Science.gov

Sample records for upstream start codons

  1. Fusion activity of African henipavirus F proteins with a naturally occurring start codon directly upstream of the signal peptide.

    PubMed

    Weis, Michael; Behner, Laura; Binger, Tabea; Drexler, Jan Felix; Drosten, Christian; Maisner, Andrea

    2015-04-02

    Compared to the fusion proteins of pathogenic Nipah and Hendra viruses, the F protein of prototype African henipavirus GH-M74a displays a drastically reduced surface expression and fusion activity. A probable reason for limited F expression is the unusually long sequence located between the gene start and the signal peptide (SP) not present in other henipaviruses. Such a long pre-SP extension can prevent efficient ER translocation or protein maturation and processing. As its truncation can therefore enhance surface expression, the recent identification of a second in-frame start codon directly upstream of the SP in another African henipavirus F gene (GH-UP28) raised the question if such a naturally occurring minor sequence variation can lead to the synthesis of a pre-SP truncated translation product, thereby increasing the production of mature F proteins. To test this, we analyzed surface expression and biological activity of F genes carrying the second SP-proximal start codon of GH-UP28. Though we observed minor differences in the expression levels, introduction of the additional start codon did not result in an increased fusion activity, even if combined with further mutations in the pre-SP region. Thus, limited bioactivity of African henipavirus F protein is maintained even after sequence changes that alter the gene start allowing the production of F proteins without an unusually long pre-SP.

  2. The immediate upstream region of the 5′-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana

    PubMed Central

    Kim, Younghyun; Lee, Goeun; Jeon, Eunhyun; Sohn, Eun ju; Lee, Yongjik; Kang, Hyangju; Lee, Dong wook; Kim, Dae Heon; Hwang, Inhwan

    2014-01-01

    The nucleotide sequence around the translational initiation site is an important cis-acting element for post-transcriptional regulation. However, it has not been fully understood how the sequence context at the 5′-untranslated region (5′-UTR) affects the translational efficiency of individual mRNAs. In this study, we provide evidence that the 5′-UTRs of Arabidopsis genes showing a great difference in the nucleotide sequence vary greatly in translational efficiency with more than a 200-fold difference. Of the four types of nucleotides, the A residue was the most favourable nucleotide from positions −1 to −21 of the 5′-UTRs in Arabidopsis genes. In particular, the A residue in the 5′-UTR from positions −1 to −5 was required for a high-level translational efficiency. In contrast, the T residue in the 5′-UTR from positions −1 to −5 was the least favourable nucleotide in translational efficiency. Furthermore, the effect of the sequence context in the −1 to −21 region of the 5′-UTR was conserved in different plant species. Based on these observations, we propose that the sequence context immediately upstream of the AUG initiation codon plays a crucial role in determining the translational efficiency of plant genes. PMID:24084084

  3. Efficient translation initiation dictates codon usage at gene start

    PubMed Central

    Bentele, Kajetan; Saffert, Paul; Rauscher, Robert; Ignatova, Zoya; Blüthgen, Nils

    2013-01-01

    The genetic code is degenerate; thus, protein evolution does not uniquely determine the coding sequence. One of the puzzles in evolutionary genetics is therefore to uncover evolutionary driving forces that result in specific codon choice. In many bacteria, the first 5–10 codons of protein-coding genes are often codons that are less frequently used in the rest of the genome, an effect that has been argued to arise from selection for slowed early elongation to reduce ribosome traffic jams. However, genome analysis across many species has demonstrated that the region shows reduced mRNA folding consistent with pressure for efficient translation initiation. This raises the possibility that unusual codon usage is a side effect of selection for reduced mRNA structure. Here we discriminate between these two competing hypotheses, and show that in bacteria selection favours codons that reduce mRNA folding around the translation start, regardless of whether these codons are frequent or rare. Experiments confirm that primarily mRNA structure, and not codon usage, at the beginning of genes determines the translation rate. PMID:23774758

  4. Principles of start codon recognition in eukaryotic translation initiation

    PubMed Central

    Lind, Christoffer; Åqvist, Johan

    2016-01-01

    Selection of the correct start codon during initiation of translation on the ribosome is a key event in protein synthesis. In eukaryotic initiation, several factors have to function in concert to ensure that the initiator tRNA finds the cognate AUG start codon during mRNA scanning. The two initiation factors eIF1 and eIF1A are known to provide important functions for the initiation process and codon selection. Here, we have used molecular dynamics free energy calculations to evaluate the energetics of initiator tRNA binding to different near-cognate codons on the yeast 40S ribosomal subunit, in the presence and absence of these two initiation factors. The results show that eIF1 and eIF1A together cause a relatively uniform and high discrimination against near-cognate codons. This works such that eIF1 boosts the discrimination against a first position near-cognate G-U mismatch, and also against a second position A-A base pair, while eIF1A mainly acts on third codon position. The computer simulations further reveal the structural basis of the increased discriminatory effect caused by binding of eIF1 and eIF1A to the 40S ribosomal subunit. PMID:27280974

  5. HER-2 UPSTREAM OPEN READING FRAME EFFECTS ON THE USE OF DOWNSTREAM INITIATION CODONS

    PubMed Central

    Spevak, Christina C.; Park, Eun-Hee; Geballe, Adam P.; Pelletier, Jerry; Sachs, Matthew S.

    2006-01-01

    The her-2 (neu, erbB-2) oncogene encodes a 185-kDa transmembrane receptor tyrosine kinase. HER2 overexpression occurs in numerous primary human tumors and contributes to 25–30% of breast and ovarian carcinomas. Synthesis of HER2 is controlled in part by an upstream open reading frame (uORF) present in the transcript. We used synthetic capped and polyadenylated mRNAs containing sequences derived from the 5′ region of the her-2 transcript fused to firefly luciferase (LUC) reporter to examine this ORF’s effect on translation in cell-free systems derived from reticulocytes, wheat germ and Neurospora crassa, and in RNA-transfected HeLa cells. The uORF reduced translation of the downstream cistron in all systems. [35S]Met-labeling of in vitro translation products obtained indicated that the uORF also affected downstream start-site selection. Primer extension inhibition (toeprint) assays of ribosomes loaded at initiation codons in reticulocyte lysates indicated that the uORF affected the interaction of ribosomes with the primary her-2 AUG codon. PMID:17045969

  6. Why is start codon selection so precise in eukaryotes?

    PubMed Central

    Asano, Katsura

    2014-01-01

    Translation generally initiates with the AUG codon. While initiation at GUG and UUG is permitted in prokaryotes (Archaea and Bacteria), cases of CUG initiation were recently reported in human cells. The varying stringency in translation initiation between eukaryotic and prokaryotic domains largely stems from a fundamental problem for the ribosome in recognizing a codon at the peptidyl-tRNA binding site. Initiation factors specific to each domain of life evolved to confer stringent initiation by the ribosome. The mechanistic basis for high accuracy in eukaryotic initiation is described based on recent findings concerning the role of the multifactor complex (MFC) in this process. Also discussed are whether non-AUG initiation plays any role in translational control and whether start codon accuracy is regulated in eukaryotes. PMID:26779403

  7. Alternative Translation Initiation of a Haloarchaeal Serine Protease Transcript Containing Two In-Frame Start Codons

    PubMed Central

    Tang, Wei; Wu, Yufeng; Li, Moran; Wang, Jian; Mei, Sha

    2016-01-01

    ABSTRACT Recent studies have shown that haloarchaea employ leaderless and Shine-Dalgarno (SD)-less mechanisms for translation initiation of leaderless transcripts with a 5′ untranslated region (5′ UTR) of <10 nucleotides (nt) and leadered transcripts with a 5′ UTR of ≥10 nt, respectively. However, whether the two mechanisms can operate on the same naturally occurring haloarchaeal transcript carrying multiple potential start codons is unknown. In this study, the transcript of the sptA gene (encoding an extracellular serine protease of Natrinema sp. strain J7-2) was experimentally determined and found to contain two potential in-frame AUG codons (AUG1 and AUG2) located 5 and 29 nt, respectively, downstream of the transcription start site. Mutational analysis revealed that both AUGs can function as the translation start codon for production of active SptA, although AUG1 is more efficient than AUG2 for translation initiation. Insertion of a stable stem-loop structure between the two AUGs completely abolished initiation at AUG1 but did not affect initiation at AUG2, indicating that AUG2-initiated translation does not involve ribosome scanning from the 5′ end of the transcript. Furthermore, the efficiency of AUG2-initiated translation was not influenced by an upstream SD-like sequence. In addition, both AUG1 and AUG2 contribute to transcript stability, probably by recruiting ribosomes to protect the transcript against degradation. These data suggest that depending on which of two in-frame start codons is used, the sptA transcript can act as either a leaderless or a leadered transcript for SptA production in haloarchaea. IMPORTANCE In eukaryotes and bacteria, alternative translation start sites contribute to proteome complexity and can be used as a functional mechanism to increase translation efficiency. However, little is known about alternative translation initiation in archaea. Our results demonstrate that leaderless and SD-less mechanisms can be used for

  8. Minigene-like inhibition of protein synthesis mediated by hungry codons near the start codon

    PubMed Central

    Jacinto-Loeza, Eva; Vivanco-Domínguez, Serafín; Guarneros, Gabriel; Hernández-Sánchez, Javier

    2008-01-01

    Rare AGA or AGG codons close to the initiation codon inhibit protein synthesis by a tRNA-sequestering mechanism as toxic minigenes do. To further understand this mechanism, a parallel analysis of protein synthesis and peptidyl-tRNA accumulation was performed using both a set of lacZ constructs where AGAAGA codons were moved codon by codon from +2, +3 up to +7, +8 positions and a series of 3–8 codon minigenes containing AGAAGA codons before the stop codon. β-Galactosidase synthesis from the AGAAGA lacZ constructs (in a Pth defective in vitro system without exogenous tRNA) diminished as the AGAAGA codons were closer to AUG codon. Likewise, β-galactosidase expression from the reporter +7 AGA lacZ gene (plus tRNA, 0.25 μg/μl) waned as the AGAAGAUAA minigene shortened. Pth counteracted both the length-dependent minigene effect on the expression of β-galactosidase from the +7 AGA lacZ reporter gene and the positional effect from the AGAAGA lacZ constructs. The +2, +3 AGAAGA lacZ construct and the shortest +2, +3 AGAAGAUAA minigene accumulated the highest percentage of peptidyl-tRNAArg4. These observations lead us to propose that hungry codons at early positions, albeit with less strength, inhibit protein synthesis by a minigene-like mechanism involving accumulation of peptidyl-tRNA. PMID:18583364

  9. A non-canonical start codon in the Drosophila fragile X gene yields two functional isoforms

    PubMed Central

    Beerman, Rebecca W.; Jongens, Thomas A.

    2011-01-01

    Fragile X syndrome is caused by the loss of expression of the fragile X mental retardation protein (FMRP). As a RNA binding protein, FMRP functions in translational regulation, localization, and stability of its neuronal target transcripts. The Drosophila homologue, dFMR1, is well conserved in sequence and function with respect to human FMRP. Although dFMR1 is known to express two main isoforms, the mechanism behind production of the second, more slowly migrating isoform has remained elusive. Furthermore, it remains unknown whether the two isoforms may also contribute differentially to dFMR1 function. We have found that this second dFMR1 isoform is generated through an alternative translational start site in the dfmr1 5’UTR. This 5'UTR coding sequence is well conserved in the melanogaster group. Translation of the predominant, smaller form of dFMR1 (dFMR1-SN) begins at a canonical start codon (ATG), whereas translation of the minor, larger form (dFMR1-LN) begins upstream at a non-canonical start codon (CTG). To assess the contribution of the N-terminal extension toward dFMR1 activity, we generated transgenic flies that exclusively express either dFMR1-SN or dFMR1-LN. Expression analyses throughout development revealed that dFMR1-SN is required for normal dFMR1-LN expression levels in adult brains. In situ expression analyses showed that either dFMR1-SN or dFMR1-LN is individually sufficient for proper dFMR1 localization in the nervous system. Functional studies demonstrated that both dFMR1-SN and dFMR1-LN can function independently to rescue dfmr1 null defects in synaptogenesis and axon guidance. Thus, dfmr1 encodes two functional isoforms with respect to expression and activity throughout neuronal development. PMID:21333716

  10. The Effect of an Alternate Start Codon on Heterologous Expression of a PhoA Fusion Protein in Mycoplasma gallisepticum.

    PubMed

    Panicker, Indu S; Browning, Glenn F; Markham, Philip F

    2015-01-01

    While the genomes of many Mycoplasma species have been sequenced, there are no collated data on translational start codon usage, and the effects of alternate start codons on gene expression have not been studied. Analysis of the annotated genomes found that ATG was the most prevalent translational start codon among Mycoplasma spp. However in Mycoplasma gallisepticum a GTG start codon is commonly used in the vlhA multigene family, which encodes a highly abundant, phase variable lipoprotein adhesin. Therefore, the effect of this alternate start codon on expression of a reporter PhoA lipoprotein was examined in M. gallisepticum. Mutation of the start codon from ATG to GTG resulted in a 2.5 fold reduction in the level of transcription of the phoA reporter, but the level of PhoA activity in the transformants containing phoA with a GTG start codon was only 63% of that of the transformants with a phoA with an ATG start codon, suggesting that GTG was a more efficient translational initiation codon. The effect of swapping the translational start codon in phoA reporter gene expression was less in M. gallisepticum than has been seen previously in Escherichia coli or Bacillus subtilis, suggesting the process of translational initiation in mycoplasmas may have some significant differences from those used in other bacteria. This is the first study of translational start codon usage in mycoplasmas and the impact of the use of an alternate start codon on expression in these bacteria.

  11. Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In-depth information on sugarcane germplasm is the basis for its conservation and utilization. Data on sugarcane molecular markers are limited for the Chinese sugarcane germplasm collections. In the present study, 20 start codon targeted (SCoT) marker primers were designed to assess the genetic dive...

  12. Cryo-EM study of start codon selection during archaeal translation initiation

    PubMed Central

    Coureux, Pierre-Damien; Lazennec-Schurdevin, Christine; Monestier, Auriane; Larquet, Eric; Cladière, Lionel; Klaholz, Bruno P.; Schmitt, Emmanuelle; Mechulam, Yves

    2016-01-01

    Eukaryotic and archaeal translation initiation complexes have a common structural core comprising e/aIF1, e/aIF1A, the ternary complex (TC, e/aIF2-GTP-Met-tRNAiMet) and mRNA bound to the small ribosomal subunit. e/aIF2 plays a crucial role in this process but how this factor controls start codon selection remains unclear. Here, we present cryo-EM structures of the full archaeal 30S initiation complex showing two conformational states of the TC. In the first state, the TC is bound to the ribosome in a relaxed conformation with the tRNA oriented out of the P site. In the second state, the tRNA is accommodated within the peptidyl (P) site and the TC becomes constrained. This constraint is compensated by codon/anticodon base pairing, whereas in the absence of a start codon, aIF2 contributes to swing out the tRNA. This spring force concept highlights a mechanism of codon/anticodon probing by the initiator tRNA directly assisted by aIF2. PMID:27819266

  13. Non-AUG start codons responsible for ABO weak blood group alleles on initiation mutant backgrounds

    PubMed Central

    Cid, Emili; Yamamoto, Miyako; Yamamoto, Fumiichiro

    2017-01-01

    Histo-blood group ABO gene polymorphism is crucial in transfusion medicine. We studied the activity and subcellular distribution of ABO gene-encoded A glycosyltransferases with N-terminal truncation. We hypothesized that truncated enzymes starting at internal methionines drove the synthesis of oligosaccharide A antigen in those already described alleles that lack a proper translation initiation codon. Not only we tested the functionality of the mutant transferases by expressing them and assessing their capacity to drive the appearance of A antigen on the cell surface, but we also analyzed their subcellullar localization, which has not been described before. The results highlight the importance of the transmembrane domain because proteins deprived of it are not able to localize properly and deliver substantial amounts of antigen on the cell surface. Truncated proteins with their first amino acid well within the luminal domain are not properly localized and lose their enzymatic activity. Most importantly, we demonstrated that other codons than AUG might be used to start the protein synthesis rather than internal methionines in translation-initiation mutants, explaining the molecular mechanism by which transferases lacking a classical start codon are able to synthesize A/B antigens. PMID:28139731

  14. Structural Changes Enable Start Codon Recognition by the Eukaryotic Translation Initiation Complex

    PubMed Central

    Hussain, Tanweer; Llácer, Jose L.; Fernández, Israel S.; Munoz, Antonio; Martin-Marcos, Pilar; Savva, Christos G.; Lorsch, Jon R.; Hinnebusch, Alan G.; Ramakrishnan, V.

    2014-01-01

    Summary During eukaryotic translation initiation, initiator tRNA does not insert fully into the P decoding site on the 40S ribosomal subunit. This conformation (POUT) is compatible with scanning mRNA for the AUG start codon. Base pairing with AUG is thought to promote isomerization to a more stable conformation (PIN) that arrests scanning and promotes dissociation of eIF1 from the 40S subunit. Here, we present a cryoEM reconstruction of a yeast preinitiation complex at 4.0 Å resolution with initiator tRNA in the PIN state, prior to eIF1 release. The structure reveals stabilization of the codon-anticodon duplex by the N-terminal tail of eIF1A, changes in the structure of eIF1 likely instrumental in its subsequent release, and changes in the conformation of eIF2. The mRNA traverses the entire mRNA cleft and makes connections to the regulatory domain of eIF2α, eIF1A, and ribosomal elements that allow recognition of context nucleotides surrounding the AUG codon. PMID:25417110

  15. Blastocystis Mitochondrial Genomes Appear to Show Multiple Independent Gains and Losses of Start and Stop Codons

    PubMed Central

    Jacob, Alison S.; Andersen, Lee O’Brien; Bitar, Paulina Pavinski; Richards, Vincent P.; Shah, Sarah; Stanhope, Michael J.; Stensvold, C. Rune; Clark, C. Graham

    2016-01-01

    Complete mitochondrion-related organelle (MRO) genomes of several subtypes (STs) of the unicellular stramenopile Blastocystis are presented. Complete conservation of gene content and synteny in gene order is observed across all MRO genomes, comprising 27 protein coding genes, 2 ribosomal RNA genes, and 16 transfer RNA (tRNA) genes. Despite the synteny, differences in the degree of overlap between genes were observed between subtypes and also between isolates within the same subtype. Other notable features include unusual base-pairing mismatches in the predicted secondary structures of some tRNAs. Intriguingly, the rps4 gene in some MRO genomes is missing a start codon and, based on phylogenetic relationships among STs, this loss has happened twice independently. One unidentified open reading frame (orf160) is present in all MRO genomes. However, with the exception of ST4 where the feature has been lost secondarily, orf160 contains variously one or two in-frame stop codons. The overall evidence suggests that both the orf160 and rps4 genes are functional in all STs, but how they are expressed remains unclear. PMID:27811175

  16. Effect of the nucleotides surrounding the start codon on the translation of foot-and-mouth disease virus RNA.

    PubMed

    Ma, X X; Feng, Y P; Gu, Y X; Zhou, J H; Ma, Z R

    2016-06-01

    As for the alternative AUGs in foot-and-mouth disease virus (FMDV), nucleotide bias of the context flanking the AUG(2nd) could be used as a strong signal to initiate translation. To determine the role of the specific nucleotide context, dicistronic reporter constructs were engineered to contain different versions of nucleotide context linking between internal ribosome entry site (IRES) and downstream gene. The results indicate that under FMDV IRES-dependent mechanism, the nucleotide contexts flanking start codon can influence the translation initiation efficiencies. The most optimal sequences for both start codons have proved to be UUU AUG(1st) AAC and AAG AUG(2nd) GAA.

  17. A start codon mutation of the FRMD7 gene in two Korean families with idiopathic infantile nystagmus

    PubMed Central

    Choi, Jae-Hwan; Shin, Jin-Hong; Seo, Je Hyun; Jung, Jae-Ho; Choi, Kwang-Dong

    2015-01-01

    Idiopathic infantile nystagmus (IIN) is the involuntary oscillation of the eyes with onset in the first few months of life. The most common form of inheritance is X-linked, and mutations in FRMD7 gene are a major cause. To identify the FRMD7 gene mutations associated with X-linked IIN, we performed PCR-based DNA direct sequencing in 4 affected subjects from 2 Korean families. We also assessed structural abnormalities of retina and optic nerve head using optical coherence tomography (OCT). Genetic analysis revealed a A>G transversion at nucleotide c.1, the first base of the start codon. This mutation leads to the loss of the primary start codon ATG for methionine, which is replaced by a triplet GTG for valine. The alternative in-frame start codon is not present around a mutation. OCT revealed the morphological changes within the optic nerve head, including shallow cup depth and small cup-to-disc ratio. In summary, we identified a novel start codon mutation within the FRMD7 gene of 2 Korean families. Our data expands the mutation spectrum of FRMD7 causing IIN. We also demonstrated abnormal developments of afferent system in patients with FRMD7 mutations using OCT, which may help to understand the etiological factor in development of nystagmus. PMID:26268155

  18. Crystal structure of the HCV IRES central domain reveals strategy for start-codon positioning.

    PubMed

    Berry, Katherine E; Waghray, Shruti; Mortimer, Stefanie A; Bai, Yun; Doudna, Jennifer A

    2011-10-12

    Translation of hepatitis C viral proteins requires an internal ribosome entry site (IRES) located in the 5' untranslated region of the viral mRNA. The core domain of the hepatitis C virus (HCV) IRES contains a four-way helical junction that is integrated within a predicted pseudoknot. This domain is required for positioning the mRNA start codon correctly on the 40S ribosomal subunit during translation initiation. Here, we present the crystal structure of this RNA, revealing a complex double-pseudoknot fold that establishes the alignment of two helical elements on either side of the four-helix junction. The conformation of this core domain constrains the open reading frame's orientation for positioning on the 40S ribosomal subunit. This structure, representing the last major domain of HCV-like IRESs to be determined at near-atomic resolution, provides the basis for a comprehensive cryoelectron microscopy-guided model of the intact HCV IRES and its interaction with 40S ribosomal subunits.

  19. Translation initiation factor 2gamma mutant alters start codon selection independent of Met-tRNA binding.

    PubMed

    Alone, Pankaj V; Cao, Chune; Dever, Thomas E

    2008-11-01

    Selection of the AUG start codon for translation in eukaryotes is governed by codon-anticodon interactions between the initiator Met-tRNA(i)(Met) and the mRNA. Translation initiation factor 2 (eIF2) binds Met-tRNA(i)(Met) to the 40S ribosomal subunit, and previous studies identified Sui(-) mutations in eIF2 that enhanced initiation from a noncanonical UUG codon, presumably by impairing Met-tRNA(i)(Met) binding. Consistently, an eIF2gamma-N135D GTP-binding domain mutation impairs Met-tRNA(i)(Met) binding and causes a Sui(-) phenotype. Intragenic A208V and A382V suppressor mutations restore Met-tRNA(i)(Met) binding affinity and cell growth; however, only A208V suppresses the Sui(-) phenotype associated with the eIF2gamma-N135D mutation. An eIF2gamma-A219T mutation impairs Met-tRNA(i)(Met) binding but unexpectedly enhances the fidelity of initiation, suppressing the Sui(-) phenotype associated with the eIF2gamma-N135D,A382V mutant. Overexpression of eIF1, which is thought to monitor codon-anticodon interactions during translation initiation, likewise suppresses the Sui(-) phenotype of the eIF2gamma mutants. We propose that structural alterations in eIF2gamma subtly alter the conformation of Met-tRNA(i)(Met) on the 40S subunit and thereby affect the fidelity of start codon recognition independent of Met-tRNA(i)(Met) binding affinity.

  20. Translation Regulation of the Glutamyl-prolyl-tRNA Synthetase Gene EPRS through Bypass of Upstream Open Reading Frames with Noncanonical Initiation Codons.

    PubMed

    Young, Sara K; Baird, Thomas D; Wek, Ronald C

    2016-05-13

    In the integrated stress response, phosphorylation of eIF2α (eIF2α-P) reduces protein synthesis while concomitantly promoting preferential translation of specific transcripts associated with stress adaptation. Translation of the glutamyl-prolyl-tRNA synthetase gene EPRS is enhanced in response to eIF2α-P. To identify the underlying mechanism of translation control, we employed biochemical approaches to determine the regulatory features by which upstream ORFs (uORFs) direct downstream translation control and expression of the EPRS coding region. Our findings reveal that translation of two inhibitory uORFs encoded by noncanonical CUG and UUG initiation codons in the EPRS mRNA 5'-leader serve to dampen levels of translation initiation at the EPRS coding region. By a mechanism suggested to involve increased translation initiation stringency during stress-induced eIF2α-P, we observed facilitated ribosome bypass of these uORFs, allowing for increased translation of the EPRS coding region. Importantly, EPRS protein expression is enhanced through this preferential translation mechanism in response to multiple known activators of eIF2α-P and likely serves to facilitate stress adaptation in response to a variety of cellular stresses. The rules presented here for the regulated ribosome bypass of noncanonical initiation codons in the EPRS 5'-leader add complexity into the nature of uORF-mediated translation control mechanisms during eIF2α-P and additionally illustrate the roles that previously unexamined uORFs with noncanonical initiation codons can play in modulating gene expression.

  1. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes.

    PubMed

    Xiong, Faqian; Zhong, Ruichun; Han, Zhuqiang; Jiang, Jing; He, Liangqiong; Zhuang, Weijian; Tang, Ronghua

    2011-06-01

    Cultivated peanut possesses an extremely narrow genetic basis. Polymorphism is considerably difficult to identify with the use of conventional biochemical and molecular tools. For the purpose of obtaining considerable DNA polymorphisms and fingerprinting cultivated peanut genotypes in a convenient manner, start codon targeted polymorphism technique was used to study genetic diversity and relatedness among 20 accessions of four major botanical varieties of peanut. Of 36 primers screened, 18 primers could produce unambiguous and reproducible bands. All 18 primers generated a total of 157 fragments, with a mean of 8.72 ranging from 4 to 17 per primer. Of 157 bands, 60 (38.22%) were polymorphic. One to seven polymorphic bands were amplified per primer, with 3.33 polymorphic bands on average. Polymorphism per primer ranged from 14.29 to 66.67%, with an average of 36.76%. The results revealed that not all accessions of the same variety were grouped together and high genetic similarity was detected among the tested genotypes based on cluster analysis and genetic distance analysis, respectively. Further, accession-specific markers were observed in several accessions. All these results demonstrated the following: (1) start codon targeted polymorphism technique can be utilized to identify DNA polymorphisms and fingerprint cultivars in domesticated peanut, and (2) it possesses considerable potential for studying genetic diversity and relationships among peanut accessions.

  2. Stress-induced Start Codon Fidelity Regulates Arsenite-inducible Regulatory Particle-associated Protein (AIRAP) Translation*

    PubMed Central

    Zach, Lolita; Braunstein, Ilana; Stanhill, Ariel

    2014-01-01

    Initial steps in protein synthesis are highly regulated processes as they define the reading frame of the translation machinery. Eukaryotic translation initiation is a process facilitated by numerous factors (eIFs), aimed to form a “scanning” mechanism toward the initiation codon. Translation initiation of the main open reading frame (ORF) in an mRNA transcript has been reported to be regulated by upstream open reading frames (uORFs) in a manner of re-initiation. This mode of regulation is governed by the phosphorylation status of eIF2α and controlled by cellular stresses. Another mode of translational initiation regulation is leaky scanning, and this regulatory process has not been extensively studied. We have identified arsenite-inducible regulatory particle-associated protein (AIRAP) transcript to be translationally induced during arsenite stress conditions. AIRAP transcript contains a single uORF in a poor-kozak context. AIRAP translation induction is governed by means of leaky scanning and not re-initiation. This induction of AIRAP is solely dependent on eIF1 and the uORF kozak context. We show that eIF1 is phosphorylated under specific conditions that induce protein misfolding and have biochemically characterized this site of phosphorylation. Our data indicate that leaky scanning like re-initiation is responsive to stress conditions and that leaky scanning can induce ORF translation by bypassing poor kozak context of a single uORF transcript. PMID:24898249

  3. Efficient use of a translation start codon in BDNF exon I.

    PubMed

    Koppel, Indrek; Tuvikene, Jürgen; Lekk, Ingrid; Timmusk, Tõnis

    2015-09-01

    The brain-derived neurotrophic factor (BDNF) gene contains a number of 5' exons alternatively spliced with a common 3' exon. BDNF protein is synthesized from alternative transcripts as a prepro-precursor encoded by the common 3' exon IX, which has a translation start site 21 bp downstream of the splicing site. BDNF mRNAs containing exon I are an exception to this arrangement as the last three nucleotides of this exon constitute an in-frame AUG. Here, we show that this AUG is efficiently used for translation initiation in PC12 cells and cultured cortical neurons. Use of exon I-specific AUG produces higher levels of BDNF protein than use of the common translation start site, resulting from a higher translation rate. No differences in protein degradation, constitutive or regulated secretion were detected between BDNF isoforms with alternative 5' termini. As the BDNF promoter preceding exon I is known to be highly regulated by neuronal activity, our results suggest that the function of this translation start site may be efficient stimulus-dependent synthesis of BDNF protein. The brain-derived neurotrophic factor (BDNF) gene contains multiple untranslated 5' exons alternatively spliced to one common protein-coding 3' exon. However, exon I contains an in-frame ATG in a favorable translation context. Here, we show that use of this ATG is associated with more efficient protein synthesis than the commonly used ATG in exon IX.

  4. Orthogonal design in the optimization of a start codon targeted (SCoT) PCR system in Roegneria kamoji Ohwi.

    PubMed

    Zeng, B; Yan, H D; Huang, L K; Wang, Y C; Wu, J H; Huang, X; Zhang, A L; Wang, C R; Mu, Q

    2016-10-24

    Roegneria kamoji Ohwi is an excellent forage grass due to its high feeding value and high resistance to some biotic and abiotic stresses. However, the start codon targeted (SCoT) polymorphism has not been conducted on R. kamoji. In this study, an orthogonal L16 (4(5)) design was employed to investigate the effects of five factors (Mg(2+), dNTPs, Taq DNA polymerase, primer, and template DNA) on the polymerase chain reaction (PCR) to determine the optimal SCoT-PCR system for R. kamoji. The results showed that the most suitable conditions for SCoT-PCR in R. kamoji included 1.5 mM Mg(2+), 0.15 mM dNTPs, 1.0 U Taq DNA polymerase, 0.4 pM primer, and 40 ng template DNA. SCoT primers 39 and 41 were used to verify the stability of the optimal reaction system, and amplification bands obtained from diverse samples were found to be clear, rich, and stable in polymorphisms, indicating that this reaction system can be used for SCoT-PCR analysis of R. kamoji. We have developed a simple and rapid way to study the mutual effects of factors and to obtain positive results through the use of an orthogonal design L16 (4(5)) to optimize the SCoT-PCR system. This method may provide basic information for molecular marker-assisted breeding and analyses of genetic diversity in R. kamoji.

  5. Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and their respective parents.

    PubMed

    Cabo, Sandra; Ferreira, Luciana; Carvalho, Ana; Martins-Lopes, Paula; Martín, António; Lima-Brito, José Eduardo

    2014-08-01

    Hexaploid tritordeum (H(ch)H(ch)AABB; 2n = 42) results from the cross between Hordeum chilense (H(ch)H(ch); 2n = 14) and cultivated durum wheat (Triticum turgidum ssp. durum (AABB; 2n = 28). Morphologically, tritordeum resembles the wheat parent, showing promise for agriculture and wheat breeding. Start Codon Targeted (SCoT) polymorphism is a recently developed technique that generates gene-targeted markers. Thus, we considered it interesting to evaluate its potential for the DNA fingerprinting of newly synthesized hexaploid tritordeums and their respective parents. In this study, 60 SCoT primers were tested, and 18 and 19 of them revealed SCoT polymorphisms in the newly synthesized tritordeum lines HT27 and HT22, respectively, and their parents. An analysis of the presence/absence of bands among tritordeums and their parents revealed three types of polymorphic markers: (i) shared by tritordeums and one of their parents, (ii) exclusively amplified in tritordeums, and (iii) exclusively amplified in the parents. No polymorphism was detected among individuals of each parental species. Three SCoT markers were exclusively amplified in tritordeums of lines HT22 and HT27, being considered as polyploidization-induced rearrangements. About 70% of the SCoT markers of H. chilense origin were not transmitted to the allopolyploids of both lines, and most of the SCoTs scored in the newly synthesized allopolyploids originated from wheat, reinforcing the potential use of tritordeum as an alternative crop.

  6. Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo

    PubMed Central

    Cheung, Yuen-Nei; Maag, David; Mitchell, Sarah F.; Fekete, Christie A.; Algire, Mikkel A.; Takacs, Julie E.; Shirokikh, Nikolay; Pestova, Tatyana; Lorsch, Jon R.; Hinnebusch, Alan G.

    2007-01-01

    Selection of the AUG start codon is a key step in translation initiation requiring hydrolysis of GTP in the eIF2•GTP•Met-tRNAiMet ternary complex (TC) and subsequent Pi release from eIF2•GDP•Pi. It is thought that eIF1 prevents recognition of non-AUGs by promoting scanning and blocking Pi release at non-AUG codons. We show that Sui− mutations in Saccharomyces cerevisiae eIF1, which increase initiation at UUG codons, reduce interaction of eIF1 with 40S subunits in vitro and in vivo, and both defects are diminished in cells by overexpressing the mutant proteins. Remarkably, Sui− mutation ISQLG93–97ASQAA (abbreviated 93–97) accelerates eIF1 dissociation and Pi release from reconstituted preinitiation complexes (PICs), whereas a hyperaccuracy mutation in eIF1A (that suppresses Sui− mutations) decreases the eIF1 off-rate. These findings demonstrate that eIF1 dissociation is a critical step in start codon selection, which is modulated by eIF1A. We also describe Gcd− mutations in eIF1 that impair TC loading on 40S subunits or destabilize the multifactor complex containing eIF1, eIF3, eIF5, and TC, showing that eIF1 promotes PIC assembly in vivo beyond its important functions in AUG selection. PMID:17504939

  7. The eyeless mouse mutation (ey1) removes an alternative start codon from the Rx/rax homeobox gene.

    PubMed

    Tucker, P; Laemle, L; Munson, A; Kanekar, S; Oliver, E R; Brown, N; Schlecht, H; Vetter, M; Glaser, T

    2001-09-01

    The eyeless inbred mouse strain ZRDCT has long served as a spontaneous model for human anophthalmia and the evolutionary reduction of eyes that has occurred in some naturally blind mammals. ZRDCT mice have orbits but lack eyes and optic tracts and have hypothalamic abnormalities. Segregation data suggest that a small number of interacting genes are responsible, including at least one major recessive locus, ey1. Although predicted since the 1940s, these loci were never identified. We mapped ey1 to chromosome 18 using an F2 genome scan and there found a Met10-->Leu mutation in Rx/rax, a homeobox gene that is expressed in the anterior headfold, developing retina, pineal, and hypothalamus and is translated via a leaky scanning mechanism. The mutation affects a conserved AUG codon that functions as an alternative translation initiation site and consequently reduces the abundance of Rx protein. In contrast to a targeted Rx null allele, which causes anophthalmia, central nervous system defects, and neonatal death, the hypomorphic M10L allele is fully viable.

  8. Interface between 40S exit channel protein uS7/Rps5 and eIF2α modulates start codon recognition in vivo

    PubMed Central

    Visweswaraiah, Jyothsna; Hinnebusch, Alan G

    2017-01-01

    The eukaryotic pre-initiation complex (PIC) bearing the eIF2·GTP·Met-tRNAiMet ternary complex (TC) scans the mRNA for an AUG codon in favorable context. AUG recognition evokes rearrangement of the PIC from an open, scanning to a closed, arrested conformation. Cryo-EM reconstructions of yeast PICs suggest remodeling of the interface between 40S protein Rps5/uS7 and eIF2α between open and closed states; however, its importance was unknown. uS7 substitutions disrupting eIF2α contacts favored in the open complex increase initiation at suboptimal sites, and uS7-S223D stabilizes TC binding to PICs reconstituted with a UUG start codon, indicating inappropriate rearrangement to the closed state. Conversely, uS7-D215 substitutions, perturbing uS7-eIF2α interaction in the closed state, confer the opposite phenotypes of hyperaccuracy and (for D215L) accelerated TC dissociation from reconstituted PICs. Thus, remodeling of the uS7/eIF2α interface appears to stabilize first the open, and then the closed state of the PIC to promote accurate AUG selection in vivo. DOI: http://dx.doi.org/10.7554/eLife.22572.001 PMID:28169832

  9. Somatic loss of heterozygosity, but not haploinsufficiency alone, leads to full-blown autoimmune lymphoproliferative syndrome in 1 of 12 family members with FAS start codon mutation.

    PubMed

    Hauck, Fabian; Magerus-Chatinet, Aude; Vicca, Stephanie; Rensing-Ehl, Anne; Roesen-Wolff, Angela; Roesler, Joachim; Rieux-Laucat, Frédéric

    2013-04-01

    We describe a family with 12 members carrying a heterozygous germline FAS c.3G>T start codon mutation leading to FAS haploinsufficiency. One patient had autoimmune lymphoproliferative syndrome (ALPS), one had recovered from ALPS, and ten mutation-positive relatives (MPRs) were healthy. FAS-mediated apoptosis and surface expression of FAS in single-positive T cells were lower for MPRs but did not discriminate between them and the ALPS patient. However, double-negative (DN) T cells of the ALPS patient had no FAS expression due to somatic loss of heterozygosity. Our results in this kindred suggest that FAS haploinsufficiency does not cause ALPS-FAS, but that modifying genetic events are crucial for its pathogenesis. FAS surface expression on DN T cells should be assessed routinely and FAS haploinsufficient patients should be followed as its potential for lymphomagenesis is not well defined and a second hit might occur later on.

  10. Osteogenesis imperfecta Type I caused by a novel mutation in the start codon of the COL1A1 gene in a Korean family.

    PubMed

    Cho, Sung Yoon; Lee, Ji-Ho; Ki, Chang-Seok; Chang, Mi Sun; Jin, Dong-Kyu; Han, Heon-Seok

    2015-01-01

    Osteogenesis imperfecta (OI) comprises a heterogeneous group of disorders characterized by susceptibility to bone fractures ranging in severity from perinatal death to a subtle increase in fracture frequency. We report the case of a patient who appeared healthy at birth and did not experience any fractures until 12 months of age. We observed blue sclera, frequent fractures without commensurate trauma, nearly normal stature, the absence of dentinogenesis imperfecta, no bony deformity, and no limitation of mobility in the patient--all characteristics suggestive of OI Type I. The patient's mother also had blue sclera and a history of frequent fracture episodes until the age of 15 years. A novel COL1A1 missense mutation (c.2T>G) disrupting the start codon of the gene (ATG to AGG (Met1Arg)) was found in the patient and his mother.

  11. The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β.

    PubMed

    Luna, Rafael E; Arthanari, Haribabu; Hiraishi, Hiroyuki; Nanda, Jagpreet; Martin-Marcos, Pilar; Markus, Michelle A; Akabayov, Barak; Milbradt, Alexander G; Luna, Lunet E; Seo, Hee-Chan; Hyberts, Sven G; Fahmy, Amr; Reibarkh, Mikhail; Miles, David; Hagner, Patrick R; O'Day, Elizabeth M; Yi, Tingfang; Marintchev, Assen; Hinnebusch, Alan G; Lorsch, Jon R; Asano, Katsura; Wagner, Gerhard

    2012-06-28

    Recognition of the proper start codon on mRNAs is essential for protein synthesis, which requires scanning and involves eukaryotic initiation factors (eIFs) eIF1, eIF1A, eIF2, and eIF5. The carboxyl terminal domain (CTD) of eIF5 stimulates 43S preinitiation complex (PIC) assembly; however, its precise role in scanning and start codon selection has remained unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we identified the binding sites of eIF1 and eIF2β on eIF5-CTD and found that they partially overlapped. Mutating select eIF5 residues in the common interface specifically disrupts interaction with both factors. Genetic and biochemical evidence indicates that these eIF5-CTD mutations impair start codon recognition and impede eIF1 release from the PIC by abrogating eIF5-CTD binding to eIF2β. This study provides mechanistic insight into the role of eIF5-CTD's dynamic interplay with eIF1 and eIF2β in switching PICs from an open to a closed state at start codons.

  12. Optimizing Sample Size to Assess the Genetic Diversity in Common Vetch (Vicia sativa L.) Populations Using Start Codon Targeted (SCoT) Markers.

    PubMed

    Chai, Xutian; Dong, Rui; Liu, Wenxian; Wang, Yanrong; Liu, Zhipeng

    2017-03-31

    Common vetch (Vicia sativa subsp. sativa L.) is a self-pollinating annual forage legume with worldwide importance. Here, we investigate the optimal number of individuals that may represent the genetic diversity of a single population, using Start Codon Targeted (SCoT) markers. Two cultivated varieties and two wild accessions were evaluated using five SCoT primers, also testing different sampling sizes: 1, 2, 3, 5, 8, 10, 20, 30, 40, 50, and 60 individuals. The results showed that the number of alleles and the Polymorphism Information Content (PIC) were different among the four accessions. Cluster analysis by Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and STRUCTURE placed the 240 individuals into four distinct clusters. The Expected Heterozygosity (HE) and PIC increased along with an increase in sampling size from 1 to 10 plants but did not change significantly when the sample sizes exceeded 10 individuals. At least 90% of the genetic variation in the four germplasms was represented when the sample size was 10. Finally, we concluded that 10 individuals could effectively represent the genetic diversity of one vetch population based on the SCoT markers. This study provides theoretical support for genetic diversity, cultivar identification, evolution, and marker-assisted selection breeding in common vetch.

  13. Translational tolerance of mitochondrial genes to metabolic energy stress involves TISU and eIF1-eIF4GI cooperation in start codon selection.

