proliferation and is upregulated in failing heart.

    PubMed

    Chen, Jingzhou; Liu, Baohua; Liu, Yuqing; Han, Yu; Yu, Hui; Zhang, Yinhui; Lu, Lihe; Zhen, Yisong; Hui, Rutai

    2002-05-31

    C53, cloned from rat brain cDNA library, can bind to p35, the precursor of activator of Cdk5. A novel gene with 84% homolog to C53, named IC53, was cloned from our 5300 EST database of human aorta cDNA library (GenBank Accession No. AF110322). Computational analysis showed that IC53 cDNA is 2538 bp long, encoding 419 amino acids, mapped to chromosome 17q21.31 with 12 exons, ubiquitously expressed in 12 tested normal tissues and 8 tumor cell lines from MTN membranes and vascular endothelial cells by Northern blot and in situ hybridization, and upregulated in the rat models of subacute heart failure and chronic ischemic heart failure by left coronary ligation. Stable transfection of IC53 stimulates ECV304 cell proliferation by 2.1-fold compared to cells with empty vector (P<0.05). The results support that IC53 is a novel gene, mainly expressed in vascular endothelial cells and mediates cell proliferation.

  3. Vitamin D receptor gene is epigenetically altered and transcriptionally up-regulated in multiple sclerosis

    PubMed Central

    Soriano, Luis; Olaskoaga, Ander; Roldán, Miren; Otano, María; Ajuria, Iratxe; Soriano, Gerardo; Lacruz, Francisco

    2017-01-01

    Objective Vitamin D deficiency has been linked to increased risk of multiple sclerosis (MS) and poor outcome. However, the specific role that vitamin D plays in MS still remains unknown. In order to identify potential mechanisms underlying vitamin D effects in MS, we profiled epigenetic changes in vitamin D receptor (VDR) gene to identify genomic regulatory elements relevant to MS pathogenesis. Methods Human T cells derived from whole blood by negative selection were isolated in a set of 23 relapsing-remitting MS (RRMS) patients and 12 controls matched by age and gender. DNA methylation levels were assessed by bisulfite cloning sequencing in two regulatory elements of VDR. mRNA levels were measured by RT-qPCR to assess changes in VDR expression between patients and controls. Results An alternative VDR promoter placed at exon 1c showed increased DNA methylation levels in RRMS patients (median 30.08%, interquartile range 19.2%) compared to controls (18.75%, 9.5%), p-value<0.05. Moreover, a 6.5-fold increase in VDR mRNA levels was found in RRMS patients compared to controls (p-value<0.001). Conclusions An alternative promoter of the VDR gene shows altered DNA methylation levels in patients with multiple sclerosis, and it is associated with VDR mRNA upregulation. This locus may represent a candidate regulatory element in the genome relevant to MS pathogenesis. PMID:28355272

  4. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    PubMed

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1.

  5. Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity

    PubMed Central

    Stack, Cliona; Jainuddin, Shari; Elipenahli, Ceyhan; Gerges, Meri; Starkova, Natalia; Starkov, Anatoly A.; Jové, Mariona; Portero-Otin, Manuel; Launay, Nathalie; Pujol, Aurora; Kaidery, Navneet Ammal; Thomas, Bobby; Tampellini, Davide; Beal, M. Flint; Dumont, Magali

    2014-01-01

    Methylene blue (MB, methylthioninium chloride) is a phenothiazine that crosses the blood brain barrier and acts as a redox cycler. Among its beneficial properties are its abilities to act as an antioxidant, to reduce tau protein aggregation and to improve energy metabolism. These actions are of particular interest for the treatment of neurodegenerative diseases with tau protein aggregates known as tauopathies. The present study examined the effects of MB in the P301S mouse model of tauopathy. Both 4 mg/kg MB (low dose) and 40 mg/kg MB (high dose) were administered in the diet ad libitum from 1 to 10 months of age. We assessed behavior, tau pathology, oxidative damage, inflammation and numbers of mitochondria. MB improved the behavioral abnormalities and reduced tau pathology, inflammation and oxidative damage in the P301S mice. These beneficial effects were associated with increased expression of genes regulated by NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE), which play an important role in antioxidant defenses, preventing protein aggregation, and reducing inflammation. The activation of Nrf2/ARE genes is neuroprotective in other transgenic mouse models of neurodegenerative diseases and it appears to be an important mediator of the neuroprotective effects of MB in P301S mice. Moreover, we used Nrf2 knock out fibroblasts to show that the upregulation of Nrf2/ARE genes by MB is Nrf2 dependent and not due to secondary effects of the compound. These findings provide further evidence that MB has important neuroprotective effects that may be beneficial in the treatment of human neurodegenerative diseases with tau pathology. PMID:24556215

  6. Identification of potentially neuroprotective genes upregulated by neurotrophin treatment of CA3 neurons in the injured brain.

    PubMed

    Malik, Saafan Z; Motamedi, Shahab; Royo, Nicolas C; LeBold, David; Watson, Deborah J

    2011-03-01

    Specific neurotrophic factors mediate histological and/or functional improvement in animal models of traumatic brain injury (TBI). In previous work, several lines of evidence indicated that the mammalian neurotrophin NT-4/5 is neuroprotective for hippocampal CA3 pyramidal neurons after experimental TBI. We hypothesized that NT-4/5 neuroprotection is mediated by changes in the expression of specific sets of genes, and that NT-4/5-regulated genes are potential therapeutic targets for blocking delayed neuronal death after TBI. In this study, we performed transcription profiling analysis of CA3 neurons to identify genes regulated by lateral fluid percussion injury, or by treatment with the trkB ligands NT-4/5 or brain-derived neurotrophic factor (BDNF). The results indicate extensive overlap between genes upregulated by neurotrophins and genes upregulated by injury, suggesting that the mechanism behind neurotrophin neuroprotection may mimic the brain's endogenous protective response. A subset of genes selected for further study in vitro exhibited neuroprotection against glutamate excitotoxicity. The neuroprotective genes identified in this study were upregulated at 30 h post-injury, and are thus expected to act during a clinically useful time frame of hours to days after injury. Modulation of these factors and pathways by genetic manipulation or small molecules may confer hippocampal neuroprotection in vivo in preclinical models of TBI.

  7. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster.

    PubMed

    Deng, Xinxian; Hiatt, Joseph B; Nguyen, Di Kim; Ercan, Sevinc; Sturgill, David; Hillier, LaDeana W; Schlesinger, Felix; Davis, Carrie A; Reinke, Valerie J; Gingeras, Thomas R; Shendure, Jay; Waterston, Robert H; Oliver, Brian; Lieb, Jason D; Disteche, Christine M

    2011-10-23

    Many animal species use a chromosome-based mechanism of sex determination, which has led to the coordinate evolution of dosage-compensation systems. Dosage compensation not only corrects the imbalance in the number of X chromosomes between the sexes but also is hypothesized to correct dosage imbalance within cells that is due to monoallelic X-linked expression and biallelic autosomal expression, by upregulating X-linked genes twofold (termed 'Ohno's hypothesis'). Although this hypothesis is well supported by expression analyses of individual X-linked genes and by microarray-based transcriptome analyses, it was challenged by a recent study using RNA sequencing and proteomics. We obtained new, independent RNA-seq data, measured RNA polymerase distribution and reanalyzed published expression data in mammals, C. elegans and Drosophila. Our analyses, which take into account the skewed gene content of the X chromosome, support the hypothesis of upregulation of expressed X-linked genes to balance expression of the genome.

  8. Up-regulation of reactivity and survival genes in astrocytes after exposure to short duration overpressure.

    PubMed

    Vandevord, Pamela J; Leung, Lai Yee; Hardy, Warren; Mason, Matthew; Yang, King H; King, Albert I

    2008-04-04

    Gurdjian et al. proposed decades ago that pressure gradients played a major factor in neuronal injury due to impact. In the late 1950s, their experiments on concussion demonstrated that the principal factor in the production of concussion in animals was the sudden increase of intracranial pressure accompanying head injury. They reported the increase in pressure severity correlated with an increase in 'altered cells' resulting in animal death. More recently, Hardy et al. (2006) demonstrated the presence of transient pressure pulses with impact conditions. These studies indicate that short duration overpressure should be further examined as a mechanism of traumatic brain injury (TBI). In the present study, we designed and fabricated a barochamber that simulated overpressure noted in various head injury studies. We tested the effect of overpressure on astrocytes. Expressions of apoptotic, reactivity and survival genes were examined at 24, 48 and 72 h post-overpressure exposure. At 24 h, we found elevated levels of reactivity and survival gene expression. By 48 h, a decreased expression of apoptotic genes was demonstrated. This study reinforces the hypothesis that transient pressure acts to instigate the cellular response displayed following TBI.

  9. 77 FR 73472 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice...

  10. Molecular characterization of Ran gene up-regulated in large yellow croaker (Pseudosciaena crocea) immunity.

    PubMed

    Han, Fang; Wang, Xiao-Qing; Yao, Cui-luan; Wang, Zhi-yong

    2010-08-01

    RanGTPase, one family of small G protein superfamily, has been widely demonstrated to be involved in transport system between cytoplasm and nucleus. However the knowledge about the function of RanGTPase in immunity remains limited. In this report, Ran gene (named LycRan) cDNA was cloned from the large yellow croaker, Pseudosciaena crocea, a marine fish. The full-length cDNA of LycRan was of 1033 bp, including a 5'-terminal untranslated region (UTR) of 43 bp, 3'-terminal UTR of 338 bp and an open reading frame (ORF) of 648 bp encoding a polypeptide of 216 amino acids. The deduced protein is highly homologous, it shares 90.74%, 88.89%, 89.35% and 85.20% identities with those of salmon, frog, human and fruit fly respectively. RT-PCR analysis indicated that LycRan gene was constitutively expressed in 9 tissues examined, including kidney, liver, gill, muscle, spleen, skin, heart, intestine and blood. The result of quantitative Real-Time RT-PCR analysis revealed the highest expression in kidney and the weakest expression in skin. Time course analysis showed that LycRan expression was obviously up-regulated in kidney, blood and spleen after immunization with either poly I:C or formalin-inactive Gram-negative bacterium Vibrio parahaemolyticus. It indicated that the highest expression was 2.8 times (at 48 h) as much as that in the control in the kidney (p < 0.05) challenged by poly I:C and 3.2 times (at 24 h) in the blood (p < 0.05) challenged by bacteria. These results suggested that LycRan might play an important role in large yellow croaker defense against the pathogen infection. Our study, therefore, might provide a clue to elucidate the large yellow croaker innate immunity.

  11. Eurycoma longifolia upregulates osteoprotegerin gene expression in androgen- deficient osteoporosis rat model

    PubMed Central

    2012-01-01

    Background Eurycoma longifolia (EL) has been shown recently to protect against bone calcium loss in orchidectomised rats, the model for androgen-deficient osteoporosis. The mechanism behind this is unclear but it may be related to its ability to elevate testosterone levels or it may directly affect bone remodeling. The aim of this study is to determine the mechanism involved by investigating the effects of EL extract on serum testosterone levels, bone biomarkers, biomechanical strength and gene expression of Receptor Activator of Nuclear Factor kappa-B ligand (RANKL), Osteoprotegerin (OPG) and Macrophage-Colony Stimulating Factor (MCSF) in orchidectomised rats. Methods Thirty-two male Sprague–Dawley rats were divided into: Sham-operated group (SHAM); orchidectomised-control group (ORX); orchidectomised and given 15 mg/kg EL extract (ORX + EL) and orchidectomised and given 8 mg/kg testosterone (ORX + T). The rats were treated for 6 weeks. The serum levels of testosterone, osteocalcin and C-terminal telopeptide of type I collagen (CTX) were measured using the ELISA technique. The femoral bones were subjected to biomechanical testing. The tibial bone gene expressions of RANKL, OPG and MCSF were measured using the branch DNA technique. Results The post-treatment level of testosterone was found to be significantly reduced by orchiectomy (p < 0.05). Both ORX + EL and ORX + T groups have significantly higher post-treatment testosterone levels compared to their pre-treatment levels (p < 0.05). The bone resorption marker (CTx) was elevated after orchiectomy but was suppressed after treatment in the ORX + EL and ORX + T groups (p < 0.05). There was no significant finding for the femoral biomechanical parameters. The tibial OPG gene expression in the ORX group was significantly lower compared to the SHAM and ORX + EL groups (p < 0.05). Conclusion Supplementation with EL extract elevated the testosterone levels, reduced the bone resorption marker and upregulated OPG

  12. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes.

    PubMed

    Vaid, Neha; Pandey, Prashant; Srivastava, Vineet Kumar; Tuteja, Narendra

    2015-05-01

    Lectin receptor-like kinases (LecRLKs) are members of RLK family composed of lectin-like extracellular recognition domain, transmembrane domain and cytoplasmic kinase domain. LecRLKs are plasma membrane proteins believed to be involved in signal transduction. However, most of the members of the protein family even in plants have not been functionally well characterized. Herein, we show that Pisum sativum LecRLK (PsLecRLK) localized in plasma membrane systems and/or other regions of the cell and its transcript upregulated under salinity stress. Overexpression of PsLecRLK in transgenic tobacco plants confers salinity stress tolerance by alleviating both the ionic as well the osmotic component of salinity stress. The transgenic plants show better tissue compartmentalization of Na(+) and higher ROS scavenging activity which probably results in lower membrane damage, improved growth and yield maintenance even under salinity stress. Also, expression of several genes involved in cellular homeostasis is perturbed by PsLecRLK overexpression. Alleviation of osmotic and ionic components of salinity stress along with reduced oxidative damage and upregulation of stress-responsive genes in transgenic plants under salinity stress conditions could be possible mechanism facilitating enhanced stress tolerance. This study presents PsLecRLK as a promising candidate for crop improvement and also opens up new avenue to investigate its signalling pathway.

  13. Expression of a chitin deacetylase gene, up-regulated in Cryptococcus laurentii strain RY1, under nitrogen limitation.

    PubMed

    Chakraborty, Writachit; Sarkar, Soumyadev; Chakravorty, Somnath; Bhattacharya, Semantee; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-05-01

    This study reports the identification of a chitin deacetylase gene in Cryptococcus laurentii strain RY1 over-expressing under nitrogen limitation by differential display. The up-regulation took place in robustly growing cells rather than in starving quiescent autophagic cells. Quantitative Real Time-PCR, enzyme activity in cell lysate and cell wall analysis corroborated the up-regulation of chitin deacetylase under nitrogen limitation. These results suggest chitin deacetylase might play a significant role in nitrogen limiting growth of Cryptococcus laurentii strain RY1.

  14. Girdin/GIV is upregulated by cyclic tension, propagates mechanical signal transduction, and is required for the cellular proliferation and migration of MG-63 cells

    SciTech Connect

    Hu, Jiang-Tian; Li, Yan; Yu, Bing; Gao, Guo-Jie; Zhou, Ting; Li, Song

    2015-08-21

    To explore how Girdin/GIV is regulated by cyclic tension and propagates downstream signals to affect cell proliferation and migration. Human osteoblast-like MG-63 cells were exposed to cyclic tension force at 4000 μstrain and 0.5 Hz for 6 h, produced by a four-point bending system. Cyclic tension force upregulated Girdin and Akt expression and phosphorylation in cultured MG-63 cells. Girdin and Akt each promoted the phosphorylation of the other under stimulated tension. In vitro MTT and transwell assays showed that Girdin and Akt are required for cell proliferation and migration during cellular quiescence. Moreover, STAT3 was determined to be essential for Girdin expression under stimulated tension force in the physiological condition, as well as for osteoblast proliferation and migration during quiescence. These findings suggest that the STAT3/Girdin/Akt pathway activates in osteoblasts in response to mechanical stimulation and may play a significant role in triggering osteoblast proliferation and migration during orthodontic treatment. - Highlights: • Tension force upregulates Girdin and Akt expression and phosphorylation. • Girdin and Akt promotes the phosphorylation of each other under tension stimulation. • Girdin and Akt are required for MG-63 cell proliferation and migration. • STAT3 is essential for Girdin expression after application of the tension forces.

  15. Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feedingdouble dagger.

    PubMed

    Puthoff, David P; Sardesai, Nagesh; Subramanyam, Subhashree; Nemacheck, Jill A; Williams, Christie E

    2005-07-01

    SUMMARY Both yield and grain-quality are dramatically decreased when susceptible wheat (Triticum aestivum) plants are infested by Hessian fly (Mayetiola destructor) larvae. Examination of the changes in wheat gene expression during infestation by virulent Hessian fly larvae has identified the up-regulation of a gene, Hessian fly responsive-2 (Hfr-2), which contains regions similar to genes encoding seed-specific agglutinin proteins from Amaranthus. Hfr-2, however, did not accumulate in developing seeds, as do other wheat seed storage proteins. Additionally, a separate region of the HFR-2 predicted amino acid sequence is similar to haemolytic proteins, from both mushroom and bacteria, that are able to form pores in cell membranes of mammalian red blood cells. The involvement of Hfr-2 in interactions with insects was supported by experiments demonstrating its up-regulation by both fall armyworm (Spodoptera frugiperda) and bird cherry-oat aphid (Rhopalosiphum padi) infestations but not by virus infection. Examination of wheat defence response pathways showed Hfr-2 up-regulation following methyl jasmonate treatment and only slight up-regulation in response to salicylic acid, abscisic acid and wounding treatments. Like related proteins, HFR-2 may normally function in defence against certain insects or pathogens. However, we propose that as virulent Hessian fly larvae manipulate the physiology of the susceptible host, the HFR-2 protein inserts in plant cell membranes at the feeding sites and by forming pores provides water, ions and other small nutritive molecules to the developing larvae.

  16. 78 FR 15726 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  17. 76 FR 18768 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  18. 76 FR 64951 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory...

  19. Gene expression during estivation in spadefoot toads, Scaphiopus couchii: upregulation of riboflavin binding protein in liver.

    PubMed

    Storey, K B; Dent, M E; Storey, J M

    1999-08-01

    A cDNA library constructed from liver of 2-month estivating female spadefoot toads, Scaphiopus couchii, was differentially screened to reveal genes that were induced or upregulated during estivation. After two rounds of screening a clone was isolated that showed 60% higher expression in liver of estivating, versus control, toads. The clone possessed a 1.0 kb insert which annealed to a single 0.7 kb band on Northern blots. Sequencing revealed a 1053 nucleotide full-length cDNA; the largest potential open reading frame was 708 nucleotides which encoded a protein of 235 amino acids. A homology search in Genbank indicated that the protein was a riboflavin binding protein (RfBP), a monomeric phosphoglycoprotein produced by the liver of female birds, reptiles, and mammals that functions to bind plasma riboflavin and load the vitamin into eggs or fetus. To our knowledge, this is the first demonstration that RfBP is also present in amphibians. Toad RfBP showed 50% of residues identical with the chicken or turtle liver proteins and many essential structural features were conserved in the toad protein including 18 cysteine residues, two asparagine glycosylation sites, and 6 tryptophan residues. However, a region with eight phosphoserines in the chicken or turtle proteins that functions in RfBP binding to the oocyte membrane contained only three serine residues in toad RfBP, suggesting that recognition and binding to oocyte receptors must be different in toads. Northern hybridization showed that toad RfBP was largely liver-specific; no mRNA transcripts were detected in brain, gut, heart, or kidney but low message levels occurred in hind leg skeletal muscle of estivating, but not control, toads. Upregulation of RfBP in liver of estivating toads may be linked with maturation of eggs in preparation for the explosive breeding that occurs immediately upon emergence from estivation but might also have a role for the adult in "caching" riboflavin to maintain an endogenous vitamin

  20. Elastin calcification in the rat subdermal model is accompanied by up-regulation of degradative and osteogenic cellular responses.

    PubMed

    Lee, Jeoung Soo; Basalyga, Dina M; Simionescu, Agneta; Isenburg, Jason C; Simionescu, Dan T; Vyavahare, Narendra R

    2006-02-01

    Calcification of vascular elastin occurs in patients with arteriosclerosis, renal failure, diabetes, and vascular graft implants. We hypothesized that pathological elastin calcification is related to degenerative and osteogenic mechanisms. To test this hypothesis, the temporal expression of genes and proteins associated with elastin degradation and osteogenesis was examined in the rat subdermal calcification model by quantitative real-time reverse transcription-polymerase chain reaction and specific protein assays. Purified elastin implanted subdermally in juvenile rats exhibited progressive calcification in a time-dependent manner along with fibroblast and macrophage infiltration. Reverse transcription-polymerase chain reaction analysis showed that relative gene expression levels of matrix metalloproteinases (MMP-2 and MMP-9) and transforming growth factor-beta1 were increased in parallel with calcification. Gelatin zymography showed strong MMP activities at early time points, which were associated with high levels of soluble elastin peptides. Gene expression of core binding factor alpha-1, an osteoblast-specific transcription factor, increased in parallel with elastin calcification and attained approximately 9.5-fold higher expression at 21 days compared to 3 days after implantation. Similarly, mRNA levels of the bone markers osteopontin and alkaline phosphatase also increased progressively, but osteocalcin levels remained unchanged. We conclude that degenerative and osteogenic processes may be involved in elastin calcification.

  1. Analysis of Epstein-Barr virus and cellular gene expression during the early phases of Epstein-Barr virus lytic induction.

    PubMed

    Auburn, Helen; Zuckerman, Mark; Smith, Melvyn

    2016-11-01

    In order to develop novel host/pathogen real-time PCR assays for routine diagnostic use, early gene expression patterns from both Epstein-Barr virus (EBV) and Raji cells were examined after inducing the lytic life cycle using 12-O-tetradecanoyl-13-phorbol ester and sodium butyrate. Real-time PCR identified several highly induced (>90-fold) EBV lytic genes over a 48 h time course during the lytic induction phase. Latent genes were induced at low levels during this phase. The cellular response to lytic viral replication is poorly understood. Whole human genome microarray analysis identified 113 cellular genes regulated twofold or more by EBV, including 63 upregulated and 46 downregulated genes, over a 24 h time course post-induction. The most upregulated gene was CHI3L1, a chitinase-3-like 1 protein (18.1-fold; P<0.0084), and the most downregulated gene was TYMS, a thymidylate synthetase (-7.6-fold). Gene Ontology enrichment analysis using MetaCore software revealed cell cycle (core), cell cycle (role of anaphase-promoting complex) in cell cycle regulation) and lymphatic diseases as the most significantly represented biological network processes, canonical pathways and disease biomarkers, respectively. Chemotaxis, DNA damage and inflammation (IL-4 signalling) together with lymphoproliferative disorders and non-Hodgkin's lymphoma were significantly represented biological processes and disease biomarkers.

  2. Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes.

    PubMed

    Periasamy, Vaiyapuri S; Athinarayanan, Jegan; Alfawaz, Mohammed A; Alshatwi, Ali A

    2016-02-01

    Carbon based nanomaterials, including carbon nanotubes, graphene, nanodiamond and carbon nanoparticles, have emerged as potential candidates for a wide variety of applications because of their unusual electrical, mechanical, thermal and optical properties. However, our understanding of how increased usage of carbon based nanomaterials could lead to harmful effects in humans and other biological systems is inadequate. Our present investigation is focused on the cellular toxicity of carbon nanoparticles (CNPs) on human mesenchymal stem cells (hMSCs). Following exposure to CNPs, cell viability, nuclear morphological changes, apoptosis and cell cycle progression were monitored. Furthermore, the expression of genes involved in both cell death (e.g., P53, TNF3, CDKN1A, TNFRSF1A, TNFSF10, NFKBIA, BCL2L1) and cell cycle regulation (e.g., PCNA, EGR1, E2F1, CCNG1, CCND1, CCNC, CYCD3) were assessed using qPCR. Our results indicated that CNPs reduce cell viability and cause chromatin condensation and DNA fragmentation. Cell cycle analysis indicated that CNPs affect the cell cycle progression. However, the gene expression measurements confirmed that CNPs significantly upregulated the P53, TNF3, CDKNIA, and NFKBIA genes and downregulated the EGR1 gene in hMSCs. Our findings suggest that CNPs reduce cell viability by disrupting the expression of cell death genes in human mesenchymal stem cell (hMSC). The results of this investigation revealed that CNPs exhibited moderate toxicity on hMSCs.

  3. Short-term dietary phosphate restriction up-regulates ileal fibroblast growth factor 15 gene expression in mice

    PubMed Central

    Nakahashi, Otoki; Yamamoto, Hironori; Tanaka, Sarasa; Kozai, Mina; Takei, Yuichiro; Masuda, Masashi; Kaneko, Ichiro; Taketani, Yutaka; Iwano, Masayuki; Miyamoto, Ken-ichi; Takeda, Eiji

    2014-01-01

    Members of the fibroblast growth factor (FGF) 19 subfamily, including FGF23, FGF15/19, and FGF21, have a role as endocrine factors which influence the metabolism of inorganic phosphate (Pi) and vitamin D, bile acid, and energy. It has been reported that dietary Pi regulates circulating FGF23. In this study, the short-term effects of dietary Pi restriction on the expression of FGF19 subfamily members in mice were analyzed. An initial analysis confirmed plasma FGF23 levels positively correlated with the amount of dietary Pi. On the other hand, ileal Fgf15 gene expression, but not hepatic Fgf21 gene expression, was up-regulated by dietary Pi restriction. In addition, we observed the increase of plasma 1,25-dihydroxyvitamin D [1,25(OH)2D] levels by dietary Pi restriction, and the up-regulation of ileal Fgf15 mRNA expression by 1,25(OH)2D3 and vitamin D receptor (VDR). Importantly, dietary Pi restriction-induced Fgf15 gene expression was prevented in VDR-knockout mice. Furthermore, diurnal variations of plasma triglyceride concentrations and hepatic mRNA expression of the bile acid synthesis enzyme Cyp7a1 as one of Fgf15 negative target genes was influenced by dietary Pi restriction. These results suggest that dietary Pi restriction up-regulates ileal Fgf15 gene expression through 1,25(OH)2D3 and VDR, and may affect hepatic bile acid homeostasis. PMID:24688219

  4. Upregulation of jasmonate biosynthesis and jasmonate-responsive genes in rice leaves in response to a bacterial pathogen mimic.

    PubMed

    Ranjan, Ashish; Vadassery, Jyothilakshmi; Patel, Hitendra Kumar; Pandey, Alok; Palaparthi, Ramesh; Mithöfer, Axel; Sonti, Ramesh V

    2015-05-01

    Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice, secretes several cell wall degrading enzymes including cellulase (ClsA) and lipase/esterase (LipA). Prior treatment of rice leaves with purified cell wall degrading enzymes such as LipA can confer enhanced resistance against subsequent X. oryzae pv. oryzae infection. To understand LipA-induced rice defense responses, microarray analysis was performed 12 h after enzyme treatment of rice leaves. This reveals that 867 (720 upregulated and 147 downregulated) genes are differentially regulated (≥2-fold). A number of genes involved in defense, stress, signal transduction, and catabolic processes were upregulated while a number of genes involved in photosynthesis and anabolic processes were downregulated. The microarray data also suggested upregulation of jasmonic acid (JA) biosynthetic and JA-responsive genes. Estimation of various phytohormones in LipA-treated rice leaves demonstrated a significant increase in the level of JA-Ile (a known active form of JA) while the levels of other phytohormones were not changed significantly with respect to buffer-treated control. This suggests a role for JA-Ile in cell wall damage induced innate immunity. Furthermore, a comparative analysis of ClsA- and LipA-induced rice genes has identified key rice functions that might be involved in elaboration of damage-associated molecular pattern (DAMP)-induced innate immunity.

  5. Zebularine upregulates expression of CYP genes through inhibition of DNMT1 and PKR in HepG2 cells

    PubMed Central

    Nakamura, Kazuaki; Aizawa, Kazuko; Aung, Kyaw Htet; Yamauchi, Junji; Tanoue, Akito

    2017-01-01

    Drug-induced hepatotoxicity is one of the major reasons cited for drug withdrawal. Therefore, it is of extreme importance to detect human hepatotoxic candidates as early as possible during the drug development process. In this study, we aimed to enhance hepatocyte functions such as CYP gene expression in HepG2 cells, one of the most extensively used cell lines in evaluating hepatotoxicity of chemicals and drugs. We found that zebularine, a potent inhibitor of DNA methylation, remarkably upregulates the expression of CYP genes in HepG2 cells. In addition, we revealed that the upregulation of CYP gene expression by zebularine was mediated through the inhibition of both DNA methyltransferase 1 (DNMT1) and double-stranded RNA-dependent protein kinase (PKR). Furthermore, HepG2 cells treated with zebularine were more sensitive than control cells to drug toxicity. Taken together, our results show that zebularine may make HepG2 cells high-functioning and thus could be useful for evaluating the hepatotoxicity of chemicals and drugs speedily and accurately in in-vitro systems. The finding that zebularine upregulates CYP gene expression through DNMT1 and PKR modulation sheds light on the mechanisms controlling hepatocyte function and thus may aid in the development of new in-vitro systems using high-functioning hepatocytes. PMID:28112215

  6. Upregulation of Oxidative Stress Related Genes in a Chronic Kidney Disease Attributed to Specific Geographical Locations of Sri Lanka

    PubMed Central

    Sayanthooran, Saravanabavan; Gunerathne, Lishanthe; Abeysekera, Tilak D. J.; Sooriyapathirana, Suneth S.

    2016-01-01

    Objective. To infer the influence of internal and external oxidative stress in chronic kidney disease patients of unknown etiology (CKDu) in Sri Lanka, by analyzing expression of genes related directly or indirectly to oxidative stress: glutamate-cysteine ligase catalytic subunit (GCLC), glutathione S-transferase mu 1 (GSTM1), glucose-6-phosphate dehydrogenase (G6PD), fibroblast growth factor-23 (FGF23), and NLR family pyrin domain containing 3 (NLRP3). Methods. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was carried out for the selected populations: CKDu patients (n = 43), chronic kidney disease patients (CKD; n = 14), healthy individuals from a CKDu endemic area (GHI; n = 9), and nonendemic area (KHI; n = 16). Fold changes were quantified relative to KHI. Results. GCLC had greater than threefold upregulation in all three study groups, with a maximum of 7.27-fold upregulation in GHI (p = 0.000). GSTM1 was not expressed in 25.6% of CKDu and 42.9% of CKD patients, but CKDu patients expressing GSTM1 showed upregulation of 2.60-fold (p < 0.05). Upregulation of FGF23 and NLRP3 genes in CKD and CKDu was observed (p < 0.01), with greater fold changes in CKD. Conclusion. Results suggest higher influence of external sources of oxidative stress in CKDu, possibly owing to environmental conditions. PMID:27975059

  7. Somatic polyploidy is associated with the upregulation of c-MYC interacting genes and EMT-like signature

    PubMed Central

    Vazquez-Martin, Alejandro; Anatskaya, Olga V.; Giuliani, Alessandro; Erenpreisa, Jekaterina; Huang, Sui; Salmina, Kristine; Inashkina, Inna; Huna, Anda; Nikolsky, Nikolai N.; Vinogradov, Alexander E.

    2016-01-01

    The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents a double puzzle. We address this conundrum by cross-species transcription analysis of c-MYC interacting genes in polyploid vs. diploid tissues and cells, including human vs. mouse heart, mouse vs. human liver and purified 4n vs. 2n mouse decidua cells. Gene-by-gene transcriptome comparison and principal component analysis indicated that c-MYC interactants are significantly overrepresented among ploidy-associated genes. Protein interaction networks and gene module analysis revealed that the most upregulated genes relate to growth, stress response, proliferation, stemness and unicellularity, as well as to the pathways of cancer supported by MAPK and RAS coordinated pathways. A surprising feature was the up-regulation of epithelial-mesenchymal transition (EMT) modules embodied by the N-cadherin pathway and EMT regulators from SNAIL and TWIST families. Metabolic pathway analysis also revealed the EMT-linked features, such as global proteome remodeling, oxidative stress, DNA repair and Warburg-like energy metabolism. Genes associated with apoptosis, immunity, energy demand and tumour suppression were mostly down-regulated. Noteworthy, despite the association between polyploidy and ample features of cancer, polyploidy does not trigger it. Possibly it occurs because normal polyploidy does not go that far in embryonalisation and linked genome destabilisation. In general, the analysis of polyploid transcriptome explained the evolutionary relation of c-MYC and polyploidy to cancer. PMID:27655693

  8. Comparison between the viral transforming gene (src) of recovered avian sarcoma virus and its cellular homolog.

    PubMed Central

    Takeya, T; Hanafusa, H; Junghans, R P; Ju, G; Skalka, A M

    1981-01-01

    Recovered avian sarcoma viruses are recombinants between transformation-defective mutants of Rous sarcoma virus and the chicken cellular gene homologous to the src gene of Rous sarcoma virus. We have constructed and analyzed molecular clones of viral deoxyribonucleic acid from recovered avian sarcoma virus and its transformation-competent progenitor, the Schmidt-Ruppin A strain of Rous sarcoma virus. A 2.0-megadalton EcoRI fragment containing the entire src gene from each of these clones was subcloned and characterized. These fragments were also used as probes to isolate recombinant phage clones containing the cellular counterpart of the viral src gene, termed cellular src, from a lambda library of chicken deoxyribonucleic acid. The structure of cellular src was analyzed by restriction endonuclease mapping and electron microscopy. Restriction endonuclease mapping revealed extensive similarity between the src regions of Rous sarcoma virus and recovered avian sarcoma virus, but striking differences between the viral src's and cellular src. Electron microscopic analysis of heteroduplexes between recovered virus src and cellular src revealed a 1.8-kilobase region of homology. In the cellular gene, the homologous region was interrupted by seven nonhomologous regions which we interpret to be intervening sequences. We estimate the minimum length of cellular src to be about 7.2 kilobases. These findings have implications concerning the mechanism of formation of recovered virus src and possibly other cell-derived retrovirus transforming genes. Images PMID:6287213

  9. Inhibition of SULT4A1 expression induces up-regulation of phototransduction gene expression in 72-hour postfertilization zebrafish larvae.

    PubMed

    Crittenden, Frank; Thomas, Holly; Ethen, Cheryl M; Wu, Zhengliang L; Chen, Dongquan; Kraft, Timothy W; Parant, John M; Falany, Charles N

    2014-05-01

    Sulfotransferase (SULT) 4A1 is an orphan enzyme that shares distinct structure and sequence similarities with other cytosolic SULTs. SULT4A1 is primarily expressed in neuronal tissue and is also the most conserved SULT, having been identified in every vertebrate investigated to date. Certain haplotypes of the SULT4A1 gene are correlated with higher baseline psychopathology in schizophrenic patients, but no substrate or function for SULT4A1 has yet been identified despite its high level of sequence conservation. In this study, deep RNA sequencing was used to search for alterations in gene expression in 72-hour postfertilization zebrafish larvae following transient SULT4A1 knockdown (KD) utilizing splice blocking morpholino oligonucleotides. This study demonstrates that transient inhibition of SULT4A1 expression in developing zebrafish larvae results in the up-regulation of several genes involved in phototransduction. SULT4A1 KD was verified by immunoblot analysis and quantitative real-time polymerase chain reaction (qPCR). Gene regulation changes identified by deep RNA sequencing were validated by qPCR. This study is the first identification of a cellular process whose regulation appears to be associated with SULT4A1 expression.

  10. Inhibition of SULT4A1 Expression Induces Up-Regulation of Phototransduction Gene Expression in 72-Hour Postfertilization Zebrafish Larvae

    PubMed Central

    Crittenden, Frank; Thomas, Holly; Ethen, Cheryl M.; Wu, Zhengliang L.; Chen, Dongquan; Kraft, Timothy W.; Parant, John M.

    2014-01-01

    Sulfotransferase (SULT) 4A1 is an orphan enzyme that shares distinct structure and sequence similarities with other cytosolic SULTs. SULT4A1 is primarily expressed in neuronal tissue and is also the most conserved SULT, having been identified in every vertebrate investigated to date. Certain haplotypes of the SULT4A1 gene are correlated with higher baseline psychopathology in schizophrenic patients, but no substrate or function for SULT4A1 has yet been identified despite its high level of sequence conservation. In this study, deep RNA sequencing was used to search for alterations in gene expression in 72-hour postfertilization zebrafish larvae following transient SULT4A1 knockdown (KD) utilizing splice blocking morpholino oligonucleotides. This study demonstrates that transient inhibition of SULT4A1 expression in developing zebrafish larvae results in the up-regulation of several genes involved in phototransduction. SULT4A1 KD was verified by immunoblot analysis and quantitative real-time polymerase chain reaction (qPCR). Gene regulation changes identified by deep RNA sequencing were validated by qPCR. This study is the first identification of a cellular process whose regulation appears to be associated with SULT4A1 expression. PMID:24553382

  11. Evolution of viruses by acquisition of cellular RNA or DNA nucleotide sequences and genes: an introduction.

    PubMed

    Becker, Y

    2000-01-01

    The origins of virus evolution may be traced to Archeabacteria since Inouye and Inouye (6) discovered a retroelement with a gene for reverse transcriptase in the bacterial genome and in the satellite, multiple copy single stranded DNA (msDNA) in the soil bacterium Myxococcus xanthus. It was possible (8) to define the evolution of retroelements in eukaryotic cells of plants, insects (gypsy retrovirus) and vertebrates. The replication of RNA viruses in eukaryotic cells allowed for the viral RNA genome to integrate a cellular ubiquitin mRNA, as reported for BVDV (24). Another example is the integration of 28S ribosomal RNA into the hemagglutinin gene of an influenza virus. This change in the hemagglutinin gene led to an increased pathogenicity of the influenza virus (25). In contrast to RNA viruses, DNA viruses had evolved by inserting cDNA molecules derived from mRNA transcripts of cellular genes or foreign viral RNA. It is of interest that the virus acquired cellular genes in the genomes of DNA viruses represent genes that code for proteins that inhibit cellular molecular processes related to HLA class I and II molecules. The other acquired genes are cellular genes that code for cytokines that are capable of inhibiting antigen presentation to T cells by antigen presenting cells (APC) by dendritic Langerhans cells. The acquisition of cellular genes by DNA viruses enhances their pathogenicity by inhibiting the hosts' defense systems.

  12. High therapeutic concentration of prazosin up-regulates angiogenic IL6 and CCL2 genes in hepatocellular carcinoma cells.

    PubMed

    Lin, Zu-Yau; Chuang, Wan-Long

    2012-12-01

    Alteration of the oxidative stress of hepatocellular carcinoma (HCC) cells can influence the expressions of genes favored angiogenesis. Quinone reductase 2 which can activate quinones leading to reactive oxygen species production is a melatonin receptor known as MT3. Prazosin prescribed for benign prostate hyperplasia and hypertension is a potent antagonist for MT3. This study was to investigate the influence of therapeutic concentrations of prazosin (0.01 and 0.1μM) on cell proliferation and differential expressions of CCL2, CCL20, CXCL6, CXCL10, IL8 and IL6 genes related to inflammation and/or oxidative stress in human HCC cell lines. Two HCC cell lines including one without susceptible to amphotericin B-induced oxidative stress (cell line A; HCC24/KMUH) and one with this effect (cell line B; HCC38/KMUH) were investigated by 0.01 and 0.1μM prazosin. The premixed WST-1 cell proliferation reagent was applied for proliferation assay. Differential expressions of genes were examined by quantitative reverse transcriptase-polymerase chain reaction. Our results showed that both 0.01 and 0.1μM prazosin did not influence cell proliferation in both cell lines. Both 0.01 and 0.1μM prazosin in cell line A and 0.01μM prazosin in cell line B did not cause differential expressions of tested genes. However, 0.1μM prazosin caused remarkable up-regulation of IL6 gene and slightly up-regulation of CCL2 gene in cell line B. In conclusion, high therapeutic concentration of prazosin can up-regulate angiogenic IL6 and CCL2 genes in human HCC cells susceptible to amphotericin B-induced oxidative stress. Clinical application of prazosin in patients with HCC should consider this possibility.

  13. Green tea polyphenol stimulates cancer preventive effects of celecoxib in human lung cancer cells by upregulation of GADD153 gene.

    PubMed

    Suganuma, Masami; Kurusu, Miki; Suzuki, Kaori; Tasaki, Emi; Fujiki, Hirota

    2006-07-01

    To more clearly understand the molecular mechanisms involved in synergistic enhancement of cancer preventive activity with the green tea polyphenol (-)-epigallocatechin gallate (EGCG), we examined the effects of cotreatment with EGCG plus celecoxib, a cyclooxygenase-2 selective inhibitor. We specifically looked for induction of apoptosis and expression of apoptosis related genes, with emphasis on growth arrest and DNA damage-inducible 153 (GADD153) gene, in human lung cancer cell line PC-9: Cotreatment with EGCG plus celecoxib strongly induced the expression of both GADD153 mRNA level and protein in PC-9 cells, while neither EGCG nor celecoxib alone did. However, cotreatment did not induce expression of other apoptosis related genes, p21(WAF1) and GADD45. Judging by upregulation of GADD153, only cotreatment with EGCG plus celecoxib synergistically induced apoptosis of PC-9 cells. Synergistic effects with the combination were also observed in 2 other lung cancer cell lines, A549 and ChaGo K-1. Furthermore, EGCG did not enhance GADD153 gene expression or apoptosis induction in PC-9 cells in combination with N-(4-hydroxyphenyl)retinamide or with aspirin. Thus, upregulation of GADD153 is closely correlated with synergistic enhancement of apoptosis with EGCG. Cotreatment also activated the mitogen-activated protein kinases (MAPKs), such as ERK1/2 and p38 MAPK: Preteatment with PD98059 (ERK1/2 inhibitor) and UO126 (selective MEK inhibitor) abrogated both upregulation of GADD153 and synergistic induction of apoptosis of PC-9 cells, while SB203580 (p38 MAPK inhibitor) did not do so, indicating that GADD153 expression was mediated through the ERK signaling pathway. These findings indicate that high upregulation of GADD153 is a key requirement for cancer prevention in combination with EGCG.

  14. Up-regulation of photoprotection and PSII-repair gene expression by irradiance in the unicellular green alga Dunaliella salina.

    PubMed

    Park, Seunghye; Polle, Juergen E W; Melis, Anastasios; Lee, Taek Kyun; Jin, Eonseon

    2006-01-01

    The unicellular green alga Dunaliella salina is an attractive model organism for studying photoacclimation responses and the photosystem II (PSII) damage and repair process in the photosynthetic apparatus. Irradiance during cell growth defines both the photoacclimation and the PSII repair status of the cells. To identify genes specific to these processes, a cDNA library was created from irradiance-stressed D. salina. From the cDNA library, 1112 randomly selected expressed sequence tags (ESTs) were analyzed. Because ESTs constitute the expressed part of the genome, the strategy of randomly sequencing cDNA clones at their 5'-ends allowed us to obtain information about the transcript level of numerous genes in light-stressed D. salina. The results of a BLASTX search performed on the obtained total set of ESTs showed that approximately 1% of the ESTs could be assigned to genes coding for proteins that are known to be up-regulated in response to high-light stress. Specifically, after 48 h of high-light exposure of the cells, an increase in the expression level of antioxidant genes, such as Fe-SOD and APX, was observed, as well as elevated levels of the Cbr transcript, a light-harvesting Chl-protein homolog. Further, the ATP-dependent Clp protease gene was also up-regulated in D. salina cells after 48 h of exposure to high light. The results provide initial insight into the global gene regulation process in response to irradiance.

  15. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    PubMed Central

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  16. Tetracapsuloides bryosalmonae infection affects the expression of genes involved in cellular signal transduction and iron metabolism in the kidney of the brown trout Salmo trutta.

    PubMed

    Kumar, Gokhlesh; Sarker, Subhodeep; Menanteau-Ledouble, Simon; El-Matbouli, Mansour

    2015-06-01

    Tetracapsuloides bryosalmonae is an enigmatic endoparasite which causes proliferative kidney disease in various species of salmonids in Europe and North America. The life cycle of the European strain of T. bryosalmonae generally completes in an invertebrate host freshwater bryozoan and vertebrate host brown trout (Salmo trutta) Linnaeus, 1758. Little is known about the gene expression in the kidney of brown trout during the developmental stages of T. bryosalmonae. In the present study, quantitative real-time PCR was applied to quantify the target genes of interest in the kidney of brown trout at different time points of T. bryosalmonae development. PCR primers specific for target genes were designed and optimized, and their gene expression levels were quantified in the cDNA kidney samples using SYBR Green Supermix. Expression of Rab GDP dissociation inhibitor beta, integral membrane protein 2B, NADH dehydrogenase 1 beta subcomplex subunit 6, and 26S protease regulatory subunit S10B were upregulated significantly in infected brown trout, while the expression of the ferritin M middle subunit was downregulated significantly. These results suggest that host genes involved in cellular signal transduction, proteasomal activities, including membrane transporters and cellular iron storage, are differentially upregulated or downregulated in the kidney of brown trout during parasite development. The gene expression pattern of infected renal tissue may support the development of intraluminal sporogonic stages of T. bryosalmonae in the renal tubular lumen of brown trout which may facilitate the release of viable parasite spores to transmit to the invertebrate host bryozoan.

  17. Unveiling novel genes upregulated by both rhBMP2 and rhBMP7 during early osteoblastic transdifferentiation of C2C12 cells

    PubMed Central

    2011-01-01

    Findings We set out to analyse the gene expression profile of pre-osteoblastic C2C12 cells during osteodifferentiation induced by both rhBMP2 and rhBMP7 using DNA microarrays. Induced and repressed genes were intercepted, resulting in 1,318 induced genes and 704 repressed genes by both rhBMP2 and rhBMP7. We selected and validated, by RT-qPCR, 24 genes which were upregulated by rhBMP2 and rhBMP7; of these, 13 are related to transcription (Runx2, Dlx1, Dlx2, Dlx5, Id1, Id2, Id3, Fkhr1, Osx, Hoxc8, Glis1, Glis3 and Cfdp1), four are associated with cell signalling pathways (Lrp6, Dvl1, Ecsit and PKCδ) and seven are associated with the extracellular matrix (Ltbp2, Grn, Postn, Plod1, BMP1, Htra1 and IGFBP-rP10). The novel identified genes include: Hoxc8, Glis1, Glis3, Ecsit, PKCδ, LrP6, Dvl1, Grn, BMP1, Ltbp2, Plod1, Htra1 and IGFBP-rP10. Background BMPs (bone morphogenetic proteins) are members of the TGFβ (transforming growth factor-β) super-family of proteins, which regulate growth and differentiation of different cell types in various tissues, and play a critical role in the differentiation of mesenchymal cells into osteoblasts. In particular, rhBMP2 and rhBMP7 promote osteoinduction in vitro and in vivo, and both proteins are therapeutically applied in orthopaedics and dentistry. Conclusion Using DNA microarrays and RT-qPCR, we identified both previously known and novel genes which are upregulated by rhBMP2 and rhBMP7 during the onset of osteoblastic transdifferentiation of pre-myoblastic C2C12 cells. Subsequent studies of these genes in C2C12 and mesenchymal or pre-osteoblastic cells should reveal more details about their role during this type of cellular differentiation induced by BMP2 or BMP7. These studies are relevant to better understanding the molecular mechanisms underlying osteoblastic differentiation and bone repair. PMID:21943021

  18. 76 FR 81513 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee..., Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and... Gene Therapies, Center for Biologics Evaluation and Research, FDA. FDA intends to make...

  19. Upregulation of skeletal muscle inflammatory genes links inflammation with insulin resistance in women with the metabolic syndrome.

    PubMed

    Poelkens, Fleur; Lammers, Gerwen; Pardoel, Elisabeth M; Tack, Cees J; Hopman, Maria T E

    2013-10-01

    The metabolic syndrome, a combination of interrelated metabolic risk factors, is associated with insulin resistance and promotes the development of cardiovascular diseases and type 2 diabetes mellitus. There is a close link between inflammation and metabolic disease, but the responsible mechanisms remain elusive. The aim of this study was to identify differentially expressed genes in insulin-resistant skeletal muscle tissue of women with the metabolic syndrome compared with healthy control women. Women with the metabolic syndrome (n = 19) and healthy control women (n = 20) were extensively phenotyped, insulin sensitivity was measured using a hyperinsulinaemic euglycaemic clamp, and a skeletal muscle biopsy was obtained. Gene expression levels were compared between the two groups by microarrays. The upregulated genes in skeletal muscle of the women with the metabolic syndrome were primarily enriched for inflammatory response-associated genes. The three most significantly upregulated of this group, interleukin 6 receptor (IL6R), histone deacetylase 9 (HDAC9) and CD97 molecule (CD97), were significantly correlated with insulin resistance. Taken together, these findings suggest an important role for a number of inflammatory-related genes in the development of skeletal muscle insulin resistance.

  20. Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression.

    PubMed

    Vink, Elizabeth I; Zheng, Yueting; Yeasmin, Rukhsana; Stamminger, Thomas; Krug, Laurie T; Hearing, Patrick

    2015-05-13

    The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interferon-mediated antiviral response. Several E4-ORF3 targets regulate gene expression, linking E4-ORF3 to transcriptional control. Furthermore, E4-ORF3 was shown to promote the formation of heterochromatin, down-regulating p53-dependent gene expression. Here, we characterize how E4-ORF3 alters cellular gene expression. Using an inducible, E4-ORF3-expressing cell line, we performed microarray experiments to highlight cellular gene expression changes influenced by E4-ORF3 expression, identifying over four hundred target genes. Enrichment analysis of these genes suggests that E4-ORF3 influences factors involved in signal transduction and cellular defense, among others. The expression of mutant E4-ORF3 proteins revealed that nuclear track formation is necessary to induce these expression changes. Through the generation of knockdown cells, we demonstrate that the observed expression changes may be independent of Daxx and TRIM33 suggesting that an additional factor(s) may be responsible. The ability of E4-ORF3 to manipulate cellular gene expression through the sequestration of cellular proteins implicates a novel role for E4-ORF3 in transcriptional regulation.

  1. Transcriptomic meta-analysis reveals up-regulation of gene expression functional in osteoclast differentiation in human septic shock.

    PubMed

    Mukhopadhyay, Samanwoy; Thatoi, Pravat K; Pandey, Abhay D; Das, Bidyut K; Ravindran, Balachandran; Bhattacharjee, Samsiddhi; Mohapatra, Saroj K

    2017-01-01

    Septic shock is a major medical problem with high morbidity and mortality and incompletely understood biology. Integration of multiple data sets into a single analysis framework empowers discovery of new knowledge about the condition that may have been missed by individual analysis of each of these datasets. Electronic search was performed on medical literature and gene expression databases for selection of transcriptomic studies done in circulating leukocytes from human subjects suffering from septic shock. Gene-level meta-analysis was conducted on the six selected studies to identify the genes consistently differentially expressed in septic shock. This was followed by pathway-level analysis using three different algorithms (ORA, GSEA, SPIA). The identified up-regulated pathway, Osteoclast differentiation pathway (hsa04380) was validated in two independent cohorts. Of the pathway, 25 key genes were selected that serve as an expression signature of Septic Shock.

  2. Transcriptomic meta-analysis reveals up-regulation of gene expression functional in osteoclast differentiation in human septic shock

    PubMed Central

    Mukhopadhyay, Samanwoy; Thatoi, Pravat K.; Pandey, Abhay D.; Das, Bidyut K.; Ravindran, Balachandran; Bhattacharjee, Samsiddhi; Mohapatra, Saroj K.

    2017-01-01

    Septic shock is a major medical problem with high morbidity and mortality and incompletely understood biology. Integration of multiple data sets into a single analysis framework empowers discovery of new knowledge about the condition that may have been missed by individual analysis of each of these datasets. Electronic search was performed on medical literature and gene expression databases for selection of transcriptomic studies done in circulating leukocytes from human subjects suffering from septic shock. Gene-level meta-analysis was conducted on the six selected studies to identify the genes consistently differentially expressed in septic shock. This was followed by pathway-level analysis using three different algorithms (ORA, GSEA, SPIA). The identified up-regulated pathway, Osteoclast differentiation pathway (hsa04380) was validated in two independent cohorts. Of the pathway, 25 key genes were selected that serve as an expression signature of Septic Shock. PMID:28199355

  3. Caenorhabditis elegans metabolic gene regulatory networks govern the cellular economy.

    PubMed

    Watson, Emma; Walhout, Albertha J M

    2014-10-01

    Diet greatly impacts metabolism in health and disease. In response to the presence or absence of specific nutrients, metabolic gene regulatory networks sense the metabolic state of the cell and regulate metabolic flux accordingly, for instance by the transcriptional control of metabolic enzymes. Here, we discuss recent insights regarding metazoan metabolic regulatory networks using the nematode Caenorhabditis elegans as a model, including the modular organization of metabolic gene regulatory networks, the prominent impact of diet on the transcriptome and metabolome, specialized roles of nuclear hormone receptors (NHRs) in responding to dietary conditions, regulation of metabolic genes and metabolic regulators by miRNAs, and feedback between metabolic genes and their regulators.

  4. Survivin enhances telomerase activity via up-regulation of specificity protein 1- and c-Myc-mediated human telomerase reverse transcriptase gene transcription

    SciTech Connect

    Endoh, Teruo; Tsuji, Naoki; Asanuma, Koichi; Yagihashi, Atsuhito; Watanabe, Naoki . E-mail: watanabn@sapmed.ac.jp

    2005-05-01

    Suppression of apoptosis is thought to contribute to carcinogenesis. Survivin, a member of the inhibitor-of-apoptosis family, blocks apoptotic signaling activated by various cellular stresses. Since elevated expression of survivin observed in human cancers of varied origin was associated with poor patient survival, survivin has attracted growing attention as a potential target for cancer treatment. Immortalization of cells also is required for carcinogenesis; telomere length maintenance by telomerase is required for cancer cells to proliferate indefinitely. Yet how cancer cells activate telomerase remains unclear. We therefore examined possible interrelationships between survivin expression and telomerase activity. Correlation between survivin and human telomerase reverse transcriptase (hTERT) expression was observed in colon cancer tissues, and overexpression of survivin enhanced telomerase activity by up-regulation of hTERT expression in LS180 human colon cancer cells. DNA-binding activities of specificity protein 1 (Sp1) and c-Myc to the hTERT core promoter were increased in survivin gene transfectant cells. Phosphorylation of Sp1 and c-Myc at serine and threonine residues was enhanced by survivin, while total amounts of these proteins were unchanged. Further, 'knockdown' of survivin by a small inhibitory RNA decreased Sp1 and c-Myc phosphorylation. Thus survivin participates not only in inhibition of apoptosis, but also in prolonging cellular lifespan.

  5. Glucocorticoids activate Epstein Barr Virus lytic replication through the upregulation of immediate early BZLF1 gene expression

    PubMed Central

    Yang, Eric V.; Webster Marketon, Jeanette I.; Chen, Min; Lo, Kwok Wai; Kim, Seung-jae; Glaser, Ronald

    2010-01-01

    Psychological stress-associated immune dysregulation has been shown to disrupt the steady state expression and reactivate latent herpes viruses. One such virus is the Epstein Barr virus (EBV), which is associated with several human malignancies. EBV infects >90% of people living in North America and persists for life in latently infected cells. Although several studies have shown that glucocorticoids (GCs) can directly induce reactivation of the latent virus, the mechanism of stress hormone involvement in the control of EBV gene expression is not well understood. In this study, we tested the hypothesis that GCs can induce the latent EBV genome to lytically replicate through the induction of the EBV immediate early gene BZLF1 which encodes the lytic transactivator protein ZEBRA. We show a dose-dependent upregulation of BZLF1 mRNA expression by hydrocortisone (HC) and dexamethasone (Dex) in Daudi cells, an EBV genome positive Burkitt’s lymphoma cell line, and Dex-induction of the early gene products BLLF3 (encoding for the EBV dUTPase) and BALF5 (encoding for the EBV DNA polymerase). We show that Daudi cells express glucocorticoid receptors (GR) that mediate Dex-dependent upregulation of BZLF1 mRNA levels. This effect was inhibited by both the glucocorticoid receptor antagonist RU486 and by cycloheximide. The results suggest that GCs, in addition to inducing stress-related immune dysregulation, can mediate latent EBV reactivation through the induction of the BZLF1 gene. PMID:20466055

  6. Parallel declines in cognition, motivation, and locomotion in aging mice: association with immune gene upregulation in the medial prefrontal cortex

    PubMed Central

    Bordner, Kelly A.; Kitchen, Robert R.; Carlyle, Becky; George, Elizabeth D.; Mahajan, Milind C.; Mane, Shrikant M.; Taylor, Jane R.; Simen, Arthur A.