    PubMed

    Sinvani, Hadar; Haimov, Ora; Svitkin, Yuri; Sonenberg, Nahum; Tamarkin-Ben-Harush, Ana; Viollet, Benoit; Dikstein, Rivka

    2015-03-03

    Protein synthesis is a major energy-consuming process, which is rapidly repressed upon energy stress by AMPK. How energy deficiency affects translation of mRNAs that cope with the stress response is poorly understood. We found that mitochondrial genes remain translationally active upon energy deprivation. Surprisingly, inhibition of translation is partially retained in AMPKα1/AMPKα2 knockout cells. Mitochondrial mRNAs are enriched with TISU, a translation initiator of short 5' UTR, which confers resistance specifically to energy stress. Purified 48S preinitiation complex is sufficient for initiation via TISU AUG, when preceded by a short 5' UTR. eIF1 stimulates TISU but inhibits non-TISU-directed initiation. Remarkably, eIF4GI shares this activity and also interacts with eIF1. Furthermore, eIF4F is released upon 48S formation on TISU. These findings describe a specialized translation tolerance mechanism enabling continuous translation of TISU genes under energy stress and reveal that a key step in start codon selection of short 5' UTR is eIF4F release.

  14. Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species

    PubMed Central

    Satya, Pratik; Karan, Maya; Jana, Sourav; Mitra, Sabyasachi; Sharma, Amit; Karmakar, P.G.; Ray, D.P.

    2015-01-01

    Twenty-four start codon targeted (SCoT) markers were used to assess genetic diversity and population structure of indigenous, introduced and domesticated ramie (Boehmeria nivea L. Gaudich.). A total of 155 genotypes from five populations were investigated for SCoT polymorphism, which produced 136 amplicons with 87.5% polymorphism. Polymorphism information content and resolving power of the SCoT markers were 0.69 and 3.22, respectively. The Indian ramie populations exhibited high SCoT polymorphism (> 50%), high genetic differentiation (GST = 0.27) and moderate gene flow (Nm = 1.34). Analysis of molecular variance identified significant differences for genetic polymorphism among the populations explaining 13.1% of the total variation. The domesticated population exhibited higher genetic polymorphism and heterozygosity compared to natural populations. Cluster analysis supported population genetic analysis and suggested close association between introduced and domesticated genotypes. The present study shows effectiveness of employing SCoT markers in a cross pollinated heterozygous species like Boehmeria, and would be useful for further studies in population genetics, conservation genetics and cultivar improvement. PMID:25750860

  15. The in Vivo TRPV6 Protein Starts at a Non-AUG Triplet, Decoded as Methionine, Upstream of Canonical Initiation at AUG*

    PubMed Central

    Fecher-Trost, Claudia; Wissenbach, Ulrich; Beck, Andreas; Schalkowsky, Pascal; Stoerger, Christof; Doerr, Janka; Dembek, Anna; Simon-Thomas, Martin; Weber, Armin; Wollenberg, Peter; Ruppert, Thomas; Middendorff, Ralf; Maurer, Hans H.; Flockerzi, Veit

    2013-01-01

    TRPV6 channels function as epithelial Ca2+ entry pathways in the epididymis, prostate, and placenta. However, the identity of the endogenous TRPV6 protein relies on predicted gene coding regions and is only known to a certain level of approximation. We show that in vivo the TRPV6 protein has an extended N terminus. Translation initiates at a non-AUG codon, at ACG, which is decoded by methionine and which is upstream of the annotated AUG, which is not used for initiation. The in vitro properties of channels formed by the extended full-length TRPV6 proteins and the so-far annotated and smaller TRPV6 are similar, but the extended N terminus increases trafficking to the plasma membrane and represents an additional scaffold for channel assembly. The increased translation of the smaller TRPV6 cDNA version may overestimate the in vivo situation where translation efficiency may represent an additional mechanism to tightly control the TRPV6-mediated Ca2+ entry to prevent deleterious Ca2+ overload. PMID:23612980

  16. Evaluation of the use of condensate filters up-stream of condensate polishers during start-up

    SciTech Connect

    Revere, A.; Ryan, J.

    1994-12-31

    Condensate clean-up is a necessity before light-off of a supercritical boiler. It is a rate-limiting step. Pacific Gas and Electric Company`s Pittsburg Power Plant installed a start-up condensate polishing filter before the condensate polishers containing eighty-five, forty-inch long, five micron absolute rated filter cartridges to remove corrosion products. The filter has consistently decreased the amount of suspended solids during circulation for clean-up and reduced start-up times by several hours.

  17. Eukaryotic translation initiation factor eIF5 promotes the accuracy of start codon recognition by regulating Pi release and conformational transitions of the preinitiation complex

    PubMed Central

    Saini, Adesh K.; Nanda, Jagpreet S.; Martin-Marcos, Pilar; Dong, Jinsheng; Zhang, Fan; Bhardwaj, Monika; Lorsch, Jon R.; Hinnebusch, Alan G.

    2014-01-01

    eIF5 is the GTPase activating protein (GAP) for the eIF2·GTP·Met-tRNAiMet ternary complex with a critical role in initiation codon selection. Previous work suggested that the eIF5 mutation G31R/SUI5 elevates initiation at UUG codons by increasing GAP function. Subsequent work implicated eIF5 in rearrangement of the preinitiation complex (PIC) from an open, scanning conformation to a closed state at AUG codons, from which Pi is released from eIF2·GDP·Pi. To identify eIF5 functions crucial for accurate initiation, we investigated the consequences of G31R on GTP hydrolysis and Pi release, and the effects of intragenic G31R suppressors on these reactions, and on the partitioning of PICs between open and closed states. eIF5-G31R altered regulation of Pi release, accelerating it at UUG while decreasing it at AUG codons, consistent with its ability to stabilize the closed complex at UUG. Suppressor G62S mitigates both defects of G31R, accounting for its efficient suppression of UUG initiation in G31R,G62S cells; however suppressor M18V impairs GTP hydrolysis with little effect on PIC conformation. The strong defect in GTP hydrolysis conferred by M18V likely explains its broad suppression of Sui− mutations in numerous factors. We conclude that both of eIF5's functions, regulating Pi release and stabilizing the closed PIC conformation, contribute to stringent AUG selection in vivo. PMID:25114053

  18. The cis acting sequences responsible for the differential decay of the unstable MFA2 and stable PGK1 transcripts in yeast include the context of the translational start codon.

    PubMed Central

    LaGrandeur, T; Parker, R

    1999-01-01

    A general pathway of mRNA turnover has been described for yeast in which the 3' poly(A) tail is first deadenylated to an oligo(A) length, leading to decapping and subsequent 5'-3' exonucleolytic decay. The unstable MFA2 mRNA and the stable PGK1 mRNAs both decay through this pathway, albeit at different rates of deadenylation and decapping. To determine the regions of the mRNAs that are responsible for these differences, we examined the decay of chimeric mRNAs derived from the 5' untranslated, coding, and 3' untranslated regions of these two mRNAs. These experiments have led to the identification of the features of these mRNAs that lead to their different stabilities. The MFA2 mRNA is unstable solely because its 3' UTR promotes the rates of deadenylation and decapping; all other features of this mRNA are neutral with respect to mRNA decay rates. The PGK1 mRNA is stable because the sequence context of the PGK1 translation start codon and the coding region function together to stabilize the transcript, whereas the PGK13' UTR is neutral with respect to decay. Importantly, changes in the PGK1 start codon context that destabilized the transcript also reduced its translational efficiency. This observation suggests that the nature of the translation initiation complex modulates the rates of mRNA decapping and decay. PMID:10094310

  19. Nucleotide sequence of the LuxC gene and the upstream DNA from the bioluminescent system of Vibrio harveyi.

    PubMed Central

    Miyamoto, C M; Graham, A F; Meighen, E A

    1988-01-01

    The nucleotide sequence of the luxC gene (1431 bp) and the upstream DNA (1049 bp) of the luminescent bacterium Vibrio harveyi has been determined. The luxC gene can be translated into a polypeptide of 55 kDa in excellent agreement with the molecular mass of the reductase polypeptide required for synthesis of the aldehyde substrate for the bioluminescent reaction. Analyses of codon usage showed a high frequency (1.9%) of the isoleucine codon, AUA, in the luxC gene compared to that found in Escherichia coli genes (0.2%) and its absence in the luxA, B and D genes. The low G/C content of the luxC gene and upstream DNA (38-39%) compared to that found in the other lux genes of V. harveyi (45%) was primarily due to a stretch of 500 nucleotides with only a 24% G/C content, extending from 200 bp inside lux C to 300 bp upstream. Moreover, an open reading frame did not extend for more than 48 codons between the luxC gene and 600 bp upstream at which point a gene transcribed in the opposite direction started. As the lux system in the luminescent bacterium, V. fischeri, contains a regulatory gene immediately upstream of luxC transcribed in the same direction, these results show that the organization and regulation of the lux genes have diverged in different luminescent bacteria. PMID:3347497

  20. Transcriptional start and MetR binding sites on the Escherichia coli metH gene.

    PubMed

    Marconi, R; Wigboldus, J; Weissbach, H; Brot, N

    1991-03-29

    The 5' upstream region of the Escherichia coli metH gene has been sequenced. Primer extension analysis revealed a transcription start site at 324 bases upstream of the initiator codon. An 8 base sequence homologous to the MetR binding region on the E. coli metE gene is present 217 bp downstream of the transcription start site. Gel retardation experiments showed that purified MetR protein could bind to a 30 base oligonucleotide containing the putative MetR binding region. No "met box" was present which explains the relative lack of regulation of the expression of the metH gene by methionine.

  1. Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers

    PubMed Central

    Heikrujam, Monika; Kumar, Jatin; Agrawal, Veena

    2015-01-01

    To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype “MS F” (in both markers) was highly diverse and genotypes “Q104 F” (SCoT) and “82–18 F” (CBDP) were least diverse among the female genotype populations. Among male genotypes, “32 M” (CBDP) and “MS M” (SCoT) revealed highest h and I values while “58-5 M” (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups

  2. Initiation codon selection is accomplished by a scanning mechanism without crucial initiation factors in Sindbis virus subgenomic mRNA.

    PubMed

    Garcia-Moreno, Manuel; Sanz, Miguel Angel; Carrasco, Luis

    2015-01-01

    Translation initiation of alphavirus subgenomic mRNA (sgmRNA) can occur in the absence of several initiation factors (eIFs) in infected cells; however, the precise translation mechanism is still poorly understood. In this study, we have examined the mechanism of initiation and AUG selection in Sindbis virus (SINV) sgmRNA. Our present findings suggest that sgmRNA is translated via a scanning mechanism, since the presence of a hairpin structure before the initiation codon hampers protein synthesis directed by this mRNA. In addition, translation is partially recovered when an in-frame AUG codon is placed upstream of this hairpin. This scanning process takes place without the participation of eIF4A and active eIF2. These results, combined with our findings through modifying the SINV sgmRNA leader sequence, do not support the possibility of a direct initiation from the start codon without previous scanning, or a shunting mechanism. Moreover, studies carried out with sgmRNAs containing two alternative AUG codons within a good context for translation reveal differences in AUG selection which are dependent on the cellular context and the phosphorylation state of eIF2α. Thus, initiation at the additional AUG is strictly dependent on active eIF2, whereas the genuine AUG codon can start translation following eIF2α inactivation. Collectively, our results suggest that SINV sgmRNA is translated by a scanning mechanism without the potential participation of crucial eIFs. A model is presented that explains the mechanism of initiation of mRNAs bearing two alternative initiation codons.

  3. Two alternative ways of start site selection in human norovirus reinitiation of translation.

    PubMed

    Luttermann, Christine; Meyers, Gregor

    2014-04-25

    The calicivirus minor capsid protein VP2 is expressed via termination/reinitiation. This process depends on an upstream sequence element denoted termination upstream ribosomal binding site (TURBS). We have shown for feline calicivirus and rabbit hemorrhagic disease virus that the TURBS contains three sequence motifs essential for reinitiation. Motif 1 is conserved among caliciviruses and is complementary to a sequence in the 18 S rRNA leading to the model that hybridization between motif 1 and 18 S rRNA tethers the post-termination ribosome to the mRNA. Motif 2 and motif 2* are proposed to establish a secondary structure positioning the ribosome relative to the start site of the terminal ORF. Here, we analyzed human norovirus (huNV) sequences for the presence and importance of these motifs. The three motifs were identified by sequence analyses in the region upstream of the VP2 start site, and we showed that these motifs are essential for reinitiation of huNV VP2 translation. More detailed analyses revealed that the site of reinitiation is not fixed to a single codon and does not need to be an AUG, even though this codon is clearly preferred. Interestingly, we were able to show that reinitiation can occur at AUG codons downstream of the canonical start/stop site in huNV and feline calicivirus but not in rabbit hemorrhagic disease virus. Although reinitiation at the original start site is independent of the Kozak context, downstream initiation exhibits requirements for start site sequence context known for linear scanning. These analyses on start codon recognition give a more detailed insight into this fascinating mechanism of gene expression.

  4. Gene sequence of mouse B-type proline-rich protein MP4. Transcriptional start point and an upstream phylogenetic footprint with ets-like and rel/NFkB-like elements.

    PubMed

    Roberts, S G; Layfield, R; Bannister, A J; McDonald, C J

    1991-12-18

    A mouse genomic B-type proline-rich protein (PRP) cosmid clone was isolated by cDNA hybridisation and mapped, the gene region was subcloned and 3770 bp were sequenced. This gene (MP4) contained three introns and encoded a 1020-nt (nt, nucleotide) mRNA for a PRP precursor 300 amino acids long arranged with 11 imperfect 18-residue proline-rich repeats. The transcriptional start point was determined by S1 nuclease mapping and primer extension to be 26 bp downstream of a TATAA sequence. Sequence comparisons revealed that only two regions from positions -650 bp - -30 bp were highly conserved in all other PRP genes, PRP boxes 1 and 2. Box 1 at positions -112 to -135 contained ets-like and rel/NFkB-like elements and was 74% conserved over 23 bp. Box 2 at positions -33 - -51 was 53% conserved over 19 bp. A search of the EMBL and GenBank sequence libraries indicated that PRP box 1 was only present upstream of the known mammalian PRP gene sequences and was absent from other genes. These conserved sequences may thus be relevant to the tissue-specific and beta-adrenergic regulation of PRP gene transcription.

  5. Problem-Solving Test: The Effect of Synonymous Codons on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: the genetic code, codon, degenerate codons, protein synthesis, aminoacyl-tRNA, anticodon, antiparallel orientation, wobble, unambiguous codons, ribosomes, initiation, elongation and termination of translation, peptidyl transferase, translocation, degenerate oligonucleotides, green…

  6. Comprehensive translational control of tyrosine kinase expression by upstream open reading frames.

    PubMed

    Wethmar, K; Schulz, J; Muro, E M; Talyan, S; Andrade-Navarro, M A; Leutz, A

    2016-03-31

    Post-transcriptional control has emerged as a major regulatory event in gene expression and often occurs at the level of translation initiation. Although overexpression or constitutive activation of tyrosine kinases (TKs) through gene amplification, translocation or mutation are well-characterized oncogenic events, current knowledge about translational mechanisms of TK activation is scarce. Here, we report the presence of translational cis-regulatory upstream open reading frames (uORFs) in the majority of transcript leader sequences of human TK mRNAs. Genetic ablation of uORF initiation codons in TK transcripts resulted in enhanced translation of the associated downstream main protein-coding sequences (CDSs) in all cases studied. Similarly, experimental removal of uORF start codons in additional non-TK proto-oncogenes, and naturally occurring loss-of-uORF alleles of the c-met proto-oncogene (MET) and the kinase insert domain receptor (KDR), was associated with increased CDS translation. Based on genome-wide sequence analyses we identified polymorphisms in 15.9% of all human genes affecting uORF initiation codons, associated Kozak consensus sequences or uORF-related termination codons. Together, these data suggest a comprehensive role of uORF-mediated translational control and delineate how aberrant induction of proto-oncogenes through loss-of-function mutations at uORF initiation codons may be involved in the etiology of cancer. We provide a detailed map of uORFs across the human genome to stimulate future research on the pathogenic role of uORFs.

  7. Codon Adaptation of Plastid Genes

    PubMed Central

    Suzuki, Haruo; Morton, Brian R.

    2016-01-01

    Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes. PMID:27196606

  8. Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast.

    PubMed

    Jenks, M Harley; O'Rourke, Thomas W; Reines, Daniel

    2008-06-01

    The IMD2 gene in Saccharomyces cerevisiae is regulated by intracellular guanine nucleotides. Regulation is exerted through the choice of alternative transcription start sites that results in synthesis of either an unstable short transcript terminating upstream of the start codon or a full-length productive IMD2 mRNA. Start site selection is dictated by the intracellular guanine nucleotide levels. Here we have mapped the polyadenylation sites of the upstream, unstable short transcripts that form a heterogeneous family of RNAs of approximately 200 nucleotides. The switch from the upstream to downstream start sites required the Rpb9 subunit of RNA polymerase II. The enzyme's ability to locate the downstream initiation site decreased exponentially as the start was moved downstream from the TATA box. This suggests that RNA polymerase II's pincer grip is important as it slides on DNA in search of a start site. Exosome degradation of the upstream transcripts was highly dependent upon the distance between the terminator and promoter. Similarly, termination was dependent upon the Sen1 helicase when close to the promoter. These findings extend the emerging concept that distinct modes of termination by RNA polymerase II exist and that the distance of the terminator from the promoter, as well as its sequence, is important for the pathway chosen.

  9. Molecular view of 43 S complex formation and start site selection in eukaryotic translation initiation.

    PubMed

    Lorsch, Jon R; Dever, Thomas E

    2010-07-09

    A central step to high fidelity protein synthesis is selection of the proper start codon. Recent structural, biochemical, and genetic analyses have provided molecular insights into the coordinated activities of the initiation factors in start codon selection. A molecular model is emerging in which start codon recognition is linked to dynamic reorganization of factors on the ribosome and structural changes in the ribosome itself.

  10. Proximity of AUG sequences to initiation codon in genomic 5' UTR regulates mammalian protein expression.

    PubMed

    Al-Ali, Ruslan; González-Sarmiento, Rogelio

    2016-12-15

    Protein expression can be controlled via AUG sequences located upstream to the initiation codon in the 5' end untranslated region (5' UTR). Our study was focused on the effect of distance between the initiation codon and the first upstream AUG. An inhibitory effect on protein expression was established when AUG exists in 5' UTR, and this effect is increased when multiple AUG sequences occur there. The study was performed with ATG16L2, a non-lethal gene with no introns or upstream AUG sequence to avoid any interference. New mutations were generated at different locations within the promoter region of ATG16L2 gene and added to a plasmid construct containing a luciferase gene reporter gene. The results show a clear relationship between the distance of the novel AUGs from initiation codon and protein expression. The inhibitory effect was even stronger when multiple AUG sequences were present in 5' UTR.

  11. Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats

    PubMed Central

    Wolf, Andrew S.; Grayhack, Elizabeth J.

    2015-01-01

    Quality control systems monitor and stop translation at some ribosomal stalls, but it is unknown if halting translation at such stalls actually prevents synthesis of abnormal polypeptides. In yeast, ribosome stalling occurs at Arg CGA codon repeats, with even two consecutive CGA codons able to reduce translation by up to 50%. The conserved eukaryotic Asc1 protein limits translation through internal Arg CGA codon repeats. We show that, in the absence of Asc1 protein, ribosomes continue translating at CGA codons, but undergo substantial frameshifting with dramatically higher levels of frameshifting occurring with additional repeats of CGA codons. Frameshifting depends upon the slow or inefficient decoding of these codons, since frameshifting is suppressed by increased expression of the native tRNAArg(ICG) that decodes CGA codons by wobble decoding. Moreover, the extent of frameshifting is modulated by the position of the CGA codon repeat relative to the translation start site. Thus, translation fidelity depends upon Asc1-mediated quality control. PMID:25792604

  12. Divergence in codon usage of Lactobacillus species.

    PubMed Central

    Pouwels, P H; Leunissen, J A

    1994-01-01

    We have analyzed codon usage patterns of 70 sequenced genes from different Lactobacillus species. Codon usage in lactobacilli is highly biased. Both inter-species and intra-species heterogeneity of codon usage bias was observed. Codon usage in L. acidophilus is similar to that in L. helveticus, but dissimilar to that in L. bulgaricus, L. casei, L. pentosus and L. plantarum. Codon usage in the latter three organisms is not significantly different, but is different from that in L. bulgaricus. Inter-species differences in codon usage can, at least in part, be explained by differences in mutational drift. L. bulgaricus shows GC drift, whereas all other species show AT drift. L. acidophilus and L. helveticus rarely use NNG in family-box (a set of synonymous) codons, in contrast to all other species. This result may be explained by assuming that L. acidophilus and L. helveticus, but not other species examined, use a single tRNA species for translation of family-box codons. Differences in expression level of genes are positively correlated with codon usage bias. Highly expressed genes show highly biased codon usage, whereas weakly expressed genes show much less biased codon usage. Codon usage patterns at the 5'-end of Lactobacillus genes is not significantly different from that of entire genes. The GC content of codons 2-6 is significantly reduced compared with that of the remainder of the gene. The possible implications of a reduced GC content for the control of translation efficiency are discussed. PMID:8152923

  13. What drives codon choices in human genes?

    PubMed

    Karlin, S; Mrázek, J

    1996-10-04

    Synonymous codon usage is based and the bias seems to be different in different organisms. Factors with proposed roles in causing codon bias include degree and timing of gene expression, codon-anticodon interactions, transcription and translation rate and fidelity, codon context, and global and local G + C content. We offer a new perspective and new methods for elucidating codon choices applied especially to the human genome. We present data supporting the thesis that codon choices for human genes are largely a consequence of two factors: (1) amino acid constraints, (2) maintaining DNA structures dependent on base-step conformational tendencies consistent with the organism's genome signature that is determined by genome-wide processes of DNA modification, replication and repair. The related codon signature defined as the dinucleotide relative abundances at the distinct codon positions (1,2), (2,3), and (3,4) (4 = 1 of the next codon) accommodates both the global genome signature and amino acid constraints. In human genes, codon positions (2,3) and (3,4) containing the silent site have similar codon signatures reflecting DNA symmetry. Strong CG and TA dinucleotide underrepresentation is observed at all codon positions as well as in non-coding regions. Estimates of synonymous codon usage based on codon signatures are in excellent agreement with the actual codon usage in human and general vertebrate genes. These properties are largely independent of the isochore compartment (G + C content), gene size, and transcriptional and translational constraints. We hypothesize that major influences on codon usage in human genes result from residue preferences and diresidue associations in proteins coupled to biases on the DNA level, related to replication and repair processes and/or DNA structural requirements.

  14. Upstream health law.

    PubMed

    Sage, William M; McIlhattan, Kelley

    2014-01-01

    For the first time, entrepreneurs are aggressively developing new technologies and business models designed to improve individual and population health, not just to deliver specialized medical care. Consumers of these goods and services are not yet "patients"; they are simply people. As this sector of the health care industry expands, it is likely to require new forms of legal governance, which we term "upstream health law."

  15. Codon information value and codon transition-probability distributions in short-term evolution

    NASA Astrophysics Data System (ADS)

    Jiménez-Montaño, M. A.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.; Ramos-Fernández, A.

    2016-07-01

    To understand the way the Genetic Code and the physical-chemical properties of coded amino acids affect accepted amino acid substitutions in short-term protein evolution, taking into account only overall amino acid conservation, we consider an underlying codon-level model. This model employs codon pair-substitution frequencies from an empirical matrix in the literature, modified for single-base mutations only. Ordering the degenerated codons according to their codon information value (Volkenstein, 1979), we found that three-fold and most of four-fold degenerated codons, which have low codon values, were best fitted to rank-frequency distributions with constant failure rate (exponentials). In contrast, almost all two-fold degenerated codons, which have high codon values, were best fitted to rank-frequency distributions with variable failure rate (inverse power-laws). Six-fold degenerated codons are considered to be doubly assigned. The exceptional behavior of some codons, including non-degenerate codons, is discussed.

  16. Upstream of Saturn and Titan

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.; André, N.; Bertucci, C. L.; Garnier, P.; Jackman, C. M.; Németh, Z.; Rymer, A. M.; Sergis, N.; Szego, K.; Coates, A. J.; Crary, F. J.

    The formation of Titan's induced magnetosphere is a unique and important example in the solar system of a plasma-moon interaction where the moon has a substantial atmosphere. The field and particle conditions upstream of Titan are important in controlling the interaction and also play a strong role in modulating the chemistry of the ionosphere. In this paper we review Titan's plasma interaction to identify important upstream parameters and review the physics of Saturn's magnetosphere near Titan's orbit to highlight how these upstream parameters may vary. We discuss the conditions upstream of Saturn in the solar wind and the conditions found in Saturn's magnetosheath. Statistical work on Titan's upstream magnetospheric fields and particles are discussed. Finally, various classification schemes are presented and combined into a single list of Cassini Titan encounter classes which is also used to highlight differences between these classification schemes.

  17. Upstream of Saturn and Titan

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.; André, N.; Bertucci, C. L.; Garnier, P.; Jackman, C. M.; Németh, Z.; Rymer, A. M.; Sergis, N.; Szego, K.; Coates, A. J.; Crary, F. J.

    2011-12-01

    The formation of Titan's induced magnetosphere is a unique and important example in the solar system of a plasma-moon interaction where the moon has a substantial atmosphere. The field and particle conditions upstream of Titan are important in controlling the interaction and also play a strong role in modulating the chemistry of the ionosphere. In this paper we review Titan's plasma interaction to identify important upstream parameters and review the physics of Saturn's magnetosphere near Titan's orbit to highlight how these upstream parameters may vary. We discuss the conditions upstream of Saturn in the solar wind and the conditions found in Saturn's magnetosheath. Statistical work on Titan's upstream magnetospheric fields and particles are discussed. Finally, various classification schemes are presented and combined into a single list of Cassini Titan encounter classes which is also used to highlight differences between these classification schemes.

  18. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  19. Codon optimization underpins generalist parasitism in fungi

    PubMed Central

    Badet, Thomas; Peyraud, Remi; Mbengue, Malick; Navaud, Olivier; Derbyshire, Mark; Oliver, Richard P; Barbacci, Adelin; Raffaele, Sylvain

    2017-01-01

    The range of hosts that parasites can infect is a key determinant of the emergence and spread of disease. Yet, the impact of host range variation on the evolution of parasite genomes remains unknown. Here, we show that codon optimization underlies genome adaptation in broad host range parasites. We found that the longer proteins encoded by broad host range fungi likely increase natural selection on codon optimization in these species. Accordingly, codon optimization correlates with host range across the fungal kingdom. At the species level, biased patterns of synonymous substitutions underpin increased codon optimization in a generalist but not a specialist fungal pathogen. Virulence genes were consistently enriched in highly codon-optimized genes of generalist but not specialist species. We conclude that codon optimization is related to the capacity of parasites to colonize multiple hosts. Our results link genome evolution and translational regulation to the long-term persistence of generalist parasitism. DOI: http://dx.doi.org/10.7554/eLife.22472.001 PMID:28157073

  20. Evolutionary Dynamics of Abundant Stop Codon Readthrough

    PubMed Central

    Jungreis, Irwin; Kellis, Manolis

    2016-01-01

    Translational stop codon readthrough emerged as a major regulatory mechanism affecting hundreds of genes in animal genomes, based on recent comparative genomics and ribosomal profiling evidence, but its evolutionary properties remain unknown. Here, we leverage comparative genomic evidence across 21 Anopheles mosquitoes to systematically annotate readthrough genes in the malaria vector Anopheles gambiae, and to provide the first study of abundant readthrough evolution, by comparison with 20 Drosophila species. Using improved comparative genomics methods for detecting readthrough, we identify evolutionary signatures of conserved, functional readthrough of 353 stop codons in the malaria vector, Anopheles gambiae, and of 51 additional Drosophila melanogaster stop codons, including several cases of double and triple readthrough and of readthrough of two adjacent stop codons. We find that most differences between the readthrough repertoires of the two species arose from readthrough gain or loss in existing genes, rather than birth of new genes or gene death; that readthrough-associated RNA structures are sometimes gained or lost while readthrough persists; that readthrough is more likely to be lost at TAA and TAG stop codons; and that readthrough is under continued purifying evolutionary selection in mosquito, based on population genetic evidence. We also determine readthrough-associated gene properties that predate readthrough, and identify differences in the characteristic properties of readthrough genes between clades. We estimate more than 600 functional readthrough stop codons in mosquito and 900 in fruit fly, provide evidence of readthrough control of peroxisomal targeting, and refine the phylogenetic extent of abundant readthrough as following divergence from centipede. PMID:27604222

  1. Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli

    PubMed Central

    Napolitano, Michael G.; Landon, Matthieu; Gregg, Christopher J.; Lajoie, Marc J.; Govindarajan, Lakshmi; Mosberg, Joshua A.; Kuznetsov, Gleb; Goodman, Daniel B.; Vargas-Rodriguez, Oscar; Isaacs, Farren J.; Söll, Dieter; Church, George M.

    2016-01-01

    The degeneracy of the genetic code allows nucleic acids to encode amino acid identity as well as noncoding information for gene regulation and genome maintenance. The rare arginine codons AGA and AGG (AGR) present a case study in codon choice, with AGRs encoding important transcriptional and translational properties distinct from the other synonymous alternatives (CGN). We created a strain of Escherichia coli with all 123 instances of AGR codons removed from all essential genes. We readily replaced 110 AGR codons with the synonymous CGU codons, but the remaining 13 “recalcitrant” AGRs required diversification to identify viable alternatives. Successful replacement codons tended to conserve local ribosomal binding site-like motifs and local mRNA secondary structure, sometimes at the expense of amino acid identity. Based on these observations, we empirically defined metrics for a multidimensional “safe replacement zone” (SRZ) within which alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we implemented a CRISPR/Cas9-based method to deplete a diversified population of a wild-type allele, allowing us to evaluate exhaustively the fitness impact of all 64 codon alternatives. Using this method, we confirmed the relevance of the SRZ by tracking codon fitness over time in 14 different genes, finding that codons that fall outside the SRZ are rapidly depleted from a growing population. Our unbiased and systematic strategy for identifying unpredicted design flaws in synthetic genomes and for elucidating rules governing codon choice will be crucial for designing genomes exhibiting radically altered genetic codes. PMID:27601680

  2. Optimal codons in Tremella fuciformis end in C/G, a strong difference with known Tremella species.

    PubMed

    Deng, Youjin; Huang, Xiaoxing; Ruan, Banzhan; Xie, Baogui; van Peer, Arend Frans; Jiang, Yuji

    2015-11-01

    Tremella fuciformis is a popular edible fungus with fruiting bodies that can be produced in large quantities at low costs, while it is easy to transform and cultivate as yeast. This makes it an attractive potential bioreactor. Enhanced heterologous gene expression through codon optimization would be useful, but until now codon usage preferences in T. fuciformis remain unknown. To precisely determine the preferred codon usage of T. fuciformis we sequenced the genome of strain Tr26 resulting in a 24.2 Mb draft genome with 10,040 predicted genes. 3288 of the derived predicted proteins matched the UniProtKB/Swiss-Prot databases with 40% or more similarity. Corresponding gene models of this subset were subsequently optimized through repetitive comparison of alternative start codons and selection of best length matching gene models. For experimental confirmation of gene models, 96 random clones from an existing T. fuciformis cDNA library were sequenced, generating 80 complete CDSs. Calculated optimal codons for the 3288 predicted and the 80 cloned CDSs were highly similar, indicating sufficient accuracy of predicted gene models for codon usage analysis. T. fuciformis showed a strong preference for C and then G at the third base pair position of used codons, while average GC content of predicted genes was slightly higher than the total genome sequence average. Most optimal codons ended in C or G except for one, and an increased frequency of C ending codons was observed in genes with higher expression levels. Surprisingly, the preferred codon usage in T. fuciformis strongly differed from T. mesenterica and C. neoformans. Instead, optimal codon usage was similar to more distant related species such as Ustilago maydis and Neurospora crassa. Despite much higher overall sequence homology between T. fuciformis and T. mesenterica, only 7 out of 21 optimal codons were equal, whereas T. fuciformis shared up to 20 out of 21 optimal codons with other species. Clearly, codon usage in

  3. The usage of codons which are similar to stop codons in the genomes of Xylella fastidiosa and Xanthomonas citri.

    PubMed

    Galves-dos-Santos, Dilermando P; Martins-de-Souza, Daniel

    2011-03-01

    During the evolution of living organisms, a natural selection event occurs toward the optimization of their genomes regarding the usage of codons. During this process which is known as codon bias, a set of preferred codons is naturally defined in the genome of a given organism, since there are 61 possible codons (plus 3 stop codons) to 20 amino acids. Such event leads to optimization of metabolic cellular processes such as translational efficiency, RNA stability and energy saving. Although we know why, we do not know how exactly a set of preferred codons for each amino acid is defined for a given genome considering that the usage frequency of each synonymous codons is peculiar to each organism. In order to help answering this question, we analyzed the usage frequency of codons which are similar to stop codons, since a minor mutation on these codons may lead to a stop codon into the open reading frame compromising the protein expression as a result. We found a reduced use of those codons in Xanthomomas axonopodis pv. citri which presents an optimized genome regarding codon usage. On the other hand, such codons are more often used in Xylella fastidiosa, which does not seem to have established codon preferences as previously shown. Our results support that a set of preferred codons is not randomly selected and propose new ideas to the field warranting further experiments in this regard.

  4. Identification and characterization of upstream open reading frames (uORF) in the 5' untranslated regions (UTR) of genes in Saccharomyces cerevisiae.

    PubMed

    Zhang, Zhihong; Dietrich, Fred S

    2005-08-01

    We have taken advantage of recently sequenced hemiascomycete fungal genomes to computationally identify additional genes potentially regulated by upstream open reading frames (uORFs). Our approach is based on the observation that the structure, including the uORFs, of the post-transcriptionally uORF regulated Saccharomyces cerevisiae genes GCN4 and CPA1 is conserved in related species. Thirty-eight candidate genes for which uORFs were found in multiple species were identified and tested. We determined by 5' RACE that 15 of these 38 genes are transcribed. Most of these 15 genes have only a single uORF in their 5' UTR, and the length of these uORFs range from 3 to 24 codons. We cloned seven full-length UTR sequences into a luciferase (LUC) reporter system. Luciferase activity and mRNA level were compared between the wild-type UTR construct and a construct where the uORF start codon was mutated. The translational efficiency index (TEI) of each construct was calculated to test the possible regulatory function on translational level. We hypothesize that uORFs in the UTR of RPC11, TPK1, FOL1, WSC3, and MKK1 may have translational regulatory roles while uORFs in the 5' UTR of ECM7 and IMD4 have little effect on translation under the conditions tested.

  5. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage

    PubMed Central

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  6. A major controversy in codon-anticodon adaptation resolved by a new codon usage index.

    PubMed

    Xia, Xuhua

    2015-02-01

    Two alternative hypotheses attribute different benefits to codon-anticodon adaptation. The first assumes that protein production is rate limited by both initiation and elongation and that codon-anticodon adaptation would result in higher elongation efficiency and more efficient and accurate protein production, especially for highly expressed genes. The second claims that protein production is rate limited only by initiation efficiency but that improved codon adaptation and, consequently, increased elongation efficiency have the benefit of increasing ribosomal availability for global translation. To test these hypotheses, a recent study engineered a synthetic library of 154 genes, all encoding the same protein but differing in degrees of codon adaptation, to quantify the effect of differential codon adaptation on protein production in Escherichia coli. The surprising conclusion that "codon bias did not correlate with gene expression" and that "translation initiation, not elongation, is rate-limiting for gene expression" contradicts the conclusion reached by many other empirical studies. In this paper, I resolve the contradiction by reanalyzing the data from the 154 sequences. I demonstrate that translation elongation accounts for about 17% of total variation in protein production and that the previous conclusion is due to the use of a codon adaptation index (CAI) that does not account for the mutation bias in characterizing codon adaptation. The effect of translation elongation becomes undetectable only when translation initiation is unrealistically slow. A new index of translation elongation ITE is formulated to facilitate studies on the efficiency and evolution of the translation machinery.

  7. Upstream Swimming in Microbiological Flows.

    PubMed

    Mathijssen, Arnold J T M; Shendruk, Tyler N; Yeomans, Julia M; Doostmohammadi, Amin

    2016-01-15

    Interactions between microorganisms and their complex flowing environments are essential in many biological systems. We develop a model for microswimmer dynamics in non-Newtonian Poiseuille flows. We predict that swimmers in shear-thickening (-thinning) fluids migrate upstream more (less) quickly than in Newtonian fluids and demonstrate that viscoelastic normal stress differences reorient swimmers causing them to migrate upstream at the centerline, in contrast to well-known boundary accumulation in quiescent Newtonian fluids. Based on these observations, we suggest a sorting mechanism to select microbes by swimming speed.

  8. Upstream Swimming in Microbiological Flows

    NASA Astrophysics Data System (ADS)

    Mathijssen, Arnold J. T. M.; Shendruk, Tyler N.; Yeomans, Julia M.; Doostmohammadi, Amin

    2016-01-01

    Interactions between microorganisms and their complex flowing environments are essential in many biological systems. We develop a model for microswimmer dynamics in non-Newtonian Poiseuille flows. We predict that swimmers in shear-thickening (-thinning) fluids migrate upstream more (less) quickly than in Newtonian fluids and demonstrate that viscoelastic normal stress differences reorient swimmers causing them to migrate upstream at the centerline, in contrast to well-known boundary accumulation in quiescent Newtonian fluids. Based on these observations, we suggest a sorting mechanism to select microbes by swimming speed.

  9. The Start of Head Start

    ERIC Educational Resources Information Center

    Neugebauer, Roger

    2010-01-01

    The creation of the Head Start program occurred at break-neck speed with many dramatic turns and many colorful players. No one tells the story better than Edward Zigler in "Head Start: The Inside Story of America's Most Successful Educational Experiment"--a detailed and personal, behind the scenes look at the program's inception. From this…

  10. Analysis of synonymous codon usage patterns in the genus Rhizobium.

    PubMed

    Wang, Xinxin; Wu, Liang; Zhou, Ping; Zhu, Shengfeng; An, Wei; Chen, Yu; Zhao, Lin

    2013-11-01

    The codon usage patterns of rhizobia have received increasing attention. However, little information is available regarding the conserved features of the codon usage patterns in a typical rhizobial genus. The codon usage patterns of six completely sequenced strains belonging to the genus Rhizobium were analysed as model rhizobia in the present study. The relative neutrality plot showed that selection pressure played a role in codon usage in the genus Rhizobium. Spearman's rank correlation analysis combined with correspondence analysis (COA) showed that the codon adaptation index and the effective number of codons (ENC) had strong correlation with the first axis of the COA, which indicated the important role of gene expression level and the ENC in the codon usage patterns in this genus. The relative synonymous codon usage of Cys codons had the strongest correlation with the second axis of the COA. Accordingly, the usage of Cys codons was another important factor that shaped the codon usage patterns in Rhizobium genomes and was a conserved feature of the genus. Moreover, the comparison of codon usage between highly and lowly expressed genes showed that 20 unique preferred codons were shared among Rhizobium genomes, revealing another conserved feature of the genus. This is the first report of the codon usage patterns in the genus Rhizobium.

  11. Discrepancy among the synonymous codons with respect to their selection as optimal codon in bacteria

    PubMed Central

    Satapathy, Siddhartha Sankar; Powdel, Bhesh Raj; Buragohain, Alak Kumar; Ray, Suvendra Kumar

    2016-01-01

    The different triplets encoding the same amino acid, termed as synonymous codons, are not equally abundant in a genome. Factors such as G + C% and tRNA are known to influence their abundance in a genome. However, the order of the nucleotide in each codon per se might also be another factor impacting on its abundance values. Of the synonymous codons for specific amino acids, some are preferentially used in the high expression genes that are referred to as the ‘optimal codons’ (OCs). In this study, we compared OCs of the 18 amino acids in 221 species of bacteria. It is observed that there is amino acid specific influence for the selection of OCs. There is also influence of phylogeny in the choice of OCs for some amino acids such as Glu, Gln, Lys and Leu. The phenomenon of codon bias is also supported by the comparative studies of the abundance values of the synonymous codons with same G + C. It is likely that the order of the nucleotides in the triplet codon is also perhaps involved in the phenomenon of codon usage bias in organisms. PMID:27426467

  12. Codon catalog usage and the genome hypothesis.

    PubMed Central

    Grantham, R; Gautier, C; Gouy, M; Mercier, R; Pavé, A

    1980-01-01

    Frequencies for each of the 61 amino acid codons have been determined in every published mRNA sequence of 50 or more codons. The frequencies are shown for each kind of genome and for each individual gene. A surprising consistency of choices exists among genes of the same or similar genomes. Thus each genome, or kind of genome, appears to possess a "system" for choosing between codons. Frameshift genes, however, have widely different choice strategies from normal genes. Our work indicates that the main factors distinguishing between mRNA sequences relate to choices among degenerate bases. These systematic third base choices can therefore be used to establish a new kind of genetic distance, which reflects differences in coding strategy. The choice patterns we find seem compatible with the idea that the genome and not the individual gene is the unit of selection. Each gene in a genome tends to conform to its species' usage of the codon catalog; this is our genome hypothesis. PMID:6986610

  13. Hydroxylation and translational adaptation to stress: some answers lie beyond the STOP codon.

    PubMed

    Katz, M J; Gándara, L; De Lella Ezcurra, A L; Wappner, P

    2016-05-01

    Regulation of protein synthesis contributes to maintenance of homeostasis and adaptation to environmental changes. mRNA translation is controlled at various levels including initiation, elongation and termination, through post-transcriptional/translational modifications of components of the protein synthesis machinery. Recently, protein and RNA hydroxylation have emerged as important enzymatic modifications of tRNAs, elongation and termination factors, as well as ribosomal proteins. These modifications enable a correct STOP codon recognition, ensuring translational fidelity. Recent studies are starting to show that STOP codon read-through is related to the ability of the cell to cope with different types of stress, such as oxidative and chemical insults, while correlations between defects in hydroxylation of protein synthesis components and STOP codon read-through are beginning to emerge. In this review we will discuss our current knowledge of protein synthesis regulation through hydroxylation of components of the translation machinery, with special focus on STOP codon recognition. We speculate on the possibility that programmed STOP codon read-through, modulated by hydroxylation of components of the protein synthesis machinery, is part of a concerted cellular response to stress.

  14. Nucleotide composition and codon usage bias of SRY gene.

    PubMed

    Choudhury, M N; Uddin, A; Chakraborty, S

    2017-01-26

    The SRY gene is present within the sex-determining region of the Y chromosome which is responsible for maleness in mammals. The nonuniform usage of synonymous codons in the mRNA transcript for encoding a particular amino acid is the codon usage bias (CUB). Analysis of codon usage pattern is important to understand the genetic and molecular organisation of a gene. It also helps in heterologous gene expression, design of primer and synthetic gene. However, the analysis of codon usage bias of SRY gene was not yet studied. We have used bioinformatic tools to analyse codon usage bias of SRY gene across mammals. Codon bias index (CBI) indicated that the overall extent of codon usage bias was weak. The relative synonymous codon usage (RSCU) analysis suggested that most frequently used codons had an A or C at the third codon position. Compositional constraint played an important role in codon usage pattern as evident from correspondence analysis (CA). Significant correlation among nucleotides constraints indicated that both mutation pressure and natural selection affect the codon usage pattern. Neutrality plot suggested that natural selection might play a major role, while mutation pressure might play a minor role in codon usage pattern in SRY gene in different species of mammals.

  15. Upstream regulation of mycotoxin biosynthesis.

    PubMed

    Alkhayyat, Fahad; Yu, Jae-Hyuk

    2014-01-01

    Mycotoxins are natural contaminants of food and feed products, posing a substantial health risk to humans and animals throughout the world. A plethora of filamentous fungi has been identified as mycotoxin producers and most of these fungal species belong to the genera Aspergillus, Fusarium, and Penicillium. A number of studies have been conducted to better understand the molecular mechanisms of biosynthesis of key mycotoxins and the regulatory cascades controlling toxigenesis. In many cases, the mycotoxin biosynthetic genes are clustered and regulated by one or more pathway-specific transcription factor(s). In addition, as biosynthesis of many secondary metabolites is coordinated with fungal growth and development, there are a number of upstream regulators affecting biosynthesis of mycotoxins in fungi. This review presents a concise summary of the regulation of mycotoxin biosynthesis, focusing on the roles of the upstream regulatory elements governing biosynthesis of aflatoxin and sterigmatocystin in Aspergillus.

  16. Alternative splicing within the elk-1 5' untranslated region serves to modulate initiation events downstream of the highly conserved upstream open reading frame 2.

    PubMed

    Rahim, Gwendoline; Araud, Tanguy; Jaquier-Gubler, Pascale; Curran, Joseph

    2012-05-01

    The 5' untranslated region (UTR) plays a central role in the regulation of mammalian translation initiation. Key components include RNA structure, upstream AUGs (uAUGs), upstream open reading frames (uORFs), and internal ribosome entry site elements that can interact to modulate the readout. We previously reported the characterization of two alternatively spliced 5' UTR isoforms of the human elk-1 gene. Both contain two uAUGs and a stable RNA stem-loop, but the long form (5' UTR(L)) was more repressive than the short form (5' UTR(S)) for initiation at the ELK-1 AUG. We now demonstrate that ELK-1 expression arises by a combination of leaky scanning and reinitiation, with the latter mediated by the small uORF2 conserved in both spliced isoforms. In HEK293T cells, a considerable fraction of ribosomes scans beyond the ELK-1 AUG in a reinitiation mode. These are sequestered by a series of out-of-frame AUG codons that serve to prevent access to a second in-frame AUG start site used to express short ELK-1 (sELK-1), an N-terminally truncated form of ELK-1 that has been observed only in neuronal cells. We present evidence that all these events are fine-tuned by the nature of the 5' UTR and the activity of the α subunit of eukaryotic initiation factor 2 and provide insights into the neuronal specificity of sELK-1 expression.

  17. Efficient expression of gene variants that harbour AGA codons next to the initiation codon

    PubMed Central

    Zamora-Romo, Efraín; Cruz-Vera, Luis Rogelio; Vivanco-Domínguez, Serafín; Magos-Castro, Marco Antonio; Guarneros, Gabriel

    2007-01-01

    In an effort to improve the knowledge about the rules which direct the effect of the early ORF sequences on translation efficiency, we have analyzed the effect of pairs of the six arginine codons at the second and third positions on the expression of lacZ variants. Whereas the pairs of identical AGA or AGG codons were favorable for the gene expression, identical pairs of each of the four CGN codons were very inefficient. This result was unexpected because tandems of AGA or AGG codons located in more internal gene positions provoke deficient expression whilst internally located CGU and CGC are the most abundant and efficiently translated arginine codons. The mixed combinations of AGA and each of the CGN codons usually resulted in efficient rates of lacZ expression independently of the peptidyl-tRNA propensity to dissociate from the ribosome. Thus, the variant harboring the pair of AGA codons was expressed as efficiently as the variant carrying a pair of AAA codons in the same positions, a configuration reported as one of the most common and efficient for gene expression. We explain these results assuming that the presence of adenines in these early positions enhance gene expression. As expected, specific mRNA levels correlated with the intensity of lacZ expression for each variant. However, the induction of lacZ AGA AGA gene in pth cells accumulated peptidyl-tRNAArg4 as well as a short 5′-proximal lacZ mRNA fragment suggesting ribosome stalling due to depletion of aminoacylated-tRNAArg4. PMID:17726048

  18. Synthetic Gene Design Using Codon Optimization On-Line (COOL).

    PubMed

    Yu, Kai; Ang, Kok Siong; Lee, Dong-Yup

    2017-01-01

    Codon optimization has been widely used for designing native or synthetic genes to enhance their expression in heterologous host organisms. We recently developed Codon Optimization On-Line (COOL) which is a web-based tool to provide multi-objective codon optimization functionality for synthetic gene design. COOL provides a simple and flexible interface for customizing codon optimization based on several design parameters such as individual codon usage, codon pairing, and codon adaptation index. User-defined sequences can also be compared against the COOL optimized ones to show the extent by which the user's sequences can be evaluated and further improved. The utility of COOL is demonstrated via a case study where the codon optimized sequence of an invertase enzyme is generated for the enhanced expression in E. coli.

  19. Start Young!

    ERIC Educational Resources Information Center

    Rubin, Penni

    2002-01-01

    Discusses the importance of early interest in science and how effective it is on career choice in adult stages of life. Recommends starting mathematics and science activities in preschool and kindergarten. Describes how to create a career-oriented learning center in the classroom with examples of kitchen chemistry, nutrition/botany, zoology,…

  20. Press Start

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    This level sets the stage for the design philosophy called “Triadic Game Design” (TGD). This design philosophy can be summarized with the following sentence: it takes two to tango, but it takes three to design a meaningful game or a game with a purpose. Before the philosophy is further explained, this level will first delve into what is meant by a meaningful game or a game with a purpose. Many terms and definitions have seen the light and in this book I will specifically orient at digital games that aim to have an effect beyond the context of the game itself. Subsequently, a historical overview is given of the usage of games with a serious purpose which starts from the moment we human beings started to walk on our feet till our contemporary society. It turns out that we have been using games for all kinds of non-entertainment purposes for already quite a long time. With this introductory material in the back of our minds, I will explain the concept of TGD by means of a puzzle. After that, the protagonist of this book, the game Levee Patroller, is introduced. Based on the development of this game, the idea of TGD, which stresses to balance three different worlds, the worlds of Reality, Meaning, and Play, came into being. Interested? Then I suggest to quickly “press start!”

  1. Stop codon reassignments in the wild.

    PubMed

    Ivanova, Natalia N; Schwientek, Patrick; Tripp, H James; Rinke, Christian; Pati, Amrita; Huntemann, Marcel; Visel, Axel; Woyke, Tanja; Kyrpides, Nikos C; Rubin, Edward M

    2014-05-23

    The canonical genetic code is assumed to be deeply conserved across all domains of life with very few exceptions. By scanning 5.6 trillion base pairs of metagenomic data for stop codon reassignment events, we detected recoding in a substantial fraction of the >1700 environmental samples examined. We observed extensive opal and amber stop codon reassignments in bacteriophages and of opal in bacteria. Our data indicate that bacteriophages can infect hosts with a different genetic code and demonstrate phage-host antagonism based on code differences. The abundance and diversity of genetic codes present in environmental organisms should be considered in the design of engineered organisms with altered genetic codes in order to preclude the exchange of genetic information with naturally occurring species.

  2. Stop Codon Reassignment in the Wild

    SciTech Connect

    Ivanova, Natalia; Schwientek, Patrick; Tripp, H. James; Rinke, Christian; Pati, Amrita; Huntemann, Marcel; Visel, Axel; Woyke, Tanja; Kyrpides, Nikos; Rubin, Edward

    2014-03-21

    Since the discovery of the genetic code and protein translation mechanisms (1), a limited number of variations of the standard assignment between unique base triplets (codons) and their encoded amino acids and translational stop signals have been found in bacteria and phages (2-3). Given the apparent ubiquity of the canonical genetic code, the design of genomically recoded organisms with non-canonical codes has been suggested as a means to prevent horizontal gene transfer between laboratory and environmental organisms (4). It is also predicted that genomically recoded organisms are immune to infection by viruses, under the assumption that phages and their hosts must share a common genetic code (5). This paradigm is supported by the observation of increased resistance of genomically recoded bacteria to phages with a canonical code (4). Despite these assumptions and accompanying lines of evidence, it remains unclear whether differential and non-canonical codon usage represents an absolute barrier to phage infection and genetic exchange between organisms. Our knowledge of the diversity of genetic codes and their use by viruses and their hosts is primarily derived from the analysis of cultivated organisms. Advances in single-cell sequencing and metagenome assembly technologies have enabled the reconstruction of genomes of uncultivated bacterial and archaeal lineages (6). These initial findings suggest that large scale systematic studies of uncultivated microorganisms and viruses may reveal the extent and modes of divergence from the canonical genetic code operating in nature. To explore alternative genetic codes, we carried out a systematic analysis of stop codon reassignments from the canonical TAG amber, TGA opal, and TAA ochre codons in assembled metagenomes from environmental and host-associated samples, single-cell genomes of uncultivated bacteria and archaea, and a collection of phage sequences

  3. A critical analysis of codon optimization in human therapeutics.

    PubMed

    Mauro, Vincent P; Chappell, Stephen A

    2014-11-01

    Codon optimization describes gene engineering approaches that use synonymous codon changes to increase protein production. Applications for codon optimization include recombinant protein drugs and nucleic acid therapies, including gene therapy, mRNA therapy, and DNA/RNA vaccines. However, recent reports indicate that codon optimization can affect protein conformation and function, increase immunogenicity, and reduce efficacy. We critically review this subject, identifying additional potential hazards including some unique to nucleic acid therapies. This analysis highlights the evolved complexity of codon usage and challenges the scientific bases for codon optimization. Consequently, codon optimization may not provide the optimal strategy for increasing protein production and may decrease the safety and efficacy of biotech therapeutics. We suggest that the use of this approach is reconsidered, particularly for in vivo applications.

  4. Starting motor

    SciTech Connect

    Tanaka, T.; Hamano, I

    1989-05-23

    This patent describes a starting motor having a housing, planetary reduction gears including an internal gear in the housing. The improvement consists of an elastic member having a first annular portion mounted in engagement with a fixed annular member of the housing and a plurality of protruding axially extending elastic portions providing a corrugated surface pressed into engagement with an end portion of the internal gear, the elastic member being sandwiched between the internal gear and the housing member, the protruding axially extending elastic portions providing resilient means which flex and incline circumferentially under turning force from the internal gear and exert reactive thrust on the internal gear elastically so that the frictional force at the abutting surfaces of the protruding portions holds the internal gear in resilient engagement with the elastic member and the resilient means acts as a buffer to absorb rotary impact force developing in the planetary reduction gears.

  5. Codon optimization of genes for efficient protein expression in mammalian cells by selection of only preferred human codons.

    PubMed

    Inouye, Satoshi; Sahara-Miura, Yuiko; Sato, Jun-ichi; Suzuki, Takahiro

    2015-05-01

    A simple design method for codon optimization of genes to express a heterologous protein in mammalian cells is described. Codon optimization was performed by choosing only codons preferentially used in humans and with over 60% GC content, and the method was named the "preferred human codon-optimized method." To test our simple rule for codon optimization, the preferred human codon-optimized genes for six proteins containing photoproteins (aequorin and clytin II) and luciferases (Gaussia luciferase, Renilla luciferase, and firefly luciferases from Photinus pyralis and Luciola cruciata) were chemically synthesized and transiently expressed in Chinese hamster ovary-K1 cells. All preferred human codon-optimized genes showed higher luminescence activity than the corresponding wild-type genes. Our simple design method could be used to improve protein expression in mammalian cells efficiently.

  6. Mammalian nonsense codons can be cis effectors of nuclear mRNA half-life.

    PubMed Central

    Belgrader, P; Cheng, J; Zhou, X; Stephenson, L S; Maquat, L E

    1994-01-01

    Frameshift and nonsense mutations within the gene for human triosephosphate isomerase (TPI) that generate a nonsense codon within the first three-fourths of the protein coding region have been found to reduce the abundance of the product mRNA that copurifies with nuclei. The cellular process and location of the nonsense codon-mediated reduction have proven difficult to elucidate for technical reasons. We show here, using electron microscopy to judge the purity of isolated nuclei, that the previously established reduction to 25% of the normal mRNA level is evident for nuclei that are free of detectable cytoplasmic contamination. Therefore, the reduction is likely to be characteristic of bona fide nuclear RNA. Fully spliced nuclear mRNA is identified by Northern (RNA) blot hybridization and a reverse transcription-PCR assay as the species that undergoes decay in experiments that used the human c-fos promoter to elicit a burst and subsequent shutoff of TPI gene transcription upon the addition of serum to serum-deprived cells. Finally, the finding that deletion of a 5' splice site of the TPI gene results predominantly but not exclusively in the removal by splicing (i.e., skipping) of the upstream exon as a part of the flanking introns has been used to demonstrate that decay is specific to those mRNA products that maintain the nonsense codon. This result, together with our previous results that implicate translation by ribosomes and charged tRNAs in the decay mechanism, indicate that nonsense codon recognition takes place after splicing and triggers decay solely in cis. The possibility that decay takes place during the process of mRNA export from the nucleus to the cytoplasm is discussed. Images PMID:7969159

  7. P53 codon 72 Arg/Pro polymorphism and glioma risk: an updated meta-analysis.

    PubMed

    He, Fang; Xia, Yi; Liu, Huafeng; Li, Jin; Wang, Chao

    2013-10-01

    P53 codon 72 Arg/Pro is a C/G variation upstream of the p53 gene on human chromosome 17p13. Many case-control studies have investigated the association between p53 codon 72 Arg/Pro polymorphism and glioma risk but provided inconsistent findings. To better understand the pathogenesis of glioma, we performed the current meta-analysis by pooling data from all available individual studies. According to the inclusion criteria, ten independent publications with 11 case-control studies were included into this meta-analysis. The pooled odds ratio (OR) with 95 % confidence interval (95 % CI) was calculated to estimate the effect of p53 codon 72 Arg/Pro variant on the development of glioma. Overall, no appreciable correlation was observed among the total studies in all gene models (ORPro allele vs. Arg allele = 1.04, 95 % CI = 0.90-1.20, P OR = 0.581; ORPro/Pro vs. Arg/Arg = 0.95, 95 % CI = 0.80-1.14, P OR = 0.614; ORPro/Arg vs. Arg/Arg = 1.01, 95 % CI = 0.79-1.29, P OR = 0.993; ORPro/Arg + Pro/Pro vs. Arg/Arg = 1.03, 95 % CI = 0.82-1.29, P OR = 0.799; ORPro/Pro vs. Arg/Arg + Pro/Arg = 1.02, 95 % CI = 0.86-1.22, P OR = 0.785). In stratified analyses by ethnicity, source of controls, and glioma subtypes, the p53 codon 72 Arg/Pro polymorphism did not alter the risk for glioma in population-based, hospital-based, astrocytoma, and oligodendroglioma studies among Caucasian. Interestingly, the Pro/Pro genotype seemed to be negatively associated with the glioma risk among patients with glioblastoma (ORPro/Pro vs. Arg/Arg = 0.68, 95 % CI = 0.48-0.95, P OR = 0.026). Our study suggests that the polymorphism of p53 codon 72 Arg/Pro may play a protective role in the development of glioblastoma. The relationship of p53 codon 72 Arg/Pro polymorphism with the susceptibility to glioma needs further estimation by more individual studies with high quality across ethnicities.

  8. eCodonOpt: a systematic computational framework for optimizing codon usage in directed evolution experiments

    PubMed Central

    Moore, Gregory L.; Maranas, Costas D.

    2002-01-01

    We present a systematic computational framework, eCodonOpt, for designing parental DNA sequences for directed evolution experiments through codon usage optimization. Given a set of homologous parental proteins to be recombined at the DNA level, the optimal DNA sequences encoding these proteins are sought for a given diversity objective. We find that the free energy of annealing between the recombining DNA sequences is a much better descriptor of the extent of crossover formation than sequence identity. Three different diversity targets are investigated for the DNA shuffling protocol to showcase the utility of the eCodonOpt framework: (i) maximizing the average number of crossovers per recombined sequence; (ii) minimizing bias in family DNA shuffling so that each of the parental sequence pair contributes a similar number of crossovers to the library; and (iii) maximizing the relative frequency of crossovers in specific structural regions. Each one of these design challenges is formulated as a constrained optimization problem that utilizes 0–1 binary variables as on/off switches to model the selection of different codon choices for each residue position. Computational results suggest that many-fold improvements in the crossover frequency, location and specificity are possible, providing valuable insights for the engineering of directed evolution protocols. PMID:12034828

  9. A common periodic table of codons and amino acids.

    PubMed

    Biro, J C; Benyó, B; Sansom, C; Szlávecz, A; Fördös, G; Micsik, T; Benyó, Z

    2003-06-27

    A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.

  10. Codon reassignment and amino acid composition in hemichordate mitochondria

    PubMed Central

    Castresana, Jose; Feldmaier-Fuchs, Gertraud; Pääbo, Svante

    1998-01-01

    In the mitochondrial genome of the hemichordate Balanoglossus carnosus, the codon AAA, which is assigned to lysine in most metazoans but to asparagine in echinoderms, is absent. Furthermore, the lysine tRNA gene carries an anticodon substitution that renders its gene product unable to decode AAA codons, whereas the asparagine tRNA gene has not changed to encode a tRNA with the ability to recognize AAA codons. Thus, the hemichordate mitochondrial genome can be regarded as an intermediate in the process of reassignment of mitochondrial AAA codons, where most metazoans represent the ancestral situation and the echinoderms the derived situation. This lends support to the codon capture hypothesis. We also show that the reassignment of the AAA codon is associated with a reduction in the relative abundance of lysine residues in mitochondrial proteins. PMID:9520430

  11. The HCV IRES pseudoknot positions the initiation codon on the 40S ribosomal subunit.

    PubMed

    Berry, Katherine E; Waghray, Shruti; Doudna, Jennifer A

    2010-08-01

    The hepatitis C virus (HCV) genomic RNA contains an internal ribosome entry site (IRES) in its 5' untranslated region, the structure of which is essential for viral protein translation. The IRES includes a predicted pseudoknot interaction near the AUG start codon, but the results of previous studies of its structure have been conflicting. Using mutational analysis coupled with activity and functional assays, we verified the importance of pseudoknot base pairings for IRES-mediated translation and, using 35 mutants, conducted a comprehensive study of the structural tolerance and functional contributions of the pseudoknot. Ribosomal toeprinting experiments show that the entirety of the pseudoknot element positions the initiation codon in the mRNA binding cleft of the 40S ribosomal subunit. Optimal spacing between the pseudoknot and the start site AUG resembles that between the Shine-Dalgarno sequence and the initiation codon in bacterial mRNAs. Finally, we validated the HCV IRES pseudoknot as a potential drug target using antisense 2'-OMe oligonucleotides.

  12. 19 CFR 351.523 - Upstream subsidies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DUTIES Identification and Measurement of Countervailable Subsidies § 351.523 Upstream subsidies. (a... countervailable subsidy rate on the input product, multiplied by the proportion of the total production costs of...—(1) Presumptions. In evaluating whether an upstream subsidy has a significant effect on the cost...

  13. Upstream Waves and Particles at the Moon

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Halekas, J. S.

    2016-02-01

    This chapter presents an up-to-date catalog of Moon-related particle populations and lunar upstream waves obtained from in situ measurements at low (<˜100 km) and high altitudes, aimed at organizing and clarifying the currently available information on this complex region, where multiple categories of waves and particles coexist. It then briefly outlines the observed properties of a variety of classes of lunar upstream waves, as well as their generation mechanisms currently proposed, in association with the lunar upstream particle distributions. The lunar upstream region magnetically connected to the Moon and its wake, the fore-moon, represents a remarkably rich zoo of different classes of waves and different types of particles. Although recent observations have substantially enhanced our knowledge by revealing a number of new categories of upstream particles and waves at the Moon, many fundamental questions remain unanswered, and these are outlined in the chapter.

  14. Partial attenuation of Marek's disease virus by manipulation of Di-codon bias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All species studied to date demonstrate a preference for certain codons over other synonymous codons (codon bias), a preference which is also observed for pairs of codons (di-codon bias). Previous studies using poliovirus and influenza virus as models have demonstrated the ability to cause attenuat...

  15. Two new beta0-thalassemic mutations: a deletion (-CC) at codon 142 or overlapping codons 142-143, and an insertion (+T) at codon 45 or overlapping codons 44-45/45-46 of the beta-globin gene.

    PubMed

    Lacan, Philippe; Aubry, Martine; Couprie, Nicole; Francina, Alain

    2007-01-01

    We report here two new beta(0)-thalassemic mutations. In the first case, a deletion of two nucleotides (-CC) at codon 142 was found in a French Caucasian woman. In the second case, an insertion of a single nucleotide (+T) at codon 45 was found in a Turkish girl. In both cases, no dominant thalassemia-like phenotype was observed.

  16. Protein Synthesis in E. coli: Dependence of Codon-Specific Elongation on tRNA Concentration and Codon Usage.

    PubMed

    Rudorf, Sophia; Lipowsky, Reinhard

    2015-01-01

    To synthesize a protein, a ribosome moves along a messenger RNA (mRNA), reads it codon by codon, and takes up the corresponding ternary complexes which consist of aminoacylated transfer RNAs (aa-tRNAs), elongation factor Tu (EF-Tu), and GTP. During this process of translation elongation, the ribosome proceeds with a codon-specific rate. Here, we present a general theoretical framework to calculate codon-specific elongation rates and error frequencies based on tRNA concentrations and codon usages. Our theory takes three important aspects of in-vivo translation elongation into account. First, non-cognate, near-cognate and cognate ternary complexes compete for the binding sites on the ribosomes. Second, the corresponding binding rates are determined by the concentrations of free ternary complexes, which must be distinguished from the total tRNA concentrations as measured in vivo. Third, for each tRNA species, the difference between total tRNA and ternary complex concentration depends on the codon usages of the corresponding cognate and near-cognate codons. Furthermore, we apply our theory to two alternative pathways for tRNA release from the ribosomal E site and show how the mechanism of tRNA release influences the concentrations of free ternary complexes and thus the codon-specific elongation rates. Using a recently introduced method to determine kinetic rates of in-vivo translation from in-vitro data, we compute elongation rates for all codons in Escherichia coli. We show that for some tRNA species only a few tRNA molecules are part of ternary complexes and, thus, available for the translating ribosomes. In addition, we find that codon-specific elongation rates strongly depend on the overall codon usage in the cell, which could be altered experimentally by overexpression of individual genes.

  17. Structural basis for stop codon recognition in eukaryotes.

    PubMed

    Brown, Alan; Shao, Sichen; Murray, Jason; Hegde, Ramanujan S; Ramakrishnan, V

    2015-08-27

    Termination of protein synthesis occurs when a translating ribosome encounters one of three universally conserved stop codons: UAA, UAG or UGA. Release factors recognize stop codons in the ribosomal A-site to mediate release of the nascent chain and recycling of the ribosome. Bacteria decode stop codons using two separate release factors with differing specificities for the second and third bases. By contrast, eukaryotes rely on an evolutionarily unrelated omnipotent release factor (eRF1) to recognize all three stop codons. The molecular basis of eRF1 discrimination for stop codons over sense codons is not known. Here we present cryo-electron microscopy (cryo-EM) structures at 3.5-3.8 Å resolution of mammalian ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A-site. Binding of eRF1 flips nucleotide A1825 of 18S ribosomal RNA so that it stacks on the second and third stop codon bases. This configuration pulls the fourth position base into the A-site, where it is stabilized by stacking against G626 of 18S rRNA. Thus, eRF1 exploits two rRNA nucleotides also used during transfer RNA selection to drive messenger RNA compaction. In this compacted mRNA conformation, stop codons are favoured by a hydrogen-bonding network formed between rRNA and essential eRF1 residues that constrains the identity of the bases. These results provide a molecular framework for eukaryotic stop codon recognition and have implications for future studies on the mechanisms of canonical and premature translation termination.

  18. Structural basis for stop codon recognition in eukaryotes

    PubMed Central

    Murray, Jason; Hegde, Ramanujan S.; Ramakrishnan, V.

    2015-01-01

    Termination of protein synthesis occurs when a translating ribosome encounters one of three universally conserved stop codons: UGA, UAA, or UAG. Release factors recognise stop codons in the ribosomal A site to mediate release of the nascent chain and recycling of the ribosome. Bacteria decode stop codons using two separate release factors with differing specificities for the second and third bases1. By contrast, eukaryotes rely on an evolutionarily unrelated omnipotent release factor (eRF1) to recognise all three stop codons2. The molecular basis of eRF1 discrimination for stop codons over sense codons is not known. Here, we present electron cryo-microscopy (cryo-EM) structures at 3.5 – 3.8 Å resolution of mammalian ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A site. Binding of eRF1 flips nucleotide A1825 of 18S rRNA so that it stacks on the second and third stop codon bases. This configuration pulls the fourth position base into the A site, where it is stabilised by stacking against G626 of 18S rRNA. Thus, eRF1 exploits two rRNA nucleotides also used during tRNA selection to drive mRNA compaction. Stop codons are favoured in this compacted mRNA conformation by a hydrogen-bonding network with essential eRF1 residues that constrains the identity of the bases. These results provide a molecular framework for eukaryotic stop codon recognition and have implications for future studies on the mechanisms of canonical and premature translation termination3,4. PMID:26245381

  19. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype.

    PubMed

    Occhi, Gianluca; Regazzo, Daniela; Trivellin, Giampaolo; Boaretto, Francesca; Ciato, Denis; Bobisse, Sara; Ferasin, Sergio; Cetani, Filomena; Pardi, Elena; Korbonits, Márta; Pellegata, Natalia S; Sidarovich, Viktoryia; Quattrone, Alessandro; Opocher, Giuseppe; Mantero, Franco; Scaroni, Carla

    2013-03-01

    The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27(KIP1), an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27(KIP1) expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome characterized by varying combinations of tumors affecting at least two endocrine organs. In this study we identified a 4-bp deletion in a highly conserved regulatory upstream ORF (uORF) in the 5'UTR of the CDKN1B gene in a patient with a pituitary adenoma and a well-differentiated pancreatic neoplasm. This deletion causes the shift of the uORF termination codon with the consequent lengthening of the uORF-encoded peptide and the drastic shortening of the intercistronic space. Our data on the immunohistochemical analysis of the patient's pancreatic lesion, functional studies based on dual-luciferase assays, site-directed mutagenesis, and on polysome profiling show a negative influence of this deletion on the translation reinitiation at the CDKN1B starting site, with a consequent reduction in p27(KIP1) expression. Our findings demonstrate that, in addition to the previously described mechanisms leading to reduced p27(KIP1) activity, such as degradation via the ubiquitin/proteasome pathway or non-covalent sequestration, p27(KIP1) activity can also be modulated by an uORF and mutations affecting uORF could change p27(KIP1) expression. This study adds the CDKN1B gene to the short list of genes for which mutations that either create, delete, or severely modify their regulatory uORFs have been associated with human diseases.

  20. A Novel Mutation in the Upstream Open Reading Frame of the CDKN1B Gene Causes a MEN4 Phenotype

    PubMed Central

    Occhi, Gianluca; Regazzo, Daniela; Trivellin, Giampaolo; Boaretto, Francesca; Ciato, Denis; Bobisse, Sara; Ferasin, Sergio; Cetani, Filomena; Pardi, Elena; Korbonits, Márta; Pellegata, Natalia S.; Sidarovich, Viktoryia; Quattrone, Alessandro; Opocher, Giuseppe; Mantero, Franco; Scaroni, Carla

    2013-01-01

    The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27KIP1, an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27KIP1 expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome characterized by varying combinations of tumors affecting at least two endocrine organs. In this study we identified a 4-bp deletion in a highly conserved regulatory upstream ORF (uORF) in the 5′UTR of the CDKN1B gene in a patient with a pituitary adenoma and a well-differentiated pancreatic neoplasm. This deletion causes the shift of the uORF termination codon with the consequent lengthening of the uORF–encoded peptide and the drastic shortening of the intercistronic space. Our data on the immunohistochemical analysis of the patient's pancreatic lesion, functional studies based on dual-luciferase assays, site-directed mutagenesis, and on polysome profiling show a negative influence of this deletion on the translation reinitiation at the CDKN1B starting site, with a consequent reduction in p27KIP1 expression. Our findings demonstrate that, in addition to the previously described mechanisms leading to reduced p27KIP1 activity, such as degradation via the ubiquitin/proteasome pathway or non-covalent sequestration, p27KIP1 activity can also be modulated by an uORF and mutations affecting uORF could change p27KIP1 expression. This study adds the CDKN1B gene to the short list of genes for which mutations that either create, delete, or severely modify their regulatory uORFs have been associated with human diseases. PMID:23555276

  1. DNA G+C content of the third codon position and codon usage biases of human genes.

    PubMed

    Sueoka, N; Kawanishi, Y

    2000-12-30

    The human genome, as in other eukaryotes, has a wide heterogeneity in the DNA base composition. The evolutionary basis for this heterogeneity has been unknown. A previous study of the human genome (846 genes analyzed) has shown that, in the major range of the G+C content in the third codon position (0.25-0.75), biases from the Parity Rule 2 (PR2) among the synonymous codons of the four-codon amino acids are similar except in the highest G+C range (Sueoka, N., 1999. Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position. Gene 238, 53-58.). PR2 is an intra-strand rule where A=T and G=C are expected when there are no biases between the two complementary strands of DNA in mutation and selection rates (substitution rates). In this study, 14,026 human genes were analyzed. In addition, the third codon positions of two-codon amino acids were analyzed. New results show the following: (a) The G+C contents of the third codon position of human genes are scattered in the G+C range of 0.22-0.96 in the third codon position. (b) The PR2 biases are similar in the range of 0.25-0.75, whereas, in the high G+C range (0.75-0.96; 13% of the genes), the PR2-bias fingerprints are different from those of the major range. (c) Unlike the PR2 biases, the G+C contents of the third codon position for both four-codon and two-codon amino acids are all correlated almost perfectly with the G+C content of the third codon position over the total G+C ranges. These results support the notion that the directional mutation pressure, rather than the directional selection pressure, is mainly responsible for the heterogeneity of the G+C content of the third codon position.

  2. A thermodynamic theory of codon bias in viral genes.

    PubMed

    Rowe, G W; Trainor, L E

    1983-03-21

    The relationship between degeneracy in the genetic code and the occurrence of a strong codon bias is examined, with particular reference to a group of viral genomes. The present paper shows how codon bias may have been imposed by thermodynamic considerations at the time the primitive DNA first formed in the primordial soup. Using a four-state Ising-like model with stacking interactions between successive base pairs, we show how primeval periodic DNA polymers could have arisen the remnants of which are still observed in codon biases today.

  3. Damping and spectral formation of upstream whistlers

    SciTech Connect

    Orlowski, D.S.; Russell, C.T.; Krauss-Varban, D.

    1995-09-01

    Previous studies have indicated that damping rates of upstream whistlers strongly depend on the details of the electron distribution function. Moreover, detailed analysis of Doppler shift and the whistler dispersion relation indicate that upstream whistlers propagate obliquely in a finite band of frequencies. In this paper we present results of a kinetic calculation of damping lengths of wideband whistlers using the sum of seven drifting bi-Maxwellian electron distributions as a best fit to the ISEE 1 electron data. For two cases, when upstream whistlers are observed, convective damping lengths derived from ISEE magnetic field and ephemeris data are compared with theoretical results. We find that the calculated convective damping lengths are consistent with the data and that upstream whistlers remain marginally stable. We also show that the slope of plasma frame spectra of upstream whistlers, obtained by direct fitting of the observed spectra, is between 5 and 7. The overall spectral, wave, and particle characteristics, proximity to the shock, as well as propagation and damping properties indicated that these waves cannot be generated locally. Instead, the observed upstream whistlers arise in the shock ramp, most likely by a variety of cross-field drift and/or anisotropy driven instabilities. 57 refs., 11 figs.

  4. How tRNAs dictate nuclear codon reassignments: Only a few can capture non-cognate codons.

    PubMed

    Kollmar, Martin; Mühlhausen, Stefanie

    2017-03-04

    mRNA decoding by tRNAs and tRNA charging by aminoacyl-tRNA synthetases are biochemically separated processes that nevertheless in general involve the same nucleotides. The combination of charging and decoding determines the genetic code. Codon reassignment happens when a differently charged tRNA replaces a former cognate tRNA. The recent discovery of the polyphyly of the yeast CUG sense codon reassignment challenged previous mechanistic considerations and led to the proposal of the so-called tRNA loss driven codon reassignment hypothesis. Accordingly, codon capture is caused by loss of a tRNA or by mutations in the translation termination factor, subsequent reduction of the codon frequency through reduced translation fidelity and final appearance of a new cognate tRNA. Critical for codon capture are sequence and structure of the new tRNA, which must be compatible with recognition regions of aminoacyl-tRNA synthetases. The proposed hypothesis applies to all reported nuclear and organellar codon reassignments.

  5. Human alpha and beta papillomaviruses use different synonymous codon profiles.

    PubMed

    Cladel, Nancy M; Bertotto, Alex; Christensen, Neil D

    2010-06-01

    Human papillomaviruses use rare codons relative to their hosts. It has been theorized that this is a mechanism to allow the virus to escape immune surveillance. In the present study, we examined the codings of four major genes of 21 human alpha (mucosatropic) viruses and 16 human beta (cutaneous-tropic) viruses. We compared the codon usage of different genes from a given papillomavirus and also the same genes from different papillomaviruses. Our data showed that codon usage was not always uniform between two genes of a given papillomavirus or between the same genes of papillomaviruses from different genera. We speculate as to why this might be and conclude that codon usage in the papillomaviruses may not only play a role in facilitating escape from immune surveillance but may also underlie some of the unanswered questions in the papillomavirus field.

  6. The Effect of Codon Mismatch on the Protein Translation System.

    PubMed

    Zhang, Dinglin; Chen, Danfeng; Cao, Liaoran; Li, Guohui; Cheng, Hong

    2016-01-01

    Incorrect protein translation, caused by codon mismatch, is an important problem of living cells. In this work, a computational model was introduced to quantify the effects of codon mismatch and the model was used to study the protein translation of Saccharomyces cerevisiae. According to simulation results, the probability of codon mismatch will increase when the supply of amino acids is unbalanced, and the longer is the codon sequence, the larger is the probability for incorrect translation to occur, making the synthesis of long peptide chain difficult. By comparing to simulation results without codon mismatch effects taken into account, the fraction of mRNAs with bound ribosome decrease faster along the mRNAs, making the 5' ramp phenomenon more obvious. It was also found in our work that the premature mechanism resulted from codon mismatch can reduce the proportion of incorrect translation when the amino acid supply is extremely unbalanced, which is one possible source of high fidelity protein synthesis after peptidyl transfer.

  7. Properties and determinants of codon decoding time distributions

    PubMed Central

    2014-01-01

    Background Codon decoding time is a fundamental property of mRNA translation believed to affect the abundance, function, and properties of proteins. Recently, a novel experimental technology--ribosome profiling--was developed to measure the density, and thus the speed, of ribosomes at codon resolution. Specifically, this method is based on next-generation sequencing, which theoretically can provide footprint counts that correspond to the probability of observing a ribosome in this position for each nucleotide in each transcript. Results In this study, we report for the first time various novel properties of the distribution of codon footprint counts in five organisms, based on large-scale analysis of ribosomal profiling data. We show that codons have distinctive footprint count distributions. These tend to be preserved along the inner part of the ORF, but differ at the 5' and 3' ends of the ORF, suggesting that the translation-elongation stage actually includes three biophysical sub-steps. In addition, we study various basic properties of the codon footprint count distributions and show that some of them correlate with the abundance of the tRNA molecule types recognizing them. Conclusions Our approach emphasizes the advantages of analyzing ribosome profiling and similar types of data via a comparative genomic codon-distribution-centric view. Thus, our methods can be used in future studies related to translation and even transcription elongation. PMID:25572668

  8. Codon Usage Bias and Determining Forces in Taenia solium Genome.

    PubMed

    Yang, Xing; Ma, Xusheng; Luo, Xuenong; Ling, Houjun; Zhang, Xichen; Cai, Xuepeng

    2015-12-01

    The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome.

  9. Role of premature stop codons in bacterial evolution.

    PubMed

    Wong, Tit-Yee; Fernandes, Sanjit; Sankhon, Naby; Leong, Patrick P; Kuo, Jimmy; Liu, Jong-Kang

    2008-10-01

    When the stop codons TGA, TAA, and TAG are found in the second and third reading frames of a protein-encoding gene, they are considered premature stop codons (PSC). Deinococcus radiodurans disproportionately favored TGA more than the other two triplets as a PSC. The TGA triplet was also found more often in noncoding regions and as a stop codon, though the bias was less pronounced. We investigated this phenomenon in 72 bacterial species with widely differing chromosomal GC contents. Although TGA and TAG were compositionally similar, we found a great variation in use of TGA but a very limited range of use of TAG. The frequency of use of TGA in the gene sequences generally increased with the GC content of the chromosome, while the frequency of use of TAG, like that of TAA, was inversely proportional to the GC content of the chromosome. The patterns of use of TAA, TGA and TAG as real stop codons were less biased and less influenced by the GC content of the chromosome. Bacteria with higher chromosomal GC contents often contained fewer PSC trimers in their genes. Phylogenetically related bacteria often exhibited similar PSC ratios. In addition, metabolically versatile bacteria have significantly fewer PSC trimers in their genes. The bias toward TGA but against TAG as a PSC could not be explained either by the preferential usage of specific codons or by the GC contents of individual chromosomes. We proposed that the quantity and the quality of the PSC in the genome might be important in bacterial evolution.

  10. Codon Preference Optimization Increases Prokaryotic Cystatin C Expression

    PubMed Central

    Wang, Qing; Mei, Cui; Zhen, Honghua; Zhu, Jess

    2012-01-01

    Gene expression is closely related to optimal vector-host system pairing in many prokaryotes. Redesign of the human cystatin C (cysC) gene using the preferred codons of the prokaryotic system may significantly increase cysC expression in Escherichia coli (E. coli). Specifically, cysC expression may be increased by removing unstable sequences and optimizing GC content. According to E. coli expression system codon preferences, the gene sequence was optimized while the amino acid sequence was maintained. The codon-optimized cysC (co-cysC) and wild-type cysC (wt-cysC) were expressed by cloning the genes into a pET-30a plasmid, thus transforming the recombinant plasmid into E. coli BL21. Before and after the optimization process, the prokaryotic expression vector and host bacteria were examined for protein expression and biological activation of CysC. The recombinant proteins in the lysate of the transformed bacteria were purified using Ni2+-NTA resin. Recombinant protein expression increased from 10% to 46% based on total protein expression after codon optimization. Recombinant CysC purity was above 95%. The significant increase in cysC expression in E. coli expression produced by codon optimization techniques may be applicable to commercial production systems. PMID:23093857

  11. Genome-Wide Analysis of Codon Usage Bias in Epichloë festucae

    PubMed Central

    Li, Xiuzhang; Song, Hui; Kuang, Yu; Chen, Shuihong; Tian, Pei; Li, Chunjie; Nan, Zhibiao

    2016-01-01

    Analysis of codon usage data has both practical and theoretical applications in understanding the basics of molecular biology. Differences in codon usage patterns among genes reflect variations in local base compositional biases and the intensity of natural selection. Recently, there have been several reports related to codon usage in fungi, but little is known about codon usage bias in Epichloë endophytes. The present study aimed to assess codon usage patterns and biases in 4870 sequences from Epichloë festucae, which may be helpful in revealing the constraint factors such as mutation or selection pressure and improving the bioreactor on the cloning, expression, and characterization of some special genes. The GC content with 56.41% is higher than the AT content (43.59%) in E. festucae. The results of neutrality and effective number of codons plot analyses showed that both mutational bias and natural selection play roles in shaping codon usage in this species. We found that gene length is strongly correlated with codon usage and may contribute to the codon usage patterns observed in genes. Nucleotide composition and gene expression levels also shape codon usage bias in E. festucae. E. festucae exhibits codon usage bias based on the relative synonymous codon usage (RSCU) values of 61 sense codons, with 25 codons showing an RSCU larger than 1. In addition, we identified 27 optimal codons that end in a G or C. PMID:27428961

  12. Clustering of low usage codons in the translation initiation region of hepatitis C virus.

    PubMed

    Zhou, Jian-hua; Su, Jun-hong; Chen, Hao-tai; Zhang, Jie; Ma, Li-na; Ding, Yao-zhong; Stipkovits, Laszlo; Szathmary, Susan; Pejsak, Zygmunt; Liu, Yong-sheng

    2013-08-01

    The adaptation of the overall codon usage pattern of hepatitis C virus (HCV) to that of human is estimated by the synonymous codon usage value (RSCU). The synonymous codon usage biases for the translation initiation region (TIR) of this virus are also analyzed by calculation of usage fluctuation of each synonymous codon along the TIR (the first 30 codon sites of the whole coding sequence of HCV). As for the overall codon usage pattern of HCV, this virus has a significant tendency to delete the codons with CpG or TpA dinucleotides. Turning to the adaptation of the overall codon usage of HCV to that of human, over half part of codons has a similar usage pattern between this virus and human, suggesting that the host cellular environment of the overall codon usage pattern influences the formation of codon usage for HCV. In addition, there is no obvious phenomenon that the codons with relatively low energy tend to be highly selected in the TIR of HCV, suggesting that the synonymous codon usage patterns for the TIR of HCV might be not affected by the secondary structure of nucleotide sequence, however, the formation of synonymous codons usage in the TIR of HCV is influenced by the overall codon usage patterns of human to some degree.