    2013-01-01

    Aging in humans is associated with parallel changes in cognition, motivation, and motoric performance. Based on the human aging literature, we hypothesized that this constellation of age-related changes is mediated by the medial prefrontal cortex and that it would be observed in aging mice. Toward this end, we performed detailed assessments of cognition, motivation, and motoric behavior in aging mice. We assessed behavioral and cognitive performance in C57Bl/6 mice aged 6, 18, and 24 months, and followed this with microarray analysis of tissue from the medial prefrontal cortex and analysis of serum cytokine levels. Multivariate modeling of these data suggested that the age-related changes in cognition, motivation, motor performance, and prefrontal immune gene expression were highly correlated. Peripheral cytokine levels were also correlated with these variables, but less strongly than measures of prefrontal immune gene upregulation. To determine whether the observed immune gene expression changes were due to prefrontal microglial cells, we isolated CD11b-positive cells from the prefrontal cortex and subject them to next-generation RNA sequencing. Many of the immune changes present in whole medial prefrontal cortex were enriched in this cell population. These data suggest that, as in humans, cognition, motivation, and motoric performance in the mouse change together with age and are strongly associated with CNS immune gene upregulation. PMID:21453768

  7. Sustained upregulation in embryonic spinal neurons of a Kv3.1 potassium channel gene encoding a delayed rectifier current.

    PubMed

    Gurantz, D; Lautermilch, N J; Watt, S D; Spitzer, N C

    2000-02-15

    Differentiation of electrical excitability entails changes in the currents that generate action potentials in spinal neurons of Xenopus embryos, resulting in reduced calcium entry during impulses generated at later stages of development. A dramatic increase in delayed rectifier current (I(Kv)) during the first day of development plays the major role in this process. Identification of potassium channel genes responsible for the increase in I(Kv) is critical to understanding the molecular mechanisms involved. Several members of the Shaw Kv3 gene subfamily encode delayed rectifier currents, indicating that they could contribute to the upregulation of I(Kv) that reduces the duration of action potentials. We isolated a Xenopus (x) Kv3.1 gene whose expression is restricted to the central nervous system, which is upregulated throughout the period during which I(Kv) develops in vivo. The fraction of neurons in which transcripts of this gene are detected by single-cell RT-PCR increases to 40% with time in culture, paralleling the development of I(Kv) in neurons in vitro. Expression of xKv3.1 mRNA generates a delayed rectifier potassium current in oocytes, suggesting that xKv3. 1 contributes to the maturation of I(Kv) and shortening of the action potential.

  8. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster

    PubMed Central

    Deng, Xinxian; Hiatt, Joseph B; Nguyen, Di Kim; Ercan, Sevinc; Sturgill, David; Hillier, LaDeana W; Schlesinger, Felix; Davis, Carrie A; Reinke, Valerie J; Gingeras, Thomas R; Shendure, Jay; Waterston, Robert H; Oliver, Brian; Lieb, Jason D; Disteche, Christine M

    2012-01-01

    Many animal species use a chromosome-based mechanism of sex determination, which has led to the coordinate evolution of dosage-compensation systems. Dosage compensation not only corrects the imbalance in the number of X chromosomes between the sexes but also is hypothesized to correct dosage imbalance within cells that is due to monoallelic X-linked expression and biallelic autosomal expression, by upregulating X-linked genes twofold (termed ‘Ohno’s hypothesis’). Although this hypothesis is well supported by expression analyses of individual X-linked genes and by microarray-based transcriptome analyses, it was challenged by a recent study using RNA sequencing and proteomics. We obtained new, independent RNA-seq data, measured RNA polymerase distribution and reanalyzed published expression data in mammals, C. elegans and Drosophila. Our analyses, which take into account the skewed gene content of the X chromosome, support the hypothesis of upregulation of expressed X-linked genes to balance expression of the genome. PMID:22019781

  9. EpCAM Intracellular Domain Promotes Porcine Cell Reprogramming by Upregulation of Pluripotent Gene Expression via Beta-catenin Signaling

    PubMed Central

    Yu, Tong; Ma, Yangyang; Wang, Huayan

    2017-01-01

    Previous study showed that expression of epithelial cell adhesion molecule (EpCAM) was significantly upregulated in porcine induced pluripotent stem cells (piPSCs). However, the regulatory mechanism and the downstream target genes of EpCAM were not well investigated. In this study, we found that EpCAM was undetectable in fibroblasts, but highly expressed in piPSCs. Promoter of EpCAM was upregulated by zygotic activated factors LIN28, and ESRRB, but repressed by maternal factors OCT4 and SOX2. Knocking down EpCAM by shRNA significantly reduced the pluripotent gene expression. Conversely, overexpression of EpCAM significantly increased the number of alkaline phosphatase positive colonies and elevated the expression of endogenous pluripotent genes. As a key surface-to-nucleus factor, EpCAM releases its intercellular domain (EpICD) by a two-step proteolytic processing sequentially. Blocking the proteolytic processing by inhibitors TAPI-1 and DAPT could reduce the intracellular level of EpICD and lower expressions of OCT4, SOX2, LIN28, and ESRRB. We noticed that increasing intracellular EpICD only was unable to improve activity of EpCAM targeted genes, but by blocking GSK-3 signaling and stabilizing beta-catenin signaling, EpICD could then significantly stimulate the promoter activity. These results showed that EpCAM intracellular domain required beta-catenin signaling to enhance porcine cell reprogramming. PMID:28393933

  10. Upregulation of the BRCA1 gene in human germ cells and in preimplantation embryos.

    PubMed

    Giscard d'Estaing, Sandrine; Perrin, Delphine; Lenoir, Gilbert M; Guérin, Jean François; Dante, Robert

    2005-09-01

    The quantification of BRCA1 messenger RNA molecules by a quantitative competitive one-step reverse transcriptase polymerase chain reaction method indicates that BRCA1 is upregulated both in human male and female germ cells and in preimplantation embryos. Because BRCA1 is involved in several pathways that participate in preserving intact chromosome and genome integrity, these data suggest that BRCA1 dysfunction might alter human embryogenesis or fertility.

  11. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection.

    PubMed

    Samuelian, Suren; Kleine, Michael; Ruyter-Spira, Carolien P; Klein-Lankhorst, René M; Jung, Christian

    2004-01-01

    The cDNA-AFLP technique was used to isolate sugar beet genes up-regulated upon infection with the beet cyst nematode Heterodera schachtii. Hairy root cultures were obtained from resistant plants carrying a Beta procumbens translocation as well as from a non-resistant control. mRNA was isolated from hairy root clones and sugar beet plants infected or not with the beet cyst nematode and 8000 transcript-derived fragments (TDFs) were analysed. One TDF was found to be differentially expressed in both materials and was further investigated. Real-time PCR confirmed that this TDF is specifically up-regulated in resistant sugar beet upon nematode infection and its full-length cDNA was isolated. Sequence analysis suggests that the gene encodes a 317 amino acid polypeptide of unknown function. No homology to any sequence present in the public databases could be detected. To further elucidate its function in resistance to the beet cyst nematode, the cDNA was transformed into hairy roots of susceptible sugar beet under the control of the 35S promoter and hairy root clones were inoculated with nematodes. The number of developing females was significantly reduced in 12 out of 15 clones resulting from independent transgenic events suggesting that the gene can be used for inducing cyst nematode resistance in plants.

  12. Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two actin genes cloned from Culex pipiens L. are upregulated during adult diapause. Though actins 1 and 2 were expressed throughout diapause, both genes were most highly expressed early in diapause. These changes in gene expression were accompanied by a conspicuous redistribution of polymerized acti...

  13. Fluoxetine up-regulates expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in hippocampus-derived neural stem cell

    SciTech Connect

    Chiou, S.-H. . E-mail: shchiou@vghtpe.gov.tw; Chen, S.-J. . E-mail: sjchen@vghtpe.gov.tw; Peng, C-H.; Chang, Y.-L.; Ku, H.-H.; Hsu, W.-M.; Ho, Larry L.-T.; Lee, C.-H.

    2006-05-05

    Fluoxetine is a widely used antidepressant compound which inhibits the reuptake of serotonin in the central nervous system. Recent studies have shown that fluoxetine can promote neurogenesis and improve the survival rate of neurons. However, whether fluoxetine modulates the proliferation or neuroprotection effects of neural stem cells (NSCs) needs to be elucidated. In this study, we demonstrated that 20 {mu}M fluoxetine can increase the cell proliferation of NSCs derived from the hippocampus of adult rats by MTT test. The up-regulated expression of Bcl-2, Bcl-xL and the cellular FLICE-inhibitory protein (c-FLIP) in fluoxetine-treated NSCs was detected by real-time RT-PCR. Our results further showed that fluoxetine protects the lipopolysaccharide-induced apoptosis in NSCs, in part, by activating the expression of c-FLIP. Moreover, c-FLIP induction by fluoxetine requires the activation of the c-FLIP promoter region spanning nucleotides -414 to -133, including CREB and SP1 sites. This effect appeared to involve the phosphatidylinositol-3-kinase-dependent pathway. Furthermore, fluoxetine treatment significantly inhibited the induction of proinflammatory factor IL-1{beta}, IL-6, and TNF-{alpha} in the culture medium of LPS-treated NSCs (p < 0.01). The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that fluoxentine increased the functional production of serotonin in NSCs. Together, these data demonstrate the specific activation of c-FLIP by fluoxetine and indicate the novel role of fluoxetine for neuroprotection in the treatment of depression.

  14. The metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), upregulates p21 via p53-independent mechanisms.

    PubMed

    Kovacevic, Zaklina; Sivagurunathan, Sutharshani; Mangs, Helena; Chikhani, Sherin; Zhang, Daohai; Richardson, Des R

    2011-05-01

    The metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), has been shown to markedly reduce metastasis of numerous tumors. The current study was focused on further elucidating the molecular mechanisms behind the antitumor function of NDRG1. We have identified for the first time that NDRG1 upregulates the potent cyclin-dependent kinase inhibitor, p21. This effect was observed in three different cancer cell types, including PC3MM and DU145 prostate cancer cells and H1299 lung carcinoma cells, and occurred independently of p53. In addition, reducing NDRG1 expression using short hairpin RNA in PC3MM and DU145 cells resulted in significantly reduced p21 protein levels. Hence, p21 is closely correlated with NDRG1 expression in these latter cell types. Examining the mechanisms behind the effect of NDRG1 on p21 expression, we found that NDRG1 upregulated p21 via transcriptional and posttranscriptional mechanisms in prostate cancer cells, although its effect on H1299 cells was posttranscriptional only. Further studies identified two additional NDRG1 protein targets. The dominant-negative p63 isoform, ΔNp63, which has been found to inhibit p21 transcription, was downregulated by NDRG1. On the other hand, a truncated 50 kDa MDM2 isoform (p50(MDM2)), which may protect p21 from proteasomal degradation, was upregulated by NDRG1. The downregulation of ΔNp63 and upregulation of p50(MDM2) are potential mechanisms by which NDRG1 increases p21 expression in these cells. Additional functional studies identified that NDRG1 inhibits cancer cell migration, suggesting that p21 is a molecular player in its antimetastatic activity.

  15. Estrogen upregulates cyclooxygenase-1 gene expression in ovine fetal pulmonary artery endothelium.

    PubMed Central

    Jun, S S; Chen, Z; Pace, M C; Shaul, P W

    1998-01-01

    Prostacyclin (PGI2) is a key mediator of pulmonary vasodilation in the perinatal period and its synthesis in the pulmonary vasculature increases markedly during late gestation due to enhanced expression of the rate-limiting enzyme cyclooxygenase-1 (COX-1). The hormone estrogen may play a role in COX-1 upregulation since fetal estrogen levels rise dramatically during late gestation and estrogen enhances PGI2 synthesis in nonpulmonary vascular cells. We therefore studied the direct effects of estrogen on COX-1 expression in ovine fetal pulmonary artery endothelial cells (PAEC). Exposure to estradiol-17beta (E2beta, 10(-)10 to 10(-)6 M) caused a dose-related increase in COX-1 mRNA expression that was evident after 48 h and maximal at 10(-)8 M (fourfold increase). COX-1 mRNA stability was unchanged, suggesting that the upregulation is mediated at the level of transcription. E2beta treatment (10(-)8 M for 48 h) also caused a threefold increase in COX-1 protein expression and a threefold increase in PGI2 synthesis stimulated by bradykinin, the calcium ionophore A23187, or arachidonic acid. The estrogen receptor (ER) antagonist ICI 182,780 fully reversed the effects of the hormone on COX-1 protein expression and on arachidonic acid-stimulated PGI2 synthesis, and ER expression was evident in the PAEC by immunoblot analysis. These findings indicate that physiologic levels of estrogen cause upregulation of COX-1 expression and PGI2 synthesis in fetal PAEC via activation of PAEC ER. This process may play a critical role in optimizing the capacity for PGI2-mediated pulmonary vasodilation at birth, and it may also be involved in estrogen responsiveness in other vascular beds. PMID:9649571

  16. Phylogenetic evidence for extensive lateral acquisition of cellular genes by Nucleocytoplasmic large DNA viruses

    PubMed Central

    2008-01-01

    Background Nucleo-Cytoplasmic Large DNA viruses (NCLDV), a diverse group that infects a wide range of eukaryotic hosts, exhibit a large heterogeneity in genome size (between 100 kb and 1.2 Mb) but have been suggested to form a monophyletic group on the basis of a small subset of approximately 30 conserved genes. NCLDV were proposed to have evolved by simplification from cellular organism although some of the giant NCLDV have clearly grown by gene accretion from a bacterial origin. Results We demonstrate here that many NCLDV lineages appear to have undergone frequent gene exchange in two different ways. Viruses which infect protists directly (Mimivirus) or algae which exist as intracellular protists symbionts (Phycodnaviruses) acquire genes from a bacterial source. Metazoan viruses such as the Poxviruses show a predominant acquisition of host genes. In both cases, the laterally acquired genes show a strong tendency to be positioned at the tip of the genome. Surprisingly, several core genes believed to be ancestral in the family appear to have undergone lateral gene transfers, suggesting that the NCLDV ancestor might have had a smaller genome than previously believed. Moreover, our data show that the larger the genome, the higher is the number of laterally acquired genes. This pattern is incompatible with a genome reduction from a cellular ancestor. Conclusion We propose that the NCLDV viruses have evolved by significant growth of a simple DNA virus by gene acquisition from cellular sources. PMID:19036122

  17. Aniline exposure associated with up-regulated transcriptional responses of three glutathione S-transferase Delta genes in Drosophila melanogaster.

    PubMed

    Chan, Wen-Chiao; Chien, Yi-Chih; Chien, Cheng-I

    2015-03-01

    Complex transcriptional profile of glutathione S-transferase Delta cluster genes occurred in the developmental process of the fruit fly Drosophila melanogaster. The purpose of this project was to quantify the expression levels of Gst Delta class genes altered by aniline exposure and to understand the relationship between aniline dosages and the variation of Gst Delta genes expressed in D. melanogaster. Using RT-PCR expression assays, the expression patterns of the transcript mRNAs of the glutathione S-transferase Delta genes were revealed and their expression levels were measured at eggs, larvae, pupae and adults. The adult stage was selected for further dose-response assays. After analysis, the results indicated that three Gst Delta genes (Gst D2, Gst D5 and Gst D6) were found to show a peak of up-regulated transcriptional response at 6-8h of exposure of aniline. Furthermore, the dose-response relationship of their induction levels within the dose regiments (from 1.2 to 2.0 μl/tube) had been measured. The expression patterns and annotations of these genes were discussed in the context.

  18. Effects of polyamines on cellular innate immune response and the expression of immune-relevant genes in gilthead seabream leucocytes.

    PubMed

    Reyes-Becerril, Martha; Ascencio-Valle, Felipe; Tovar-Ramírez, Dariel; Meseguer, José; Esteban, María Ángeles

    2011-01-01

    It is well known that the polyamines spermidine and spermine, along with the diamine putrescine, are involved in many cellular processes and they are known to play an important role in the control of the innate immune response in higher vertebrates. However, to the best of our knowledge, no studies have focused on their immunological implications in other vertebrates, such as fish. For this reason, the effects of polyamines on the cellular innate immune response and immune-related gene expression were evaluated in vitro, using seabream head-kidney leucocytes (HKL). For this study, head-kidney leucocytes were incubated with the polyamines putrescine, spermine or spermidine (0.005 and 0.0025%) for 0.50, 1, 2 or 4 h. No significant effect was observed on either leucocyte viability or the innate cellular immune responses (peroxidase content and phagocytic and respiratory burst activities). The polyamines produced an increase in respiratory burst and phagocytic ability when leucocytes were incubated principally with putrescine (0.005 and 0.0025%) after 2 and 4 h of the experiment. Finally, the expression levels of immune-associated genes (IgM, MHCIα, MHCIIα, C3, IL-1β, CD8, Hep, NCCRP-1, CSF-1 and TLR) were quantified by real-time PCR and some of them (C3, MHCI, CD8, IgM and Hep) were up-regulated by the higher polyamine concentration. Further studies are needed to ascertain how polyamines control the immune system of seabream as well as which mechanisms are involved.

  19. Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPX gene specifically upregulated by NaCl in a salt-tolerant line.

    PubMed

    Sreenivasulu, Nese; Miranda, Manoela; Prakash, Harischandra Sripathy; Wobus, Ulrich; Weschke, Winfriede

    2004-04-01

    Using a macro array filter with 711 cDNA inserts representing 620 unigenes selected from a barley EST collection, we identified transcripts differentially expressed in salt (NaCl)-treated tolerant (cv. Prasad) and sensitive (cv. Lepakshi) seedlings of foxtail millet (Setaria italica L.). Transcripts of hydrogen peroxide scavenging enzymes such as phospholipid hydroperoxide glutathione peroxidase (PHGPX), ascorbate peroxidase (APX) and catalase 1 (CAT1) in addition to some genes of cellular metabolism were found to be especially up-regulated at high salinity in the tolerant line. To analyse this process at the protein level we examined protein expression patterns under various stress conditions. A 25 kD protein with a pI of 4.8 was found to be induced prominently under high salt concentrations (250 mmol/L). This salt-induced 25 kD protein has been purified and identified by peptide sequencing as PHGPX protein. The increase of the PHGPX protein level under salt stress in the tolerant line parallels the PHGPX mRNA results of array analysis but was more pronounced. We cloned and characterized the foxtail millet PHGPX cDNA, which shows 85% and 95% homology at the DNA and protein level, respectively, to one stress-induced member of the small barley PHGPX gene family encoding non-selenium glutathione peroxidases. As shown by Southern blot analysis, a small family of PHGPX genes exists in foxtail millet, too. The specific expression pattern of the PHGPX gene in salt-induced tolerant millet seedlings suggests that its product plays an important role in the defense reaction against salt-induced oxidative damage and that the characterized glutathione peroxidase is one of the components conferring resistance against salt to the tolerant foxtail millet cultivar.

  20. Gamma tocotrienol, a potent radioprotector, preferentially upregulates expression of anti-apoptotic genes to promote intestinal cell survival.

    PubMed

    Suman, Shubhankar; Datta, Kamal; Chakraborty, Kushal; Kulkarni, Shilpa S; Doiron, Kathryn; Fornace, Albert J; Sree Kumar, K; Hauer-Jensen, Martin; Ghosh, Sanchita P

    2013-10-01

    Gamma tocotrienol (GT3) has been reported as a potent ameliorator of radiation-induced gastrointestinal (GI) toxicity when administered prophylactically. This study aimed to evaluate the role of GT3 mediated pro- and anti-apoptotic gene regulation in protecting mice from radiation-induced GI damage. Male 10- to 12-weeks-old CD2F1 mice were administered with a single dose of 200 mg/kg of GT3 or equal volume of vehicle (5% Tween-80) 24 h before exposure to 11 Gy of whole-body γ-radiation. Mouse jejunum was surgically removed 4 and 24h after radiation exposure, and was used for PCR array, histology, immunohistochemistry, and immunoblot analysis. Results were compared among vehicle pre-treated no radiation, vehicle pre-treated irradiated, and GT3 pre-treated irradiated groups. GT3 pretreated irradiated groups, both 4h and 24h after radiation, showed greater upregulation of anti-apoptotic gene expression than vehicle pretreated irradiated groups. TUNEL staining and intestinal crypt analysis showed protection of jejunum after GT3 pre-treatment and immunoblot results were supportive of PCR data. Our study demonstrated that GT3-mediated protection of intestinal cells from a GI-toxic dose of radiation occurred via upregulation of antiapoptotic and downregulation of pro-apoptotic factors, both at the transcript as well as at the protein levels.

  1. Up-regulation of muscle uncoupling protein 3 gene expression by calcium channel blocker, benidipine hydrochloride in rats.

    PubMed

    Sakane, Naoki; Kotani, Kazuhiko; Hioki, Chizuko; Yoshida, Toshihide; Kawada, Teruo

    2007-12-01

    To examine whether benidipine hydrochloride, one of the calcium channel blockers, up-regulate uncoupling protein 3 (UCP3) expression in two skeletal muscles (gastrocnemius and soleus) in rats. Wistar rats were treated orally with benidipine hydrochloride at 4 mg/kg for 7 days. Blood pressure was measured after 4 days. At the end of experiments, the rats were weighed, and brown adipose tissue (BAT) and skeletal muscles (gastrocnemius and soleus muscles) were removed. The mRNA levels of uncoupling protein 1 (UCP1) and UCP3 were measured using the real-time quantitative reverse transcription-polymerase chain reaction method. Benidipine reduced body weight and also had a hypotensive effect. In rats treated with benidipine, UCP1 mRNA levels were significantly increased 1.4-fold in BAT, and UCP3 mRNA levels in BAT and gastrocnemius muscle were significantly increased 1.7 and 3.0-fold, respectively, compared with the control rats. There was no difference in UCP3 mRNA levels in soleus muscle between the two groups. We concluded that benidipine up-regulates not only UCP1 gene expression in BAT but also UCP3 gene expression in BAT and gastrocnemius muscle, which may contribute to thermogenesis in rats.

  2. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression

    PubMed Central

    Wang, Yue; Zhang, Xia-nan; Xie, Wen-hua; Zheng, Yi-xiong; Cao, Jin-ping; Cao, Pei-rang; Chen, Qing-jun; Li, Xian; Sun, Chong-de

    2016-01-01

    To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo. PMID:27690088

  3. Upregulated transcription of phenoloxidase genes in the pharynx and endostyle of Ciona intestinalis in response to LPS.

    PubMed

    Vizzini, Aiti; Parrinello, Daniela; Sanfratello, Maria Antonietta; Trapani, Maria Rosa; Mangano, Valentina; Parrinello, Nicolò; Cammarata, Matteo

    2015-03-01

    We investigated the role of phenoloxidases (POs) in ascidians inflammatory reaction, a components of a copper-containing protein family involved in invertebrate immune system. In Ciona intestinalis two phenoloxidases (CinPO-1, CinPO-2) have been sequenced. In the present study, real time PCR analysis showed that both CinPO-1 and CinPO-2 genes were modulated by LPS inoculation suggesting that they are inducible and highly expressed in the inflamed pharynx. In situ hybridization disclosed CinPO-1 and CinPO-2 transcripts in pharynx hemocytes (granulocytes) and, mainly, in unilocular refractile granulocytes (URG) which mainly populated the inflamed tunic matrix. Interestingly, the genes are also upregulated by LPS in the endostyle (zones 7, 8 and 9) that is considered homolog to the vertebrate thyroid.

  4. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells.

    PubMed

    Ruan, Wendong; Wang, Pei; Feng, Shiqing; Xue, Yuan; Li, Yulin

    2016-03-01

    The long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) has a role in cell proliferation and migration. Angiomotin, encoded by the AMOT gene, is a protein that regulates the migration and organization of endothelial cells. SNHG12 and AMOT have been shown to play a role in a variety of human cancers but have yet to be studied in detail in human osteosarcoma. Tissue samples from primary osteosarcoma (n = 20) and adjacent normal tissues (n = 20), the osteosarcoma cell lines, SAOS-2, MG-63, U-2 OS, and the human osteoblast cell line hFOB (OB3) were studied using Western blot for angiomotin, and quantitative real-time polymerase chain reaction for the expression of SNHG12 and AMOT. The expression of SNHG12 was knocked down using RNA interference. Cell migration assays were performed. Cell apoptosis was studied using flow cytometry. SNHG12 and AMOT messenger RNA (mRNA) expression was upregulated in osteosarcoma tissues and cell lines when compared with normal tissues and cells. Upregulation of AMOT mRNA was associated with upregulation of SNHG12. Knockdown of SNHG12 reduced the expression of angiomotin in osteosarcoma cells and suppressed cell proliferation and migration but did not affect cell apoptosis. This preliminary study has shown that the lncRNA SNHG12 promotes cell proliferation and migration by upregulating AMOT gene expression in osteosarcoma cells in vivo and in vitro. Further studies are recommended to investigate the role of SNHG12 and AMOT expression in tumor cell proliferation and migration and angiogenesis in osteosarcoma and a range of malignant mesenchymal tumors.

  5. Upregulation of Slc38a1 Gene Along with Promotion of Neurosphere Growth and Subsequent Neuronal Specification in Undifferentiated Neural Progenitor Cells Exposed to Theanine.

    PubMed

    Takarada, Takeshi; Ogura, Masato; Nakamichi, Noritaka; Kakuda, Takami; Nakazato, Ryota; Kokubo, Hiroshi; Ikeno, Shinsuke; Nakamura, Saki; Kutsukake, Takaya; Hinoi, Eiichi; Yoneda, Yukio

    2016-02-01

    We have shown marked promotion of both cluster growth and neuronal specification in pluripotent P19 cells with overexpression of solute carrier 38a1 (Slc38a1), which is responsible for membrane transport of glutamine. In this study, we evaluated pharmacological profiles of the green tea amino acid ingredient theanine, which is a good substrate for glutamine transporters, on proliferation and neuronal specification in neural progenitor cells from embryonic rat neocortex. Sustained exposure to theanine, but not glutamine, accelerated the growth of neurospheres composed of proliferating cells and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reducing activity at concentrations of 1-100 μM in undifferentiated progenitor cells. Such prior exposure to theanine promoted spontaneous and induced commitment to a neuronal lineage with concomitant deteriorated astroglial specification. Selective upregulation was seen in the expression of Slc38a1 in progenitor cells cultured with theanine. Similarly significant increases in cluster growth and MTT reducing activity were found in P19 cells cultured with theanine for 4 days. Luciferase activity was doubled in a manner sensitive to the deletion of promoter regions in P19 cells with a luciferase reporter plasmid of the Slc38a1 promoter after sustained exposure to theanine for 4 days. Overexpression of X-box binding protein-1 led to a marked increase in luciferase activity in P19 cells transfected with the Slc38a1 reporter plasmid. These results suggest that theanine accelerates cellular proliferation and subsequent neuronal specification through a mechanism relevant to upregulation of Slc38a1 gene in undifferentiated neural progenitor cells.

  6. Up-regulation of liver Pcsk9 gene expression as a possible cause of hypercholesterolemia in experimental chronic renal failure.

    PubMed

    Sucajtys-Szulc, Elzbieta; Szolkiewicz, Marek; Swierczynski, Julian; Rutkowski, Boleslaw

    2016-01-01

    Dyslipidemia commonly present in patients with chronic kidney disease (CKD) has been recently linked to increased proprotein convertase subtilisin/kexin type 9 (PCSK9) serum concentration. We tested a hypothesis that increased liver PCSK9 biosynthesis could be partially responsible for the elevated circulating PCSK9 level, and subsequently contribute to hypercholesterolemia observed in subjects with CKD. Rat model of chronic renal failure (CRF) was used in the study. Animals underwent a 5/6 nephrectomy or a sham operation. Liver expression of Pcsk9, sterol regulatory element-binding transcription factor 2 (Srebf-2), and β-actin were quantified by real-time RT-PCR. Liver protein levels of PCSK9, LDL-receptor (LDL-R), and SREBF-2 were analyzed using Western blotting. Serum PCSK9 concentration was estimated by immunoassay. Rats with an experimental CRF as compared to pair-fed and control ones were characterized by: (a) an up-regulation of liver Pcsk9 and Srebf-2 genes expression with parallel increase of serum PCSK9 concentration; (b) a decrease in liver LDL-R protein level, and (c) an increase of serum total and LDL-cholesterol concentrations. We also found significant correlations between serum creatinine and liver PCSK9 mRNA levels (r = 0.88, p < 0.001) and between serum creatinine and circulating PCSK9 levels (r = 0.73, p < 0.001). The results suggest that a rat model of CRF is associated with an increased liver Pcsk9 gene expression. The coordinated up-regulation of Pcsk9 and Srebf-2 genes expression suggests that SREBF-2 may play a key role in regulation of Pcsk9 gene expression, circulating PCSK9 level, and hypercholesterolemia in experimental CRF.

  7. A novel gene amplification causes upregulation of the PatAB ABC transporter and fluoroquinolone resistance in Streptococcus pneumoniae.

    PubMed

    Baylay, Alison J; Ivens, Alasdair; Piddock, Laura J V

    2015-01-01

    Overexpression of the ABC transporter genes patA and patB confers efflux-mediated fluoroquinolone resistance in Streptococcus pneumoniae and is also linked to pneumococcal stress responses. Although upregulation of patAB has been observed in many laboratory mutants and clinical isolates, the regulatory mechanisms controlling expression of these genes are unknown. In this study, we aimed to identify the cause of high-level constitutive overexpression of patAB in M184, a multidrug-resistant mutant of S. pneumoniae R6. Using a whole-genome transformation and sequencing approach, we identified a novel duplication of a 9.2-kb region of the M184 genome which included the patAB genes. This duplication did not affect growth and was semistable with a low segregation rate. The expression levels of patAB in M184 were much higher than those that could be fully explained by doubling of the gene dosage alone, and inactivation of the first copy of patA had no effect on multidrug resistance. Using a green fluorescent protein reporter system, increased patAB expression was ascribed to transcriptional read-through from a tRNA gene upstream of the second copy of patAB. This is the first report of a large genomic duplication causing antibiotic resistance in S. pneumoniae and also of a genomic duplication causing antibiotic resistance by a promoter switching mechanism.

  8. Dietary Restriction Mitigates Cocaine-Induced Alterations of Olfactory Bulb Cellular Plasticity and Gene Expression, and Behavior

    PubMed Central

    Xu, Xiangru; Mughal, Mohamed R.; Hall, F. Scott; Perona, Maria T.G.; Pistell, Paul J.; Lathia, Justin D; Chigurupati, Srinivasulu; Becker, Kevin G; Ladenheim, Bruce; Niklason, Laura E; Uhl, George R.; Cadet, Jean Lud; Mattson, Mark P.

    2010-01-01

    Because the olfactory system plays a major role in food consumption, and because “food addiction” and associated morbidities have reached epidemic proportions, we tested the hypothesis that dietary energy restriction can modify adverse effects of cocaine on behavior and olfactory cellular and molecular plasticity. Mice maintained on an alternate day fasting (ADF) diet exhibited increased baseline locomotion and increased cocaine-sensitized locomotion during cocaine conditioning, despite no change in cocaine conditioned place preference, compared to mice fed ad libitum. Levels of dopamine and its metabolites in the olfactory bulb (OB) were suppressed in mice on the ADF diet compared to mice on the control diet, independent of acute or chronic cocaine treatment. The expression of several enzymes involved in dopamine metabolism including tyrosine hydroxylase, monoamine oxidases A and B (MAOA), and catechol-O-methyltransferase were significantly reduced in OBs of mice on the ADF diet. Both acute and chronic administration of cocaine suppressed the production of new OB cells, and this effect of cocaine was attenuated in mice on the ADF diet. Cocaine administration to mice on the control diet resulted in up-regulation of OB genes involved in mitochondrial energy metabolism, synaptic plasticity, cellular stress responses, and calcium- and cyclic AMP-mediated signaling, whereas multiple olfactory receptor genes were down-regulated by cocaine treatment. ADF abolished many of the effects of cocaine on OB gene expression. Our findings reveal that dietary energy intake modifies the neural substrates underlying some of the behavioral and physiological responses to repeated cocaine treatment, and also suggest novel roles for the olfactory system in addiction. The data further suggest that modification of dietary energy intake could provide a novel potential approach to addiction treatments. PMID:20456017

  9. Myocardial Gene Transfer: Routes and Devices for Regulation of Transgene Expression by Modulation of Cellular Permeability

    PubMed Central

    Katz, Michael G.; Bridges, Charles R.

    2013-01-01

    Abstract Heart diseases are major causes of morbidity and mortality in Western society. Gene therapy approaches are becoming promising therapeutic modalities to improve underlying molecular processes affecting failing cardiomyocytes. Numerous cardiac clinical gene therapy trials have yet to demonstrate strong positive results and advantages over current pharmacotherapy. The success of gene therapy depends largely on the creation of a reliable and efficient delivery method. The establishment of such a system is determined by its ability to overcome the existing biological barriers, including cellular uptake and intracellular trafficking as well as modulation of cellular permeability. In this article, we describe a variety of physical and mechanical methods, based on the transient disruption of the cell membrane, which are applied in nonviral gene transfer. In addition, we focus on the use of different physiological techniques and devices and pharmacological agents to enhance endothelial permeability. Development of these methods will undoubtedly help solve major problems facing gene therapy. PMID:23427834

  10. Introns and gene expression: Cellular constraints, transcriptional regulation, and evolutionary consequences

    PubMed Central

    Heyn, Patricia; Kalinka, Alex T; Tomancak, Pavel; Neugebauer, Karla M

    2015-01-01

    A gene's “expression profile” denotes the number of transcripts present relative to all other transcripts. The overall rate of transcript production is determined by transcription and RNA processing rates. While the speed of elongating RNA polymerase II has been characterized for many different genes and organisms, gene-architectural features – primarily the number and length of exons and introns – have recently emerged as important regulatory players. Several new studies indicate that rapidly cycling cells constrain gene-architecture toward short genes with a few introns, allowing efficient expression during short cell cycles. In contrast, longer genes with long introns exhibit delayed expression, which can serve as timing mechanisms for patterning processes. These findings indicate that cell cycle constraints drive the evolution of gene-architecture and shape the transcriptome of a given cell type. Furthermore, a tendency for short genes to be evolutionarily young hints at links between cellular constraints and the evolution of animal ontogeny. PMID:25400101

  11. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake.

    PubMed

    Besson-Bard, Angélique; Gravot, Antoine; Richaud, Pierre; Auroy, Pascaline; Duc, Céline; Gaymard, Frédéric; Taconnat, Ludivine; Renou, Jean-Pierre; Pugin, Alain; Wendehenne, David

    2009-03-01

    Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd(2+)), a nonessential and toxic metal. We demonstrate that Cd(2+) induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd(2+). By analyzing the incidence of NO scavenging or inhibition of its synthesis during Cd(2+) treatment, we demonstrated that NO contributes to Cd(2+)-triggered inhibition of root growth. To understand the mechanisms underlying this process, a microarray analysis was performed in order to identify NO-modulated root genes up- and down-regulated during Cd(2+) treatment. Forty-three genes were identified encoding proteins related to iron homeostasis, proteolysis, nitrogen assimilation/metabolism, and root growth. These genes include IRT1. Investigation of the metal and ion contents in Cd(2+)-treated roots in which NO synthesis was impaired indicates that IRT1 up-regulation by NO was consistently correlated to NO's ability to promote Cd(2+) accumulation in roots. This analysis also highlights that NO is responsible for Cd(2+)-induced inhibition of root Ca(2+) accumulation. Taken together, our results suggest that NO contributes to Cd(2+) toxicity by favoring Cd(2+) versus Ca(2+) uptake and by initiating a cellular pathway resembling those activated upon iron deprivation.

  12. Nitric Oxide Contributes to Cadmium Toxicity in Arabidopsis by Promoting Cadmium Accumulation in Roots and by Up-Regulating Genes Related to Iron Uptake1[W

    PubMed Central

    Besson-Bard, Angélique; Gravot, Antoine; Richaud, Pierre; Auroy, Pascaline; Duc, Céline; Gaymard, Frédéric; Taconnat, Ludivine; Renou, Jean-Pierre; Pugin, Alain; Wendehenne, David

    2009-01-01

    Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd2+), a nonessential and toxic metal. We demonstrate that Cd2+ induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd2+. By analyzing the incidence of NO scavenging or inhibition of its synthesis during Cd2+ treatment, we demonstrated that NO contributes to Cd2+-triggered inhibition of root growth. To understand the mechanisms underlying this process, a microarray analysis was performed in order to identify NO-modulated root genes up- and down-regulated during Cd2+ treatment. Forty-three genes were identified encoding proteins related to iron homeostasis, proteolysis, nitrogen assimilation/metabolism, and root growth. These genes include IRT1. Investigation of the metal and ion contents in Cd2+-treated roots in which NO synthesis was impaired indicates that IRT1 up-regulation by NO was consistently correlated to NO's ability to promote Cd2+ accumulation in roots. This analysis also highlights that NO is responsible for Cd2+-induced inhibition of root Ca2+ accumulation. Taken together, our results suggest that NO contributes to Cd2+ toxicity by favoring Cd2+ versus Ca2+ uptake and by initiating a cellular pathway resembling those activated upon iron deprivation. PMID:19168643

  13. The Expression of Porcine Prdx6 Gene Is Up-Regulated by C/EBPβ and CREB.

    PubMed

    Wu, Xinyu; Ji, Panlong; Zhang, Liang; Bu, Guowei; Gu, Hao; Wang, Xiaojing; Xiong, Yuanzhu; Zuo, Bo

    2015-01-01

    Peroxiredoxin6 (Prdx6) is one of the peroxiredoxin (Prdxs) family members that play an important role in maintaining cell homeostasis. Our previous studies demonstrated that Prdx6 was significantly associated with pig meat quality, especially meat tenderness. However, the transcriptional regulation of porcine Prdx6 remains unclear. In this study, we determined the transcription start site (TSS) of porcine Prdx6 gene by 5' rapid-amplification of cDNA ends (5' RACE). Several regulatory elements including CCAAT/enhancer-binding proteinβ (C/EBPβ), Myogenic Differentiation (MyoD), cAMP response element binding protein (CREB), stimulating protein1 (Sp1) and heat shock factor (HSF) binding sites were found by computational analyses together with luciferase reporter system. Overexpression and RNA interference experiments showed that C/EBPβ or CREB could up-regulate the expression of porcine Prdx6 gene at both mRNA and protein level. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation assays (ChIP) confirmed that C/EBPβ and CREB could interact with Prdx6 promoter. Immuoprecipitation results also showed that C/EBPβ could interact with Prdx6 in vivo. Taken together, our findings identified C/EBPβ and CREB as the important regulators of porcine Prdx6 gene expression, and offered clues for further investigation of Prdx6 gene function.

  14. A single-cell bioluminescence imaging system for monitoring cellular gene expression in a plant body.

    PubMed

    Muranaka, Tomoaki; Kubota, Saya; Oyama, Tokitaka

    2013-12-01

    Gene expression is a fundamental cellular process and expression dynamics are of great interest in life science. We succeeded in monitoring cellular gene expression in a duckweed plant, Lemna gibba, using bioluminescent reporters. Using particle bombardment, epidermal and mesophyll cells were transfected with the luciferase gene (luc+) under the control of a constitutive [Cauliflower mosaic virus 35S (CaMV35S)] and a rhythmic [Arabidopsis thaliana CIRCADIAN CLOCK ASSOCIATED 1 (AtCCA1)] promoter. Bioluminescence images were captured using an EM-CCD (electron multiply charged couple device) camera. Luminescent spots of the transfected cells in the plant body were quantitatively measured at the single-cell level. Luminescence intensities varied over a 1,000-fold range among CaMV35S::luc+-transfected cells in the same plant body and showed a log-normal-like frequency distribution. We monitored cellular gene expression under light-dark conditions by capturing bioluminescence images every hour. Luminescence traces of ≥50 individual cells in a frond were successfully obtained in each monitoring procedure. Rhythmic and constitutive luminescence behaviors were observed in cells transfected with AtCCA1::luc+ and CaMV35S::luc+, respectively. Diurnal rhythms were observed in every AtCCA1::luc+-introduced cell with traceable luminescence, and slight differences were detected in their rhythmic waveforms. Thus the single-cell bioluminescence monitoring system was useful for the characterization of cellular gene expression in a plant body.

  15. Neonatal cellular and gene therapies for mucopolysaccharidoses: the earlier the better?

    PubMed

    Tomatsu, Shunji; Azario, Isabella; Sawamoto, Kazuki; Pievani, Alice Silvia; Biondi, Andrea; Serafini, Marta

    2016-03-01

    Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders (LSDs). The increasing interest in newborn screening procedures for LSDs underlines the need for alternative cellular and gene therapy approaches to be developed during the perinatal period, supporting the treatment of MPS patients before the onset of clinical signs and symptoms. The rationale for considering these early therapies results from the clinical experience in the treatment of MPSs and other genetic disorders. The normal or gene-corrected hematopoiesis transplanted in patients can produce the missing protein at levels sufficient to improve and/or halt the disease-related abnormalities. However, these current therapies are only partially successful, probably due to the limited efficacy of the protein provided through the hematopoiesis. An alternative explanation is that the time at which the cellular or gene therapy procedures are performed could be too late to prevent pre-existing or progressive organ damage. Considering these aspects, in the last several years, novel cellular and gene therapy approaches have been tested in different animal models at birth, a highly early stage, showing that precocious treatment is critical to prevent long-term pathological consequences. This review provides insights into the state-of-art accomplishments made with neonatal cellular and gene-based therapies and the major barriers that need to be overcome before they can be implemented in the medical community.

  16. Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4-dependent DNA repair genes.

    PubMed

    Karpov, Dmitry S; Spasskaya, Daria S; Tutyaeva, Vera V; Mironov, Alexander S; Karpov, Vadim L

    2013-09-17

    The 26S proteasome is an ATP-dependent multi-subunit protease complex and the major regulator of intracellular protein turnover and quality control. However, its role in the DNA damage response is controversial. We addressed this question in yeast by disrupting the transcriptional regulation of the PRE1 proteasomal gene. The mutant strain has decreased proteasome activity and is hyper-resistant to various DNA-damaging agents. We found that Rpn4-target genes MAG1, RAD23, and RAD52 are overexpressed in this strain due to Rpn4 stabilisation. These genes represent three different pathways of base excision, nucleotide excision and double strand break repair by homologous recombination (DSB-HR). Consistently, the proteasome mutant displays increased DSB-HR activity. Our data imply that the proteasome may have a negative role in DNA damage response.

  17. Upregulation of interferon-induced genes in infants with virus-associated acute bronchiolitis.

    PubMed

    Scagnolari, Carolina; Midulla, Fabio; Trombetti, Simona; Pierangeli, Alessandra; Tromba, Valeria; Grossi, Rosanna; Di Marco, Paola; Dianzani, Caterina; Girardi, Enrico; Antonelli, Guido

    2007-11-01

    To determine whether there is an airway IFN response in infants with acute bronchiolitis and to establish whether the rate of such a response is related to the severity of illness, the expression of some IFN-induced genes was measured in nasopharyngeal washes from 39 infants with acute bronchiolitis. The results indicate that in infants with a virus-associated acute bronchiolitis there is a strong activation of IFN system and that the severity of illness is inversely related to the level of expression of IFN-induced genes. This suggests that the IFN response plays an important role in determining virus-associated respiratory disease in early life.

  18. Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis

    PubMed Central

    Wu, Lizhi; Chaudhary, Sandeep C.; Atigadda, Venkatram R.; Belyaeva, Olga V.; Harville, Steven R.; Elmets, Craig A.; Muccio, Donald D.; Athar, Mohammad; Kedishvili, Natalia Y.

    2016-01-01

    UAB30 is an RXR selective agonist that has been shown to have potential cancer chemopreventive properties. Due to high efficacy and low toxicity, it is currently being evaluated in human Phase I clinical trials by the National Cancer Institute. While UAB30 shows promise as a low toxicity chemopreventive drug, the mechanism of its action is not well understood. In this study, we investigated the effects of UAB30 on gene expression in human organotypic skin raft cultures and mouse epidermis. The results of this study indicate that treatment with UAB30 results in upregulation of genes responsible for the uptake and metabolism of all-trans-retinol to all-trans-retinoic acid (ATRA), the natural agonist of RAR nuclear receptors. Consistent with the increased expression of these genes, the steady-state levels of ATRA are elevated in human skin rafts. In ultraviolet B (UVB) irradiated mouse skin, the expression of ATRA target genes is found to be reduced. A reduced expression of ATRA sensitive genes is also observed in epidermis of mouse models of UVB-induced squamous cell carcinoma and basal cell carcinomas. However, treatment of mouse skin with UAB30 prior to UVB irradiation prevents the UVB-induced decrease in expression of some of the ATRA-responsive genes. Considering its positive effects on ATRA signaling in the epidermis and its low toxicity, UAB30 could be used as a chemoprophylactic agent in the treatment of non-melanoma skin cancer, particularly in organ transplant recipients and other high risk populations. PMID:27078158

  19. Transcriptome Profiling Revealed Stress-Induced and Disease Resistance Genes Up-Regulated in PRSV Resistant Transgenic Papaya.

    PubMed

    Fang, Jingping; Lin, Aiting; Qiu, Weijing; Cai, Hanyang; Umar, Muhammad; Chen, Rukai; Ming, Ray

    2016-01-01

    Papaya is a productive and nutritious tropical fruit. Papaya Ringspot Virus (PRSV) is the most devastating pathogen threatening papaya production worldwide. Development of transgenic resistant varieties is the most effective strategy to control this disease. However, little is known about the genome-wide functional changes induced by particle bombardment transformation. We conducted transcriptome sequencing of PRSV resistant transgenic papaya SunUp and its PRSV susceptible progenitor Sunset to compare the transcriptional changes in young healthy leaves prior to infection with PRSV. In total, 20,700 transcripts were identified, and 842 differentially expressed genes (DEGs) randomly distributed among papaya chromosomes. Gene ontology (GO) category analysis revealed that microtubule-related categories were highly enriched among these DEGs. Numerous DEGs related to various transcription factors, transporters and hormone biosynthesis showed clear differences between the two cultivars, and most were up-regulated in transgenic papaya. Many known and novel stress-induced and disease-resistance genes were most highly expressed in SunUp, including MYB, WRKY, ERF, NAC, nitrate and zinc transporters, and genes involved in the abscisic acid, salicylic acid, and ethylene signaling pathways. We also identified 67,686 alternative splicing (AS) events in Sunset and 68,455 AS events in SunUp, mapping to 10,994 and 10,995 papaya annotated genes, respectively. GO enrichment for the genes displaying AS events exclusively in Sunset was significantly different from those in SunUp. Transcriptomes in Sunset and transgenic SunUp are very similar with noteworthy differences, which increased PRSV-resistance in transgenic papaya. No detrimental pathways and allergenic or toxic proteins were induced on a genome-wide scale in transgenic SunUp. Our results provide a foundation for unraveling the mechanism of PRSV resistance in transgenic papaya.

  20. Transcriptome Profiling Revealed Stress-Induced and Disease Resistance Genes Up-Regulated in PRSV Resistant Transgenic Papaya

    PubMed Central

    Fang, Jingping; Lin, Aiting; Qiu, Weijing; Cai, Hanyang; Umar, Muhammad; Chen, Rukai; Ming, Ray

    2016-01-01

    Papaya is a productive and nutritious tropical fruit. Papaya Ringspot Virus (PRSV) is the most devastating pathogen threatening papaya production worldwide. Development of transgenic resistant varieties is the most effective strategy to control this disease. However, little is known about the genome-wide functional changes induced by particle bombardment transformation. We conducted transcriptome sequencing of PRSV resistant transgenic papaya SunUp and its PRSV susceptible progenitor Sunset to compare the transcriptional changes in young healthy leaves prior to infection with PRSV. In total, 20,700 transcripts were identified, and 842 differentially expressed genes (DEGs) randomly distributed among papaya chromosomes. Gene ontology (GO) category analysis revealed that microtubule-related categories were highly enriched among these DEGs. Numerous DEGs related to various transcription factors, transporters and hormone biosynthesis showed clear differences between the two cultivars, and most were up-regulated in transgenic papaya. Many known and novel stress-induced and disease-resistance genes were most highly expressed in SunUp, including MYB, WRKY, ERF, NAC, nitrate and zinc transporters, and genes involved in the abscisic acid, salicylic acid, and ethylene signaling pathways. We also identified 67,686 alternative splicing (AS) events in Sunset and 68,455 AS events in SunUp, mapping to 10,994 and 10,995 papaya annotated genes, respectively. GO enrichment for the genes displaying AS events exclusively in Sunset was significantly different from those in SunUp. Transcriptomes in Sunset and transgenic SunUp are very similar with noteworthy differences, which increased PRSV-resistance in transgenic papaya. No detrimental pathways and allergenic or toxic proteins were induced on a genome-wide scale in transgenic SunUp. Our results provide a foundation for unraveling the mechanism of PRSV resistance in transgenic papaya. PMID:27379138

  1. Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis.

    PubMed

    Wu, Lizhi; Chaudhary, Sandeep C; Atigadda, Venkatram R; Belyaeva, Olga V; Harville, Steven R; Elmets, Craig A; Muccio, Donald D; Athar, Mohammad; Kedishvili, Natalia Y

    2016-01-01

    UAB30 is an RXR selective agonist that has been shown to have potential cancer chemopreventive properties. Due to high efficacy and low toxicity, it is currently being evaluated in human Phase I clinical trials by the National Cancer Institute. While UAB30 shows promise as a low toxicity chemopreventive drug, the mechanism of its action is not well understood. In this study, we investigated the effects of UAB30 on gene expression in human organotypic skin raft cultures and mouse epidermis. The results of this study indicate that treatment with UAB30 results in upregulation of genes responsible for the uptake and metabolism of all-trans-retinol to all-trans-retinoic acid (ATRA), the natural agonist of RAR nuclear receptors. Consistent with the increased expression of these genes, the steady-state levels of ATRA are elevated in human skin rafts. In ultraviolet B (UVB) irradiated mouse skin, the expression of ATRA target genes is found to be reduced. A reduced expression of ATRA sensitive genes is also observed in epidermis of mouse models of UVB-induced squamous cell carcinoma and basal cell carcinomas. However, treatment of mouse skin with UAB30 prior to UVB irradiation prevents the UVB-induced decrease in expression of some of the ATRA-responsive genes. Considering its positive effects on ATRA signaling in the epidermis and its low toxicity, UAB30 could be used as a chemoprophylactic agent in the treatment of non-melanoma skin cancer, particularly in organ transplant recipients and other high risk populations.

  2. Mesenchymal stem cells as cellular vehicles for prodrug gene therapy against tumors.

    PubMed

    Amara, Ikrame; Touati, Walid; Beaune, Philippe; de Waziers, Isabelle

    2014-10-01

    Gene-directed enzyme prodrug therapy (GDEPT) consists of targeted delivery to tumor cells of a suicide gene responsible for the in situ conversion of a prodrug into cytotoxic metabolites. One of the major impediments of GDEPT is to target specifically the tumor cells with the suicide gene. Among gene delivery methods, mesenchymal stem cells (MSCs) have emerged recently as potential cellular vehicles for gene delivery. MSCs are particularly suited for gene transduction. They exhibit remarkable migratory property towards tumors and their metastases and they are weakly immunogenic. This review will summarize the current knowledge about MSCs engineered to express different suicide genes (cytosine deaminase, thymidine kinase, carboxylesterase, cytochrome P450) to elicit a significant antitumor response against brain tumors, ovarian, hepatocellular, pancreatic, renal or medullary thyroid carcinomas, breast or prostate cancer and pulmonary metastases. The potential side effects of these MSC-based tumor therapies will also be considered to highlight certain aspects that need to be improved prior to clinical use.

  3. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    SciTech Connect

    Olszewski, Pawel K.; Fredriksson, Robert; Eriksson, Jenny D.; Mitra, Anaya; Radomska, Katarzyna J.; Gosnell, Blake A.; Solvang, Maria N.; Levine, Allen S.; Schioeth, Helgi B.

    2011-05-13

    Highlights: {yields} The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. {yields} The level of colocalization is similar in the male and female brain. {yields} Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. {yields} Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  4. Prion Infection of Mouse Brain Reveals Multiple New Upregulated Genes Involved in Neuroinflammation or Signal Transduction

    PubMed Central

    Striebel, James F.; Race, Brent; Phillips, Katie; Chesebro, Bruce

    2014-01-01

    ABSTRACT Gliosis is often a preclinical pathological finding in neurodegenerative diseases, including prion diseases, but the mechanisms facilitating gliosis and neuronal damage in these diseases are not understood. To expand our knowledge of the neuroinflammatory response in prion diseases, we assessed the expression of key genes and proteins involved in the inflammatory response and signal transduction in mouse brain at various times after scrapie infection. In brains of scrapie-infected mice at pre- and postclinical stages, we identified 15 previously unreported differentially expressed genes related to inflammation or activation of the STAT signal transduction pathway. Levels for the majority of differentially expressed genes increased with time postinfection. In quantitative immunoblotting experiments of STAT proteins, STAT1α, phosphorylated-STAT1α (pSTAT1α), and pSTAT3 were increased between 94 and 131 days postinfection (p.i.) in brains of mice infected with strain 22L. Furthermore, a select group of STAT-associated genes was increased preclinically during scrapie infection, suggesting early activation of the STAT signal transduction pathway. Comparison of inflammatory markers between mice infected with scrapie strains 22L and RML indicated that the inflammatory responses and gene expression profiles in the brains were strikingly similar, even though these scrapie strains infect different brain regions. The endogenous interleukin-1 receptor antagonist (IL-1Ra), an inflammatory marker, was newly identified as increasing preclinically in our model and therefore might influence scrapie pathogenesis in vivo. However, in IL-1Ra-deficient or overexpressor transgenic mice inoculated with scrapie, neither loss nor overexpression of IL-1Ra demonstrated any observable effect on gliosis, protease-resistant prion protein (PrPres) formation, disease tempo, pathology, or expression of the inflammatory genes analyzed. IMPORTANCE Prion infection leads to Pr

  5. Glucose metabolism activation by SHIP2 inhibitors via up-regulation of GLUT1 gene in L6 myotubes.

    PubMed

    Suwa, Akira; Kurama, Takeshi; Yamamoto, Tadashi; Sawada, Akihiko; Shimokawa, Teruhiko; Aramori, Ichiro

    2010-09-10

    Lipid phosphatase SH2 domain-containing inositol 5'-phosphatase 2 (SHIP2) plays an important role in the regulation of insulin signaling. In this report, we identified AS1938909, a novel small-molecule SHIP2 inhibitor. AS1938909 showed potent inhibition of SHIP2 (Ki=0.44 microuM) and significant selectivity over other related phosphatases. Further, AS1938909 increased Akt phosphorylation, glucose consumption, and glucose uptake in L6 myotubes. Treatment of L6 myotubes with SHIP2 inhibitors for 48 h significantly induced expression of GLUT1 mRNA, but not that of GLUT4. These results suggest that pharmacological inhibition of SHIP2 activates glucose metabolism due, at least in part, to up-regulation of GLUT1 gene expression.