  13. A model for codon position bias in RNA editing

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf; Liu, Tsunglin

    2006-03-01

    RNA editing can be crucial for the expression of genetic information via inserting, deleting, or substituting a few nucleotides at specific positions in an RNA sequence. Within coding regions in an RNA sequence, editing usually occurs with a certain bias in choosing the positions of the editing sites. In the mitochondrial genes of Physarum polycephalum, many more editing events have been observed at the third codon position than at the first and second, while in some plant mitochondria the second codon position dominates. Here we propose an evolutionary model that explains this bias as the basis of selection at the protein level. The model predicts a distribution of the three positions rather close to the experimental observation in Physarum. This suggests that the codon position bias in Physarum is mainly a consequence of selection at the protein level.

  14. Model for Codon Position Bias in RNA Editing

    NASA Astrophysics Data System (ADS)

    Liu, Tsunglin; Bundschuh, Ralf

    2005-08-01

    RNA editing can be crucial for the expression of genetic information via inserting, deleting, or substituting a few nucleotides at specific positions in an RNA sequence. Within coding regions in an RNA sequence, editing usually occurs with a certain bias in choosing the positions of the editing sites. In the mitochondrial genes of Physarum polycephalum, many more editing events have been observed at the third codon position than at the first and second, while in some plant mitochondria the second codon position dominates. Here we propose an evolutionary model that explains this bias as the basis of selection at the protein level. The model predicts a distribution of the three positions rather close to the experimental observation in Physarum. This suggests that the codon position bias in Physarum is mainly a consequence of selection at the protein level.

  15. Aeromonas phages encode tRNAs for their overused codons.

    PubMed

    Prabhakaran, Ramanandan; Chithambaram, Shivapriya; Xia, Xuhua

    2014-01-01

    The GC-rich bacterial species, Aeromonas salmonicida, is parasitised by both GC-rich phages (Aeromonas phages - phiAS7 and vB_AsaM-56) and GC-poor phages (Aeromonas phages - 25, 31, 44RR2.8t, 65, Aes508, phiAS4 and phiAS5). Both the GC-rich Aeromonas phage phiAS7 and Aeromonas phage vB_AsaM-56 have nearly identical codon usage bias as their host. While all the remaining seven GC-poor Aeromonas phages differ dramatically in codon usage from their GC-rich host. Here, we investigated whether tRNA encoded in the genome of Aeromonas phages facilitate the translation of phage proteins. We found that tRNAs encoded in the phage genome correspond to synonymous codons overused in the phage genes but not in the host genes.

  16. Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons

    NASA Astrophysics Data System (ADS)

    Lind, Christoffer; Sund, Johan; Åqvist, Johan

    2013-12-01

    A key feature of mitochondrial translation is the reduced number of transfer RNAs and reassignment of codons. For human mitochondria, a major unresolved problem is how the set of stop codons are decoded by the release factors mtRF1a and mtRF1. Here we present three-dimensional structural models of human mtRF1a and mtRF1 based on their homology to bacterial RF1 in the codon recognition domain, and the strong conservation between mitochondrial and bacterial ribosomal RNA in the decoding region. Sequence changes in the less homologous mtRF1 appear to be correlated with specific features of the mitochondrial rRNA. Extensive computer simulations of the complexes with the ribosomal decoding site show that both mitochondrial factors have similar specificities and that neither reads the putative vertebrate stop codons AGA and AGG. Instead, we present a structural model for a mechanism by which the ICT1 protein causes termination by sensing the presence of these codons in the A-site of stalled ribosomes.

  17. A detailed analysis of codon usage patterns and influencing factors in Zika virus.

    PubMed

    Singh, Niraj K; Tyagi, Anuj

    2017-03-21

    Recent outbreaks of Zika virus (ZIKV) in Africa, Latin America, Europe, and Southeast Asia have resulted in serious health concerns. To understand more about evolution and transmission of ZIKV, detailed codon usage analysis was performed for all available strains. A high effective number of codons (ENC) value indicated the presence of low codon usage bias in ZIKV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations between nucleotide compositions at third codon positions and ENCs. Correlation analysis between Gravy values, Aroma values and nucleotide compositions at third codon positions also indicated some influence of natural selection. However, the low codon adaptation index (CAI) value of ZIKV with reference to human and mosquito indicated poor adaptation of ZIKV codon usage towards its hosts, signifying that natural selection has a weaker influence than mutational pressure. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent.

  18. Upstream Design and 1D-CAE

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroyuki

    Recently, engineering design environment of Japan is changing variously. Manufacturing companies are being challenged to design and bring out products that meet the diverse demands of customers and are competitive against those produced by rising countries(1). In order to keep and strengthen the competitiveness of Japanese companies, it is necessary to create new added values as well as conventional ones. It is well known that design at the early stages has a great influence on the final design solution. Therefore, design support tools for the upstream design is necessary for creating new added values. We have established a research society for 1D-CAE (1 Dimensional Computer Aided Engineering)(2), which is a general term for idea, methodology and tools applicable for the upstream design support, and discuss the concept and definition of 1D-CAE. This paper reports our discussion about 1D-CAE.

  19. Admissible upstream conditions for slender compressible vortices

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Krause, E.; Menne, S.

    1986-01-01

    The influence of the compressibility on the flow in slender vortices is being studied. The dependence of the breakdown of the slender-vortex approximation on the upstream conditions is demonstrated for various Reynolds numbers and Mach numbers. Compatibility conditions, which have to be satisfied if the vortex is to remain slender, are discussed in detail. The general discussions are supplemented by several sample calculations.

  20. Measuring and Detecting Molecular Adaptation in Codon Usage Against Nonsense Errors During Protein Translation

    PubMed Central

    Gilchrist, Michael A.; Shah, Premal; Zaretzki, Russell

    2009-01-01

    Codon usage bias (CUB) has been documented across a wide range of taxa and is the subject of numerous studies. While most explanations of CUB invoke some type of natural selection, most measures of CUB adaptation are heuristically defined. In contrast, we present a novel and mechanistic method for defining and contextualizing CUB adaptation to reduce the cost of nonsense errors during protein translation. Using a model of protein translation, we develop a general approach for measuring the protein production cost in the face of nonsense errors of a given allele as well as the mean and variance of these costs across its coding synonyms. We then use these results to define the nonsense error adaptation index (NAI) of the allele or a contiguous subset thereof. Conceptually, the NAI value of an allele is a relative measure of its elevation on a specific and well-defined adaptive landscape. To illustrate its utility, we calculate NAI values for the entire coding sequence and across a set of nonoverlapping windows for each gene in the Saccharomyces cerevisiae S288c genome. Our results provide clear evidence of adaptation to reduce the cost of nonsense errors and increasing adaptation with codon position and expression. The magnitude and nature of this adaptation are also largely consistent with simulation results in which nonsense errors are the only selective force driving CUB evolution. Because NAI is derived from mechanistic models, it is both easier to interpret and more amenable to future refinement than other commonly used measures of codon bias. Further, our approach can also be used as a starting point for developing other mechanistically derived measures of adaptation such as for translational accuracy. PMID:19822731

  1. Sliding of a 43S ribosomal complex from the recognized AUG codon triggered by a delay in eIF2-bound GTP hydrolysis

    PubMed Central

    Terenin, Ilya M.; Akulich, Kseniya A.; Andreev, Dmitry E.; Polyanskaya, Sofya A.; Shatsky, Ivan N.; Dmitriev, Sergey E.

    2016-01-01

    During eukaryotic translation initiation, 43S ribosomal complex scans mRNA leader unless an AUG codon in an appropriate context is found. Establishing the stable codon–anticodon base-pairing traps the ribosome on the initiator codon and triggers structural rearrangements, which lead to Pi release from the eIF2-bound GTP. It is generally accepted that AUG recognition by the scanning 43S complex sets the final point in the process of start codon selection, while latter stages do not contribute to this process. Here we use translation reconstitution approach and kinetic toe-printing assay to show that after the 48S complex is formed on an AUG codon, in case GTP hydrolysis is impaired, the ribosomal subunit is capable to resume scanning and slides downstream to the next AUG. In contrast to leaky scanning, this sliding is not limited to AUGs in poor nucleotide contexts and occurs after a relatively long pause at the recognized AUG. Thus, recognition of an AUG per se does not inevitably lead to this codon being selected for initiation of protein synthesis. Instead, it is eIF5-induced GTP hydrolysis and Pi release that irreversibly trap the 48S complex, and this complex is further stabilized by eIF5B and 60S joining. PMID:26717981

  2. Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae

    PubMed Central

    Williams, I.; Richardson, J.; Starkey, A.; Stansfield, I.

    2004-01-01

    In-frame stop codons normally signal termination during mRNA translation, but they can be read as ‘sense’ (readthrough) depending on their context, comprising the 6 nt preceding and following the stop codon. To identify novel contexts directing readthrough, under-represented 5′ and 3′ stop codon contexts from Saccharomyces cerevisiae were identified by genome-wide survey in silico. In contrast with the nucleotide bias 3′ of the stop codon, codon bias in the two codon positions 5′ of the termination codon showed no correlation with known effects on stop codon readthrough. However, individually, poor 5′ and 3′ context elements were equally as effective in promoting stop codon readthrough in vivo, readthrough which in both cases responded identically to changes in release factor concentration. A novel method analysing specific nucleotide combinations in the 3′ context region revealed positions +1,2,3,5 and +1,2,3,6 after the stop codon were most predictive of termination efficiency. Downstream of yeast open reading frames (ORFs), further in-frame stop codons were significantly over-represented at the +1, +2 and +3 codon positions after the ORF, acting to limit readthrough. Thus selection against stop codon readthrough is a dominant force acting on 3′, but not on 5′, nucleotides, with detectable selection on nucleotides as far downstream as +6 nucleotides. The approaches described can be employed to define potential readthrough contexts for any genome. PMID:15602002

  3. Different sequence signatures in the upstream regions of plant and animal tRNA genes shape distinct modes of regulation.

    PubMed

    Zhang, Gong; Lukoszek, Radoslaw; Mueller-Roeber, Bernd; Ignatova, Zoya

    2011-04-01

    In eukaryotes, the transcription of tRNA genes is initiated by the concerted action of transcription factors IIIC (TFIIIC) and IIIB (TFIIIB) which direct the recruitment of polymerase III. While TFIIIC recognizes highly conserved, intragenic promoter elements, TFIIIB binds to the non-coding 5'-upstream regions of the tRNA genes. Using a systematic bioinformatic analysis of 11 multicellular eukaryotic genomes we identified a highly conserved TATA motif followed by a CAA-motif in the tRNA upstream regions of all plant genomes. Strikingly, the 5'-flanking tRNA regions of the animal genomes are highly heterogeneous and lack a common conserved sequence signature. Interestingly, in the animal genomes the tRNA species that read the same codon share conserved motifs in their upstream regions. Deep-sequencing analysis of 16 human tissues revealed multiple splicing variants of two of the TFIIIB subunits, Bdp1 and Brf1, with tissue-specific expression patterns. These multiple forms most likely modulate the TFIIIB-DNA interactions and explain the lack of a uniform signature motif in the tRNA upstream regions of animal genomes. The anticodon-dependent 5'-flanking motifs provide a possible mechanism for independent regulation of the tRNA transcription in various human tissues.

  4. The Head Start Debates

    ERIC Educational Resources Information Center

    Zigler, Edward, Ed.; Styfco, Sally J., Ed.

    2004-01-01

    The future of Head Start depends on how well people learn from and apply the lessons from its past. That's why everyone involved in early education needs this timely, forward-thinking book from the leader of Head Start. The first book to capture the Head Start debates in all their complexity and diversity, this landmark volume brings together the…

  5. Head Start Automation Manual.

    ERIC Educational Resources Information Center

    Maryland Univ., College Park. Univ. Coll.

    The task for the National Data Management Project is to share technological capabilities with the Head Start Community in order to implement improved services for children and families involved in Head Start. Many Head Start programs have incorporated technology into their programs, including word processing, database management systems,…

  6. Upstream waves at Mars: Phobos observations

    SciTech Connect

    Russell, C.T.; Luhmann, J.G. ); Schwingenschuh, K.; Riedler, W. ); Yeroshenko, Ye. )

    1990-05-01

    The region upstream from the Mars subsolar bow shock is surveyed for the presence of MHD wave phenomena using the high temporal resolution data from the MAGMA magnetometer. Strong turbulence is observed when the magnetic field is connected to the Mars bow shock in such a way as to allow diffuse ions to reach the spacecraft. On 2 occasions this turbulence occurred upon crossing the Phobos orbit. Also weak, {minus}0.15 nT, waves are observed at the proton gyro frequency. These waves are left-hand elliptically polarized and may be associated with the pick-up of protons from the Mars hydrogen exosphere.

  7. Non-hominid TP63 lacks retroviral LTRs but contains a novel conserved upstream exon.

    PubMed

    Beyer, Ulrike; Dobbelstein, Matthias

    2011-06-15

    We have recently identified novel isoforms of human p63, with specific expression in testicular germ cells. The synthesis of these p63 mRNA species is driven by the long terminal repeat (LTR) of the endogenous retrovirus ERV9. This LTR was inserted upstream of the previously known TP63 exons roughly 15 million years ago, leading to the expression of novel exons and the synthesis of germline-specific transactivating p63 (GTAp63) isoforms in humans and great apes (Beyer et al. Proc Natl Acad Sci USA 2011; 108:3624-9). However, this study did not reveal whether similar upstream exons can also be found in the TP63 genes of non-hominid animals. Here we performed rapid amplification of cDNA ends (RACE) to identify a novel upstream exon of murine TP63, located in the 5' position from the previously described start of transcription. This exon, termed "exon U3" in our previous publication, is conserved within a broad range of mammalian species, including hominids. However, in contrast to the human TP63 gene structure, the murine exon U3 represented the most upstream transcribed sequence of TP63. Murine exon U3 is then alternatively spliced to acceptor sites within exon 1 or upstream of exon 2, resulting in two different available translational start sites. p63 mRNAs comprising exon U3 are detectable in various tissues, with no particular preference for testicular cells. Thus, whereas the retroviral LTR in hominid species results in strictly germline-associated p63 isoforms, the upstream exon in non-hominids fails to confer this tissue specificity. This notion strongly supports the concept that the synthesis of a testis-specific p63 isoform is a recently acquired, unique feature of humans and great apes.

  8. Clustering of classical swine fever virus isolates by codon pair bias

    PubMed Central

    2011-01-01

    Background The genetic code consists of non-random usage of synonymous codons for the same amino acids, termed codon bias or codon usage. Codon juxtaposition is also non-random, referred to as codon context bias or codon pair bias. The codon and codon pair bias vary among different organisms, as well as with viruses. Reasons for these differences are not completely understood. For classical swine fever virus (CSFV), it was suggested that the synonymous codon usage does not significantly influence virulence, but the relationship between variations in codon pair usage and CSFV virulence is unknown. Virulence can be related to the fitness of a virus: Differences in codon pair usage influence genome translation efficiency, which may in turn relate to the fitness of a virus. Accordingly, the potential of the codon pair bias for clustering CSFV isolates into classes of different virulence was investigated. Results The complete genomic sequences encoding the viral polyprotein of 52 different CSFV isolates were analyzed. This included 49 sequences from the GenBank database (NCBI) and three newly sequenced genomes. The codon usage did not differ among isolates of different virulence or genotype. In contrast, a clustering of isolates based on their codon pair bias was observed, clearly discriminating highly virulent isolates and vaccine strains on one side from moderately virulent strains on the other side. However, phylogenetic trees based on the codon pair bias and on the primary nucleotide sequence resulted in a very similar genotype distribution. Conclusion Clustering of CSFV genomes based on their codon pair bias correlate with the genotype rather than with the virulence of the isolates. PMID:22126254

  9. Upstream and Downstream Influence in STBLI Instability

    NASA Astrophysics Data System (ADS)

    Martin, Pino; Priebe, Stephan; Helm, Clara

    2016-11-01

    Priebe and Martín (JFM, 2012) show that the low-frequency unsteadiness in shockwave and turbulent boundary layer interactions (STBLI) is governed by an inviscid instability. Priebe, Tu, Martín and Rowley (JFM, 2016) show that the instability is an inviscid centrifugal one, i.e Görtlerlike vortices. Previous works had given differing conclusions as to whether the low-frequency unsteadiness in STBLI is caused by an upstream or downstream mechanism. In this paper, we reconcile these opposite views and show that upstream and downstream correlations co-exist in the context of the nature of Görtler vortices. We find that the instability is similar to that in separated subsonic and laminar flows. Since the turbulence is modulated but passive to the global mode, the turbulent separated flows are amenable to linear global analysis. As such, the characteristic length and time scales, and the receptivity of the global mode might be determined, and low-order models that represent the low-frequency dynamics in STBLI might be developed. The centrifugal instability persists even under hypersonic conditions. This work is funded by the AFOSR Grant Number AF9550-15-1-0284 with Dr. Ivett Leyva.

  10. Internal hydraulic jumps with large upstream shear

    NASA Astrophysics Data System (ADS)

    Ogden, Kelly; Helfrich, Karl

    2015-11-01

    Internal hydraulic jumps in approximately two-layered flows with large upstream shear are investigated using numerical simulations. The simulations allow continuous density and velocity profiles, and a jump is forced to develop by downstream topography, similar to the experiments conducted by Wilkinson and Wood (1971). High shear jumps are found to exhibit significantly more entrainment than low shear jumps. Furthermore, the downstream structure of the flow has an important effect on the jump properties. Jumps with a slow upper (inactive) layer exhibit a velocity minimum downstream of the jump, resulting in a sub-critical downstream state, while flows with the same upstream vertical shear and a larger barotropic velocity remain super-critical downstream of the jump. A two-layer theory is modified to account for the vertical structure of the downstream density and velocity profiles and entrainment is allowed through a modification of the approach of Holland et al. (2002). The resulting theory can be matched reasonably well with the numerical simulations. However, the results are very sensitive to how the downstream vertical profiles of velocity and density are incorporated into the layered model, highlighting the difficulty of the two layer approximation when the shear is large.

  11. Reselection of a genomic upstream open reading frame in mouse hepatitis coronavirus 5'-untranslated-region mutants.

    PubMed

    Wu, Hung-Yi; Guan, Bo-Jhih; Su, Yu-Pin; Fan, Yi-Hsin; Brian, David A

    2014-01-01

    An AUG-initiated upstream open reading frame (uORF) encoding a potential polypeptide of 3 to 13 amino acids (aa) is found within the 5' untranslated region (UTR) of >75% of coronavirus genomes based on 38 reference strains. Potential CUG-initiated uORFs are also found in many strains. The AUG-initiated uORF is presumably translated following genomic 5'-end cap-dependent ribosomal scanning, but its function is unknown. Here, in a reverse-genetics study with mouse hepatitis coronavirus, the following were observed. (i) When the uORF AUG-initiating codon was replaced with a UAG stop codon along with a U112A mutation to maintain a uORF-harboring stem-loop 4 structure, an unimpaired virus with wild-type (WT) growth kinetics was recovered. However, reversion was found at all mutated sites within five virus passages. (ii) When the uORF was fused with genomic (main) ORF1 by converting three in-frame stop codons to nonstop codons, a uORF-ORF1 fusion protein was made, and virus replicated at WT levels. However, a frameshifting G insertion at virus passage 7 established a slightly 5'-extended original uORF. (iii) When uAUG-eliminating deletions of 20, 30, or 51 nucleotides (nt) were made within stem-loop 4, viable but debilitated virus was recovered. However, a C80U mutation in the first mutant and an A77G mutation in the second appeared by passage 10, which generated alternate uORFs that correlated with restored WT growth kinetics. In vitro, the uORF-disrupting nondeletion mutants showed enhanced translation of the downstream ORF1 compared with the WT. These results together suggest that the uORF represses ORF1 translation yet plays a beneficial but nonessential role in coronavirus replication in cell culture.

  12. Codon usage bias in phylum Actinobacteria: relevance to environmental adaptation and host pathogenicity.

    PubMed

    Lal, Devi; Verma, Mansi; Behura, Susanta K; Lal, Rup

    2016-10-01

    Actinobacteria are Gram-positive bacteria commonly found in soil, freshwater and marine ecosystems. In this investigation, bias in codon usages of ninety actinobacterial genomes was analyzed by estimating different indices of codon bias such as Nc (effective number of codons), SCUO (synonymous codon usage order), RSCU (relative synonymous codon usage), as well as sequence patterns of codon contexts. The results revealed several characteristic features of codon usage in Actinobacteria, as follows: 1) C- or G-ending codons are used frequently in comparison with A- and U ending codons; 2) there is a direct relationship of GC content with use of specific amino acids such as alanine, proline and glycine; 3) there is an inverse relationship between GC content and Nc estimates, 4) there is low SCUO value (<0.5) for most genes; and 5) GCC-GCC, GCC-GGC, GCC-GAG and CUC-GAC are the frequent context sequences among codons. This study highlights the fact that: 1) in Actinobacteria, extreme GC content and codon bias are driven by mutation rather than natural selection; (2) traits like aerobicity are associated with effective natural selection and therefore low GC content and low codon bias, demonstrating the role of both mutational bias and translational selection in shaping the habitat and phenotype of actinobacterial species.

  13. Looking into the genome of Thermosynechococcus elongatus (thermophilic cyanobacteria) with codon selection and usage perspective.

    PubMed

    Prabha, Ratna; Singh, Dhananjaya P; Rai, Anil

    2015-01-01

    Genome analysis of thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1 revealed factors ruling choices of codons in this organism. Multiple parameters like Nc, GC3s, RSCU, Codon Adaptation Index (CAI), optimal and rare codons, codon-pair context and amino acid usage were analysed and compositional constraint was identified as major factor. Wide range of Nc values for the same GC3 content suggested the role of translational selection. Mutational bias is suggested at synonymous position. Among optimal codons for translation, most were GC-ending. Seven codons (AGA, AGG, AUA, UAA, UAG, UCA and UGA) were found to have least occurrence in the entire genome and except stop codons all were A-ending (exception AGG). Most widely used codon-pair in the genome are G-ending or C-ending and A-ending or U-ending codons make pair with G-ending or C-ending codons. Amino acids which are largely distributed in T. elongatus tend to use G-ending or C-ending codons most frequently. Findings showed cumulative role of translational selection, translational accuracy and gene expression levels with mutational bias as key player in codon selection pattern of this organism.

  14. Variation in global codon usage bias among prokaryotic organisms is associated with their lifestyles

    PubMed Central

    2011-01-01

    Background It is widely acknowledged that synonymous codons are used unevenly among genes in a genome. In organisms under translational selection, genes encoding highly expressed proteins are enriched with specific codons. This phenomenon, termed codon usage bias, is common to many organisms and has been recognized as influencing cellular fitness. This suggests that the global extent of codon usage bias of an organism might be associated with its phenotypic traits. Results To test this hypothesis we used a simple measure for assessing the extent of codon bias of an organism, and applied it to hundreds of sequenced prokaryotes. Our analysis revealed a large variability in this measure: there are organisms showing very high degrees of codon usage bias and organisms exhibiting almost no differential use of synonymous codons among different genes. Remarkably, we found that the extent of codon usage bias corresponds to the lifestyle of the organism. Especially, organisms able to live in a wide range of habitats exhibit high extents of codon usage bias, consistent with their need to adapt efficiently to different environments. Pathogenic prokaryotes also demonstrate higher extents of codon usage bias than non-pathogenic prokaryotes, in accord with the multiple environments that many pathogens occupy. Our results show that the previously observed correlation between growth rate and metabolic variability is attributed to their individual associations with codon usage bias. Conclusions Our results suggest that the extent of codon usage bias of an organism plays a role in the adaptation of prokaryotes to their environments. PMID:22032172

  15. Corporation-induced Diseases, Upstream Epidemiologic Surveillance, and Urban Health

    PubMed Central

    2008-01-01

    Corporation-induced diseases are defined as diseases of consumers, workers, or community residents who have been exposed to disease agents contained in corporate products. To study the epidemiology and to guide expanded surveillance of these diseases, a new analytical framework is proposed. This framework is based on the agent–host–environment model and the upstream multilevel epidemiologic approach and posits an epidemiologic cascade starting with government-sanctioned corporate profit making and ending in a social cost, i.e., harm to population health. Each of the framework’s levels addresses a specific level of analysis, including government, corporations, corporate conduits, the environment of the host, and the host. The explained variable at one level is also the explanatory variable at the next lower level. In this way, a causal chain can be followed along the epidemiologic cascade from the site of societal power down to the host. The framework thus describes the pathways by which corporate decisions filter down to disease production in the host and identifies opportunities for epidemiologic surveillance. Since the environment of city dwellers is strongly shaped by corporations that are far upstream and several levels away, the framework has relevance for the study of urban health. Corporations that influence the health of urban populations include developers and financial corporations that determine growth or decay of urban neighborhoods, as well as companies that use strategies based on neighborhood characteristics to sell products that harm consumer health. Epidemiological inquiry and surveillance are necessary at all levels to provide the knowledge needed for action to protect the health of the population. To achieve optimal inquiry and surveillance at the uppermost levels, epidemiologists will have to work with political scientists and other social scientists and to utilize novel sources of information. PMID:18437580

  16. The identities of stop codon reassignments support ancestral tRNA stop codon decoding activity as a facilitator of gene duplication and evolution of novel function.

    PubMed

    Massey, Steven E

    2017-03-27

    Stop codon reassignments are widely distributed in prokaryotic, eukaryotic and organellar genomes, but are remarkably convergent in terms of the stop codons and amino acids reassigned. Strikingly, the identities of stop codon reassignments are closely matched to the properties of naturally occurring nonsense suppressor (NONS) tRNAs, suggesting that pre-existing nonsense suppression in an ancestral tRNA facilitated the occurrence of stop codon reassignments. Here this idea is expanded, by exploring the mechanism by which the gene duplication of tRNAs has occurred, leading to the reassignment of stop codons. Two types of stop codon reassignment are identified: those that necessitate a tRNA gene duplication, and those that do not because a single tRNA can recognize the reassigned stop codon and the canonical codon(s) for the cognate amino acid. Where tRNA gene duplication has occurred, this implies a multi-functional ancestral NONS tRNA, followed by adaptive mutation in the anticodon of one of the gene duplicates to become complementary to the stop codon, constituting a clear example of escape from adaptive conflict. The best exemplar is the UAA+UAG - >gln reassignment, which has occurred 9 times independently in a diverse range of genomes, and appears to reflect the widespread occurrence of naturally occurring nonsense suppression of the UAA+UAG stop codons by glutamine tRNAs. Consideration of pre-existing tRNA functionality and the mechanism of gene duplication provide new insights into the process of stop codon reassignment.

  17. STARTING EXCAVATION PIER 2. This view is roughly northeast, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STARTING EXCAVATION PIER 2. This view is roughly northeast, with Pier 2 on the Trinity County end of the bridge. The old suspension bridge, at upper right, was upstream of new bridge - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  18. Effect of replication on the third base of codons

    NASA Astrophysics Data System (ADS)

    Cebrat, S.; Dudek, M. R.; Gierlik, A.; Kowalczuk, M.; Mackiewicz, P.

    We have analyzed third position in codons and have observed strong long-range correlations along DNA sequence. We have shown that the correlations are caused mostly by asymmetric replication. In the analysis, we have used a DNA walk (spider analysis Cebrat et al., Microbial Comparative Genomics 2(4) (1997) 259-268) in two-dimensional space [A-T,G-C]. The particular case of the E.coli sequence has been studied in detail.

  19. The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons

    PubMed Central

    Simões, João; Bezerra, Ana R.; Moura, Gabriela R.; Araújo, Hugo; Gut, Ivo; Bayes, Mónica; Santos, Manuel A. S.

    2016-01-01

    The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins. Under standard growth conditions, CUG sites incorporate leucine (3% of the times) and serine (97% of the times) on a proteome wide scale, but leucine incorporation fluctuates in response to environmental stressors and can be artificially increased up to 98%. In order to determine whether such flexibility also exists at other codons, we have constructed several serine tRNAs that decode various non-cognate codons. Expression of these tRNAs had minor effects on fitness, but growth of the mistranslating strains at different temperatures, in medium with different pH and nutrients composition was often enhanced relatively to the wild type (WT) strain, supporting our previous data on adaptive roles of CUG ambiguity in variable growth conditions. Parallel evolution of the recombinant strains (100 generations) followed by full genome resequencing identified various strain specific single nucleotide polymorphisms (SNP) and one SNP in the deneddylase (JAB1) gene in all strains. Since JAB1 is a subunit of the COP9 signalosome complex, which interacts with cullin (Cdc53p) to mediate degradation of a variety of cellular proteins, our data suggest that neddylation plays a key role in tolerance and adaptation to codon ambiguity in C. albicans. PMID:27065968

  20. Synonymous codon usage pattern in mitochondrial CYB gene in pisces, aves, and mammals.

    PubMed

    Uddin, Arif; Chakraborty, Supriyo

    2017-03-01

    Cytochrome b (CYB) protein plays an important role in complex III of the mitochondrial oxidative phosphorylation. Codon usage is the phenomenon of non-uniform usage of synonymous codons. In the present study, we report the pattern of codon usage in MT-CYB gene using various codon usage parameters. Nucleotide composition such as % of C and T was higher than A and G in pisces. In aves, % of A and C was higher than T and G but in mammals, A and T was higher than C and G. Heat map shows that AT-ending codons were mostly negative and GC-ending codons were mostly positive. From the heat map based on RSCU values, it is evident that codon usage prefers A/C at the third codon position and it was less towards T/G in its third codon position. The codons absent in pisces were AGT (except Toxotes chatareus), TGT, and CAG (except Elasma zonatum). The codons such as AGT (except Falco peregrinus), CGT (except Vidua chalybeata), and ACG (except Aythya americana) were absent in aves whereas, in mammals, the absent codons were namely CAG (except Canis familiaris) and ACG (except Rattus norvegicus). Codon usage bias was low in pisces, aves, and mammals. The frequency of leucine was the highest in the amino acid and cysteine was the lowest. Correlation analysis further suggests that mutation pressure is mainly responsible for codon usage pattern. Natural selection might also play a vital role in codon usage pattern but it was weaker than mutation pressure.

  1. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome

    PubMed Central

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-01-01

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064

  2. Standard Codon Substitution Models Overestimate Purifying Selection for Nonstationary Data

    PubMed Central

    Yap, Von Bing; Huttley, Gavin A.

    2017-01-01

    Estimation of natural selection on protein-coding sequences is a key comparative genomics approach for de novo prediction of lineage-specific adaptations. Selective pressure is measured on a per-gene basis by comparing the rate of nonsynonymous substitutions to the rate of synonymous substitutions. All published codon substitution models have been time-reversible and thus assume that sequence composition does not change over time. We previously demonstrated that if time-reversible DNA substitution models are applied in the presence of changing sequence composition, the number of substitutions is systematically biased towards overestimation. We extend these findings to the case of codon substitution models and further demonstrate that the ratio of nonsynonymous to synonymous rates of substitution tends to be underestimated over three data sets of mammals, vertebrates, and insects. Our basis for comparison is a nonstationary codon substitution model that allows sequence composition to change. Goodness-of-fit results demonstrate that our new model tends to fit the data better. Direct measurement of nonstationarity shows that bias in estimates of natural selection and genetic distance increases with the degree of violation of the stationarity assumption. Additionally, inferences drawn under time-reversible models are systematically affected by compositional divergence. As genomic sequences accumulate at an accelerating rate, the importance of accurate de novo estimation of natural selection increases. Our results establish that our new model provides a more robust perspective on this fundamental quantity. PMID:28175284

  3. Computational codon optimization of synthetic gene for protein expression

    PubMed Central

    2012-01-01

    Background The construction of customized nucleic acid sequences allows us to have greater flexibility in gene design for recombinant protein expression. Among the various parameters considered for such DNA sequence design, individual codon usage (ICU) has been implicated as one of the most crucial factors affecting mRNA translational efficiency. However, previous works have also reported the significant influence of codon pair usage, also known as codon context (CC), on the level of protein expression. Results In this study, we have developed novel computational procedures for evaluating the relative importance of optimizing ICU and CC for enhancing protein expression. By formulating appropriate mathematical expressions to quantify the ICU and CC fitness of a coding sequence, optimization procedures based on genetic algorithm were employed to maximize its ICU and/or CC fitness. Surprisingly, the in silico validation of the resultant optimized DNA sequences for Escherichia coli, Lactococcus lactis, Pichia pastoris and Saccharomyces cerevisiae suggests that CC is a more relevant design criterion than the commonly considered ICU. Conclusions The proposed CC optimization framework can complement and enhance the capabilities of current gene design tools, with potential applications to heterologous protein production and even vaccine development in synthetic biotechnology. PMID:23083100

  4. Selection of AUG initiation codons differs in plants and animals.

    PubMed Central

    Lütcke, H A; Chow, K C; Mickel, F S; Moss, K A; Kern, H F; Scheele, G A

    1987-01-01

    The influence of the nucleotide at position -3 relative to the AUG initiation codon on the initiation of protein synthesis was studied in two different in vitro translation systems using synthetic mRNAs. The four mRNAs, transcribed from cDNAs directed by an SP6 promoter, were identical except for mutations at nucleotide -3. In each case, translation of mRNAs produced a single protein of Mr = 12,600. Relative translational efficiencies showed a hierarchy in the reticulocyte lysate system (100, 85, 61 and 38% for A, G, U and C in position -3, respectively) but no differences in the wheat germ system. Differential mRNA degradation or polypeptide chain elongation were excluded as causes of the differences observed in translation in the reticulocyte lysate. mRNA competition increased the differences observed in translational efficiencies in reticulocyte lysate but showed no effect in wheat germ. Analysis of 61 plant and 209 animal mRNA sequences revealed qualitative and quantitative differences between the consensus sequences surrounding AUG initiation codons. Whereas the consensus sequence for animals was CACCAUG that for plants was AACAAUGGC. Both the structural and functional findings suggest that the factors which select AUG initiation codons in plants and animals differ significantly. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3556162

  5. Novel small molecules potentiate premature termination codon readthrough by aminoglycosides

    PubMed Central

    Baradaran-Heravi, Alireza; Balgi, Aruna D.; Zimmerman, Carla; Choi, Kunho; Shidmoossavee, Fahimeh S.; Tan, Jason S.; Bergeaud, Célia; Krause, Alexandra; Flibotte, Stéphane; Shimizu, Yoko; Anderson, Hilary J.; Mouly, Vincent; Jan, Eric; Pfeifer, Tom; Jaquith, James B.; Roberge, Michel

    2016-01-01

    Nonsense mutations introduce premature termination codons and underlie 11% of genetic disease cases. High concentrations of aminoglycosides can restore gene function by eliciting premature termination codon readthrough but with low efficiency. Using a high-throughput screen, we identified compounds that potentiate readthrough by aminoglycosides at multiple nonsense alleles in yeast. Chemical optimization generated phthalimide derivative CDX5-1 with activity in human cells. Alone, CDX5-1 did not induce readthrough or increase TP53 mRNA levels in HDQ-P1 cancer cells with a homozygous TP53 nonsense mutation. However, in combination with aminoglycoside G418, it enhanced readthrough up to 180-fold over G418 alone. The combination also increased readthrough at all three nonsense codons in cancer cells with other TP53 nonsense mutations, as well as in cells from rare genetic disease patients with nonsense mutations in the CLN2, SMARCAL1 and DMD genes. These findings open up the possibility of treating patients across a spectrum of genetic diseases caused by nonsense mutations. PMID:27407112

  6. Codon Distribution in Error-Detecting Circular Codes.

    PubMed

    Fimmel, Elena; Strüngmann, Lutz

    2016-03-15

    In 1957, Francis Crick et al. suggested an ingenious explanation for the process of frame maintenance. The idea was based on the notion of comma-free codes. Although Crick's hypothesis proved to be wrong, in 1996, Arquès and Michel discovered the existence of a weaker version of such codes in eukaryote and prokaryote genomes, namely the so-called circular codes. Since then, circular code theory has invariably evoked great interest and made significant progress. In this article, the codon distributions in maximal comma-free, maximal self-complementary C³ and maximal self-complementary circular codes are discussed, i.e., we investigate in how many of such codes a given codon participates. As the main (and surprising) result, it is shown that the codons can be separated into very few classes (three, or five, or six) with respect to their frequency. Moreover, the distribution classes can be hierarchically ordered as refinements from maximal comma-free codes via maximal self-complementary C(3) codes to maximal self-complementary circular codes.

  7. Inducible suppression of global translation by overuse of rare codons.

    PubMed

    Kobayashi, Hideki

    2015-04-01

    Recently, artificial gene networks have been developed in synthetic biology to control gene expression and make organisms as controllable as robots. Here, I present an artificial posttranslational gene-silencing system based on the codon usage bias and low tRNA content corresponding to minor codons. I engineered the green fluorescent protein (GFP) gene to inhibit translation indirectly with the lowest-usage codons to monopolize various minor tRNAs (lgfp). The expression of lgfp interfered nonspecifically with the growth of Escherichia coli, Saccharomyces cerevisiae, human HeLa cervical cancer cells, MCF7 breast cancer cells, and HEK293 kidney cells, as well as phage and adenovirus expansion. Furthermore, insertion of lgfp downstream of a phage response promoter conferred phage resistance on E. coli. Such engineered gene silencers could act as components of biological networks capable of functioning with suitable promoters in E. coli, S. cerevisiae, and human cells to control gene expression. The results presented here show general suppressor artificial genes for live cells and viruses. This robust system provides a gene expression or cell growth control device for artificially synthesized gene networks.

  8. Codon Distribution in Error-Detecting Circular Codes

    PubMed Central

    Fimmel, Elena; Strüngmann, Lutz

    2016-01-01

    In 1957, Francis Crick et al. suggested an ingenious explanation for the process of frame maintenance. The idea was based on the notion of comma-free codes. Although Crick’s hypothesis proved to be wrong, in 1996, Arquès and Michel discovered the existence of a weaker version of such codes in eukaryote and prokaryote genomes, namely the so-called circular codes. Since then, circular code theory has invariably evoked great interest and made significant progress. In this article, the codon distributions in maximal comma-free, maximal self-complementary C3 and maximal self-complementary circular codes are discussed, i.e., we investigate in how many of such codes a given codon participates. As the main (and surprising) result, it is shown that the codons can be separated into very few classes (three, or five, or six) with respect to their frequency. Moreover, the distribution classes can be hierarchically ordered as refinements from maximal comma-free codes via maximal self-complementary C3 codes to maximal self-complementary circular codes. PMID:26999215

  9. Nucleotide sequence conservation in paramyxoviruses; the concept of codon constellation.

    PubMed

    Rima, Bert K

    2015-05-01

    The stability and conservation of the sequences of RNA viruses in the field and the high error rates measured in vitro are paradoxical. The field stability indicates that there are very strong selective constraints on sequence diversity. The nature of these constraints is discussed. Apart from constraints on variation in cis-acting RNA and the amino acid sequences of viral proteins, there are other ones relating to the presence of specific dinucleotides such CpG and UpA as well as the importance of RNA secondary structures and RNA degradation rates. Recent other constraints identified in other RNA viruses, such as effects of secondary RNA structure on protein folding or modification of cellular tRNA complements, are also discussed. Using the family Paramyxoviridae, I show that the codon usage pattern (CUP) is (i) specific for each virus species and (ii) that it is markedly different from the host - it does not vary even in vaccine viruses that have been derived by passage in a number of inappropriate host cells. The CUP might thus be an additional constraint on variation, and I propose the concept of codon constellation to indicate the informational content of the sequences of RNA molecules relating not only to stability and structure but also to the efficiency of translation of a viral mRNA resulting from the CUP and the numbers and position of rare codons.

  10. A Synthetic Approach to Stop-Codon Scanning Mutagenesis

    PubMed Central

    Nie, Lihua; Lavinder, Jason J.; Sarkar, Mohosin; Stephany, Kimberly; Magliery, Thomas J.

    2011-01-01

    A general combinatorial mutagenesis strategy using common DMT-protected mononucleotide phosphoramidites and a single orthogonally-protected trinucleotide phosphoramidite (Fmoc-TAG) was developed to scan a gene with the TAG amber stop codon with complete synthetic control. In combination with stop-codon suppressors that insert natural (e.g., alanine) or unnatural (e.g., p-benzoylphenylalanine or Bpa) amino acids, a single DNA library can be used to incorporate different amino acids for diverse purposes. Here, we scanned TAG codons through part of the gene for a model four-helix bundle protein, Rop, which regulates the copy number of ColE1 plasmids. Alanine was incorporated into Rop for mapping its binding site using an in vivo activity screen, and subtle but important differences from in vitro gel-shift studies of Rop function are evident. As a test, Bpa was incorporated using a Phe14 amber mutant isolated from the scanning library. Surprisingly, Phe14Bpa Rop is weakly active, despite the critical role of Phe14 in Rop activity. Bpa is a photoaffinity label unnatural amino acid that can form covalent bonds with adjacent molecules upon UV irradiation. Irradiation of Phe14Bpa-Rop, which is a dimer in solution like wild-type Rop, results in covalent dimers, trimers and tetramers. This suggests that Phe14Bpa Rop weakly associates as a tetramer in solution and highlights the use of Bpa crosslinking as a means of trapping weak and transient interactions. PMID:21452871

  11. Suprathermal ions upstream from interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Bame, S. J.; Feldman, W. C.; Paschmann, G.; Sckopke, N.; Russell, C. T.