  6. Tat is a multifunctional viral protein that modulates cellular gene expression and functions.

    PubMed

    Clark, Evan; Nava, Brenda; Caputi, Massimo

    2017-02-07

    The human immunodeficiency virus type I (HIV-1) has developed several strategies to condition the host environment to promote viral replication and spread. Viral proteins have evolved to perform multiple functions, aiding in the replication of the viral genome and modulating the cellular response to the infection. Tat is a small, versatile, viral protein that controls transcription of the HIV genome, regulates cellular gene expression and generates a permissive environment for viral replication by altering the immune response and facilitating viral spread to multiple tissues. Studies carried out utilizing biochemical, cellular, and genomic approaches show that the expression and activity of hundreds of genes and multiple molecular networks are modulated by Tat via multiple mechanisms.

  7. A standardized randomized 6-month aerobic exercise-training down-regulated pro-inflammatory genes, but up-regulated anti-inflammatory, neuron survival and axon growth-related genes.

    PubMed

    Iyalomhe, Osigbemhe; Chen, Yuanxiu; Allard, Joanne; Ntekim, Oyonumo; Johnson, Sheree; Bond, Vernon; Goerlitz, David; Li, James; Obisesan, Thomas O

    2015-09-01

    There is considerable support for the view that aerobic exercise may confer cognitive benefits to mild cognitively impaired elderly persons. However, the biological mechanisms mediating these effects are not entirely clear. As a preliminary step towards informing this gap in knowledge, we enrolled older adults confirmed to have mild cognitive impairment (MCI) in a 6-month exercise program. Male and female subjects were randomized into a 6-month program of either aerobic or stretch (control) exercise. Data collected from the first 10 completers, aerobic exercise (n=5) or stretch (control) exercise (n=5), were used to determine intervention-induced changes in the global gene expression profiles of the aerobic and stretch groups. Using microarray, we identified genes with altered expression (relative to baseline values) in response to the 6-month exercise intervention. Genes whose expression were altered by at least two-fold, and met the p-value cutoff of 0.01 were inputted into the Ingenuity Pathway Knowledge Base Library to generate gene-interaction networks. After a 6-month aerobic exercise-training, genes promoting inflammation became down-regulated, whereas genes having anti-inflammatory properties and those modulating immune function or promoting neuron survival and axon growth, became up-regulated (all fold change≥±2.0, p<0.01). These changes were not observed in the stretch group. Importantly, the differences in the expression profiles correlated with significant improvement in maximal oxygen uptake (VO2max) in the aerobic program as opposed to the stretch group. We conclude that three distinct cellular pathways may collectively influence the training effects of aerobic exercise in MCI subjects. We plan to confirm these effects using rt-PCR and correlate such changes with the cognitive phenotype.

  8. Evaluating long-term cellular effects of the arsenic species thio-DMA(V): qPCR-based gene expression as screening tool.

    PubMed

    Ebert, Franziska; Thomann, Marlies; Witt, Barbara; Müller, Sandra M; Meyer, Sören; Weber, Till; Christmann, Markus; Schwerdtle, Tanja

    2016-09-01

    Thio-dimethylarsinic acid (thio-DMA(V)) is a human urinary metabolite of the class 1 human carcinogen inorganic arsenic as well as of arsenosugars. Thio-DMA(V) exerts strong cellular toxicity, whereas its toxic modes of action are not fully understood. For the first time, this study characterises the impact of a long-term (21days) in vitro incubation of thio-DMA(V) on the expression of selected genes related to cell death, stress response, epigenetics and DNA repair. The observed upregulation of DNMT1 might be a cellular compensation to counterregulate the in a very recent study observed massive global DNA hypomethylation after chronic thio-DMA(V) incubation. Moreover, our data suggest that chronic exposure towards subcytotoxic, pico- to nanomolar concentrations of thio-DMA(V) causes a stress response in human urothelial cells. The upregulation of genes encoding for proteins of DNA repair (Apex1, Lig1, XRCC1, DDB2, XPG, ATR) as well as damage response (GADD45A, GADD45G, Trp53) indicate a potential genotoxic risk emanating from thio-DMA(V) after long-term incubation.

  9. Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields.

    PubMed

    Clark, Charles C; Wang, Wei; Brighton, Carl T

    2014-07-01

    The objective of the described experiments was to determine the electrical parameters that lead to optimal expression of a number of bone-related genes in cultured human bone cells exposed to a capacitively coupled electric field. Human calvarial osteoblasts were grown in modified plastic Cooper dishes in which the cells could be exposed to various capacitively coupled electric fields. The optimal duration of stimulation and optimal duration of response to the electrical field, and the optimal amplitude, frequency and duty cycle were all determined for each of the genes analyzed. Results indicated that a capacitively coupled electric field of 60 kHz, 20 mV/cm, 50% duty cycle for 2 h duration per day significantly up-regulated mRNA expression of a number of transforming growth factor (TGF)-β family genes (bone morphogenetic proteins (BMP)-2 and -4, TGF-β1, - β2 and -β3) as well as fibroblast growth factor (FGF)-2, osteocalcin (BGP) and alkaline phosphatase (ALP). Protein levels of BMP-2 and -4, and TGF-β1 and - β2 were also elevated. The clinical relevance of these findings in the context of a noninvasive treatment modality for delayed union and nonunion fracture healing is discussed.

  10. An SCD gene from the Mollusca and its upregulation in carotenoid-enriched scallops.

    PubMed

    Li, Xue; Ning, Xianhui; Dou, Jinzhuang; Yu, Qian; Wang, Shuyue; Zhang, Lingling; Wang, Shi; Hu, Xiaoli; Bao, Zhenmin

    2015-06-10

    Carotenoids are a diverse group of red, orange, and yellow pigments that act as vitamin A precursors and antioxidants. Animals can only obtain carotenoids through their diets. Amongst the carotenoids identified in nature, over one third are of marine origin, but current research on carotenoid absorption in marine species is limited. Bivalves possess an adductor muscle, which is normally white in scallops. However, a new variety of Yesso scallop (Patinopecten yessoensis), the 'Haida golden scallop', can be distinguished by its adductor muscle's orange colour, which is caused by carotenoid accumulation. Studying the genes related to carotenoid accumulation in this scallop could benefit our understanding of the mechanisms underlying carotenoid absorption in marine organisms, and it could further improve scallop breeding for carotenoid content. Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme in the production of monounsaturated fatty acids, which enhance carotenoid absorption. Here, the full-length cDNA and genomic DNA sequences of the SCD gene from the Yesso scallop (PySCD) were obtained. The PySCD gene consisted of four exons and three introns, and it contained a 990-bp open reading frame encoding 329 amino acids. It was ubiquitously expressed in adult tissues, embryos and larvae of both white Yesso scallops and 'Haida golden' scallops. Although the expression pattern of PySCD in both types of scallops was similar, significantly more PySCD transcripts were detected in the 'Haida golden' scallops than in the white scallops. Elevated PySCD expression was found in tissues including the adductor muscle, digestive gland, and gonad, as well as in veliger larvae. This study represents the first characterisation of an SCD gene from the Mollusca. Our data imply that PySCD functions in multiple biological processes, and it might be involved in carotenoid accumulation.

  11. Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds

    PubMed Central

    2014-01-01

    Background Nearly 40 years ago, Freeland and Janzen predicted that liver biotransformation enzymes dictated diet selection by herbivores. Despite decades of research on model species and humans, little is known about the biotransformation mechanisms used by mammalian herbivores to metabolize plant secondary compounds (PSCs). We investigated the independent evolution of PSC biotransformation mechanisms by capitalizing on a dramatic diet change event—the dietary inclusion of creosote bush (Larrea tridentata)—that occurred in the recent evolutionary history of two species of woodrats (Neotoma lepida and N. bryanti). Results By comparing gene expression profiles of two populations of woodrats with evolutionary experience to creosote and one population naïve to creosote, we identified genes either induced by a diet containing creosote PSCs or constitutively higher in populations with evolutionary experience of creosote. Although only one detoxification gene (an aldo-keto reductase) was induced by both experienced populations, these populations converged upon functionally equivalent strategies to biotransform the PSCs of creosote bush by constitutively expressing aldehyde and alcohol dehydrogenases, Cytochromes P450s, methyltransferases, glutathione S-transferases and sulfotransferases. The response of the naïve woodrat population to creosote bush was indicative of extreme physiological stress. Conclusions The hepatic detoxification system of mammals is notoriously complex, with hundreds of known biotransformation enzymes. The comparison herein of woodrat taxa that differ in evolutionary and ecological experience with toxins in creosote bush reveals convergence in the overall strategies used by independent species after a historical shift in diet. In addition, remarkably few genes seemed to be important in this dietary shift. The research lays the requisite groundwork for future studies of specific biotransformation pathways used by woodrats to metabolize the

  12. Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes.

    PubMed

    Drynda, Andreas; Deinet, Nicole; Braun, Nicole; Peuster, Matthias

    2009-11-01

    Rare earth metals are added to corrodible magnesium-based alloys in low amounts (up to 10%) to improve their mechanical properties and to decrease the degradation rate. Cerium (Ce), neodymium (Nd), yttrium (Y), and ytterbium (Yb) are already used for degradable cardiovascular stents. Little is known about the biocompatibility of rare earth metals released during the degradation process of the implant. Therefore the biocompatibility of rare earth metals was assessed with regard to metabolic activity of human vascular smooth muscle cells (SMCs). After coincubation with the trivalent chlorides (0.5-100 microg/mL) of rare earth metals for 24, 72, 144, and 240 h metabolic activity was determined at each time point using the colometric WST-1 test. The tested rare earth metals did not lead to significant changes in metabolic activity over a wide concentration range. However, at high concentrations a decrease was observed. Apoptotic or necrotic effects were not observed. Furthermore, we analyzed the effects of Ce, Nd, Y, and Yb on the expression of genes involved in inflammatory processes. The expression of IL-6, IL-8, and ICAM-1 in SMCs after exposure to Ce, Nd, Y, and Yb (5 and 50 microg/mL) was measured using quantitative real-time PCR. Significant up-regulation of IL-6, IL-8, and ICAM-1 genes were only found after 24 h, mainly for a concentration of 50 microg/mL. Our cell culture data indicate that rare earth metals influence cellular processes of vascular cells. Whether adverse effects occur also in in vivo is the topic of further investigations.

  13. Gene markers of cellular aging in human multipotent stromal cells in culture

    PubMed Central

    2014-01-01

    Introduction Human multipotent stromal cells (MSCs) isolated from bone marrow or other tissue sources have great potential to treat a wide range of injuries and disorders in the field of regenerative medicine and tissue engineering. In particular, MSCs have inherent characteristics to suppress the immune system and are being studied in clinical studies to prevent graft-versus-host disease. MSCs can be expanded in vitro and have potential for differentiation into multiple cell lineages. However, the impact of cell passaging on gene expression and function of the cells has not been determined. Methods Commercially available human MSCs derived from bone marrow from six different donors, grown under identical culture conditions and harvested at cell passages 3, 5, and 7, were analyzed with gene-expression profiling by using microarray technology. Results The phenotype of these cells did not change as reported previously; however, a statistical analysis revealed a set of 78 significant genes that were distinguishable in expression between passages 3 and 7. None of these significant genes corresponded to the markers established by the International Society for Cellular Therapy (ISCT) for MSC identification. When the significant gene lists were analyzed through pathway analysis, these genes were involved in the top-scoring networks of cellular growth and proliferation and cellular development. A meta-analysis of the literature for significant genes revealed that the MSCs seem to be undergoing differentiation into a senescent cell type when cultured extensively. Consistent with the differences in gene expression at passage 3 and 7, MSCs exhibited a significantly greater potential for cell division at passage 3 in comparison to passage 7. Conclusions Our results identified specific gene markers that distinguish aging MSCs grown in cell culture. Confirmatory studies are needed to correlate these molecular markers with biologic attributes that may facilitate the development

  14. Posttranscriptional regulation of cellular gene expression by the c-myc oncogene

    SciTech Connect

    Prendergast, G.C.; Cole, M.D. . Dept. of Biology)

    1989-01-01

    The c-myc oncogene has been implicated in the development of many different cancers, yet the mechanism by which the c-myc protein alters cellular growth control has proven elusive. The authors used a cDNA hybridization difference assay to isolate two genes, mr1 and mr2, that were constitutively expressed (i.e., deregulated) in rodent fibroblast cell lines immortalized by transfection of a viral promoter-linked c-myc gene. Both cDNAs were serum inducible in quiescent G/sub o/ fibroblasts, suggesting that they are functionally related to cellular proliferative processes. Although there were significant differences in cytoplasmic mRNA levels between myc-immortalized and control cells, the rates of transcription and mRNA turnover of both genes were similar, suggesting that c-myc regulates mr1 and mr2 expression by some nuclear posttranscriptional mechanism. Their results provide evidence that c-myc can rapidly modulate cellular gene expression and suggest that c-myc may function in gene regulation at the level of RNA export, splicing, or nuclear RNA turnover.

  15. EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes.

    PubMed

    Hernando, Henar; Gelato, Kathy A; Lesche, Ralf; Beckmann, Georg; Koehr, Silke; Otto, Saskia; Steigemann, Patrick; Stresemann, Carlo

    2016-02-01

    Multiple myeloma is a plasma cell malignancy characterized by marked heterogeneous genomic instability including frequent genetic alterations in epigenetic enzymes. In particular, the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2) is overexpressed in multiple myeloma. EZH2 is the catalytic component of the polycomb repressive complex 2 (PRC2), a master transcriptional regulator of differentiation. EZH2 catalyzes methylation of lysine 27 on histone H3 and its deregulation in cancer has been reported to contribute to silencing of tumor suppressor genes, resulting in a more undifferentiated state, and thereby contributing to the multiple myeloma phenotype. In this study, we propose the use of EZH2 inhibitors as a new therapeutic approach for the treatment of multiple myeloma. We demonstrate that EZH2 inhibition causes a global reduction of H3K27me3 in multiple myeloma cells, promoting reexpression of EZH2-repressed tumor suppressor genes in a subset of cell lines. As a result of this transcriptional activation, multiple myeloma cells treated with EZH2 inhibitors become more adherent and less proliferative compared with untreated cells. The antitumor efficacy of EZH2 inhibitors is also confirmed in vivo in a multiple myeloma xenograft model in mice. Together, our data suggest that EZH2 inhibition may provide a new therapy for multiple myeloma treatment and a promising addition to current treatment options. Mol Cancer Ther; 15(2); 287-98. ©2015 AACR.

  16. FRG2, an FSHD candidate gene, is transcriptionally upregulated in differentiating primary myoblast cultures of FSHD patients

    PubMed Central

    Rijkers, T; Deidda, G; van Koningsbrugge..., S; van Geel, M; Lemmers, R; van Deutekom, J C T; Figlewicz, D; Hewitt, J; Padberg, G; Frants, R; van der Maarel, S M

    2004-01-01

    Background: Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is associated with partial deletion of the subtelomeric D4Z4 repeat array on chromosome 4qter. This chromosomal rearrangement may result in regional chromatin relaxation and transcriptional deregulation of genes nearby. Methods and results: Here we describe the isolation and characterisation of FRG2, a member of a chromosomally dispersed gene family, mapping only 37 kb proximal to the D4Z4 repeat array. Homology and motif searches yielded no clues to the function of the predicted protein. FRG2 expression is undetectable in all tissues tested except for differentiating myoblasts of FSHD patients, which display low, yet distinct levels of FRG2 expression, partly from chromosome 4 but predominantly originating from its homologue on chromosome 10. However, in non-FSHD myopathy patients only distantly related FRG2 homologues are transcribed, while differentiating myoblasts from healthy controls fail to express any member of this gene family. Moreover, fibroblasts of FSHD patients and control individuals undergoing forced Ad5-MyoD mediated myogenesis show expression of FRG2 mainly originating from chromosome 10. Luciferase reporter assays show that the FRG2 promoter region can direct high levels of expression but is inhibited by increasing numbers of D4Z4 repeat units. Transient transfection experiments with FRG2 fusion-protein constructs reveal nuclear localisation and apparently FRG2 overexpression causes a wide range of morphological changes. Conclusion: The localisation of FRG2 genes close to the D4Z4 repeats on chromosome 4 and 10, their transcriptional upregulation specifically in FSHD myoblast cultures, potential involvement in myogenesis, and promoter properties qualify FRG2 as an attractive candidate for FSHD pathogenesis. PMID:15520407

  17. Applying Attractor Dynamics to Infer Gene Regulatory Interactions Involved in Cellular Differentiation.

    PubMed

    Ghaffarizadeh, Ahmadreza; Podgorski, Gregory J; Flann, Nicholas S

    2017-02-27

    The dynamics of gene regulatory networks (GRNs) guide cellular differentiation. Determining the ways regulatory genes control expression of their targets is essential to understand and control cellular differentiation. The way a regulatory gene controls its target can be expressed as a gene regulatory function. Manual derivation of these regulatory functions is slow, error-prone and difficult to update as new information arises. Automating this process is a significant challenge and the subject of intensive effort. This work presents a novel approach to discovering biologically plausible gene regulatory interactions that control cellular differentiation. This method integrates known cell type expression data, genetic interactions, and knowledge of the effects of gene knockouts to determine likely GRN regulatory functions. We employ a genetic algorithm to search for candidate GRNs that use a set of transcription factors that control differentiation within a lineage. Nested canalyzing functions are used to constrain the search space to biologically plausible networks. The method identifies an ensemble of GRNs whose dynamics reproduce the gene expression pattern for each cell type within a particular lineage. The method's effectiveness was tested by inferring consensus GRNs for myeloid and pancreatic cell differentiation and comparing the predicted gene regulatory interactions to manually derived interactions. We identified many regulatory interactions reported in the literature and also found differences from published reports. These discrepancies suggest areas for biological studies of myeloid and pancreatic differentiation. We also performed a study that used defined synthetic networks to evaluate the accuracy of the automated search method and found that the search algorithm was able to discover the regulatory interactions in these defined networks with high accuracy. We suggest that the GRN functions derived from the methods described here can be used to fill

  18. Ciona intestinalis peroxinectin is a novel component of the peroxidase-cyclooxygenase gene superfamily upregulated by LPS.

    PubMed

    Vizzini, Aiti; Parrinello, Daniela; Sanfratello, Maria Antonietta; Mangano, Valentina; Parrinello, Nicolò; Cammarata, Matteo

    2013-09-01

    Peroxinectins function as hemoperoxidase and cell adhesion factor involved in invertebrate immune reaction. In this study, the ascidian (Ciona intestinalis) peroxinectin gene (CiPxt) and its expression during the inflammatory response have been examined. CiPxt is a new member of the peroxidase-cyclooxygenase gene superfamily that contains both the peroxidase domain and the integrin KGD (Lys-Gly-Asp) binding motif. A phylogenetic tree showed that CiPxt is very close to the chordate group and appears to be the outgroup of mammalian MPO, EPO and TPO clades. The CiPxt molecular structure model resulted superimposable to the human myeloperoxidase. The CiPxt mRNA expression is upregulated by LPS inoculation suggesting it is involved in C. intestinalis inflammatory response. The CiPxt was expressed in hemocytes (compartment/morula cells), vessel epithelium, and unilocular refractile granulocytes populating the inflamed tunic matrix and in the zones 7, 8 and 9 of the endostyle, a special pharynx organs homolog to the vertebrate thyroid gland.

  19. Retinoic acid regulates several genes in bile acid and lipid metabolism via upregulation of small heterodimer partner in hepatocytes.

    PubMed

    Mamoon, Abulkhair; Subauste, Angela; Subauste, Maria C; Subauste, Jose

    2014-10-25

    Retinoic acid (RA) affects multiple aspects of development, embryogenesis and cell differentiation processes. The liver is a major organ that stores RA suggesting that retinoids play an important role in the function of hepatocytes. In our previous studies, we have demonstrated the involvement of small heterodimer partner (SHP) in RA-induced signaling in a non-transformed hepatic cell line AML 12. In the present study, we have identified several critical genes in lipid homeostasis (Apoa1, Apoa2 and ApoF) that are repressed by RA-treatment in a SHP dependent manner, in vitro and also in vivo with the use of the SHP null mice. In a similar manner, RA also represses several critical genes involved in bile acid metabolism (Cyp7a1, Cyp8b1, Mdr2, Bsep, Baat and Ntcp) via upregulation of SHP. Collectively our data suggest that SHP plays a major role in RA-induced potential changes in pathophysiology of metabolic disorders in the liver.

  20. Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene upregulation.

    PubMed Central

    Majano, P L; García-Monzón, C; López-Cabrera, M; Lara-Pezzi, E; Fernández-Ruiz, E; García-Iglesias, C; Borque, M J; Moreno-Otero, R

    1998-01-01

    Increased nitric oxide (NO) production may contribute to the pathological changes featuring in some inflammatory diseases, but the role of NO in chronic viral hepatitis is still unknown. We compared the inducible NO synthase (NOS2) expression in the liver of patients with chronic viral hepatitis with that of both nonviral liver disease and histologically normal liver. NOS2 expression was assessed by immunohistochemical and in situ hybridization studies of liver biopsy sections. An intense hepatocellular NOS2 reactivity was detected in chronic viral hepatitis, whereas it was weakly or not observed in nonviral liver disease or normal liver, respectively. In addition, we determined whether the hepatitis B virus (HBV) might regulate the synthesis of this enzyme. NOS2 mRNA and protein levels as well as enzyme activity were assessed in cytokine-stimulated HBV-transfected and untransfected hepatoma cells. Transfection with either HBV genome or HBV X gene resulted in induction of NOS2 mRNA expression, and the maximal induction of this transcript and NO production was observed in cytokine-stimulated HBV-transfected cells. These results indicate that hepatotropic viral infections are able to upregulate the NOS2 gene expression in human hepatocytes, suggesting that NO may mediate important pathogenic events in the course of chronic viral hepatitis. PMID:9525976

  1. Cancer upregulated gene 2 induces epithelial-mesenchymal transition of human lung cancer cells via TGF-β signaling.

    PubMed

    Kaowinn, Sirichat; Kim, Jeonghyo; Lee, Jaebeom; Shin, Dong Hoon; Kang, Chi-Dug; Kim, Dae-Kee; Lee, Soojin; Kang, Min Kyung; Koh, Sang Seok; Kim, Seong-Jin; Chung, Young-Hwa

    2017-01-17

    Cancer upregulated gene 2 (CUG2) enhances cell migration and invasion, but the underlying mechanism has not been revealed. Herein, CUG2 decreased the expression of E-cadherin and increased the expression of N-cadherin and vimentin, characteristics of the epithelial-mesenchymal transition (EMT). A CUG2 deletion mutant, lacking interaction with nucleophosmin 1 (NPM1), or suppression of NPM1 reduced wound healing and cell invasion, indicating that CUG2-mediated EMT requires NPM1. CUG2 enhanced activation of Smad2/3 and expression of Snail and Twist, while the CUG2 silence decreased these TGF-β signaling pathways, leading to suppression of EMT. NPM silence also inhibited the CUG2-induced TGF-β signaling. These results suggest that TGF-β signaling is involved in CUG2-induced EMT. Treatment with EW-7197, a novel inhibitor of TGF-β signaling, diminished CUG2-mediated EMT and inhibition of Akt, ERK, JNK, and p38 MAPK, non-canonical TGF-β signaling molecules, also decreased expression of Smad2/3, Snail and Twist, leading to inhibition of EMT. The results confirm that TGF-β signaling is essential for CUG2-mediated EMT. Interestingly, TGF-β enhanced CUG2 expression. We further found that both CUG2-induced TGF-β production and TGF-β-induced CUG2 up-regulation required a physical interaction between Sp1 and Smad2/3 in the CUG2 and TGF-β promoter, as demonstrated by a promoter reporter assay, immunoprecipitation, and ChIP assay. These results indicated close crosstalk between CUG2 and TGF-β. Conversely, suppression of CUG2 or NPM1 did not completely inhibit TGF-β-induced EMT, indicating that the effect of TGF-β on EMT is dominant over the effect of CUG2 on EMT. Collectively, our findings suggest that CUG2 induces the EMT via TGF-β signaling.

  2. Mycoplasma gallisepticum Lipid Associated Membrane Proteins Up-regulate Inflammatory Genes in Chicken Tracheal Epithelial Cells via TLR-2 Ligation through an NF-κB Dependent Pathway

    PubMed Central

    Majumder, Sanjukta; Zappulla, Frank; Silbart, Lawrence K.

    2014-01-01

    Mycoplasma gallisepticum-mediated respiratory inflammation in chickens is associated with accumulation of leukocytes in the tracheal submucosa. However the molecular mechanisms underpinning these changes have not been well described. We hypothesized that the initial inflammatory events are initiated upon ligation of mycoplasma lipid associated membrane proteins (LAMP) to TLRs expressed on chicken tracheal epithelial cells (TEC). To test this hypothesis, live bacteria or LAMPs isolated from a virulent (Rlow) or a non-virulent (Rhigh) strain were incubated with primary TECs or chicken tracheae ex vivo. Microarray analysis identified up-regulation of several inflammatory and chemokine genes in TECs as early as 1.5 hours post-exposure. Kinetic analysis using RT-qPCR identified the peak of expression for most genes to be at either 1.5 or 6 hours. Ex-vivo exposure also showed up-regulation of inflammatory genes in epithelial cells by 1.5 hours. Among the commonly up-regulated genes were IL-1β, IL-6, IL-8, IL-12p40, CCL-20, and NOS-2, all of which are important immune-modulators and/or chemo-attractants of leukocytes. While these inflammatory genes were up-regulated in all four treatment groups, Rlow exposed epithelial cells both in vitro and ex vivo showed the most dramatic up-regulation, inducing over 100 unique genes by 5-fold or more in TECs. Upon addition of a TLR-2 inhibitor, LAMP-mediated gene expression of IL-1β and CCL-20 was reduced by almost 5-fold while expression of IL-12p40, IL-6, IL-8 and NOS-2 mRNA was reduced by about 2–3 fold. Conversely, an NF-κB inhibitor abrogated the response entirely for all six genes. miRNA-146a, a negative regulator of TLR-2 signaling, was up-regulated in TECs in response to either Rlow or Rhigh exposure. Taken together we conclude that LAMPs isolated from both Rhigh and Rlow induced rapid, TLR-2 dependent but transient up-regulation of inflammatory genes in primary TECs through an NF-κB dependent pathway. PMID:25401327

  3. All three classes of CpG ODNs up-regulate IP-10 gene in pigs.

    PubMed

    Dar, Arshud; Nichani, Anil; Lai, Ken; Potter, Andy; Gerdts, Volker; Babiuk, Lorne A; Mutwiri, George

    2010-04-01

    The analysis of CpG ODN induced innate immune responses in different animal species has shown substantial similarities and differences in levels and types of induced cytokines profile. The objectives of these studies were to identify innate immune biomarkers activated by three classes of CpG ODNs in pigs. For this purpose, we investigated the kinetics of innate immune responses in immune cells from pigs following in vitro and in vivo stimulation with CpG ODNs. The mRNA expression of cytokine and chemokine genes were assayed by SYBR green based quantitative real time PCR. A-class CpG ODN induced significant but transient levels of IFN-gamma, IL-12 (P40), IL-6, IL-4 and TNF-alpha mRNA, C-class CpG ODN induced significant level of IFN-gamma, IFN-alpha and IL-12 mRNA and the lowest level of IL-4 (Th-2 type) mRNA. A very low level of some cytokines stimulation was observed by GC ODNs. It is noteworthy, that IL-12 (P35) mRNA was significantly stimulated by B-class GpC ODN 7909. Interestingly, all classes of CpG ODNs induced significant level of IP-10 at 12h post stimulation. These in vitro and in vivo observations suggest that interferon-gamma inducible protein 10 (IP-10) may be a reliable biomarker for immune activity induced by CpG ODNs in pigs.

  4. β1-Na(+),K(+)-ATPase gene therapy upregulates tight junctions to rescue lipopolysaccharide-induced acute lung injury.

    PubMed

    Lin, X; Barravecchia, M; Kothari, P; Young, J L; Dean, D A

    2016-06-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with diverse disorders and characterized by disruption of the alveolar-capillary barrier, leakage of edema fluid into the lung, and substantial inflammation leading to acute respiratory failure. Gene therapy is a potentially powerful approach to treat ALI/ARDS through repair of alveolar epithelial function. Herein, we show that delivery of a plasmid expressing β1-subunit of the Na(+),K(+)-ATPase (β1-Na(+),K(+)-ATPase) alone or in combination with epithelial sodium channel (ENaC) α1-subunit using electroporation not only protected from subsequent lipopolysaccharide (LPS)-mediated lung injury, but also treated injured lungs. However, transfer of α1-subunit of ENaC (α1-ENaC) alone only provided protection benefit rather than treatment benefit although alveolar fluid clearance had been remarkably enhanced. Gene transfer of β1-Na(+),K(+)-ATPase, but not α1-ENaC, not only enhanced expression of tight junction protein zona occludins-1 (ZO-1) and occludin both in cultured cells and in mouse lungs, but also reduced pre-existing increase of lung permeability in vivo. These results demonstrate that gene transfer of β1-Na(+),K(+)-ATPase upregulates tight junction formation and therefore treats lungs with existing injury, whereas delivery of α1-ENaC only maintains pre-existing tight junction but not for generation. This indicates that the restoration of epithelial/endothelial barrier function may provide better treatment of ALI/ARDS.

  5. Epigenomics of Neural Cells: REST-Induced Down- and Upregulation of Gene Expression in a Two-Clone PC12 Cell Model

    PubMed Central

    Garcia-Manteiga, Jose M.; Bonfiglio, Silvia; Malosio, Maria Luisa; Lazarevic, Dejan; Stupka, Elia; Cittaro, Davide; Meldolesi, Jacopo

    2015-01-01

    Cell epigenomics depends on the marks released by transcription factors operating via the assembly of complexes that induce focal changes of DNA and histone structure. Among these factors is REST, a repressor that, via its strong decrease, governs both neuronal and neural cell differentiation and specificity. REST operation on thousands of possible genes can occur directly or via indirect mechanisms including repression of other factors. In previous studies of gene down- and upregulation, processes had been only partially investigated in neural cells. PC12 are well-known neural cells sharing properties with neurons. In the widely used PC12 populations, low-REST cells coexist with few, spontaneous high-REST PC12 cells. High- and low-REST PC12 clones were employed to investigate the role and the mechanisms of the repressor action. Among 15,500 expressed genes we identified 1,770 target and nontarget, REST-dependent genes. Functionally, these genes were found to operate in many pathways, from synaptic function to extracellular matrix. Mechanistically, downregulated genes were predominantly repressed directly by REST; upregulated genes were mostly governed indirectly. Among other factors, Polycomb complexes cooperated with REST for downregulation, and Smad3 and Myod1 participated in upregulation. In conclusion, we have highlighted that PC12 clones are a useful model to investigate REST, opening opportunities to development of epigenomic investigation. PMID:26413508

  6. Building quantitative, three dimensional atlases of gene expression and morphology at cellular resolution

    PubMed Central

    Knowles, David W.; Biggin, Mark D.

    2013-01-01

    Animals comprise dynamic three-dimensional arrays of cells that express gene products in intricate spatial and temporal patterns that determine cellular differentiation and morphogenesis. A rigorous understanding of these developmental processes requires automated methods that quantitatively record and analyze complex morphologies and their associated patterns of gene expression at cellular resolution. Here we summarize light microscopy based approaches to establish permanent, quantitative datasets—atlases—that record this information. We focus on experiments that capture data for whole embryos or large areas of tissue in three dimensions, often at multiple time points. We compare and contrast the advantages and limitations of different methods and highlight some of the discoveries made. We emphasize the need for interdisciplinary collaborations and integrated experimental pipelines that link sample preparation, image acquisition, image analysis, database design, visualization and quantitative analysis. PMID:24123936

  7. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium.

    PubMed

    Tang, Lu; Yao, Aijun; Ming Yuan; Tang, Yetao; Liu, Jian; Liu, Xi; Qiu, Rongliang

    2016-12-01

    Zinc (Zn) and cadmium (Cd) are two closely related chemical elements with very different biological roles in photosynthesis. Zinc plays unique biochemical functions in photosynthesis. Previous studies suggested that in some Zn/Cd hyperaccumulators, many steps in photosynthesis may be Cd tolerant or even Cd stimulated. Using RNA-seq data, we found not only that Cd and Zn both up-regulated the CA1 gene, which encodes a β class carbonic anhydrase (CA) in chloroplasts, but that a large number of other Zn up-regulated genes in the photosynthetic pathway were also significantly up-regulated by Cd in leaves of the Zn/Cd hyperaccumulator Sedum alfredii. These genes also include chloroplast genes involved in transcription and translation (rps18 and rps14), electron transport and ATP synthesis (atpF and ccsA), Photosystem II (PSBI, PSBM, PSBK, PSBZ/YCF9, PSBO-1, PSBQ, LHCB1.1, LHCB1.4, LHCB2.1, LHCB4.3 and LHCB6) and Photosystem I (PSAE-1, PSAF, PSAH2, LHCA1 and LHCA4). Cadmium and Zn also up-regulated the VAR1 gene, which encodes the ATP-dependent zinc metalloprotease FTSH 5 (a member of the FtsH family), and the DAG gene, which influences chloroplast differentiation and plastid development, and the CP29 gene, which supports RNA processing in chloroplasts and has a potential role in signal-dependent co-regulation of chloroplast genes. Further morphological parameters (dry biomass, cross-sectional thickness, chloroplast size, chlorophyll content) and chlorophyll fluorescence parameters confirmed that leaf photosynthesis of S. alfredii responded to Cd much as it did to Zn, which will contribute to our understanding of the positive effects of Zn and Cd on growth of this plant.

  8. Cellular dissection of the spinal cord motor column by BAC transgenesis and gene trapping in zebrafish.

    PubMed

    Asakawa, Kazuhide; Abe, Gembu; Kawakami, Koichi

    2013-01-01

    Bacterial artificial chromosome (BAC) transgenesis and gene/enhancer trapping are effective approaches for identification of genetically defined neuronal populations in the central nervous system (CNS). Here, we applied these techniques to zebrafish (Danio rerio) in order to obtain insights into the cellular architecture of the axial motor column in vertebrates. First, by using the BAC for the Mnx class homeodomain protein gene mnr2b/mnx2b, we established the mnGFF7 transgenic line expressing the Gal4FF transcriptional activator in a large part of the motor column. Single cell labeling of Gal4FF-expressing cells in the mnGFF7 line enabled a detailed investigation of the morphological characteristics of individual spinal motoneurons, as well as the overall organization of the motor column in a spinal segment. Secondly, from a large-scale gene trap screen, we identified transgenic lines that marked discrete subpopulations of spinal motoneurons with Gal4FF. Molecular characterization of these lines led to the identification of the ADAMTS3 gene, which encodes an evolutionarily conserved ADAMTS family of peptidases and is dynamically expressed in the ventral spinal cord. The transgenic fish established here, along with the identified gene, should facilitate an understanding of the cellular and molecular architecture of the spinal cord motor column and its connection to muscles in vertebrates.

  9. Quality Controls in Cellular Immunotherapies: Rapid Assessment of Clinical Grade Dendritic Cells by Gene Expression Profiling

    PubMed Central

    Castiello, Luciano; Sabatino, Marianna; Zhao, Yingdong; Tumaini, Barbara; Ren, Jiaqiang; Ping, Jin; Wang, Ena; Wood, Lauren V; Marincola, Francesco M; Puri, Raj K; Stroncek, David F

    2013-01-01

    Cell-based immunotherapies are among the most promising approaches for developing effective and targeted immune response. However, their clinical usefulness and the evaluation of their efficacy rely heavily on complex quality control assessment. Therefore, rapid systematic methods are urgently needed for the in-depth characterization of relevant factors affecting newly developed cell product consistency and the identification of reliable markers for quality control. Using dendritic cells (DCs) as a model, we present a strategy to comprehensively characterize manufactured cellular products in order to define factors affecting their variability, quality and function. After generating clinical grade human monocyte-derived mature DCs (mDCs), we tested by gene expression profiling the degrees of product consistency related to the manufacturing process and variability due to intra- and interdonor factors, and how each factor affects single gene variation. Then, by calculating for each gene an index of variation we selected candidate markers for identity testing, and defined a set of genes that may be useful comparability and potency markers. Subsequently, we confirmed the observed gene index of variation in a larger clinical data set. In conclusion, using high-throughput technology we developed a method for the characterization of cellular therapies and the discovery of novel candidate quality assurance markers. PMID:23147403

  10. Zebra Fish Lacking Adaptive Immunity Acquire an Antiviral Alert State Characterized by Upregulated Gene Expression of Apoptosis, Multigene Families, and Interferon-Related Genes.

    PubMed

    García-Valtanen, Pablo; Martínez-López, Alicia; López-Muñoz, Azucena; Bello-Perez, Melissa; Medina-Gali, Regla M; Ortega-Villaizán, María Del Mar; Varela, Monica; Figueras, Antonio; Mulero, Víctoriano; Novoa, Beatriz; Estepa, Amparo; Coll, Julio

    2017-01-01

    To investigate fish innate immunity, we have conducted organ and cell immune-related transcriptomic as well as immunohistologic analysis in mutant zebra fish (Danio rerio) lacking adaptive immunity (rag1(-/-)) at different developmental stages (egg, larvae, and adult), before and after infection with spring viremia carp virus (SVCV). The results revealed that, compared to immunocompetent zebra fish (rag1(+/+) ), rag1(-/-) acquired increased resistance to SVCV with age, correlating with elevated transcript levels of immune genes in skin/fins and lymphoid organs (head kidney and spleen). Gene sets corresponding to apoptotic functions, immune-related multigene families, and interferon-related genes were constitutively upregulated in uninfected adult rag1(-/-) zebra fish. Overexpression of activated CASPASE-3 in different tissues before and after infection with SVCV further confirmed increased apoptotic function in rag1(-/-) zebra fish. Concurrently, staining of different tissue samples with a pan-leukocyte antibody marker showed abundant leukocyte infiltrations in SVCV-infected rag1(-/-) fish, coinciding with increased transcript expression of genes related to NK-cells and macrophages, suggesting that these genes played a key role in the enhanced immune response of rag1(-/-) zebra fish to SVCV lethal infection. Overall, we present evidence that indicates that rag1(-/-) zebra fish acquire an antiviral alert state while they reach adulthood in the absence of adaptive immunity. This antiviral state was characterized by (i) a more rapid response to viral infection, which resulted in increased survival, (ii) the involvement of NK-cell- and macrophage-mediated transcript responses rather than B- and/or T-cell dependent cells, and (iii) enhanced apoptosis, described here for the first time, as well as the similar modulation of multigene family/interferon-related genes previously associated to fish that survived lethal viral infections. From this and other studies, it might

  11. Combination of the histone deacetylase inhibitor depsipeptide and 5-fluorouracil upregulates major histocompatibility complex class II and p21 genes and activates caspase-3/7 in human colon cancer HCT-116 cells

    PubMed Central

    Okada, Kouji; Hakata, Shuko; Terashima, Jun; Gamou, Toshie; Habano, Wataru; Ozawa, Shogo

    2016-01-01

    Epigenetic anticancer drugs such as histone deacetylase (HDAC) inhibitors have been combined with existing anticancer drugs for synergistic or additive effects. In the present study, we found that a very low concentration of depsipeptide, an HDAC inhibitor, potentiated the antitumor activity of 5-fluorouracil (5-FU) in a human colon cancer cell model using HCT-116, HT29, and SW48 cells via the inhibition of colony formation ability or cellular viability. Exposure to a combination of 5-FU (1.75 µM) and 1 nM depsipeptide for 24 and 48 h resulted in a 3- to 4-fold increase in activated caspase-3/7, while 5-FU alone failed to activate caspase-3/7. Microarray and subsequent gene ontology analyses revealed that compared to 5-FU or depsipeptide alone, the combination treatment of 5-FU and depsipeptide upregulated genes related to cell death and the apoptotic process consistent with the inhibition of colony formation and caspase-3/7 activation. These analyses indicated marked upregulation of antigen processing and presentation of peptide or polysaccharide antigen via major histocompatibility complex (MHC) class (GO:0002504) and MHC protein complex (GO:0042611). Compared with vehicle controls, the cells treated with the combination of 5-FU and depsipeptide showed marked induction (3- to 8.5-fold) of expression of MHC class II genes, but not of MHC class I genes. Furthermore, our global analysis of gene expression, which was focused on genes involved in the molecular regulation of MHC class II genes, showed enhancement of pro-apoptotic PCAF and CIITA after the combination of 5-FU and depsipeptide. These results may indicate a closer relationship between elevation of MHC class II expression and cellular apoptosis induced by the combination of depsipeptide and 5-FU. To the best of our knowledge, this is the first study to report that the combination of 5-FU and depsipeptide induces human colon cancer cell apoptosis in a concerted manner with the induction of MHC class II gene

  12. Chromatin remodelling and antisense-mediated up-regulation of the developmental switch gene eud-1 control predatory feeding plasticity

    PubMed Central

    Serobyan, Vahan; Xiao, Hua; Namdeo, Suryesh; Rödelsperger, Christian; Sieriebriennikov, Bogdan; Witte, Hanh; Röseler, Waltraud; Sommer, Ralf J.

    2016-01-01

    Phenotypic plasticity has been suggested to act through developmental switches, but little is known about associated molecular mechanisms. In the nematode Pristionchus pacificus, the sulfatase eud-1 was identified as part of a developmental switch controlling mouth-form plasticity governing a predatory versus bacteriovorous mouth-form decision. Here we show that mutations in the conserved histone-acetyltransferase Ppa-lsy-12 and the methyl-binding-protein Ppa-mbd-2 mimic the eud-1 phenotype, resulting in the absence of one mouth-form. Mutations in both genes cause histone modification defects and reduced eud-1 expression. Surprisingly, Ppa-lsy-12 mutants also result in the down-regulation of an antisense-eud-1 RNA. eud-1 and antisense-eud-1 are co-expressed and further experiments suggest that antisense-eud-1 acts through eud-1 itself. Indeed, overexpression of the antisense-eud-1 RNA increases the eud-1-sensitive mouth-form and extends eud-1 expression. In contrast, this effect is absent in eud-1 mutants indicating that antisense-eud-1 positively regulates eud-1. Thus, chromatin remodelling and antisense-mediated up-regulation of eud-1 control feeding plasticity in Pristionchus. PMID:27487725

  13. Hypoxia induces upregulation of the deoxyribonuclease I gene in the human pancreatic cancer cell line QGP-1.

    PubMed

    Kominato, Yoshihiko; Iida, Reiko; Nakajima, Tamiko; Tajima, Yutaka; Takagi, Rie; Makita, Chikako; Kishi, Koichiro; Ueki, Misuzu; Kawai, Yasuyuki; Yasuda, Toshihiro

    2007-11-01

    We have previously demonstrated that ischemia caused by acute myocardial infarction induces an abrupt increase of serum deoxyribonuclease I (DNase I) activity. In this study, we examined whether hypoxia can affect the levels of DNase I activity and/or its transcripts in vitro. We first exposed the human pancreatic cancer cell line QGP-1, which is the first documented DNase-I-producing cell line, to hypoxia (2% O2), and found that this induced a significant increase in both the activity and transcripts of DNase I. This response was mediated by increased transcription only from exon 1a of the two alternative transcription-initiating exons utilized simultaneously in the human DNase I gene (DNASE1); exposure of QGP-1 cells to hypoxia for 24 h resulted in a 15-fold increase of DNASE1 transcripts starting from exon 1a compared with the expression level under normoxic conditions. Promoter, electrophoretic mobility shift, and chromatin immunoprecipitation assays with QGP-1 cells exposed to hypoxia or normoxia showed that the region just upstream from exon 1a was involved in this response in a hypoxia-induced factor-1-independent, but at least in a Sp1 transcription factor-dependent manner possibly through enhanced binding of Sp1 protein to the promoter. These results indicate that DNASE1 expression is upregulated by hypoxia in the cells.

  14. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    SciTech Connect

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R. . E-mail: nerurkar@pbrc.hawaii.edu

    2006-02-20

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.

  15. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Chronic ethanol (EtOH) administration to experimental animals induces hepatic oxidative stress and up-regulates mitochondrial biogenesis. The mechanisms by which chronic EtOH up-regulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative ...

  16. Cellular responses and gene expression profile changes due to bleomycin-induced DNA damage in human fibroblasts in space

    PubMed Central

    Kidane, Yared; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Ramesh, Govindarajan; Rohde, Larry; Wu, Honglu

    2017-01-01

    Living organisms in space are constantly exposed to radiation, toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage is essential for assessing the radiation risk for astronauts and the mutation rate in microorganisms. In a study conducted on the International Space Station, confluent human fibroblasts in culture were treated with bleomycin for three hours in the true microgravity environment. The degree of DNA damage was quantified by immunofluorescence staining for γ-H2AX, which is manifested in three types of staining patterns. Although similar percentages of these types of patterns were found between flight and ground cells, there was a slight shift in the distribution of foci counts in the flown cells with countable numbers of γ-H2AX foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. We also performed a microarray analysis of gene expressions in response to bleomycin treatment. A qualitative comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. The microarray data was confirmed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly upregulated in both flight and ground cells after bleomycin treatment. Our results suggest that whether microgravity affects DNA damage response in space can be dependent on the cell type and cell growth condition. PMID:28248986

  17. Aspergillus fumigatus responds to natural killer (NK) cells with upregulation of stress related genes and inhibits the immunoregulatory function of NK cells

    PubMed Central

    Schneider, Andreas; Blatzer, Michael; Posch, Wilfried; Schubert, Ralf; Lass-Flörl, Cornelia; Schmidt, Stanislaw; Lehrnbecher, Thomas

    2016-01-01

    Natural Killer (NK) cells are active against Aspergillus fumigatus, which in turn is able to impair the host defense. Unfortunately, little is known on the mutual interaction of NK cells and A. fumigatus. We coincubated human NK cells with A. fumigatus hyphae and assessed the gene expression and protein concentration of selected molecules. We found that A. fumigatus up-regulates the gene expression of pro-inflammatory molecules in NK cells, but inhibited the release of these molecules resulting in intracellular accumulation and limited extracellular availability. A. fumigatus down-regulatedmRNA levels of perforin in NK cells, but increased its intra- and extracellular protein concentration. The gene expression of stress related molecules of A. fumigatus such as heat shock protein hsp90 was up-regulated by human NK cells. Our data characterize for the first time the immunosuppressive effect of A. fumigatus on NK cells and may help to develop new therapeutic antifungal strategies. PMID:27738337

  18. Immediate–Early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses

    PubMed Central

    Torres, Lilith; Tang, Qiyi

    2015-01-01

    Three crucial hurdles hinder studies on human cytomegalovirus (HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus–host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host (latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate–early (IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate–early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses. PMID:25501994

  19. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    PubMed Central

    Simpkins, Jessica A.; Rickel, Kirby E.; Madeo, Marianna; Ahlers, Bethany A.; Carlisle, Gabriel B.; Nelson, Heidi J.; Cardillo, Andrew L.; Weber, Emily A.; Vitiello, Peter F.; Pearce, David A.

    2016-01-01

    ABSTRACT Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling. PMID:27142334

  20. Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array.

    PubMed

    Yang, Shihui; Perna, Nicole T; Cooksey, Donald A; Okinaka, Yasushi; Lindow, Steven E; Ibekwe, A Mark; Keen, Noel T; Yang, Ching-Hong

    2004-09-01

    A green fluorescent protein-based in vivo expression technology leaf array was used to identify genes in Erwinia chrysanthemi 3937 that were specifically upregulated in plants compared with growth in a laboratory culture medium. Of 10,000 E. chrysanthemi 3937 clones, 61 were confirmed as plant upregulated. On the basis of sequence similarity, these were recognized with probable functions in metabolism (20%), information transfer (15%), regulation (11%), transport (11%), cell processes (11%), and transposases (2%); the function for the remainder (30%) is unknown. Upregulated genes included transcriptional regulators, iron uptake systems, chemotaxis components, transporters, stress response genes, and several already known or new putative virulence factors. Ten independent mutants were constructed by insertions in these plant-upregulated genes and flanking genes. Two different virulence assays, local leaf maceration and systemic invasion in African violet, were used to evaluate these mutants. Among these, mutants of a purM homolog from Escherichia coli (purM::Tn5), and hrpB, hrcJ, and a hrpD homologs from the Erwinia carotovorum hrpA operon (hrpB::Tn5, hrcJ::Tn5, and hrpD::Tn5) exhibited reduced abilities to produce local and systemic maceration of the plant host. Mutants of rhiT from E. chrysanthemi (rhiT::Tn5), and an eutR homolog from Salmonella typhimurium (eutR::TnS) showed decreased ability to cause systemic inva sion on African violet. However, compared with the wild-type E. chrysanthemi 3937, these mutants exhibited no significant differences in local leaf maceration. The pheno type of hrpB::Tn5, hrcC::Tn5, and hrpD::Tn5 mutants further confirmed our previous findings that hrp genes are crucial virulence determinants in E. chrysanthemi 3937.

  1. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat.

    PubMed

    Xue, Gang-Ping; Way, Heather M; Richardson, Terese; Drenth, Janneke; Joyce, Priya A; McIntyre, C Lynne

    2011-07-01

    NAC proteins are plant-specific transcription factors and enriched with members involved in plant response to drought stress. In this study, we analyzed the expression profiles of TaNAC69 in bread wheat using Affymetrix Wheat Genome Array datasets and quantitative RT-PCR. TaNAC69 expression was positively associated with wheat responses to both abiotic and biotic stresses and was closely correlated with a number of stress up-regulated genes. The functional analyses of TaNAC69 in transgenic wheat showed that TaNAC69 driven by a barley drought-inducible HvDhn4s promoter led to marked drought-inducible overexpression of TaNAC69 in the leaves and roots of transgenic lines. The HvDhn4s:TaNAC69 transgenic lines produced more shoot biomass under combined mild salt stress and water-limitation conditions, had longer root and more root biomass under polyethylene glycol-induced dehydration. Analysis of transgenic lines with constitutive overexpression of TaNAC69 showed the enhanced expression levels of several stress up-regulated genes. DNA-binding assays revealed that TaNAC69 and its rice homolog (ONAC131) were capable of binding to the promoter elements of three rice genes (chitinase, ZIM, and glyoxalase I) and an Arabidopsis glyoxalase I family gene, which are homologs of TaNAC69 up-regulated stress genes. These data suggest that TaNAC69 is involved in regulating stress up-regulated genes and wheat adaptation to drought stress.

  2. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    PubMed Central

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kelemen, Linda E.; Kellar, Mellissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F. A. G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Lotte; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vierkant, Robert A.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Hasmad, Hanis N.; Berchuck, Andrew; Iversen, Edwin S.; Schildkraut, Joellen M.; Ramus, Susan J.; Goode, Ellen L.; Monteiro, Alvaro N. A.; Gayther, Simon A.; Narod, Steven A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2015-01-01

    Background Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. Methods In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. Results The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). Conclusion These results, generated on a large cohort of women, revealed associations

  3. Identification of driving network of cellular differentiation from single sample time course gene expression data

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Wolanyk, Nathaniel; Ilker, Tunc; Gao, Shouguo; Wang, Xujing

    Methods developed based on bifurcation theory have demonstrated their potential in driving network identification for complex human diseases, including the work by Chen, et al. Recently bifurcation theory has been successfully applied to model cellular differentiation. However, there one often faces a technical challenge in driving network prediction: time course cellular differentiation study often only contains one sample at each time point, while driving network prediction typically require multiple samples at each time point to infer the variation and interaction structures of candidate genes for the driving network. In this study, we investigate several methods to identify both the critical time point and the driving network through examination of how each time point affects the autocorrelation and phase locking. We apply these methods to a high-throughput sequencing (RNA-Seq) dataset of 42 subsets of thymocytes and mature peripheral T cells at multiple time points during their differentiation (GSE48138 from GEO). We compare the predicted driving genes with known transcription regulators of cellular differentiation. We will discuss the advantages and limitations of our proposed methods, as well as potential further improvements of our methods.

  4. The low-density lipoprotein receptor gene family: a cellular Swiss army knife?

    PubMed

    Nykjaer, Anders; Willnow, Thomas E

    2002-06-01

    The low-density lipoprotein receptor gene family is an evolutionarily conserved group of cell-surface receptors produced by mammals and other organisms. Initially thought to be endocytic receptors that mediate the uptake of lipoproteins, recent findings have shown that these receptors have other roles in a range of cellular processes. Among other activities, members of this family act as signal transducers in neuronal migration processes, regulate synaptic plasticity or control vitamin homeostasis. Such multifunctionality is achieved by interaction with diverse cell-surface proteins including glycolipid-anchored receptors, G-protein-coupled receptors and ion channels. Here, we review the molecular interactions of this protein family with other cell-surface proteins that provide specificity and versatility - a versatility that may be reminiscent of a cellular Swiss army knife.

  5. Sunflower-seed oil, rapidly-degradable starch, and adiposity up-regulate leptin gene expression in lactating goats.

    PubMed

    Bonnet, M; Delavaud, C; Bernard, L; Rouel, J; Chilliard, Y

    2009-08-01

    We conducted experiments to evaluate the effects of lipid supplementation and the nature of starchy concentrate on the regulation of leptin synthesis in lactating goats. Multiparous goats in mid- to late lactation received diets based on different forages and containing plant oil or seeds rich in either 18:1c9, 18:2n-6 or 18:3n-3 corresponding to 3%-7% dry matter (DM) as lipid supplements, or diets based on concentrate as either rapidly or slowly degradable starch. The isoenergetic replacement of a part of the concentrate by either oleic sunflower-seed oil, formaldehyde-treated linseeds, or linseed oil did not modify leptinemia and the leptin mRNA concentration in adipose tissues, suggesting a lack of effect of 18:1c9, 18:3n-3, or their biohydrogenation products. Conversely, leptinemia and the leptin mRNA abundance were increased (by 20% and 140%, respectively, P<0.05) in goats fed sunflower-seed oil under a grassland hay-based diet but not a maize silage-based diet, at similar energy intakes and adiposity. Thus, 18:2n-6 per se may up-regulate leptin gene expression, but the effect could be blunted by other fatty acids formed during the ruminal digestion of sunflower-seed oil when combined with maize silage. Consumption of rapidly but not slowly degradable starch increased (by 17%, P<0.05) leptinemia. Moreover, during lactation, plasma leptin was positively correlated (P<0.05) to adiposity parameters and negatively correlated to fiber intake. The results suggest that leptinemia responds poorly to nutritional factors in lactating goats, thus highlighting the physiological need to sustain hypoleptinemia during lactation.

  6. Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway.

    PubMed

    Tossi, Vanesa; Amenta, Melina; Lamattina, Lorenzo; Cassia, Raúl

    2011-06-01

    The link between ultraviolet (UV)-B, nitric oxide (NO) and phenylpropanoid biosynthetic pathway (PPBP) was studied in maize and Arabidopsis. The transcription factor (TF) ZmP regulates PPBP in maize. A genetic approach using P-rr (ZmP+) and P-ww (ZmP⁻) maize lines demonstrate that: (1) NO protects P-rr leaves but not P-ww from UV-B-induced reactive oxygen species (ROS) and cell damage; (2) NO increases flavonoid and anthocyanin content and prevents chlorophyll loss in P-rr but not in P-ww and (3) the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) blocks the UV-B-induced expression of ZmP and their targets CHS and CHI suggesting that NO plays a key role in the UV-B-regulated PPBP. Involvement of endogenous NO was studied in Arabidopsis nitric oxide dioxygenase (NOD) plants that express a NO dioxygenase gene under the control of a dexamethasone (DEX)-inducible promoter. Expression of HY5 and MYB12, TFs involved in PPBP regulation, was induced by UV-B, reduced by DEX in NOD plants and recovered by subsequent NO treatment. C4H regulates synapate esters synthesis and is UV-B-induced in a NO-independent pathway. Data indicate that UV-B perception increases NO concentration, which protects plant against UV-B by two ways: (1) scavenging ROS; and (2) up-regulating the expression of HY5, MYB12 and ZmP, resulting in the PPBP activation.

  7. Hypersalinity and hydrogen peroxide upregulation of gene expression of antioxidant enzymes in Ulva fasciata against oxidative stress.

    PubMed

    Sung, Ming-Shiuan; Hsu, Yi-Ting; Hsu, Yuan-Ting; Wu, Tzure-Meng; Lee, Tse-Min

    2009-01-01

    The modulation of manganese superoxide dismutase (MnSOD), FeSOD, ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT) gene expression and activities and antioxidants in Ulva fasciata against hypersalinity (90 per thousand)-induced oxidative stress was studied. Increases in H(2)O(2) contents but no changes in lipid peroxidation and protein carbonyl group contents suggest oxidative damage did not occur in 90 per thousand condition. Antioxidants were consumed for reactive oxygen species (ROS) scavenging indicated by decreased ascorbate and glutathione contents by 90 per thousand. Antioxidant enzymes were differently expressed by 90 per thousand for ROS removal. MnSOD activity and transcript increased 1 h after 90 per thousand treatment with a peak at hour 3, while FeSOD activity increased fast to the plateau after 1 h and its transcript increased after 3 h. APX activity increased 1 h after 90 per thousand but its transcript rose till 3 h, and GR activity increased after 1 h with a peak at hour 3 but its transcript increased till 3 h. CAT activity and transcript increased after 12 h. Enzyme activity is transcriptionally regulated by 90 per thousand except a fast increase in FeSOD, APX, and GR activities during 1 h. APX is responsible for early H(2)O(2) decomposition while CAT scavenges H(2)O(2) in the later period. The inhibition of 90 per thousand induced increase of H(2)O(2) content and FeSOD activity and transcript by treatment of a H(2)O(2) scavenger, dimethylthiourea, and the increase of FeSOD transcript of 30 per thousand grown thalli by H(2)O(2) treatment suggest that H(2)O(2) mediates the upregulation of FeSOD by hypersalinity while other enzymes is modulated by factors other than H(2)O(2).

  8. Macrophages in gene therapy: cellular delivery vehicles and in vivo targets.

    PubMed

    Burke, B; Sumner, S; Maitland, N; Lewis, C E

    2002-09-01

    The appearance and activation of macrophages are thought to be rapid events in the development of many pathological lesions, including malignant tumors, atherosclerotic plaques, and arthritic joints. This has prompted recent attempts to use macrophages as novel cellular vehicles for gene therapy, in which macrophages are genetically modified ex vivo and then reintroduced into the body with the hope that a proportion will then home to the diseased site. Here, we critically review the efficacy of various gene transfer methods (viral, bacterial, protozoan, and various chemical and physical methods) in transfecting macrophages in vitro, and the results obtained when transfected macrophages are used as gene delivery vehicles. Finally, we discuss the use of various viral and nonviral methods to transfer genes to macrophages in vivo. As will be seen, definitive evidence for the use of macrophages as gene transfer vehicles has yet to be provided and awaits detailed trafficking studies in vivo. Moreover, although methods for transfecting macrophages have improved considerably in efficiency in recent years, targeting of gene transfer specifically to macrophages in vivo remains a problem. However, possible solutions to this include placing transgenes under the control of macrophage-specific promoters to limit expression to macrophages or stably transfecting CD34(+) precursors of monocytes/macrophages and then differentiating these cells into monocytes/macrophages ex vivo. The latter approach could conceivably lead to the bone marrow precursor cells of patients with inherited genetic disorders being permanently fortified or even replaced with genetically modified cells.

  9. Human p38{delta} MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14

    SciTech Connect

    Ozawa, Shigeyuki; Ito, Shin; Kato, Yasumasa; Kubota, Eiro; Hata, Ryu-Ichiro

    2010-06-11

    The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38{alpha}, {beta}, {gamma} and {delta}. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38{alpha} and {beta}, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38{gamma} and/or {delta} was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38{delta} attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38{delta} with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38{delta} isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38{alpha} and/or {beta} isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.

  10. Induction of Cellular Immune Response by DNA Vaccine Coexpressing E. acervulina 3-1E Gene and Mature CHIl-15 Gene

    PubMed Central

    Ma, Dexing; Ma, Chunli; Gao, Mingyang; Li, Guangxing; Niu, Ze; Huang, Xiaodan

    2012-01-01

    We previously reported that the chimeric DNA vaccine pcDNA-3-1E-linker-mChIL-15, fused through linking Eimeria acervulina 3-1E encoding gene and mature chicken IL-15 (mChIL-15) gene with four flexible amino acid SPGS, could significantly offer protection against homologous challenge. In the present study, the induction of cellular immune response induced by the chimeric DNA vaccine pcDNA-3-1E-linker-mChIL-15 was investigated. Spleen lymphocyte subpopulations were characterized by flow cytometric analysis. The spleen lymphocyte proliferation assays were measured by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetrazolium bromide (MTT) method. The mRNA profiles of ChIL-2 and ChIFN-γ in spleen were characterized by means of real-time PCR. Chickens immunized with pcDNA-3-1E-linker-mChIL-15 exhibited significant upregulated level of ChIL-2 and ChIFN-γ transcripts in spleen following two immunizations compared with chickens in other groups (P < 0.01). In comparison with pcDNA3.1-immunized and control groups, lymphocyte proliferation, percentage of CD8α+ cell, and levels of ChIL-2 and ChIFN-γ transcripts in the group immunized with pcDNA-3-1E-linker-mChIL-15 were significantly increased on day 6 following challenge (P < 0.05, P < 0.01, and P < 0.01, resp.). Our data suggested that the fusion antigen 3-1E-linker-mChIL-15 could be a potential candidate for E. acervulina vaccine development. PMID:22754694

  11. Up-regulation of neurotrophin-related gene expression in mouse hippocampus following low-level toluene exposure.

    PubMed

    Win-Shwe, Tin-Tin; Tsukahara, Shinji; Yamamoto, Shoji; Fukushima, Atsushi; Kunugita, Naoki; Arashidani, Keiichi; Fujimaki, Hidekazu

    2010-01-01

    To investigate the role of strain differences in sensitivity to low-level toluene exposure on neurotrophins and their receptor levels in the mouse hippocampus, 8-week-old male C3H/HeN, BALB/c and C57BL/10 mice were exposed to 0, 5, 50, or 500 ppm toluene for 6h per day, 5 days per week for 6 weeks in an inhalation chamber. We examined the expressions of neurotrophin-related genes and receptors in the mouse hippocampus using real-time reverse transcription polymerase chain reaction (RT-PCR). The expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tyrosine kinase (Trk) A, and TrkB mRNAs in the C3H/HeN mice hippocampus was significantly higher in the mice exposed to 500 ppm toluene. Among the three strains of mice, the C3H/HeN mice seemed to be sensitive to toluene exposure. To examine the combined effect of toluene exposure and allergic challenge, the C3H/HeN mice stimulated with ovalbumin were exposed to toluene. The allergy group of C3H/HeN mice showed significantly elevated level of NGF mRNA in the hippocampus following exposure to 50 ppm toluene. Then, we also examined the expression of transcription factor, dopamine markers and oxidative stress marker in the hippocampus of sensitive strain C3H/HeN mice and found that the expression of CREB1 mRNA was significantly increased at 50 ppm toluene. In immunohistochemical analysis, the density of the NGF-immunoreactive signal was significantly stronger in the hippocampal CA3 region of the C3H/HeN mice exposed to 500 ppm toluene in non-allergy group and 50 ppm in allergy group. Our results indicate that low-level toluene exposure may induce up-regulation of neurotrophin-related gene expression in the mouse hippocampus depending on the mouse strain and an allergic stimulation in sensitive strain may decrease the threshold for sensitivity at lower exposure level.

  12. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes

    SciTech Connect

    Wang, Jie; Yan, Cheng-Hui; Li, Yang; Xu, Kai; Tian, Xiao-Xiang; Peng, Cheng-Fei; Tao, Jie; Sun, Ming-Yu; Han, Ya-Ling

    2013-05-01

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. The cellular repressor of E1A-stimulated genes (CREG) has been shown to play an important role in phenotypic modulation of VSMCs. However, the mechanism regulating CREG upstream signaling remains unclear. MicroRNAs (miRNAs) have recently been found to play a critical role in cell differentiation via target-gene regulation. This study aimed to identify a miRNA that binds directly to CREG, and may thus be involved in CREG-mediated VSMC phenotypic modulation. Computational analysis indicated that miR-31 bound to the CREG mRNA 3′ untranslated region (3′-UTR). miR-31 was upregulated in quiescent differentiated VSMCs and downregulated in proliferative cells stimulated by platelet-derived growth factor and serum starvation, demonstrating a negative relationship with the VSMC differentiation marker genes, smooth muscle α-actin, calponin and CREG. Using gain-of-function and loss-of-function approaches, CREG and VSMC differentiation marker gene expression levels were shown to be suppressed by a miR-31 mimic, but increased by a miR-31 inhibitor at both protein and mRNA levels. Notably, miR-31 overexpression or inhibition affected luciferase expression driven by the CREG 3′-UTR containing the miR-31 binding site. Furthermore, miR-31-mediated VSMC phenotypic modulation was inhibited in CREG-knockdown human VSMCs. We also determined miR-31 levels in the serum of patients with coronary artery disease (CAD), with or without in stent restenosis and in healthy controls. miR-31 levels were higher in the serum of CAD patients with restenosis compared to CAD patients without restenosis and in healthy controls. In summary, these data demonstrate that miR-31 not only directly binds to its target gene CREG and modulates the VSMC phenotype through this interaction, but also can be an important biomarker in diseases involving VSMC

  13. Modified poly(lactic-co-glycolic acid) nanoparticles for enhanced cellular uptake and gene editing in the lung.

    PubMed

    Fields, Rachel J; Quijano, Elias; McNeer, Nicole Ali; Caputo, Christina; Bahal, Raman; Anandalingam, Kavi; Egan, Marie E; Glazer, Peter M; Saltzman, W Mark

    2015-02-18

    Surface-modified poly(lactic-co-glycolic acid) (PLGA)/poly(β-aminoester)(PBAE)nanoparticles (NPs) have shown great promise in gene delivery. In this work, the pulmonary cellular uptake of these NPs is evaluated and surface-modified PLGA/PBAE NPs are shown to achieve higher cellular association and gene editing than traditional NPs composed of PLGA or PLGA/PBAE blends alone.

  14. Generally detected genes in comparative transcriptomics in bivalves: toward the identification of molecular markers of cellular stress response.

    PubMed

    Miao, Jingjing; Chi, Luping; Pan, Luqing; Song, Ying

    2015-01-01

    The specificity and representativeness of protein-coding genes identified by transcriptomics as biomarkers for environmental toxicological stress is crucial. We extracted the differential gene expression profile data from 49 published comparative transcriptomic studies of bivalves from January 2004 till November 2014 performed in 15 different bivalve species. Among the studies, 77 protein-coding genes were frequently detected when we use threefold of the average detection frequency as cut-off. Cellular organization and communication, protein and energy metabolism, stress response are the main functional classes of these proteins. We consider if these protein-coding genes represent common cellular stress responses of bivalves.

  15. Zebra Fish Lacking Adaptive Immunity Acquire an Antiviral Alert State Characterized by Upregulated Gene Expression of Apoptosis, Multigene Families, and Interferon-Related Genes

    PubMed Central

    García-Valtanen, Pablo; Martínez-López, Alicia; López-Muñoz, Azucena; Bello-Perez, Melissa; Medina-Gali, Regla M.; Ortega-Villaizán, María del Mar; Varela, Monica; Figueras, Antonio; Mulero, Víctoriano; Novoa, Beatriz; Estepa, Amparo; Coll, Julio

    2017-01-01

    To investigate fish innate immunity, we have conducted organ and cell immune-related transcriptomic as well as immunohistologic analysis in mutant zebra fish (Danio rerio) lacking adaptive immunity (rag1−/−) at different developmental stages (egg, larvae, and adult), before and after infection with spring viremia carp virus (SVCV). The results revealed that, compared to immunocompetent zebra fish (rag1+/+), rag1−/− acquired increased resistance to SVCV with age, correlating with elevated transcript levels of immune genes in skin/fins and lymphoid organs (head kidney and spleen). Gene sets corresponding to apoptotic functions, immune-related multigene families, and interferon-related genes were constitutively upregulated in uninfected adult rag1−/− zebra fish. Overexpression of activated CASPASE-3 in different tissues before and after infection with SVCV further confirmed increased apoptotic function in rag1−/− zebra fish. Concurrently, staining of different tissue samples with a pan-leukocyte antibody marker showed abundant leukocyte infiltrations in SVCV-infected rag1−/− fish, coinciding with increased transcript expression of genes related to NK-cells and macrophages, suggesting that these genes played a key role in the enhanced immune response of rag1−/− zebra fish to SVCV lethal infection. Overall, we present evidence that indicates that rag1−/− zebra fish acquire an antiviral alert state while they reach adulthood in the absence of adaptive immunity. This antiviral state was characterized by (i) a more rapid response to viral infection, which resulted in increased survival, (ii) the involvement of NK-cell- and macrophage-mediated transcript responses rather than B- and/or T-cell dependent cells, and (iii) enhanced apoptosis, described here for the first time, as well as the similar modulation of multigene family/interferon-related genes previously associated to fish that survived lethal viral infections. From this and other studies

  16. Cellular retinol binding protein 1 could be a tumor suppressor gene in cervical cancer

    PubMed Central

    Mendoza-Rodriguez, Mónica; Arreola, Hugo; Valdivia, Alejandra; Peralta, Raúl; Serna, Humberto; Villegas, Vanessa; Romero, Pablo; Alvarado-Hernández, Beatriz; Paniagua, Lucero; Marrero-Rodríguez, Daniel; Meraz, Marco A; Salcedo, Mauricio

    2013-01-01

    Aims: Cervical Cancer (CC) is one of the most important health problems in women. It frequently presents genetic changes at chromosome region 3q21. This region contains the Cellular Retinol Binding Protein 1 gene (CRBP1) which has been implicated as an important element in the development of other types of cancer. The main goal of the present work was to determine the molecular alterations of CRBP1 and its relationship to CC. Methods: To determine the molecular alterations of CRBP1 gene in CC; twenty-six CC and twenty-six healthy cervix samples were evaluated for: 1) Copy number gain by real-time PCR analysis, 2) expression levels by an immunohistochemistry assay on tissue microarray, and 3) the methylation status of the CRBP1 promoter region. Results: The increase in CRBP1 copy number was observed in 10 out of the 26 CC samples analyzed, while healthy cervices samples showed no changes in the copy number. In addition, there was a lack of expression of the CRBP1 gene in an important number of the CC samples (17/26), and the CRBP1 gene promoter was methylated in 15/26 of the CC samples. Interestingly, there was a significant association between the lack of expression of the CRBP1 gene and its methylation status. Conclusions: The data indicates that, both activating and inactivating changes in the CRBP1 gene could be significant events in the development and progression of CC, and the lack of expression of the CRBP1 protein could be related with to the development of CC. We believe that there is enough evidence to consider to CRBP1 gene as a tumor suppressor gene for CC. PMID:24040446

  17. Modified pectin-based carrier for gene delivery: Cellular barriers in gene delivery course

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of biodegradable and biocompatible polysaccharides as DNA carriers has high potential for gene therapy applications. Pectin is a structural plant polysaccharide heterogeneous with respect to its chemical structure. It contains branches rich in galactose residues which serve as potential liga...

  18. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls

    NASA Astrophysics Data System (ADS)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly ( P < 0.05) higher during the thermal stress. Pearson correlation coefficient analysis revealed that the expression of ATPase Β1, ATPase B2, and ATPase B3 is highly correlated ( P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

  19. Lentiviral Gene Therapy Using Cellular Promoters Cures Type 1 Gaucher Disease in Mice

    PubMed Central

    Dahl, Maria; Doyle, Alexander; Olsson, Karin; Månsson, Jan-Eric; Marques, André R A; Mirzaian, Mina; Aerts, Johannes M; Ehinger, Mats; Rothe, Michael; Modlich, Ute; Schambach, Axel; Karlsson, Stefan

    2015-01-01

    Gaucher disease is caused by an inherited deficiency of the enzyme glucosylceramidase. Due to the lack of a fully functional enzyme, there is progressive build-up of the lipid component glucosylceramide. Insufficient glucosylceramidase activity results in hepatosplenomegaly, cytopenias, and bone disease in patients. Gene therapy represents a future therapeutic option for patients unresponsive to enzyme replacement therapy and lacking a suitable bone marrow donor. By proof-of-principle experiments, we have previously demonstrated a reversal of symptoms in a murine disease model of type 1 Gaucher disease, using gammaretroviral vectors harboring strong viral promoters to drive glucosidase β-acid (GBA) gene expression. To investigate whether safer vectors can correct the enzyme deficiency, we utilized self-inactivating lentiviral vectors (SIN LVs) with the GBA gene under the control of human phosphoglycerate kinase (PGK) and CD68 promoter, respectively. Here, we report prevention of, as well as reversal of, manifest disease symptoms after lentiviral gene transfer. Glucosylceramidase activity above levels required for clearance of glucosylceramide from tissues resulted in reversal of splenomegaly, reduced Gaucher cell infiltration and a restoration of hematological parameters. These findings support the use of SIN-LVs with cellular promoters in future clinical gene therapy protocols for type 1 Gaucher disease. PMID:25655314

  20. Cellular Stress Response Gene Expression During Upper and Lower Body High Intensity Exercises

    PubMed Central

    Kochanowicz, Andrzej; Sawczyn, Stanisław; Niespodziński, Bartłomiej; Mieszkowski, Jan; Kochanowicz, Kazimierz

    2017-01-01

    Objectives The aim was to compare the effect of upper and lower body high-intensity exercise on chosen genes expression in athletes and non-athletes. Method Fourteen elite male artistic gymnasts (EAG) aged 20.6 ± 3.3 years and 14 physically active men (PAM) aged 19.9 ± 1.0 years performed lower and upper body 30 s Wingate Tests. Blood samples were collected before, 5 and 30 minutes after each effort to assess gene expression via PCR. Results Significantly higher mechanical parameters after lower body exercise was observed in both groups, for relative power (8.7 ± 1.2 W/kg in gymnasts, 7.2 ± 1.2 W/kg in controls, p = 0.01) and mean power (6.7 ± 0.7 W/kg in gymnasts, 5.4 ± 0.8 W/kg in controls, p = 0.01). No differences in lower versus upper body gene expression were detected for all tested genes as well as between gymnasts and physical active man. For IL-6 m-RNA time-dependent effect was observed. Conclusions Because of no significant differences in expression of genes associated with cellular stress response the similar adaptive effect to exercise may be obtained so by lower and upper body exercise. PMID:28141870

  1. Lentiviral gene therapy using cellular promoters cures type 1 Gaucher disease in mice.

    PubMed

    Dahl, Maria; Doyle, Alexander; Olsson, Karin; Månsson, Jan-Eric; Marques, André R A; Mirzaian, Mina; Aerts, Johannes M; Ehinger, Mats; Rothe, Michael; Modlich, Ute; Schambach, Axel; Karlsson, Stefan

    2015-05-01

    Gaucher disease is caused by an inherited deficiency of the enzyme glucosylceramidase. Due to the lack of a fully functional enzyme, there is progressive build-up of the lipid component glucosylceramide. Insufficient glucosylceramidase activity results in hepatosplenomegaly, cytopenias, and bone disease in patients. Gene therapy represents a future therapeutic option for patients unresponsive to enzyme replacement therapy and lacking a suitable bone marrow donor. By proof-of-principle experiments, we have previously demonstrated a reversal of symptoms in a murine disease model of type 1 Gaucher disease, using gammaretroviral vectors harboring strong viral promoters to drive glucosidase β-acid (GBA) gene expression. To investigate whether safer vectors can correct the enzyme deficiency, we utilized self-inactivating lentiviral vectors (SIN LVs) with the GBA gene under the control of human phosphoglycerate kinase (PGK) and CD68 promoter, respectively. Here, we report prevention of, as well as reversal of, manifest disease symptoms after lentiviral gene transfer. Glucosylceramidase activity above levels required for clearance of glucosylceramide from tissues resulted in reversal of splenomegaly, reduced Gaucher cell infiltration and a restoration of hematological parameters. These findings support the use of SIN-LVs with cellular promoters in future clinical gene therapy protocols for type 1 Gaucher disease.

  2. Lack of Clinical Manifestations in Asymptomatic Dengue Infection Is Attributed to Broad Down-Regulation and Selective Up-Regulation of Host Defence Response Genes

    PubMed Central

    Yeo, Adeline S. L.; Azhar, Nur Atiqah; Yeow, Wanyi; Talbot, C. Conover; Khan, Mohammad Asif; Shankar, Esaki M.; Rathakrishnan, Anusyah; Azizan, Azliyati; Wang, Seok Mui; Lee, Siew Kim; Fong, Mun Yik; Manikam, Rishya; Sekaran, Shamala Devi

    2014-01-01

    Objectives Dengue represents one of the most serious life-threatening vector-borne infectious diseases that afflicts approximately 50 million people across the globe annually. Whilst symptomatic infections are frequently reported, asymptomatic dengue remains largely unnoticed. Therefore, we sought to investigate the immune correlates conferring protection to individuals that remain clinically asymptomatic. Methods We determined the levels of neutralizing antibodies (nAbs) and gene expression profiles of host immune factors in individuals with asymptomatic infections, and whose cognate household members showed symptoms consistent to clinical dengue infection. Results We observed broad down-regulation of host defense response (innate, adaptive and matrix metalloprotease) genes in asymptomatic individuals as against symptomatic patients, with selective up-regulation of distinct genes that have been associated with protection. Selected down-regulated genes include: TNF α (TNF), IL8, C1S, factor B (CFB), IL2, IL3, IL4, IL5, IL8, IL9, IL10 and IL13, CD80, CD28, and IL18, MMP8, MMP10, MMP12, MMP15, MMP16, and MMP24. Selected up-regulated genes include: RANTES (CCL5), MIP-1α (CCL3L1/CCL3L3), MIP-1β (CCL4L1), TGFβ (TGFB), and TIMP1. Conclusion Our findings highlight the potential association of certain host genes conferring protection against clinical dengue. These data are valuable to better explore the mysteries behind the hitherto poorly understood immunopathogenesis of subclinical dengue infection. PMID:24727912

  3. Production of IL-1β and Inflammasome with Up-Regulated Expressions of NOD-Like Receptor Related Genes in Toxoplasma gondii-Infected THP-1 Macrophages

    PubMed Central

    Chu, Jia-Qi; Shi, Ge; Fan, Yi-Ming; Choi, In-Wook; Cha, Guang-Ho; Zhou, Yu; Lee, Young-Ha; Quan, Juan-Hua

    2016-01-01

    Toxoplasma gondii is an obligate intracellular parasite that stimulates production of high levels of proinflammatory cytokines, which are important for innate immunity. NLRs, i.e., nucleotide-binding oligomerization domain (NOD)-like receptors, play a crucial role as innate immune sensors and form multiprotein complexes called inflammasomes, which mediate caspase-1-dependent processing of pro-IL-1β. To elucidate the role of inflammasome components in T. gondii-infected THP-1 macrophages, we examined inflammasome-related gene expression and mechanisms of inflammasome-regulated cytokine IL-1β secretion. The results revealed a significant upregulation of IL-1β after T. gondii infection. T. gondii infection also upregulated the expression of inflammasome sensors, including NLRP1, NLRP3, NLRC4, NLRP6, NLRP8, NLRP13, AIM2, and NAIP, in a time-dependent manner. The infection also upregulated inflammasome adaptor protein ASC and caspase-1 mRNA levels. From this study, we newly found that T. gondii infection regulates NLRC4, NLRP6, NLRP8, NLRP13, AIM2, and neuronal apoptosis inhibitor protein (NAIP) gene expressions in THP-1 macrophages and that the role of the inflammasome-related genes may be critical for mediating the innate immune responses to T. gondii infection. PMID:28095655

  4. EP300-ZNF384 fusion gene product up-regulates GATA3 gene expression and induces hematopoietic stem cell gene expression signature in B-cell precursor acute lymphoblastic leukemia cells.

    PubMed

    Yaguchi, Akinori; Ishibashi, Takeshi; Terada, Kazuki; Ueno-Yokohata, Hitomi; Saito, Yuya; Fujimura, Junya; Shimizu, Toshiaki; Ohki, Kentaro; Manabe, Atsushi; Kiyokawa, Nobutaka

    2017-04-04

    ZNF384-related fusion genes are associated with a distinct subgroup of B-cell precursor acute lymphoblastic leukemias in childhood, with a frequency of approximately 3-4%. We previously identified a novel EP300-ZNF384 fusion gene. Patients with the ZNF384-related fusion gene exhibit a hematopoietic stem cell (HSC) gene expression signature and characteristic immunophenotype with negative or low expression of CD10 and aberrant expression of myeloid antigens, such as CD33 and CD13. However, the molecular basis of this pathogenesis remains completely unknown. In the present study, we examined the biological effects of EP300-ZNF384 expression induced by retrovirus-mediated gene transduction in an REH B-cell precursor acute lymphoblastic leukemia cell line, and observed the acquisition of the HSC gene expression signature and an up-regulation of GATA3 gene expression, as assessed by microarray analysis. In contrast, the gene expression profile induced by wild-type ZNF384 in REH cells was significantly different from that by EP300-ZNF384 expression. Together with the results of reporter assays, which revealed the enhancement of GATA3-promoter activity by EP300-ZNF384 expression, these findings suggest that EP300-ZNF384 mediates GATA3 gene expression and may be involved in the acquisition of the HSC gene expression signature and characteristic immunophenotype in B-cell precursor acute lymphoblastic leukemia cells.

  5. Implication of p53-dependent cellular senescence related gene, TARSH in tumor suppression

    SciTech Connect

    Wakoh, Takeshi; Uekawa, Natsuko; Terauchi, Kunihiko; Sugimoto, Masataka; Ishigami, Akihito; Shimada, Jun-ichi; Maruyama, Mitsuo

    2009-03-20

    A novel target of NESH-SH3 (TARSH) was identified as a cellular senescence related gene in mouse embryonic fibroblasts (MEFs) replicative senescence, the expression of which has been suppressed in primary clinical lung cancer specimens. However, the molecular mechanism underlying the regulation of TARSH involved in pulmonary tumorigenesis remains unclear. Here we demonstrate that the reduction of TARSH gene expression by short hairpin RNA (shRNA) system robustly inhibited the MEFs proliferation with increase in senescence-associated {beta}-galactosidase (SA-{beta}-gal) activity. Using p53{sup -/-} MEFs, we further suggest that this growth arrest by loss of TARSH is evoked by p53-dependent p21{sup Cip1} accumulation. Moreover, we also reveal that TARSH reduction induces multicentrosome in MEFs, which is linked in chromosome instability and tumor development. These results suggest that TARSH plays an important role in proliferation of replicative senescence and may serve as a trigger of tumor development.

  6. Genetic screening of new genes responsible for cellular adaptation to hypoxia using a genome-wide shRNA library.

    PubMed

    Yoshino, Seiko; Hara, Toshiro; Weng, Jane S; Takahashi, Yuka; Seiki, Motoharu; Sakamoto, Takeharu

    2012-01-01

    Oxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited. To identify new genes involved in the response to hypoxic stress, we have performed a genome-wide gene knockdown analysis in human lung carcinoma PC8 cells using an shRNA library carried by a lentiviral vector. The knockdown analysis was performed under both normoxic and hypoxic conditions to identify shRNA sequences enriched or lost in the resulting selected cell populations. Consequently, we identified 56 candidate genes that might contribute to the cellular response to hypoxia. Subsequent individual knockdown of each gene demonstrated that 13 of these have a significant effect upon oxygen-sensitive cell growth. The identification of BCL2L1, which encodes a Bcl-2 family protein that plays a role in cell survival by preventing apoptosis, validates the successful design of our screen. The other selected genes have not previously been directly implicated in the cellular response to hypoxia. Interestingly, hypoxia did not directly enhance the expression of any of the identified genes, suggesting that we have identified a new class of genes that have been missed by conventional gene expression analyses to identify hypoxia response genes. Thus, our genetic screening method using a genome-wide shRNA library and the newly-identified genes represent useful tools to analyze the cellular systems that respond to hypoxic stress.

  7. IL-4 Up-Regulates MiR-21 and the MiRNAs Hosted in the CLCN5 Gene in Chronic Lymphocytic Leukemia

    PubMed Central

    Sebastián-Ruiz, Silvia; García-Serna, Azahara-María; Gómez-Espuch, Joaquín; Moraleda, José-María; Minguela, Alfredo; García-Alonso, Ana-María; Parrado, Antonio

    2015-01-01

    Interleukin 4 (IL-4) induces B-cell differentiation and survival of chronic lymphocytic leukemia (CLL) cells. MicroRNAs (miRNAs) regulate mRNA and protein expression, and several miRNAs, deregulated in CLL, might play roles as oncogenes or tumor suppressors. We have studied the miRNA profile of CLL, and its response to IL-4, by oligonucleotide microarrays, resulting in the detection of a set of 129 mature miRNAs consistently expressed in CLL, which included 41 differentially expressed compared to normal B cells (NBC), and 6 significantly underexpressed in ZAP-70 positive patients. IL-4 stimulation brought about up-regulation of the 5p and 3p mature variants of the miR-21 gene, which maps immediately downstream to the VMP1 gene, and of the mature forms generated from the miR-362 (3p and 5p), miR-500a (3p), miR-502 (3p), and miR-532 (3p and 5p) genes, which map within the third intron of the CLCN5 gene. Both genes are in turn regulated by IL-4, suggesting that these miRNAs were regulated by IL-4 as passengers from their carrier genes. Their levels of up-regulation by IL-4 significantly correlated with cytoprotection. MiR-21 has been reported to be leukemogenic, associated to bad prognosis in CLL, and the miRNA more frequently overexpressed in human cancer. Up-regulation by IL-4 of miR-21 and the miRNAs hosted in the CLCN5 locus may contribute to evasion of apoptosis of CLL cells. These findings indicate that the IL-4 pathway and the miRNAs induced by IL-4 are promising targets for the development of novel therapies in CLL. PMID:25909590

  8. Identification of Cellular Genes Targeted by KSHV-Encoded MicroRNAs

    PubMed Central

    Samols, Mark A; Skalsky, Rebecca L; Maldonado, Ann M; Riva, Alberto; Lopez, M. Cecilia; Baker, Henry V; Renne, Rolf

    2007-01-01

    MicroRNAs (miRNAs) are 19 to 23 nucleotide–long RNAs that post-transcriptionally regulate gene expression. Human cells express several hundred miRNAs which regulate important biological pathways such as development, proliferation, and apoptosis. Recently, 12 miRNA genes have been identified within the genome of Kaposi sarcoma–associated herpesvirus; however, their functions are still unknown. To identify host cellular genes that may be targeted by these novel viral regulators, we performed gene expression profiling in cells stably expressing KSHV-encoded miRNAs. Data analysis revealed a set of 81 genes whose expression was significantly changed in the presence of miRNAs. While the majority of changes were below 2-fold, eight genes were down-regulated between 4- and 20-fold. We confirmed miRNA-dependent regulation for three of these genes and found that protein levels of thrombospondin 1 (THBS1) were decreased >10-fold. THBS1 has previously been reported to be down-regulated in Kaposi sarcoma lesions and has known activity as a strong tumor suppressor and anti-angiogenic factor, exerting its anti-angiogenic effect in part by activating the latent form of TGF-β. We show that reduced THBS1 expression in the presence of viral miRNAs translates into decreased TGF-β activity. These data suggest that KSHV-encoded miRNAs may contribute directly to pathogenesis by down-regulation of THBS1, a major regulator of cell adhesion, migration, and angiogenesis. PMID:17500590

  9. env Gene of Chicken RNA Tumor Viruses: Extent of Conservation in Cellular and Viral Genomes

    PubMed Central

    Fujita, Donald J.; Tal, Jacov; Varmus, Harold E.; Bishop, J. Michael

    1978-01-01

    The env gene of avian sarcoma-leukosis viruses codes for envelope glycoproteins that determine viral host range, antigenic specificity, and interference patterns. We used molecular hybridization to analyze the natural distribution and possible origins of the nucleotide sequences that encode env; our work exploited the availability of radioactive DNA (cDNAgp) complementary to most or all of env. env sequences were detectable in the DNAs of chickens which synthesized an env gene product (chick helper factor positive) encoded by an endogenous viral gene and also in the DNAs of chickens which synthesized little or no env gene product (chick helper factor negative). env sequences were not detectable in DNAs from Japanese quail, ring-necked pheasant, golden pheasant, duck, squab, salmon sperm, or calf thymus. The detection of sequences closely related to viral env only in chicken DNA contrasts sharply with the demonstration that the transforming gene (src) of avian sarcoma viruses has readily detectable homologues in the DNAs of all avian species tested [D. Stehelin, H. E. Varmus, J. M. Bishop, and P. K. Vogt, Nature (London) 260: 170-173, 1976] and in the DNAs of other vertebrates (D. Spector, personal communication). Thermal denaturation studies on duplexes formed between cDNAgp and chicken DNA and also between cDNAgp and RNAs of subgroup A to E viruses derived from chickens indicated that these duplexes were well matched. In contrast, cDNAgp did not form stable hybrids with RNAs of viruses which were isolated from ring-necked and golden pheasants. We conclude that substantial portions of nucleotide sequences within the env genes of viruses of subgroups A to E are closely related and that these genes probably have a common, perhaps cellular, evolutionary origin. PMID:212576

  10. Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

    PubMed Central

    2011-01-01

    Background While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity. Findings Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene. Conclusions The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of cis-regulatory elements. PMID:21859495

  11. p53 Protein-mediated Up-regulation of MAP Kinase Phosphatase 3 (MKP-3) Contributes to the Establishment of the Cellular Senescent Phenotype through Dephosphorylation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2)*

    PubMed Central

    Zhang, Hui; Chi, Yuan; Gao, Kun; Zhang, Xiling; Yao, Jian

    2015-01-01

    Growth arrest is one of the essential features of cellular senescence. At present, the precise mechanisms responsible for the establishment of the senescence-associated arrested phenotype are still incompletely understood. Given that ERK1/2 is one of the major kinases controlling cell growth and proliferation, we examined the possible implication of ERK1/2. Exposure of normal rat epithelial cells to etoposide caused cellular senescence, as manifested by enlarged cell size, a flattened cell body, reduced cell proliferation, enhanced β-galactosidase activity, and elevated p53 and p21. Senescent cells displayed a blunted response to growth factor-induced cell proliferation, which was preceded by impaired ERK1/2 activation. Further analysis revealed that senescent cells expressed a significantly higher level of mitogen-activated protein phosphatase 3 (MKP-3, a cytosolic ERK1/2-targeted phosphatase), which was suppressed by blocking the transcriptional activity of the tumor suppressor p53 with pifithrin-α. Inhibition of MKP-3 activity with a specific inhibitor or siRNA enhanced basal ERK1/2 phosphorylation and promoted cell proliferation. Apart from its role in growth arrest, impairment of ERK1/2 also contributed to the resistance of senescent cells to oxidant-elicited cell injury. These results therefore indicate that p53-mediated up-regulation of MKP-3 contributes to the establishment of the senescent cellular phenotype through dephosphorylating ERK1/2. Impairment of ERK1/2 activation could be an important mechanism by which p53 controls cellular senescence. PMID:25414256

  12. Monitoring Cellular Phosphorylation Signaling Pathways into Chromatin and Down to the Gene Level*

    PubMed Central

    Han, Yumiao; Yuan, Zuo-Fei; Molden, Rosalynn C.; Garcia, Benjamin A.

    2016-01-01

    Protein phosphorylation, one of the most common and important modifications of acute and reversible regulation of protein function, plays a dominant role in almost all cellular processes. These signaling events regulate cellular responses, including proliferation, differentiation, metabolism, survival, and apoptosis. Several studies have been successfully used to identify phosphorylated proteins and dynamic changes in phosphorylation status after stimulation. Nevertheless, it is still rather difficult to elucidate precise complex phosphorylation signaling pathways. In particular, how signal transduction pathways directly communicate from the outer cell surface through cytoplasmic space and then directly into chromatin networks to change the transcriptional and epigenetic landscape remains poorly understood. Here, we describe the optimization and comparison of methods based on thiophosphorylation affinity enrichment, which can be utilized to monitor phosphorylation signaling into chromatin by isolation of phosphoprotein containing nucleosomes, a method we term phosphorylation-specific chromatin affinity purification (PS-ChAP). We utilized this PS-ChAP1 approach in combination with quantitative proteomics to identify changes in the phosphorylation status of chromatin-bound proteins on nucleosomes following perturbation of transcriptional processes. We also demonstrate that this method can be employed to map phosphoprotein signaling into chromatin containing nucleosomes through identifying the genes those phosphorylated proteins are found on via thiophosphate PS-ChAP-qPCR. Thus, our results showed that PS-ChAP offers a new strategy for studying cellular signaling and chromatin biology, allowing us to directly and comprehensively investigate phosphorylation signaling into chromatin to investigate if these pathways are involved in altering gene expression. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set

  13. BRCA1 haploinsufficiency leads to altered expression of genes involved in cellular proliferation and development.

    PubMed

    Feilotter, Harriet E; Michel, Claire; Uy, Paolo; Bathurst, Lauren; Davey, Scott

    2014-01-01

    The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that were BRCA1 wildtype compared to those that carried (heterozygous) BRCA1 pathogenic mutations. We identified a subset of 43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1 function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.

  14. Cellular Localization and Regulation of Expression of the PLET1 Gene in Porcine Placenta.

    PubMed

    Teng, Liu; Hong, Linjun; Liu, Ruize; Chen, Ran; Li, Xinyun; Yu, Mei

    2016-12-07

    The placenta expressed transcript 1 (PLET1) gene, which is expressed in placentas of pigs and mice, has been found to have a potential role in trophoblast cell fate decision in mice. Results of this study showed that the porcine PLET1 mRNA and protein were expressed exclusively in trophoblast cells on Days 15, 26, 50, and 95 of gestation (gestation length in the pig is 114 days), indicating that the PLET1 could be a useful marker for porcine trophoblast cells. Additionally, PLET1 protein was found to be redistributed from cytoplasm to the apical side of trophoblast cells as gestation progresses, which suggests a role of PLET1 in the establishment of a stable trophoblast and endometrial epithelial layers. In addition, two transcripts that differ in the 3' UTR length but encode identical protein were identified to be generated by the alternative cleavage and polyadenylation (APA), and the expression of PLET1-L transcript was significantly upregulated in porcine placentas as gestation progresses. Furthermore, we demonstrated the interaction between the miR-365-3p and PLET1 gene using luciferase assay system. Our findings imply an important role of PLET1 in the placental development in pigs.

  15. Cellular Localization and Regulation of Expression of the PLET1 Gene in Porcine Placenta

    PubMed Central

    Teng, Liu; Hong, Linjun; Liu, Ruize; Chen, Ran; Li, Xinyun; Yu, Mei

    2016-01-01

    The placenta expressed transcript 1 (PLET1) gene, which is expressed in placentas of pigs and mice, has been found to have a potential role in trophoblast cell fate decision in mice. Results of this study showed that the porcine PLET1 mRNA and protein were expressed exclusively in trophoblast cells on Days 15, 26, 50, and 95 of gestation (gestation length in the pig is 114 days), indicating that the PLET1 could be a useful marker for porcine trophoblast cells. Additionally, PLET1 protein was found to be redistributed from cytoplasm to the apical side of trophoblast cells as gestation progresses, which suggests a role of PLET1 in the establishment of a stable trophoblast and endometrial epithelial layers. In addition, two transcripts that differ in the 3′ UTR length but encode identical protein were identified to be generated by the alternative cleavage and polyadenylation (APA), and the expression of PLET1-L transcript was significantly upregulated in porcine placentas as gestation progresses. Furthermore, we demonstrated the interaction between the miR-365-3p and PLET1 gene using luciferase assay system. Our findings imply an important role of PLET1 in the placental development in pigs. PMID:27941613

  16. miR-6734 Up-Regulates p21 Gene Expression and Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Cells

    PubMed Central

    Kang, Moo Rim; Park, Ki Hwan; Yang, Jeong-Ook; Lee, Chang Woo; Oh, Soo Jin; Yun, Jieun; Lee, Myeong Youl; Han, Sang-Bae; Kang, Jong Soon

    2016-01-01

    Recently, microRNAs have been implicated in the regulation of gene expression in terms of both gene silencing and gene activation. Here, we investigated the effects of miR-6734, which has a sequence homology with a specific region of p21WAF1/CIP1 (p21) promoter, on cancer cell growth and the mechanisms involved in this effect. miR-6734 up-regulated p21 expression at both mRNA and protein levels and chromatin immunoprecipitation analysis using biotin-labeled miR-6734 confirmed the association of miR-6734 with p21 promoter. Moreover, miR-6734 inhibited cancer cell growth and induced cell cycle arrest and apoptosis in HCT-116 cells, which was abolished by knockdown of p21. The phosphorylation of Rb and the cleavage of caspase 3 and PARP were suppressed by miR-6734 transfection in HCT-116 cells and these effects were also reversed by p21 knockdown. In addition, miR-6734 transfection caused prolonged induction of p21 gene and modification of histones in p21 promoter, which are typical aspects of a phenomenon referred to as RNA activation (RNAa). Collectively, our results demonstrated that miR-6734 inhibits the growth of colon cancer cells by up-regulating p21 gene expression and subsequent induction of cell cycle arrest and apoptosis, suggesting its role as an important endogenous regulator of cancer cell proliferation and survival. PMID:27509128

  17. Identification, expression pattern, cellular location and potential role of the caveolin-1 gene from Artemia sinica.

    PubMed

    Li, Xuejie; Yao, Feng; Zhang, Wei; Cheng, Cheng; Chu, Bing; Liu, Yan; Mei, Yanli; Wu, Yang; Zou, Xiangyang; Hou, Lin

    2014-05-01

    Caveolins are integral membrane proteins that serve as scaffolds to recruit numerous signaling molecules. Caveolins play an important role in membrane trafficking, signal transduction, substrate transport and endocytosis in differentiated cells. In this study, a caveolin-1 gene from Artemia sinica (As-cav-1) was successfully cloned for the first time. The full-length cDNA of As-cav-1 comprises 974 bp, with a 675 bp open reading frame (ORF) that encodes a polypeptide of 224 amino acids with a caveolin scaffolding domain (CSD) and two transmembrane domains. Multiple sequence alignment revealed that the putative As-CAV-1 protein sequence was relatively conserved across species, especially in the CSD domain. Real-time PCR revealed high levels of the As-cav-1 transcript at 0h of embryo development. Furthermore, As-cav-1 transcripts were highly upregulated under high salinity (200‰) and low temperature stresses (15°C). To further characterize As-cav-1, recombinant pET30a-cav-1 protein was expressed using a prokaryotic expression system. The recombinant protein comprised 290 amino acids with a theoretical molecular weight of 32kDa, and a predicted isoelectric point of 5.6. Western blotting of the expression levels of As-CAV-1 during different embryo development stages revealed that As-CAV-1 levels decreased gradually during development stages from 0 h to 40 h, and increased at 3d. Furthermore, western blotting showed that As-CAV-1 was upregulated to its highest expression level by low temperature stress (15°C) and high salinity. Confocal laser microscopy analysis, using antibodies generated against the recombinant As-CAV-1 protein, showed that As-CAV-1 was mostly located in the cell membrane. Our results suggested that As-cav-1 plays a vital role in protecting embryos from high salt damage and low temperature stress, especially during post-diapause embryonic development.

  18. Vitamin D Metabolites Inhibit Hepatitis C Virus and Modulate Cellular Gene Expression

    PubMed Central

    Gutierrez, Julio A.; Jones, Krysten A.; Flores, Roxana; Singhania, Akul; Woelk, Christopher H.; Schooley, Robert T.; Wyles, David L.

    2015-01-01

    Background and Aims Previous studies suggest that low serum 25-hydroxyvitamin D [25(OH) D] levels are associated with reduced responsiveness to interferon and ribavirin therapy. We investigated the impact of vitamin D metabolites on HCV and cellular gene expression in cultured hepatoma cells. Methods HCV Replicon cell lines stably expressing luciferase reporter constructs (genotype 1b and 2a replicon) or JC1-Luc2a were incubated in the presence of vitamin D2, vitamin D3 or 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Presence of HCV was quantified by a luciferase reporter assay and immunoblot of the Core protein. Synergy of interferon-alpha A/D (IFN-α) and 1,25(OH)2D3 was evaluated using the Chou-Talalay method. Cellular gene expression by microarray analysis using Illumina Bead Chips and real-time quantitative PCR. Results Vitamin D2, D3 and 1,25(OH)2D3 each demonstrated anti-HCV activity at low micro molar concentrations. In vitro conversion from D3 to 25(OH)D3 was shown by LC/MS/MS. Combination indices of 1,25(OH)2D3 and IFN-α demonstrated a synergistic effect (0.23-0.46) and significantly reduced core expression by immunoblot. Differentially expressed genes were identified between Huh7.5.1 cells in the presence and absence of 1,25(OH)2D3 and HCV. Genes involved with classical effects of vitamin D metabolism and excretion were activated, along with genes linked to autophagy such as G-protein coupled receptor 37 (GPR37) and Hypoxia-inducible factor 1-alpha (HIF1a). Additionally, additive effects of 1,25(OH)2D3 and IFN-α were seen on mRNA expression of chemokine motif ligand 20 (CCL20). Conclusions This study shows that vitamin D reduces HCV protein production in cell culture synergistically with IFN-α. Vitamin D also activates gene expression independently and additively with IFN-α and this may explain its ability to aid in the clearance of HCV in vivo. PMID:26594646

  19. Regulated expression of CXCR4 constitutive active mutants revealed the up-modulated chemotaxis and up-regulation of genes crucial for CXCR4 mediated homing and engraftment of hematopoietic stem/progenitor cells.

    PubMed

    Sharma, M; Afrin, F; Tripathi, Rp; Gangenahalli, G

    2013-01-01

    SDF-1/CXCR4 axis plays a principle role in the homing and engraftment of hematopoietic stem/progenitor cells (HSPCs), a process that defines cells ability to reach and seed recipient bone marrow niche following their intravenous infusion. However, the proper functioning of CXCR4 downstream signaling depends upon consistent optimal expression of both SDF-1 ligand and its receptor CXCR4, which in turn is variable and regulated by several factors. The constitutive active mutants of CXCR4 (N119A and N119S) being able to induce autonomous downstream signaling, overcome the limitation of ligand-receptor interaction for induction of CXCR4 signaling. Therefore, we intended to explore their potential in Chemotaxis; a key cellular process which crucially regulates cells homing to bone marrow. In present study, Tet-on inducible gene expression vector system was used for doxycycline inducible regulated transgene expression of CXCR4 active mutants in hematopoietic stem progenitor cell line K-562. Both of these mutants revealed significantly enhanced Chemotaxis to SDF-1 gradient as compared to wild type. Furthermore, gene expression profiling of these genetically engineered cells as assessed by microarray analysis revealed the up-regulation of group of genes that are known to play a crucial role in CXCR4 mediated cells homing and engraftment. Hence, this study suggest the potential prospects of CXCR4 active mutants in research and development aimed to improve the efficiency of cells in the mechanism of homing and engraftment process.

  20. Up-regulation of expression of tubulin genes and roles of microtubules in hypergravity-induced growth modification in Arabidopsis hypocotyls

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shouhei; Saito, Yuka; Kumasaki, Saori; Soga, Kouichi; Wakabayashi, Kazuyuki; Hoson, Takayuki

    We examined the roles of microtubules in gravity-induced modification of growth and development in plants by analyzing the expression levels of the α- and β-tubulin gene family and growth behavior of Arabidopsis hypocotyls treated with the microtubule-disrupting reagents colchicine, oryzalin, and propyzamide. Expression of the majority of the examined α- and β-tubulin genes was up-regulated by hypergravity at 300 g, although the extent was variable among genes, indicating that up-regulation of the expression of tubulin genes is the universal response of Arabidopsis hypocotyls to hypergravity. Hypergravity suppressed elongation growth by decreasing the cell-wall extensibility, whereas it stimulated lateral thickening of hypocotyls. By treatment with colchicine, oryzalin, and propyzamide, the elongation growth was suppressed, lateral thickening was stimulated, and the cell-wall extensibility of hypocotyls decreased dose-dependently even under 1 g conditions. The degree of hypergravity-induced changes decreased with increasing concentration of microtubule-disrupting reagents. As a result, hypergravity affected neither the length, the thickness, nor the cell-wall extensibility of hypocotyls in the presence of high concentrations of microtubule-disrupting reagents. Moreover, colchicine-treated seedlings showed helical growth even under 1 g conditions, and this phenotype was intensified under hypergravity conditions. These results suggest that the up-regulation of the expression of tubulin genes is involved in gravity-induced modification of microtubule dynamics, which may play an important role in the resistance of plant organs to the gravitational force and maintenance of normal growth phenotype.

  1. Stress fracture healing: fatigue loading of the rat ulna induces upregulation in expression of osteogenic and angiogenic genes that mimic the intramembranous portion of fracture repair.

    PubMed

    Wohl, Gregory R; Towler, Dwight A; Silva, Matthew J

    2009-02-01

    Woven bone is formed in response to fatigue-induced stress fractures and is associated with increased local angiogenesis. The molecular mechanisms that regulate this woven bone formation are unknown. Our objective was to measure the temporal and spatial expression of osteo- and angiogenic genes in woven bone formation in response to increasing levels of fatigue-induced damage. We used the rat forelimb compression model to produce four discrete levels of fatigue damage in the right ulna of 115 male Fischer rats. Rats were killed at 0 (1 h), 1, 3 and 7 days after loading. Using qRT-PCR, we quantified gene expression associated with osteogenesis (BMP2, Msx2, Runx2, Osx, BSP, Osc), cell proliferation (Hist4), and angiogenesis (VEGF, PECAM-1) from the central half of the ulna. The spatial distribution of BMP2, BSP and PCNA was assessed by immunohistochemistry or in situ hybridization in transverse histological sections 1, 4, and 7 mm distal to the ulnar mid-diaphysis. One hour after loading, BMP2 was significantly upregulated in neurovascular structures in the medial ulnar periosteum. Expression of angiogenic markers (VEGF, PECAM-1) increased significantly between Day 0 and 1 and, as with BMP2 expression, remained upregulated through Day 7. While Osx and BSP were upregulated on Day 1, the other osteogenic genes (Msx2, Runx2, Osx, BSP and Osc) were induced on Day 3 in association with the initiation of periosteal woven bone formation and continued through Day 7. The magnitude of osteogenic gene expression, particularly matrix genes (BSP, Osc) was significantly proportional the level of fatigue damage. The woven bone response to fatigue injury is remarkably similar to the "intramembranous" portion of fracture repair - rapid formation of periosteal woven bone characterized by early BMP2 expression, cell proliferation, and upregulation of osteogenic genes. We speculate that woven bone repair of fatigue damage may be an abbreviated fracture response without the requirement

  2. Cellular Defense System Gene Expression Profiling of Human Whole Blood: Opportunities to Predict Health Benefits in Response to Diet12

    PubMed Central

    Drew, Janice E.

    2012-01-01

    Diet is a critical factor in the maintenance of human cellular defense systems, immunity, inflammation, redox regulation, metabolism, and DNA repair that ensure optimal health and reduce disease risk. Assessment of dietary modulation of cellular defense systems in humans has been limited due to difficulties in accessing target tissues. Notably, peripheral blood gene expression profiles associated with nonhematologic disease are detectable. Coupled with recent innovations in gene expression technologies, gene expression profiling of human blood to determine predictive markers associated with health status and dietary modulation is now a feasible prospect for nutrition scientists. This review focuses on cellular defense system gene expression profiling of human whole blood and the opportunities this presents, using recent technological advances, to predict health status and benefits conferred by diet. PMID:22797985

  3. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    PubMed

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events.

  4. REST-Governed Gene Expression Profiling in a Neuronal Cell Model Reveals Novel Direct and Indirect Processes of Repression and Up-Regulation

    PubMed Central

    Garcia-Manteiga, Jose M.; Bonfiglio, Silvia; Folladori, Lucrezia; Malosio, Maria L.; Lazarevic, Dejan; Stupka, Elia; Cittaro, Davide; Meldolesi, Jacopo

    2015-01-01

    The role of REST changes in neurons, including the rapid decrease of its level during differentiation and its fluctuations during many mature functions and diseases, is well established. However, identification of many thousand possible REST-target genes, mostly based on indirect criteria, and demonstration of their operative dependence on the repressor have been established for only a relatively small fraction. In the present study, starting from our recently published work, we have expanded the identification of REST-dependent genes, investigated in two clones of the PC12 line, a recognized neuronal cell model, spontaneously expressing different levels of REST: very low as in neurons and much higher as in most non-neural cells. The molecular, structural and functional differences of the two PC12 clones were shown to depend largely on their different REST level and the ensuing variable expression of some dependent genes. Comprehensive RNA-Seq analyses of the 13,700 genes expressed, validated by parallel RT-PCR and western analyses of mRNAs and encoded proteins, identified in the high-REST clone two groups of almost 900 repressed and up-regulated genes. Repression is often due to direct binding of REST to target genes; up-regulation to indirect mechanism(s) mostly mediated by REST repression of repressive transcription factors. Most, but not all, genes governing neurosecretion, excitability, and receptor channel signaling were repressed in the high REST clone. The genes governing expression of non-channel receptors (G protein-coupled and others), although variably affected, were often up-regulated together with the genes of intracellular kinases, small G proteins, cytoskeleton, cell adhesion, and extracellular matrix proteins. Expression of REST-dependent genes governing functions other than those mentioned so far were also identified. The results obtained by the parallel investigation of the two PC12 clones revealed the complexity of the REST molecular and

  5. REST-Governed Gene Expression Profiling in a Neuronal Cell Model Reveals Novel Direct and Indirect Processes of Repression and Up-Regulation.

    PubMed

    Garcia-Manteiga, Jose M; Bonfiglio, Silvia; Folladori, Lucrezia; Malosio, Maria L; Lazarevic, Dejan; Stupka, Elia; Cittaro, Davide; Meldolesi, Jacopo

    2015-01-01

    The role of REST changes in neurons, including the rapid decrease of its level during differentiation and its fluctuations during many mature functions and diseases, is well established. However, identification of many thousand possible REST-target genes, mostly based on indirect criteria, and demonstration of their operative dependence on the repressor have been established for only a relatively small fraction. In the present study, starting from our recently published work, we have expanded the identification of REST-dependent genes, investigated in two clones of the PC12 line, a recognized neuronal cell model, spontaneously expressing different levels of REST: very low as in neurons and much higher as in most non-neural cells. The molecular, structural and functional differences of the two PC12 clones were shown to depend largely on their different REST level and the ensuing variable expression of some dependent genes. Comprehensive RNA-Seq analyses of the 13,700 genes expressed, validated by parallel RT-PCR and western analyses of mRNAs and encoded proteins, identified in the high-REST clone two groups of almost 900 repressed and up-regulated genes. Repression is often due to direct binding of REST to target genes; up-regulation to indirect mechanism(s) mostly mediated by REST repression of repressive transcription factors. Most, but not all, genes governing neurosecretion, excitability, and receptor channel signaling were repressed in the high REST clone. The genes governing expression of non-channel receptors (G protein-coupled and others), although variably affected, were often up-regulated together with the genes of intracellular kinases, small G proteins, cytoskeleton, cell adhesion, and extracellular matrix proteins. Expression of REST-dependent genes governing functions other than those mentioned so far were also identified. The results obtained by the parallel investigation of the two PC12 clones revealed the complexity of the REST molecular and

  6. Functional characterization of calliphorid cell death genes and cellularization gene promoters for controlling gene expression and cell viability in early embryos.