    1984-01-01

    Low energy (10 eV-30 keV) observations of suprathermal ions ahead of outward propagating interplanetary shock waves (ISQ) are reported. The data were taken with the fast plasma experiment on ISEE 1 and 2 during 17 events. Structure was more evident in the suprathermal ion distribution in the earth bow shock region than in the upstream region. Isotropic distributions were only observed ahead of ISW, although field alignment, kidney-bean distributions, ion shells in velocity space and bunches of gyrating ions were not. The data suggest that the solar wind ions are accelerated to suprathermal energies in the vicinity of the shocks, which feature low and subcritical Mach numbers at 1 AU.

  12. Moving stormwater P management upstream (Invited)

    NASA Astrophysics Data System (ADS)

    Baker, L. A.; Hobbie, S. E.; Finlay, J. C.; Kalinosky, P.; Janke, B.

    2013-12-01

    Reducing stormwater phosphorus loading using current approaches, which focus on treatment at the end of the pipe, is unlikely to reduce P loads enough to restore nutrient-impaired urban lakes. An indication of this is that of the nearly 150 nutrient impaired lakes in the Twin Cities region, only one has been restored. We hypothesize that substantial reduction of eutrophication will require reductions of P inputs upstream from storm drains. Developing source reduction strategies will required a shift in thinking about system boundaries, moving upstream from the storm drain to the curb, and from the curb to the watershed. Our Prior Lake Street Sweeping Project, a 2-year study of enhanced street sweeping, will be used to illustrate the idea of moving the system boundary to the curb. This study showed that P load recovery from sweeping increases with both sweeping frequency and overhead tree canopy cover. For high canopy streets, coarse organic material (tree leaves; seed pods, etc.) comprised 42% of swept material. We estimate that P inputs from trees may be half of measured storm P yields in 8 urban catchments in St. Paul, MN. Moreover, the cost of removing P during autumn was often < 100/pound P, compared with > 1000/lb P for stormwater ponds. We can also move further upstream, to the watershed boundary. P inputs to urban watersheds that enter lawns include lawn fertilizer, polyphosphates added to water supplies (and hence to lawns via irrigation), and pet food (transformed to pet waste). Minnesota enacted a lawn P fertilizer restriction in 2003, but early reductions in stormwater P loads were modest, probably reflecting reduction in direct wash-off of applied fertilizer. Because urban soils are enriched in P, growing turf has continued to extract available soil P. When turf is mowed, cut grass decomposes, generating P in runoff. As soil P becomes depleted, P concentrations in lawn runoff will gradually decline. Preliminary modeling suggests that substantial

  13. Codon usage in mammalian genes is biased by sequence slippage mechanisms.

    PubMed

    Bains, W

    1993-01-01

    The codons for some conserved amino acids are found to be the same between homologous genes from different species when the statistics of codon usage would suggest that they should be different. I examine whether this 'coincidence' of codon usage could be due to genetic mechanisms homogenising the DNA around specific sites. This paper describes the further analysis of the coincident codons in 19 genes (a total of 96 homologues) for slippage. Coincident codons arise in contexts of increased sequence simplicity, and have a high chance of occurring within sequences similar to the recombination-prone minisatellite 'core' sequence. This suggests a role of genetic homogenisation in their generation.

  14. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses

    PubMed Central

    Bhatia, Sandeep; Sood, Richa; Selvaraj, Pavulraj

    2016-01-01

    Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts. PMID:27119730

  15. Head Start. Fact Sheet.

    ERIC Educational Resources Information Center

    Administration for Children, Youth, and Families (DHHS), Washington, DC.

    Head Start is a national program that provides comprehensive developmental services for preschool children (ages 3 to 5) from low-income families and social services for their families. Approximately 1,400 community-based nonprofit organizations and school systems develop programs to meet specific needs. Head Start began in 1965 in the Office of…

  16. Start at the End ...

    ERIC Educational Resources Information Center

    Goldsworthy, Anne

    2005-01-01

    Start at the end; that's the way to improve children's plans for investigations. Strange as it may seem, there are times when beginning at the beginning of an investigation is not the best way to start things off. To give children the opportunity to ask questions and plan what to do, sometimes it is best to get them first to consider others' data…

  17. Starting School in August

    ERIC Educational Resources Information Center

    Chmelynski, Carol

    2006-01-01

    In this article, the author discusses the controversial decision of the school board from the Broward County, Florida to start the school year on August 9. School boards across the country that are grappling with the idea of starting school earlier in the year are increasingly running up against strong opposition from parents. In many districts,…

  18. START II and beyond

    SciTech Connect

    Mendelsohn, J.

    1996-10-01

    The second Strategic Arms Reduction Treaty (START II), signed by President George Bush and Russian President Boris yeltsin in January 1993, was ratified by the US Senate in January 1996 by and overwhelming vote of 87-4. The treaty, which will slash the strategic arsenals of the United States and Russia to 3,000-3,500 warheads each, is now before the two houses of the Russian Parliament (the Duma and the Federation Council) awaiting ratification amidst confusion and criticism. The Yeltsin administration supports START II and spoke in favor of Russian ratification after the Senate acted on the treaty. The Russian foreign minister and the Russian military believed that START II should be ratified as soon as possible. During the recent presidential campaign and his subsequent illness, President Yeltsin has been virtually silent on the subject of START II and nuclear force reductions. Without a push from the Yeltsin administration, the tone among Duma members, has been sharply critical of START II. Voices across the Russian political spectrum have questioned the treaty and linked it to constraints on highly capable theater missile defense (TMD) systems and the continued viability of the ABM Treaty. And urged that START II ratification be held hostage until NATO abandons its plans to expand eastward. Although the START I and START II accords have generated the momentum, opportunity and expectation-both domestic and international-for additional nuclear arms reductions, the current impasse over ratification in the Duma has cast a shadow over the future of START II and raised questions about the chances for any follow-on (START III) agreement.

  19. Housekeeping genes tend to show reduced upstream sequence conservation

    PubMed Central

    Farré, Domènec; Bellora, Nicolás; Mularoni, Loris; Messeguer, Xavier; Albà, M Mar

    2007-01-01

    Background Understanding the constraints that operate in mammalian gene promoter sequences is of key importance to understand the evolution of gene regulatory networks. The level of promoter conservation varies greatly across orthologous genes, denoting differences in the strength of the evolutionary constraints. Here we test the hypothesis that the number of tissues in which a gene is expressed is related in a significant manner to the extent of promoter sequence conservation. Results We show that mammalian housekeeping genes, expressed in all or nearly all tissues, show significantly lower promoter sequence conservation, especially upstream of position -500 with respect to the transcription start site, than genes expressed in a subset of tissues. In addition, we evaluate the effect of gene function, CpG island content and protein evolutionary rate on promoter sequence conservation. Finally, we identify a subset of transcription factors that bind to motifs that are specifically over-represented in housekeeping gene promoters. Conclusion This is the first report that shows that the promoters of housekeeping genes show reduced sequence conservation with respect to genes expressed in a more tissue-restricted manner. This is likely to be related to simpler gene expression, requiring a smaller number of functional cis-regulatory motifs. PMID:17626644

  20. Upstream open reading frame in 5'-untranslated region reduces titin mRNA translational efficiency.

    PubMed

    Cadar, Adrian G; Zhong, Lin; Lin, Angel; Valenzuela, Mauricio O; Lim, Chee C

    2014-10-10

    Titin is the largest known protein and a critical determinant of myofibril elasticity and sarcomere structure in striated muscle. Accumulating evidence that mRNA transcripts are post-transcriptionally regulated by specific motifs located in the flanking untranslated regions (UTRs) led us to consider the role of titin 5'-UTR in regulating its translational efficiency. Titin 5'-UTR is highly homologous between human, mouse, and rat, and sequence analysis revealed the presence of a stem-loop and two upstream AUG codons (uAUGs) converging on a shared in frame stop codon. We generated a mouse titin 5'-UTR luciferase reporter construct and targeted the stem-loop and each uAUG for mutation. The wild-type and mutated constructs were transfected into the cardiac HL-1 cell line and primary neonatal rat ventricular myocytes (NRVM). SV40 driven 5'-UTR luciferase activity was significantly suppressed by wild-type titin 5'-UTR (∼ 70% in HL-1 cells and ∼ 60% in NRVM). Mutating both uAUGs was found to alleviate titin 5'-UTR suppression, while eliminating the stem-loop had no effect. Treatment with various growth stimuli: pacing, PMA or neuregulin had no effect on titin 5'-UTR luciferase activity. Doxorubicin stress stimuli reduced titin 5'-UTR suppression, while H2O2 had no effect. A reported single nucleotide polymorphism (SNP) rs13422986 at position -4 of the uAUG2 was introduced and found to further repress titin 5'-UTR luciferase activity. We conclude that the uAUG motifs in titin 5'-UTR serve as translational repressors in the control of titin gene expression, and that mutations/SNPs of the uAUGs or doxorubicin stress could alter titin translational efficiency.

  1. Developmental Origins, Epigenetics, and Equity: Moving Upstream.

    PubMed

    Wallack, Lawrence; Thornburg, Kent

    2016-05-01

    The Developmental Origins of Health and Disease and the related science of epigenetics redefines the meaning of what constitutes upstream approaches to significant social and public health problems. An increasingly frequent concept being expressed is "When it comes to your health, your zip code may be more important than your genetic code". Epigenetics explains how the environment-our zip code-literally gets under our skin, creates biological changes that increase our vulnerability for disease, and even children's prospects for social success, over their life course and into future generations. This science requires us to rethink where disease comes from and the best way to promote health. It identifies the most fundamental social equity issue in our society: that initial social and biological disadvantage, established even prior to birth, and linked to the social experience of prior generations, is made worse by adverse environments throughout the life course. But at the same time, it provides hope because it tells us that a concerted focus on using public policy to improve our social, physical, and economic environments can ultimately change our biology and the trajectory of health and social success into future generations.

  2. A detailed comparative analysis of codon usage bias in Zika virus.

    PubMed

    Cristina, Juan; Fajardo, Alvaro; Soñora, Martín; Moratorio, Gonzalo; Musto, Héctor

    2016-09-02

    Zika virus (ZIKV) is a member of the family Flaviviridae and its genome consists of a single-stranded positive sense RNA molecule with 10,794 nucleotides. Clinical manifestations of disease caused by ZIKV infection range from asymptomatic cases to an influenza-like syndrome. There is an increasing concern about the possible relation among microcephaly and ZIKV infection. To get insight into the relation of codon usage among viruses and their hosts is extremely important to understand virus survival, fitness, evasion from host's immune system and evolution. In this study, we performed a comprehensive analysis of codon usage and composition of ZIKV. The overall codon usage among ZIKV strains is similar and slightly biased. Different codon preferences in ZIKV genes in relation to codon usage of human, Aedes aegypti and Aedes albopictus genes were found. Most of the highly frequent codons are A-ending, which strongly suggests that mutational bias is the main force shaping codon usage in this virus. G+C compositional constraint as well as dinucleotide composition also influence the codon usage of ZIKV. The results of these studies suggest that the emergence of ZIKV outside Africa, in the Pacific and the Americas may also be reflected in ZIKV codon usage. No significant differences were found in codon usage among strains isolated from microcephaly cases and the rest of strains from the Asian cluster enrolled in these studies.

  3. Characterization of Codon usage bias in the newly identified DEV UL18 gene

    NASA Astrophysics Data System (ADS)

    Chen, Xiwen; Cheng, Anchun; Wang, Mingshu; Xiang, Jun

    2011-10-01

    In this study, Codon usage bias (CUB) of DEV UL18 gene was analyzed, the results showed that codon usage bias in the DEV UL18 gene was strong bias towards the synonymous codons with A and T at the third codon position. Phylogenetic tree based on the amino acid sequences of the DEV UL18 gene and the 27 other herpesviruses revealed that UL18 gene of the DEV CHv strain and some fowl herpesviruses such as MeHV-1, GaHV-2 and GaHV-3 were clustered within a monophyletic clade and grouped within alphaherpesvirinae. The ENC-GC3S plot indicated that codon usage bias has strong species-specificity between DEV and 27 reference herpesviruses, and suggests that factors other than gene composition, such as translational selection leading to the codon usage variation among genes in different organisms, contribute to the codon usage among the different herpesviruses. Comparison of codon preferences of DEV UL18 gene with those of E. coli , yeast and humans showed that there were 20 codons showing distinct usage differences between DEV UL18 and yeast, 22 between DEV UL18 and humans, 23 between DEV UL18 and E.coli, which indicated the codon usage bias pattern in the DEV UL18 gene was similar to that of yeast. It is infered that the yeast expression system may be more suitable for the DEV UL18 expression.

  4. Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli

    PubMed Central

    2011-01-01

    Background Variations in codon usage between species are one of the major causes affecting recombinant protein expression levels, with a significant impact on the economy of industrial enzyme production processes. The use of codon-optimized genes may overcome this problem. However, designing a gene for optimal expression requires choosing from a vast number of possible DNA sequences and different codon optimization methods have been used in the past decade. Here, a comparative study of the two most common methods is presented using calf prochymosin as a model. Results Seven sequences encoding calf prochymosin have been designed, two using the "one amino acid-one codon" method and five using a "codon randomization" strategy. When expressed in Escherichia coli, the variants optimized by the codon randomization approach produced significantly more proteins than the native sequence including one gene that produced an increase of 70% in the amount of prochymosin accumulated. On the other hand, no significant improvement in protein expression was observed for the variants designed with the one amino acid-one codon method. The use of codon-optimized sequences did not affect the quality of the recovered inclusion bodies. Conclusions The results obtained in this study indicate that the codon randomization method is a superior strategy for codon optimization. A significant improvement in protein expression was obtained for the largely established process of chymosin production, showing the power of this strategy to reduce production costs of industrial enzymes in microbial hosts. PMID:21371320

  5. Analysis of Synonymous Codon Usage Bias of Zika Virus and Its Adaption to the Hosts

    PubMed Central

    Wang, Hongju; Liu, Siqing; Zhang, Bo

    2016-01-01

    Zika virus (ZIKV) is a mosquito-borne virus (arbovirus) in the family Flaviviridae, and the symptoms caused by ZIKV infection in humans include rash, fever, arthralgia, myalgia, asthenia and conjunctivitis. Codon usage bias analysis can reveal much about the molecular evolution and host adaption of ZIKV. To gain insight into the evolutionary characteristics of ZIKV, we performed a comprehensive analysis on the codon usage pattern in 46 ZIKV strains by calculating the effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and other indicators. The results indicate that the codon usage bias of ZIKV is relatively low. Several lines of evidence support the hypothesis that translational selection plays a role in shaping the codon usage pattern of ZIKV. The results from a correspondence analysis (CA) indicate that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of ZIKV. Additionally, the results from a comparative analysis of RSCU between ZIKV and its hosts suggest that ZIKV tends to evolve codon usage patterns that are comparable to those of its hosts. Moreover, selection pressure from Homo sapiens on the ZIKV RSCU patterns was found to be dominant compared with that from Aedes aegypti and Aedes albopictus. Taken together, both natural translational selection and mutation pressure are important for shaping the codon usage pattern of ZIKV. Our findings contribute to understanding the evolution of ZIKV and its adaption to its hosts. PMID:27893824

  6. Psychiatric Advance Directives: Getting Started

    MedlinePlus

    ... More... Home Getting Started National Resource Center on Psychiatric Advance Directives - Getting Started Getting Started Psychiatric advance directives (PADs) are relatively new legal instruments ...

  7. Codon bias and gene ontology in holometabolous and hemimetabolous insects.

    PubMed

    Carlini, David B; Makowski, Matthew

    2015-12-01

    The relationship between preferred codon use (PCU), developmental mode, and gene ontology (GO) was investigated in a sample of nine insect species with sequenced genomes. These species were selected to represent two distinct modes of insect development, holometabolism and hemimetabolism, with an aim toward determining whether the differences in developmental timing concomitant with developmental mode would be mirrored by differences in PCU in their developmental genes. We hypothesized that the developmental genes of holometabolous insects should be under greater selective pressure for efficient translation, manifest as increased PCU, than those of hemimetabolous insects because holometabolism requires abundant protein expression over shorter time intervals than hemimetabolism, where proteins are required more uniformly in time. Preferred codon sets were defined for each species, from which the frequency of PCU for each gene was obtained. Although there were substantial differences in the genomic base composition of holometabolous and hemimetabolous insects, both groups exhibited a general preference for GC-ending codons, with the former group having higher PCU averaged across all genes. For each species, the biological process GO term for each gene was assigned that of its Drosophila homolog(s), and PCU was calculated for each GO term category. The top two GO term categories for PCU enrichment in the holometabolous insects were anatomical structure development and cell differentiation. The increased PCU in the developmental genes of holometabolous insects may reflect a general strategy to maximize the protein production of genes expressed in bursts over short time periods, e.g., heat shock proteins. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 686-698, 2015. © 2015 Wiley Periodicals, Inc.

  8. Pandemic influenza A virus codon usage revisited: biases, adaptation and implications for vaccine strain development

    PubMed Central

    2012-01-01

    Background Influenza A virus (IAV) is a member of the family Orthomyxoviridae and contains eight segments of a single-stranded RNA genome with negative polarity. The first influenza pandemic of this century was declared in April of 2009, with the emergence of a novel H1N1 IAV strain (H1N1pdm) in Mexico and USA. Understanding the extent and causes of biases in codon usage is essential to the understanding of viral evolution. A comprehensive study to investigate the effect of selection pressure imposed by the human host on the codon usage of an emerging, pandemic IAV strain and the trends in viral codon usage involved over the pandemic time period is much needed. Results We performed a comprehensive codon usage analysis of 310 IAV strains from the pandemic of 2009. Highly biased codon usage for Ala, Arg, Pro, Thr and Ser were found. Codon usage is strongly influenced by underlying biases in base composition. When correspondence analysis (COA) on relative synonymous codon usage (RSCU) is applied, the distribution of IAV ORFs in the plane defined by the first two major dimensional factors showed that different strains are located at different places, suggesting that IAV codon usage also reflects an evolutionary process. Conclusions A general association between codon usage bias, base composition and poor adaptation of the virus to the respective host tRNA pool, suggests that mutational pressure is the main force shaping H1N1 pdm IAV codon usage. A dynamic process is observed in the variation of codon usage of the strains enrolled in these studies. These results suggest a balance of mutational bias and natural selection, which allow the virus to explore and re-adapt its codon usage to different environments. Recoding of IAV taking into account codon bias, base composition and adaptation to host tRNA may provide important clues to develop new and appropriate vaccines. PMID:23134595

  9. 3. Credit JTL Long distance view looking upstream towards New ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Credit JTL Long distance view looking upstream towards New Hampshire; commercial structures in foreground. - Bellows Falls Arch Bridge, Spanning Connecticut River, North Walpole, Cheshire County, NH

  10. Functional Versatility of AGY Serine Codons in Immunoglobulin Variable Region Genes

    PubMed Central

    Detanico, Thiago; Phillips, Matthew; Wysocki, Lawrence J.

    2016-01-01

    In systemic autoimmunity, autoantibodies directed against nuclear antigens (Ags) often arise by somatic hypermutation (SHM) that converts AGT and AGC (AGY) Ser codons into Arg codons. This can occur by three different single-base changes. Curiously, AGY Ser codons are far more abundant in complementarity-determining regions (CDRs) of IgV-region genes than expected for random codon use or from species-specific codon frequency data. CDR AGY codons are also more abundant than TCN Ser codons. We show that these trends hold even in cartilaginous fishes. Because AGC is a preferred target for SHM by activation-induced cytidine deaminase, we asked whether the AGY abundance was solely due to a selection pressure to conserve high mutability in CDRs regardless of codon context but found that this was not the case. Instead, AGY triplets were selectively enriched in the Ser codon reading frame. Motivated by reports implicating a functional role for poly/autoreactive specificities in antiviral antibodies, we also analyzed mutations at AGY in antibodies directed against a number of different viruses and found that mutations producing Arg codons in antiviral antibodies were indeed frequent. Unexpectedly, however, we also found that AGY codons mutated often to encode nearly all of the amino acids that are reported to provide the most frequent contacts with Ag. In many cases, mutations producing codons for these alternative amino acids in antiviral antibodies were more frequent than those producing Arg codons. Mutations producing each of these key amino acids required only single-base changes in AGY. AGY is the only codon group in which two-thirds of random mutations generate codons for these key residues. Finally, by directly analyzing X-ray structures of immune complexes from the RCSB protein database, we found that Ag-contact residues generated via SHM occurred more often at AGY than at any other codon group. Thus, preservation of AGY codons in antibody genes appears to have been

  11. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control.

    PubMed Central

    Abastado, J P; Miller, P F; Jackson, B M; Hinnebusch, A G

    1991-01-01

    GCN4 encodes a transcriptional activator of amino acid-biosynthetic genes in Saccharomyces cerevisiae that is regulated at the translational level by upstream open reading frames (uORFs) in its mRNA leader. uORF4 (counting from the 5' end) is sufficient to repress GCN4 under nonstarvation conditions; uORF1 is required to overcome the inhibitory effect of uORF4 and stimulate GCN4 translation in amino acid-starved cells. Insertions of sequences with the potential to form secondary structure around uORF4 abolish derepression, indicating that ribosomes reach GCN4 by traversing uORF4 sequences rather than by binding internally to the GCN4 start site. By showing that wild-type regulation occurred even when uORF4 was elongated to overlap GCN4 by 130 nucleotides, we provide strong evidence that those ribosomes which translate GCN4 do so by ignoring the uORF4 AUG start codon. This conclusion is in accord with the fact that translation of a uORF4-lacZ fusion was lower in a derepressed gcd1 mutant than in a nonderepressible gcn2 strain. We also show that increasing the distance between uORF1 and uORF4 to the wild-type spacing that separates uORF1 from GCN4 specifically impaired the ability of uORF1 to derepress GCN4 translation. As expected, this alteration led to increased uORF4-lacZ translation in gcd1 cells. Our results suggest that under starvation conditions, a substantial fraction of ribosomes that translate uORF1 fail to reassemble the factors needed for reinitiation by the time they scan to uORF4, but become competent to reinitiate after scanning the additional sequences to GCN4. Under nonstarvation conditions, ribosomes would recover more rapidly from uORF1 translation, causing them all to reinitiate at uORF4 rather than at GCN4. Images PMID:1986242

  12. Codon recognition during frameshift suppression in Saccharomyces cerevisiae.

    PubMed Central

    Gaber, R F; Culbertson, M R

    1984-01-01

    A genetic approach has been used to establish the molecular basis of 4-base codon recognition by frameshift suppressor tRNA containing an extra nucleotide in the anticodon. We have isolated all possible base substitution mutations at the position 4 (N) in the 3'-CCCN-5' anticodon of a Saccharomyces cerevisiae frameshift suppressor glycine tRNA encoded by the SUF16 gene. Base substitutions at +1 frameshift sites in the his4 gene have also been obtained such that all possible 4-base 5'-GGGN-3' codons have been identified. By testing for suppression in different strains that collectively represent all 16 possible combinations of position 4 nucleotides, we show that frameshift suppression does not require position 4 base pairing. Nonetheless, position 4 interactions influence the efficiency of suppression. Our results suggest a model in which 4-base translocation of mRNA on the ribosome is directed primarily by the number of nucleotides in the anticodon loop, whereas the resulting efficiency of suppression is dependent on the nature of position 4 nucleotides. Images PMID:6390183

  13. Codes in the codons: construction of a codon/amino acid periodic table and a study of the nature of specific nucleic acid-protein interactions.

    PubMed

    Benyo, B; Biro, J C; Benyo, Z

    2004-01-01

    The theory of "codon-amino acid coevolution" was first proposed by Woese in 1967. It suggests that there is a stereochemical matching - that is, affinity - between amino acids and certain of the base triplet sequences that code for those amino acids. We have constructed a common periodic table of codons and amino acids, where the nucleic acid table showed perfect axial symmetry for codons and the corresponding amino acid table also displayed periodicity regarding the biochemical properties (charge and hydrophobicity) of the 20 amino acids and the position of the stop signals. The table indicates that the middle (2/sup nd/) amino acid in the codon has a prominent role in determining some of the structural features of the amino acids. The possibility that physical contact between codons and amino acids might exist was tested on restriction enzymes. Many recognition site-like sequences were found in the coding sequences of these enzymes and as many as 73 examples of codon-amino acid co-location were observed in the 7 known 3D structures (December 2003) of endonuclease-nucleic acid complexes. These results indicate that the smallest possible units of specific nucleic acid-protein interaction are indeed the stereochemically compatible codons and amino acids.

  14. Selection at the amino acid level can influence synonymous codon usage: implications for the study of codon adaptation in plastid genes.

    PubMed Central

    Morton, B R

    2001-01-01

    A previously employed method that uses the composition of noncoding DNA as the basis of a test for selection between synonymous codons in plastid genes is reevaluated. The test requires the assumption that in the absence of selective differences between synonymous codons the composition of silent sites in coding sequences will match the composition of noncoding sites. It is demonstrated here that this assumption is not necessarily true and, more generally, that using compositional properties to draw inferences about selection on silent changes in coding sequences is much more problematic than commonly assumed. This is so because selection on nonsynonymous changes can influence the composition of synonymous sites (i.e., codon usage) in a complex manner, meaning that the composition biases of different silent sites, including neutral noncoding DNA, are not comparable. These findings also draw into question the commonly utilized method of investigating how selection to increase translation accuracy influences codon usage. The work then focuses on implications for studies that assess codon adaptation, which is selection on codon usage to enhance translation rate, in plastid genes. A new test that does not require the use of noncoding DNA is proposed and applied. The results of this test suggest that far fewer plastid genes display codon adaptation than previously thought. PMID:11560910

  15. Analysis of codon usage patterns in Ginkgo biloba reveals codon usage tendency from A/U-ending to G/C-ending

    PubMed Central

    He, Bing; Dong, Hui; Jiang, Cong; Cao, Fuliang; Tao, Shentong; Xu, Li-an

    2016-01-01

    As one of the most ancient tree species, the codon usage pattern analysis of Ginkgo biloba is a useful way to understand its evolutionary and genetic mechanisms. Several studies have been conducted on angiosperms, but seldom on gymnosperms. Based on RNA-Seq data of the G. biloba transcriptome, amount to 17,579 unigenes longer than 300 bp were selected and analyzed from 68,547 candidates. The codon usage pattern tended towards more frequently use of A/U-ending codons, which showed an obvious gradient progressing from gymnosperms to dicots to monocots. Meanwhile, analysis of high/low-expression unigenes revealed that high-expression unigenes tended to use G/C-ending codons together with more codon usage bias. Variation of unigenes with different functions suggested that unigenes involving in environment adaptation use G/C-ending codons more frequently with more usage bias, and these results were consistent with the conclusion that the formation of G. biloba codon usage bias was dominated by natural selection. PMID:27808241

  16. Exploring codon context bias for synthetic gene design of a thermostable invertase in Escherichia coli.

    PubMed

    Pek, Han Bin; Klement, Maximilian; Ang, Kok Siong; Chung, Bevan Kai-Sheng; Ow, Dave Siak-Wei; Lee, Dong-Yup

    2015-01-01

    Various isoforms of invertases from prokaryotes, fungi, and higher plants has been expressed in Escherichia coli, and codon optimisation is a widely-adopted strategy for improvement of heterologous enzyme expression. Successful synthetic gene design for recombinant protein expression can be done by matching its translational elongation rate against heterologous host organisms via codon optimization. Amongst the various design parameters considered for the gene synthesis, codon context bias has been relatively overlooked compared to individual codon usage which is commonly adopted in most of codon optimization tools. In addition, matching the rates of transcription and translation based on secondary structure may lead to enhanced protein folding. In this study, we evaluated codon context fitness as design criterion for improving the expression of thermostable invertase from Thermotoga maritima in Escherichia coli and explored the relevance of secondary structure regions for folding and expression. We designed three coding sequences by using (1) a commercial vendor optimized gene algorithm, (2) codon context for the whole gene, and (3) codon context based on the secondary structure regions. Then, the codon optimized sequences were transformed and expressed in E. coli. From the resultant enzyme activities and protein yield data, codon context fitness proved to have the highest activity as compared to the wild-type control and other criteria while secondary structure-based strategy is comparable to the control. Codon context bias was shown to be a relevant parameter for enhancing enzyme production in Escherichia coli by codon optimization. Thus, we can effectively design synthetic genes within heterologous host organisms using this criterion.

  17. Synonymous codon usage in TTSuV2: analysis and comparison with TTSuV1.

    PubMed

    Zhang, Zhicheng; Dai, Wei; Dai, Dingzhen

    2013-01-01

    Two species of the DNA virus Torque teno sus virus (TTSuV), TTSuV1 and TTSuV2, have become widely distributed in pig-farming countries in recent years. In this study, we performed a comprehensive analysis of synonymous codon usage bias in 41 available TTSuV2 coding sequences (CDS), and compared the codon usage patterns of TTSuV2 and TTSuV1. TTSuV codon usage patterns were found to be phylogenetically conserved. Values for the effective number of codons (ENC) indicated that the overall extent of codon usage bias in both TTSuV2 and TTSuV1 was not significant, the most frequently occurring codons had an A or C at the third codon position. Correspondence analysis (COA) was performed and TTSuV2 and TTSuV1 sequences were located in different quadrants of the first two major axes. A plot of the ENC revealed that compositional constraint was the major factor determining the codon usage bias for TTSuV2. In addition, hierarchical cluster analysis of 41 TTSuV2 isolates based on relative synonymous codon usage (RSCU) values suggested that there was no association between geographic distribution and codon bias of TTSuV2 sequences. Finally, the comparison of RSCU for TTSuV2, TTSuV1 and the corresponding host sequence indicated that the codon usage pattern of TTSuV2 was similar to that of TTSuV1. However the similarity was low for each virus and its host. These conclusions provide important insight into the synonymous codon usage pattern of TTSuV2, as well as better understangding of the molecular evolution of TTSuV2 genomes.

  18. Iteration SSII cancellation in DD-OFDM PON upstream scheme

    NASA Astrophysics Data System (ADS)

    Ju, Cheng; Liu, Na; Chen, Xue

    2016-04-01

    Iteration interference cancellation algorithm is proposed in direct detection OFDM PON upstream scheme to mitigate subcarrier to subcarrier intermixing interference (SSII) caused by dispersion and square-law photo-detection. The receiver sensitivity is improved by 1 dB in 20-Gbps, 16-QAM OFDM PON upstream experiment after 100-km standard single mode fiber (SSMF) transmission.

  19. Analysis of the genetic diversity of the Plasmodium falciparum multidrug resistance gene 5' upstream region.

    PubMed

    Myrick, Alissa; Sarr, Ousmane; Dieng, Therese; Ndir, Omar; Mboup, Souleymane; Wirth, Dyann F

    2005-02-01

    Recent findings indicating a low level of polymorphism in the Plasmodium falciparum genome have led to the hypothesis that existent polymorphisms are likely to have functional significance. We tested this hypothesis by developing a map of the polymorphism in the P. falciparum multidrug resistance 1 (pfmdr1) gene 5' upstream region and assaying its correlation with drug resistance in a sample of field isolates from Dakar, Senegal. A comparison of six geographically diverse laboratory strains showed that the 1.94-kb 5'-untranslated region is highly monomorphic, with a total of four unique single nucleotide polymorphisms (SNPs) being identified. All of the mutations were localized to a 462-basepair region proximal to the transcription start point. Analysis of this region in field isolates shows the prevalence of one SNP throughout the entire population of parasites, irrespective of drug resistance status. The SNP frequency of the pfmdr1 upstream region is lower than that found in the noncoding region of other genes.

  20. Prevalent Accumulation of Non-Optimal Codons through Somatic Mutations in Human Cancers

    PubMed Central

    Wu, Xudong; Li, Guohui

    2016-01-01

    Cancer is characterized by uncontrolled cell growth, and the cause of different cancers is generally attributed to checkpoint dysregulation of cell proliferation and apoptosis. Recent studies have shown that non-optimal codons were preferentially adopted by genes to generate cell cycle-dependent oscillations in protein levels. This raises the intriguing question of how dynamic changes of codon usage modulate the cancer genome to cope with a non-controlled proliferative cell cycle. In this study, we comprehensively analyzed the somatic mutations of codons in human cancers, and found that non-optimal codons tended to be accumulated through both synonymous and non-synonymous mutations compared with other types of genomic substitution. We further demonstrated that non-optimal codons were prevalently accumulated across different types of cancers, amino acids, and chromosomes, and genes with accumulation of non-optimal codons tended to be involved in protein interaction/signaling networks and encoded important enzymes in metabolic networks that played roles in cancer-related pathways. This study provides insights into the dynamics of codons in the cancer genome and demonstrates that accumulation of non-optimal codons may be an adaptive strategy for cancerous cells to win the competition with normal cells. This deeper interpretation of the patterns and the functional characterization of somatic mutations of codons will help to broaden the current understanding of the molecular basis of cancers. PMID:27513638

  1. Codon 219 polymorphism of PRNP in healthy caucasians and Creutzfeldt-Jakob disease patients

    SciTech Connect

    Petraroli, R.; Pocchiari, M.

    1996-04-01

    A number of point and insert mutations of the PrP gene (PRNP) have been linked to familial Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Scheinker disease (GSS). Moreover, the methionine/valine homozygosity at the polymorphic codon 129 of PRNP may cause a predisposition to sporadic and iatrogenic CJD or may control the age at onset of familial cases carrying either the 144-bp insertion or codon 178, codon 198, and codon 210 pathogenic mutations in PRNP. In addition, the association of methionine or valine at codon 129 and the point mutation at codon 178 on the same allele seem to play an important role in determining either fatal familial insomnia or CJD. However, it is noteworthy that a relationship between codon 129 polymorphism and accelerated pathogenesis (early age at onset or shorter duration of the disease) has not been seen in familial CJD patients with codon 200 mutation or in GSS patients with codon 102 mutation, arguing that other, as yet unidentified, gene products or environmental factors, or both, may influence the clinical expression of these diseases. 17 refs.

  2. Codon-specific and general inhibition of protein synthesis by the tRNA-sequestering minigenes.

    PubMed

    Delgado-Olivares, Luis; Zamora-Romo, Efraín; Guarneros, Gabriel; Hernandez-Sanchez, Javier

    2006-07-01

    The expression of minigenes in bacteria inhibits protein synthesis and cell growth. Presumably, the translating ribosomes, harboring the peptides as peptidyl-tRNAs, pause at the last sense codon of the minigene directed mRNAs. Eventually, the peptidyl-tRNAs drop off and, under limiting activity of peptidyl-tRNA hydrolase, accumulate in the cells reducing the concentration of specific aminoacylable tRNA. Therefore, the extent of inhibition is associated with the rate of starvation for a specific tRNA. Here, we used minigenes harboring various last sense codons that sequester specific tRNAs with different efficiency, to inhibit the translation of reporter genes containing, or not, these codons. A prompt inhibition of the protein synthesis directed by genes containing the codons starved for their cognate tRNA (hungry codons) was observed. However, a non-specific in vitro inhibition of protein synthesis, irrespective of the codon composition of the gene, was also evident. The degree of inhibition correlated directly with the number of hungry codons in the gene. Furthermore, a tRNA(Arg4)-sequestering minigene promoted the production of an incomplete beta-galactosidase polypeptide interrupted, during bacterial polypeptide chain elongation at sites where AGA codons were inserted in the lacZ gene suggesting ribosome pausing at the hungry codons.

  3. Are stop codons recognized by base triplets in the large ribosomal RNA subunit?

    PubMed

    Liang, Han; Landweber, Laura F; Fresco, Jacques R

    2005-10-01

    The precise mechanism of stop codon recognition in translation termination is still unclear. A previously published study by Ivanov and colleagues proposed a new model for stop codon recognition in which 3-nucleotide Ter-anticodons within the loops of hairpin helices 69 (domain IV) and 89 (domain V) in large ribosomal subunit (LSU) rRNA recognize stop codons to terminate protein translation in eubacteria and certain organelles. We evaluated this model by extensive bioinformatic analysis of stop codons and their putative corresponding Ter-anticodons across a much wider range of species, and found many cases for which it cannot explain the stop codon usage without requiring the involvement of one or more of the eight possible noncomplementary base pairs. Involvement of such base pairs may not be structurally or thermodynamically damaging to the model. However, if, according to the model, Ter-anticodon interaction with stop codons occurs within the ribosomal A-site, the structural stringency which that site imposes on sense codon.tRNA anticodon interaction should also extend to stop codon.Ter-anticodon interactions. Moreover, with Ter-tRNA in place of an aminoacyl-tRNA, for each of the various Ter-anticodons there is a sense codon that can interact with it preferentially by complementary and wobble base-pairing. Both these considerations considerably weaken the arguments put forth previously.

  4. Control of ribosome traffic by position-dependent choice of synonymous codons

    NASA Astrophysics Data System (ADS)

    Mitarai, Namiko; Pedersen, Steen

    2013-10-01

    Messenger RNA (mRNA) encodes a sequence of amino acids by using codons. For most amino acids, there are multiple synonymous codons that can encode the amino acid. The translation speed can vary from one codon to another, thus there is room for changing the ribosome speed while keeping the amino acid sequence and hence the resulting protein. Recently, it has been noticed that the choice of the synonymous codon, via the resulting distribution of slow- and fast-translated codons, affects not only on the average speed of one ribosome translating the mRNA but also might have an effect on nearby ribosomes by affecting the appearance of ‘traffic jams’ where multiple ribosomes collide and form queues. To test this ‘context effect’ further, we here investigate the effect of the sequence of synonymous codons on the ribosome traffic by using a ribosome traffic model with codon-dependent rates, estimated from experiments. We compare the ribosome traffic on wild-type (WT) sequences and sequences where the synonymous codons were swapped randomly. By simulating translation of 87 genes, we demonstrate that the WT sequences, especially those with a high bias in codon usage, tend to have the ability to reduce ribosome collisions, hence optimizing the cellular investment in the translation apparatus. The magnitude of such reduction of the translation time might have a significant impact on the cellular growth rate and thereby have importance for the survival of the species.

  5. TARCOG Home Start Program.

    ERIC Educational Resources Information Center

    Top of Alabama Regional Council of Governments, Huntsville. Human Resources Program.

    This report describes the Top of Alabama Regional Council of Governments (TARCOG) Home Start Program. Five aspects of the program are presented. (1) The nutrition component is aimed at helping parents make the best use of food resources through good planning, buying, and cooking. (2) The health program involves provision of medical and dental…

  6. Starting in School

    ERIC Educational Resources Information Center

    Albertine, Susan

    2012-01-01

    Through its signature initiative, Liberal Education and America's Promise (LEAP), the Association of American Colleges and Universities (AAC&U) is promoting a vision for learning that begins in school: Starting in School . . . Rigorous and rich curriculum focused on the essential learning outcomes; comprehensive, individualized, and…

  7. Is Head Start Dying?

    ERIC Educational Resources Information Center

    Sherman, Ann; And Others

    1971-01-01

    Analysis of problems faced by Head Start and its present status includes a review of its transfer from O.E.O. to H.E.W., its extensions, the Westinghouse Report, and other studies and articles. Decline in public interest and support is noted. (KW)

  8. Blogs: Getting Started

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.; Worley, Rebecca B.; Schultz, Benjamin

    2005-01-01

    Blogs are communication tools, they serve as vehicles to transmit messages. Before deciding to blog, one needs to devise a strategy on how this medium will fit in with his or her communication needs. This will also help later in deciding which features one will need to include in his or her blog. This article discusses ways on how to start and…

  9. Smart Start Evaluation Plan.

    ERIC Educational Resources Information Center

    Bryant, Donna; Burchinal, Margaret; Buysse, Virginia; Kotch, Jonathan; Maxwell, Kelly; Neenan, Peter; Noblit, George; Orthner, Dennis; Peisner-Feinberg, Ellen; Telfair, Joseph

    Smart Start is North Carolina's partnership between state government and local leaders, service providers, and families to better serve children under 6 years of age and their families. This report describes the comprehensive plan to evaluate the state and local goals and objectives of the program, focusing on the components addressing the…

  10. Home Start Curriculum Guide.

    ERIC Educational Resources Information Center

    Roggman, Lori; And Others

    This curriculum guide contains monthly work plans and weekly activity units for a Home Start Program. Emphasis is placed on the importance of the home, the family unit, and the education and development of young children by their own parents. Yearly goals include concern for the following: physical and dental health, nutrition, mental health and…

  11. Home Start Evaluation Study.

    ERIC Educational Resources Information Center

    High/Scope Educational Research Foundation, Ypsilanti, MI.

    Case studies of eight Home Start programs are given as the third section of an evaluation study. Communities involved are Binghamton, New York; Franklin, North Carolina; Cleveland, Ohio; Harrogate, Tennessee; Houston, Texas; Weslaco, Texas; Millville, Utah; Parkersburg, West Virginia. Although each study varies in format, each describes in detail…

  12. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): Codon 178 mutation and codon 129 polymorphism

    SciTech Connect

    Medori, R.; Tritschler, H.J. )

    1993-10-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178[sup Asn] reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Straeussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129[sup Met/Val]. Moreover, of five 178[sup Asn] individuals who are above age-at-onset range and who are well, two have 129[sup Met] and three have 129[sup Met/Val], suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178[sup Asn] mutation. 32 refs., 5 figs., 1 tab.

  13. Catalytic Ignition and Upstream Reaction Propagation in a Platinum Tube

    NASA Technical Reports Server (NTRS)

    Struk, P. M.; Dietrich, D. L.; Mellish, B. P.; Miller, F. J.; T'ien, J. S.

    2007-01-01

    A challenge for catalytic combustion in monolithic reactors at elevated temperatures is the start-up or "light-off" from a cold initial condition. In this work, we demonstrate a concept called "back-end catalytic ignition that potentially can be utilized in the light-off of catalytic monoliths. An external downstream flame or Joule heating raises the temperature of a small portion of the catalyst near the outlet initiating a localized catalytic reaction that propagates upstream heating the entire channel. This work uses a transient numerical model to demonstrate "back-end" ignition within a single channel which can characterize the overall performance of a monolith. The paper presents comparisons to an experiment using a single non-adiabatic channel but the concept can be extended to the adiabatic monolith case. In the model, the time scales associated with solid heat-up are typically several orders of magnitude larger than the gas-phase and chemical kinetic time-scales. Therefore, the model assumes a quasi-steady gas-phase with respect to a transient solid. The gas phase is one-dimensional. Appropriate correlations, however, account for heat and mass transfer in a direction perpendicular to the flow. The thermally-thin solid includes axial conduction. The gas phase, however, does not include axial conduction due to the high Peclet number flows. The model includes both detailed gas-phase and catalytic surface reactions. The experiment utilizes a pure platinum circular channel oriented horizontally though which a CO/O2 mixture (equivalence ratios ranging from 0.6 to 0.9) flows at 2 m/s.