    PubMed

    Edman, R M; Linger, R J; Belikoff, E J; Li, F; Sze, S-H; Tarone, A M; Scott, M J

    2015-02-01

    The New World screwworm fly, Cochliomyia hominivorax, and the Australian sheep blow fly, Lucilia cuprina, are major pests of livestock. The sterile insect technique was used to eradicate C. hominivorax from North and Central America. This involved area-wide releases of male and female flies that had been sterilized by radiation. Genetic systems have been developed for making 'male-only' strains that would improve the efficiency of genetic control of insect pests. One system involves induction of female lethality in embryos through activation of a pro-apoptotic gene by the tetracycline-dependent transactivator. Sex-specific expression is achieved using an intron from the transformer gene, which we previously isolated from several calliphorids. In the present study, we report the isolation of the promoters from the C. hominivorax slam and Lucilia sericata bnk cellularization genes and show that these promoters can drive expression of a GFP reporter gene in early embryos of transgenic L. cuprina. Additionally, we report the isolation of the L. sericata pro-apoptotic hid and rpr genes, identify conserved motifs in the encoded proteins and determine the relative expression of these genes at different stages of development. We show that widespread expression of the L. sericata pro-apoptotic genes was lethal in Drosophila melanogaster. The isolated gene promoters and pro-apoptotic genes could potentially be used to build transgenic embryonic sexing strains of calliphorid livestock pests.

  7. Dietary fermentable fiber upregulated immune related genes expression, increased innate immune response and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas hydrophila.

    PubMed

    Yarahmadi, Peyman; Kolangi Miandare, Hamed; Farahmand, Hamid; Mirvaghefi, Alireza; Hoseinifar, Seyed Hossein

    2014-12-01

    This trial was carried out to investigate the effects of dietary administration of Vitacel(®), a commercial fermentable fiber, on immune related genes (Lysozyme, TNFα and HSP70) expression, innate immune response and resistance of rainbow trout against Aeromonas hydrophila. 120 healthy rainbow trout (81.65 ± 1.49 g) were distributed in six fiberglass tanks assigned to two treatments. The treatments were feeding rainbow trout with diets supplemented with 0 (control) or 10 g kg(-1) Vitacel(®) for 45 days. The results revealed that administration of fermentable fiber significantly (P < 0.05) upregulated lysozyme and TNFα gene expression. HSP70 gene expression was significantly lower in Vitacel(®) fed fish at the end of trial (P < 0.05). Furthermore dietary administrations of Vitacel(®) remarkably elevated rainbow trout innate immune parameters include serum lysozyme, ACH50, bactericidal activity and agglutination antibody titer (P < 0.05). Administration of 10 g kg(-1) Vitacel(®) significantly increased rainbow trout resistance against A. hydrophila (P < 0.05). The results of present study revealed that dietary Vitacel(®) can upregulates immune related genes expression and elevates innate immune response and disease resistance of rainbow trout.

  8. Glucocerebrosidase gene-deficient mouse recapitulates Gaucher disease displaying cellular and molecular dysregulation beyond the macrophage.

    PubMed

    Mistry, Pramod K; Liu, Jun; Yang, Mei; Nottoli, Timothy; McGrath, James; Jain, Dhanpat; Zhang, Kate; Keutzer, Joan; Chuang, Wei-Lien; Chuang, Wei-Lein; Mehal, Wajahat Z; Zhao, Hongyu; Lin, Aiping; Mane, Shrikant; Liu, Xuan; Peng, Yuan Z; Li, Jian H; Agrawal, Manasi; Zhu, Ling-Ling; Blair, Harry C; Robinson, Lisa J; Iqbal, Jameel; Sun, Li; Zaidi, Mone

    2010-11-09

    In nonneuronopathic type 1 Gaucher disease (GD1), mutations in the glucocerebrosidase gene (GBA1) gene result in glucocerebrosidase deficiency and the accumulation of its substrate, glucocerebroside (GL-1), in the lysosomes of mononuclear phagocytes. This prevailing macrophage-centric view, however, does not explain emerging aspects of the disease, including malignancy, autoimmune disease, Parkinson disease, and osteoporosis. We conditionally deleted the GBA1 gene in hematopoietic and mesenchymal cell lineages using an Mx1 promoter. Although this mouse fully recapitulated human GD1, cytokine measurements, microarray analysis, and cellular immunophenotyping together revealed widespread dysfunction not only of macrophages, but also of thymic T cells, dendritic cells, and osteoblasts. The severe osteoporosis was caused by a defect in osteoblastic bone formation arising from an inhibitory effect of the accumulated lipids LysoGL-1 and GL-1 on protein kinase C. This study provides direct evidence for the involvement in GD1 of multiple cell lineages, suggesting that cells other than macrophages may be worthwhile therapeutic targets.

  9. Regulation of metallothionein gene expression and cellular zinc accumulation in a rat small intestinal cell line

    SciTech Connect

    Carlson, J.M.; Cousins, R.J. )

    1991-03-15

    The effects of extracellular zinc concentration on metallothionein gene expression and cellular zinc accumulation were studied in IRD-98 cells. This is a non-transformed clonal line established by Negrel, et al. from fetal rat small intestine which possess characteristics of small bowel epithelial cells. Cells were maintained in DMEM and grown to confluent monolayers. The response to media zinc concentrations over the range of 5-150 {mu}mol/L was assessed. After 24 h in culture, cell zinc and metallothionein protein concentrations were significantly increased in cells provided higher levels of media zinc. Subsequent time course experiments showed that cells exposed to higher zinc levels had significant elevations in both metallothionein mRNA, peaking at 24 h, and metallothionein protein increasing through 48 h. Furthermore, cell zinc concentrations were significantly increased. At 48 h of culture, greater than 50% of the additional cellular zinc accumulated could be attributed to elevated metallothionein protein levels. These cells represent a zinc-responsive model to examine the mechanism of zinc uptake and transcellular transport by intestinal cells and the regulatory factors involved.

  10. Interferon-Stimulated Gene 15 in the Control of Cellular Responses to Genotoxic Stress

    PubMed Central

    Jeon, Young Joo; Park, Jong Ho; Chung, Chin Ha

    2017-01-01

    Error-free replication and repair of DNA are pivotal to organisms for faithful transmission of their genetic information. Cells orchestrate complex signaling networks that sense and resolve DNA damage. Post-translational protein modifications by ubiquitin and ubiquitin-like proteins, including SUMO and NEDD8, are critically involved in DNA damage response (DDR) and DNA damage tolerance (DDT). The expression of interferon-stimulated gene 15 (ISG15), the first identified ubiquitin-like protein, has recently been shown to be induced under various DNA damage conditions, such as exposure to UV, camptothecin, and doxorubicin. Here we overview the recent findings on the role of ISG15 and its conjugation to target proteins (e.g., p53, ΔNp63α, and PCNA) in the control of cellular responses to genotoxic stress, such as the inhibition of cell growth and tumorigenesis. PMID:28241406

  11. DkPK Genes Promote Natural Deastringency in C-PCNA Persimmon by Up-regulating DkPDC and DkADH Expression

    PubMed Central

    Guan, Changfei; Du, Xiaoyun; Zhang, Qinglin; Ma, Fengwang; Luo, Zhengrong; Yang, Yong

    2017-01-01

    The astringency of Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) can be naturally removed on the tree. This process is controlled by a single locus and is dominant against other types of persimmons; therefore, this variant is an important candidate for commercial cultivation and the breeding of PCNA cultivars. In our previous study, six full-length coding sequences (CDS) for pyruvate kinase genes (DkPK1-6) were isolated, and DkPK1 is thought to be involved in the natural deastringency of C-PCNA persimmon fruit. Here, we characterize the eight other DkPK genes (DkPK7-14) from C-PCNA persimmon fruit based on transcriptome data. The transcript changes in DkPK7-14 genes and correlations with the proanthocyanidin (PA) content were investigated during different fruit development stages in C-PCNA, J-PCNA, and non-PCNA persimmon; DkPK7 and DkPK8 exhibited up-regulation patterns during the last developmental stage in C-PCNA persimmon that was negatively correlated with the decrease in soluble PAs. Phylogenetic analysis and subcellular localization analysis revealed that DkPK7 and DkPK8 are cytosolic proteins. Notably, DkPK7 and DkPK8 were ubiquitously expressed in various persimmon organs and abundantly up-regulated in seeds. Furthermore, transient over-expression of DkPK7 and DkPK8 in persimmon leaves led to a significant decrease in the content of soluble PAs but a significant increase in the expression levels of the pyruvate decarboxylase (DkPDC) and alcohol dehydrogenase genes (DkADH), which are closely related to acetaldehyde metabolism. The accumulated acetaldehyde that results from the up-regulation of the DkPDC and DkADH genes can combine with soluble PAs to form insoluble PAs, resulting in the removal of astringency from persimmon fruit. Thus, we suggest that both DkPK7 and DkPK8 are likely to be involved in natural deastringency via the up-regulation of DkPDC and DkADH expression during the last developmental stage in C

  12. The nociception genes painless and Piezo are required for the cellular immune response of Drosophila larvae to wasp parasitization.

    PubMed

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Schulz, Robert A

    2017-03-22

    In vertebrates, interaction between the nervous system and immune system is important to protect a challenged host from stress inputs from external sources. In this study, we demonstrate that sensory neurons are involved in the cellular immune response elicited by wasp infestation of Drosophila larvae. Multidendritic class IV neurons sense contacts from external stimuli and induce avoidance behaviors for host defense. Our findings show that inactivation of these sensory neurons impairs the cellular response against wasp parasitization. We also demonstrate that the nociception genes encoding the mechanosensory receptors Painless and Piezo, both expressed in class IV neurons, are essential for the normal cellular immune response to parasite challenge.

  13. Epstein–Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression

    PubMed Central

    Ramasubramanyan, Sharada; Osborn, Kay; Al-Mohammad, Rajaei; Naranjo Perez-Fernandez, Ijiel B.; Zuo, Jianmin; Balan, Nicolae; Godfrey, Anja; Patel, Harshil; Peters, Gordon; Rowe, Martin; Jenner, Richard G.; Sinclair, Alison J.

    2015-01-01

    Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements. PMID:25779048

  14. Coating barium titanate nanoparticles with polyethylenimine improves cellular uptake and allows for coupled imaging and gene delivery

    PubMed Central

    Dempsey, Christopher; Lee, Isac; Cowan, Katie; Suh, Junghae

    2015-01-01

    Barium titanate nanoparticles (BT NP) belong to a class of second harmonic generating (SHG) nanoprobes that have recently demonstrated promise in biological imaging. Unfortunately, BT NPs display low cellular uptake efficiencies, which may be a problem if cellular internalization is desired or required for a particular application. To overcome this issue, while concomitantly developing a particle platform that can also deliver nucleic acids into cells, we coated the BT NPs with the cationic polymer polyethylenimine (PEI) – one of the most effective nonviral gene delivery agents. Coating of BT with PEI yielded complexes with positive zeta potentials and resulted in an 8-fold increase in cellular uptake of the BT NPs. Importantly, we were able to achieve high levels of gene delivery with the BT-PEI/DNA complexes, supporting further efforts to generate BT platforms for coupled imaging and gene therapy. PMID:23973999

  15. Emblica officinalis extract downregulates pro-angiogenic molecules via upregulation of cellular and exosomal miR-375 in human ovarian cancer cells

    PubMed Central

    De, Alok; Powers, Benjamin; De, Archana; Zhou, Jianping; Sharma, Siddarth; Van Veldhuizen, Peter; Bansal, Ajay; Sharma, Ramratan; Sharma, Mukut

    2016-01-01

    Ovarian cancer (OC) is highly resistant to current treatment strategies based on a combination of surgery, chemotherapy and radiation therapy. We have recently demonstrated the anti-neoplastic effect of Amla extract (Emblica officinalis, AE) on OC cells in vitro and in vivo. We hypothesized that AE attenuates growth of OC through microRNA (miR)-regulated mechanism(s). The inhibitory effect of AE on proliferation, migration and invasiveness (P≤0.001) of SKOV3 cells and >90% attenuation of tumor growth in a xenograft mouse model suggested multiple targets. RT-qPCR analysis of microRNAs associated with OC showed a >2,000-fold increase in the expression of miR-375 in AE-treated SKOV3 cells that was blocked by an exogenous miR-375 inhibitor (P≤0.001). AE also decreased the gene and protein expression of IGF1R, a target of miR-375 (P≤0.001), and SNAIL1 (P≤0.002), an EMT-associated transcription factor that represses E-cadherin expression (P≤0.003). AE increased E-cadherin expression (P≤0.001). Treatment of SKOV3 cells with AE resulted in increased miR-375 in exosomes in the medium (P≤0.01). Finally, AE significantly decreased the expression of IGF1R and SNAIL1 proteins during attenuation of SKOV3-derived xenograft tumor. Together, these results show that AE modulates cancer cells and the tumor microenvironment via activation of miR-375 and by targeting IGF1R and SNAIL1 in OC cells. PMID:27129171

  16. Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage.

    PubMed

    Tchetina, Elena V; Markova, Galina A; Poole, A Robin; Zukor, David J; Antoniou, John; Makarov, Sergey A; Kuzin, Aleksandr N

    2016-01-01

    This study reports the effects of the iron chelator deferoxamine (DFO) on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA) articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1-50 μM). Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK) concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10-50 μM DFO. PCR analysis of 7 OA patient cartilages revealed that 10 μM DFO suppressed expression of MMP-1, MMP-13, IL-1β, and TNFα and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA), AMPK, HIF1α, and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients.

  17. Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling.

    PubMed

    Komorisono, Masahiko; Ueguchi-Tanaka, Miyako; Aichi, Ikuko; Hasegawa, Yasuko; Ashikari, Motoyuki; Kitano, Hidemi; Matsuoka, Makoto; Sazuka, Takashi

    2005-08-01

    Molecular genetic studies of plant dwarf mutants have indicated that gibberellin (GA) and brassinosteroid (BR) are two major factors that determine plant height; dwarf mutants that are caused by other defects are relatively rare, especially in monocot species. Here, we report a rice (Oryza sativa) dwarf mutant, dwarf and gladius leaf 1 (dgl1), which exhibits only minimal response to GA and BR. In addition to the dwarf phenotype, dgl1 produces leaves with abnormally rounded tip regions. Positional cloning of DGL1 revealed that it encodes a 60-kD microtubule-severing katanin-like protein. The protein was found to be important in cell elongation and division, based on the observed cell phenotypes. GA biosynthetic genes are up-regulated in dgl1, but the expression of BR biosynthetic genes is not enhanced. The enhanced expression of GA biosynthetic genes in dgl1 is not caused by inappropriate GA signaling because the expression of these genes was repressed by GA3 treatment, and degradation of the rice DELLA protein SLR1 was triggered by GA3 in this mutant. Instead, aberrant microtubule organization caused by the loss of the microtubule-severing function of DGL1 may result in enhanced expression of GA biosynthetic genes in that enhanced expression was also observed in a BR-deficient mutant with aberrant microtubule organization. These results suggest that the function of DGL1 is important for cell and organ elongation in rice, and aberrant DGL1-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling.

  18. Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage

    PubMed Central

    Markova, Galina A.; Poole, A. Robin; Zukor, David J.; Antoniou, John; Makarov, Sergey A.; Kuzin, Aleksandr N.

    2016-01-01

    This study reports the effects of the iron chelator deferoxamine (DFO) on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA) articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1–50 μM). Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK) concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10–50 μM DFO. PCR analysis of 7 OA patient cartilages revealed that 10 μM DFO suppressed expression of MMP-1, MMP-13, IL-1β, and TNFα and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA), AMPK, HIF1α, and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients. PMID:28042296

  19. Resveratrol reverses cadmium chloride-induced testicular damage and subfertility by downregulating p53 and Bax and upregulating gonadotropins and Bcl-2 gene expression.

    PubMed

    Eleawa, Samy M; Alkhateeb, Mahmoud A; Alhashem, Fahaid H; Bin-Jaliah, Ismaeel; Sakr, Hussein F; Elrefaey, Hesham M; Elkarib, Abbas O; Alessa, Riyad M; Haidara, Mohammad A; Shatoor, Abdullah S; Khalil, Mohammad A

    2014-04-24

    This study was performed to investigate the protective and therapeutic effects of resveratrol (RES) against CdCl2-induced toxicity in rat testes. Seven experimental groups of adult male rats were formulated as follows: A) controls+NS, B) control+vehicle (saline solution of hydroxypropyl cyclodextrin), C) RES treated, D) CdCl2+NS, E) CdCl2+vehicle, F) RES followed by CdCl2 and M) CdCl2 followed by RES. At the end of the protocol, serum levels of FSH, LH and testosterone were measured in all groups, and testicular levels of TBARS and superoxide dismutase (SOD) activity were measured. Epididymal semen analysis was performed, and testicular expression of Bcl-2, p53 and Bax was assessed by RT-PCR. Also, histopathological changes of the testes were examined microscopically. Administration of RES before or after cadmium chloride in rats improved semen parameters including count, motility, daily sperm production and morphology, increased serum concentrations of gonadotropins and testosterone, decreased testicular lipid peroxidation and increased SOD activity. RES not only attenuated cadmium chloride-induced testicular histopathology but was also able to protect against the onset of cadmium chloride testicular toxicity. Cadmium chloride downregulated the anti-apoptotic gene Bcl2 and upregulated the expression of pro-apoptotic genes p53 and Bax. Resveratrol protected against and partially reversed cadmium chloride testicular toxicity via upregulation of Bcl2 and downregulation of p53 and Bax gene expression. The antioxidant activity of RES protects against cadmium chloride testicular toxicity and partially reverses its effect via upregulation of BCl2 and downregulation of p53 and Bax expression.

  20. Transcription factor Ets-1 inhibits glucose-stimulated insulin secretion of pancreatic β-cells partly through up-regulation of COX-2 gene expression.

    PubMed

    Zhang, Xiong-Fei; Zhu, Yi; Liang, Wen-Biao; Zhang, Jing-Jing

    2014-08-01

    Increased cyclooxygenase-2 (COX-2) expression is associated with pancreatic β-cell dysfunction. We previously demonstrated that the transcription factor Ets-1 significantly up-regulated COX-2 gene promoter activity. In this report, we used the pancreatic β-cell line INS-1 and isolated rat islets to investigate whether Ets-1 could induce β-cell dysfunction through up-regulating COX-2 gene expression. We investigated the effects of ETS-1 overexpression and the effects of ETS-1 RNA interference on endogenous COX-2 expression in INS-1 cells. We used site-directed mutagenesis and a dual luciferase reporter assay to study putative Ets-1 binding sites in the COX-2 promoter. The effect of ETS-1 1 overexpression on the insulin secretion function of INS-1 cells and rat islets and the potential reversal of these effects by a COX-2 inhibitor were determined in a glucose-stimulated insulin secretion (GSIS) assay. ETS-1 overexpression significantly induces endogenous COX-2 expression, but ETS-1 RNA interference has no effect on basal COX-2 expression in INS-1 cells. Ets-1 protein significantly increases COX-2 promoter activity through the binding site located in the -195/-186 region of the COX-2 promoter. ETS-1 overexpression significantly inhibited the GSIS function of INS-1 cells and islet cells and COX-2 inhibitor treatment partly reversed this effect. These findings indicated that ETS-1 overexpression induces β-cell dysfunction partly through up-regulation of COX-2 gene expression. Moreover, Ets-1, the transcriptional regulator of COX-2 expression, may be a potential target for the prevention of β-cell dysfunction mediated by COX-2.

  1. The absence of core fucose up-regulates GnT-III and Wnt target genes: a possible mechanism for an adaptive response in terms of glycan function.

    PubMed

    Kurimoto, Ayako; Kitazume, Shinobu; Kizuka, Yasuhiko; Nakajima, Kazuki; Oka, Ritsuko; Fujinawa, Reiko; Korekane, Hiroaki; Yamaguchi, Yoshiki; Wada, Yoshinao; Taniguchi, Naoyuki

    2014-04-25

    Glycans play key roles in a variety of protein functions under normal and pathological conditions, but several glycosyltransferase-deficient mice exhibit no or only mild phenotypes due to redundancy or compensation of glycan functions. However, we have only a limited understanding of the underlying mechanism for these observations. Our previous studies indicated that 70% of Fut8-deficient (Fut8(-/-)) mice that lack core fucose structure die within 3 days after birth, but the remainder survive for up to several weeks although they show growth retardation as well as emphysema. In this study, we show that, in mouse embryonic fibroblasts (MEFs) from Fut8(-/-) mice, another N-glycan branching structure, bisecting GlcNAc, is specifically up-regulated by enhanced gene expression of the responsible enzyme N-acetylglucosaminyltransferase III (GnT-III). As candidate target glycoproteins for bisecting GlcNAc modification, we confirmed that level of bisecting GlcNAc on β1-integrin and N-cadherin was increased in Fut8(-/-) MEFs. Moreover using mass spectrometry, glycan analysis of IgG1 in Fut8(-/-) mouse serum demonstrated that bisecting GlcNAc contents were also increased by Fut8 deficiency in vivo. As an underlying mechanism, we found that in Fut8(-/-) MEFs Wnt/β-catenin signaling is up-regulated, and an inhibitor against Wnt signaling was found to abrogate GnT-III expression, indicating that Wnt/β-catenin is involved in GnT-III up-regulation. Furthermore, various oxidative stress-related genes were also increased in Fut8(-/-) MEFs. These data suggest that Fut8(-/-) mice adapted to oxidative stress, both ex vivo and in vivo, by inducing various genes including GnT-III, which may compensate for the loss of core fucose functions.

  2. Overexpression of OsMYC2 Results in the Up-Regulation of Early JA-Rresponsive Genes and Bacterial Blight Resistance in Rice.

    PubMed

    Uji, Yuya; Taniguchi, Shiduku; Tamaoki, Daisuke; Shishido, Hodaka; Akimitsu, Kazuya; Gomi, Kenji

    2016-09-01

    JASMONATE ZIM-domain (JAZ) proteins act as transcriptional repressors of jasmonic acid (JA) responses and play a crucial role in the regulation of host immunity in plants. Here, we report that OsMYC2, a JAZ-interacting transcription factor in rice (Oryza sativa L.), plays an important role in the resistance response against rice bacterial blight, which is one of the most serious diseases in rice, caused by Xanthomonas oryzae pv. oryzae (Xoo). The results showed that OsMYC2 interacted with some OsJAZ proteins in a JAZ-interacting domain (JID)-dependent manner. The up-regulation of OsMYC2 in response to JA was regulated by OsJAZ8. Transgenic rice plants overexpressing OsMYC2 exhibited a JA-hypersensitive phenotype and were more resistant to Xoo. A large-scale microarray analysis revealed that OsMYC2 up-regulated OsJAZ10 as well as many other defense-related genes. OsMYC2 selectively bound to the G-box-like motif of the OsJAZ10 promoter in vivo and regulated the expression of early JA-responsive genes, but not of late JA-responsive genes. The nuclear localization of OsMYC2 depended on a nuclear localization signal within JID. Overall, we conclude that OsMYC2 acts as a positive regulator of early JA signals in the JA-induced resistance against Xoo in rice.

  3. Growth differentiation factor-15: a p53- and demethylation-upregulating gene represses cell proliferation, invasion, and tumorigenesis in bladder carcinoma cells

    PubMed Central

    Tsui, Ke-Hung; Hsu, Shu-Yuan; Chung, Li-Chuan; Lin, Yu-Hsiang; Feng, Tsui-Hsia; Lee, Tzu-Yi; Chang, Phei-Lang; Juang, Horng-Heng

    2015-01-01

    Growth differentiation factor-15 (GDF15), a member of the TGF-β superfamily, affects tumor biology of certain cancers, but remains poorly understood in bladder cancer cells. This study determined the expression, regulation, function, and potential downstream target genes of GDF15 in bladder carcinoma cells. The transitional papilloma carcionoma cells (RT4) expressed higher levels of GDF15 as compared with the bladder carcinoma cells (HT1376 and T24). Treatments of recombinant human GDF15 (rhGDF15) reduced the proliferations of HT1376 and T24 cells. Expression of GDF15 was upregulated via DNA demethylation and p53. The cell proliferation, invasion, and tumorigenesis were reduced in ectopic overexpression of GDF15, while enhanced in GDF15 knockdown. The expressions of mammary serine protease inhibitor (MASPIN) and N-myc downstream-regulated family genes (NDRG1, NDRG2, and NDRG3) were upregulated by GDF15 overexpressions and rhGDF15 treatments in bladder carcinoma cells. GDF15 knockdown induced epithelial-mesenchymal transition (EMT) and F-actin polarization in HT1376 cells. Our results suggest that enhanced expressions of MASPIN and N-myc downstream-regulated family genes and the modulation of EMT may account for the inhibitory functions of GDF15 in the cell proliferation, invasion, and tumorigenesis of bladder carcinoma cells. The GDF15 should be considered as a tumor suppressor in human bladder carcinoma cells. PMID:26249737

  4. Coordinate up-regulation of low-density lipoprotein receptor and cyclo-oxygenase-2 gene expression in human colorectal cells and in colorectal adenocarcinoma biopsies

    NASA Technical Reports Server (NTRS)

    Lum, D. F.; McQuaid, K. R.; Gilbertson, V. L.; Hughes-Fulford, M.

    1999-01-01

    Many colorectal cancers have high levels of cyclo-oxygenase 2 (COX-2), an enzyme that metabolizes the essential fatty acids into prostaglandins. Since the low-density lipoprotein receptor (LDLr) is involved in the uptake of essential fatty acids, we studied the effect of LDL on growth and gene regulation in colorectal cancer cells. DiFi cells grown in lipoprotein-deficient sera (LPDS) grew more slowly than cells with LDL. LDLr antibody caused significant inhibition of tumor cell growth but did not affect controls. In addition, LDL uptake did not change in the presence of excess LDL, suggesting that ldlr mRNA lacks normal feedback regulation in some colorectal cancers. Analysis of the ldlr mRNA showed that excess LDL in the medium did not cause down-regulation of the message even after 24 hr. The second portion of the study examined the mRNA expression of ldlr and its co-regulation with cox-2 in normal and tumor specimens from patients with colorectal adenocarcinomas. The ratio of tumor:paired normal mucosa of mRNA expression of ldlr and of cox-2 was measured in specimens taken during colonoscopy. ldlr and cox-2 transcripts were apparent in 11 of 11 carcinomas. There was significant coordinate up-regulation both of ldlr and of cox-2 in 6 of 11 (55%) tumors compared with normal colonic mucosa. There was no up-regulation of cox-2 without concomitant up-regulation of ldlr. These data suggest that the LDLr is abnormally regulated in some colorectal tumors and may play a role in the up-regulation of cox-2. Copyright 1999 Wiley-Liss, Inc.

  5. Examining the process of de novo gene birth: an educational primer on "integration of new genes into cellular networks, and their structural maturation".

    PubMed

    Frietze, Seth; Leatherman, Judith

    2014-03-01

    New genes that arise from modification of the noncoding portion of a genome rather than being duplicated from parent genes are called de novo genes. These genes, identified by their brief evolution and lack of parent genes, provide an opportunity to study the timeframe in which emerging genes integrate into cellular networks, and how the characteristics of these genes change as they mature into bona fide genes. An article by G. Abrusán provides an opportunity to introduce students to fundamental concepts in evolutionary and comparative genetics and to provide a technical background by which to discuss systems biology approaches when studying the evolutionary process of gene birth. Basic background needed to understand the Abrusán study and details on comparative genomic concepts tailored for a classroom discussion are provided, including discussion questions and a supplemental exercise on navigating a genome database.

  6. Examining the Process of de Novo Gene Birth: An Educational Primer on “Integration of New Genes into Cellular Networks, and Their Structural Maturation”

    PubMed Central

    Frietze, Seth; Leatherman, Judith

    2014-01-01

    SUMMARY New genes that arise from modification of the noncoding portion of a genome rather than being duplicated from parent genes are called de novo genes. These genes, identified by their brief evolution and lack of parent genes, provide an opportunity to study the timeframe in which emerging genes integrate into cellular networks, and how the characteristics of these genes change as they mature into bona fide genes. An article by G. Abrusán provides an opportunity to introduce students to fundamental concepts in evolutionary and comparative genetics and to provide a technical background by which to discuss systems biology approaches when studying the evolutionary process of gene birth. Basic background needed to understand the Abrusán study and details on comparative genomic concepts tailored for a classroom discussion are provided, including discussion questions and a supplemental exercise on navigating a genome database. PMID:24653207

  7. Transcriptional up-regulation of antioxidant genes by PPAR{delta} inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells

    SciTech Connect

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin; Hwang, Jung Seok; Jung, Si Young; Kim, Min Young; Jin, Hanna; Kang, Eun Sil; Woo, Im Sun; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Han, Chang Woo; Seo, Han Geuk

    2011-03-25

    Research highlights: {yields} Activation of PPAR{delta} by GW501516 significantly inhibited Ang II-induced premature senescence in hVSMCs. {yields} Agonist-activated PPAR{delta} suppressed generation of Ang II-triggered ROS with a concomitant reduction in DNA damage. {yields} GW501516 up-regulated expression of antioxidant genes, such as GPx1, Trx1, Mn-SOD and HO-1. {yields} Knock-down of these antioxidant genes abolished the effects of GW501516 on ROS production and premature senescence. -- Abstract: This study evaluated peroxisome proliferator-activated receptor (PPAR) {delta} as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPAR{delta} by GW501516, a specific agonist of PPAR{delta}, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPAR{delta} suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPAR{delta}-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.

  8. Upregulation of Human ST8Sia VI (α2,8-Sialyltransferase) Gene Expression by Physcion in SK-N-BE(2)-C Human Neuroblastoma Cells

    PubMed Central

    Yoon, Hyun-Kyoung; An, Hyun-Kyu; Ko, Min Jung; Kim, Kyoung-Sook; Mun, Seo-Won; Kim, Dong-Hyun; Kim, Cheol Min; Kim, Cheorl-Ho; Choi, Young Whan; Lee, Young-Choon

    2016-01-01

    In this research, we firstly demonstrated that physcion, an anthraquinone derivative, specifically increased the expression of the human α2,8-sialyltransferase (hST8Sia VI) gene in SK-N-BE(2)-C human neuroblastoma cells. To establish the mechanism responsible for the up-regulation of hST8Sia VI gene expression in physcion-treated SK-N-BE(2)-C cells, the putative promoter region of the hST8Sia VI gene was functionally characterized. Promoter analysis with serially truncated fragments of the 5′-flanking region showed that the region between −320 and −240 is crucial for physcion-induced transcription of hST8Sia VI in SK-N-BE(2)-C cells. Putative binding sites for transcription factors Pax-5 and NF-Y are located at this region. The Pax-5 binding site at −262 to −256 was essential for the expression of the hST8Sia VI gene by physcion in SK-N-BE(2)-C cells. Moreover, the transcription of hST8Sia VI induced by physcion in SK-N-BE(2)-C cells was inhibited by extracellular signal-regulated protein kinase (ERK) inhibitor U0126 and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, but not c-Jun N-terminal kinase (JNK) inhibitor SP600125. These results suggest that physcion upregulates hST8Sia VI gene expression via ERK and p38 MAPK pathways in SK-N-BE(2)-C cells. PMID:27490539

  9. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner

    PubMed Central

    Seo, Young-Su; Rojas, Maria R.; Lee, Jung-Youn; Lee, Sang-Won; Jeon, Jong-Seong; Ronald, Pamela; Lucas, William J.; Gilbertson, Robert L.

    2006-01-01

    Genes involved in a viral resistance response in common bean (Phaseolus vulgaris cv. Othello) were identified by inoculating a geminivirus reporter (Bean dwarf mosaic virus expressing the green fluorescent protein), extracting RNA from tissue undergoing the defense response, and amplifying sequences with degenerate R gene primers. One such gene (a TIR-NBS-LRR gene, RT4-4) was selected for functional analysis in which transgenic Nicotiana benthamiana were generated and screened for resistance to a range of viruses. This analysis revealed that RT4-4 did not confer resistance to the reporter geminivirus; however, it did activate a resistance-related response (systemic necrosis) to seven strains of Cucumber mosaic virus (CMV) from pepper or tomato, but not to a CMV strain from common bean. Of these eight CMV strains, only the strain from common bean systemically infected common bean cv. Othello. Additional evidence that RT4-4 is a CMV R gene came from the detection of resistance response markers in CMV-challenged leaves of RT4-4 transgenic plants, and the identification of the CMV 2a gene product as the elicitor of the necrosis response. These findings indicate that RT4-4 functions across two plant families and is up-regulated in a non-virus-specific manner. This experimental approach holds promise for providing insights into the mechanisms by which plants activate resistance responses against pathogens. PMID:16880399

  10. Human alloreactive CTL interactions with gliomas and with those having upregulated HLA expression from exogenous IFN-gamma or IFN-gamma gene modification.

    PubMed

    Read, Susana B; Kulprathipanja, Nisha V; Gomez, German G; Paul, David B; Winston, Ken R; Robbins, Joan M; Kruse, Carol A

    2003-07-01

    By flow cytometry, a panel of 18 primary glioma cell explants exhibited high expression of class I HLA-A, B, C, but class II HLA-DR expression was absent. Freshly isolated normal brain cells displayed little or no HLA antigens. Alloreactive cytotoxic T lymphocytes (aCTL), sensitized to the HLA of the patient, were generated in a one-way mixed lymphocyte response (MLR). The specificity of aCTL was confirmed to be to target cells (patient glioma cells or lymphoblasts) expressing the relevant HLA antigens. However, nontumor patient-specific aCTL did not lyse normal brain cells. Titration of antibodies to HLA class I into cytotoxicity assays blocked lysis of gliomas by aCTL, confirming aCTL T cell receptor (TCR) interactions with the class I antigen on gliomas. Furthermore, aCTL interactions with glioma cells caused their apoptosis. Coincubations of aCTL with gliomas resulted in upregulated cytokine secretion. Importantly, dexamethasone, an immunosuppressive steroid used for brain edema, did not affect aCTL lytic function against tumor, indicating that steroid-dependent patients may benefit from the immunotherapy. We also explored the use of interferon-gamma (IFN-gamma) to increase aCTL tumor recognition. Coincubation of gliomas with exogenous IFN-gamma (500 U/ml, 48 h) caused a 3-fold upregulation of HLA class I and a slight induction of class II antigen expression. Gene-modified glioma cells producing IFN-gamma similarly displayed upregulated HLA expression. Glioma cells incubated with exogenous IFN-gamma or IFN-gamma-transduced glioma cells were more susceptible to lysis by aCTL than their parental counterparts, thus supporting the concept of combining IFN-gamma cytokine gene therapy with adoptive aCTL immunotherapy for brain tumor treatment.

  11. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis

    PubMed Central

    Zhao, Junfei; Sheng, Jinsong; Rubin, Donald H.

    2016-01-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics. PMID:27632082

  12. IL-1β induces up-regulation of BIRC3, a gene involved in chemoresistance to doxorubicin in breast cancer cells.

    PubMed

    Mendoza-Rodríguez, Mónica; Arévalo Romero, Haruki; Fuentes-Pananá, Ezequiel M; Ayala-Sumuano, Jorge-Tonatiuh; Meza, Isaura

    2017-04-01

    Epithelial to mesenchymal transition (EMT) of tumor cells facilitates their progress to metastasis. In the tumor microenvironment the inflammatory cytokine 1β (IL-1β) has been associated with tumor development and invasiveness. IL-1β-induced EMT triggers the expression of markers associated with malignancy. We have recently reported that an IL-1β-highly responsive clone (6D cells) from non-invasive MCF-7 breast cancer cells activates PI3K/Rac and IL-1RI/β-catenin pathways that up-regulate the transcription of genes involved in an EMT-like process. However, a correlation between the EMT program induced by a pro-inflammatory environment, and the acquisition of chemoresistance has not been yet determined in these cells. In this work, we report the expression of cell survival genes after IL-1β stimulation of 6D cells. The expression of CDKN1A, TP63, SFN and, particularly, BIRC3 was found to be up-regulated in a RNA-seq analysis and validated by qPCR. Cells stimulated with IL-1β when challenged with doxorubicin showed resistance to the drug, whereas silencing of BIRC3 decreased viability of the cells treated with the drug. Our present results show that IL-1β confers doxorubicin resistance to breast cancer cells, underlining the importance of an inflammatory environment in cancer malignancy.

  13. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells.

    PubMed

    Lee, Jehn-Chuan; Chung, Li-Chuan; Chen, Yu-Jen; Feng, Tsui-Hsia; Chen, Wen-Tsung; Juang, Horng-Heng

    2015-05-01

    Oral squamous cell carcinoma (OSCC) is a well-known malignancy that accounts for the majority of oral cancers. B-cell translocation gene 2 (BTG2) is an important regulator of cell cycle dynamics in cancer cells. However, the role of BTG2 in OSCC cells and the influences of epigallocatechin-3-gallate (EGCG) on BTG2 gene expressions have not been well evaluated. The objectives of this study were to examine the effect of EGCG-induced BTG2 expression and the potential signal pathways involved. The (3)H-thymidine incorporation and Western-blot assays revealed cell proliferation was attenuated by EGCG via upregulation of BTG2 expression causing cell cycle G1 phase arrest in OSCC cells. BTG2 overexpression decreased tumor cell growth, while BTG2 knockdown illuminated the opposite effect in xenograft animal studies. Overexpressed BTG2 arrested the cell cycle at the G1 phase and downregulated protein expressions of cyclin A, cyclin D, and cyclin E. Western-blot assays indicated that EGCG induced phosphorylation of p38, JNK, and ERK. However, pretreatments with selective mitogen-activated protein kinase (MAPK) inhibitors, SB203580 (p38 inhibitor) and PD0325901 (ERK1/2 inhibitor), significantly suppressed the activation of EGCG on BTG2 expression. Our results indicate that EGCG attenuates cell proliferation of OSCC cells by upregulating BTG2 expression via p38 and ERK pathways.

  14. At least two expressed genes for transcription factors Pitx2 and Rpx are present in common carp and are upregulated during winter acclimatization.

    PubMed

    Kausel, G; Vera, T; Valenzuela, G; Lopez, M; Romero, A; Muller, M; Figueroa, J

    2010-12-01

    The mechanisms of seasonal acclimatization in eurythermal fish such as common carp are not fully understood. Here, we concentrate on the regulation of pituitary factors, as this organ was shown to be highly affected by seasonal changes. We cloned and sequenced two different cDNAs for each of the transcription factors Pitx2 and Rpx, known to play a role in pituitary development. We show that these genes are conserved throughout evolution, to different degrees depending on the specific domain considered. Finally, we show that the cDNAs for both factors are clearly up-regulated during the winter season, in sharp contrast to other regulators such as Pit1 or pituitary hormone genes such as prolactin (prl) and growth hormone (gh). Our results suggest that increased expression of Pitx2 and Rpx contributes to seasonal adaptation of common carp to winter conditions.

  15. Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline

    PubMed Central

    Luengo Hendriks, Cris L; Keränen, Soile VE; Fowlkes, Charless C; Simirenko, Lisa; Weber, Gunther H; DePace, Angela H; Henriquez, Clara; Kaszuba, David W; Hamann, Bernd; Eisen, Michael B; Malik, Jitendra; Sudar, Damir; Biggin, Mark D; Knowles, David W

    2006-01-01

    Background To model and thoroughly understand animal transcription networks, it is essential to derive accurate spatial and temporal descriptions of developing gene expression patterns with cellular resolution. Results Here we describe a suite of methods that provide the first quantitative three-dimensional description of gene expression and morphology at cellular resolution in whole embryos. A database containing information derived from 1,282 embryos is released that describes the mRNA expression of 22 genes at multiple time points in the Drosophila blastoderm. We demonstrate that our methods are sufficiently accurate to detect previously undescribed features of morphology and gene expression. The cellular blastoderm is shown to have an intricate morphology of nuclear density patterns and apical/basal displacements that correlate with later well-known morphological features. Pair rule gene expression stripes, generally considered to specify patterning only along the anterior/posterior body axis, are shown to have complex changes in stripe location, stripe curvature, and expression level along the dorsal/ventral axis. Pair rule genes are also found to not always maintain the same register to each other. Conclusion The application of these quantitative methods to other developmental systems will likely reveal many other previously unknown features and provide a more rigorous understanding of developmental regulatory networks. PMID:17184546

  16. Pharmacological activation of the pyruvate dehydrogenase complex reduces statin-mediated upregulation of FOXO gene targets and protects against statin myopathy in rodents.

    PubMed

    Mallinson, Joanne E; Constantin-Teodosiu, Dumitru; Glaves, Philip D; Martin, Elizabeth A; Davies, Wendy J; Westwood, F Russell; Sidaway, James E; Greenhaff, Paul L

    2012-12-15

    We previously reported that statin myopathy is associated with impaired carbohydrate (CHO) oxidation in fast-twitch rodent skeletal muscle, which we hypothesised occurred as a result of forkhead box protein O1 (FOXO1) mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) gene transcription. Upregulation of FOXO gene targets known to regulate proteasomal and lysosomal muscle protein breakdown was also evident. We hypothesised that increasing CHO oxidation in vivo, using the pyruvate dehydrogenase complex (PDC) activator, dichloroacetate (DCA), would blunt activation of FOXO gene targets and reduce statin myopathy. Female Wistar Hanover rats were dosed daily for 12 days (oral gavage) with either vehicle (control, 0.5% w/v hydroxypropyl-methylcellulose 0.1% w/v polysorbate-80; n = 9), 88 mg( )kg(-1) day(-1) simvastatin (n = 8), 88 mg( )kg(-1) day(-1) simvastatin + 30 mg kg(-1) day(-1) DCA (n = 9) or 88 mg kg(-1) day(-1) simvastatin + 40 mg kg(-1) day(-1) DCA (n = 9). Compared with control, simvastatin reduced body mass gain and food intake, increased muscle fibre necrosis, plasma creatine kinase levels, muscle PDK4, muscle atrophy F-box (MAFbx) and cathepsin-L mRNA expression, increased PDK4 protein expression, and proteasome and cathepsin-L activity, and reduced muscle PDC activity. Simvastatin with DCA maintained body mass gain and food intake, abrogated the myopathy, decreased muscle PDK4 mRNA and protein, MAFbx and cathepsin-L mRNA, increased activity of PDC and reduced proteasome activity compared with simvastatin. PDC activation abolished statin myopathy in rodent skeletal muscle, which occurred at least in part via inhibition of FOXO-mediated transcription of genes regulating muscle CHO utilisation and protein breakdown.

  17. Scriptaid Upregulates Expression of Development-Related Genes, Inhibits Apoptosis, and Improves the Development of Somatic Cell Nuclear Transfer Mini-Pig Embryos.

    PubMed

    Zhang, Li; Huang, Yuemeng; Wu, Yanjun; Si, Jinglei; Huang, Yanna; Jiang, Qinyang; Lan, Ganqiu; Guo, Yafen; Jiang, Hesheng

    2017-02-01

    The present study was undertaken to investigate the mechanisms by which Scriptaid treatment improves the developmental competence of somatic cell nuclear transfer (SCNT) mini-pig embryos in vitro. We found that treatment with 500 nmol/L Scriptaid for 15 hours significantly improved the development of mini-pig SCNT embryos. Compared with the control group, the blastocyst rate was higher (18.3% vs. 10.7%; p < 0.05). The acetylation level on H3K14 of the Scriptaid-treated group was higher compared with the control group in SCNT embryos at two-cell, four-cell, and blastocyst stages (p < 0.05). After Scriptaid treatment, histone deacetylase gene HDAC5 expression level was significantly decreased in four-cell embryos and blastocysts, while the expression levels of the embryos' development-related genes AKT, Oct4, and apoptosis inhibited gene PGC-1α were significantly increased in blastocysts (p < 0.05). The number of apoptotic cells per blastocyst in the Scriptaid-treated group was lower compared with the control group (p < 0.05). These results indicate that Scriptaid repressed HDCA5 gene expression, increased the acetylation level of H3K14, upregulated the expression of AKT, Oct4, and PGC-1α genes, improved embryos' development, and reduced apoptosis, which favors development of the SCNT mini-pig embryos to blastocysts.

  18. Molecular approach to annelid regeneration: cDNA subtraction cloning reveals various novel genes that are upregulated during the large-scale regeneration of the oligochaete, Enchytraeus japonensis.

    PubMed

    Myohara, Maroko; Niva, Cintia Carla; Lee, Jae Min

    2006-08-01

    To identify genes specifically activated during annelid regeneration, suppression subtractive hybridization was performed with cDNAs from regenerating and intact Enchytraeus japonensis, a terrestrial oligochaete that can regenerate a complete organism from small body fragments within 4-5 days. Filter array screening subsequently revealed that about 38% of the forward-subtracted cDNA clones contained genes that were upregulated during regeneration. Two hundred seventy-nine of these clones were sequenced and found to contain 165 different sequences (79 known and 86 unknown). Nine clones were fully sequenced and four of these sequences were matched to known genes for glutamine synthetase, glucosidase 1, retinal protein 4, and phosphoribosylaminoimidazole carboxylase, respectively. The remaining five clones encoded an unknown open-reading frame. The expression levels of these genes were highest during blastema formation. Our present results, therefore, demonstrate the great potential of annelids as a new experimental subject for the exploration of unknown genes that play critical roles in animal regeneration.

  19. The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking.

    PubMed

    Warner, T S; Sinclair, D A; Fitzpatrick, K A; Singh, M; Devlin, R H; Honda, B M

    1998-04-01

    Mutations in a number of genes affect eye colour in Drosophila melanogaster; some of these "eye-colour" genes have been shown to be involved in various aspects of cellular transport processes. In addition, combinations of viable mutant alleles of some of these genes, such as carnation (car) combined with either light (lt) or deep-orange (dor) mutants, show lethal interactions. Recently, dor was shown to be homologous to the yeast gene PEP3 (VPS18), which is known to be involved in intracellular trafficking. We have undertaken to extend our earlier work on the lt gene, in order to examine in more detail its expression pattern and to characterize its gene product via sequencing of a cloned cDNA. The gene appears to be expressed at relatively high levels in all stages and tissues examined, and shows strong homology to VPS41, a gene involved in cellular-protein trafficking in yeast and higher eukaryotes. Further genetic experiments also point to a role for lt in transport processes: we describe lethal interactions between viable alleles of lt and dor, as well as phenotypic interactions (reductions in eye pigment) between allels of lt and another eye-colour gene, garnet (g), whose gene product has close homology to a subunit of the human adaptor complex, AP-3.

  20. Upregulation of three Drosophila homologs of human chromosome 21 genes alters synaptic function: implications for Down syndrome.

    PubMed

    Chang, Karen T; Min, Kyung-Tai

    2009-10-06

    At the neuronal level of Down syndrome (DS) brains, there are evidences of altered shape, number, and density of synapses, as well as aberrant endocytosis associated with accumulation of enlarged endosomes, suggesting that proteins involved in synaptic vesicle recycling may play key roles in DS neurons. However, the exact mechanism underlying those anomalies is not well understood. We hypothesize that overexpression of three genes, dap160/itsn1, synj/synj1, and nla/dscr1, located on human chromosome 21 play important roles in DS neurons. Here, we systematically investigate the effects of multiple gene overexpression on synaptic morphology and endocytosis to identify possible dominant gene or genes. We found that overexpression of individual genes lead to abnormal synaptic morphology, but all three genes are necessary to cause impaired vesicle recycling and affect locomotor vigor. Furthermore, we report that dap160 overexpression alters the subcellular distribution of synaptojanin, and overexpression of nla regulates the phosphoinositol 5' phosphatase activity of synaptojanin. These findings imply that restoring the level of any one of these genes may reduce endocytic defects seen in DS.

  1. Upregulation of three Drosophila homologs of human chromosome 21 genes alters synaptic function: Implications for Down syndrome

    PubMed Central

    Chang, Karen T.; Min, Kyung-Tai

    2009-01-01

    At the neuronal level of Down syndrome (DS) brains, there are evidences of altered shape, number, and density of synapses, as well as aberrant endocytosis associated with accumulation of enlarged endosomes, suggesting that proteins involved in synaptic vesicle recycling may play key roles in DS neurons. However, the exact mechanism underlying those anomalies is not well understood. We hypothesize that overexpression of three genes, dap160/itsn1, synj/synj1, and nla/dscr1, located on human chromosome 21 play important roles in DS neurons. Here, we systematically investigate the effects of multiple gene overexpression on synaptic morphology and endocytosis to identify possible dominant gene or genes. We found that overexpression of individual genes lead to abnormal synaptic morphology, but all three genes are necessary to cause impaired vesicle recycling and affect locomotor vigor. Furthermore, we report that dap160 overexpression alters the subcellular distribution of synaptojanin, and overexpression of nla regulates the phosphoinositol 5′ phosphatase activity of synaptojanin. These findings imply that restoring the level of any one of these genes may reduce endocytic defects seen in DS. PMID:19805187

  2. Limited gene misregulation is exacerbated by allele-specific upregulation in lethal hybrids between Drosophila melanogaster and Drosophila simulans.

    PubMed

    Wei, Kevin H-C; Clark, Andrew G; Barbash, Daniel A

    2014-07-01

    Misregulation of gene expression is often observed in interspecific hybrids and is generally attributed to regulatory incompatibilities caused by divergence between the two genomes. However, it has been challenging to distinguish effects of regulatory divergence from secondary effects including developmental and physiological defects common to hybrids. Here, we use RNA-Seq to profile gene expression in F1 hybrid male larvae from crosses of Drosophila melanogaster to its sibling species D. simulans. We analyze lethal and viable hybrid males, the latter produced using a mutation in the X-linked D. melanogaster Hybrid male rescue (Hmr) gene and compare them with their parental species and to public data sets of gene expression across development. We find that Hmr has drastically different effects on the parental and hybrid genomes, demonstrating that hybrid incompatibility genes can exhibit novel properties in the hybrid genetic background. Additionally, we find that D. melanogaster alleles are preferentially affected between lethal and viable hybrids. We further determine that many of the differences between the hybrids result from developmental delay in the Hmr(+) hybrids. Finally, we find surprisingly modest expression differences in hybrids when compared with the parents, with only 9% and 4% of genes deviating from additivity or expressed outside of the parental range, respectively. Most of these differences can be attributed to developmental delay and differences in tissue types. Overall, our study suggests that hybrid gene misexpression is prone to overestimation and that even between species separated by approximately 2.5 Ma, regulatory incompatibilities are not widespread in hybrids.

  3. Cellular uptake pathways of lipid-modified cationic polymers in gene delivery to primary cells.

    PubMed

    Hsu, Charlie Y M; Uludağ, Hasan

    2012-11-01

    Hydrophobic modifications have emerged as a promising approach to improve the efficiency of non-viral gene delivery vectors (GDV). Functional GDVs from non-toxic polymers have been created with this approach but the mechanism(s) behind lipid-mediated enhancement in transfection remains to be clarified. Using a linoleic acid-substituted 2 kDa polyethylenimine (PEI2LA), we aimed to define the cellular uptake pathways and intracellular trafficking of plasmid DNA in normal human foreskin fibroblast cells. Several pharmacological compounds were applied to selectively inhibit uptake by clathrin-mediated endocytosis (CME), caveolin-mediated endocytosis (CvME) and macropinocytosis. We found that PEI2LA complexes were taken up predominantly through CME, and to a lesser extent by CvME. In contrast, its precursor molecule, PEI2 complexes was internalized primarily by CvME and macropinocytosis. The commonly used 25 kDa PEI 25 complexes utilized all endocytic pathways, suggesting its efficiency is derived from a different set of transfection pathways than PEI2LA. We further applied several endosome disruptive agents and found that hypertonic media enhanced the transfection of PEI2LA by 6.5-fold. We infer that lipid substitution changes the normal uptake pathways significantly and transfection with hydrophobically modified GDVs may be further enhanced by incorporating endosome disruptive elements into vector design.

  4. Engineered cellular gene-replacement platform for selective and inducible proteolytic profiling

    PubMed Central

    Morgan, Charles W.; Diaz, Juan E.; Zeitlin, Samantha G.; Gray, Daniel C.; Wells, James A.

    2015-01-01

    Cellular demolition during apoptosis is completed by executioner caspases, that selectively cleave more than 1,500 proteins but whose individual roles are challenging to assess. Here, we used an optimized site-specific and inducible protease to examine the role of a classic apoptotic node, the caspase-activated DNase (CAD). CAD is activated when caspases cleave its endogenous inhibitor ICAD, resulting in the characteristic DNA laddering of apoptosis. We describe a posttranscriptional gene replacement (PTGR) approach where endogenous biallelic ICAD is knocked down and simultaneously replaced with an engineered allele that is susceptible to inducible cleavage by tobacco etch virus protease. Remarkably, selective activation of CAD alone does not induce cell death, although hallmarks of DNA damage are detected in human cancer cell lines. Our data strongly support that the highly cooperative action of CAD and inhibition of DNA repair systems are critical for the DNA laddering phenotype in apoptosis. Furthermore, the PTGR approach provides a general means for replacing wild-type protein function with a precisely engineered mutant at the transcriptional level that should be useful for cell engineering studies. PMID:26106156

  5. Nuclear FAK: a New Mode of Gene Regulation from Cellular Adhesions

    PubMed Central

    Lim, Ssang-Taek Steve

    2013-01-01

    Focal adhesion kinase (FAK) is a protein tyrosine kinase (PTK) crucial in regulation of cell migration and proliferation. In addition to its canonical roles as a cytoplasmic kinase downstream of integrin and growth factor receptor signaling, recent studies revealed new aspects of FAK action in the nucleus. Nuclear FAK promotes p53 and GATA4 degradation via ubiquitination, resulting in enhanced cell proliferation and reduced inflammatory responses. FAK can also serve as a co-transcriptional regulator that alters a gene transcriptional activity. These findings established a new paradigm of FAK signaling from cellular adhesions to the nucleus. Although physiological stimuli for controlling FAK nuclear localization have not been completely characterized, FAK shuttles from focal adhesions to the nucleus to directly convey extracellular signals. Interestingly, nuclear translocation of FAK becomes prominent in kinase-inhibited conditions such as in de-adhesion and pharmacological FAK inhibition, while a small fraction of nuclear FAK is observed a normal growth condition. In this review, roles of nuclear FAK in regulating transcription factors will be discussed. Furthermore, a potential use of a pharmacological FAK inhibitor to target nuclear FAK function in diseases such as inflammation will be emphasized. PMID:23686429

  6. PPAR{alpha} gene expression is up-regulated by LXR and PXR activators in the small intestine

    SciTech Connect

    Inoue, Jun; Satoh, Shin-ichi; Kita, Mariko; Nakahara, Mayuko; Hachimura, Satoshi; Miyata, Masaaki; Nishimaki-Mogami, Tomoko; Sato, Ryuichiro

    2008-07-11

    LXR, PXR, and PPAR{alpha} are members of a nuclear receptor family which regulate the expression of genes involved in lipid metabolism. Here, we show the administration of T0901317 stimulates PPAR{alpha} gene expression in the small intestine but not in the liver of both normal and FXR-null mice. The administration of LXR specific ligand GW3965, or PXR specific ligand PCN has the same effect, indicating that ligand-dependent activation of LXR and PXR, but not FXR, is responsible for the increased gene expression of PPAR{alpha} in the mouse small intestine.