  14. Relict landscape resistance to dissection by upstream migrating knickpoints

    NASA Astrophysics Data System (ADS)

    Brocard, Gilles Y.; Willenbring, Jane K.; Miller, Thomas E.; Scatena, Frederik N.

    2016-06-01

    Expanses of subdued topographies are common at high elevation in mountain ranges. They are often interpreted as relict landscapes and are expected to be replaced by steeper topography as erosion proceeds. Preservation of such relict fragments can merely reflect the fact that it takes time to remove any preexisting topography. However, relict fragments could also possess intrinsic characteristics that make them resilient to dissection. We document here the propagation of a wave of dissection across an uplifted relict landscape in Puerto Rico. Using 10Be-26Al burial dating on cave sediments, we show that uplift started 4 Ma and that river knickpoints have since migrated very slowly across the landscape. Modern detrital 10Be erosion rates are consistent with these long-term rates of knickpoint retreat. Analysis of knickpoint distribution, combined with visual observations along the streambeds, indicates that incision by abrasion and plucking is so slow that bedrock weathering becomes a competing process of knickpoint retreat. The studied rivers flow over a massive stock of quartz diorite surrounded by an aureole of metavolcanic rocks. Earlier studies have shown that vegetation over the relict topography efficiently limits erosion, allowing for the formation of a thick saprolite underneath. Such slow erosion reduces streambed load fluxes delivered to the knickpoints, as well as bed load grain size. Both processes limit abrasion. Compounding the effect of slow abrasion, wide joint spacing in the bedrock makes plucking infrequent. Thus, the characteristics of the relict upstream landscape have a direct effect on stream incision farther downstream, reducing the celerity at which the relict, subdued landscape is dissected. We conclude that similar top-down controls on river incision rate may help many relict landscapes to persist amidst highly dissected topographies.

  15. Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation1[OPEN

    PubMed Central

    Chan, Hui-Ting; Williams-Carrier, Rosalind; Barkan, Alice

    2016-01-01

    Codon optimization based on psbA genes from 133 plant species eliminated 105 (human clotting factor VIII heavy chain [FVIII HC]) and 59 (polio VIRAL CAPSID PROTEIN1 [VP1]) rare codons; replacement with only the most highly preferred codons decreased transgene expression (77- to 111-fold) when compared with the codon usage hierarchy of the psbA genes. Targeted proteomic quantification by parallel reaction monitoring analysis showed 4.9- to 7.1-fold or 22.5- to 28.1-fold increase in FVIII or VP1 codon-optimized genes when normalized with stable isotope-labeled standard peptides (or housekeeping protein peptides), but quantitation using western blots showed 6.3- to 8-fold or 91- to 125-fold increase of transgene expression from the same batch of materials, due to limitations in quantitative protein transfer, denaturation, solubility, or stability. Parallel reaction monitoring, to our knowledge validated here for the first time for in planta quantitation of biopharmaceuticals, is especially useful for insoluble or multimeric proteins required for oral drug delivery. Northern blots confirmed that the increase of codon-optimized protein synthesis is at the translational level rather than any impact on transcript abundance. Ribosome footprints did not increase proportionately with VP1 translation or even decreased after FVIII codon optimization but is useful in diagnosing additional rate-limiting steps. A major ribosome pause at CTC leucine codons in the native gene of FVIII HC was eliminated upon codon optimization. Ribosome stalls observed at clusters of serine codons in the codon-optimized VP1 gene provide an opportunity for further optimization. In addition to increasing our understanding of chloroplast translation, these new tools should help to advance this concept toward human clinical studies. PMID:27465114

  16. An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis.

    PubMed

    Laing, William A; Martínez-Sánchez, Marcela; Wright, Michele A; Bulley, Sean M; Brewster, Di; Dare, Andrew P; Rassam, Maysoon; Wang, Daisy; Storey, Roy; Macknight, Richard C; Hellens, Roger P

    2015-03-01

    Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms.

  17. A comparative analysis on the synonymous codon usage pattern in viral functional genes and their translational initiation region of ASFV.

    PubMed

    Zhou, Jian-Hua; Gao, Zong-Liang; Sun, Dong-Jie; Ding, Yao-Zhong; Zhang, Jie; Stipkovits, Laszlo; Szathmary, Susan; Pejsak, Zygmunt; Liu, Yong-Sheng

    2013-04-01

    The synonymous codon usage pattern of African swine fever virus (ASFV), the similarity degree of the synonymous codon usage between this virus and some organisms and the synonymous codon usage bias for the translation initiation region of viral functional genes in the whole genome of ASFV have been investigated by some simply statistical analyses. Although both GC12% (the GC content at the first and second codon positions) and GC3% (the GC content at the third codon position) of viral functional genes have a large fluctuation, the significant correlations between GC12 and GC3% and between GC3% and the first principal axis of principle component analysis on the relative synonymous codon usage of the viral functional genes imply that mutation pressure of ASFV plays an important role in the synonymous codon usage pattern. Turning to the synonymous codon usage of this virus, the codons with U/A end predominate in the synonymous codon family for the same amino acid and a weak codon usage bias in both leading and lagging strands suggests that strand compositional asymmetry does not take part in the formation of codon usage in ASFV. The interaction between the absolute codon usage bias and GC3% suggests that other selections take part in the formation of codon usage, except for the mutation pressure. It is noted that the similarity degree of codon usage between ASFV and soft tick is higher than that between the virus and the pig, suggesting that the soft tick plays a more important role than the pig in the codon usage pattern of ASFV. The translational initiation region of the viral functional genes generally have a strong tendency to select some synonymous codons with low GC content, suggesting that the synonymous codon usage bias caused by translation selection from the host takes part in modulating the translation initiation efficiency of ASFV functional genes.

  18. Atp2c2 Is Transcribed From a Unique Transcriptional Start Site in Mouse Pancreatic Acinar Cells.

    PubMed

    Fenech, Melissa A; Sullivan, Caitlin M; Ferreira, Lucimar T; Mehmood, Rashid; MacDonald, William A; Stathopulos, Peter B; Pin, Christopher L

    2016-12-01

    Proper regulation of cytosolic Ca(2+) is critical for pancreatic acinar cell function. Disruptions in normal Ca(2+) concentrations affect numerous cellular functions and are associated with pancreatitis. Membrane pumps and channels regulate cytosolic Ca(2+) homeostasis by promoting rapid Ca(2+) movement. Determining how expression of Ca(2+) modulators is regulated and the cellular alterations that occur upon changes in expression can provide insight into initiating events of pancreatitis. The goal of this study was to delineate the gene structure and regulation of a novel pancreas-specific isoform for Secretory Pathway Ca(2+) ATPase 2 (termed SPCA2C), which is encoded from the Atp2c2 gene. Using Next Generation Sequencing of RNA (RNA-seq), chromatin immunoprecipitation for epigenetic modifications and promoter-reporter assays, a novel transcriptional start site was identified that promotes expression of a transcript containing the last four exons of the Atp2c2 gene (Atp2c2c). This region was enriched for epigenetic marks and pancreatic transcription factors that promote gene activation. Promoter activity for regions upstream of the ATG codon in Atp2c2's 24th exon was observed in vitro but not in in vivo. Translation from this ATG encodes a protein aligned with the carboxy terminal of SPCA2. Functional analysis in HEK 293A cells indicates a unique role for SPCA2C in increasing cytosolic Ca(2+) . RNA analysis indicates that the decreased Atp2c2c expression observed early in experimental pancreatitis reflects a global molecular response of acinar cells to reduce cytosolic Ca(2+) levels. Combined, these results suggest SPCA2C affects Ca(2+) homeostasis in pancreatic acinar cells in a unique fashion relative to other Ca(2+) ATPases. J. Cell. Physiol. 231: 2768-2778, 2016. © 2016 Wiley Periodicals, Inc.

  19. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    NASA Astrophysics Data System (ADS)

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  20. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    PubMed Central

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  1. New insights into the interplay between codon bias determinants in plants

    PubMed Central

    Camiolo, S.; Melito, S.; Porceddu, A.

    2015-01-01

    Codon bias is the non-random use of synonymous codons, a phenomenon that has been observed in species as diverse as bacteria, plants and mammals. The preferential use of particular synonymous codons may reflect neutral mechanisms (e.g. mutational bias, G|C-biased gene conversion, genetic drift) and/or selection for mRNA stability, translational efficiency and accuracy. The extent to which these different factors influence codon usage is unknown, so we dissected the contribution of mutational bias and selection towards codon bias in genes from 15 eudicots, 4 monocots and 2 mosses. We analysed the frequency of mononucleotides, dinucleotides and trinucleotides and investigated whether the compositional genomic background could account for the observed codon usage profiles. Neutral forces such as mutational pressure and G|C-biased gene conversion appeared to underlie most of the observed codon bias, although there was also evidence for the selection of optimal translational efficiency and mRNA folding. Our data confirmed the compositional differences between monocots and dicots, with the former featuring in general a lower background compositional bias but a higher overall codon bias. PMID:26546225

  2. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously identified the mycobacterial high G+C codon usage bias as a limiting factor in heterologous expression of MAP proteins from Lb.salivarius, and demonstrated that codon optimisation of a synthetic coding gene greatly enhances MAP protein production. Here, we effectively demonstrate ...

  3. Vertebrate codon bias indicates a highly GC-rich ancestral genome.

    PubMed

    Nabiyouni, Maryam; Prakash, Ashwin; Fedorov, Alexei

    2013-04-25

    Two factors are thought to have contributed to the origin of codon usage bias in eukaryotes: 1) genome-wide mutational forces that shape overall GC-content and create context-dependent nucleotide bias, and 2) positive selection for codons that maximize efficient and accurate translation. Particularly in vertebrates, these two explanations contradict each other and cloud the origin of codon bias in the taxon. On the one hand, mutational forces fail to explain GC-richness (~60%) of third codon positions, given the GC-poor overall genomic composition among vertebrates (~40%). On the other hand, positive selection cannot easily explain strict regularities in codon preferences. Large-scale bioinformatic assessment, of nucleotide composition of coding and non-coding sequences in vertebrates and other taxa, suggests a simple possible resolution for this contradiction. Specifically, we propose that the last common vertebrate ancestor had a GC-rich genome (~65% GC). The data suggest that whole-genome mutational bias is the major driving force for generating codon bias. As the bias becomes prominent, it begins to affect translation and can result in positive selection for optimal codons. The positive selection can, in turn, significantly modulate codon preferences.

  4. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD

    PubMed Central

    Fu, Jingjing; Murphy, Katherine A.; Zhou, Mian; Li, Ying H.; Lam, Vu H.; Tabuloc, Christine A.; Chiu, Joanna C.; Liu, Yi

    2016-01-01

    Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage “code” within genetic codons to regulate cotranslational protein folding. PMID:27542830

  5. Selective Factors Associated with the Evolution of Codon Usage in Natural Populations of Arboviruses

    PubMed Central

    Velazquez-Salinas, Lauro; Zarate, Selene; Eschbaumer, Michael; Pereira Lobo, Francisco; Gladue, Douglas P.; Arzt, Jonathan; Novella, Isabel S.; Rodriguez, Luis L.

    2016-01-01

    Arboviruses (arthropod borne viruses) have life cycles that include both vertebrate and invertebrate hosts with substantial differences in vector and host specificity between different viruses. Most arboviruses utilize RNA for their genetic material and are completely dependent on host tRNAs for their translation, suggesting that virus codon usage could be a target for selection. In the current study we analyzed the relative synonymous codon usage (RSCU) patterns of 26 arboviruses together with 25 vectors and hosts, including 8 vertebrates and 17 invertebrates. We used hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify trends in codon usage. HCA demonstrated that the RSCU of arboviruses reflects that of their natural hosts, but not that of dead-end hosts. Of the two major components identified by PCA, the first accounted for 62.1% of the total variance, and among the 59 codons analyzed in this study, the leucine codon CTG had the highest correlation with the first principal component, however isoleucine had the highest correlation during amino acid analysis. Nucleotide and dinucleotide composition were the variables that explained most of the total codon usage variance. The results suggest that the main factors driving the evolution of codon usage in arboviruses is based on the nucleotide and dinucleotide composition present in the host. Comparing codon usage of arboviruses and potential vector hosts can help identifying potential vectors for emerging arboviruses. PMID:27455096

  6. When to Start Antiretroviral Therapy

    MedlinePlus

    ... away. What conditions increase the urgency to start ART? The following conditions increase the urgency to start ... risk of HIV transmission. Once a person starts ART, why is medication adherence important? ART is a ...

  7. Timing is everything: unifying codon translation rates and nascent proteome behavior.

    PubMed

    Nissley, Daniel A; O'Brien, Edward P

    2014-12-31

    Experiments have demonstrated that changing the rate at which the ribosome translates a codon position in an mRNA molecule's open reading frame can alter the behavior of the newly synthesized protein. That is, codon translation rates can govern nascent proteome behavior. We emphasize that this phenomenon is a manifestation of the nonequilibrium nature of cotranslational processes, and as such, there exist theoretical tools that offer a potential means to quantitatively predict the influence of codon translation rates on the broad spectrum of nascent protein behaviors including cotranslational folding, aggregation, and translocation. We provide a review of the experimental evidence for the impact that codon translation rates can have, followed by a discussion of theoretical methods that can describe this phenomenon. The development and application of these tools are likely to provide fundamental insights into protein maturation and homeostasis, codon usage bias in organisms, the origins of translation related diseases, and new rational design methods for biotechnology and biopharmaceutical applications.

  8. Importance of codon usage for the temporal regulation of viral gene expression

    PubMed Central

    Shin, Young C.; Bischof, Georg F.; Lauer, William A.; Desrosiers, Ronald C.

    2015-01-01

    The glycoproteins of herpesviruses and of HIV/SIV are made late in the replication cycle and are derived from transcripts that use an unusual codon usage that is quite different from that of the host cell. Here we show that the actions of natural transinducers from these two different families of persistent viruses (Rev of SIV and ORF57 of the rhesus monkey rhadinovirus) are dependent on the nature of the skewed codon usage. In fact, the transinducibility of expression of these glycoproteins by Rev and by ORF57 can be flipped simply by changing the nature of the codon usage. Even expression of a luciferase reporter could be made Rev dependent or ORF57 dependent by distinctive changes to its codon usage. Our findings point to a new general principle in which different families of persisting viruses use a poor codon usage that is skewed in a distinctive way to temporally regulate late expression of structural gene products. PMID:26504241

  9. Evolutionary switches between two serine codon sets are driven by selection

    PubMed Central

    Rogozin, Igor B.; Belinky, Frida; Pavlenko, Vladimir; Shabalina, Svetlana A.; Kristensen, David M.; Koonin, Eugene V.

    2016-01-01

    Serine is the only amino acid that is encoded by two disjoint codon sets so that a tandem substitution of two nucleotides is required to switch between the two sets. Previously published evidence suggests that, for the most evolutionarily conserved serines, the codon set switch occurs by simultaneous substitution of two nucleotides. Here we report a genome-wide reconstruction of the evolution of serine codons in triplets of closely related species from diverse prokaryotes and eukaryotes. The results indicate that the great majority of codon set switches proceed by two consecutive nucleotide substitutions, via a threonine or cysteine intermediate, and are driven by selection. These findings imply a strong pressure of purifying selection in protein evolution, which in the case of serine codon set switches occurs via an initial deleterious substitution quickly followed by a second, compensatory substitution. The result is frequent reversal of amino acid replacements and, at short evolutionary distances, pervasive homoplasy. PMID:27799560

  10. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis.

    PubMed

    Kille, Sabrina; Acevedo-Rocha, Carlos G; Parra, Loreto P; Zhang, Zhi-Gang; Opperman, Diederik J; Reetz, Manfred T; Acevedo, Juan Pablo

    2013-02-15

    Saturation mutagenesis probes define sections of the vast protein sequence space. However, even if randomization is limited this way, the combinatorial numbers problem is severe. Because diversity is created at the codon level, codon redundancy is a crucial factor determining the necessary effort for library screening. Additionally, due to the probabilistic nature of the sampling process, oversampling is required to ensure library completeness as well as a high probability to encounter all unique variants. Our trick employs a special mixture of three primers, creating a degeneracy of 22 unique codons coding for the 20 canonical amino acids. Therefore, codon redundancy and subsequent screening effort is significantly reduced, and a balanced distribution of codon per amino acid is achieved, as demonstrated exemplarily for a library of cyclohexanone monooxygenase. We show that this strategy is suitable for any saturation mutagenesis methodology to generate less-redundant libraries.

  11. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  12. Properties of "started" earthquakes

    NASA Astrophysics Data System (ADS)

    Babeshko, V. A.; Evdokimova, O. V.; Babeshko, O. M.

    2016-04-01

    The properties of earthquakes called "started" in [1] are studied. The problems associated with the method of revealing them, the expected behavior of the event, and the determination of its place, time, and intensity are discussed. Certain characteristic properties of real earthquakes are compared with the modeled ones. It is emphasized that there are no data on earthquakes of a similar type in scientific publications. The method of using high-efficiency calculations is proposed by imbedding the investigations in topological spaces having a wider spectrum of properties than the functional ones.

  13. Evolutionary characterization of Tembusu virus infection through identification of codon usage patterns.

    PubMed

    Zhou, Hao; Yan, Bing; Chen, Shun; Wang, Mingshu; Jia, Renyong; Cheng, Anchun

    2015-10-01

    Tembusu virus (TMUV) is a single-stranded, positive-sense RNA virus. As reported, TMUV infection has resulted in significant poultry losses, and the virus may also pose a threat to public health. To characterize TMUV evolutionarily and to understand the factors accounting for codon usage properties, we performed, for the first time, a comprehensive analysis of codon usage bias for the genomes of 60 TMUV strains. The most recently published TMUV strains were found to be widely distributed in coastal cities of southeastern China. Codon preference among TMUV genomes exhibits a low bias (effective number of codons (ENC)=53.287) and is maintained at a stable level. ENC-GC3 plots and the high correlation between composition constraints and principal component factor analysis of codon usage demonstrated that mutation pressure dominates over natural selection pressure in shaping the TMUV coding sequence composition. The high correlation between the major components of the codon usage pattern and hydrophobicity (Gravy) or aromaticity (Aromo) was obvious, indicating that properties of viral proteins also account for the observed variation in TMUV codon usage. Principal component analysis (PCA) showed that CQW1 isolated from Chongqing may have evolved from GX2013H or GX2013G isolated from Guangxi, thus indicating that TMUV likely disseminated from southeastern China to the mainland. Moreover, the preferred codons encoding eight amino acids were consistent with the optimal codons for human cells, indicating that TMUV may pose a threat to public health due to possible cross-species transmission (birds to birds or birds to humans). The results of this study not only have theoretical value for uncovering the characteristics of synonymous codon usage patterns in TMUV genomes but also have significant meaning with regard to the molecular evolutionary tendencies of TMUV.

  14. OVERALL VIEW OF CASCADE CANAL COMPANY CRIB DAM, LOOKING UPSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF CASCADE CANAL COMPANY CRIB DAM, LOOKING UPSTREAM FROM DIRECTION OF KACHESS DAM. VIEW TO NORTH - Kachess Dam, 1904 Cascade Canal Company Crib Dam, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA

  15. 10. UPSTREAM SIDE OF UPPER MITER GATES SHOWING STOWED LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. UPSTREAM SIDE OF UPPER MITER GATES SHOWING STOWED LEFT WING OF UPPER GUARD GATE (FAR LEFT). VIEW TO NORTHWEST. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL

  16. 1. OVERALL VIEW OF UPSTREAM FACE OF DAM; SPILLWAY IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF UPSTREAM FACE OF DAM; SPILLWAY IN FOREGROUND, LOCK IN BACKGROUND ON NORTH RIVER BANK. VIEW TO NORTH. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL

  17. 15. OVERALL VIEW OF UPSTREAM FACE OF LIFT GATE SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. OVERALL VIEW OF UPSTREAM FACE OF LIFT GATE SECTION WITH TAINTER GATE SECTION OF SPILLWAY TO THE LEFT. VIEW TO SOUTHWEST. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL

  18. 3. VIEW OF UPSTREAM FACE OF DAM, SHOWING OUTLET GATE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF UPSTREAM FACE OF DAM, SHOWING OUTLET GATE, LOOKING NORTHEAST - High Mountain Dams in Upalco Unit, Island Lake Dam, Ashley National Forest, 4.8 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  19. 5. DETAIL OF PENSTOCK OPENINGS AND HEADGATE DECK FROM UPSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF PENSTOCK OPENINGS AND HEADGATE DECK FROM UPSTREAM (WEST) SIDE, WITH SOUTH EMBANKMENT (MI-98-E) COREWALL AT RIGHT. VIEW TO NORTH. - Cooke Hydroelectric Plant, Powerhouse, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  20. 5. UPSTREAM (WEST) VIEW OF SPILLWAY, WITH COOKE DAM POND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. UPSTREAM (WEST) VIEW OF SPILLWAY, WITH COOKE DAM POND IN FOREGROUND AND NORTH EMBANKMENT (MI-98-A) AT LEFT. VIEW TO NORTHEAST. - Cooke Hydroelectric Plant, Spillway, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  1. 6. DETAIL OF UPSTREAM (WEST) SIDE OF SPILLWAY SHOWING WALKWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF UPSTREAM (WEST) SIDE OF SPILLWAY SHOWING WALKWAY AND CONCRETE SPILLWAY PIERS. VIEW TO NORTH. - Cooke Hydroelectric Plant, Spillway, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  2. 2. UPSTREAM SIDE OF DIVERSION DAM ON THE SNAKE RIVER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. UPSTREAM SIDE OF DIVERSION DAM ON THE SNAKE RIVER, LOOKING SOUTH-SOUTHWEST. NOTE BANK REINFORCEMENT ON LEFT AND SPILLWAY ON RIGHT. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  3. 5. DETAIL OF UPSTREAM FACE OF UPPER EMBANKMENT, SHOWING HANDPLACED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF UPSTREAM FACE OF UPPER EMBANKMENT, SHOWING HAND-PLACED ROCK RIPRAP AND MASONRY PARAPET WALL. VIEW TO NORTHEAST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  4. 25. DETAIL OF UPSTREAM FACE OF LOWER EMBANKMENT, SHOWING HANDPLACED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. DETAIL OF UPSTREAM FACE OF LOWER EMBANKMENT, SHOWING HANDPLACED ROCK RIPRAP AND MASONRY PARAPET WALL. VIEW TO NORTHEAST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  5. 7. Chandler Falls, looking upstream (from north). Golf tee of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Chandler Falls, looking upstream (from north). Golf tee of the Mesa Country Club on right. Photographer: Mark Durben, February 1989. Source: SRPA - Tempe Canal, South Side Salt River in Tempe, Mesa & Phoenix, Tempe, Maricopa County, AZ

  6. 14. Detail, upper chord connection point on upstream side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Detail, upper chord connection point on upstream side of truss, showing connection of upper chord, laced vertical compression member, strut, counters, and laterals. - Dry Creek Bridge, Spanning Dry Creek at Cook Road, Ione, Amador County, CA

  7. 3. General view of upstream face, looking northwest. Spillway is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. General view of upstream face, looking northwest. Spillway is at the far end of the dam. The Antelope Valley is visible in center background. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  8. 4. VIEW SHOWING UPSTREAM FACE OF DAM, LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SHOWING UPSTREAM FACE OF DAM, LOOKING NORTHEAST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  9. 3. OVERALL VIEW OF DAM, SHOWING UPSTREAM FACE, LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERALL VIEW OF DAM, SHOWING UPSTREAM FACE, LOOKING EAST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  10. 23. UPSTREAM DETAIL OF PIER NO. 2 AND THROUGH AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. UPSTREAM DETAIL OF PIER NO. 2 AND THROUGH AND DECK TRUSS END PANELS. VIEW TO SOUTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  11. 65. VIEW LOOKING UPSTREAM FROM FLUME SUBSTRUCTURE, SHOWING COLUMBIA IMPROVEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. VIEW LOOKING UPSTREAM FROM FLUME SUBSTRUCTURE, SHOWING COLUMBIA IMPROVEMENT COMPANY'S NEISSON CREEK SAWMILL. Print No. 177, November 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  12. 18. VIEW OF SETTLING BASIN FROM UPSTREAM TRESTLE, SHOWING BULKHEAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF SETTLING BASIN FROM UPSTREAM TRESTLE, SHOWING BULKHEAD ON RIGHT AND SAND BANK ON LEFT, LOOKING NORTHWEST - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  13. DOG HOUSE AT UPSTREAM LOCK GATE. ALSO SEEN AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DOG HOUSE AT UPSTREAM LOCK GATE. ALSO SEEN AT LEFT IN PHOTO NO. IL-164-A-23. - Illinois Waterway, La Grange Lock and Dam, 3/4 mile south of Country 795N at Illinois River, Versailles, Brown County, IL

  14. UPSTREAM LOCK GATE DETAIL AND DOG HOUSE. NOTE ARM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UPSTREAM LOCK GATE DETAIL AND DOG HOUSE. NOTE ARM AND GEARING FOR CONTROLLING LOCK GATE. LOOKING WEST SOUTHWEST. - Illinois Waterway, Brandon Road Lock and Dam , 1100 Brandon Road, Joliet, Will County, IL

  15. 2. OVERALL VIEW OF LOWWATER DAM, LOOKING UPSTREAM. CHAIN OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERALL VIEW OF LOW-WATER DAM, LOOKING UPSTREAM. CHAIN OF ROCKS BRIDGE AND ST. LOUIS WATER DEPARTMENT INTAKE IN BACKGROUND, LOOKING NORTHWEST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  16. 8. VIEW LOOKING UPSTREAM FROM THE RIVER ARM OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW LOOKING UPSTREAM FROM THE RIVER ARM OF THE COFFERDAM NEAR STATION (September 1936) - Mississippi River 9-Foot Channel Project, Lock & Dam No. 13, Upper Mississippi River, Fulton, Whiteside County, IL

  17. 7. Detail view of reinforced concrete archrings comprising dam's upstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view of reinforced concrete arch-rings comprising dam's upstream face. Impressions of the wooden formwork used in construction are visible in the concrete. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  18. 14. VIEW NORTHEASTWARD OF THE UPSTREAM (WEST) SIDE OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW NORTHEASTWARD OF THE UPSTREAM (WEST) SIDE OF THE PENSTOCK (HEADRACE) BRIDGE - Wagamon Pond Dam & Bridge, Spanning Broadkill River at State Road No. 197 (Mulberry Street), Milton, Sussex County, DE

  19. 5. VIEW FROM THE SOUTHEAST, LOOKING UPSTREAM (NORTHWEST), ACROSS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW FROM THE SOUTHEAST, LOOKING UPSTREAM (NORTHWEST), ACROSS THE ROADWAY OF BRIDGE 808 - Wagamon Pond Dam & Bridge, Spanning Broadkill River at State Road No. 197 (Mulberry Street), Milton, Sussex County, DE

  20. 41. Upstream end of emergency spillway excavation. Photographer unknown, 1929. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Upstream end of emergency spillway excavation. Photographer unknown, 1929. Source: Arizona Department of Water Resources (ADWR). - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  1. DETAIL ELEVATION OF UPSTREAM PARAPET. NOTE THE CLOSED SPANDRELS WHERE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL ELEVATION OF UPSTREAM PARAPET. NOTE THE CLOSED SPANDRELS WHERE THE BEAM BEARINGS CONTACT THE SLENDER CONCRETE PIERS. VIEW FACING SOUTH. - Waikele Canal Bridge and Highway Overpass, Farrington Highway and Waikele Stream, Waipahu, Honolulu County, HI

  2. 23. Upstream view of buttress and arch form work and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Upstream view of buttress and arch form work and construction. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  3. 30. Upstream face of construction effort. Photographer unknown, January 29, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Upstream face of construction effort. Photographer unknown, January 29, 1927. Source: Fritz Seifritz. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  4. 50. Upstream face of Humbug Creek Diversion Dam showing sluice ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Upstream face of Humbug Creek Diversion Dam showing sluice opening. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  5. 56. Upstream face of diversion dam looking east. Headgates are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Upstream face of diversion dam looking east. Headgates are partially visible at far left. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  6. 19. Upstream face of arches and buttresses at west end. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Upstream face of arches and buttresses at west end. Photographer unknown, January 29, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  7. View of upstream face of Grand Coulee Dam, looking northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Grand Coulee Dam, looking northeast. This image features a cloudless sky.) - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  8. 7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. NOTE FRACTURES ALONG BARREL ARCH EXTRADOS. - Roaring Creek Bridge, State Road 2005 spanning Roaring Creek in Locust Township, Slabtown, Columbia County, PA

  9. View of upstream face of Lake Sabrina Dam showing the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Lake Sabrina Dam showing the redwood planks and base of dam from Lake Sabrina Basin, view north - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  10. View of upstream face of Lake Sabrina Dam showing redwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Lake Sabrina Dam showing redwood planks and boulders in Lake Sabrina Basin, view north - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  11. View of Lake Sabrina Dam upstream face from ridge showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam upstream face from ridge showing spillway at lower right of photo, view southwest - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  12. 75. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLEARCHED TYPE: UPSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLE-ARCHED TYPE: UPSTREAM ELEVATION, SHEET 2; OCTOBER 2, 1919. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  13. 5. Contextual oblique view to northwest showing upstream (east) side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Contextual oblique view to northwest showing upstream (east) side of bridge in setting, with Jacob Meyer Park at right. - Stanislaus River Bridge, Atchison, Topeka & Santa Fe Railway at Stanislaus River, Riverbank, Stanislaus County, CA

  14. 1. Site of Mormon Flat Dam looking upstream. Photographer unknown, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Site of Mormon Flat Dam looking upstream. Photographer unknown, 1923. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  15. 2. General view of Mormon Flat looking upstream. Construction activity ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. General view of Mormon Flat looking upstream. Construction activity is visible at center right. Photographer unknown, September 30, 1923. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  16. 6. VIEW OF UPSTREAM FACE OF HORSE MESA, SHOWING CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF UPSTREAM FACE OF HORSE MESA, SHOWING CONCRETE BEING PLACED. PENSTOCK OPENINGS ARE VISIBLE AT CENTER LEFT. August 24, 1926 - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  17. 10. DETAIL OF UPSTREAM FACE OF NEW YORK CANAL HEADWORKS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF UPSTREAM FACE OF NEW YORK CANAL HEADWORKS, SHOWING GATE LIFTING GEARS (TOP), WORM GEAR SHAFTS (CENTER) AND SLIDE GATES (BOTTOM). VIEW TO NORTHWEST. - Boise Project, Boise River Diversion Dam, Across Boise River, Boise, Ada County, ID

  18. 11. DETAIL OF UPSTREAM FACE OF SLUICE GATE CONTROLS FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL OF UPSTREAM FACE OF SLUICE GATE CONTROLS FROM CATWALK, SHOWING GATE LIFTING GEARS (TOP) AND GEAR SHAFTS (BOTTOM). VIEW TO SOUTHWEST. - Boise Project, Boise River Diversion Dam, Across Boise River, Boise, Ada County, ID

  19. 6. CREST ROAD ON UPPER EMBANKMENT, SHOWING MASONRY UPSTREAM PARAPET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CREST ROAD ON UPPER EMBANKMENT, SHOWING MASONRY UPSTREAM PARAPET WALL (LEFT) AND ENTRANCE TO DEER FLAT NAMPA CANAL HEADWORKS (ALSO LEFT). VIEW TO WEST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  20. 6. View south. North elevation upstream face of east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View south. North elevation - upstream face of east pier; details of pier bearing and cantilevered link space hinge (center right). - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  1. 1. Credit JTL General view looking upstream and towards New ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Credit JTL General view looking upstream and towards New Hampshire, unidentified 'crazy man' perched on top of arch. - Bellows Falls Arch Bridge, Spanning Connecticut River, North Walpole, Cheshire County, NH

  2. 22. DETAIL, WEST ABUTMENT AND SHOE, WEST ARCH, UPSTREAM SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL, WEST ABUTMENT AND SHOE, WEST ARCH, UPSTREAM SIDE File photo, Caltrans Office of Structures Maintenance, August, 1953. Photographer unknown. Photocopy of photograph. - San Roque Canyon Bridge, State Highway 192, Santa Barbara, Santa Barbara County, CA

  3. 2. VIEW OF MAIN STORAGE RESERVOIR, SHOWING UPSTREAM SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF MAIN STORAGE RESERVOIR, SHOWING UPSTREAM SIDE OF DAM AND DISCHARGE GATE (LEFT), LOOKING SOUTHWEST (October 1991) - Bonanza Hydraulic Mining Site, Main Storage Reservoir, Swamp Gulch, Salmon, Lemhi County, ID

  4. 5. A VIEW LOOKING WEST, TOWARD THE UPSTREAM SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. A VIEW LOOKING WEST, TOWARD THE UPSTREAM SIDE OF THE PIER, SHOWING THE DETERIORATED SHEARWATER EDGE, THE NORTHEAST ABUTMENT AND WING WALL. - Cement Plant Road Bridge, Spanning Leatherwood Creek on County Road 50 South, Bedford, Lawrence County, IN

  5. Emergence of Upstream Swimming via a Hydrodynamic Transition

    NASA Astrophysics Data System (ADS)

    Tung, Chih-kuan; Ardon, Florencia; Roy, Anubhab; Koch, Donald L.; Suarez, Susan S.; Wu, Mingming

    2015-03-01

    We demonstrate that upstream swimming of sperm emerges via an orientation disorder-order transition. The order parameter, the average orientation of the sperm head against the flow, follows a 0.5 power law with the deviation from the critical flow shear rate (γ -γc ). This transition is successfully explained by a hydrodynamic bifurcation theory, which extends the sperm upstream swimming to a broad class of near surface microswimmers that possess front-back asymmetry and circular motion.

  6. Missouri: Early Head Start Initiative

    ERIC Educational Resources Information Center

    Center for Law and Social Policy, Inc. (CLASP), 2012

    2012-01-01

    Missouri's Early Head Start/Child Care Partnership Project expands access to Early Head Start (EHS) services for children birth to age 3 by developing partnerships between federal Head Start, EHS contractors, and child care providers. Head Start and EHS contractors that participate in the initiative provide services through community child care…

  7. Minnesota: Early Head Start Initiatiive

    ERIC Educational Resources Information Center

    Center for Law and Social Policy, Inc. (CLASP), 2012

    2012-01-01

    Minnesota provides supplemental state funding to existing federal Head Start and Early Head Start (EHS) grantees to increase their capacity to serve additional infants, toddlers, and pregnant women. The initiative was started in 1997 when the state legislature earmarked $1 million of the general state Head Start supplemental funds for children…

  8. A Comparative Analysis of Synonymous Codon Usage Bias Pattern in Human Albumin Superfamily

    PubMed Central

    Mirsafian, Hoda; Mat Ripen, Adiratna; Singh, Aarti; Teo, Phaik Hwan; Merican, Amir Feisal; Mohamad, Saharuddin Bin

    2014-01-01

    Synonymous codon usage bias is an inevitable phenomenon in organismic taxa across the three domains of life. Though the frequency of codon usage is not equal across species and within genome in the same species, the phenomenon is non random and is tissue-specific. Several factors such as GC content, nucleotide distribution, protein hydropathy, protein secondary structure, and translational selection are reported to contribute to codon usage preference. The synonymous codon usage patterns can be helpful in revealing the expression pattern of genes as well as the evolutionary relationship between the sequences. In this study, synonymous codon usage bias patterns were determined for the evolutionarily close proteins of albumin superfamily, namely, albumin, α-fetoprotein, afamin, and vitamin D-binding protein. Our study demonstrated that the genes of the four albumin superfamily members have low GC content and high values of effective number of codons (ENC) suggesting high expressivity of these genes and less bias in codon usage preferences. This study also provided evidence that the albumin superfamily members are not subjected to mutational selection pressure. PMID:24707212

  9. Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes

    NASA Astrophysics Data System (ADS)

    Iwane, Yoshihiko; Hitomi, Azusa; Murakami, Hiroshi; Katoh, Takayuki; Goto, Yuki; Suga, Hiroaki

    2016-04-01

    In ribosomal polypeptide synthesis the library of amino acid building blocks is limited by the manner in which codons are used. Of the proteinogenic amino acids, 18 are coded for by multiple codons and therefore many of the 61 sense codons can be considered redundant. Here we report a method to reduce the redundancy of codons by artificially dividing codon boxes to create vacant codons that can then be reassigned to non-proteinogenic amino acids and thereby expand the library of genetically encoded amino acids. To achieve this, we reconstituted a cell-free translation system with 32 in vitro transcripts of transfer RNASNN (tRNASNN) (S = G or C), assigning the initiator and 20 elongator amino acids. Reassignment of three redundant codons was achieved by replacing redundant tRNASNNs with tRNASNNs pre-charged with non-proteinogenic amino acids. As a demonstration, we expressed a 32-mer linear peptide that consists of 20 proteinogenic and three non-proteinogenic amino acids, and a 14-mer macrocyclic peptide that contains more than four non-proteinogenic amino acids.

  10. The CUG codon is decoded in vivo as serine and not leucine in Candida albicans.

    PubMed Central

    Santos, M A; Tuite, M F

    1995-01-01

    Previous studies have shown that the yeast Candida albicans encodes a unique seryl-tRNA(CAG) that should decode the leucine codon CUG as serine. However, in vitro translation of several different CUG-containing mRNAs in the presence of this unusual seryl-tRNA(CAG) result in an apparent increase in the molecular weight of the encoded polypeptides as judged by SDS-PAGE even though the molecular weight of serine is lower than that of leucine. A possible explanation for this altered electrophoretic mobility is that the CUG codon is decoded as modified serine in vitro. To elucidate the nature of CUG decoding in vivo, a reporter system based on the C. albicans gene (RBP1) encoding rapamycin-binding protein (RBP), coupled to the promoter of the C. albicans TEF3 gene, was utilized. Sequencing and mass-spectrometry analysis of the recombinant RBP expressed in C. albicans demonstrated that the CUG codon was decoded exclusively as serine while the related CUU codon was translated as leucine. A database search revealed that 32 out of the 65 C. albicans gene sequences available have CUG codons in their open reading frames. The CUG-containing genes do not belong to any particular gene family. Thus the amino acid specified by the CUG codon has been reassigned within the mRNAs of C. albicans. We argue here that this unique genetic code change in cellular mRNAs cannot be explained by the 'Codon Reassignment Theory'. Images PMID:7784200

  11. Analysis of synonymous codon usage in Aeropyrum pernix K1 and other Crenarchaeota microorganisms.

    PubMed

    Jiang, Peng; Sun, Xiao; Lu, Zuhong

    2007-03-01

    In this study, a comparative analysis of the codon usage bias was performed in Aeropyrum pernix K1 and two other phylogenetically related Crenarchaeota microorganisms (i.e., Pyrobaculum aerophilum str. IM2 and Sulfolobus acidocaldarius DSM 639). The results indicated that the synonymous codon usage in A. pernix K1 was less biased, which was highly correlated with the GC(3S) value. The codon usage patterns were phylogenetically conserved among these Crenarchaeota microorganisms. Comparatively, it is the species function rather than the gene function that determines their gene codon usage patterns. A. pernix K1, P. aerophilum str. IM2, and S. acidocaldarius DSM 639 live in differently extreme conditions. It is presumed that the living environment played an important role in determining the codon usage pattern of these microorganisms. Besides, there was no strain-specific codon usage among these microorganisms. The extent of codon bias in A. pernix K1 and S. acidocaldarius DSM 639 were highly correlated with the gene expression level, but no such association was detected in P. aerophilum str. IM2 genomes.

  12. Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer

    PubMed Central

    Liu, Jibin; Zhu, Dekang; Ma, Guangpeng; Liu, Mafeng; Wang, Mingshu; Jia, Renyong; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2016-01-01

    Riemerella anatipestifer (RA) belongs to the Flavobacteriaceae family and can cause a septicemia disease in poultry. The synonymous codon usage patterns of bacteria reflect a series of evolutionary changes that enable bacteria to improve tolerance of the various environments. We detailed the codon usage patterns of RA isolates from the available 12 sequenced genomes by multiple codon and statistical analysis. Nucleotide compositions and relative synonymous codon usage (RSCU) analysis revealed that A or U ending codons are predominant in RA. Neutrality analysis found no significant correlation between GC12 and GC3 (p > 0.05). Correspondence analysis and ENc-plot results showed that natural selection dominated over mutation in the codon usage bias. The tree of cluster analysis based on RSCU was concordant with dendrogram based on genomic BLAST by neighbor-joining method. By comparative analysis, about 50 highly expressed genes that were orthologs across all 12 strains were found in the top 5% of high CAI value. Based on these CAI values, we infer that RA contains a number of predicted highly expressed coding sequences, involved in transcriptional regulation and metabolism, reflecting their requirement for dealing with diverse environmental conditions. These results provide some useful information on the mechanisms that contribute to codon usage bias and evolution of RA. PMID:27517915

  13. The Impact of Selection at the Amino Acid Level on the Usage of Synonymous Codons

    PubMed Central

    Błażej, Paweł; Mackiewicz, Dorota; Wnętrzak, Małgorzata; Mackiewicz, Paweł

    2017-01-01

    There are two main forces that affect usage of synonymous codons: directional mutational pressure and selection. The effectiveness of protein translation is usually considered as the main selectional factor. However, biased codon usage can also be a byproduct of a general selection at the amino acid level interacting with nucleotide replacements. To evaluate the validity and strength of such an effect, we superimposed >3.5 billion unrestricted mutational processes on the selection of nonsynonymous substitutions based on the differences in physicochemical properties of the coded amino acids. Using a modified evolutionary optimization algorithm, we determined the conditions in which the effect on the relative codon usage is maximized. We found that the effect is enhanced by mutational processes generating more adenine and thymine than guanine and cytosine, as well as more purines than pyrimidines. Interestingly, this effect is observed only under an unrestricted model of nucleotide substitution, and disappears when the mutational process is time-reversible. Comparison of the simulation results with data for real protein coding sequences indicates that the impact of selection at the amino acid level on synonymous codon usage cannot be neglected. Furthermore, it can considerably interfere, especially in AT-rich genomes, with other selections on codon usage, e.g., translational efficiency. It may also lead to difficulties in the recognition of other effects influencing codon bias, and an overestimation of protein coding sequences whose codon usage is subjected to adaptational selection. PMID:28122952

  14. Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula.

    PubMed

    Ingvarsson, Pär K

    2007-03-01

    Codon bias is generally thought to be determined by a balance between mutation, genetic drift, and natural selection on translational efficiency. However, natural selection on codon usage is considered to be a weak evolutionary force and selection on codon usage is expected to be strongest in species with large effective population sizes. In this paper, I study associations between codon usage, gene expression, and molecular evolution at synonymous and nonsynonymous sites in the long-lived, woody perennial plant Populus tremula (Salicaceae). Using expression data for 558 genes derived from expressed sequence tags (EST) libraries from 19 different tissues and developmental stages, I study how gene expression levels within single tissues as well as across tissues affect codon usage and rates sequence evolution at synonymous and nonsynonymous sites. I show that gene expression have direct effects on both codon usage and the level of selective constraint of proteins in P. tremula, although in different ways. Codon usage genes is primarily determined by how highly expressed a genes is, whereas rates of sequence evolution are primarily determined by how widely expressed genes are. In addition to the effects of gene expression, protein length appear to be an important factor influencing virtually all aspects of molecular evolution in P. tremula.

  15. Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases.

    PubMed Central

    Stenico, M; Lloyd, A T; Sharp, P M

    1994-01-01

    Synonymous codon usage varies considerably among Caenorhabditis elegans genes. Multivariate statistical analyses reveal a single major trend among genes. At one end of the trend lie genes with relatively unbiased codon usage. These genes appear to be lowly expressed, and their patterns of codon usage are consistent with mutational biases influenced by the neighbouring nucleotide. At the other extreme lie genes with extremely biased codon usage. These genes appear to be highly expressed, and their codon usage seems to have been shaped by selection favouring a limited number of translationally optimal codons. Thus, the frequency of these optimal codons in a gene appears to be correlated with the level of gene expression, and may be a useful indicator in the case of genes (or open reading frames) whose expression levels (or even function) are unknown. A second, relatively minor trend among genes is correlated with the frequency of G at synonymously variable sites. It is not yet clear whether this trend reflects variation in base composition (or mutational biases) among regions of the C.elegans genome, or some other factor. Sequence divergence between C.elegans and C.briggsae has also been studied. PMID:8041603

  16. Discrimination by Escherichia coli initiation factor IF3 against initiation on non-canonical codons relies on complementarity rules.

    PubMed

    Meinnel, T; Sacerdot, C; Graffe, M; Blanquet, S; Springer, M

    1999-07-23

    Translation initiation factor IF3, one of three factors specifically required for translation initiation in Escherichia coli, inhibits initiation on any codon other than the three canonical initiation codons, AUG, GUG, or UUG. This discrimination against initiation on non-canonical codons could be due to either direct recognition of the two last bases of the codon and their cognate bases on the anticodon or to some ability to "feel" codon-anticodon complementarity. To investigate the importance of codon-anticodon complementarity in the discriminatory role of IF3, we constructed a derivative of tRNALeuthat has all the known characteristics of an initiator tRNA except the CAU anticodon. This tRNA is efficiently formylated by methionyl-tRNAfMettransformylase and charged by leucyl-tRNA synthetase irrespective of the sequence of its anticodon. These initiator tRNALeuderivatives (called tRNALI) allow initiation at all the non-canonical codons tested, provided that the complementarity between the codon and the anticodon of the initiator tRNALeuis respected. More remarkably, the discrimination by IF3, normally observed with non-canonical codons, is neutralised if a tRNALIcarrying a complementary anticodon is used for initiation. This suggests that IF3 somehow recognises codon-anticodon complementarity, at least at the second and third position of the codon, rather than some specific bases in either the codon or the anticodon.

  17. A coordinated codon-dependent regulation of translation by Elongator

    PubMed Central

    Bauer, Fanelie; Hermand, Damien

    2012-01-01

    More than a decade ago, the purification of the form of the RNA polymerase II (PolII) engaged in elongation led to the discovery of an associated, multi-subunit (Elp1-6) complex named “Elongator” by the Svejstrup lab. Although further evidence supported the original notion that Elongator is involved in transcription, Elongator lacked some of the expected features for a regulator of the elongating PolII. The discovery by the Byström lab, based on genetic dissection, that Elongator is pivotal for tRNA modifications, and that all the reported phenotypes of Elongator mutants are suppressed by the overexpression of two tRNAs added to the confusion. The increasing range of both potential substrates and biological processes regulated by Elongator in higher eukaryotes indicates that the major challenge of the field is to determine the biologically relevant function of Elongator. Our recent proteome-wide study in fission yeast supports a coordinated codon-dependent regulation of translation by Elongator. Here we provide additional analyses extending this hypothesis to budding yeast and worm. PMID:23165209

  18. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase

    PubMed Central

    Patzoldt, William L.; Hager, Aaron G.; McCormick, Joel S.; Tranel, Patrick J.

    2006-01-01

    Herbicides that act by inhibiting protoporphyrinogen oxidase (PPO) are widely used to control weeds in a variety of crops. The first weed to evolve resistance to PPO-inhibiting herbicides was Amaranthus tuberculatus, a problematic weed in the midwestern United States that previously had evolved multiple resistances to herbicides inhibiting two other target sites. Evaluation of a PPO-inhibitor-resistant A. tuberculatus biotype revealed that resistance was a (incompletely) dominant trait conferred by a single, nuclear gene. Three genes predicted to encode PPO were identified in A. tuberculatus. One gene from the resistant biotype, designated PPX2L, contained a codon deletion that was shown to confer resistance by complementation of a hemG mutant strain of Escherichia coli grown in the presence and absence of the PPO inhibitor lactofen. PPX2L is predicted to encode both plastid- and mitochondria-targeted PPO isoforms, allowing a mutation in a single gene to confer resistance to two herbicide target sites. Unique aspects of the resistance mechanism include an amino acid deletion, rather than a substitution, and the dual-targeting nature of the gene, which may explain why resistance to PPO inhibitors has been rare. PMID:16894159

  19. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase.

    PubMed

    Patzoldt, William L; Hager, Aaron G; McCormick, Joel S; Tranel, Patrick J

    2006-08-15

    Herbicides that act by inhibiting protoporphyrinogen oxidase (PPO) are widely used to control weeds in a variety of crops. The first weed to evolve resistance to PPO-inhibiting herbicides was Amaranthus tuberculatus, a problematic weed in the midwestern United States that previously had evolved multiple resistances to herbicides inhibiting two other target sites. Evaluation of a PPO-inhibitor-resistant A. tuberculatus biotype revealed that resistance was a (incompletely) dominant trait conferred by a single, nuclear gene. Three genes predicted to encode PPO were identified in A. tuberculatus. One gene from the resistant biotype, designated PPX2L, contained a codon deletion that was shown to confer resistance by complementation of a hemG mutant strain of Escherichia coli grown in the presence and absence of the PPO inhibitor lactofen. PPX2L is predicted to encode both plastid- and mitochondria-targeted PPO isoforms, allowing a mutation in a single gene to confer resistance to two herbicide target sites. Unique aspects of the resistance mechanism include an amino acid deletion, rather than a substitution, and the dual-targeting nature of the gene, which may explain why resistance to PPO inhibitors has been rare.

  20. NECTAR: a database of codon-centric missense variant annotations.

    PubMed

    Gong, Sungsam; Ware, James S; Walsh, Roddy; Cook, Stuart A

    2014-01-01

    NECTAR (Non-synonymous Enriched Coding muTation ARchive; http://nectarmutation.org) is a database and web application to annotate disease-related and functionally important amino acids in human proteins. A number of tools are available to facilitate the interpretation of DNA variants identified in diagnostic or research sequencing. These typically identify previous reports of DNA variation at a given genomic location, predict its effects on transcript and protein sequence and may predict downstream functional consequences. Previous reports and functional annotations are typically linked by the genomic location of the variant observed. NECTAR collates disease-causing variants and functionally important amino acid residues from a number of sources. Importantly, rather than simply linking annotations by a shared genomic location, NECTAR annotates variants of interest with details of previously reported variation affecting the same codon. This provides a much richer data set for the interpretation of a novel DNA variant. NECTAR also identifies functionally equivalent amino acid residues in evolutionarily related proteins (paralogues) and, where appropriate, transfers annotations between them. As well as accessing these data through a web interface, users can upload batches of variants in variant call format (VCF) for annotation on-the-fly. The database is freely available to download from the ftp site: ftp://ftp.nectarmutation.org.

  1. Barriers impede upstream spawning migration of flathead chub

    USGS Publications Warehouse

    Walters, David M.; Zuellig, Robert E.; Crockett, Harry J.; Bruce, James F.; Lukacs, Paul M.; Fitzpatrick, Ryan M.

    2014-01-01

    Many native cyprinids are declining throughout the North American Great Plains. Some of these species require long reaches of contiguous, flowing riverine habitat for drifting eggs or larvae to develop, and their declining populations have been attributed to habitat fragmentation or barriers (e.g., dams, dewatered channels, and reservoirs) that restrict fish movement. Upstream dispersal is also needed to maintain populations of species with passively drifting eggs or larvae, and prior researchers have suggested that these fishes migrate upstream to spawn. To test this hypothesis, we conducted a mark–recapture study of Flathead Chub Platygobio gracilis within a 91-km reach of continuous riverine habitat in Fountain Creek, Colorado. We measured CPUE, spawning readiness (percent of Flathead Chub expressing milt), and fish movement relative to a channel-spanning dam. Multiple lines of evidence indicate that Flathead Chub migrate upstream to spawn during summer. The CPUE was much higher at the base of the dam than at downstream sites; the seasonal increases in CPUE at the dam closely tracked seasonal increases in spawning readiness, and marked fish moved upstream as far as 33 km during the spawning run. The upstream migration was effectively blocked by the dam. The CPUE of Flathead Chub was much lower upstream of the OHDD than at downstream sites, and <0.2% of fish marked at the dam were recaptured upstream. This study provides the first direct evidence of spawning migration for Flathead Chub and supports the general hypothesis that barriers limit adult dispersal of these and other plains fishes.

  2. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

    PubMed

    Ho, Joanne M; Reynolds, Noah M; Rivera, Keith; Connolly, Morgan; Guo, Li-Tao; Ling, Jiqiang; Pappin, Darryl J; Church, George M; Söll, Dieter

    2016-02-19

    Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.

  3. Tryptophan Codon-Dependent Transcription in Chlamydia pneumoniae during Gamma Interferon-Mediated Tryptophan Limitation

    PubMed Central

    Rueden, Kelsey J.; Rucks, Elizabeth A.

    2016-01-01

    In evolving to an obligate intracellular niche, Chlamydia has streamlined its genome by eliminating superfluous genes as it relies on the host cell for a variety of nutritional needs like amino acids. However, Chlamydia can experience amino acid starvation when the human host cell in which the bacteria reside is exposed to interferon gamma (IFN-γ), which leads to a tryptophan (Trp)-limiting environment via induction of the enzyme indoleamine-2,3-dioxygenase (IDO). The stringent response is used to respond to amino acid starvation in most bacteria but is missing from Chlamydia. Thus, how Chlamydia, a Trp auxotroph, responds to Trp starvation in the absence of a stringent response is an intriguing question. We previously observed that C. pneumoniae responds to this stress by globally increasing transcription while globally decreasing translation, an unusual response. Here, we sought to understand this and hypothesized that the Trp codon content of a given gene would determine its transcription level. We quantified transcripts from C. pneumoniae genes that were either rich or poor in Trp codons and found that Trp codon-rich transcripts were increased, whereas those that lacked Trp codons were unchanged or even decreased. There were exceptions, and these involved operons or large genes with multiple Trp codons: downstream transcripts were less abundant after Trp codon-rich sequences. These data suggest that ribosome stalling on Trp codons causes a negative polar effect on downstream sequences. Finally, reassessing previous C. pneumoniae microarray data based on codon content, we found that upregulated transcripts were enriched in Trp codons, thus supporting our hypothesis. PMID:27400720

  4. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes

    PubMed Central

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-01-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including “codon capture,” “genome streamlining,” and “ambiguous intermediate” theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNAAla containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. PMID:27197221

  5. Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type.

    PubMed Central

    Grantham, R; Gautier, C; Gouy, M

    1980-01-01

    The poor printing of our previous Figure 2 (1) is corrected. Codon usage in mRNA sequences just published is also given. A new correspondence analysis is done, based on simultaneous comparison in all mRNA of use of the 61 codons. This analysis reinforces our claim that most genes in a genome, or genome type, have the same coding strategy; that is, they show similar choices among synonymous codons, or among degenerate bases (2). Like analysis on frequency variation in the amino acids coded reveals an entirely different pattern. PMID:6159596

  6. Starting physiology: bioelectrogenesis.

    PubMed

    Baptista, Vander

    2015-12-01

    From a Cartesian perspective of rational analysis, the electric potential difference across the cell membrane is one of the fundamental concepts for the study of physiology. Unfortunately, undergraduate students often struggle to understand the genesis of this energy gradient, which makes the teaching activity a hard task for the instructor. The topic of bioelectrogenesis encompasses multidisciplinary concepts, involves several mechanisms, and is a dynamic process, i.e., it never turns off during the lifetime of the cell. Therefore, to improve the transmission and acquisition of knowledge in this field, I present an alternative didactic model. The design of the model assumes that it is possible to build, in a series of sequential steps, an assembly of proteins within the membrane of an isolated cell in a simulated electrophysiology experiment. Initially, no proteins are inserted in the membrane and the cell is at a baseline energy state; the extracellular and intracellular fluids are at thermodynamic equilibrium. Students are guided through a sequence of four steps that add key membrane transport proteins to the model cell. The model is simple at the start and becomes progressively more complex, finally producing transmembrane chemical and electrical gradients. I believe that this didactic approach helps instructors with a more efficient tool for the teaching of the mechanisms of resting membrane potential while helping students avoid common difficulties that may be encountered when learning this topic.

  7. The GlueX Start Counter

    NASA Astrophysics Data System (ADS)

    Llodra, Anthony; Pooser, Eric; GlueX Collaboration

    2015-04-01

    The GlueX experiment, which is online as of October of 2014, will study meson photo production with unprecedented precision. This experiment will use the coherent bremsstrahlung technique to produce a 9 GeV linearly polarized photon beam incident on a liquid H2 target kept at a few degrees Kelvin. A Start Counter detector has been fabricated to identify the accelerator electron beam buckets, approximately 2 nanoseconds apart, and to provide accurate timing information. This detector is designed to operate at photon intensities of up to 108 γ/s in the coherent peak and provide a timing resolution of less than 350 picoseconds so as to provide successful identification of the electron beam buckets. It consists of a cylindrical array of 30 scintillators with pointed ends that bend towards the beam at the downstream end. The EJ-200 scintillator is best suited for the Start Counter due to its fast decay time on the order of 2 nanoseconds and long attenuation length. Silicon Photo Multiplier (SiPM) detectors have been selected as the readout system and are to be placed as close as possible, less than 300 micron, to the upstream end of each scintillator. The methods/details of the assembly and the optimization of the surface quality of scintillator paddles are discussed. This work was supported in part by DoE Contracts DE-FG02-99ER41065 and DE-AC05-06OR23177.

  8. From Head Start to Sure Start: Reflections on Policy Transfer

    ERIC Educational Resources Information Center

    Welshman, John

    2010-01-01

    This article uses the history of debates over the US Head Start programme (1965), Early Head Start (1994) and the UK Sure Start initiative (1998), as a window on to policy transfer. In all the three, the aim was that early intervention could offer a means of boosting children's educational attainment and of countering the wider effects of poverty…

  9. Enhancing functional expression of codon-optimized heterologous enzymes in Escherichia coli BL21(DE3) by selective introduction of synonymous rare codons.

    PubMed

    Zhong, Chao; Wei, Ping; Zhang, Yi-Heng Percival

    2017-05-01

    Rare codon in a heterologous gene may cause premature termination of protein synthesis, misincorporation of amino acids, and/or slow translation of mRNA, decreasing the heterologous protein expression. However, its hypothetical function pertaining to functional protein folding has been barely reported. Here, we investigated the effects of selective introduction of synonymous rare codons (SRCs) to two codon-optimized (i.e., rare codon-free) genes sucrose phosphorylase (SP) gene from Thermoanaerobacterium thermosaccharolyticum and amidohydrolase gene from Streptomyces caatingaensis on their expression levels in Escherichia coli BL21(DE3). We investigated the introduction of a single SRC to the coding regions of alpha-helix, beta-strand, or linker in the first half of rare codon-free sp and ah gene. The introduction of a single SRC in the beginning of the coding regions of beta-strand greatly enhanced their soluble expression levels as compared to the other regions. Also, we applied directed evolution to test multi-SRC-containing sp gene mutants for enhanced soluble SP expression levels. To easily identify the soluble SP expression level of colonies growing on Petri dishes, mCherry fluorescent protein was used as a SP-folding reporter when it was fused to the 3' end of the sp gene mutant libraries. After three rounds of screening, the best sp gene mutant containing nine SRCs exhibited an approximately six-fold enhancement in soluble protein expression level as compared to the wild-type and rare codon-free sp control. This study suggests that the selective introduction of SRCs can attenuate translation at specific points and such discontinuous attenuation can temporally separate the translation of segments of the peptide chains and actively coordinates their co-translational folding, resulting in enhanced functional protein expression. Biotechnol. Bioeng. 2017;114: 1054-1064. © 2016 Wiley Periodicals, Inc.

  10. Novel Homozygous Mutation of the Internal Translation Initiation Start Site of VHL is Exclusively Associated with Erythrocytosis: Indications for Distinct Functional Roles of von Hippel-Lindau Tumor Suppressor Isoforms.

    PubMed

    Bartels, Marije; van der Zalm, Marieke M; van Oirschot, Brigitte A; Lee, Frank S; Giles, Rachel H; Kruip, Marieke J H A; Gitz-Francois, Jerney J J M; Van Solinge, Wouter W; Bierings, Marc; van Wijk, Richard

    2015-11-01

    Congenital secondary erythrocytosis is a rare disorder characterized by increased red blood cell production. An important cause involves defects in the oxygen sensing pathway, in particular the PHD2-VHL-HIF axis. Mutations in VHL are also associated with the von Hippel-Lindau tumor predisposition syndrome. The differences in phenotypic expression of VHL mutations are poorly understood. We report on three patients with erythrocytosis, from two unrelated families. All patients show exceptionally high erythropoietin (EPO) levels, and are homozygous for a novel missense mutation in VHL: c.162G>C p.(Met54Ile). The c.162G>C mutation is the most upstream homozygous VHL mutation described so far in patients with erythrocytosis. It abolishes the internal translational start codon, which directs expression of VHLp19, resulting in the production of only VHLp30. The exceptionally high EPO levels and the absence of VHL-associated tumors in the patients suggest that VHLp19 has a role for regulating EPO levels that VHLp30 does not have, whereas VHLp30 is really the tumor suppressor isoform.

  11. Development of K562 cell clones expressing β-globin mRNA carrying the β039 thalassaemia mutation for the screening of correctors of stop-codon mutations

    PubMed Central

    Salvatori, Francesca; Cantale, Vera; Breveglieri, Giulia; Zuccato, Cristina; Finotti, Alessia; Bianchi, Nicoletta; Borgatti, Monica; Feriotto, Giordana; Destro, Federica; Canella, Alessandro; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2013-01-01

    Nonsense mutations, giving rise to UAA, UGA and UAG stop codons within the coding region of mRNAs, promote premature translational termination and are the leading cause of approx. 30 % of inherited diseases, including cystic fibrosis, Duchenne muscular dystrophy and thalassaemia. For instance, in β039-thalassaemia the CAG (glutamine) codon is mutated to the UAG stop codon, leading to premature translation termination and to mRNA destabilization through the well-described NMD (nonsense-mediated mRNA decay). In order to develop an approach facilitating translation and, therefore, protection from NMD, aminoglycoside antibiotics have been tested on mRNAs carrying premature stop codons. These drugs decrease the accuracy in the codon–anticodon base-pairing, inducing a ribosomal read-through of the premature termination codons. Interestingly, recent papers have described drugs designed and produced for suppressing premature translational termination, inducing a ribosomal read-through of premature but not normal termination codons. These findings have introduced new hopes for the development of a pharmacological approach to the therapy of β039-thalassaemia. In this context, we started the development of a cellular model of the β039-thalassaemia mutation that could be used for the screening of a high number of aminoglycosides and analogous molecules. To this aim, we produced a lentiviral construct containing the β039-thalassaemia globin gene under a minimal LCR (locus control region) control and used this construct for the transduction of K562 cells, subsequently subcloned, with the purpose to obtain several K562 clones with different integration copies of the construct. These clones were then treated with Geneticin (also known as G418) and other aminoglycosides and the production of β-globin was analysed by FACS analysis. The results obtained suggest that this experimental system is suitable for the characterization of correction of the β039-globin mutation causing

  12. Flu Season Starting to Peak

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_162917.html Flu Season Starting to Peak More severe strain of ... 6, 2017 FRIDAY, Jan. 6, 2017 (HealthDay News) -- Flu season is in full swing and it's starting ...

  13. Emergence of upstream swimming through a hydrodynamic transition

    PubMed Central

    Tung, Chih-kuan; Ardon, Florencia; Roy, Anubhab; Koch, Donald L.; Suarez, Susan S.; Wu, Mingming

    2015-01-01

    We demonstrate that upstream swimming of sperm emerges via an orientation disorder-order transition. The order parameter, the average orientation of the sperm head against the flow, follows a 0.5 power law with the deviation from the critical flow shear rate (γ − γc). This transition is successfully explained by a hydrodynamic bifurcation theory, which extends the sperm upstream swimming to a broad class of near surface micro-swimmers that possess front-back asymmetry and circular motion. PMID:25815969

  14. Transition duct with divided upstream and downstream portions

    DOEpatents

    McMahan, Kevin Weston; LeBegue, Jeffrey Scott; Maldonado, Jaime Javier; Dillard, Daniel Jackson; Flanagan, James Scott

    2015-07-14

    Turbine systems are provided. In one embodiment, a turbine system includes a transition duct comprising an inlet, an outlet, and a duct passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The duct passage includes an upstream portion extending from the inlet and a downstream portion extending from the outlet. The turbine system further includes a rib extending from an outer surface of the duct passage, the rib dividing the upstream portion and the downstream portion.

  15. HIV-1 gag expression is quantitatively dependent on the ratio of native and optimized codons.

    PubMed

    Kofman, Alexander; Graf, Marcus; Bojak, Alexandra; Deml, Ludwig; Bieler, Kurt; Kharazova, Alexandra; Wolf, Hans; Wagner, Ralf

    2003-01-01

    There is a significant variation of codon usage bias among different species and even among genes within the same organisms. Codon optimization, this is, gene redesigning with the use of codons preferred for the specific expression system, results in improved expression of heterologous genes in bacteria, plants, yeast, mammalian cells, and transgenic animals. The mechanisms preventing expression of genes with rare or low-usage codons at adequate levels are not completely elucidated. Human immunodeficiency virus (HIV) represents an interesting model for studying how differences in codon usage affect gene expression in heterologous systems. Construction of synthetic genes with optimized codons demonstrated that the codon-usage effects might be a major impediment to the efficient expression of HIV gag/pol and env gene products in mammalian cells. According to another hypothesis, the poor expression of HIV structural proteins even without HIV context is attributed to the so-called cis-acting inhibitory elements (INS), which are located within the protein-coding region. They consist of AU-rich sequences and may be inactivated through the introduction of multiple mutations over the large regions of gag gene. In our work, we evaluated expression of hybrid HIV-1 gag mRNAs where wild-type (A-rich) gag sequences were combined with artificial sequences. In such "humanized" gag fragments with adapted codon usage, AT-content was significantly reduced in favor of G and C nucleotides without any changes in protein sequence. We show that wild-type gag sequences negatively influence expression of gag-reporter, and the addition of fragments with optimized codons to gag mRNA partially rescues its expression. The results demonstrate that the expression of HIV-1 gag is determined by the ratio of optimized and rare codons within mRNA. Our data also indicates that some wtgag fragments counteract the influence of the other wtgag sequences, which cause the inhibition of gag expression. The

  16. Understanding the influence of codon translation rates on cotranslational protein folding.

    PubMed

    O'Brien, Edward P; Ciryam, Prajwal; Vendruscolo, Michele; Dobson, Christopher M

    2014-05-20

    Protein domains can fold into stable tertiary structures while they are synthesized by the ribosome in a process known as cotranslational folding. If a protein does not fold cotranslationally, however, it has the opportunity to do so post-translationally, that is, after the nascent chain has been fully synthesized and released from the ribosome. The rate at which a ribosome adds an amino acid encoded by a particular codon to the elongating nascent chain can vary significantly and is called the codon translation rate. Recent experiments have illustrated the profound impact that codon translation rates can have on the cotranslational folding process and the acquisition of function by nascent proteins. Synonymous codon mutations in an mRNA molecule change the chemical identity of a codon and its translation rate without changing the sequence of the synthesized protein. This change in codon translation rate can, however, cause a nascent protein to malfunction as a result of cotranslational misfolding. In some situations, such dysfunction can have profound implications; for example, it can alter the substrate specificity of an ABC transporter protein, resulting in patients who are nonresponsive to chemotherapy treatment. Thus, codon translation rates are crucial in coordinating protein folding in a cellular environment and can affect downstream cellular processes that depend on the proper functioning of newly synthesized proteins. As the importance of codon translation rates makes clear, a necessary aspect of fully understanding cotranslational folding lies in considering the kinetics of the process in addition to its thermodynamics. In this Account, we examine the contributions that have been made to elucidating the mechanisms of cotranslational folding by using the theoretical and computational tools of chemical kinetics, molecular simulations, and systems biology. These efforts have extended our ability to understand, model, and predict the influence of codon

  17. Molecular Phylogeny of Sequenced Saccharomycetes Reveals Polyphyly of the Alternative Yeast Codon Usage

    PubMed Central

    Mühlhausen, Stefanie; Kollmar, Martin

    2014-01-01

    The universal genetic code defines the translation of nucleotide triplets, called codons, into amino acids. In many Saccharomycetes a unique alteration of this code affects the translation of the CUG codon, which is normally translated as leucine. Most of the species encoding CUG alternatively as serine belong to the Candida genus and were grouped into a so-called CTG clade. However, the “Candida genus” is not a monophyletic group and several Candida species are known to use the standard CUG translation. The codon identity could have been changed in a single branch, the ancestor of the Candida, or to several branches independently leading to a polyphyletic alternative yeast codon usage (AYCU). In order to resolve the monophyly or polyphyly of the AYCU, we performed a phylogenomics analysis of 26 motor and cytoskeletal proteins from 60 sequenced yeast species. By investigating the CUG codon positions with respect to sequence conservation at the respective alignment positions, we were able to unambiguously assign the standard code or AYCU. Quantitative analysis of the highly conserved leucine and serine alignment positions showed that 61.1% and 17% of the CUG codons coding for leucine and serine, respectively, are at highly conserved positions, whereas only 0.6% and 2.3% of the CUG codons, respectively, are at positions conserved in the respective other amino acid. Plotting the codon usage onto the phylogenetic tree revealed the polyphyly of the AYCU with Pachysolen tannophilus and the CTG clade branching independently within a time span of 30–100 Ma. PMID:25646540

  18. Yes, Head Start Improves Reading!

    ERIC Educational Resources Information Center

    Larsen, Janet J.

    This study evaluated the effect of a Head Start program on children's intelligence and reading achievement test scores over a three year period. Each of 25 Head Start children was paired with a non-Head Start child of the same reace, sex, age, socioeconomic status, date of school entrance, kindergarten experience, promotion record, and type of…

  19. Evolution of codon usage in Zika virus genomes is host and vector specific.

    PubMed

    Butt, Azeem Mehmood; Nasrullah, Izza; Qamar, Raheel; Tong, Yigang

    2016-10-12

    The codon usage patterns of viruses reflect the evolutionary changes that allow them to optimize their survival and adapt their fitness to the external environment and, most importantly, their hosts. Here we report the genotype-specific codon usage patterns of Zika virus (ZIKV) strains from the current and previous outbreaks. Several genotype-specific and common codon usage traits were noted in the ZIKV coding sequences, indicating their independent evolutionary origins from a common ancestor. The overall influence of natural selection was more profound than that of mutation pressure, acting on a specific set of viral genes in the Asian-genotype ZIKV strains from the recent outbreak. An interplay between codon adaptation and deoptimization may have allowed the virus to adapt to multiple host and vectors and is reported for the first time in ZIKV genomes. Combining our codon analysis with geographical data on Aedes populations in the Americas suggested that ZIKV has evolved host- and vector-specific codon usage patterns to maintain successful replication and transmission chains within multiple hosts and vectors.

  20. Evolution of codon usage in Zika virus genomes is host and vector specific

    PubMed Central

    Butt, Azeem Mehmood; Nasrullah, Izza; Qamar, Raheel; Tong, Yigang

    2016-01-01

    The codon usage patterns of viruses reflect the evolutionary changes that allow them to optimize their survival and adapt their fitness to the external environment and, most importantly, their hosts. Here we report the genotype-specific codon usage patterns of Zika virus (ZIKV) strains from the current and previous outbreaks. Several genotype-specific and common codon usage traits were noted in the ZIKV coding sequences, indicating their independent evolutionary origins from a common ancestor. The overall influence of natural selection was more profound than that of mutation pressure, acting on a specific set of viral genes in the Asian-genotype ZIKV strains from the recent outbreak. An interplay between codon adaptation and deoptimization may have allowed the virus to adapt to multiple host and vectors and is reported for the first time in ZIKV genomes. Combining our codon analysis with geographical data on Aedes populations in the Americas suggested that ZIKV has evolved host- and vector-specific codon usage patterns to maintain successful replication and transmission chains within multiple hosts and vectors. PMID:27729643

  1. The TP53 Codon 72 Polymorphism and Risk of Sporadic Prostate Cancer among Iranian Patients

    PubMed Central

    BABAEI, Farhad; AHMADI, Seyed Ali; ABIRI, Ramin; REZAEI, Farhad; NASERI, Maryam; MAHMOUDI, Mahmoud; NATEGH, Rakhshande; MOKHTARI AZAD, Talat

    2014-01-01

    Abstract Background The TP53 gene is one of the most frequently mutated genes amongst human malignancies, particularly TP53 codon 72 polymorphism. Furthermore, an association between the TP53 codon 72 variants and prostate cancer has been reported in several studies. Although some studies have indicated an association between the TP53 Arg/Arg variant and an increased risk for prostate cancer, other studies have shown a positive correlation between the TP53 Pro/Pro genotype instead. Therefore, to clarify if this polymorphism is associated with an increased risk of prostate cancer in Iranian men, we conducted a case-control study of 40 sporadic prostate cancer patients and 80 benign prostate hyperplasia cases. Methods The TP53 codon 72 was genotyped using an allele specific PCR. Results A significant association between the TP53 codon 72 genotype and prostate cancer risk was found (OR = 6.8, 95% CI = [1.8-25.1], P = 0.005). However, the results of this study did not support an association between age, the Gleason score nor TP53 genotype at codon 72 in prostate cancer patients. Conclusions TP53 codon 72 polymorphism may have a great impact in the development of prostate cancer. PMID:26005655

  2. Variation in synonymous codon usage in Paenibacillus sp. 32O-W genome

    PubMed Central

    Deb, Sushanta; Basak, Surajit

    2016-01-01

    Paenibacillus sp. 32O-W, which is attributed for biodesulfurization of petroleum, has 56.34% genomic G+C content. Correspondence analysis on Relative Synonymous Codon Usage (RSCU) of the Paenibacillus sp. 32O-W genome has revealed the two different trends of codon usage variation. Two sets of genes have been identified representing the two distinct pattern of codon usage in this bacterial genome. We have measured several codon usage indices to understand the influencing factors governing the differential pattern of codon usage variation in this bacterial genome. We also observed significant differences in many protein properties between the two gene sets (e.g., hydrophobicity, protein biosynthetic cost, protein aggregation propensity). The compositional difference between the two sets of genes and the difference in their potential gene expressivity are the driving force for the differences in protein biosynthetic cost and aggregation propensity. Based on our results we argue that codon usage variation in Paenibacillus sp. 32O-W genome is actually influenced by both mutational bias and translational selection. PMID:28293070

  3. tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence

    NASA Astrophysics Data System (ADS)

    Chionh, Yok Hian; McBee, Megan; Babu, I. Ramesh; Hia, Fabian; Lin, Wenwei; Zhao, Wei; Cao, Jianshu; Dziergowska, Agnieszka; Malkiewicz, Andrzej; Begley, Thomas J.; Alonso, Sylvie; Dedon, Peter C.

    2016-11-01

    Microbial pathogens adapt to the stress of infection by regulating transcription, translation and protein modification. We report that changes in gene expression in hypoxia-induced non-replicating persistence in mycobacteria--which models tuberculous granulomas--are partly determined by a mechanism of tRNA reprogramming and codon-biased translation. Mycobacterium bovis BCG responded to each stage of hypoxia and aerobic resuscitation by uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective translation of mRNAs from families of codon-biased persistence genes. For example, early hypoxia increases wobble cmo5U in tRNAThr(UGU), which parallels translation of transcripts enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic bacteriostasis. Codon re-engineering of dosR exaggerates hypoxia-induced changes in codon-biased DosR translation, with altered dosR expression revealing unanticipated effects on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA modifications and translation of codon-biased transcripts that enhance expression of stress response proteins in mycobacteria.

  4. SYNONYMOUS CODONS DIRECT CO-TRANSLATIONAL FOLDING TOWARDS DIFFERENT PROTEIN CONFORMATIONS

    PubMed Central

    Mittelstaet, Joerg; Kutz, Felicitas; Schwalbe, Harald; Rodnina, Marina V.; Komar, Anton A.

    2016-01-01

    SUMMARY In all genomes, most amino acids are encoded by more than one codon. Synonymous codons can modulate protein production and folding, but the mechanism connecting codon usage to protein homeostasis is not known. Here we show that synonymous codon variants in the gene encoding gamma-B crystallin, a mammalian eye lens protein, modulate the rates of translation and co-translational folding of protein domains monitored in real time by Förster resonance energy transfer and fluorescence intensity changes. Gamma-B crystallins produced from mRNAs with changed codon bias have the same amino acid sequence, but attain different conformations as indicated by altered in vivo stability and in vitro protease resistance. 2D NMR spectroscopic data suggest that structural differences are associated with different cysteine oxidation states of the purified proteins, providing a link between translation, folding, and the structures of isolated proteins. Thus, synonymous codons provide a secondary code for protein folding in the cell. PMID:26849192

  5. Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli

    PubMed Central

    Mukai, Takahito; Yamaguchi, Atsushi; Ohtake, Kazumasa; Takahashi, Mihoko; Hayashi, Akiko; Iraha, Fumie; Kira, Satoshi; Yanagisawa, Tatsuo; Yokoyama, Shigeyuki; Hoshi, Hiroko; Kobayashi, Takatsugu; Sakamoto, Kensaku

    2015-01-01

    The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to l-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize l-homoarginine and l-N6-(1-iminoethyl)lysine (l-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNAPylCCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host's ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to l-homoarginine or l-NIL. The assignment of AGG to l-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code. PMID:26240376

  6. tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence

    PubMed Central

    Chionh, Yok Hian; McBee, Megan; Babu, I. Ramesh; Hia, Fabian; Lin, Wenwei; Zhao, Wei; Cao, Jianshu; Dziergowska, Agnieszka; Malkiewicz, Andrzej; Begley, Thomas J.; Alonso, Sylvie; Dedon, Peter C.

    2016-01-01

    Microbial pathogens adapt to the stress of infection by regulating transcription, translation and protein modification. We report that changes in gene expression in hypoxia-induced non-replicating persistence in mycobacteria—which models tuberculous granulomas—are partly determined by a mechanism of tRNA reprogramming and codon-biased translation. Mycobacterium bovis BCG responded to each stage of hypoxia and aerobic resuscitation by uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective translation of mRNAs from families of codon-biased persistence genes. For example, early hypoxia increases wobble cmo5U in tRNAThr(UGU), which parallels translation of transcripts enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic bacteriostasis. Codon re-engineering of dosR exaggerates hypoxia-induced changes in codon-biased DosR translation, with altered dosR expression revealing unanticipated effects on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA modifications and translation of codon-biased transcripts that enhance expression of stress response proteins in mycobacteria. PMID:27834374

  7. Decoding Mechanisms by which Silent Codon Changes Influence Protein Biogenesis and Function

    PubMed Central

    Bali, Vedrana; Bebok, Zsuzsanna

    2015-01-01

    Scope Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. Purpose This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. Physiological and medical relevance Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies. PMID:25817479

  8. View of upstream face of the forebay dam of Grand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of the forebay dam of Grand Coulee Dam, looking west. Construction of the forebay dam, which replaced the eastern end of the original Grand Coulee Dam, was completed in 1974. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  9. 2. CONTEXTUAL VIEW FROM UPSTREAM OF BRIDGE IN ITS SETTING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTEXTUAL VIEW FROM UPSTREAM OF BRIDGE IN ITS SETTING, LOOKING SOUTH-SOUTHWEST FROM LOWER (RAILROAD) DECK OF SOUTHERN PACIFIC TRANSPORTATION COMPANY'S I STREET BRIDGE - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  10. 25. UPSTREAM VIEW OF LOWER END OF OUTLET STRUCTURE SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. UPSTREAM VIEW OF LOWER END OF OUTLET STRUCTURE SHOWING FORMS IN PLACE FOR GRAVITY WALL SECTIONS.... Volume XVI, No. 16, August 16, 1939. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  11. 23. VIEW LOOKING UPSTREAM AND TOWARD LEFT ABUTMENT OF DAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW LOOKING UPSTREAM AND TOWARD LEFT ABUTMENT OF DAM. NOTE FORMS FOR LEFT GRAVITY ABUTMENT AT UPPER RIGHT CORNER OF PICTURE. ARCHES 3, 4, 5, AND 7 COMPLETED TO ELEVATION 1795. 5 OR 7.5 FEET BELOW TOP OF PARAPET WALL. November 29, 1938 - Bartlett Dam, Verde River, Phoenix, Maricopa County, AZ

  12. 1. View looking upstream (southwest) at diversion dam. Water enters ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View looking upstream (southwest) at diversion dam. Water enters half-round flume on right. Break in diversion structure provides a view of water flow in flume during the high water runoff in June. - Rock Creek Hydroelectric Project, Rock Creek, Baker County, OR

  13. 10. VIEW UPSTREAM OF PIPELINE SECTION AT JUNCTION OF HUME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW UPSTREAM OF PIPELINE SECTION AT JUNCTION OF HUME CEMENT PIPE AND CAST-IRON (460'). NOTE CYLINDRICAL COLLAR OF CEMENT SECTIONS AND BELL JUNCTIONS OF IRON PIPE. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  14. 2. UPSTREAM SIDE OF DAM AND BRIDGE WITH ABANDONED SAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. UPSTREAM SIDE OF DAM AND BRIDGE WITH ABANDONED SAN TAN FLOOD-WATER HEADGATE IN FOREGROUND. TAKEN FROM NORTH END OF DAM - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ

  15. 15. GENERAL EXTERIOR VIEW LOOKING SOUTH, SHOWING THE UPSTREAM FACADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. GENERAL EXTERIOR VIEW LOOKING SOUTH, SHOWING THE UPSTREAM FACADE OF POWERHOUSE #1; TRANSFORMERS ARE VISIBLE ON THE RIGHT, THE GANTRY CRANE IS LEFT/CENTER, AND SWITCHING EQUIPMENT IS ON TOP OF BUILDING. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  16. 7. GENERAL VIEW LOOKING NORTH, SHOWING UPSTREAM SIDE OF POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. GENERAL VIEW LOOKING NORTH, SHOWING UPSTREAM SIDE OF POWERHOUSE #1; ADMINISTRATIVE OFFICES ARE VISIBLE AT CENTER/LEFT WITH ELEVATOR TOWER IN LEFT BACKGROUND; GANTRY CRANE IS VISIBLE IN FAR RIGHT BACKGROUND. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  17. 13. Detail, upper chord connection point on upstream side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail, upper chord connection point on upstream side of truss, showing connection of upper chord, laced vertical compression member, knee-braced strut, counters, and laterals. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA

  18. VIEW OF UPSTREAM (EAST) SIDES OF UPPER (EAST) END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF UPSTREAM (EAST) SIDES OF UPPER (EAST) END OF LOCK, SOUTHEAST AND NORTHEAST CONTROL HOUSES, LOCK UNDER REPAIR, BUILDING NOS. 51, 52 AND SOUTHWEST CONTROL HOUSE IN BACKGROUND, VIEW TOWARDS WEST-NORTHWEST - Ortona Lock, Lock No. 2, Machinery and Control Houses, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  19. UPSTREAM (WEST) VIEW SHOWING SOUTH EMBANKMENT BERM AND CONCRETE COREWALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UPSTREAM (WEST) VIEW SHOWING SOUTH EMBANKMENT BERM AND CONCRETE COREWALL AT CENTER, WITH COOKE DAM POND AT LEFT AND POWERHOUSE (MI-98-C) AND SPILLWAY (MI-98-B) IN BACKGROUND. VIEW TO NORTHEAST - Cooke Hydroelectric Plant, South Embankment, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  20. COOKE DAM POND AND UPSTREAM (WEST) SIDE OF (LR) NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOKE DAM POND AND UPSTREAM (WEST) SIDE OF (L-R) NORTH EMBANKMENT (MI-98-A), SPILLWAY (MI-98-B), PENSTOCK ENTRANCES, POWERHOUSE (MI-98-C), AND SOUTH EMBANKMENT (MI-98-E). VIEW TO NORTHEAST - Cooke Hydroelectric Plant, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  1. 3. FORMER INTAKE DAM NO. 2, VIEW LOOKING UPSTREAM AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FORMER INTAKE DAM NO. 2, VIEW LOOKING UPSTREAM AT LEFT IS RUBBLE MASONRY COVERING INTERSECTION OF THE TWO IRON PIPES FROM NEW DAM ENTERING OLD INTAKE OPENING AT RIGHT IS BOX FLUME LEADING TO AERATOR. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  2. DESCHUTES PROJECT – WICKIUP DAM – VIEW OF UPSTREAM FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES PROJECT – WICKIUP DAM – VIEW OF UPSTREAM FACE FROM RIGHT ABUTMENT. CPS CREW PLACING RIPRAP. Photocopy of historic photographs (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR Photographer, July 26, 1944 - Wickiup Dam, Deschutes River, La Pine, Deschutes County, OR

  3. Canoe slalom boat trajectory while negotiating an upstream gate.

    PubMed

    Hunter, Adam

    2009-06-01

    The aim of this study was to determine how the path chosen by elite slalom paddlers influences the time taken to negotiate an upstream gate. Six trials for international men's single kayak (MK1) (n = 11) and single canoe (C1) (n = 6) paddlers were digitized for a left-hand upstream gate. Results revealed that the absolute variability of paddlers increased as their total time increased (r = 0.594), but the coefficient of variation remained constant. There was a strong correlation (r = 0.89, each individual trial; r = 0.93, mean total time for each participant) between boat trajectory and the total time. The MK1 and C1 paddlers used similar strategies to negotiate an upstream gate. There were significant differences (P < 0.05) between the boat trajectory of the fastest and slowest paddlers (average distance between paddler's head and the inside pole). These results suggest that to achieve a faster upstream gate performance, paddlers should concentrate on the distance between their head and the inside pole. However, there would be an optimal distance beyond which any further reduction in the distance would impede technique and performance.