  7. Identification of SNPs in Cellular Retinol Binding Protein 1 and Cellular Retinol Binding Protein 3 Genes and Their Associations with Laying Performance Traits in Erlang Mountainous Chicken

    PubMed Central

    Wang, Yan; Xiao, Li-Hua; Zhao, Xiao-Ling; Liu, Yi-Ping; Zhu, Qing

    2014-01-01

    CRBP1 (cellular retinol binding protein 1) and CRBP3 (cellular retinol binding protein 3), are important components of the retinoid signaling pathway and take part in vitamin A absorption, transport and metabolism. Based on the role of vitamin A in chicken laying performance, we investigated the polymorphism of CRBP1 and CRBP3 genes in 349 chickens using single strand conformation polymorphism and DNA sequencing methods. Only one polymorphism was identified in the third intron of CRBP1, two polymorphisms were detected in CRBP3; they were located in the second intron and the third intron respectively. The association studies between these three SNPs and laying performance traits were performed in Erlang mountainous chicken. Notably, the SNP g.14604G>T of CRBP1 was shown to be significantly associated with body weight at first egg (BWFE), age at first egg (AFE), weight at first egg (WFE) and total number of eggs with 300 age (EN). The CRBP3 polymorphism g.934C>G was associated with AFE, and the g.1324A>G was associated with AFE and BWFE, but none of these polymorphisms were associated with egg quality traits. Haplotype combinations constructed on these two SNPs of CRBP3 gene were associated with BWFE and AFE. In particular, diplotype H2H2 had positive effect on AFE, BWFE, EN, and average egg-laying interval. We herein describe for the first time basic research on the polymorphism of chicken CRBP1 and CRBP3 genes that is predictive of genetic potential for laying performance in chicken. PMID:25083100

  8. Cellular RNA homologous to the Abelson murine leukemia virus transforming gene: expression and relationship to the viral sequence.

    PubMed Central

    Wang, J Y; Baltimore, D

    1983-01-01

    To examine the expression of the cellular homolog of the Abelson murine leukemia virus transforming gene (the v-abl sequence), a DNA probe representing the v-abl sequence was prepared. The probe detected two cytoplasmic polyadenylic acid-containing c-abl RNAs of about 6.5 and 5.5 kilobases in a variety of rodent cells, and slightly larger RNAs were detected in human cells. These two RNA species were found in all normal tissues or cell lines examined, but at differing concentrations: liver cells had the least, fibroblastic cell lines had the most. By using a probe able to detect the cellular but not the viral gene, the two RNAs were shown to be present in Abelson murine leukemia virus-transformed cells at levels found either in their untransformed counterparts or in similar cell types transformed by other means. The target cells of the virus have a somewhat elevated level of the two RNAs although expression of the c-abl gene is not restricted to these cells. The v-abl sequence lacks 0.35 and 0.85 kilobases of the c-abl RNA on the 5' and 3' ends, respectively. Thus, the Abelson murine leukemia virus transforming gene is an internal fragment of the transcript of a normal cellular gene. Images PMID:6306446

  9. Cloning and characterization of squalene synthase gene from Poria cocos and its up-regulation by methyl jasmonate.

    PubMed

    Wang, Jian-Rong; Lin, Jun-Fang; Guo, Li-Qiong; You, Lin-Feng; Zeng, Xian-Lu; Wen, Jia-Ming

    2014-02-01

    Squalene synthase (SQS) catalyzes the condensation of two molecules of farnesyl diphosphate to give presqualene diphosphate and the subsequent rearrangement to form squalene. The gene encoding squalene synthase was cloned from Poria cocos by degenerate PCR and inverse PCR. The open reading frame of the gene is 1,497 bp, which encodes 499 amino acid residues. A phylogenetic analysis revealed that P. cocos SQS belonged to the fungus group, and was more closely related to the SQS of Ganoderma lucidum than other fungi. The treatment of P. cocos with methyl jasmonate (MeJA) significantly enhanced the transcriptional level of P. cocos sqs gene and the content of squalene in P. cocos. The transcriptional level of sqs gene was approximately fourfold higher than the control sample and the squalene content reached 128.62 μg/g, when the concentration of MeJA was 300 μM after 72 h induction.

  10. Temporal regulation of global gene expression and cellular morphology in Xenopus kidney cells in response to clinorotation

    NASA Astrophysics Data System (ADS)

    Kitamoto, Junko; Fukui, Akimasa; Asashima, Makoto

    Here, we report changes gene expression and morphology of the renal epithelial cell line, A6, which was derived from Xenopus laevis adult kidney that had been induced by long-term culturing with a three-dimensional clinostat. An oligo microarray analysis on the A6 cells showed that mRNA levels for 52 out of 8091 genes were significantly altered in response to clinorotation. On day 5, there was no dramatic change in expression level, but by day 8 and day 10, either upregulation or downregulation of gene expression became evident. By day 15, the expression levels of 18 out of 52 genes had returned to the original levels, while the remaining 34 genes maintained the altered levels of expression. Quantitative analyses of gene expression by real-time PCR confirmed that changes in the mRNA levels of selected genes were found only under clinorotation and not under hypergravity (7 g) or ground control. Morphological changes including loss of dome-like structures and disorganization of both E-cadherin adherence junctions and cortical actin were also observed after 10 days of culturing with clinorotation. These results revealed that the expression of selected genes was altered specifically in A6 cells cultured under clinorotation.

  11. Cold acclimation-induced up-regulation of the ribosomal protein L7 gene in the freeze tolerant wood frog, Rana sylvatica.

    PubMed

    Wu, Shaobo; De Croos, J N Amritha; Storey, Kenneth B

    2008-11-15

    Natural freezing survival by the wood frog, Rana sylvatica, involves multiple organ-specific changes in gene expression. The present study used differential display PCR to find cold-responsive genes in wood frog skin. A cDNA was retrieved from skin that was in higher amounts in cold- versus warm-acclimated frogs. The cDNA was used to probe a wood frog liver cDNA library and retrieve a long sequence that, after the further application of 5'RACE, was shown to encode the full sequence of the ribosomal large subunit protein 7 (RPL7) (GenBank accession number AF175983). Wood frog RPL7 contained 246 amino acids and shared 90% identity with Xenopus laevis RPL7, 82-83% with chicken and zebrafish homologues, and 79% with mammalian RPL7. Multiple binding domains found in human RPL7 showed differing degrees of conservation in the frog protein. Transcript levels of rpl7 were elevated up to 4-fold in skin of cold-acclimated frogs as compared with warm-acclimated animals. Organ-specific responses by rpl7 transcripts also occurred when frogs were given survivable freezing exposures. Transcripts rose by 1.8-3.3 fold in brain and skeletal muscle during freezing but were unaffected in central organs such as liver and heart. Up-regulation of rpl7 also occurred in brain of anoxia-exposed frogs and RPL7 protein levels increased strongly in heart under both freezing and dehydration stresses. Cold- and freezing-responsive up-regulation of the rpl7 gene and RPL7 protein in selected organs suggests that targeted changes in selected ribosomal proteins may be an integral part of natural freeze tolerance.

  12. PI3K-PTEN dysregulation leads to mTOR-driven upregulation of the core clock gene BMAL1 in normal and malignant epithelial cells.

    PubMed

    Matsumoto, Camila S; Almeida, Luciana O; Guimarães, Douglas M; Martins, Manoela D; Papagerakis, Petros; Papagerakis, Silvana; Leopoldino, Andreia M; Castilho, Rogerio M; Squarize, Cristiane H

    2016-07-05

    Dysfunctional clock signaling is observed in a variety of pathological conditions. Many members of the clock gene family are upregulated in tumor cells. Here, we explored the consequences of a commonly disrupted signaling pathway in head and neck cancer on the regulation of circadian clock genes. PTEN is a key molecular controller of the PI3K signaling, and loss of PTEN function is often observed in a variety of cancers. Our main goal was to determine whether PTEN regulates circadian clock signaling. We found that oxidation-driven loss of PTEN function resulted in the activation of mTOR signaling and activation of the core clock protein BMAL1 (also known as ARNTL). The PTEN-induced BMAL1 upregulation was further confirmed using small interference RNA targeting PTEN, and in vivo conditional depletion of PTEN from the epidermis. We observed that PTEN-driven accumulation of BMAL1 was mTOR-mediated and that administration of Rapamycin, a specific mTOR inhibitor, resulted in in vivo rescue of normal levels of BMAL1. Accumulation of BMAL1 by deletion of PER2, a Period family gene, was also rescued upon in vivo administration of mTOR inhibitor. Notably, BMAL1 regulation requires mTOR regulatory protein Raptor and Rictor. These findings indicate that mTORC1 and mTORC2 complex plays a critical role in controlling BMAL1, establishing a connection between PI3K signaling and the regulation of circadian rhythm, ultimately resulting in deregulated BMAL1 in tumor cells with disrupted PI3K signaling.

  13. Rosiglitazone but not losartan prevents Nrf-2 dependent CD36 gene expression up-regulation in an in vivo atherosclerosis model

    PubMed Central

    Hernandez-Trujillo, Y; Rodriguez-Esparragon, F; Macias-Reyes, A; Caballero-Hidalgo, A; Rodriguez-Perez, Jose C

    2008-01-01

    Background Thiazolidinediones exert anti-inflammatory and anti-oxidative roles and attenuate atherosclerosis by mechanisms partially independent of their metabolizing actions. High doses of angiotensin type 1 receptor (AT1R) blocker losartan (LST) seem to promote fat cell formation by preserving PPARγ activity. Methods C57BL/6J diet-induced atherosclerotic susceptible mice randomly received a normal or a high-fat high-cholesterol (HFHC) diet and were treated with rosiglitazone (RG), LST or a vehicle for 12 weeks. Results HFHC was associated with increased PPARγ gene expression without an over regulation of PPARγ responsive genes, whereas RG and LST treatments were found to maintain PPARγ activity without resulting in increased PPARγ gene expression. A better anti-inflammatory and antioxidant profile in mice treated with RG regarding LST was observed in spite of a similar PPARγ preserved activity. Chromatin immunoprecipitation (ChIP) assays revealed that animals under HFHC diet treated with RG showed a significant nuclear factor erythroid 2-like 2 (Nrf2)-dependent down-regulation of the expression of the CD36 gene. Conclusion The PPARγ agonist RG exerts antioxidant properties that significantly reduced Nrf-2-dependent CD-36 up-regulation in mice under HFHC diet. Because LST treatment was also associated with a preserved PPARγ activity, our data suggests that these RG antioxidant effects are partially independent of its PPARγ metabolizing properties. PMID:18302760

  14. Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens.

    PubMed Central

    Kim, Mijung; Robich, Rebecca M.; Rinehart, Joseph P.; Denlinger, David L.

    2007-01-01

    Two actin genes cloned from Culex pipiens L. are upregulated during adult diapause. Though actins 1 and 2 were expressed throughout diapause, both genes were most highly expressed early in diapause. These changes in gene expression were accompanied by a conspicuous redistribution of polymerized actin that was most pronounced in the midguts of diapausing mosquitoes that were exposed to low temperature. In nondiapausing mosquitoes reared at 25°C and in diapausing mosquitoes reared at 18°C, polymerized actin was clustered at high concentrations at the intersections of the muscle fibers that form the midgut musculature. When adults 7–10 days post-eclosion were exposed to low temperature (-5°C for 12h), the polymerized actin was evenly distributed along the muscle fibers in both nondiapausing and diapausing mosquitoes. Exposure of older adults (1month post-eclosion) to low temperature (−5°C for 12h) elicited an even greater distribution of polymerized actin, an effect that was especially pronounced in diapausing mosquitoes. These changes in gene expression and actin distribution suggest a role for actins in enhancing survival of diapausing adults during the low temperatures of winter by fortification of the cytoskeleton. PMID:17078965

  15. Correlation of Glucocorticoid-mediated E4BP4 upregulation with altered expression of pro- and anti-apoptotic genes in CEM human lymphoblastic leukemia cells

    PubMed Central

    Beach, Jessica A.; Nary, Laura J.; Hovanessian, Rebeka; Medh, Rheem D.

    2014-01-01

    In C.elegans, motoneuron apoptosis is regulated via a ces-2 – ces-1 – egl-1 pathway. We tested whether human CEM lymphoblastic leukemia cells undergo apoptosis via an analogous pathway. We have previously shown that E4BP4, a ces-2 ortholog, mediates glucocorticoid (GC)-dependent upregulation of BIM, an egl-1 ortholog, in GC-sensitive CEM C7-14 cells and in CEM C1-15 mE#3 cells, which are sensitized to GCs by ectopic expression of E4BP4. In the present study, we demonstrate that the human ces-1 orthologs, SLUG and SNAIL, are not significantly repressed in correlation with E4BP4 expression. Expression of E4BP4 homologs, the PAR family genes, especially HLF, encoding a known anti-apoptotic factor, was inverse to that of E4BP4 and BIM. Expression of pro- and anti-apoptotic genes in CEM cells was analyzed via an apoptosis PCR Array. We identified BIRC3 and BIM as genes whose expression paralleled that of E4BP4, while FASLG, TRAF4, BCL2A1, BCL2L1, BCL2L2 and CD40LG as genes whose expression was opposite to that of E4BP4. PMID:25101525

  16. A Single-Cell Gene-Expression Profile Reveals Inter-Cellular Heterogeneity within Human Monocyte Subsets

    PubMed Central

    Gren, Susanne T.; Rasmussen, Thomas B.; Janciauskiene, Sabina; Håkansson, Katarina; Gerwien, Jens G.; Grip, Olof

    2015-01-01

    Human monocytes are a heterogeneous cell population classified into three different subsets: Classical CD14++CD16-, intermediate CD14++CD16+, and non-classical CD14+CD16++ monocytes. These subsets are distinguished by their differential expression of CD14 and CD16, and unique gene expression profile. So far, the variation in inter-cellular gene expression within the monocyte subsets is largely unknown. In this study, the cellular variation within each human monocyte subset from a single healthy donor was described by using a novel single-cell PCR gene-expression analysis tool. We investigated 86 different genes mainly encoding cell surface markers, and proteins involved in immune regulation. Within the three human monocyte subsets, our descriptive findings show multimodal expression of key immune response genes, such as CD40, NFⱪB1, RELA, TLR4, TLR8 and TLR9. Furthermore, we discovered one subgroup of cells within the classical monocytes, which showed alterations of 22 genes e.g. IRF8, CD40, CSF1R, NFⱪB1, RELA and TNF. Additionally one subgroup within the intermediate and non-classical monocytes also displayed distinct gene signatures by altered expression of 8 and 6 genes, respectively. Hence the three monocyte subsets can be further subdivided according to activation status and differentiation, independently of the traditional classification based on cell surface markers. Demonstrating the use and the ability to discover cell heterogeneity within defined populations of human monocytes is of great importance, and can be useful in unravelling inter-cellular variation in leukocyte populations, identifying subpopulations involved in disease pathogenesis and help tailor new therapies. PMID:26650546

  17. Identification and Expression Analysis of Upregulated Genes in the Resting Egg-Producing Water Flea (Daphnia pulex).

    PubMed

    Takahashi, Tomoko; Ohnuma, Masaaki

    2016-02-01

    Water fleas (Daphnia pulex) normally produce subitaneous eggs that initiate development immediately after oviposition. However, in response to habitat degradation, resting eggs are produced, which are enclosed in a sturdy outer envelope (ephippium) and can survive in harsh environments for an extended time. To understand the molecular mechanism underlying resting egg production in D. pulex, we investigated the genes whose expression patterns played a role in the production and identified the following six candidate genes: Dpfa-1, Dpfa-2, Dpep-1, Dpep-2, Dpep-3, and Dpep-4. These six genes displayed > 40-fold higher expression levels in resting egg-producing animals compared with those in subitaneous egg-producing animals at the period when the ovaries were mature. Dpfa-1 and Dpfa-2 were expressed in the fat cells, and their expression patterns were synchronized with the development of resting egg oocytes in the ovary. In contrast, Dpep-1-4 were expressed in the morphologically altered epidermal cells of the brood chamber with the formation of the ephippium, and their expression patterns were also related to ephippium formation. Our results suggest that the former two genes encode the resting egg-specific components produced by fat cells and that the latter four genes encode the components related to the ephippium formation synthesized by epidermal cells.

  18. Up-regulation of the alligator CYP3A77 gene by toxaphene and dexamethasone and its short term effect on plasma testosterone concentrations.

    PubMed

    Gunderson, M P; Kohno, S; Blumberg, B; Iguchi, T; Guillette, L J

    2006-06-30

    In this study we describe an alligator hepatic CYP3A gene, CYP3A77, which is inducible by dexamethasone and toxaphene. CYP3A plays a broad role in biotransforming both exogenous compounds and endogenous hormones such as testosterone and estradiol. Alligators collected from sites in Florida that are contaminated with organochlorine compounds exhibit differences in sex steroid concentrations. Many organochlorine compounds induce CYP3A expression in other vertebrates; hence, CYP3A induction by organochlorine contaminants could increase biotransformation and clearance of sex steroids by CYP3A and provide a plausible mechanism for the lowering of endogenous sex steroid concentrations in alligator plasma. We used real time PCR to examine whether known and suspected CYP3A inducers (dexamethasone, metyrapone, rifampicin, and toxaphene) up-regulate steady state levels of hepatic CYP3A77 transcript to determine if induction patterns in female juvenile alligators are similar to those reported in other vertebrates and whether toxaphene, an organochlorine compound found in high concentrations in Lake Apopka alligators, induces this gene. Estrogen receptor alpha (ERalpha), estrogen receptor beta (ERbeta), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), and steroid-xenobiotic receptor (SXR) transcripts were also measured to determine whether any of these nuclear receptors are also regulated by these compounds in alligators. Dexamethasone (4.2-fold) and toxaphene (3.5-fold) significantly induced CYP3A77 gene transcript, whereas rifampicin (2.8-fold) and metyrapone (2.1-fold) up-regulated ERbeta after 24h. None of the compounds significantly up-regulated AR, ERalpha, GR, PR, or SXR over this time period. Plasma testosterone (T) did not change significantly after 24h in alligators from any of the treatment groups. Dexamethasone treated animals exhibited a strong relationship between the 24h plasma T concentrations and CYP3A77 (R(2)=0.9, positive

  19. A sexual shift induced by silencing of a single insulin-like gene in crayfish: ovarian upregulation and testicular degeneration.

    PubMed

    Rosen, Ohad; Manor, Rivka; Weil, Simy; Gafni, Ohad; Linial, Assaf; Aflalo, Eliahu D; Ventura, Tomer; Sagi, Amir

    2010-12-09

    In sequential hermaphrodites, intersexuality occurs naturally, usually as a transition state during sexual re-differentiation processes. In crustaceans, male sexual differentiation is controlled by the male-specific androgenic gland (AG). An AG-specific insulin-like gene, previously identified in the red-claw crayfish Cherax quadricarinatus (designated Cq-IAG), was found in this study to be the prominent transcript in an AG cDNA subtractive library. In C. quadricarinatus, sexual plasticity is exhibited by intersex individuals in the form of an active male reproductive system and male secondary sex characters, along with a constantly arrested ovary. This intersexuality was exploited to follow changes caused by single gene silencing, accomplished via dsRNA injection. Cq-IAG silencing induced dramatic sex-related alterations, including male feature feminization, a reduction in sperm production, extensive testicular degeneration, expression of the vitellogenin gene, and accumulation of yolk proteins in the developing oocytes. Upon silencing of the gene, AG cells hypertrophied, possibly to compensate for low hormone levels, as reflected in the poor production of the insulin-like hormone (and revealed by immunohistochemistry). These results demonstrate both the functionality of Cq-IAG as an androgenic hormone-encoding gene and the dependence of male gonad viability on the Cq-IAG product. This study is the first to provide evidence that silencing an insulin-like gene in intersex C. quadricarinatus feminizes male-related phenotypes. These findings, moreover, contribute to the understanding of the regulation of sexual shifts, whether naturally occurring in sequential hermaphrodites or abnormally induced by endocrine disruptors found in the environment, and offer insight into an unusual gender-related link to the evolution of insulins.

  20. Conditional VHL Gene Deletion Causes Hypoglycemic Death Associated with Disproportionately Increased Glucose Uptake by Hepatocytes through an Upregulated IGF-I Receptor

    PubMed Central

    Kurabayashi, Atsushi; Kakinuma, Yoshihiko; Morita, Taku; Inoue, Keiji; Sato, Takayuki; Furihata, Mutsuo

    2013-01-01

    Our conditional VHL knockout (VHL-KO) mice, having VHL gene deletion induced by tamoxifen, developed severe hypoglycemia associated with disproportionately increased storage of PAS-positive substances in the liver and resulted in the death of these mice. This hypoglycemic state was neither due to impaired insulin secretion nor insulin receptor hypersensitivity. By focusing on insulin-like growth factor I (IGF-I), which has a similar effect on glucose metabolism as the insulin receptor, we demonstrated that IGF-I receptor (IGF-IR) protein expression in the liver was upregulated in VHL-KO mice compared to that in the mice without VHL deletion, as was the expression of glucose transporter (GLUT) 1. The interaction of the receptor for activated C kinase (RACK) 1, which predominantly binds to VHL, was enhanced in VHL-KO livers with IGF-IR, because VHL deletion increased free RACK1 and facilitated the IGF-IR-RACKI interaction. An IGF-IR antagonist retarded hypoglycemic progression and sustained an euglycemic state. These IGF-IR antagonist effects on restoring blood glucose levels also attenuated PAS-positive substance storage in the liver. Because the effect of IGF-I on HIF-1α protein synthesis is mediated by IGF-IR, our results indicated that VHL inactivation accelerated hepatic glucose storage through the upregulation of IGF-IR and GLUT1 and that IGF-IR was a key regulator in VHL-deficient hepatocytes. PMID:23874892

  1. The neuronal ceroid lipofuscinosis Cln8 gene expression is developmentally regulated in mouse brain and up-regulated in the hippocampal kindling model of epilepsy

    PubMed Central

    Lonka, Liina; Aalto, Antti; Kopra, Outi; Kuronen, Mervi; Kokaia, Zaal; Saarma, Mart; Lehesjoki, Anna-Elina

    2005-01-01

    Background The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by accumulation of autofluorescent material in many tissues, especially in neurons. Mutations in the CLN8 gene, encoding an endoplasmic reticulum (ER) transmembrane protein of unknown function, underlie NCL phenotypes in humans and mice. The human phenotype is characterized by epilepsy, progressive psychomotor deterioration and visual loss, while motor neuron degeneration (mnd) mice with a Cln8 mutation show progressive motor neuron dysfunction and retinal degeneration. Results We investigated spatial and temporal expression of Cln8 messenger ribonucleic acid (mRNA) using in situ hybridization, reverse transcriptase polymerase chain reaction (RT-PCR) and northern blotting. Cln8 is ubiquitously expressed at low levels in embryonic and adult tissues. In prenatal embryos Cln8 is most prominently expressed in the developing gastrointestinal tract, dorsal root ganglia (DRG) and brain. In postnatal brain the highest expression is in the cortex and hippocampus. Expression of Cln8 mRNA in the central nervous system (CNS) was also analyzed in the hippocampal electrical kindling model of epilepsy, in which Cln8 expression was rapidly up-regulated in hippocampal pyramidal and granular neurons. Conclusion Expression of Cln8 in the developing and mature brain suggests roles for Cln8 in maturation, differentiation and supporting the survival of different neuronal populations. The relevance of Cln8 up-regulation in hippocampal neurons of kindled mice should be further explored. PMID:15826318

  2. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway

    PubMed Central

    Awortwe, Charles; Manda, Vamshi K.; Avonto, Cristina; Khan, Shabana I.; Khan, Ikhlas A.; Walker, Larry A.; Bouic, Patrick J.; Rosenkranz, Bernd

    2015-01-01

    This study investigated the mechanism underlying Echinacea-mediated induction of CYP1A2, CYP3A4 and MDR1 in terms of human pregnane X receptor (PXR) activation. Crude extracts and fractions of Echinacea purpurea were tested for PXR activation in HepG2 cells by a reporter gene assay. Quantitative real-time PCR was carried out to determine their effects on CYP1A2 and CYP3A4 mRNA expressions. Capsules and fractions were risk ranked as high, intermediate and remote risk of drug-metabolizing enzymes induction based on EC50 values determined for respective CYPs. Fractions F1, F2 and capsule (2660) strongly activated PXR with 5-, 4- and 3.5-fold increase in activity, respectively. Echinacea preparations potentiated up-regulation of CYP1A2, CYP3A4 and MDR1 via PXR activation. Thus E. purpurea preparations cause herb–drug interaction by up-regulating CYP1A2, CYP3A4 and P-gp via PXR activation. PMID:25377539

  3. Massive bowel resection upregulates the intestinal mRNA expression levels of cellular retinol-binding protein II and apolipoprotein A-IV and alters the intestinal vitamin A status in rats.

    PubMed

    Hebiguchi, Taku; Mezaki, Yoshihiro; Morii, Mayako; Watanabe, Ryo; Yoshikawa, Kiwamu; Miura, Mitsutaka; Imai, Katsuyuki; Senoo, Haruki; Yoshino, Hiroaki

    2015-03-01

    Short bowel (SB) syndrome causes the malabsorption of various nutrients. Among these, vitamin A is important for a number of physiological activities. Vitamin A is absorbed by epithelial cells of the small intestine and is discharged into the lymphatic vessels as a component of chylomicrons and is delivered to the liver. In the present study, we used a rat model of SB syndrome in order to assess its effects on the expression of genes associated with the absorption, transport and metabolism of vitamin A. In the rats with SB, the intestinal mRNA expression levels of cellular retinol-binding protein II (CRBP II, gene symbol Rbp2) and apolipoprotein A-IV (gene symbol Apoa4) were higher than those in the sham-operated rats, as shown by RT-qPCR. Immunohistochemical analysis revealed that absorptive epithelial cells stained positive for both CRBP II and lecithin retinol acyltransferase, which are both required for the effective esterification of vitamin A. In the rats with SB, the retinol content in the ileum and the retinyl ester content in the jejunum were lower than those in the sham-operated rats, as shown by quantitative analysis of retinol and retinyl esters by high performance liquid chromatography. These results suggest that the elevated mRNA expression levels of Rbp2 and Apoa4 in the rats with SB contribute to the effective esterification and transport of vitamin A.

  4. Genes encoding Cher-TPR fusion proteins are predominantly found in gene clusters encoding chemosensory pathways with alternative cellular functions.

    PubMed

    Muñoz-Martínez, Francisco; García-Fontana, Cristina; Rico-Jiménez, Miriam; Alfonso, Carlos; Krell, Tino

    2012-01-01

    Chemosensory pathways correspond to major signal transduction mechanisms and can be classified into the functional families flagellum-mediated taxis, type four pili-mediated taxis or pathways with alternative cellular functions (ACF). CheR methyltransferases are core enzymes in all of these families. CheR proteins fused to tetratricopeptide repeat (TPR) domains have been reported and we present an analysis of this uncharacterized family. We show that CheR-TPRs are widely distributed in GRAM-negative but almost absent from GRAM-positive bacteria. Most strains contain a single CheR-TPR and its abundance does not correlate with the number of chemoreceptors. The TPR domain fused to CheR is comparatively short and frequently composed of 2 repeats. The majority of CheR-TPR genes were found in gene clusters that harbor multidomain response regulators in which the REC domain is fused to different output domains like HK, GGDEF, EAL, HPT, AAA, PAS, GAF, additional REC, HTH, phosphatase or combinations thereof. The response regulator architectures coincide with those reported for the ACF family of pathways. Since the presence of multidomain response regulators is a distinctive feature of this pathway family, we conclude that CheR-TPR proteins form part of ACF type pathways. The diversity of response regulator output domains suggests that the ACF pathways form a superfamily which regroups many different regulatory mechanisms, in which all CheR-TPR proteins appear to participate. In the second part we characterize WspC of Pseudomonas putida, a representative example of CheR-TPR. The affinities of WspC-Pp for S-adenosylmethionine and S-adenosylhomocysteine were comparable to those of prototypal CheR, indicating that WspC-Pp activity is in analogy to prototypal CheRs controlled by product feed-back inhibition. The removal of the TPR domain did not impact significantly on the binding constants and consequently not on the product feed-back inhibition. WspC-Pp was found to be

  5. Does the upstream region possessing MULE-like sequence in rice upregulate PsbS1 gene expression?

    PubMed

    Nuruzzaman, Mohammed; Kanno, Tatsuo; Amada, Rika; Habu, Yoshiki; Kasajima, Ichiro; Ishikawa, Toshiki; Kawai-Yamada, Maki; Uchimiya, Hirofumi

    2014-01-01

    The genomic nucleotide sequences of japonica rice (Sasanishiki and Nipponbare) contained about 2.7-kb unique region at the point of 0.4-kb upstream of the OsPsbS1 gene. In this study, we found that japonica rice with a few exceptions possessing such DNA sequences [denoted to OsMULE-japonica specific sequence (JSS)] is distinct by the presence of Mutator-like-element (MULE). Such sequence was absent in most of indica cultivars and Oryza glaberrima. In OsMULE-JSS1, we noted the presence of possible target site duplication (TSD; CTTTTCCAG) and about 80-bp terminal inverted repeat (TIR) near TSD. We also found the enhancement ofOsPsbS1 mRNA accumulation by intensified light, which was not associated with the DNA methylation status in OsMULE/JSS. In addition, O. rufipogon, possible ancestor of modern rice cultivars was found to compose PsbS gene of either japonica (minor) or indica (major) type. Transient gene expression assay showed that the japonica type promoter elevated a reporter gene activity than indica type.

  6. Sarcosine Up-Regulates Expression of Genes Involved in Cell Cycle Progression of Metastatic Models of Prostate Cancer

    PubMed Central

    Heger, Zbynek; Merlos Rodrigo, Miguel Angel; Michalek, Petr; Polanska, Hana; Masarik, Michal; Vit, Vitezslav; Plevova, Mariana; Pacik, Dalibor; Eckschlager, Tomas; Stiborova, Marie

    2016-01-01

    The effects of sarcosine on the processes driving prostate cancer (PCa) development remain still unclear. Herein, we show that a supplementation of metastatic PCa cells (androgen independent PC-3 and androgen dependent LNCaP) with sarcosine stimulates cells proliferation in vitro. Similar stimulatory effects were observed also in PCa murine xenografts, in which sarcosine treatment induced a tumor growth and significantly reduced weight of treated mice (p < 0.05). Determination of sarcosine metabolism-related amino acids and enzymes within tumor mass revealed significantly increased glycine, serine and sarcosine concentrations after treatment accompanied with the increased amount of sarcosine dehydrogenase. In both tumor types, dimethylglycine and glycine-N-methyltransferase were affected slightly, only. To identify the effects of sarcosine treatment on the expression of genes involved in any aspect of cancer development, we further investigated expression profiles of excised tumors using cDNA electrochemical microarray followed by validation using the semi-quantitative PCR. We found 25 differentially expressed genes in PC-3, 32 in LNCaP tumors and 18 overlapping genes. Bioinformatical processing revealed strong sarcosine-related induction of genes involved particularly in a cell cycle progression. Our exploratory study demonstrates that sarcosine stimulates PCa metastatic cells irrespectively of androgen dependence. Overall, the obtained data provides valuable information towards understanding the role of sarcosine in PCa progression and adds another piece of puzzle into a picture of sarcosine oncometabolic potential. PMID:27824899

  7. Upregulation of the matrix metalloproteinase-1 gene by the Ewing's sarcoma associated EWS-ER81 and EWS-Fli-1 oncoproteins, c-Jun and p300.

    PubMed

    Fuchs, Bruno; Inwards, Carrie Y; Janknecht, Ralf

    2003-10-09

    The mechanisms of action of Ewing's sarcoma (EWS) associated EWS-ETS oncoproteins have largely remained unresolved. Here, we analyzed how two EWS-ETS proteins, EWS-ER81 and EWS-Fli-1, in vitro activate the matrix metalloproteinase (MMP)-1 promoter that is upregulated in a subset of EWSs. EWS-ER81 and EWS-Fli-1 interact with and thereby activate the MMP-1 promoter, which is potentiated by the cofactor p300 and the proto-oncoprotein c-Jun. Further, EWS-ER81 binds to c-Jun in vitro and in vivo. The interaction between c-Jun, p300 and EWS-ER81 or EWS-Fli-1 may also be relevant to the regulation of other yet-to-be-identified genes that are responsible for EWS formation.

  8. Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression.

    PubMed

    Petrenko, Volodymyr; Saini, Camille; Giovannoni, Laurianne; Gobet, Cedric; Sage, Daniel; Unser, Michael; Heddad Masson, Mounia; Gu, Guoqiang; Bosco, Domenico; Gachon, Frédéric; Philippe, Jacques; Dibner, Charna

    2017-02-15

    A critical role of circadian oscillators in orchestrating insulin secretion and islet gene transcription has been demonstrated recently. However, these studies focused on whole islets and did not explore the interplay between α-cell and β-cell clocks. We performed a parallel analysis of the molecular properties of α-cell and β-cell oscillators using a mouse model expressing three reporter genes: one labeling α cells, one specific for β cells, and a third monitoring circadian gene expression. Thus, phase entrainment properties, gene expression, and functional outputs of the α-cell and β-cell clockworks could be assessed in vivo and in vitro at the population and single-cell level. These experiments showed that α-cellular and β-cellular clocks are oscillating with distinct phases in vivo and in vitro. Diurnal transcriptome analysis in separated α and β cells revealed that a high number of genes with key roles in islet physiology, including regulators of glucose sensing and hormone secretion, are differentially expressed in these cell types. Moreover, temporal insulin and glucagon secretion exhibited distinct oscillatory profiles both in vivo and in vitro. Altogether, our data indicate that differential entrainment characteristics of circadian α-cell and β-cell clocks are an important feature in the temporal coordination of endocrine function and gene expression.

  9. Heat-Induced Reactivation of HSV-1 in Latent Mice: Upregulation in the TG of CD83 and Other Immune Response Genes and Their LAT-ICP0 Locus

    PubMed Central

    Clement, Christian; Bhattacharjee, Partha S.; Kaufman, Herbert E.; Hill, James M.

    2009-01-01

    Purpose To determine changes in host gene expression in HSV-1 latent trigeminal ganglia (TG) after hyperthermic stress. Methods Scarified corneas of 6-week-old female BALB/c mice were inoculated with either HSV-1 17Syn+ (high phenotypic reactivator) or 17ΔPst(LAT−) (low phenotypic reactivator) at 104 plaque-forming units/eye. At 28 days after infection, viral reactivation was induced in some of the infected mice with hyperthermic stress, and the mice were killed after 1 hour. Heat-treated uninfected mice served as the control. Labeled cRNA derived from TG-isolated total RNA was hybridized to 430 2.0 chips containing 14,000 mouse genes. Gene expression was confirmed by quantitative real-time PCR. Results There was no difference in gene expression in the non–heat-treated mice. Gene expression in the TG of each of the heat-treated mouse groups (17Syn+, 17ΔPst(LAT−) and uninfected) yielded upregulation of more than twofold of a group of the same genes, designated as heat stress–induced gene expression. Twenty-nine genes (0.2%) were significantly upregulated (2- to 17-fold) when the heat stress–induced gene expression was subtracted from the gene expression of 17Syn+ latent TG relative to 17ΔPst(LAT−) latent TG 1 hour after mouse hyperthermic stress. Nine host adaptive immunity genes comprising Ig molecules, CD83, CD8A, ADA, and CCL8 were the largest subset upregulated, and all were confirmed by real-time PCR. Others identified included genes involved in hypothalamic-pituitary gland functions. Conclusions Hyperthermic stress–induced reactivation of the HSV-1 high phenotypic reactivator can upregulate gene expression involved in B-cell function and in T-cell function. CD83 is implicated in HSV-1 latency, suggesting it could also be involved in immune-mediated mechanisms of viral reactivation. PMID:19151393

  10. Lactoferrin up-regulates intestinal gene expression of brain-derived neurotrophic factors BDNF, UCHL1 and alkaline phosphatase activity to alleviate early weaning diarrhea in postnatal piglets.

    PubMed

    Yang, Changwei; Zhu, Xi; Liu, Ni; Chen, Yue; Gan, Hexia; Troy, Frederic A; Wang, Bing

    2014-08-01

    The molecular mechanisms underlying how dietary lactoferrin (Lf) impacts gut development and maturation and protects against early weaning diarrhea are not well understood. In this study, we supplemented postnatal piglets with an Lf at a dose level of 155 and 285 mg/kg/day from 3 to 38 days following birth. Our findings show that the high dose of Lf up-regulated messenger RNA expression levels of genes encoding brain-derived neurotrophic factor (BDNF) and ubiquitin carboxy-terminal hydrolase L1 (ubiquitin thiolesterase (UCHL1) and, to a lesser extent, glial cell line-derived neurotrophic factor, in the duodenum (P<.05). Piglets in the high and low Lf group had 30% and 7% larger jejunal crypts compared with the control group (P<.05). Escherichia coli 16S rRNA copy number per gram of ascending colon contents was significantly reduced (P=.001), while the copy number of Bifidobacteria and Lactobacillus spp. was not affected. In addition, Lf increased intestinal alkaline phosphatase activity (P<.05) and delayed the onset of food transitional diarrhea, reducing its frequency and duration (P<.05). The incidence of diarrhea in the high and low Lf groups was decreased 54% and 15%, respectively, compared with the control group (P=.035). In summary, these findings provide new evidence that dietary Lf supplementation up-regulated gene expression of BDNF and UCHL1, decreased the colon microbiota of E. coli, improved gut maturation and reduced early weaning diarrhea in piglets. The molecular basis underlying these findings suggests that Lf may enhance gut development and immune function by providing new insight into the gut-brain-microbe axis that has not been previously reported.

  11. Expression of a Serine Protease Gene prC Is Up-Regulated by Oxidative Stress in the Fungus Clonostachys rosea: Implications for Fungal Survival

    PubMed Central

    Liu, Wen-Jing; Zhou, Wei; Tao, Nan; Tu, Hui-Hui; Huang, Xiao-Wei; Yang, Jin-Kui; Zhang, Ke-Qin

    2010-01-01

    Background Soil fungi face a variety of environmental stresses such as UV light, high temperature, and heavy metals. Adaptation of gene expression through transcriptional regulation is a key mechanism in fungal response to environmental stress. In Saccharomyces cerevisiae, the transcription factors Msn2/4 induce stress-mediated gene expression by binding to the stress response element. Previous studies have demonstrated that the expression of extracellular proteases is up-regulated in response to heat shock in fungi. However, the physiological significance of regulation of these extracellular proteases by heat shock remains unclear. The nematophagous fungus Clonostachys rosea can secret an extracellular serine protease PrC during the infection of nematodes. Since the promoter of prC has three copies of the stress response element, we investigated the effect of environmental stress on the expression of prC. Methodology/Principal Findings Our results demonstrated that the expression of prC was up-regulated by oxidants (H2O2 or menadione) and heat shock, most likely through the stress response element. After oxidant treatment or heat shock, the germination of conidia in the wild type strain was significantly higher than that in the prC mutant strain in the presence of nematode cuticle. Interestingly, the addition of nematode cuticle significantly attenuated the production of reactive oxygen species (ROS) induced by oxidants and heat shock in the wild type strain, but not in prC mutant strain. Moreover, low molecule weight (<3 kD) degradation products of nematode cuticle suppressed the inhibitory effect of conidial germination induced by oxidants and heat shock. Conclusions/Significance These results indicate that PrC plays a protective role in oxidative stress in C. rosea. PrC degrades the nematode cuticle to produce degradation products, which in turn offer a protective effect against oxidative stress by scavenging ROS. Our study reveals a novel strategy for fungi to

  12. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells.

    PubMed

    Li, Huige; Xia, Ning; Brausch, Isolde; Yao, Ying; Förstermann, Ulrich

    2004-09-01

    Nitric oxide (NO) produced by endothelial nitric-oxide synthase (eNOS) represents an antithrombotic and anti-atherosclerotic principle in the vasculature. Hence, an enhanced expression of eNOS in response to pharmacological interventions could provide protection against cardiovascular diseases. In EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells (HUVECs), an artichoke leaf extract (ALE) increased the activity of the human eNOS promoter (determined by luciferase reporter gene assay). An organic subfraction from ALE was more potent in this respect than the crude extract, whereas an aqueous subfraction of ALE was without effect. ALE and the organic subfraction thereof also increased eNOS mRNA expression (measured by an RNase protection assay) and eNOS protein expression (determined by Western blot) both in EA.hy 926 cells and in native HUVECs. NO production (measured by NO-ozone chemiluminescence) was increased by both extracts. In organ chamber experiments, ex vivo incubation (18 h) of rat aortic rings with the organic subfraction of ALE enhanced the NO-mediated vasodilator response to acetylcholine, indicating that the up-regulated eNOS remained functional. Caffeoylquinic acids and flavonoids are two major groups of constituents of ALE. Interestingly, the flavonoids luteolin and cynaroside increased eNOS promoter activity and eNOS mRNA expression, whereas the caffeoylquinic acids cynarin and chlorogenic acid were without effect. Thus, in addition to the lipid-lowering and antioxidant properties of artichoke, an increase in eNOS gene transcription may also contribute to its beneficial cardiovascular profile. Artichoke flavonoids are likely to represent the active ingredients mediating eNOS up-regulation.

  13. Tumor necrosis factor alpha activates transcription of the NADPH oxidase organizer 1 (NOXO1) gene and upregulates superoxide production in colon epithelial cells.

    PubMed

    Kuwano, Yuki; Tominaga, Kumiko; Kawahara, Tsukasa; Sasaki, Hidekazu; Takeo, Keiko; Nishida, Kensei; Masuda, Kiyoshi; Kawai, Tomoko; Teshima-Kondo, Shigetada; Rokutan, Kazuhito

    2008-12-15

    NADPH oxidase 1 (Nox1) is a multicomponent enzyme consisting of p22(phox), Nox organizer 1 (NOXO1), Nox1 activator 1, and Rac1. Interleukin-1beta, flagellin, interferon-gamma, and tumor necrosis factor alpha (TNF-alpha) similarly induced Nox1 in a colon cancer cell line (T84), whereas only TNF-alpha fully induced NOXO1 and upregulated superoxide-producing activity by ninefold. This upregulation was canceled by knockdown of NOXO1 with small interfering RNAs. TNF-alpha rapidly phosphorylated p38 mitogen-activated protein kinase and c-Jun N-terminal kinase 1/2, followed by phosphorylation of c-Jun and c-Fos and appearance of an AP-1 binding activity within 30 min. We cloned the 5' flank of the human NOXO1 gene (-3888 to +263 bp), and found that the region between -585 and -452 bp, which contains consensus elements of YY-1, AP-1, and Ets, and the GC-rich region encoding three putative binding sites for SP-1, was crucial for TNF-alpha-dependent promoter activity. Serial mutation analysis of the elements identified an AP-1 binding site (from -561 to -551 bp, agtAAGtcatg) as a crucial element for TNF-alpha-stimulated transcription of the human NOXO1 gene, which was also confirmed by the AP-1 decoy experiments. Thus, TNF-alpha acts as a potent activator of Nox1-based oxidase in colon epithelial cells, suggesting a potential role of this oxidase in inflammation of the colon.

  14. Valproic Acid and Other HDAC Inhibitors Upregulate FGF21 Gene Expression and Promote Process Elongation in Glia by Inhibiting HDAC2 and 3

    PubMed Central

    Wang, Junyu; Wang, Zhifei; Liao, Hsiao-Mei; Wei, Monica; Leeds, Peter

    2016-01-01

    Background: Fibroblast growth factor 21, a novel regulator of glucose and lipid metabolism, has robust protective properties in neurons. However, its expression and function in glia are unknown. Valproic acid, a mood stabilizer and anticonvulsant, is a histone deacetylase inhibitor and a dynamic gene regulator. We investigated whether histone deacetylase inhibition by valproic acid and other inhibitors upregulates fibroblast growth factor 21 expression and, if so, sought to identify the histone deacetylase isoform(s) involved and their role in altering glial cell morphology. Methods: C6 glioma or primary cortical glial cultures were treated with histone deacetylase inhibitors, and fibroblast growth factor 21 levels and length of cell processes were subsequently measured. Histone deacetylase 1, 2, or 3 was also knocked down to detect which isoform was involved in regulating fibroblast growth factor 21 mRNA levels. Finally, knockdown and overexpression of fibroblast growth factor 21 were performed to determine whether it played a role in regulating cell process length. Results: Treatment of C6 cells or primary glial cultures with valproic acid elevated fibroblast growth factor 21 mRNA levels, extended cell process length, and markedly increased acetylated histone-H3 levels. Other histone deacetylase inhibitors including pan- and class I-specific inhibitors, or selective knockdown of histone deacetylase 2 or 3 isoform produced similar effects. Knockdown or overexpression of fibroblast growth factor 21 significantly decreased or increased C6 cell process length, respectively. Conclusions: In glial cell line and primary glia, using pharmacological inhibition and selective gene silencing of histone deacetylases to boost fibroblast growth factor 21 mRNA levels results in elongation of cell processes. Our study provides a new mechanism via which histone deacetylase 2 and 3 participate in upregulating fibroblast growth factor 21 transcription and extending process outgrowth

  15. Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain.

    PubMed

    Saminathan, Aarthi; Sriram, Gopu; Vinoth, Jayasaleen Kumar; Cao, Tong; Meikle, Murray C

    2015-02-01

    To engineer constructs of the periodontal ligament (PDL), human PDL cells were incorporated into a matrix of hyaluronan, gelatin, and type I collagen (COLI) in sample holders (13×1 mm) of six-well Biopress culture plates. The loading dynamics of the PDL were mimicked by applying a cyclic compressive strain of 33.4 kPa (340.6 gm/cm(2)) to the constructs for 1.0 s every 60 s, for 6, 12, and 24 h in a Flexercell FX-4000C Strain Unit. Compression significantly increased the number of nonviable cells and increased the expression of several apoptosis-related genes, including initiator and executioner caspases. Of the 15 extracellular matrix genes screened, most were upregulated at some point after 6-12 h deformation, but all were downregulated at 24 h, except for MMPs1-3 and CTGF. In culture supernatants, matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinases-1 (TIMP-1) protein levels were upregulated at 24 h; receptor activator of nuclear kappa factor B (RANKL), osteoprotegerin (OPG) and fibroblast growth factor-2 (FGF-2) were unchanged; and connective tissue growth factor (CTGF) not detected. The low modulus of elasticity of the constructs was a disadvantage-future mechanobiology studies and tissue engineering applications will require constructs with much higher stiffness. Since the major structural protein of the PDL is COLI, a more rational approach would be to permeabilize preformed COLI scaffolds with PDL-populated matrices.

  16. Introduction of Pea DNA Helicase 45 Into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability And Upregulation Of Stress-responsive Genes Leads To Abiotic Stress Tolerance.

    PubMed

    Augustine, Sruthy Maria; Ashwin Narayan, J; Syamaladevi, Divya P; Appunu, C; Chakravarthi, M; Ravichandran, V; Tuteja, Narendra; Subramonian, N

    2015-05-01

    DNA helicases are motor proteins that play an essential role in nucleic acid metabolism, by providing a duplex-unwinding function. To improve the drought and salinity tolerance of sugarcane, a DEAD-box helicase gene isolated from pea with a constitutive promoter, Port Ubi 2.3 was transformed into the commercial sugarcane variety Co 86032 through Agrobacterium-mediated transformation, and the transgenics were screened for tolerance to soil moisture stress and salinity. The transgene integration was confirmed through polymerase chain reaction, and the V 0 transgenic events showed significantly higher cell membrane thermostability under normal irrigated conditions. The V 1 transgenic events were screened for tolerance to soil moisture stress and exhibited significantly higher cell membrane thermostability, transgene expression, relative water content, gas exchange parameters, chlorophyll content, and photosynthetic efficiency under soil moisture stress compared to wild-type (WT). The overexpression of PDH45 transgenic sugarcane also led to the upregulation of DREB2-induced downstream stress-related genes. The transgenic events demonstrated higher germination ability and better chlorophyll retention than WT under salinity stress. Our results suggest the possibility for development of increased abiotic stress tolerant sugarcane cultivars through overexpression of PDH45 gene. Perhaps this is the first report, which provides evidence for increased drought and salinity tolerance in sugarcane through overexpression of PDH45.

  17. CHES-1-like, the ortholog of a non-obstructive azoospermia-associated gene, blocks germline stem cell differentiation by upregulating Dpp expression in Drosophila testis

    PubMed Central

    Yu, Jun; Liu, Yujuan; Lan, Xiang; Wu, Hao; Wen, Yang; Zhou, Zuomin; Hu, Zhibin; Sha, Jiahao; Guo, Xuejiang; Tong, Chao

    2016-01-01

    Azoospermia is a high risk factor for testicular germ cell tumors, whose underlying molecular mechanisms remain unknown. In a genome-wide association study to identify novel loci associated with human non-obstructive azoospermia (NOA), we uncovered a single nucleotide polymorphism (rs1887102, P=2.60 ×10−7) in a human gene FOXN3. FOXN3 is an evolutionarily conserved gene. We used Drosophila melanogaster as a model system to test whether CHES-1-like, the Drosophila FOXN3 ortholog, is required for male fertility. CHES-1-like knockout flies are viable and fertile, and show no defects in spermatogenesis. However, ectopic expression of CHES-1-like in germ cells significantly reduced male fertility. With CHES-1-like overexpression, spermatogonia fail to differentiate after four rounds of mitotic division, but continue to divide to form tumor like structures. In these testes, expression levels of differentiation factor, Bam, were reduced, but the expression region of Bam was expanded. Further reduced Bam expression in CHES-1-like expressing testes exhibited enhanced tumor-like structure formation. The expression of daughters against dpp (dad), a downstream gene of dpp signaling, was upregulated by CHES-1-like expression in testes. We found that CHES-1-like could directly bind to the dpp promoter. We propose a model that CHES-1-like overexpression in germ cells activates dpp expression, inhibits spermatocyte differentiation, and finally leads to germ cell tumors. PMID:27281616

  18. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated

    PubMed Central

    Berenstein, Ariel; Notcovich, Cintia; Cerda, María B.; Klamt, Fabio; Chernomoretz, Ariel; Durán, Hebe

    2016-01-01

    Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different ROS levels after overexpressing catalase were performed. Dissimilar phenotypes by differential compensation to hydrogen peroxide scavenging were generated. The melanotic A375-A7 (A7) upregulated TYRP1, CNTN1 and UCHL1 promoting melanogenesis. The metastatic A375-G10 (G10) downregulated MTSS1 and TIAM1, proteins absent in metastasis. Moreover, differential coexpression of AOS genes (EPHX2, GSTM3, MGST1, MSRA, TXNRD3, MGST3 and GSR) was found in A7 and G10. Their increase in A7 improved its AOS ability and therefore, oxidative stress response, resembling less aggressive tumor cells. Meanwhile, their decrease in G10 revealed a disruption in the AOS and therefore, enhanced its metastatic capacity. These gene signatures, not only bring new insights into the physiopathology of melanoma, but also could be relevant in clinical prognostic to classify between non aggressive and metastatic melanomas. PMID:27206673

  19. Cadmium up-regulates transcription of the steroidogenic acute regulatory protein (StAR) gene through phosphorylated CREB rather than SF-1 in K28 cells.

    PubMed

    Park, Soo-Yun; Gomes, Cynthia; Oh, Sung-Dug; Soh, Jaemog

    2015-04-01

    Cadmium is a widely used heavy metal in industry and affects the male reproductive system of animals, including humans, as a result of occupational and environmental exposures. However, the molecular mechanism underlying its effect on steroidogenesis in gonads remains unclear. In this study, we demonstrated that exposure of K28 mouse testicular Leydig tumor cells to cadmium led to a significant increase in the mRNA level, promoter activity and protein level of the steroidogenic acute regulatory protein (StAR), an essential factor for steroid biosynthesis. It has been well documented that StAR gene transcription is regulated by multiple transcription factors, including cAMP-responsive element binding protein (CREB) family members and SF-1. Cadmium treatment caused an increase in CREB phosphorylation but did not alter the CREB protein level in the nucleus. EMSA studies revealed that cadmium-induced phosphorylated CREB formed specific complexes with the proximal region of the StAR gene promoter. Furthermore, co-transfection with a CREB expression plasmid significantly increased cadmium-induced StAR promoter activity. However, the nuclear level and the affinity of SF-1 protein for the StAR proximal promoter were dramatically decreased upon exposure to cadmium. Taken together, these results suggest that cadmium up-regulates StAR gene expression through phosphorylated CREB rather than through SF-1 in mouse testicular Leydig cells.

  20. Priming with NO controls redox state and prevents cadmium-induced general up-regulation of methionine sulfoxide reductase gene family in Arabidopsis.

    PubMed

    Méndez, Andrea A E; Pena, Liliana B; Benavides, María P; Gallego, Susana M

    2016-12-01

    In the present study we evaluated the pre-treatment (priming) of Arabidopsis thaliana plants with sodium nitroprusside (SNP), a NO-donor, as an interesting approach for improving plant tolerance to cadmium stress. We focused on the cell redox balance and on the methionine sulfoxide reductases (MSR) family as a key component of such response. MSR catalyse the reversible oxidation of MetSO residues back to Met. Five MSRA genes and nine MSRB genes have been identified in A. thaliana, coding for proteins with different subcellular locations. After treating 20 days-old A. thaliana (Col 0) plants with 100 μM CdCl2, increased protein carbonylation in leaf tissue, lower chlorophyll content and higher levels of reactive oxygen species (ROS) in chloroplasts were detected, together with increased accumulation of all MSR transcripts evaluated. Further analysis showed reduction in guaiacol peroxidase activity (GPX) and increased catalase (CAT) activity, with no effect on ascorbate peroxidase (APX) activity. Pre-exposition of plants to 100 μM SNP before cadmium treatment restored redox balance; this seems to be linked to a better performance of antioxidant defenses. Our results indicate that NO priming may be acting as a modulator of plant antioxidant system by interfering in oxidative responses and by preventing up-regulation of MSR genes caused by metal exposure.

  1. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Jiang, Zhaozhong; Cao, Zhong; Zhang, Chao; Gao, Di; Luo, Xingen; Zhang, Xiaofang; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2014-08-01

    We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(γ-glutamic acid) (γ-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with γ-PGA promotes cellular uptake of the polyplex particles, particularly by γ-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the γ-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell

  2. Novel Thiosemicarbazones Inhibit Lysine-Rich CEACAM1 Co-isolated (LYRIC) and the LYRIC-Induced Epithelial-Mesenchymal Transition via Up-Regulation of N-Myc Downstream-Regulated Gene 1 (NDRG1).

    PubMed

    Xi, Ruxing; Pun, Ivan Ho Yuen; Menezes, Sharleen V; Fouani, Leyla; Kalinowski, Danuta S; Huang, Michael L H; Zhang, Xiaozhi; Richardson, Des R; Kovacevic, Zaklina

    2017-03-08

    Tumor necrosis factor α (TNFα) plays a vital role in cancer progression, being associated with inflammation and promotion of cancer angiogenesis and metastasis. The effects of TNFα are mediated by its down-stream target, the oncogene, lysine-rich CEACAM1 co-isolated protein (LYRIC; also known as metadherin or astrocyte elevated gene-1). LYRIC plays an important role in activating the nuclear factor-κB (NF-κB) signaling pathway, which controls multiple cellular processes, including proliferation, apoptosis, migration, etc. In contrast, the metastasis suppressor, N-myc down-stream regulated gene 1 (NDRG1), has the opposite effect on the NF-κB pathway, being able to inhibit NF-κB activation and reduce angiogenesis, proliferation, migration and cancer cell invasion. These potent anti-cancer properties make NDRG1 an ideal therapeutic target. Indeed, a novel class of thiosemicarbazone anti-cancer agents that target this molecule have been developed, with the lead agent, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), recently entering clinical trials for advanced and resistant cancers. To further elucidate the interaction between NDRG1 and oncogenic signaling, this study for the first time assessed the effects of NDRG1 on the tumorigenic properties of TNFα and its down-stream target, LYRIC. We demonstrate that NDRG1 inhibits the TNFα-mediated epithelial to mesenchymal transition (EMT). Further, NDRG1 also potently inhibited LYRIC expression, with a negative feedback loop existing between these two molecules. Examining the mechanism involved, we demonstrated that NDRG1 inhibited PI3K/AKT signaling, leading to reduced levels of the LYRIC transcriptional activator, c-Myc. Finally, we demonstrate that novel thiosemicarbazones that up-regulate NDRG1 also inhibit LYRIC expression, further highlighting their marked potential for cancer treatment.

  3. Collecting duct carcinoma of the kidney is associated with CDKN2A deletion and SLC family gene up-regulation

    PubMed Central

    Wei, Lei; Liu, Biao; Hu, Qiang; Miles, Kiersten Marie; Conroy, Jeffrey M.; Glenn, Sean T.; Costantini, Manuela; Magi-Galluzzi, Cristina; Signoretti, Sabina; Choueiri, Toni; Gallucci, Michele; Sentinelli, Steno; Fazio, Vito M.; Poeta, Maria Luana; Liu, Song; Morrison, Carl; Pili, Roberto

    2016-01-01

    The genetic landscape and molecular features of collecting duct carcinoma (CDC) of the kidney remain largely unknown. Herein, we performed whole exome sequencing (WES) and transcriptome sequencing (RNASeq) on 7 CDC samples (CDC1 −7). Among the 7 samples, 4 samples with matched non-tumor tissue were used for copy number analysis by SNP array data. No recurrent somatic SNVs were observed except for MLL, which was found to be mutated (p.V297I and p.F407C) in 2 samples. We identified somatic SNVs in 14 other cancer census genes including: ATM, CREBBP, PRDM1, CBFB, FBXW7, IKZF1, KDR, KRAS, NACA, NF2, NUP98, SS18, TP53, and ZNF521. SNP array data identified a CDKN2A homozygous deletion in 3 samples and SNV analysis showed a non-sense mutation of the CDKN2A gene with unknown somatic status. To estimate the recurrent rate of CDKN2A abnormalities, we performed FISH screening of additional samples and confirmed the frequent loss (62.5%) of CDKN2A expression. Since cisplatin based therapy is the common treatment option for CDC, we investigated the expression of solute carrier (SLC) family transporters and found 45% alteration. In addition, SLC7A11 (cystine transporter, xCT), a cisplatin resistance associated gene, was found to be overexpressed in 4 out of 5 (80%) cases of CDC tumors tested, as compared to matched non-tumor tissue. In summary, our study provides a comprehensive genomic analysis of CDC and identifies potential pathways suitable for targeted therapies. PMID:27144525

  4. Chronic social isolation is related to both upregulation of plasticity genes and initiation of proapoptotic signaling in Wistar rat hippocampus.

    PubMed

    Djordjevic, Ana; Adzic, Miroslav; Djordjevic, Jelena; Radojcic, Marija B

    2009-12-01

    Successful adaptation to stress involves actions of glucocorticoid receptor (GR), a steroid-dependent transcription factor, abundant in hippocampus. Another transcription factor, nuclear factor kappa B (NFjB) is considered as an important stress sensor implicated in adaptive synaptic plasticity. Numerous stress-related genes are regulated by both hippocampal GR and NFjB, including neural cell adhesion molecules (NCAM and L1), involved in plasticity, and genes that encode apoptotic proteins (bax and bcl-2). We presumed that the ratio of nuclear NFjB to nuclear GR may determine the degree of proplastic or proapoptotic signaling under stress. To test this presumption we have investigated effects of acute, chronic and combined stress on compartmental levels and ratios of NFjB and GR proteins, and in parallel, changes in their mRNA expression. In addition, the expression of plasticity (NCAM, L1) and apoptotic (bax, bcl-2) genes, as well as, Bax and Bcl-2 proteins redistribution between mitochondrial and cytoplasmic compartments, were followed. When glucocorticoid levels were low, as found in chronic stress, GR was not efficiently translocated to the nucleus. This resulted in its lower nuclear level relative to the nuclear NFjB. Such conditions did not affect proplastic induction of NCAM mRNA, but were related to the onset of proapoptotic signaling illustrated by relocation of mitochondrial Bcl-2 protein to its soluble cytoplasmic form. Because these Bcl-2 rearrangements were not reversed by subsequent acute stress, representing more stable alterations, it is concluded that chronic social isolation of Wistar rats led to the initiation of proapoptotic signaling that may be etiologically related to compromised adaptive response of central nervous system.

  5. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  6. Liver X receptor α mediates hepatic triglyceride accumulation through upregulation of G0/G1 Switch Gene 2 expression

    PubMed Central

    Heckmann, Bradlee L.; Zhang, Xiaodong; Saarinen, Alicia M.; Schoiswohl, Gabriele; Kershaw, Erin E.; Zechner, Rudolf

    2017-01-01

    Liver X receptors (LXRs) are transcription factors essential for cholesterol homeostasis and lipogenesis. LXRα has been implicated in regulating hepatic triglyceride (TG) accumulation upon both influx of adipose-derived fatty acids (FAs) during fasting and stimulation of de novo FA synthesis by chemical agonism of LXR. However, whether or not a convergent mechanism is employed to drive deposition of FAs from these 2 different sources in TGs is undetermined. Here, we report that the G0/G1 Switch Gene 2 (G0S2), a selective inhibitor of intracellular TG hydrolysis/lipolysis, is a direct target gene of LXRα. Transcriptional activation is conferred by LXRα binding to a direct repeat 4 (DR4) motif in the G0S2 promoter. While LXRα–/– mice exhibited decreased hepatic G0S2 expression, adenoviral expression of G0S2 was sufficient to restore fasting-induced TG storage and glycogen depletion in the liver of these mice. In response to LXR agonist T0901317, G0S2 ablation prevented hepatic steatosis and hypertriglyceridemia without affecting the beneficial effects on HDL. Thus, the LXRα-G0S2 axis plays a distinct role in regulating hepatic TG during both fasting and pharmacological activation of LXR. PMID:28239648

  7. Urotensin II upregulates migration and cytokine gene expression in leukocytes of the African clawed frog, Xenopus laevis.

    PubMed

    Tomiyama, Shiori; Nakamachi, Tomoya; Uchiyama, Minoru; Matsuda, Kouhei; Konno, Norifumi

    2015-05-15

    Urotensin II (UII) exhibits diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response via the UII receptor (UTR) in mammals. However, in amphibians the function of the UII-UTR system remains unknown. In the present study, we investigated the potential immune function of UII using leukocytes isolated from the African clawed frog, Xenopus laevis. Stimulation of male frogs with lipopolysaccharide increased mRNA expression of UII and UTR in leukocytes, suggesting that inflammatory stimuli induce activation of the UII-UTR system. Migration assays showed that both UII and UII-related peptide enhanced migration of leukocytes in a dose-dependent manner, and that UII effect was inhibited by the UTR antagonist urantide. Inhibition of Rho kinase with Y-27632 abolished UII-induced migration, suggesting that it depends on the activation of RhoA/Rho kinase. Treatment of isolated leukocytes with UII increased the expression of several cytokine genes including tumor necrosis factor-α, interleukin-1β, and macrophage migration inhibitory factor, and the effects were abolished by urantide. These results suggest that in amphibian leukocytes the UII-UTR system is involved in the activation of leukocyte migration and cytokine gene expression in response to inflammatory stimuli.

  8. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress.

    PubMed

    Jamsheer K, Muhammed; Laxmi, Ashverya

    2015-01-01

    Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response.

  9. Agaricus bisporus powder improved cutaneous mucosal and serum immune parameters and up-regulated intestinal cytokines gene expression in common carp (Cyprinus carpio) fingerlings.

    PubMed

    Khodadadian Zou, Hassan; Hoseinifar, Seyed Hossein; Kolangi Miandare, Hamed; Hajimoradloo, Abdolmajid

    2016-11-01

    The aim of the present study was to investigate immunomodulatory effects of Agaricus bisporus, white bottom mushroom powder (WBMP) on common carp (Cyprinus carpio) fingerlings. Carps were fed on different levels of WBMP (0, 0.5, 1 and 2%) for 8 weeks and at the end of feeding trial, skin mucus immune parameters (total Ig, lysozyme and protease activity), cytokines gene expression (TNF-alpha, IL1b, IL8) in intestine as well as serum non-specific immune parameters (total Ig, lysozyme and ACH50) were measured. The results showed significant dose dependent increase of skin mucus immune parameters in carps fed WBMP (P < 0.05). While, no significant difference was observed between 0.5% WBMP and control group (P > 0.05). In case of serum non-specific immune parameters, except lysozyme activity, other parameters (Ig total and ACH50) were significantly affected by dietary inclusion of WBMP (P < 0.05). Also, evaluation of cytokines gene expression in the intestine of carps revealed remarkable up-regulation of TNF-alpha in fish fed 2% WBMP supplemented diet compared other treatment (P < 0.05). Likewise, IL1b gene expression was significantly increased in 1 and 2% WBMP treatments compared to the 0.5% WBMP and control groups (P < 0.05). IL8 gene expression was not affected by inclusion of WBMP in carp diet (P > 0.05). Furthermore, feeding on WBMP supplemented diet significantly improved growth performance (P < 0.05). These results indicated that WBMP can be considered as a promising immunostimulants in early stage of common carp culture.

  10. Rhesus glycoprotein and urea transporter genes in rainbow trout embryos are upregulated in response to alkaline water (pH 9.7) but not elevated water ammonia.

    PubMed

    Sashaw, Jessica; Nawata, Michele; Thompson, Sarah; Wood, Chris M; Wright, Patricia A

    2010-03-01

    Recent studies have shown that genes for the putative ammonia transporter, Rhesus glycoproteins (Rh) and the facilitated urea transporter (UT) are expressed before hatching in rainbow trout (Oncorhychus mykiss Walbaum) embryos. We tested the hypothesis that Rh and UT gene expressions are regulated in response to environmental conditions that inhibit ammonia excretion during early life stages. Eyed-up embryos (22 days post-fertilization (dpf)) were exposed to control (pH 8.3), high ammonia (1.70 mmol l(-1) NH4HCO3) and high pH (pH 9.7) conditions for 48h. With exposure to high water ammonia, ammonia excretion rates were reversed, tissue ammonia concentration was elevated by 9-fold, but there were no significant changes in mRNA expression relative to control embryos. In contrast, exposure to high water pH had a smaller impact on ammonia excretion rates and tissue ammonia concentrations, whereas mRNA levels for the Rhesus glycoprotein Rhcg2 and urea transporter (UT) were elevated by 3.5- and 5.6-fold, respectively. As well, mRNAs of the genes for H+ATPase and Na+/H+ exchanger (NHE2), associated with NH3 excretion, were also upregulated by 7.2- and 13-fold, respectively, in embryos exposed to alkaline water relative to controls. These results indicate that the Rhcg2, UT and associated transport genes are regulated in rainbow trout embryos, but in contrast to adults, there is no effect of high external ammonia at this stage of development.

  11. Different N-terminal isoforms of Oct-1 control expression of distinct sets of genes and their high levels in Namalwa Burkitt's lymphoma cells affect a wide range of cellular processes

    PubMed Central

    Pankratova, Elizaveta V.; Stepchenko, Alexander G.; Portseva, Tatiana; Mogila, Vladic A.; Georgieva, Sofia G.

    2016-01-01

    Oct-1 transcription factor has various functions in gene regulation. Its expression level is increased in several types of cancer and is associated with poor survival prognosis. Here we identified distinct Oct-1 protein isoforms in human cells and compared gene expression patterns and functions for Oct-1A, Oct-1L, and Oct-1X isoforms that differ by their N-terminal sequences. The longest isoform, Oct-1A, is abundantly expressed and is the main Oct-1 isoform in most of human tissues. The Oct-1L and the weakly expressed Oct-1X regulate the majority of Oct-1A targets as well as additional sets of genes. Oct-1X controls genes involved in DNA replication, DNA repair, RNA processing, and cellular response to stress. The high level of Oct-1 isoforms upregulates genes related to cell cycle progression and activates proliferation both in Namalwa Burkitt's lymphoma cells and primary human fibroblasts. It downregulates expression of genes related to antigen processing and presentation, cytokine-cytokine receptor interaction, oxidative metabolism, and cell adhesion, thus facilitating pro-oncogenic processes. PMID:27407111

  12. Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming.

    PubMed

    McClellan, Michael J; Wood, C David; Ojeniyi, Opeoluwa; Cooper, Tim J; Kanhere, Aditi; Arvey, Aaron; Webb, Helen M; Palermo, Richard D; Harth-Hertle, Marie L; Kempkes, Bettina; Jenner, Richard G; West, Michelle J

    2013-09-01

    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of

  13. Barium chloride induces redox status unbalance, upregulates cytokine genes expression and confers hepatotoxicity in rats-alleviation by pomegranate peel.

    PubMed

    Elwej, Awatef; Grojja, Yousri; Ghorbel, Imen; Boudawara, Ons; Jarraya, Raoudha; Boudawara, Tahia; Zeghal, Najiba

    2016-04-01

    The present study was performed to establish the therapeutic efficacy of pomegranate peel against barium chloride induced liver injury. Adult rats were divided into four groups of six animals each: group I, serving as controls, received distilled water; group II received by their drinking water 67 ppm of BaCl2; group III received both 67 ppm of BaCl2 by the same way than group II and 5 % of pomegranate peel (PP) via diet; group IV received 5 % of PP. Analysis by HPLC/MS of PP showed its rich composition in flavonoids such as gallic acid, castalin, hyperin, quercitrin, syringic acid, and quercetin. The protective effects of pomegranate peel against hepatotoxicity induced by barium chloride were assessed using biochemical parameters and histological studies. Exposure of rats to barium caused oxidative stress in the liver as evidenced by an increase in malondialdehyde (MDA), lipid hydroperoxides (LOOHs), H2O2 and advanced oxidation protein product (AOPP) levels, and lactate dehydrogenase (LDH), gamma glutamyl transpeptidase (GGT), alanine aminotransferase (AST) and aspartate aminotransferase (ALT) activities, a decrease in catalase (CAT) and glutathione peroxidase (GPx) activities, glutathion (GSH), non-protein thiol (NPSH), vitamin C levels, and Mn-SOD gene expression. Liver total MT levels, MT-1, and MT-2 and pro-inflammatory cytokine genes expression like TNF-α, IL-1β and IL-6 were increased. Pomegranate peel, supplemented in the diet of barium-treated rats, showed an improvement of all the parameters indicated above.The present work provided ethnopharmacological relevance of pomegranate peel against the toxic effects of barium, suggesting its beneficial role as a potential antioxidant.

  14. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    35S-Labeled calmodulin (CaM) was used to screen a tobacco anther cDNA library. A positive clone (NtER1) with high homology to an early ethylene-up-regulated gene (ER66) in tomato, and an Arabidopsis homolog was isolated and characterized. Based on the helical wheel projection, a 25-mer peptide corresponding to the predicted CaM-binding region of NtER1 (amino acids 796-820) was synthesized. The gel-mobility shift assay showed that the peptide formed a stable complex with CaM only in the presence of Ca(2+). CaM binds to NtER1 with high affinity (K(d) approximately 12 nm) in a calcium-dependent manner. Tobacco flowers at different stages of development were treated with ethylene or with 1-methylcyclopropene for 2 h before treating with ethylene. Northern analysis showed that the NtER1 was rapidly induced after 15 min of exposure to ethylene. However, the 2-h 1-methylcyclopropene treatment totally blocked NtER1 expression in flowers at all stages of development, suggesting that NtER1 is an early ethylene-up-regulated gene. The senescing leaves and petals had significantly increased NtER1 induction as compared with young leaves and petals, implying that NtER1 is developmentally regulated and acts as a trigger for senescence and death. This is the first documented evidence for the involvement of Ca(2+)/CaM-mediated signaling in ethylene action.

  15. Aberrant Promoter Methylation at CpG Cytosines Induce the Upregulation of the E2F5 Gene in Breast Cancer

    PubMed Central

    Ali, Arshad; Ullah, Farman; Ali, Irum Sabir; Faraz, Ahmad; Khan, Mumtaz; Shah, Syed Tahir Ali; Ali, Nawab

    2016-01-01

    Purpose The promoter methylation status of cell cycle regulatory genes plays a crucial role in the regulation of the eukaryotic cell cycle. CpG cytosines are actively subjected to methylation during tumorigenesis, resulting in gain/loss of function. E2F5 gene has growth repressive activities; various studies suggest its involvement in tumorigenesis. This study aims to investigate the epigenetic regulation of E2F5 in breast cancer to better understand tumor biology. Methods The promoter methylation status of 50 breast tumor tissues and adjacent normal control tissues was analyzed. mRNA expression was determined using SYBR® green quantitative polymerase chain reaction (PCR), and methylation-specific PCR was performed for bisulfite-modified genomic DNA using E2F5-specific primers to assess promoter methylation. Data was statistically analyzed. Results Significant (p<0.001) upregulation was observed in E2F5 expression among tumor tissues, relative to the control group. These samples were hypo-methylated at the E2F5 promoter region in the tumor tissues, compared to the control. Change in the methylation status (Δmeth) was significantly lower (p=0.022) in the tumor samples, indicating possible involvement in tumorigenesis. Patients at the postmenopausal stage showed higher methylation (75%) than those at the premenopausal stage (23.1%). Interestingly, methylation levels gradually increased from the early to the advanced stages of the disease (p<0.001), which suggests a putative role of E2F5 methylation in disease progression that can significantly modulate tumor biology at more advanced stage and at postmenopausal age (Pearson's r=0.99 and 0.86, respectively). Among tissues with different histological status, methylation frequency was higher in invasive lobular carcinoma (80.0%), followed by invasive ductal carcinoma (46.7%) and ductal carcinoma in situ (20.0%). Conclusion Methylation is an important epigenetic factor that might be involved in the upregulation of E2F5

  16. Cisplatin upregulates Saccharomyces cerevisiae genes involved in iron homeostasis through activation of the iron insufficiency-responsive transcription factor Aft1.

    PubMed

    Kimura, Akiko; Ohashi, Kazuaki; Naganuma, Akira

    2007-02-01

    The response of Saccharomyces cerevisiae to cisplatin was investigated by examining variations in gene expression using cDNA microarrays and confirming the results by reverse transcription polymerase chain reaction (RT-PCR). The mRNA levels of 14 proteins involved in iron homeostasis were shown to be increased by cisplatin. Interestingly, the expression of all 14 genes is known to be regulated by Aft1, a transcription factor activated in response to iron insufficiency. The promoter of one of these genes, FET3, has been relatively well studied, so we performed a reporter assay using the FET3 promoter and showed that an Aft1 binding site in the promoter region is indispensable for induction of transcription by cisplatin. The active domain of Aft1 necessary for activation of the FET3 promoter by cisplatin is identical to the one required for activation by bathophenanthroline sulfonate, an inhibitor of cellular iron uptake. Furthermore, we found that cisplatin inhibits the uptake of (55)Fe(II) into yeast cells. These findings suggest that cisplatin activates Aft1 through the inhibition of iron uptake into the cells, after which the expression of Aft1 target genes involved in iron uptake might be induced.

  17. Adaptive upregulation of DNA repair genes following benzo(a)pyrene diol epoxide protects against cell death at the expense of mutations

    PubMed Central

    Christmann, Markus; Boisseau, Catherine; Kitzinger, Rebekka; Berac, Christian; Allmann, Sebastian; Sommer, Tina; Aasland, Dorthe; Kaina, Bernd; Tomicic, Maja T.

    2016-01-01

    A coordinated and faithful DNA damage response is of central importance for maintaining genomic integrity and survival. Here, we show that exposure of human cells to benzo(a)pyrene 9,10-diol-7,8-epoxide (BPDE), the active metabolite of benzo(a)pyrene (B(a)P), which represents a most important carcinogen formed during food preparation at high temperature, smoking and by incomplete combustion processes, causes a prompt and sustained upregulation of the DNA repair genes DDB2, XPC, XPF, XPG and POLH. Induction of these repair factors on RNA and protein level enhanced the removal of BPDE adducts from DNA and protected cells against subsequent BPDE exposure. However, through the induction of POLH the mutation frequency in the surviving cells was enhanced. Activation of these adaptive DNA repair genes was also observed upon B(a)P treatment of MCF7 cells and in buccal cells of human volunteers after cigarette smoking. Our data provide a rational basis for an adaptive response to polycyclic aromatic hydrocarbons, which occurs however at the expense of mutations that may drive cancer formation. PMID:27694624

  18. TrMADS3, a new MADS-box gene, from a perennial species Taihangia rupestris (Rosaceae) is upregulated by cold and experiences seasonal fluctuation in expression level.

    PubMed

    Du, Xiaoqiu; Xiao, Qiying; Zhao, Ran; Wu, Feng; Xu, Qijiang; Chong, Kang; Meng, Zheng

    2008-06-01

    In many temperate perennial plants, floral transition is initiated in the first growth season but the development of flower is arrested during the winter to ensure production of mature flowers in the next spring. The molecular mechanisms of the process remain poorly understood with few well-characterized regulatory genes. Here, a MADS-box gene, named as TrMADS3, was isolated from the overwintering inflorescences of Taihangia rupestris, a temperate perennial in the rose family. Phylogenetic analysis reveals that TrMADS3 is more closely related to the homologs of the FLOWERING LOCUS C lineage than to any of the other MIKC-type MADS-box lineages known from Arabidopsis. The TrMADS3 transcripts are extensively distributed in inflorescences, roots, and leaves during the winter. In controlled conditions, the TrMADS3 expression level is upregulated by a chilling exposure for 1 to 2 weeks and remains high for a longer period of time in warm conditions after cold treatment. In situ hybridization reveals that TrMADS3 is predominantly expressed in the vegetative and reproductive meristems. Ectopic expression of TrMADS3 in Arabidopsis promotes seed germination on the media containing relatively high NaCl or mannitol concentrations. These data indicate that TrMADS3 in a perennial species might have its role in both vegetative and reproductive meristems in response to cold.

  19. A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA

    PubMed Central

    Torchetti, Enza Maria; Pegoraro, Mattia; Navarro, Beatriz; Catoni, Marco; Di Serio, Francesco; Noris, Emanuela

    2016-01-01

    DNA methylation and post-transcriptional gene silencing play critical roles in controlling infection of single-stranded (ss) DNA geminiviruses and ssRNA viroids, respectively, but both pathogens can counteract these host defense mechanisms and promote their infectivity. Moreover, a specific role of DNA methylation in viroid-host interactions is not yet confirmed. Here, using an experimental system where two nuclear-replicating agents, the geminivirus tomato yellow leaf curl Sardinia virus (TYLCSV) and potato spindle tuber viroid (PSTVd), co-infect their common host tomato, we observed that PSTVd severely interferes with TYLCSV infectivity and accumulation, most likely as a consequence of strong activation of host DNA methylation pathways. In fact, PSTVd alone or in co-infection with TYLCSV significantly upregulates the expression of key genes governing DNA methylation in plants. Using methylation-sensitive restriction and bisulfite conversion assays, we further showed that PSTVd infection promotes a strong hypermethylation of TYLCSV DNA, thus supporting a mechanistic link with the antagonism of the viroid on the virus in co-infected tomato plants. These results describe the interaction between two nuclear-replicating pathogens and show that they differentially interfere with DNA methylation pathways. PMID:27739453

  20. Hepatitis E genotype 4 virus from feces of monkeys infected experimentally can be cultured in PLC/PRF/5 cells and upregulate host interferon-inducible genes.

    PubMed

    Zhang, Feng; Qi, Ying; Harrison, Tim J; Luo, Baobin; Zhou, Yan; Li, Xiuhua; Song, Aijing; Huang, Weijin; Wang, Youchun

    2014-10-01

    The understanding of the interaction between hepatitis E virus (HEV) and its host cells has been impeded greatly by the absence of a cell culture system. In this study, an efficient cultivation method was developed in PLC/PRF/5 cells for HEV genotype 4 from the feces of monkeys infected experimentally. Compared to minimal essential medium (MEM), mixed Dulbecco's Modified Eagle's Medium (DMEM)/M199 improved the infection efficiency of HEV in PLC/PRF/5 cells. The incubation time and temperature were set at 6 hr and 40°C, respectively. Compared to a 100% ELISA positive ratio (EPR) of 1 × 10(6)  copies/ml HEV inoculated flasks, the ELISA positive ratio was 100%, 75%, 37.5%, and 100% for flasks inoculated with HEV incubated for 30 min under the conditions of pH 3.0, pH 11.0, 56°C and delipidation treatment, respectively. Gene expression profiles of HEV inoculated and control PLC/PRF/5 cells were assayed using a microarray. Four interferon-inducible genes, IFI27, IFI6, Mx1, and CMPK2, were up-regulated during HEV-infection. Furthermore, the replication of HEV was inhibited at 3-14 days after treatment with 500 IU/ml IFN-α2b.

  1. Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene.

    PubMed

    Polytarchou, Christos; Hatziapostolou, Maria; Papadimitriou, Evangelia

    2005-12-09

    It is becoming increasingly recognized that hydrogen peroxide (HP) plays a role in cell proliferation and migration. In the present study we found that exogenous HP significantly induced human prostate cancer LNCaP cell proliferation and migration. Heparin affin regulatory peptide (HARP) seems to be involved in the stimulatory effect of HP, because the latter had no effect on stably transfected LNCaP cells that did not express HARP. Moreover, HP significantly increased HARP mRNA and protein amounts in a concentration- and time-dependent manner. Curcumin and activator protein-1 (AP-1) decoy oligonucleotides abrogated both HP-induced HARP expression and LNCaP cell proliferation and migration. HP increased luciferase activity of the 5'-flanking region of the HARP gene introduced in a reporter gene vector, an effect that was abolished when even one of the two putative AP-1 binding sites of the HARP promoter was mutated. The effect of HP seems to be due to the binding of Fra-1, JunD, and phospho-c-Jun to the HARP promoter. These results support the notion that HARP is important for human prostate cancer cell proliferation and migration, establish the role of AP-1 in the up-regulation of HARP expression by low concentrations of HP, and characterize the AP-1 dimers involved.

  2. Fat depot-specific differences in pref-1 gene expression and adipocyte cellularity between Wagyu and Holstein cattle.

    PubMed

    Yamada, Tomoya; Higuchi, Mikito; Nakanishi, Naoto

    2014-03-07

    Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a gatekeeper of adipogenesis by maintaining the preadipocyte state and preventing adipocyte differentiation. We hypothesized that the breed differences of adipogenic capacity in cattle could be explained by the expression level of pref-1. In this experiment, we studied the expression level of the pref-1 gene and adipocyte cellularity in subcutaneous and mesenteric adipose tissues of Japanese Black (Wagyu) and Holstein fattening cattle. In subcutaneous adipose tissue, there were no significant differences in the pref-1 gene expression levels and adipocyte sizes between the breeds. In contrast, the expression level of the pref-1 gene in mesenteric adipose tissue of Holsteins was significantly higher than that of Wagyu. In addition, the size of mesenteric adipocytes in Holsteins was significantly smaller than that of Wagyu. These results indicate that the breed differences of fattening cattle affect the expression pattern of the pref-1 gene and adipocyte cellularity in a fat depot-specific manner.

  3. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes.

    PubMed

    Alptekin, S; Bass, C; Nicholls, C; Paine, M J I; Clark, S J; Field, L; Moores, G D

    2016-04-01

    Honey bees, Apis mellifera, are markedly less sensitive to neonicotinoid insecticides containing a cyanoimino pharmacophore than to those with a nitroimino group. Although previous work has suggested that this results from enhanced metabolism of the former by detoxification enzymes, the specific enzyme(s) involved remain to be characterized. In this work, a pretreatment of honey bees with a sublethal dose of thiacloprid resulted in induced insensitivity to the same compound immediately following thiacloprid feeding. A longer pretreatment time resulted in no, or increased, sensitivity. Transcriptome profiling, using microarrays, identified a number of genes encoding detoxification enzymes that were over-expressed significantly in insecticide-treated bees compared with untreated controls. These included five P450s, CYP6BE1, CYP305D1, CYP6AS5, CYP315A1, CYP301A1, and a carboxyl/cholinesterase (CCE) CCE8. Four of these P450s were functionally expressed in Escherichia coli and their ability to metabolize thiacloprid examined by liquid chromatography-mass spectrometry (LC-MS) analysis.

  4. The hepatitis B virus X protein increases the cellular level of TATA-binding protein, which mediates transactivation of RNA polymerase III genes

    SciTech Connect

    Wang, Horng-Dar; Johnson, D.L.; Yuh, Chio-Hwa

    1995-12-01

    This report decribes the mechanism by which the hepatitis B virus X gene product induces RNA polymerase III genes. The RNA pol III transcription system serves as model for understanding the mechanism of X in the transactivation of cellular genes in both Drosophila and rat cell lines. 53 refs., 7 figs., 1 tab.

  5. Feeding oxidized fat during pregnancy up-regulates expression of PPARα-responsive genes in the liver of rat fetuses

    PubMed Central

    Ringseis, Robert; Gutgesell, Anke; Dathe, Corinna; Brandsch, Corinna; Eder, Klaus

    2007-01-01

    Background Feeding oxidized fats causes activation of peroxisome proliferator-activated receptor α (PPARα) in the liver of rats. However, whether feeding oxidized fat during pregnancy also results in activation of PPARα in fetal liver is unknown. Thus, this study aimed to explore whether feeding oxidized fat during pregnancy causes a PPARα response in fetal liver. Two experiments with pregnant rats which were administered three different diets (control; oxidized fat; clofibrate as positive control) in a controlled feeding regimen during either late pregnancy (first experiment) or whole pregnancy (second experiment) were performed. Results In both experiments pregnant rats treated with oxidized fat or clofibrate had higher relative mRNA concentrations of the PPARα-responsive genes acyl-CoA oxidase (ACO), cytochrome P450 4A1 (CYP4A1), L-type carnitin-palmitoyl transferase I (L-CPT I), medium-chain acyl-CoA dehydrogenase (MCAD), and long-chain acyl-CoA dehydrogenase (LCAD) in the liver than control rats (P < 0.05). In addition, in both experiments fetuses of the oxidized fat group and the clofibrate group also had markedly higher relative mRNA concentrations of ACO, CYP4A1, CPT I, MCAD, and LCAD in the liver than those of the control group (P < 0.05), whereas the relative mRNA concentrations of PPARα, SREBP-1c, and FAS did not differ between treatment groups. In the second experiment treatment with oxidized fat also reduced triacylglycerol concentrations in the livers of pregnant rats and fetuses (P < 0.05). Conclusion The present study demonstrates for the first time that components of oxidized fat with PPARα activating potential are able to induce a PPARα response in the liver of fetuses. Moreover, the present study shows that feeding oxidized fat during whole pregnancy, but not during late pregnancy, lowers triacylglycerol concentrations in fetal livers. PMID:17352811

  6. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4

    SciTech Connect

    Brüning, Ansgar Matsingou, Christina; Brem, German Johannes; Rahmeh, Martina; Mylonas, Ioannis

    2012-10-15

    Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir. Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.

  7. Lipid-modified oligonucleotide conjugates: Insights into gene silencing, interaction with model membranes and cellular uptake mechanisms.

    PubMed

    Ugarte-Uribe, Begoña; Grijalvo, Santiago; Pertíñez, Samuel Núñez; Busto, Jon V; Martín, César; Alagia, Adele; Goñi, Félix M; Eritja, Ramón; Alkorta, Itziar

    2017-01-01

    The ability of oligonucleotides to silence specific genes or inhibit the biological activity of specific proteins has generated great interest in their use as research tools and therapeutic agents. Unfortunately, their biological applications meet the limitation of their poor cellular accessibility. Developing an appropriate delivery system for oligonucleotides is essential to achieve their efficient cellular uptake. In the present work a series of phosphorothioate lipid-oligonucleotide hybrids were synthesized introducing covalently single or double lipid tails at both 3'- and 5'-termini of an antisense oligonucleotide. Gene transfections in cultured cells showed antisense luciferase inhibition without the use of a transfecting agent for conjugates modified with the double-lipid tail at 5'-termini. The effect of the double lipid-tailed modification was further studied in detail in several model membrane systems as well as in cellular uptake experiments. During these studies the spontaneous formation of self-assembled microstructures is clearly observed. Lipidation allowed the efficient incorporation of the oligonucleotide in HeLa cells by a macropinocytosis mechanism without causing cytotoxicity in cells or altering the binding properties of the oligonucleotide conjugates. In addition, both single- and double-tailed compounds showed a similar behavior in lipid model membranes, making them useful in nucleotide-based technologies.

  8. First cellular approach of the effects of global warming on groundwater organisms: a study of the HSP70 gene expression.

    PubMed

    Colson-Proch, Céline; Morales, Anne; Hervant, Frédéric; Konecny, Lara; Moulin, Colette; Douady, Christophe J

    2010-05-01

    Whereas the consequences of global warming at population or community levels are well documented, studies at the cellular level are still scarce. The study of the physiological or metabolic effects of such small increases in temperature (between +2 degrees C and +6 degrees C) is difficult because they are below the amplitude of the daily or seasonal thermal variations occurring in most environments. In contrast, subterranean biotopes are highly thermally buffered (+/-1 degrees C within a year), and underground water organisms could thus be particularly well suited to characterise cellular responses of global warming. To this purpose, we studied genes encoding chaperone proteins of the HSP70 family in amphipod crustaceans belonging to the ubiquitous subterranean genus Niphargus. An HSP70 sequence was identified in eight populations of two complexes of species of the Niphargus genus (Niphargus rhenorhodanensis and Niphargus virei complexes). Expression profiles were determined for one of these by reverse transcription and quantitative polymerase chain reaction, confirming the inducible nature of this gene. An increase in temperature of 2 degrees C seemed to be without effect on N. rhenorhodanensis physiology, whereas a heat shock of +6 degrees C represented an important thermal stress for these individuals. Thus, this study shows that although Niphargus individuals do not undergo any daily or seasonal thermal variations in underground water, they display an inducible HSP70 heat shock response. This controlled laboratory-based physiological experiment constitutes a first step towards field investigations of the cellular consequences of global warming on subterranean organisms.

  9. Specificity of cellular expression of C. variopedatus polychaete innexin in the developing embryo: evolutionary aspects of innexins' heterogeneous gene structures.

    PubMed

    Potenza, Nicoletta; del Gaudio, Rosanna; Chiusano, Maria Luisa; Russo, Giuseppina Maria Rosaria; Geraci, Giuseppe

    2003-01-01

    Innexins are a family of membrane proteins involved in the formation of gap junctions in invertebrates. They have been found to participate in several aspects of cell differentiation and in embryonic patterning through the formation of specific intercellular communication channels. We present here data showing that the recently identified innexin of the marine worm Chaetopterus variopedatus is expressed only in particular cells of the early stage, demonstrating cell specificity of innexin expression also in polychaete annelids. Phylogenetic analysis of all known innexins results in a phylogenetic tree clearly distinguishing insect, nematode, and other invertebrate innexins. Comparative analysis of proteins and known related genes shows that the apparent similarity of protein composition, overall structural organization, and specificity of cellular expression, typical of innexins of all studied organisms, correspond to highly heterogeneous gene structures even for genes that are in close contiguity on the same chromosome. A possible evolutionary motive producing this situation is discussed.

  10. A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization.

    PubMed

    Vafaee Sharbaf, Fatemeh; Mosafer, Sara; Moattar, Mohammad Hossein

    2016-06-01

    This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy.

  11. 2009 Pandemic H1N1 Influenza Virus Causes Disease and Upregulation of Genes Related to Inflammatory and Immune Responses, Cell Death, and Lipid Metabolism in Pigs▿

    PubMed Central

    Ma, Wenjun; Belisle, Sarah E.; Mosier, Derek; Li, Xi; Stigger-Rosser, Evelyn; Liu, Qinfang; Qiao, Chuanling; Elder, Jake; Webby, Richard; Katze, Michael G.; Richt, Juergen A.

    2011-01-01

    There exists limited information about whether adaptation is needed for cross-species transmission of the 2009 pandemic H1N1 influenza virus (pH1N1). Here, we compare the pathogenesis of two pH1N1 viruses, one derived from a human patient (A/CA/04/09 [CA09]) and the other from swine (A/swine/Alberta/25/2009 [Alb09]), with that of the 1918-like classical swine influenza virus (A/swine/Iowa/1930 [IA30]) in the pig model. Both pH1N1 isolates induced clinical symptoms such as coughing, sneezing, decreased activity, fever, and labored breathing in challenged pigs, but IA30 virus did not cause any clinical symptoms except fever. Although both the pH1N1 viruses and the IA30 virus caused lung lesions, the pH1N1 viruses were shed from the nasal cavities of challenged pigs whereas the IA30 virus was not. Global gene expression analysis indicated that transcriptional responses of the viruses were distinct. pH1N1-infected pigs had an upregulation of genes related to inflammatory and immune responses at day 3 postinfection that was not seen in the IA30 infection, and expression levels of genes related to cell death and lipid metabolism at day 5 postinfection were markedly different from those of IA30 infection. These results indicate that both pH1N1 isolates are more virulent due in part to differences in the host transcriptional response during acute infection. Our study also indicates that pH1N1 does not need prior adaptation to infect pigs, has a high potential to be maintained in naïve swine populations, and might reassort with currently circulating swine influenza viruses. PMID:21900171

  12. Modulation of Estrogen Response Element-Driven Gene Expressions and Cellular Proliferation with Polar Directions by Designer Transcription Regulators

    PubMed Central

    Muyan, Mesut; Güpür, Gizem; Yaşar, Pelin; Ayaz, Gamze; User, Sırma Damla; Kazan, Hasan Hüseyin; Huang, Yanfang

    2015-01-01

    Estrogen receptor α (ERα), as a ligand-dependent transcription factor, mediates 17β-estradiol (E2) effects. ERα is a modular protein containing a DNA binding domain (DBD) and transcription activation domains (AD) located at the amino- and carboxyl-termini. The interaction of the E2-activated ERα dimer with estrogen response elements (EREs) of genes constitutes the initial step in the ERE-dependent signaling pathway necessary for alterations of cellular features. We previously constructed monomeric transcription activators, or monotransactivators, assembled from an engineered ERE-binding module (EBM) using the ERα-DBD and constitutively active ADs from other transcription factors. Monotransactivators modulated cell proliferation by activating and repressing ERE-driven gene expressions that simulate responses observed with E2-ERα. We reasoned here that integration of potent heterologous repression domains (RDs) into EBM could generate monotransrepressors that alter ERE-bearing gene expressions and cellular proliferation in directions opposite to those observed with E2-ERα or monotransactivators. Consistent with this, monotransrepressors suppressed reporter gene expressions that emulate the ERE-dependent signaling pathway. Moreover, a model monotransrepressor regulated DNA synthesis, cell cycle progression and proliferation of recombinant adenovirus infected ER-negative cells through decreasing as well as increasing gene expressions with polar directions compared with E2-ERα or monotransactivator. Our results indicate that an ‘activator’ or a ‘repressor’ possesses both transcription activating/enhancing and repressing/decreasing abilities within a chromatin context. Offering a protein engineering platform to alter signal pathway-specific gene expressions and cell growth, our approach could also be used for the development of tools for epigenetic modifications and for clinical interventions wherein multigenic de-regulations are an issue. PMID:26295471

  13. Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein.

    PubMed

    Menges, Craig W; Baglia, Laurel A; Lapoint, Randi; McCance, Dennis J

    2006-06-01

    Human papillomaviruses (HPV) are small DNA tumor viruses causally associated with cervical cancer. The early gene product E7 from high-risk HPV is considered the major transforming protein expressed by the virus. Although many functions have been described for E7 in disrupting normal cellular processes, we describe in this study a new cellular target in primary human foreskin keratinocytes (HFK), the serine/threonine kinase AKT. Expression of HPV type 16 E7 in HFK caused inhibition of differentiation, hyperproliferation, and up-regulation of AKT activity in organotypic raft cultures. The ability of E7 to up-regulate AKT activity is dependent on its ability to bind to and inactivate the retinoblastoma (Rb) gene product family of proteins. Furthermore, we show that knocking down Rb alone, with short hairpin RNAs, was sufficient to up-regulate AKT activity in differentiated keratinocytes. Up-regulation of AKT activity and loss of Rb was also observed in HPV-positive cervical high-grade squamous intraepithelial lesions when compared with normal cervical tissue. Together, these data provide evidence linking inactivation of Rb by E7 in the up-regulation of AKT activity during cervical cancer progression.

  14. Characterization of Epstein-Barr virus (EBV) BZLF1 gene promoter variants and comparison of cellular gene expression profiles in Japanese patients with infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis.

    PubMed

    Imajoh, Masayuki; Hashida, Yumiko; Murakami, Masanao; Maeda, Akihiko; Sato, Tetsuya; Fujieda, Mikiya; Wakiguchi, Hiroshi; Daibata, Masanori

    2012-06-01

    Epstein-Barr virus (EBV) genotypes can be distinguished based on gene sequence differences in EBV nuclear antigens 2, 3A, 3B, and 3C, and the BZLF1 promoter zone (Zp). EBV subtypes and BZLF1 Zp variants were examined in Japanese patients with infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis. The results of EBV typing showed that samples of infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis all belonged to EBV type 1. However, sequencing analysis of BZLF1 Zp found three polymorphic Zp variants in the same samples. The Zp-P prototype and the Zp-V3 variant were both detected in infectious mononucleosis and chronic active EBV infection. Furthermore, a novel variant previously identified in Chinese children with infectious mononucleosis, Zp-V1, was also found in 3 of 18 samples of infectious mononucleosis, where it coexisted with the Zp-P prototype. This is the first evidence that the EBV variant distribution in Japanese patients resembles that found in other Asian patients. The expression levels of 29 chronic active EBV infection-associated cellular genes were also compared in the three EBV-related disorders, using quantitative real-time reverse transcription polymerase chain reaction analysis. Two upregulated genes, RIPK2 and CDH9, were identified as common specific markers for chronic active EBV infection in both in vitro and in vivo studies. RIPK2 activates apoptosis and autophagy, and could be responsible for the pathogenesis of chronic active EBV infection.

  15. Simulated microgravity upregulates gene expression of the skeletal regulator Core binding Factor α1/Runx2 in Medaka fish larvae in vivo

    NASA Astrophysics Data System (ADS)

    Renn, J.; Seibt, D.; Goerlich, R.; Schartl, M.; Winkler, C.

    2006-01-01

    Long-term space flight results in significant bone loss in humans. However, it remains to be shown how microgravity affects the expression of genes involved in modeling and remodeling of bone material in vivo. For these analyses, animal models are instrumental to study alterations at the molecular and cellular level. Although it is not known at present, whether fish loose bone in microgravity, they show many experimental advantages to approach these questions in vivo. Here, we report for the first time that living Medaka larvae can be used in hypergravitation and clinorotation experiments to study the effect of altered gravity on gene expression in a whole-animal situation. Living Medaka larvae at 1 day post-hatching were exposed to hypergravity and simulated microgravity for 24 hours (h) and the level of mRNA expression of skeletal regulators was determined by real-time RT-PCR. No effect of altered gravity was observed on the expression of osteoprotegerin (opg) genes that regulate osteoclast formation in humans. However, clinorotation resulted in a significant increase of expression of core binding factor α1 (cbfa1/runx2), a crucial regulator of osteoblast formation. Exposure to hypergravitation for 24 h on the other hand had no effect on cbfa1/runx2 expression. This shows that cbfa1/runx2 responds to reduced gravity by expression level changes in vivo. Furthermore, it demonstrates that Medaka provides a valuable experimental model to study molecular mechanisms for compensating microgravity induced bone loss.

  16. Adipose depots differ in cellularity, adipokines produced, gene expression, and cell systems

    PubMed Central

    Dodson, Michael V; Du, Min; Wang, Songbo; Bergen, Werner G; Fernyhough-Culver, Melinda; Basu, Urmila; Poulos, Sylvia P; Hausman, Gary J

    2014-01-01

    The race to manage the health concerns related to excess fat deposition has spawned a proliferation of clinical and basic research efforts to understand variables including dietary uptake, metabolism, and lipid deposition by adipocytes. A full appreciation of these variables must also include a depot-specific understanding of content and location in order to elucidate mechanisms governing cellular development and regulation of fat deposition. Because adipose tissue depots contain various cell types, differences in the cellularity among and within adipose depots are presently being documented to ascertain functional differences. This has led to the possibility of there being, within any one adipose depot, cellular distinctions that essentially result in adipose depots within depots. The papers comprising this issue will underscore numerous differences in cellularity (development, histogenesis, growth, metabolic function, regulation) of different adipose depots. Such information is useful in deciphering adipose depot involvement both in normal physiology and in pathology. Obesity, diabetes, metabolic syndrome, carcass composition of meat animals, performance of elite athletes, physiology/pathophysiology of aging, and numerous other diseases might be altered with a greater understanding of adipose depots and the cells that comprise them—including stem cells—during initial development and subsequent periods of normal/abnormal growth into senescence. Once thought to be dormant and innocuous, the adipocyte is emerging as a dynamic and influential cell and research will continue to identify complex physiologic regulation of processes involved in adipose depot physiology. PMID:26317047

  17. Alpha1-antitrypsin gene therapy modulates cellular immunity and efficiently prevents type 1 diabetes in nonobese diabetic mice.

    PubMed

    Lu, Yuanqing; Tang, Mei; Wasserfall, Clive; Kou, Zhongchen; Campbell-Thompson, Martha; Gardemann, Thomas; Crawford, James; Atkinson, Mark; Song, Sihong

    2006-06-01

    An imbalance of the immune-regulatory pathways plays an important role in the development of type 1 diabetes. Therefore, immunoregulatory and antiinflammatory strategies hold great potential for the prevention of this autoimmune disease. Studies have demonstrated that two serine proteinase inhibitors, alpha1-antitrypsin (AAT) and elafin, act as potent antiinflammatory agents. In the present study, we sought to develop an efficient gene therapy approach to prevent type 1 diabetes. Cohorts of 4-week-old female nonobese diabetic (NOD) mice were injected intramuscularly with rAAV1-CB-hAAT, rAAV1-CB-hElafin, or saline. AAV1 vector mediated sustained high levels of transgene expression, sufficient to overcome a humoral immune response against hAAT. AAT gene therapy, contrary to elafin and saline, was remarkably effective in preventing type 1 diabetes. T cell receptor spectratyping indicated that AAT gene therapy altered T cell repertoire diversity in splenocytes from NOD mice. Adoptive transfer experiments demonstrated that AAT gene therapy attenuated cellular immunity associated with beta cell destruction. This study demonstrates that AAT gene therapy attenuates cell-mediated autoimmunity, alters the T cell receptor repertoire, and efficiently prevents type 1 diabetes in the NOD mouse model. These results strongly suggest that rAAV1-mediated AAT gene therapy may be useful as a novel approach to prevent type 1 diabetes.

  18. Single-cell gene expression analyses of cellular reprogramming reveal a stochastic early and hierarchic late phase

    PubMed Central

    Buganim, Yosef; Faddah, Dina A.; Cheng, Albert W.; Itskovich, Elena; Markoulaki, Styliani; Ganz, Kibibi; Klemm, Sandy L.; van Oudenaarden, Alexander; Jaenisch, Rudolf

    2012-01-01

    During cellular reprogramming only a small fraction of cells become induced pluripotent stem cells (iPSCs). Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. We utilized two gene expression technologies to profile 48 genes in single cells at various stages during the reprogramming process. Analysis of early stages revealed considerable variation in gene expression between cells in contrast to late stages. Expression of Esrrb, Utf1, Lin28, and Dppa2 is a better predictor for cells to progress into iPSCs than expression of Fbxo15, Fgf4, and Oct4 previously suggested to be reprogramming markers. Stochastic gene expression early in reprogramming is followed by a late hierarchical phase with Sox2 being the upstream factor in a gene expression hierarchy. Finally, downstream factors derived from the late phase, which do not include Oct4, Sox2, Klf4, c-Myc and Nanog, can activate the pluripotency circuitry. PMID:22980981

  19. Bcl-2 upregulation by HIV-1 Tat during infection of primary human macrophages in culture.

    PubMed

    Zhang, Mingjie; Li, Xingxiang; Pang, Xiaowu; Ding, Lina; Wood, Owen; Clouse, Kathleen A; Hewlett, Indira; Dayton, Andrew I

    2002-01-01

    The ability of cells of the human monocyte/macrophage lineage to host HIV-1 replication while resisting cell death is believed to significantly contribute to their ability to serve as a reservoir for viral replication in the host. Although macrophages are generally resistant to apoptosis, interruption of anti-apoptotic pathways can render them susceptible to apoptosis. Here we report that HIV-1(BAL )infection of primary human monocyte-derived macrophages (MDM) upregulates the mRNA and protein levels of the anti-apoptic gene, Bcl-2. Furthermore, this upregulation can be quantitatively mimicked by treating MDM with soluble HIV-1 Tat-86 protein. These results suggest that in infecting cells of the monocyte/macrophage lineage, HIV-1 may be benefiting from additional protection against apoptosis caused by specific upregulation of cellular anti-apoptotic genes.

  20. Lymphocytes as cellular vehicles for gene therapy in mouse and man

    SciTech Connect

    Culver, K.; Cornetta, K.; Morgan, R.; Morecki, S.; Aebersold, P.; Kasid, A.; Lotze, M.; Rosenberg, S.A.; Anderson, W.F.; Blaese, R.M. )

    1991-04-15

    The application of bone marrow gene therapy has been stalled by the inability to achieve stable high-level gene transfer and expression in the totipotent stem cells. The authors that retroviral vectors can stably introduce genes into antigen-specific murine and human T lymphocytes in culture. Murine helper T cells were transduced with the retroviral vector SAX to express both neomycin-resistance and human adenosine deaminase genes. To determine if cultured T cells might be used for gene therapy, their persistence and continued expression of the introduced genes was evaluated in nude mice transplanted with the SAX-transduced T cells. They studied cultured human tumor-infiltrating lymphocytes as a candidate cell for a trial of gene transfer in man. Gene insertion and subsequent G418 selection did not substantially alter the growth characteristics, interleukin 2 dependence, membrane phenotype, or cytotoxicity profile of the transduced T cells. These studies provided a portion of the experimental evidence supporting the feasibility of the presently ongoing clinical trials of lymphocyte gene therapy in cancer as well as in patients with adenosine deaminase deficiency.

  1. Entinostat up-regulates the CAMP gene encoding LL-37 via activation of STAT3 and HIF-1α transcription factors

    PubMed Central

    Miraglia, Erica; Nylén, Frank; Johansson, Katarina; Arnér, Elias; Cebula, Marcus; Farmand, Susan; Ottosson, Håkan; Strömberg, Roger; Gudmundsson, Gudmundur H.; Agerberth, Birgitta; Bergman, Peter

    2016-01-01

    Bacterial resistance against classical antibiotics is a growing problem and the development of new antibiotics is limited. Thus, novel alternatives to antibiotics are warranted. Antimicrobial peptides (AMPs) are effector molecules of innate immunity that can be induced by several compounds, including vitamin D and phenyl-butyrate (PBA). Utilizing a luciferase based assay, we recently discovered that the histone deacetylase inhibitor Entinostat is a potent inducer of the CAMP gene encoding the human cathelicidin LL-37. Here we investigate a mechanism for the induction and also find that Entinostat up-regulates human β-defensin 1. Analysis of the CAMP promoter sequence revealed binding sites for the transcription factors STAT3 and HIF-1α. By using short hairpin RNA and selective inhibitors, we found that both transcription factors are involved in Entinostat-induced expression of LL-37. However, only HIF-1α was found to be recruited to the CAMP promoter, suggesting that Entinostat activates STAT3, which promotes transcription of CAMP by increasing the expression of HIF-1α. Finally, we provide in vivo relevance to our findings by showing that Entinostat-elicited LL-37 expression was impaired in macrophages from a patient with a STAT3-mutation. Combined, our findings support a role for STAT3 and HIF-1α in the regulation of LL-37 expression. PMID:27633343

  2. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus).

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Hirono, Ikuo; Rodkhum, Channarong

    2014-08-06

    Temperature strongly affects the health of aquatic poikilotherms. In Nile tilapia (Oreochromis niloticus), elevated water temperatures increase the severity of streptococcosis. Here we investigated the effects of temperature on the vulnerability and inflammatory response of Nile tilapia to Streptococcus agalactiae (Group B streptococci; GBS). At 35 and 28 °C, GBS took 4 and 7h, respectively to reach the log-phase and, when incubated with tilapia whole blood, experienced survival rates of 97% and 2%, respectively. The hemolysis activity of GBS grown at 35 °C was five times higher than that of GBS grown at 28 °C. GBS expressed cylE (β-hemolysin/cytolysin), cfb (CAMP factor) and PI-2b (pili-backbone) much more strongly at 35 °C than at 28 °C. Challenging Nile tilapia reared at 35 and 28 °C with GBS resulted in accumulated mortalities of about 85% and 45%, respectively. At 35 °C, infected tilapia exhibited tremendous inflammatory responses due to a dramatic up-regulation (30-40-fold) of inflammatory-related genes (cyclooxygenase-2, IL-1β and TNF-α) between 6 and 96 h-post infection. These results suggest that the increase of GBS pathogenicity to Nile tilapia induced by elevated temperature is associated with massive inflammatory responses, which may lead to acute mortality.

  3. Copper Deficiency Leads to Anemia, Duodenal Hypoxia, Upregulation of HIF-2α and Altered Expression of Iron Absorption Genes in Mice

    PubMed Central

    Matak, Pavle; Zumerle, Sara; Mastrogiannaki, Maria; El Balkhi, Souleiman; Delga, Stephanie; Mathieu, Jacques R. R.; Canonne-Hergaux, François; Poupon, Joel; Sharp, Paul A.; Vaulont, Sophie; Peyssonnaux, Carole

    2013-01-01

    Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency. PMID:23555700

  4. Dietary wolfberry up-regulates carotenoid metabolic genes and enhances mitochondrial biogenesis in the retina of db/db diabetic mice

    PubMed Central

    Yu, Huifeng; Wark, Logan; Ji, Hua; Willard, Lloyd; Jaing, Yu; Han, Jing; He, Hui; Ortiz, Edlin; Zhang, Yunong; Medeiros, Denis M; Lin, Dingbo

    2013-01-01

    Scope Our aim was to investigate whether dietary wolfberry altered carotenoid metabolic gene expression and enhanced mitochondrial biogenesis in the retina of diabetic mice. Methods and Results Six-week-old male db/db and wild type mice were fed the control or wolfberry diets for 8 weeks. At study termination, liver and retinal tissues were collected for analysis by transmission electron microscopy, real-time PCR, immunoprecipitation, Western blot, and HPLC. Wolfberry elevated zeaxanthin and lutein levels in the liver and retinal tissues and stimulated expression of retinal scavenger receptor class B type I, glutathione S-transferase Pi 1, and β,β-carotene 9’,10’-oxygenase 2, and induced activation and nuclear enrichment of retinal AMP-activated protein kinase α2 (AMPKα2). Furthermore, wolfberry attenuated hypoxia and mitochondrial stress as demonstrated by declined expression of hypoxia-inducible factor-1α, vascular endothelial growth factor, and heat shock protein 60. Wolfberry enhanced retinal mitochondrial biogenesis in diabetic retinas as demonstrated by reversed mitochondrial dispersion in the retinal pigment epithelium, increased mitochondrial copy number, elevated citrate synthase activity, and up-regulated expression of peroxisome proliferator-activated receptor γ co-activator 1 α, nuclear respiratory factor 1, and mitochondrial transcription factor A. Conclusion Consumption of dietary wolfberry could be beneficial to retinoprotection through reversal of mitochondrial function in diabetic mice. PMID:23505020

  5. Exposure to Diflubenzuron Results in an Up-Regulation of a Chitin Synthase 1 Gene in Citrus Red Mite, Panonychus citri (Acari: Tetranychidae)

    PubMed Central

    Xia, Wen-Kai; Ding, Tian-Bo; Niu, Jin-Zhi; Liao, Chong-Yu; Zhong, Rui; Yang, Wen-Jia; Liu, Bin; Dou, Wei; Wang, Jin-Jun

    2014-01-01

    Chitin synthase synthesizes chitin, which is critical for the arthropod exoskeleton. In this study, we cloned the cDNA sequences of a chitin synthase 1 gene, PcCHS1, in the citrus red mite, Panonychus citri (McGregor), which is one of the most economically important pests of citrus worldwide. The full-length cDNA of PcCHS1 contains an open reading frame of 4605 bp of nucleotides, which encodes a protein of 1535 amino acid residues with a predicted molecular mass of 175.0 kDa. A phylogenetic analysis showed that PcCHS1 was most closely related to CHS1 from Tetranychus urticae. During P. citri development, PcCHS1 was constantly expressed in all stages but highly expressed in the egg stage (114.8-fold higher than in the adult). When larvae were exposed to diflubenzuron (DFB) for 6 h, the mite had a significantly high mortality rate, and the mRNA expression levels of PcCHS1 were significantly enhanced. These results indicate a promising use of DFB to control P. citri, by possibly acting as an inhibitor in chitin synthesis as indicated by the up-regulation of PcCHS1 after exposure to DFB. PMID:24590130

  6. Low-level laser therapy induces an upregulation of collagen gene expression during the initial process of bone healing: a microarray analysis

    NASA Astrophysics Data System (ADS)

    Tim, Carla Roberta; Bossini, Paulo Sérgio; Kido, Hueliton Wilian; Malavazi, Iran; von Zeska Kress, Marcia Regina; Carazzolle, Marcelo Falsarella; Rennó, Ana Cláudia; Parizotto, Nivaldo Antonio

    2016-08-01

    This study investigates the histological modifications produced by low level laser therapy (LLLT) on the first day of bone repair, as well as evaluates the LLLT effects on collagen expression on the site of a fracture. Twenty Wistar rats were distributed into a control group (CG) and a laser group (LG). Laser irradiation of Ga-Al-As laser 830 nm, 30 mW, 94 s, 2.8 J was performed in five sessions. Animals were euthanized on day 5 postsurgery. Histopathological analysis showed that LLLT was able to increase deposition of granulation tissue and newly formed bone at the site of the injury. In addition, picrosirius analysis showed that collagen fiber organization in the LG was enhanced compared to CG. Microarray analysis demonstrated that LLLT produced an upregulation type I collagen (COL-I). Immunohistochemical analysis revealed that the subjects that were treated presented a higher immunoexpression of COL-I. Our findings indicated that LLLT improves bone healing by producing a significant increase in the expression of collagen genes.

  7. Interferon-Stimulated Gene 15 Upregulation Precedes the Development of Blood-Brain Barrier Disruption and Cerebral Edema after Traumatic Brain Injury in Young Mice.

    PubMed

    Rossi, Janet L; Todd, Tracey; Daniels, Zachary; Bazan, Nicolas G; Belayev, Ludmila

    2015-07-15

    Recent studies show that myosin light chain kinase (MLCK) plays a pivotal role in development of cerebral edema, a known complication following traumatic brain injury (TBI) in children and a contributing factor to worsened neurologic recovery. Interferon-stimulated gene 15 (ISG15) is upregulated after cerebral ischemia and is neuroprotective. The significant role of ISG15 after TBI has not been studied. Postnatal Day (PND) 21 and PND24 mice were subjected to lateral closed-skull injury with impact depth of 2.0 or 2.25 mm. Behavior was examined at 7 d using two-object novel recognition and Wire Hang tests. Mice were sacrificed at 6 h, 12 h, 24 h, 48 h, 72 h, and 7 d. ISG15 and MLCK were analyzed by Western blot and immunohistochemistry, blood-brain barrier (BBB) disruption with Evans Blue (EB), and cerebral edema with wet/dry weights. EB extravasation and edema peaked at 72 h in both ages. PND21 mice had more severe neurological deficits, compared with PND24 mice. PND24 mice showed peak ISG15 expression at 6 h, and PND21 mice at 72 h. MLCK peaked in both age groups at 12 h and co-localized with ISG15 on immunohistochemistry and co-immunoprecipitation. These studies provide evidence, ISG15 is elevated following TBI in mice, preceding MLCK elevation, development of BBB disruption, and cerebral edema.

  8. Up-regulation of glutathione biosynthesis in NIH3T3 cells transformed with the ETV6-NTRK3 gene fusion.

    PubMed

    Kim, Su-Jung; Kim, Hong-Gyum; Lim, Hye-Won; Park, Eun-Hee; Lim, Chang-Jin

    2005-02-28

    The ETV6-NTRK3 gene fusion, first identified in the chromosomal translocation in congenital fibrosarcoma, encodes a chimeric protein tyrosine kinase with potent transforming activity. ETV6-NTRK3-dependent transformation involves the joint action of NTRK3 signaling pathways, and aberrant cell cycle progression resulting from activation of Mek1 and Akt. The level of glutathione (GSH) was found to be markedly increased in ETV6-NTRK3-transformed NIH3T3 cells. The activities of the two GSH biosynthetic enzymes as well as of glutathione peroxidase, together with their mRNAs, were also higher in the transformed cells. The transformed cells were able to grow in the presence of GSH-depleting agents, whereas the control cells were not. L-Buthionine-(S,R)-sulfoximine (BSO) inhibited activation of Mek1 and Akt in the transformed NIH3T3 cells. These observations imply that up-regulation of GSH biosynthesis plays a central role in ETV6-NTRK3-induced transformation.

  9. Green and Red Light Reduces the Disease Severity by Pseudomonas cichorii JBC1 in Tomato Plants via Upregulation of Defense-Related Gene Expression.

    PubMed

    Nagendran, Rajalingam; Lee, Yong Hoon

    2015-04-01

    Light influences many physiological processes in most organisms. To investigate the influence of light on plant and pathogen interaction, we challenged tomato seedlings with Pseudomonas cichorii JBC1 by flood inoculation and incubated the seedlings under different light conditions. Tomato seedlings exposed to green or red light showed a significant reduction in disease incidence compared with those grown under white light or dark conditions. To understand the underlying mechanisms, we investigated the effects of each light wavelength on P. cichorii JBC1 and tomato plants. Treatment with various light wavelengths at 120 µmol m(-2) s(-1) revealed no significant difference in growth, swarming motility, or biofilm formation of the pathogen. In addition, when we vacuum-infiltrated P. cichorii JBC1 into tomato plants, green and red light also suppressed disease incidence which indicated that the reduced disease severity was not from direct influence of light on the pathogen. Significant upregulation of the defense-related genes, phenylalanine ammonia-lyase (PAL) and pathogenesis-related protein 1a (PR-1a) was observed in P. cichorii JBC1-infected tomato seedlings grown under green or red light compared with seedlings grown under white light or dark conditions. The results of this study indicate that light conditions can influence plant defense mechanisms. In particular, green and red light increase the resistance of tomato plants to infection by P. cichorii.

  10. Anoxia-induced transcriptional upregulation of sarp-19: cloning and characterization of a novel EF-hand containing gene expressed in hepatopancreas of Littorina littorea.

    PubMed

    Larade, Kevin; Storey, Kenneth B

    2004-04-01

    Many marine molluscs have well-developed biochemical adaptations that allow them to live without oxygen for long periods of time, but very little is currently known about the molecular biology underlying these processes. Differential screening of a cDNA library derived from the hepatopancreas of the marine snail Littorina littorea revealed a novel anoxia-induced gene, sarp-19 (snail anoxia-responsive protein, 19 kDa). Examination of the sarp-19 transcript revealed an open reading frame that encoded a protein of 168 amino acids containing an N-terminal signal sequence and two putative EF-hand domains. Expression analysis of transcript levels established that sarp-19 accumulated over a time course of anoxia exposure, reaching a maximum 5.6-fold increase after 96 h compared with aerobic controls. However, transcript levels were reduced by 50% within 1 h when aerobic conditions were reestablished. Nuclear runoff assays confirmed transcriptional upregulation of sarp-19 during anoxia exposure, and organ explant experiments showed that the gene was also responsive to anoxia exposure in vitro. sarp-19 transcripts were also elevated in response to freezing, suggesting that the protein may have a role in the physiological responses of this intertidal snail to both aerial exposure and winter freezing. Hepatopancreas explants treated with a calcium ionophore showed increased levels of the sarp-19 transcript, suggesting a possible feedback mechanism regulated by levels of intracellular calcium. Expression was also responsive to tissue incubation with cyclic GMP and phorbol 12-myristate 13-acetate but was not affected by cyclic AMP, implicating involvement of protein kinases G and C but not protein kinase A in the expression of sarp-19. The SARP-19 protein may play a role in calcium-activated signaling during anoxia exposure in L. littorea.

  11. Knockdown of Litopenaeus vannamei HtrA2, an up-regulated gene in response to WSSV infection, leading to delayed shrimp mortality.

    PubMed

    Peepim, Termsri; Phiwsaiya, Kornsunee; Charoensapsri, Walaiporn; Khunrae, Pongsak; Senapin, Saengchan; Rattanarojpong, Triwit

    2016-02-10

    HtrA2 is an apoptosis-activating gene that enhances the apoptotic process by preventing the formation of the IAP-caspase complex, thereby freeing caspase to trigger the apoptosis pathway. In this study, we presented the full-length cDNA sequence of HtrA2 from Litopenaeus vannamei (LvHtrA2). The full-length LvHtrA2 was 1335 bp, encoding 444 amino acids. This deduced amino acid sequence contained five conserved domains: a mitochondrial targeting signal (MTS), a transmembrane (TM) domain, an IAP-binding motif (IBM), a trimerization motif, a serine protease domain, and a PDZ domain normally found in the HtrA2 proteins of other organisms. A phylogenetic analysis revealed that LvHtrA2 clustered with the HtrA2 from other invertebrates and was closely related to Penaeus monodon HtrA2 (PmHtrA2). RT-PCR with RNA extracts from L. vannamei revealed that LvHtrA2 expression was found in several tissues, including the lymphoid organs, the haemocytes, the hepatopancreas, the gill, and the stomach, with different expression levels. When determining the role of LvHtrA2 in WSSV infection, it was found that LvHtrA2 transcription was early up-regulated in the WSSV-infected shrimp at 8h post-infection (p.i.) and expression still remained high at 48 h p.i.. It also demonstrated that dsRNA specific to LvHtrA2 reduced the cumulative mortality in the WSSV-infected shrimp compared with the control group. Additionally, depletion of the LvHtrA2 transcripts reduced expression levels for caspase-3 (Cap-3) gene in shrimp. This result could suggest that LvHtrA2 may involved in apoptosis mediated mortality rather than providing immune protection during WSSV infection.

  12. Characterization and expression analysis of the transferrin gene in Nile tilapia (Oreochromis niloticus) and its upregulation in response to Streptococcus agalactiae infection.

    PubMed

    Poochai, Watsida; Choowongkomon, Kiattawee; Srisapoome, Prapansak; Unajak, Sasimanas; Areechon, Nontawith

    2014-10-01

    In this study, full-length tilapia transferrin (OnTF) isolated from liver cDNA of Nile tilapia (Oreochromis niloticus) was found to have an open reading frame of 2,091-bp encoding 696 amino acid residues. Two additional amino acids: Gly(369) and Gly(370) were observed compared with the reported Nile tilapia transferrin protein sequence. Pre-mature protein has a predicted molecular weight of 78.2 kDa, while mature protein is 73.28 kDa in size. Comparative sequence analysis with transferrin from other species revealed two major putative iron-binding domains designated as the N-lobe and the C-lobe in accordance with the transferrin protein characteristics. The predicted tertiary structure of tilapia transferrin confirmed the presence of iron and anion-binding sites on both lobes that are conserved among transferrins from other species. Quantitative real-time PCR analysis showed significantly higher expression of tilapia transferrin gene in liver than in other tissues (p < 0.05). Transferrin expression in tilapia experimentally infected with 10(6) and 10(8) colony-forming units mL(-1) of Streptococcus agalactiae was significantly upregulated at 24 and 12 h post-infection (hpi), respectively, and decreased afterward. Iron-deficiency in serum of bacterially infected fish was detected at 48 and 24 hpi, respectively. The expression pattern of the transferrin gene and the iron levels of infected tilapia in this study were consistent with the function of transferrin in innate immunity.

  13. Upregulation of biotransformation genes in gills of oyster Crassostrea brasiliana exposed in situ to urban effluents, Florianópolis Bay, Southern Brazil.

    PubMed

    Pessatti, Tomás B; Lüchmann, Karim H; Flores-Nunes, Fabrício; Mattos, Jacó J; Sasaki, Sílvio T; Taniguchi, Satie; Bícego, Márcia C; Dias Bainy, Afonso Celso

    2016-09-01

    The release of untreated sanitary sewage, combined with unplanned urban growth, are major factors contributing to degradation of coastal ecosystems in developing countries, including Brazil. Sanitary sewage is a complex mixture of chemicals that can negatively affect aquatic organisms. The use of molecular biomarkers can help to understand and to monitor the biological effects elicited by contaminants. The aim of this study was to evaluate changes in transcript levels of genes related to xenobiotic biotransformation in the gills of oysters Crassostrea brasiliana transplanted and kept for 24h at three areas potentially contaminated by sanitary sewage (Bücheller river, BUC; Biguaçu river, BIG; and Ratones island, RAT), one farming area (Sambaqui beach, SAM) and at one reference site (Forte beach, FOR) in the North Bay of Santa Catarina Island (Florianópolis, Brazil). Transcript levels of four cytochrome P450 isoforms (CYP2AU1, CYP3A-like, CYP356A1-like and CYP20A1-like), three glutathione S-transferase (GST alpha-like, GST pi-like and GST microsomal 3-like) and one sulfotransferase gene (SULT-like) were evaluated by means of quantitative reverse transcription PCR (qRT-PCR). Chemical analysis of the sediment from each site were performed and revealed the presence of aliphatic and polycyclic aromatic hydrocarbons, linear alkylbenzenes and fecal sterols in the contaminated areas (BUC and BIG). Water quality analysis showed that these sites had the highest levels of fecal coliforms and other parameters evidencing the presence of urban sewage discharges. Among the results for gene transcription, CYP2AU1 and SULT-like levels were upregulated by 20 and 50-fold, respectively, in the oysters kept for 24h at the most contaminated site (BUC), suggesting a role of these genes in the detoxification of organic pollutants. These data reinforce that gills possibly have an important role in xenobiotic metabolism and highlight the use of C. brasiliana as a sentinel for monitoring

  14. Extravirgin olive oil up-regulates CB₁ tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms.

    PubMed

    Di Francesco, Andrea; Falconi, Anastasia; Di Germanio, Clara; Micioni Di Bonaventura, Maria Vittoria; Costa, Antonio; Caramuta, Stefano; Del Carlo, Michele; Compagnone, Dario; Dainese, Enrico; Cifani, Carlo; Maccarrone, Mauro; D'Addario, Claudio

    2015-03-01

    Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB₁) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 μM) or authentic hydroxytyrosol (HT, 50 μM) for 24 h. None of the other major elements of the ECS (i.e., CB₂; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB₁ expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB₁ expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB₁ mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB₁ gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may

  15. Overfeeding energy upregulates peroxisome proliferator-activated receptor (PPAR)γ-controlled adipogenic and lipolytic gene networks but does not affect proinflammatory markers in visceral and subcutaneous adipose depots of Holstein cows.

    PubMed

    Ji, P; Drackley, J K; Khan, M J; Loor, J J

    2014-01-01

    Our objective was to determine the effects of overfeeding energy on gene expression in mesenteric (MAT), omental (OAT), and subcutaneous (SAT) adipose tissue (AT) from nonpregnant and nonlactating Holstein cows. Eighteen cows were randomly assigned to either a low energy [LE, net energy for lactation (NE(L)) = 1.35 Mcal/kg of dry matter (DM)] or high energy (HE, NE(L) = 1.62 Mcal/kg of DM) diets for 8 wk. Cows were then euthanized and subsamples of MAT, OAT, and SAT were harvested for transcript profiling via quantitative PCR of 34 genes involved in lipogenesis, triacylglycerol (TAG) synthesis, lipolysis, lactate signaling, transcription regulation, and inflammation. The interaction of dietary energy and AT depot was only significant for LPL, which indicated a consistent response among the 3 sites. The expression of key genes related to de novo fatty acid synthesis (FASN) and desaturation (SCD) was upregulated by HE compared with LE. Other genes associated with those processes, such as ACLY, ACACA, ELOVL6, FABP4, GPAM, and LPIN1, were numerically upregulated by HE. The expression of lipolytic (PNPLA2 and ABHD5) genes was upregulated and the antilypolytic lactate receptor HCAR1 was downregulated with HE compared with LE. The putative transcription regulator THRSP was upregulated and the transcription regulator PPARG tended to be upregulated by HE, whereas SREBF1 was downregulated. Among adipocytokines, HE tended to upregulate the expression of CCL2, whereas IL6R was downregulated. Overall, results indicated that overfeeding energy may increase AT mass at least in part by stimulating transcription of the network encompassing key genes associated with de novo synthesis. In response to energy overfeeding, the expression of PPARG rather than SREBF1 was closely associated with most adipogenic or lipogenic genes. However, the transcriptional activity of these regulators needs to be verified to confirm their role in the regulation of adipogenesis or lipogenesis in bovine

  16. Microarray analysis of changes in cellular gene expression induced by productive infection of primary human astrocytes: implications for HAD.

    PubMed

    Kim, Seon-Young; Li, Jinliang; Bentsman, Galina; Brooks, Andrew I; Volsky, David J

    2004-12-01

    The role of astrocytes in HIV-1 associated dementia (HAD) is not well understood. HIV-1 binds efficiently to astrocytes but infects only a small fraction of the cells in vitro and in vivo. To gain insight into the biology of HIV-1-expressing astrocytes, we productively infected human fetal astrocytes with pseudotyped HIV-1 and employed Affymetrix oligonucleotide microarrays to determine global changes in cellular gene expression at the peak of virus production. With a twofold change as a cutoff, HIV-1 increased transcription of 266 genes in astrocytes and suppressed expression of 468. The functions of highly expressed genes included interferon-mediated antiviral responses (OAS1, IFIT1), intercellular contacts (SH3, glia-derived nexin), cell homing/adhesion (matrix metalloproteinases), and cell-cell signaling (neuropilin 1 and 2). Surprisingly, genes involved in innate immune responses of astrocytes were largely unaffected. The single most significant effect of HIV-1, however, was down-modulation of at least 55 genes involved in control of cell cycle, DNA replication, and cell proliferation, which were overrepresented in these categories with probability scores of 10(-10)-10(-26). Our data suggest that HIV-1 expression in astrocytes profoundly alters host cell biology, with potential consequences for the physiological function of astrocytes during HIV-1 infection in the brain.

  17. SAP gene transfer restores cellular and humoral immune function in a murine model of X-linked lymphoproliferative disease.

    PubMed

    Rivat, Christine; Booth, Claire; Alonso-Ferrero, Maria; Blundell, Michael; Sebire, Neil J; Thrasher, Adrian J; Gaspar, H Bobby

    2013-02-14

    X-linked lymphoproliferative disease (XLP1) arises from mutations in the gene encoding SLAM-associated protein (SAP) and leads to abnormalities of NKT-cell development, NK-cell cytotoxicity, and T-dependent humoral function. Curative treatment is limited to allogeneic hematopoietic stem cell (HSC) transplantation. We tested whether HSC gene therapy could correct the multilineage defects seen in SAP(-/-) mice. SAP(-/-) murine HSCs were transduced with lentiviral vectors containing either SAP or reporter gene before transplantation into irradiated recipients. NKT-cell development was significantly higher and NK-cell cytotoxicity restored to wild-type levels in mice receiving the SAP vector in comparison to control mice. Baseline immunoglobulin levels were significantly increased and T-dependent humoral responses to NP-CGG, including germinal center formation, were restored in SAP-transduced mice.We demonstrate for the first time that HSC gene transfer corrects the cellular and humoral defects in SAP(-/-) mice providing proof of concept for gene therapy in XLP1.

  18. Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes.

    PubMed Central

    Sneddon, A A; Cohen, P T; Stark, M J

    1990-01-01

    Two genes (PPH21 and PPH22) encoding the yeast homologues of protein serine-threonine phosphatase 2A have been cloned from a Saccharomyces cerevisiae genomic library using a rabbit protein phosphatase 2A cDNA as a hybridization probe. The PPH genes are genetically linked on chromosome IV and are predicted to encode polypeptides each with 74% amino acid sequence identity to rabbit type 2A protein phosphatase, indicating once again the extraordinarily high degree of sequence conservation shown by protein-phosphatases from different species. The two PPH genes show less than 10% amino acid sequence divergence from each other and while disruption of either PPH gene alone is without any major effect, the double disruption is lethal. This indicates that protein phosphatase 2A activity is an essential cellular function in yeast. Measurement of type 2A protein phosphatase activity in yeast strains lacking one or other of the genes indicates that they account for most, if not all, protein phosphatase 2A activity in the cell. Images Fig. 5. PMID:2176150

  19. Recapitulation of the Roberts syndrome cellular phenotype by inhibition of INCENP, ZWINT-1 and ZW10 genes.

    PubMed

    Musio, Antonio; Mariani, Tullio; Montagna, Cristina; Zambroni, Desirèe; Ascoli, Cesare; Ried, Thomas; Vezzoni, Paolo

    2004-04-28

    Roberts syndrome is an autosomal recessive disorder characterised primarily by symmetric reduction of all limbs and growth retardation. Patients have been reported to have premature separation of heterochromatin regions of many chromosomes and abnormalities in cell cycle. Given the rarity of the syndrome, the linkage analysis approach is not suitable to identify the responsible gene. In this work, a cell line derived from a patient affected by Roberts syndrome was characterized by cell biology and molecular cytogenetics, including comparative genomic hybridization and spectral karyotype. No recurrent chromosomal rearrangements were identified. Thereafter, based on the fact that premature chromatide separation is a reliable marker of the disease, we used antisense oligonucleotide technologies to inhibit six genes involved in various steps of the correct chromosome segregation, such as chromosome cohesion, kinetochore assembling, spindle checkpoint and spindle formation. We found that the inhibition of INCENP, ZWINT-1, ZW10 genes results in the appearance of mitotic cells characterised by centromere separation, chromosome aneuploidy and micronuclei formation. In addition, INCENP, ZWINT-1, ZW10 antisense-treated chromosome morphology was very similar to that of Roberts chromosome when analysed by atomic force microscopy. We concluded that INCENP, ZWINT-1, ZW10 gene inhibition results in cellular phenocopies of Roberts syndrome. Taken together, these findings support a possible role of these genes in the pathogenesis of Roberts syndrome.

  20. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats

    SciTech Connect

    Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas; Senthil Murugan, Ponniah; Vasudevan, Varadaraj; Selvam, Govindan Sadasivam

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer L-Arginine treatment reduced the metabolic disturbances in diabetic animals. Black-Right-Pointing-Pointer Antioxidant marker proteins were found high in myocardium by L-arginine treatment. Black-Right-Pointing-Pointer Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. Black-Right-Pointing-Pointer L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. Black-Right-Pointing-Pointer Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg{sup -1} body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-{kappa}B. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic

  1. Dysregulation of host cellular genes targeted by human papillomavirus (HPV) integration contributes to HPV-related cervical carcinogenesis.

    PubMed

    Zhang, Ruiyang; Shen, Congle; Zhao, Lijun; Wang, Jianliu; McCrae, Malcolm; Chen, Xiangmei; Lu, Fengmin

    2016-03-01

    Integration of human papillomavirus (HPV) viral DNA into the human genome has been postulated as an important etiological event during cervical carcinogenesis. Several recent reports suggested a possible role for such integration-targeted cellular genes (ITGs) in cervical carcinogenesis. Therefore, a comprehensive analysis of HPV integration events was undertaken using data collected from 14 publications, with 499 integration loci on human chromosomes included. It revealed that HPV DNA preferred to integrate into intragenic regions and gene-dense regions of human chromosomes. Intriguingly, the host cellular genes nearby the integration sites were found to be more transcriptionally active compared with control. Furthermore, analysis of the integration sites in the human genome revealed that there were several integration hotspots although all chromosomes were represented. The ITGs identified were found to be enriched in tumor-related terms and pathways using gene ontology and KEGG analysis. In line with this, three of six ITGs tested were found aberrantly expressed in cervical cancer tissues. Among them, it was demonstrated for the first time that MPPED2 could induce HeLa cell and SiHa cell G1/S transition block and cell proliferation retardation. Moreover, "knocking out" the integrated HPV fragment in HeLa cell line decreased expression of MYC located ∼500 kb downstream of the integration site, which provided the first experimental evidence supporting the hypothesis that integrated HPV fragment influence MYC expression via long distance chromatin interaction. Overall, the results of this comprehensive analysis implicated that dysregulation of ITGs caused by viral integration as possibly having an etiological involvement in cervical carcinogenesis.

  2. Non-invasive imaging using reporter genes altering cellular water permeability

    NASA Astrophysics Data System (ADS)

    Mukherjee, Arnab; Wu, Di; Davis, Hunter C.; Shapiro, Mikhail G.

    2016-12-01

    Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging.

  3. HIC1 controls cellular- and HIV-1- gene transcription via interactions with CTIP2 and HMGA1

    PubMed Central

    Le Douce, Valentin; Forouzanfar, Faezeh; Eilebrecht, Sebastian; Van Driessche, Benoit; Ait-Ammar, Amina; Verdikt, Roxane; Kurashige, Yoshihito; Marban, Céline; Gautier, Virginie; Candolfi, Ermanno; Benecke, Arndt G.; Van Lint, Carine; Rohr, Olivier; Schwartz, Christian

    2016-01-01

    Among many cellular transcriptional regulators, Bcl11b/CTIP2 and HGMA1 have been described to control the establishment and the persistence of HIV-1 latency in microglial cells, the main viral reservoir in the brain. In this present work, we identify and characterize a transcription factor i.e. HIC1, which physically interacts with both Bcl11b/CTIP2 and HMGA1 to co-regulate specific subsets of cellular genes and the viral HIV-1 gene. Our results suggest that HIC1 represses Tat dependent HIV-1 transcription. Interestingly, this repression of Tat function is linked to HIC1 K314 acetylation status and to SIRT1 deacetylase activity. Finally, we show that HIC1 interacts and cooperates with HGMA1 to regulate Tat dependent HIV-1 transcription. Our results also suggest that HIC1 repression of Tat function happens in a TAR dependent manner and that this TAR element may serve as HIC1 reservoir at the viral promoter to facilitate HIC1/TAT interaction. PMID:27725726

  4. P-TEFb Kinase Complex Phosphorylates Histone H1 to Regulate Expression of Cellular and HIV-1 Genes*

    PubMed Central

    O'Brien, Siobhan K.; Cao, Hong; Nathans, Robin; Ali, Akbar; Rana, Tariq M.

    2010-01-01

    Transcription of HIV-1 genes depends on the RNA polymerase II kinase and elongation factor positive transcription elongation factor b (P-TEFb), the complex of cyclin T1 and CDK9. Recent evidence suggests that regulation of transcription by P-TEFb involves chromatin binding and modifying factors. To determine how P-TEFb may connect chromatin remodeling to transcription, we investigated the relationship between P-TEFb and histone H1. We identify histone H1 as a substrate for P-TEFb involved in cellular and HIV-1 transcription. We show that P-TEFb interacts with H1 and that P-TEFb inhibition by RNAi, flavopiridol, or dominant negative CDK9 expression correlates with loss of phosphorylation and mobility of H1 in vivo. Importantly, P-TEFb directs H1 phosphorylation in response to wild-type HIV-1 infection, but not Tat-mutant HIV-1 infection. Our results show that P-TEFb phosphorylates histone H1 at a specific C-terminal phosphorylation site. Expression of a mutant H1.1 that cannot be phosphorylated by P-TEFb also disrupts Tat transactivation in an HIV reporter cell line as well as transcription of the c-fos and hsp70 genes in HeLa cells. We identify histone H1 as a novel P-TEFb substrate, and our results suggest new roles for P-TEFb in both cellular and HIV-1 transcription. PMID:20551309

  5. MicroRNAs Regulate Cellular ATP Levels by Targeting Mitochondrial Energy Metabolism Genes during C2C12 Myoblast Differentiation

    PubMed Central

    Siengdee, Puntita; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus; Ponsuksili, Siriluck

    2015-01-01

    In our previous study, we identified an miRNA regulatory network involved in energy metabolism in porcine muscle. To better understand the involvement of miRNAs in cellular ATP production and energy metabolism, here we used C2C12 myoblasts, in which ATP levels increase during differentiation, to identify miRNAs modulating these processes. ATP level, miRNA and mRNA microarray expression profiles during C2C12 differentiation into myotubes were assessed. The results suggest 14 miRNAs (miR-423-3p, miR-17, miR-130b, miR-301a/b, miR-345, miR-15a, miR-16a, miR-128, miR-615, miR-1968, miR-1a/b, and miR-194) as cellular ATP regulators targeting genes involved in mitochondrial energy metabolism (Cox4i2, Cox6a2, Ndufb7, Ndufs4, Ndufs5, and Ndufv1) during C2C12 differentiation. Among these, miR-423-3p showed a high inverse correlation with increasing ATP levels. Besides having implications in promoting cell growth and cell cycle progression, its function in cellular ATP regulation is yet unknown. Therefore, miR-423-3p was selected and validated for the function together with its potential target, Cox6a2. Overexpression of miR-423-3p in C2C12 myogenic differentiation lead to decreased cellular ATP level and decreased expression of Cox6a2 compared to the negative control. These results suggest miR-423-3p as a novel regulator of ATP/energy metabolism by targeting Cox6a2. PMID:26010876

  6. A genetic modifier screen identifies multiple genes that interact with Drosophila Rap/Fzr and suggests novel cellular roles.

    PubMed

    Kaplow, Margarita E; Mannava, Laura J; Pimentel, Angel C; Fermin, Hector A; Hyatt, Vanetta J; Lee, John J; Venkatesh, Tadmiri R

    2007-01-01

    In the developing Drosophila eye, Rap/Fzr plays a critical role in neural patterning by regulating the timely exit of precursor cells. Rap/Fzr (Retina aberrant in pattern/Fizzy related) is an activator of the E3 Ubiquitin ligase, the APC (Anaphase Promoting Complex-cyclosome) that facilitates the stage specific proteolytic destruction of mitotic regulators, such as cyclins and cyclin-dependent kinases. To identify novel functional roles of Rap/Fzr, we conducted an F(1) genetic modifier screen to identify genes which interact with the partial-loss-function mutations in rap/fzr. We screened 2741 single P-element, lethal insertion lines and piggyBac lines on the second and third chromosome for dominant enhancers and suppressors of the rough eye phenotype of rap/fzr. From this screen, we have identified 40 genes that exhibit dosage-sensitive interactions with rap/fzr; of these, 31 have previously characterized cellular functions. Seven of the modifiers identified in this study are regulators of cell cycle progression with previously known interactions with rap/fzr. Among the remaining modifiers, 27 encode proteins involved in other cellular functions not directly related to cell-cycle progression. The newly identified variants fall into at least three groups based on their previously known cellular functions: transcriptional regulation, regulated proteolysis, and signal transduction. These results suggest that, in addition to cell cycle regulation, rap/fzr regulates ubiquitin-ligase-mediated protein degradation in the developing nervous system as well as in other tissues.

  7. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses.

    PubMed Central

    Raz, E; Carson, D A; Parker, S E; Parr, T B; Abai, A M; Aichinger, G; Gromkowski, S H; Singh, M; Lew, D; Yankauckas, M A

    1994-01-01

    The skin and mucous membranes are the anatomical sites were most viruses are first encountered by the immune system. Previous experiments have suggested that striated muscle cells are unique among mammalian cell types in their capacity to take up and express free DNA in the absence of a viral vector or physical carrier. However, we have found that mice injected into the superficial skin with free (naked) plasmid DNA encoding the influenza nucleoprotein gene had discrete foci of epidermal and dermal cells, including cells with dendritic morphology, that contained immunoreactive nucleoprotein antigen. A single intradermal administration of 0.3-15 micrograms of free plasmid DNA induced anti-nucleoprotein-specific antibody and cytotoxic T lymphocytes that persisted for at least 68-70 weeks after vaccination. Intradermal gene administration induced higher antibody titers than did direct gene injection into skeletal muscle and did not cause local inflammation or necrosis. Compared with control animals, the gene-injected mice were resistant to challenge with a heterologous strain of influenza virus. These results indicate that the cells of the skin can take up and express free foreign DNA and induce cellular and humoral immune responses against the encoded protein. We suggest that DNA uptake by the skin-associated lymphoid tissues may play a role in the induction of cytotoxic T cells against viruses and other intracellular pathogens. Images PMID:7937799

  8. PROX1 Gene is Differentially Expressed in Oral Cancer and Reduces Cellular Proliferation

    PubMed Central

    Rodrigues, Maria F.S.D.; de Oliveira Rodini, Camila; de Aquino Xavier, Flávia C.; Paiva, Katiúcia B.; Severino, Patrícia; Moyses, Raquel A.; López, Rossana M.; DeCicco, Rafael; Rocha, Lília A.; Carvalho, Marcos B.; Tajara, Eloiza H.; Nunes, Fabio D.

    2014-01-01

    Abstract Homeobox genes are a family of transcription factors that play a pivotal role in embryogenesis. Prospero homeobox 1 (PROX1) has been shown to function as a tumor suppressor gene or oncogene in various types of cancer, including oral squamous cell carcinoma (OSCC). We have previously identified PROX1 as a downregulated gene in OSCC. The aim of this study is to clarify the underlying mechanism by which PROX1 regulates tumorigenicity of OSCC cells. PROX1 mRNA and protein expression levels were first investigated in 40 samples of OSCC and in nontumor margins. Methylation and amplification analysis was also performed to assess the epigenetic and genetic mechanisms involved in controlling PROX1 expression. OSCC cell line SCC9 was also transfected to stably express the PROX1 gene. Next, SCC9-PROX1-overexpressing cells and controls were subjected to proliferation, differentiation, apoptosis, migration, and invasion assays in vitro. OSCC samples showed reduced PROX1 expression levels compared with nontumor margins. PROX1 amplification was associated with better overall survival. PROX1 overexpression reduces cell proliferation and downregulates cyclin D1. PROX1-overexpressing cells also exhibited reduced CK18 and CK19 expression and transcriptionally altered the expression of WISP3, GATA3, NOTCH1, and E2F1. Our results suggest that PROX1 functions as a tumor suppressor gene in oral carcinogenesis. PMID:25526434

  9. Disruption of the Membrane Nuclease Gene (MBOVPG45_0215) of Mycoplasma bovis Greatly Reduces Cellular Nuclease Activity

    PubMed Central

    Sharma, Shukriti; Tivendale, Kelly A.; Markham, Philip F.

    2015-01-01

    ABSTRACT Although the complete genome sequences of three strains of Mycoplasma bovis are available, few studies have examined gene function in this important pathogen. Mycoplasmas lack the biosynthetic machinery for the de novo synthesis of nucleic acid precursors, so nucleases are likely to be essential for them to acquire nucleotide precursors. Three putative membrane nucleases have been annotated in the genome of M. bovis strain PG45, MBOVPG45_0089 and MBOVPG45_0310, both of which have the thermonuclease (TNASE_3) functional domain, and MBOVPG45_0215 (mnuA), which has an exonuclease/endonuclease/phosphatase domain. While previous studies have demonstrated the function of TNASE_3 domain nucleases in several mycoplasmas, quantitative comparisons of the contributions of different nucleases to cellular nuclease activity have been lacking. Mapping of a library of 319 transposon mutants of M. bovis PG45 by direct genome sequencing identified mutants with insertions in MBOVPG45_0310 (the Δ0310 mutant) and MBOVPG45_0215 (the Δ0215 mutant). In this study, the detection of the product of MBOVPG45_0215 in the Triton X-114 fraction of M. bovis cell lysates, its cell surface exposure, and its predicted signal peptide suggested that it is a surface-exposed lipoprotein nuclease. Comparison of a ΔmnuA mutant with wild-type M. bovis on native and denatured DNA gels and in digestion assays using double-stranded phage λ DNA and closed circular plasmid DNA demonstrated that inactivation of this gene abolishes most of the cellular exonuclease and endonuclease activity of M. bovis. This activity could be fully restored by complementation with the wild-type mnuA gene, demonstrating that MnuA is the major cellular nuclease of M. bovis. IMPORTANCE Nucleases are thought to be important contributors to virulence and crucial for the maintenance of a nutritional supply of nucleotides in mycoplasmas that are pathogenic in animals. This study demonstrates for the first time that of the

  10. Large-scale inference of gene function through phylogenetic annotation of Gene Ontology terms: case study of the apoptosis and autophagy cellular processes

    PubMed Central

    Feuermann, Marc; Gaudet, Pascale; Mi, Huaiyu; Lewis, Suzanna E.; Thomas, Paul D.

    2016-01-01

    We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This ‘GO Phylogenetic Annotation’ approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied. Here, we report our results from applying this paradigm to two well-characterized cellular processes, apoptosis and autophagy. This revealed several important observations with respect to GO annotations and how they can be used for function inference. Notably, we applied only a small fraction of the experimentally supported GO annotations to infer function in other family members. The majority of other annotations describe indirect effects, phenotypes or results from high throughput experiments. In addition, we show here how feedback from phylogenetic annotation leads to significant improvements in the PANTHER trees, the GO annotations and GO itself. Thus GO phylogenetic annotation both increases the quantity and improves the accuracy of the GO annotations provided to the research community. We expect these phylogenetically based annotations to be of broad use in gene enrichment analysis as well as other applications of GO annotations. Database URL: http://amigo.geneontology.org/amigo PMID:28025345

  11. Aging and chronic administration of serotonin-selective reuptake inhibitor citalopram upregulate Sirt4 gene expression in the preoptic area of male mice.

    PubMed

    Wong, Dutt Way; Soga, Tomoko; Parhar, Ishwar S

    2015-01-01

    Sexual dysfunction and cognitive deficits are markers of the aging process. Mammalian sirtuins (SIRT), encoded by sirt 1-7 genes, are known as aging molecules which are sensitive to serotonin (5-hydroxytryptamine, 5-HT). Whether the 5-HT system regulates SIRT in the preoptic area (POA), which could affect reproduction and cognition has not been examined. Therefore, this study was designed to examine the effects of citalopram (CIT, 10 mg/kg for 4 weeks), a potent selective-serotonin reuptake inhibitor and aging on SIRT expression in the POA of male mice using real-time PCR and immunocytochemistry. Age-related increases of sirt1, sirt4, sirt5, and sirt7 mRNA levels were observed in the POA of 52 weeks old mice. Furthermore, 4 weeks of chronic CIT treatment started at 8 weeks of age also increased sirt2 and sirt4 mRNA expression in the POA. Moreover, the number of SIRT4 immuno-reactive neurons increased with aging in the medial septum area (12 weeks = 1.00 ± 0.15 vs. 36 weeks = 1.68 ± 0.14 vs. 52 weeks = 1.54 ± 0.11, p < 0.05). In contrast, the number of sirt4-immunopositive cells did not show a statistically significant change with CIT treatment, suggesting that the increase in sirt4 mRNA levels may occur in cells in which sirt4 is already being expressed. Taken together, these studies suggest that CIT treatment and the process of aging utilize the serotonergic system to up-regulate SIRT4 in the POA as a common pathway to deregulate social cognitive and reproductive functions.

  12. Aging and chronic administration of serotonin-selective reuptake inhibitor citalopram upregulate Sirt4 gene expression in the preoptic area of male mice

    PubMed Central

    Wong, Dutt Way; Soga, Tomoko; Parhar, Ishwar S.

    2015-01-01

    Sexual dysfunction and cognitive deficits are markers of the aging process. Mammalian sirtuins (SIRT), encoded by sirt 1-7 genes, are known as aging molecules which are sensitive to serotonin (5-hydroxytryptamine, 5-HT). Whether the 5-HT system regulates SIRT in the preoptic area (POA), which could affect reproduction and cognition has not been examined. Therefore, this study was designed to examine the effects of citalopram (CIT, 10 mg/kg for 4 weeks), a potent selective-serotonin reuptake inhibitor and aging on SIRT expression in the POA of male mice using real-time PCR and immunocytochemistry. Age-related increases of sirt1, sirt4, sirt5, and sirt7 mRNA levels were observed in the POA of 52 weeks old mice. Furthermore, 4 weeks of chronic CIT treatment started at 8 weeks of age also increased sirt2 and sirt4 mRNA expression in the POA. Moreover, the number of SIRT4 immuno-reactive neurons increased with aging in the medial septum area (12 weeks = 1.00 ± 0.15 vs. 36 weeks = 1.68 ± 0.14 vs. 52 weeks = 1.54 ± 0.11, p < 0.05). In contrast, the number of sirt4-immunopositive cells did not show a statistically significant change with CIT treatment, suggesting that the increase in sirt4 mRNA levels may occur in cells in which sirt4 is already being expressed. Taken together, these studies suggest that CIT treatment and the process of aging utilize the serotonergic system to up-regulate SIRT4 in the POA as a common pathway to deregulate social cognitive and reproductive functions. PMID:26442099

  13. Wogonin induces the granulocytic differentiation of human NB4 promyelocytic leukemia cells and up-regulates phospholipid scramblase 1 gene expression.

    PubMed

    Zhang, Kun; Guo, Qing-Long; You, Qi-Dong; Yang, Yong; Zhang, Hai-Wei; Yang, Li; Gu, Hong-Yan; Qi, Qi; Tan, Zi; Wang, Xiaotang

    2008-04-01

    Previous studies have firmly demonstrated that wogonin, a naturally occurring monoflavonoid extracted from the root of the Chinese herb medicine Scutellaria baicalensis, could effectively inhibit the proliferation of several cancer cell lines. However, little is known about the effect of wogonin on differentiation induction of leukemic cells. Here we investigate the potential role of wogonin in the proliferation and differentiation of NB4, a human promyelocytic leukemia cell line derived from a patient with acute promyelocytic leukemia. Our results indicated that wogonin significantly suppressed the proliferation and efficiently induced the differentiation of NB4 cells. NB4 cell growth was inhibited by 55-60% after treatment with 50 microM wogonin for a period of 5 days. The results of the nitroblue tetrazolium (NBT) reduction test (with 67.13% positive cells by 50 microM wogonin for 5 days), Giemsa staining (with 67.24% positive cells by 50 microM wogonin for 5 days), and the expression of mature-related cell-surface differentiation antigens CD11b and CD14 (with 70.94% CD11b(+) and 5.82% CD14(+) cells by 50 microM wogonin for 5 days) demonstrated an increase in the differentiation-inducing action of wogonin on the NB4 cells, which was accompanied by an increase in mRNA and protein expression of phospholipids scramblase 1 (PLSCR1). Meanwhile, the level of phosphorylated PKC delta (Ser643) was dramatically increased in wogonin treated NB4 cells. Interestingly, wogonin treatment displayed little effect on the apoptosis of NB4 cells. Taken together, the results reported here demonstrated that wogonin could promote the granulocytic differentiation of NB4 cells by up-regulating the expression of PLSCR1 gene.

  14. The cellular and molecular pathology of the motor system in hereditary spastic paraparesis due to mutation of the spastin gene.

    PubMed

    Wharton, Stephen B; McDermott, Christopher J; Grierson, Andrew J; Wood, Jonathan D; Gelsthorpe, Catherine; Ince, Paul G; Shaw, Pamela J

    2003-11-01

    Hereditary spastic paraparesis (HSP) is a genetically heterogeneous disorder, the most common cause of which is mutation of the spastin gene. Recent evidence suggests a role for spastin in microtubule dynamics, but the distribution of the protein within the CNS is unknown. The core neuropathology of HSP is distal degeneration of the lateral corticospinal tract and of fasciculus gracilis, but there are few neuropathological studies of cases with a defined mutation. We aimed to determine the distribution of spastin expression in the human CNS and to investigate the cellular pathology of the motor system in HSP due to mutation of the spastin gene. Using an antibody to spastin, we have carried out immunohistochemistry on postmortem brain. We have demonstrated that spastin is a neuronal protein. It is widely expressed in the CNS so that the selectivity of the degeneration in HSP is not due to the normal cellular distribution of the protein. We have identified mutation of the spastin gene in 3 autopsy cases of HSP. Distal degeneration of long tracts in the spinal cord, consistent with a dying back axonopathy, was accompanied by a microglial reaction. The presence of novel hyaline inclusions in anterior horn cells and an alteration in immunostaining for cytoskeletal proteins and mitochondria indicates that long tract degeneration is accompanied by cytopathology in the motor system and may support a role for derangement of cytoskeletal function. All 3 cases also demonstrated evidence of tau pathology outside the motor system, suggesting that the neuropathology is not confined to the motor system in spastin-related HSP.

  15. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer.

    PubMed

    Podlutsky, Andrej; Valcarcel-Ares, Marta Noa; Yancey, Krysta; Podlutskaya, Viktorija; Nagykaldi, Eszter; Gautam, Tripti; Miller, Richard A; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2017-02-23

    Experimental, clinical, and epidemiological findings support the concept of developmental origins of health and disease (DOHAD), suggesting that early-life hormonal influences during a sensitive period around adolescence have a powerful impact on cancer morbidity later in life. The endocrine changes that occur during puberty are highly conserved across mammalian species and include dramatic increases in circulating GH and IGF-1 levels. Importantly, patients with developmental IGF-1 deficiency due to GH insensitivity (Laron syndrome) do not develop cancer during aging. Rodents with developmental GH/IGF-1 deficiency also exhibit significantly decreased cancer incidence at old age, marked resistance to chemically induced carcinogenesis, and cellular resistance to genotoxic stressors. Early-life treatment of GH/IGF-1-deficient mice and rats with GH reverses the cancer resistance phenotype; however, the underlying molecular mechanisms remain elusive. The present study was designed to test the hypothesis that developmental GH/IGF-1 status impacts cellular DNA repair mechanisms. To achieve that goal, we assessed repair of γ-irradiation-induced DNA damage (single-cell gel electrophoresis/comet assay) and basal and post-irradiation expression of DNA repair-related genes (qPCR) in primary fibroblasts derived from control rats, Lewis dwarf rats (a model of developmental GH/IGF-1 deficiency), and GH-replete dwarf rats (GH administered beginning at 5 weeks of age, for 30 days). We found that developmental GH/IGF-1 deficiency resulted in persisting increases in cellular DNA repair capacity and upregulation of several DNA repair-related genes (e.g., Gadd45a, Bbc3). Peripubertal GH treatment reversed the radiation resistance phenotype. Fibroblasts of GH/IGF-1-deficient Snell dwarf mice also exhibited improved DNA repair capacity, showing that the persisting influence of peripubertal GH/IGF-1 status is not species-dependent. Collectively, GH/IGF-1 levels during a critical period

  16. Kinetics of the cellular intake of a gene expression inducer at high concentrations.

    PubMed

    Tran, Huy; Oliveira, Samuel M D; Goncalves, Nadia; Ribeiro, Andre S

    2015-09-01

    From in vivo single-event measurements of the transient and steady-state transcription activity of a single-copy lac-ara-1 promoter in Escherichia coli, we characterize the intake kinetics of its inducer (IPTG) from the media. We show that the empirical data are well-fit by a model of intake assuming a bilayer membrane, with the passage through the second layer being rate-limiting, coupled to a stochastic, sub-Poissonian, multi-step transcription process. Using this model, we show that for a wide range of extracellular inducer levels (up to 1.25 mM) the intake process is diffusive-like, suggesting unsaturated membrane permeability. Inducer molecules travel from the periplasm to the cytoplasm in, on average, 31.7 minutes, strongly affecting cells' response time. The novel methodology followed here should aid the study of cellular intake mechanisms at the single-event level.

  17. Non-invasive imaging using reporter genes altering cellular water permeability

    PubMed Central

    Mukherjee, Arnab; Wu, Di; Davis, Hunter C.; Shapiro, Mikhail G.

    2016-01-01

    Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging. PMID:28008959

  18. Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation.

    PubMed

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo

    2012-08-01

    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research.

  19. Retrovolution: HIV–Driven Evolution of Cellular Genes and Improvement of Anticancer Drug Activation

    PubMed Central

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo

    2012-01-01

    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research. PMID:22927829

  20. Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington's disease.

    PubMed

    Bithell, Angela; Johnson, Rory; Buckley, Noel J

    2009-12-01

    HD (Huntington's disease) is a late onset heritable neurodegenerative disorder that is characterized by neuronal dysfunction and death, particularly in the cerebral cortex and medium spiny neurons of the striatum. This is followed by progressive chorea, dementia and emotional dysfunction, eventually resulting in death. HD is caused by an expanded CAG repeat in the first exon of the HD gene that results in an abnormally elongated polyQ (polyglutamine) tract in its protein product, Htt (Huntingtin). Wild-type Htt is largely cytoplasmic; however, in HD, proteolytic N-terminal fragments of Htt form insoluble deposits in both the cytoplasm and nucleus, provoking the idea that mutHtt (mutant Htt) causes transcriptional dysfunction. While a number of specific transcription factors and co-factors have been proposed as mediators of mutHtt toxicity, the causal relationship between these Htt/transcription factor interactions and HD pathology remains unknown. Previous work has highlighted REST [RE1 (repressor element 1)-silencing transcription factor] as one such transcription factor. REST is a master regulator of neuronal genes, repressing their expression. Many of its direct target genes are known or suspected to have a role in HD pathogenesis, including BDNF (brain-derived neurotrophic factor). Recent evidence has also shown that REST regulates transcription of regulatory miRNAs (microRNAs), many of which are known to regulate neuronal gene expression and are dysregulated in HD. Thus repression of miRNAs constitutes a second, indirect mechanism by which REST can alter the neuronal transcriptome in HD. We will describe the evidence that disruption to the REST regulon brought about by a loss of interaction between REST and mutHtt may be a key contributory factor in the widespread dysregulation of gene expression in HD.

  1. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana

    PubMed Central

    Chen, Yu; Xu, Bin; Yang, Zhimin; Huang, Bingru

    2015-01-01

    Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C) but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000)] or salt stress (150 mM NaCl). Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or ‘dwarfism’, both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits. PMID:26177510

  2. Effect of passage number on cellular response DNA-damaging agents: cell survival and gene expression

    SciTech Connect

    Chang-Liu, Chin-Mei; Wolschak, G.E.

    1996-03-01

    The effect of different passage numbers on plating efficiency, doubling time, cell growth, and radiation sensitivity was assessed in Syrian hamster embryo (SHE) cells. Changes in gene expression after UV or {gamma}-ray irradiation at different passage numbers were also examined. The SHE cells were maintained in culture medium for up to 64 passages. Cells were exposed to {sup 60}Co {gamma} rays or 254-m UV radiation. Differential display of cDNAs and Northern blots were used for the study of gene expression. With increasing passage number, SHE cells demonstrated decreased doubling time, increased plating efficiency, and a decreased yield in the number of cells per plate. Between passages 41 and 48 a ``crisis`` period was evident during which time cell growth in high serum (20%) was no longer optimal, and serum concentrations were reduced (to 10%) to maintain cell growth. Sensitivity to ionizing radiation was no different between early- and intermediate-passage cells. However, after UV exposure at low passages (passage 3), confluent cells were more sensitive to the killing effects of UV than were log-phase cells. At intermediate passages (passages 43, 48), confluent cells were slightly more radioresistant- than were log-phase cells. By passage 64, however, both confluent and log-phase cells showed similar patterns of UV sensitivity. Expression of {gamma}-actin, PCNA, and p53 transcripts did not change following UV exposure. p53 mRNA was induced following {gamma}-ray exposure of the intermediate (passage 45) epithelial cells. Differential display, however, revealed changes in expression of several transcripts following exposure to ionizing and ultraviolet radiations. The observed differences in radiation sensitivity associated with increasing passage number may be influenced by radiation-induced gene expression. We are conducting experiments to identify these genes.

  3. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders.

    PubMed

    Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A S; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T; Oliveira, Bárbara; Marshall, Christian R; Magalhaes, Tiago R; Lowe, Jennifer K; Howe, Jennifer L; Griswold, Anthony J; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A; De Jonge, Maretha V; Cuccaro, Michael; Crawford, Emily L; Correia, Catarina T; Conroy, Judith; Conceição, Inês C; Chiocchetti, Andreas G; Casey, Jillian P; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L Alison; McGrew, Susan G; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S; Kolevzon, Alexander; Jiménez González, Patricia; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M; Vieland, Veronica J; Vicente, Astrid M; Schellenberg, Gerard D; Pericak-Vance, Margaret; Paterson, Andrew D; Parr, Jeremy R; Oliveira, Guiomar; Nurnberger, John I; Monaco, Anthony P; Maestrini, Elena; Klauck, Sabine M; Hakonarson, Hakon; Haines, Jonathan L; Geschwind, Daniel H; Freitag, Christine M; Folstein, Susan E; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W

    2014-05-01

    Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.

  4. Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders

    PubMed Central

    Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A.S.; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T.; Oliveira, Bárbara; Marshall, Christian R.; Magalhaes, Tiago R.; Lowe, Jennifer K.; Howe, Jennifer L.; Griswold, Anthony J.; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A.; De Jonge, Maretha V.; Cuccaro, Michael; Crawford, Emily L.; Correia, Catarina T.; Conroy, Judith; Conceição, Inês C.; Chiocchetti, Andreas G.; Casey, Jillian P.; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L. Alison; McGrew, Susan G.; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S.; Kolevzon, Alexander; Jiménez González, Patricia; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A.; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F.; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J.; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M.; Vieland, Veronica J.; Vicente, Astrid M.; Schellenberg, Gerard D.; Pericak-Vance, Margaret; Paterson, Andrew D.; Parr, Jeremy R.; Oliveira, Guiomar; Nurnberger, John I.; Monaco, Anthony P.; Maestrini, Elena; Klauck, Sabine M.; Hakonarson, Hakon; Haines, Jonathan L.; Geschwind, Daniel H.; Freitag, Christine M.; Folstein, Susan E.; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S.; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W.

    2014-01-01

    Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10−5) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10−15, ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation. PMID:24768552

  5. The multiple myeloma–associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity

    PubMed Central

    Abukhdeir, Abde M.; Konishi, Hiroyuki; Garay, Joseph P.; Gustin, John P.; Wang, Qiuju; Arceci, Robert J.; Matsui, William

    2008-01-01

    Multiple myeloma (MM) is an incurable hematologic malignancy characterized by recurrent chromosomal translocations. Patients with t(4;14)(p16;q32) are the worst prognostic subgroup in MM, although the basis for this poor prognosis is unknown. The t(4;14) is unusual in that it involves 2 potential target genes: fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET). MMSET is universally overexpressed in t(4;14) MM, whereas FGFR3 expression is lost in one-third of cases. Nonetheless, the role of MMSET in t(4;14) MM has remained unclear. Here we demonstrate a role for MMSET in t(4;14) MM cells. Down-regulation of MMSET express