  4. 72. VIEW OF UPSTREAM SIDE OF THE MAIN LOCK MITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. VIEW OF UPSTREAM SIDE OF THE MAIN LOCK MITER GATE IN A CLOSED POSITION, SHOWING THE FIT OF CONTACT BLOCKS Photograph No. 50-398. November 28, 1950 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  5. 63. Upstream face of Waddell Dam as viewed from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Upstream face of Waddell Dam as viewed from the west abutment. Crane at center is used to service the penstock intake. Photographer Mark Durben. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  6. 18. Upstream face of arches, concrete placing tower is at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Upstream face of arches, concrete placing tower is at far right. Tower at center was used to convey material. Photographer unknown, January 29, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  7. 42. VIEW OF STAGE RECORDER AT END OF UPSTREAM GUIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. VIEW OF STAGE RECORDER AT END OF UPSTREAM GUIDE WALL, LOOKING NORTHEAST. (Several hours after this view was taken, the stage recorder was hit a~d heavily damaged by a grain barge.) - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 9, Lynxville, Crawford County, WI

  8. View of upstream face of Grand Coulee Dam, looking northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Grand Coulee Dam, looking northeast. This image features a partially cloudy sky.) - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  9. 45. View of upstream face of fish screens at Dingle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. View of upstream face of fish screens at Dingle Basin, looking northwest from south side of basin. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  10. 43. View of log boom (upstream) protecting fish screens at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. View of log boom (upstream) protecting fish screens at Dingle Basin, looking southwest from north side of basin. Photo by Brian C. Morris, PUget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  11. 15. UPSTREAM VIEW (PHOTOGRAPHER UNKNOWN) SHOWING BIG DALTON DAM NEAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. UPSTREAM VIEW (PHOTOGRAPHER UNKNOWN) SHOWING BIG DALTON DAM NEAR FULL CAPACITY AFTER CONSTRUCTION. PICTURE WAS DEVELOPED FROM COPY NEGATIVES WHICH WERE TAKEN ON 2-15-1973 BY PHOTOGRAPHER D. MEIER OF L.A. COUNTY PUBLIC WORKS. - Big Dalton Dam, 2600 Big Dalton Canyon Road, Glendora, Los Angeles County, CA

  12. 10. View to west from Jacob Meyer Park, showing upstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View to west from Jacob Meyer Park, showing upstream (east) side of truss span. Bend is visible in lower portion of damaged vertical compression member third from right. - Stanislaus River Bridge, Atchison, Topeka & Santa Fe Railway at Stanislaus River, Riverbank, Stanislaus County, CA

  13. 9. Oblique view to southsouthwest of upstream (east) side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Oblique view to south-southwest of upstream (east) side of bridge from near north abutment in Jacob Meyer Park. Note cutwaters on piers, distinctive appearance of boxed, repaired vertical compression members as compared to original, laced compression members. - Stanislaus River Bridge, Atchison, Topeka & Santa Fe Railway at Stanislaus River, Riverbank, Stanislaus County, CA

  14. 8. Upstream face of Mormon Flat, both concrete placement tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Upstream face of Mormon Flat, both concrete placement tower and 105 foot derrick are visible. Photographer unknown, June 8, 1924. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  15. 8. GENERAL EXTERIOR VIEW LOOKING NORTHWEST TOWARD UPSTREAM END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GENERAL EXTERIOR VIEW LOOKING NORTHWEST TOWARD UPSTREAM END OF NAVIGATION LOCK #1; SOUTH END OF POWERHOUSE #1 IS VISIBLE ON RIGHT; BRADFORD SLOUGH IS VISIBLE IN FOREGROUND. - Bonneville Project, Navigation Lock No. 1, Oregon shore of Columbia River near first Powerhouse, Bonneville, Multnomah County, OR

  16. 14. VIEW SHOWING UPSTREAM FACE OF HORSE MESA. TRACK FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW SHOWING UPSTREAM FACE OF HORSE MESA. TRACK FROM AGGREGATE BARGES TO MIXING PLANT IS AT LOWER LEFT, RIGHT SPILLWAY CHUTE IS TAKING FORM AT UPPER RIGHT April 29, 1927 - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  17. 32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM (Trashrack-structure for outlet at lower left in reservoir, spillway at upper left. Reservoir nearly empty due to drought.) - Tieton Dam, South & East of State Highway 12, Naches, Yakima County, WA

  18. View of Stehr Lake from FS 502 looking upstream (northeast). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Stehr Lake from FS 502 looking upstream (northeast). Vehicle at right center is parked on earthen Upper Stehr Lake Dam. - Childs-Irving Hydroelectric Project, Childs System, Stehr Lake & Dams, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  19. 18. View to southwest. Detail, bearing shoe, upstream side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View to southwest. Detail, bearing shoe, upstream side of east pier. Copy negative made from 35mm color transparency made with with 135mm lens by John Snyder, due to lack of sufficiently long lens for 4x5 camera. - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  20. 12. Upstream view showing thelower log pond log chute in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Upstream view showing thelower log pond log chute in the main channel of the Hudson River. The log chute in the dam can be seen in the background. Facing southwest. - Glens Falls Dam, 100' to 450' West of U.S. Route 9 Bridge Spanning Hudson River, Glens Falls, Warren County, NY

  1. 4. AERATOR AT 525, CONSTRUCTED 19371938, VIEW FROM UPSTREAM (TRASH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. AERATOR AT 525, CONSTRUCTED 1937-1938, VIEW FROM UPSTREAM (TRASH SCREEN REMOVED FOR CLARITY), WATER FROM INTAKE FLOWS THROUGH FLUME, THEN DAMS, AND SPILLS OVER STEPS TO MIX WITH OXYGEN, THUS REDUCING ACIDITY LEVELS. ACID INDUCES FASTER CORROSION OF PIPES AND SPOILS TASTE. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  2. Coupling between protein level selection and codon usage optimization in the evolution of bacteria and archaea.

    PubMed

    Ran, Wenqi; Kristensen, David M; Koonin, Eugene V

    2014-03-25

    The relationship between the selection affecting codon usage and selection on protein sequences of orthologous genes in diverse groups of bacteria and archaea was examined by using the Alignable Tight Genome Clusters database of prokaryote genomes. The codon usage bias is generally low, with 57.5% of the gene-specific optimal codon frequencies (Fopt) being below 0.55. This apparent weak selection on codon usage contrasts with the strong purifying selection on amino acid sequences, with 65.8% of the gene-specific dN/dS ratios being below 0.1. For most of the genomes compared, a limited but statistically significant negative correlation between Fopt and dN/dS was observed, which is indicative of a link between selection on protein sequence and selection on codon usage. The strength of the coupling between the protein level selection and codon usage bias showed a strong positive correlation with the genomic GC content. Combined with previous observations on the selection for GC-rich codons in bacteria and archaea with GC-rich genomes, these findings suggest that selection for translational fine-tuning could be an important factor in microbial evolution that drives the evolution of genome GC content away from mutational equilibrium. This type of selection is particularly pronounced in slowly evolving, "high-status" genes. A significantly stronger link between the two aspects of selection is observed in free-living bacteria than in parasitic bacteria and in genes encoding metabolic enzymes and transporters than in informational genes. These differences might reflect the special importance of translational fine-tuning for the adaptability of gene expression to environmental changes. The results of this work establish the coupling between protein level selection and selection for translational optimization as a distinct and potentially important factor in microbial evolution. IMPORTANCE Selection affects the evolution of microbial genomes at many levels, including both

  3. The Characteristics of Rare Codon Clusters in the Genome and Proteins of Hepatitis C Virus; a Bioinformatics Look

    PubMed Central

    Fattahi, Mohammadreza; Malekpour, Abdorrasoul; Mortazavi, Mojtaba; Safarpour, Alireza; Naseri, Nasrin

    2014-01-01

    BACKGROUND Recent studies suggest that rare codon clusters are functionally important for protein activity. METHODS Here, for the first time we analyzed and reported rare codon clusters in Hepatitis C Virus (HCV) genome and then identified the location of these rare codon clusters in the structure of HCV protein. This analysis was performed using the Sherlocc program that detects statistically relevant conserved rare codon clusters. RESULTS By this program, we identified the rare codon cluster in three regions of HCV genome; NS2, NS3, and NS5A coding sequence of HCV genome. For further understanding of the role of these rare codon clusters, we studied the location of these rare codon clusters and critical residues in the structure of NS2, NS3 and NS5A proteins. We identified some critical residues near or within rare codon clusters. It should be mentioned that characteristics of these critical residues such as location and situation of side chains are important in assurance of the HCV life cycle. CONCLUSION The characteristics of these residues and their relative status showed that these rare codon clusters play an important role in proper folding of these proteins. Thus, it is likely that these rare codon clusters may have an important role in the function of HCV proteins. This information is helpful in development of new avenues for vaccine and treatment protocols. PMID:25349685

  4. New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae

    PubMed Central

    Blanchet, Sandra; Cornu, David; Argentini, Manuela; Namy, Olivier

    2014-01-01

    Stop codon readthrough may be promoted by the nucleotide environment or drugs. In such cases, ribosomes incorporate a natural suppressor tRNA at the stop codon, leading to the continuation of translation in the same reading frame until the next stop codon and resulting in the expression of a protein with a new potential function. However, the identity of the natural suppressor tRNAs involved in stop codon readthrough remains unclear, precluding identification of the amino acids incorporated at the stop position. We established an in vivo reporter system for identifying the amino acids incorporated at the stop codon, by mass spectrometry in the yeast Saccharomyces cerevisiae. We found that glutamine, tyrosine and lysine were inserted at UAA and UAG codons, whereas tryptophan, cysteine and arginine were inserted at UGA codon. The 5′ nucleotide context of the stop codon had no impact on the identity or proportion of amino acids incorporated by readthrough. We also found that two different glutamine tRNAGln were used to insert glutamine at UAA and UAG codons. This work constitutes the first systematic analysis of the amino acids incorporated at stop codons, providing important new insights into the decoding rules used by the ribosome to read the genetic code. PMID:25056309

  5. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid

    PubMed Central

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation. PMID:27028506

  6. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide.

    PubMed

    Lowenstein, C J; Alley, E W; Raval, P; Snowman, A M; Snyder, S H; Russell, S W; Murphy, W J

    1993-10-15

    The promoter region of the mouse gene for macrophage-inducible nitric oxide synthase (mac-NOS; EC 1.14.13.39) has been characterized. A putative TATA box is 30 base pairs upstream of the transcription start site. Computer analysis reveals numerous potential binding sites for transcription factors, many of them associated with stimuli that induce mac-NOS expression. To localize functionally important portions of the regulatory region, we constructed deletion mutants of the mac-NOS 5' flanking region and placed them upstream of a luciferase reporter gene. The macrophage cell line RAW 264.7, when transfected with a minimal promoter construct, expresses little luciferase activity when stimulated by lipopolysaccharide (LPS), interferon gamma (IFN-gamma), or both. Maximal expression depends on two discrete regulatory regions upstream of the putative TATA box. Region I (position -48 to -209) increases luciferase activity approximately 75-fold over the minimal promoter construct. Region I contains LPS-related responsive elements, including a binding site for nuclear factor interleukin 6 (NF-IL6) and the kappa B binding site for NF-kappa B, suggesting that this region regulates LPS-induced expression of the mac-NOS gene. Region II (position -913 to -1029) alone does not increase luciferase expression, but together with region I it causes an additional 10-fold increase in expression. Together the two regions increase expression 750-fold over activity obtained from a minimal promoter construct. Region II contains motifs for binding IFN-related transcription factors and thus probably is responsible for IFN-mediated regulation of LPS-induced mac-NOS. Delineation of these two cooperative regions explains at the level of transcription how IFN-gamma and LPS act in concert to induce maximally the mac-NOS gene and, furthermore, how IFN-gamma augments the inflammatory response to LPS.

  7. mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5.

    PubMed Central

    Slusher, L B; Gillman, E C; Martin, N C; Hopper, A K

    1991-01-01

    MOD5, a nuclear gene of Saccharomyces cerevisiae, encodes two isozymic forms of a tRNA-modification enzyme. These enzymes modify both cytoplasmic and mitochondrial tRNAs. Two inframe ATGs of the MOD5 gene are used for initiation of translation, and the form of the protein translated from the first AUG is imported into mitochondria. Protein translated from the second AUG functions in the cytoplasm. Since all transcripts contain both of these translational start sites and two proteins are made, the question arises as to the factors that influence the translation start-site choice. Extending the 5' ends of the MOD5 mRNA to include leader sequences of the ADH1 (alcohol dehydrogenase defective) transcript produces significant changes in the choice of AUGs. This suggests that for wild-type MOD5 transcripts, the length or structure of the leader sequence plays a role in AUG choice. The nucleotides surrounding the first ATG of MOD5 also have an effect on translation initiation. Altering these nucleotides changes initiation choice and suggests that ribosomal bypass of a suboptimal AUG is another mechanism controlling the alternate use of two initiation codons. Our data support the model that at least one MOD5 transcript is able to produce two proteins with different N-terminal sequences. Images PMID:1946403

  8. Avian Leukosis Virus Activation of an Antisense RNA Upstream of TERT in B-Cell Lymphomas

    PubMed Central

    Nehyba, Jiri; Malhotra, Sanandan; Winans, Shelby; O'Hare, Thomas H.; Justice, James

    2016-01-01

    ABSTRACT Avian leukosis virus (ALV) induces tumors by integrating its proviral DNA into the chicken genome and altering the expression of nearby genes via strong promoter and enhancer elements. Viral integration sites that contribute to oncogenesis are selected in tumor cells. Deep-sequencing analysis of B-cell lymphoma DNA confirmed that the telomerase reverse transcriptase (TERT) gene promoter is a common ALV integration target. Twenty-six unique proviral integration sites were mapped between 46 and 3,552 nucleotides (nt) upstream of the TERT transcription start site, predominantly in the opposite transcriptional orientation to TERT. Transcriptome-sequencing (RNA-seq) analysis of normal bursa revealed a transcribed region upstream of TERT in the opposite orientation, suggesting the TERT promoter is bidirectional. This transcript appears to be an uncharacterized antisense RNA. We have previously shown that TERT expression is upregulated in tumors with integrations in the TERT promoter region. We now report that the viral promoter drives the expression of a chimeric transcript containing viral sequences spliced to exons 4 through 7 of this antisense RNA. Clonal expansion of cells with ALV integrations driving overexpression of the TERT antisense RNA suggest it may have a role in tumorigenesis. IMPORTANCE The data suggest that ALV integrations in the TERT promoter region drive the overexpression of a novel antisense RNA and contribute to the development of lymphomas. PMID:27512065

  9. Mean velocities and Reynolds stresses upstream of a simulated wing-fuselage juncture

    NASA Technical Reports Server (NTRS)

    Mcmahon, H.; Hubbartt, J.; Kubendran, L. R.

    1983-01-01

    Values of three mean velocity components and six turbulence stresses measured in a turbulent shear layer upstream of a simulated wing-fuselage juncture and immediately downstream of the start of the juncture are presented nd discussed. Two single-sensor hot-wire probes were used in the measurements. The separated region just upstream of the wing contains an area of reversed flow near the fuselage surface where the turbulence level is high. Outside of this area the flow skews as it passes around the body, and in this skewed region the magnitude and distribution of the turbulent normal and shear stresses within the shear layer are modified slightly by the skewing and deceleration of the flow. A short distance downstream of the wing leading edge the secondary flow vortext is tightly rolled up and redistributes both mean flow and turbulence in the juncture. The data acquisition technique employed here allows a hot wire to be used in a reversed flow region to indicate flow direction.

  10. Potential Upstream Strategies for the Mitigation of Pharmaceuticals in the Aquatic Environment: a Brief Review.

    PubMed

    Blair, Benjamin D

    2016-06-01

    Active pharmaceutical ingredients represent a class of pollutants of emerging concern, and there is growing evidence that these pollutants can cause damage to the aquatic environment. As regulations to address these concerns are expected in developed nations, decision-makers are looking to the scientific community for potential solutions. To inform these regulatory efforts, further information on the potential strategies to reduce the levels of pharmaceuticals entering the aquatic environment is needed. End-of-pipe (i.e., wastewater treatment) technologies that can remove pharmaceuticals exist; however, they are costly to install and operate. Thus, the goal of this brief review is to look beyond end-of-pipe solutions and present various upstream mitigation strategies discussed within the scientific literature. Programs such as pharmaceutical take-back programs currently exist to attempt to reduce pharmaceutical concentrations in the environment, although access and coverage are often limited for many programs. Other potential strategies include redesigning pharmaceuticals to minimize aquatic toxicity, increasing the percent of the pharmaceuticals metabolized in the body, selecting less harmful pharmaceuticals for use, starting new prescriptions at lower dosages, selecting pharmaceuticals with lower excretion rates, and implementing source treatment such as urine separating toilets. Overall, this brief review presents a summary of the upstream preventative recommendations to mitigate pharmaceuticals from entering the aquatic environment with an emphasis on regulatory efforts in the USA and concludes with priorities for further research.

  11. An alternative transcription start site yields estrogen unresponsive Kiss1 mRNA transcripts in the hypothalamus of prepubertal female rats

    PubMed Central

    Castellano, Juan Manuel; Wright, Hollis; Ojeda, Sergio R.; Lomniczi, Alejandro

    2014-01-01

    The importance of the Kiss1 gene in the control of reproductive development is well documented. However, much less is known about the transcriptional regulation of Kiss1 expression in the hypothalamus. Critical for these studies is an accurate identification of the site(s) where Kiss1 transcription is initiated. Employing 5’-RACE PCR we detected a transcription start site (TSS1) used by the hypothalamus of rats, mice, nonhuman primates and humans to initiate Kiss1 transcription. In rodents, an exon 1 encoding 5’-untranslated sequences is followed by an alternatively spliced second exon, which encodes 5’-untranslated regions of two different lengths and contains the translation initiation codon (ATG). In nonhuman primates and humans exon 2 is not alternatively spliced. Surprisingly, in rat mediobasal hypothalamus (MBH), but not preoptic region (POA), an additional TSS (TSS2) located upstream from TSS1 generates an exon 1 longer (377 bp) than the TSS1-derived exon 1 (98 bp). The content of TSS1-derived transcripts increased at puberty in the POA and MBH of female rats. It also increased in the MBH after ovariectomy, and this change was prevented by estrogen. In contrast, no such changes in TSS2-derived transcript abundance were detected. Promoter assays showed that the proximal TSS1 promoter is much more active than the putative TSS2 promoter, and that only the TSS1 promoter is regulated by estrogen. These differences appear to be related to the presence of a TATA box and binding sites for transcription factors activating transcription and interacting with estrogen receptor alpha (ERα) in the TSS1, but not TSS2, promoter. PMID:24686008

  12. The density of cometary protons upstream of Comet Halley's bow shock

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Goldstein, B. E.; Balsiger, H.; Neubauer, F. M.; Schwenn, R.

    1989-01-01

    Cometary protons picked up by the solar wind were detected by the high energy range spectrometer of the Giotto ion mass spectrometer starting at a cometocentric distance of about 12 million km. On the average, the density of cometary protons varied approximately as the inverse square of the cometocentric distance, reaching a value of 0.11/cu cm just outside the bow shock. The data can be successfully fit to models that include substantial amounts of both slow (1 km/s) and fast (8 km/s or greater) H atoms beyond the bow shock. Large local variations in the density of picked-up protons can be explained on the basis of variations in the direction of the interplanetary magnetic field in upstream regions where pitch angle scattering was weak.

  13. The density of cometary protons upstream of comet Halley's bow shock

    SciTech Connect

    Neugebauer, M.; Goldstein, B.E. ); Balsiger, H. ); Neubauer, F.M. ); Schwenn, R. ); Shelley, E.G. )

    1989-02-01

    Cometary protons picked up by the solar wind were detected by the high energy range spectrometer of the Giotto ion mass spectrometer starting at a cometocentric distance of {approximately}12 {times} 10{sup 6} km. On the average, the density of cometary protons varied approximately as the inverse square of the cometocentric distance, reaching a value of 0.11 cm{sup {minus}3} just outside the bow shock. The data can be successfully fit to models that include substantial amounts of both slow ({approximately}1 km/s) and fast ({ge} 8 km/s) H atoms beyond the bow shock. Large local variations in the density of picked-up protons can be explained on the basis of variations in the direction of the interplanetary magnetic field in upstream regions where pitch angle scattering was weak.

  14. Impulsively started, steady and pulsated annular inflows

    NASA Astrophysics Data System (ADS)

    Abdel-Raouf, Emad; Sharif, Muhammad A. R.; Baker, John

    2017-04-01

    A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies.

  15. Comparative study of codon substitution patterns in foot-and-mouth disease virus (serotype O)

    PubMed Central

    Ahn, Insung; Bae, Se-Eun

    2011-01-01

    We compared genetic variations in the VP1 gene of foot-and-mouth disease viruses (FMDVs) isolated since 2000 from various region of the world. We analyzed relative synonymous codon usage (RSCU) and phylogenetic relationship between geographical regions, and calculated the genetic substitution patterns between Korean isolate and those from other countries. We calculated the ratios of synonymously substituted codons (SSC) to all observed substitutions and developed a new analytical parameter, EMC (the ratio of exact matching codons within each synonymous substitution group) to investigate more detailed substitution patterns within each synonymous codon group. We observed that FMDVs showed distinct RSCU patterns according to phylogenetic relationships in the same serotype (serotype O). Moreover, while the SSC and EMC values of FMDVs decreased according to phylogenetic distance, G + C composition at the third codon position was strictly conserved. Although there was little variation among the SSC values of 18 amino acids, more dynamic differences were observed in EMC values. The EMC values of 4- and 6-fold degenerate amino acids showed significantly lower values while most 2-fold degenerate amino acids showed no significant difference. Our findings suggest that different EMC patterns among the 18 amino acids might be an important factor in determining the direction of evolution in FMDV. PMID:21825834

  16. Codon expansion and systematic transcriptional deletions produce tetra-, pentacoded mitochondrial peptides.

    PubMed

    Seligmann, Hervé

    2015-12-21

    Genes include occasionally isolated codons with a fourth (and fifth) silent nucleotide(s). Assuming tetracodons, translated hypothetical peptides align with regular GenBank proteins; predicted tetracodons coevolve with predicted tRNAs with expanded anticodons in each mammal, Drosophila and Lepidosauria mitogenomes, GC contents and with lepidosaurian body temperatures, suggesting that expanded codons are an adaptation of translation to high temperature. Hypothetically, continuous stretches of tetra- and pentacodons code for peptides. Both systematic nucleotide deletions during transcription, and translation by tRNAs with expanded anticodons could produce these peptides. Reanalyses of human nanoLc mass spectrometry peptidome data detect numerous tetra- and pentapeptides translated from the human mitogenome. These map preferentially on (BLAST-detected) human RNAs matching the human mitogenome, assuming systematic mono- and dinucleotide deletions after each third nucleotide (delRNAs). Translation by expanded anticodons is incompatible with silent nucleotides in the midst rather than at codon 3' extremity. More than 1/3 of detected tetra- and pentapeptides assume silent positions at codon extremity, suggesting that both mechanisms, regular translation of delRNAs and translation of regular RNAs by expanded anticodons, produce this peptide subgroup. Results show that systematically deleting polymerization occurs, and confirm serial translation of expanded codons. Non-canonical transcriptions and translations considerably expand the coding potential of DNA and RNA sequences.

  17. p53 codon 72 polymorphism and breast cancer risk: A meta-analysis

    PubMed Central

    HOU, JING; JIANG, YUAN; TANG, WENRU; JIA, SHUTING

    2013-01-01

    p53 is a tumor suppressor gene and plays important roles in the etiology of breast cancer. Studies have produced conflicting results concerning the role of p53 codon 72 polymorphism (G>C) on the risk of breast cancer; therefore, a meta-analysis was performed to estimate the association between the p53 codon 72 polymorphism and breast cancer. Screening of the PubMed database was conducted to identify relevant studies. Studies containing available genotype frequencies of the p53 codon 72 polymorphism were selected and a pooled odds ratio (OR) with 95% confidence interval (CI) was used to assess the association. Sixty-one published studies, including 28,539 breast cancer patients and 32,788 controls were identified. The results suggest that variant genotypes are not associated with breast cancer risk (Pro/Pro + Arg/Pro vs. Arg/Arg: OR=1.016, 95% CI=0.931–1.11, P=0.722). The symmetric funnel plot, Egger’s test (P=0.506) and Begg’s test (P=0.921) were all suggestive of the lack of publication bias. This meta-analysis suggests that the p53 codon 72 Pro/Pro + Arg/Pro genotypes are not associated with an increased risk of breast cancer. To validate the association between the p53 codon 72 polymorphism and breast cancer, further studies with larger numbers of participants worldwide are required. PMID:23737888

  18. Non-universal decoding of the leucine codon CUG in several Candida species.

    PubMed Central

    Ohama, T; Suzuki, T; Mori, M; Osawa, S; Ueda, T; Watanabe, K; Nakase, T

    1993-01-01

    It has been reported that CUG, a universal leucine codon, is read as serine in an asporogenic yeast, Candida cylindracea. The distribution of this non-universal genetic code in various yeast species was studied using an in vitro translation assay system with a synthetic messenger RNA containing CUG codons in-frame. It was found that CUG is used as a serine codon in six out of the fourteen species examined, while it is used for leucine in the remaining eight. The tRNA species responsible for the translation of codon CUG as serine was detected in all the six species in which CUG is translated as serine. The grouping according to the CUG codon assignments in these yeast species shows a good correlation with physiological classification by the chain lengths of the isoprenoid moiety of ubiquinone and the cell-wall sugar contained in the yeasts. The six Candida species examined in which CUG is used as serine belong to one distinct group in Hemiascomycetes. PMID:8371978

  19. Analysis of synonymous codon usage patterns in sixty-four different bivalve species

    PubMed Central

    De Moro, Gianluca; Venier, Paola; Pallavicini, Alberto

    2015-01-01

    Synonymous codon usage bias (CUB) is a defined as the non-random usage of codons encoding the same amino acid across different genomes. This phenomenon is common to all organisms and the real weight of the many factors involved in its shaping still remains to be fully determined. So far, relatively little attention has been put in the analysis of CUB in bivalve mollusks due to the limited genomic data available. Taking advantage of the massive sequence data generated from next generation sequencing projects, we explored codon preferences in 64 different species pertaining to the six major evolutionary lineages in Bivalvia. We detected remarkable differences across species, which are only partially dependent on phylogeny. While the intensity of CUB is mild in most organisms, a heterogeneous group of species (including Arcida and Mytilida, among the others) display higher bias and a strong preference for AT-ending codons. We show that the relative strength and direction of mutational bias, selection for translational efficiency and for translational accuracy contribute to the establishment of synonymous codon usage in bivalves. Although many aspects underlying bivalve CUB still remain obscure, we provide for the first time an overview of this phenomenon in this large, commercially and environmentally important, class of marine invertebrates. PMID:26713259

  20. Analysis of synonymous codon usage patterns in sixty-four different bivalve species.

    PubMed

    Gerdol, Marco; De Moro, Gianluca; Venier, Paola; Pallavicini, Alberto

    2015-01-01

    Synonymous codon usage bias (CUB) is a defined as the non-random usage of codons encoding the same amino acid across different genomes. This phenomenon is common to all organisms and the real weight of the many factors involved in its shaping still remains to be fully determined. So far, relatively little attention has been put in the analysis of CUB in bivalve mollusks due to the limited genomic data available. Taking advantage of the massive sequence data generated from next generation sequencing projects, we explored codon preferences in 64 different species pertaining to the six major evolutionary lineages in Bivalvia. We detected remarkable differences across species, which are only partially dependent on phylogeny. While the intensity of CUB is mild in most organisms, a heterogeneous group of species (including Arcida and Mytilida, among the others) display higher bias and a strong preference for AT-ending codons. We show that the relative strength and direction of mutational bias, selection for translational efficiency and for translational accuracy contribute to the establishment of synonymous codon usage in bivalves. Although many aspects underlying bivalve CUB still remain obscure, we provide for the first time an overview of this phenomenon in this large, commercially and environmentally important, class of marine invertebrates.

  1. Upstream Pathways Controlling Mitochondrial Function in Major Psychosis

    PubMed Central

    Machado, Alencar Kolinski; Pan, Alexander Yongshuai; da Silva, Tatiane Morgana; Duong, Angela

    2016-01-01

    Mitochondrial dysfunction is commonly observed in bipolar disorder (BD) and schizophrenia (SCZ) and may be a central feature of psychosis. These illnesses are complex and heterogeneous, which is reflected by the complexity of the processes regulating mitochondrial function. Mitochondria are typically associated with energy production; however, dysfunction of mitochondria affects not only energy production but also vital cellular processes, including the formation of reactive oxygen species, cell cycle and survival, intracellular Ca2+ homeostasis, and neurotransmission. In this review, we characterize the upstream components controlling mitochondrial function, including 1) mutations in nuclear and mitochondrial DNA, 2) mitochondrial dynamics, and 3) intracellular Ca2+ homeostasis. Characterizing and understanding the upstream factors that regulate mitochondrial function is essential to understand progression of these illnesses and develop biomarkers and therapeutics. PMID:27310240

  2. VIEW SOUTH SOUTHWEST LOOKING UPSTREAM FROM ENTRANCE TO LOCKS 35 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTH SOUTHWEST LOOKING UPSTREAM FROM ENTRANCE TO LOCKS 35 AND 71. THE BRIDGE IN THE VIEW IS NOTED FOR ITS EXTRAORDINARY WIDTH (475 FT.) RELATIVE TO ITS MODEST SPAN (116 FT. 10 IN.). WHEN CONSTRUCTED IN 1914 IT WAS CLAIMED TO BE THE WIDEST BRIDGE IN THE WORLD. MAIN STREET CROSSES IT DIAGONALLY, ALONG WITH TWO CROSS STREETS. - New York State Barge Canal, Lockport Locks, Richmond Avenue, Lockport, Niagara County, NY

  3. Effect of Toston Dam on Upstream Ice Conditions

    DTIC Science & Technology

    1989-05-01

    1983). The Beltaos formulation for ice jam thickness is 2,u(-si) I Si ~ f ISWSJJ where t = ice cover thickness W = width of flow S = slope of energy...unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER(* 5. MONITORING ORGANIZATION REPORT NUMBER( S ) Special Report 89-16 6a. NAME OF PERFORMING...NO. 11. TITLE (Include Secudty Clasfcoffon) Effect of Toston Dam on Upstream Ice Conditions 12. PERSONAL AUTHOR( S ) Ashton, George D. 130. TYPE OF

  4. Steepened channels upstream of knickpoints: Controls on relict landscape response

    NASA Astrophysics Data System (ADS)

    Berlin, Maureen M.; Anderson, Robert S.

    2009-09-01

    The morphology of a relict landscape provides important insight into erosion rates and processes prior to base level fall. Fluvial knickpoints are commonly thought to form a leak-proof moving boundary between a rejuvenated landscape below and a relict landscape above. We argue that fluvial rejuvenation may leak farther upstream, depending on the rate and style of knickpoint migration. The outer margin of a relict landscape should therefore be used with caution in tectonic geomorphology studies, as channel steepening upstream of knickpoints could reduce the relict area. We explore the response of the Roan Plateau to knickpoint retreat triggered by late Cenozoic upper Colorado River incision. Multiple knickpoints (100-m waterfalls) separate a low-relief, upper landscape from incised canyons below. Two digital elevation model data sets (10-m U.S. Geological Survey and 1-m Airborne Laser Swath Mapping) indicate steeper channels above waterfalls relative to concave channels farther upstream. The steepened reaches are several kilometers long, correspond to doubling of slope, and exhibit channel narrowing and an increase in hillslope angle. We compare two mechanisms for generating steepened reaches. The first uses a recent model for erosion amplification due to flow acceleration at the waterfall lip. The second acknowledges that waterfall lips may be limited to the outcrop of a resistant formation. Subtle structural warping of the stratigraphy can lead to lowering of the waterfall lip as it retreats, thus lowering base level for upstream channels. Results of numerical modeling experiments suggest the latter mechanism is more consistent with our observations of long, mildly steepened reaches.

  5. 8. SEDIMENTATION CHAMBER, VIEW UPSTREAM (PLANK COVER REMOVED FOR CLARITY). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SEDIMENTATION CHAMBER, VIEW UPSTREAM (PLANK COVER REMOVED FOR CLARITY). BOX FLUME DROPS SLIGHTLY INTO CHAMBER ON LEFT SIDE. CHAMBER IS A SERIES OF BAFFLES DESIGNED TO SLOW THE FLOW OF WATER. FLOW IS REDUCED TO ALLOW PARTICULATES TO SETTLE TO THE BOTTOM. TWO SCREENS (NOT SHOWN) FILTER LARGER DEBRIS. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  6. 12. Detail, lower chord connection point on upstream side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail, lower chord connection point on upstream side of truss, showing pinned connection of lower chord eye bars, laced vertical compression member, diagonal eye bar tension members, turnbuckled diagonal counters, and floor beam. Note also timber floor stringers supported by floor beam, and exposed ends of timber deck members visible at left above lower chord eye bar. View to northwest. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA

  7. Maine: Early Head Start Initiatives

    ERIC Educational Resources Information Center

    Center for Law and Social Policy, Inc. (CLASP), 2012

    2012-01-01

    Maine has two initiatives that build on Early Head Start (EHS). The first initiative, Fund for a Healthy Maine, has since 2001 provided tobacco settlement money to existing Head Start and EHS programs to expand the number of children who receive full-day, full-year services. Local programs have the option of using these funds for EHS, depending on…

  8. Head Start Nutrition Education Curriculum.

    ERIC Educational Resources Information Center

    Montclair State Coll., Upper Montclair, NJ.

    This multidisciplinary preschool nutrition education curriculum was written for use in the instruction of 3- to 5-year-olds in the National Head Start program. Introductory notes on cooking experiences for Head Start children and suggested menus for young children are followed by nine units. The curriculum incorporates a variety of teaching…

  9. State Funding of Head Start.

    ERIC Educational Resources Information Center

    Idaho State Legislature, Boise. Office of Performance Evaluation.

    This background paper details Head Start, a federally funded program serving preschool age children from low-income families, and focuses on the program's effectiveness and the adequacy of historic federal funding levels. The paper provides an overview of the Head Start Program, describes federal requirements for local programs, and describes Head…

  10. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    SciTech Connect

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  11. Hydraulics of floods upstream of horseshoe canyons and waterfalls

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu G. A.; Lamb, Michael P.

    2015-07-01

    Horseshoe waterfalls are ubiquitous in natural streams, bedrock canyons, and engineering structures. Nevertheless, water flow patterns upstream of horseshoe waterfalls are poorly known and likely differ from the better studied case of a one-dimensional linear step because of flow focusing into the horseshoe. This is a significant knowledge gap because the hydraulics at waterfalls controls sediment transport and bedrock incision, which can compromise the integrity of engineered structures and influence the evolution of river canyons on Earth and Mars. Here we develop new semiempirical theory for the spatial acceleration of water upstream of, and the cumulative discharge into, horseshoe canyons and waterfalls. To this end, we performed 110 numerical experiments by solving the 2-D depth-averaged shallow-water equations for a wide range of flood depths, widths and discharges, and canyon lengths, widths and bed gradients. We show that the upstream, normal flow Froude number is the dominant control on lateral flow focusing and acceleration into the canyon head and that focusing is limited when the flood width is small compared to a cross-stream backwater length scale. In addition, for sheet floods much wider than the canyon, flow focusing into the canyon head leads to reduced discharge (and drying in cases) across the canyon sidewalls, which is especially pronounced for canyons that are much longer than they are wide. Our results provide new expectations for morphodynamic feedbacks between floods and topography, and thus canyon formation.

  12. Density Fluctuations Upstream and Downstream of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream-stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  13. Interaction of upstream flow distortions with high Mach number cascades

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1981-01-01

    Features of the interaction of flow distortions, such as gusts and wakes with blade rows of advance type fans and compressors having high tip Mach numbers are modeled. A typical disturbance was assumed to have harmonic time dependence and was described, at a far upstream location, in three orthogonal spatial coordinates by a double Fourier series. It was convected at supersonic relative to a linear cascade described as an unrolled annulus. Conditions were selected so that the component of this velocity parallel to the axis of the turbomachine was subsonic, permitting interaction between blades through the upstream as well as downstream flow media. A strong, nearly normal shock was considered in the blade passages which was allowed curvature and displacement. The flows before and after the shock were linearized relative to uniform mean velocities in their respective regions. Solution of the descriptive equations was by adaption of the Wiener-Hopf technique, enabling a determination of distortion patterns through and downstream of the cascade as well as pressure distributions on the blade and surfaces. Details of interaction of the disturbance with the in-passage shock were discussed. Infuences of amplitude, wave length, and phase of the disturbance on lifts and moments of cascade configurations are presented. Numerical results are clarified by reference to an especially orderly pattern of upstream vertical motion in relation to the cascade parameters.

  14. Catalytic Ignition and Upstream Reaction Propagation in Monolith Reactors

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    Using numerical simulations, this work demonstrates a concept called back-end ignition for lighting-off and pre-heating a catalytic monolith in a power generation system. In this concept, a downstream heat source (e.g. a flame) or resistive heating in the downstream portion of the monolith initiates a localized catalytic reaction which subsequently propagates upstream and heats the entire monolith. The simulations used a transient numerical model of a single catalytic channel which characterizes the behavior of the entire monolith. The model treats both the gas and solid phases and includes detailed homogeneous and heterogeneous reactions. An important parameter in the model for back-end ignition is upstream heat conduction along the solid. The simulations used both dry and wet CO chemistry as a model fuel for the proof-of-concept calculations; the presence of water vapor can trigger homogenous reactions, provided that gas-phase temperatures are adequately high and there is sufficient fuel remaining after surface reactions. With sufficiently high inlet equivalence ratio, back-end ignition occurs using the thermophysical properties of both a ceramic and metal monolith (coated with platinum in both cases), with the heat-up times significantly faster for the metal monolith. For lower equivalence ratios, back-end ignition occurs without upstream propagation. Once light-off and propagation occur, the inlet equivalence ratio could be reduced significantly while still maintaining an ignited monolith as demonstrated by calculations using complete monolith heating.

  15. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins

    NASA Astrophysics Data System (ADS)

    Tang, Nicholas C.; Chilkoti, Ashutosh

    2016-04-01

    Most genes are synthesized using seamless assembly methods that rely on the polymerase chain reaction (PCR). However, PCR of genes encoding repetitive proteins either fails or generates nonspecific products. Motivated by the need to efficiently generate new protein polymers through high-throughput gene synthesis, here we report a codon-scrambling algorithm that enables the PCR-based gene synthesis of repetitive proteins by exploiting the codon redundancy of amino acids and finding the least-repetitive synonymous gene sequence. We also show that the codon-scrambling problem is analogous to the well-known travelling salesman problem, and obtain an exact solution to it by using De Bruijn graphs and a modern mixed integer linear programme solver. As experimental proof of the utility of this approach, we use it to optimize the synthetic genes for 19 repetitive proteins, and show that the gene fragments are amenable to PCR-based gene assembly and recombinant expression.

  16. Translational selection frequently overcomes genetic drift in shaping synonymous codon usage patterns in vertebrates.

    PubMed

    Doherty, Aoife; McInerney, James O

    2013-10-01

    Synonymous codon usage patterns are shaped by a balance between mutation, drift, and natural selection. To date, detection of translational selection in vertebrates has proven to be a challenging task, obscured by small long-term effective population sizes in larger animals and the existence of isochores in some species. The consensus is that, in such species, natural selection is either completely ineffective at overcoming mutational pressures and genetic drift or perhaps is effective but so weak that it is not detectable. The aim of this research is to understand the interplay between mutation, selection, and genetic drift in vertebrates. We observe that although variation in mutational bias is undoubtedly the dominant force influencing codon usage, translational selection acts as a weak additional factor influencing synonymous codon usage. These observations indicate that translational selection is a widespread phenomenon in vertebrates and is not limited to a few species.

  17. Ribosome bypassing at serine codons as a test of the model of selective transfer RNA charging

    PubMed Central

    Lindsley, Dale; Bonthuis, Paul; Gallant, Jonathan; Tofoleanu, Teodora; Elf, Johan; Ehrenberg, Måns

    2005-01-01

    Recently, a model of the flux of amino acids through transfer RNAs (tRNAs) and into protein has been developed. The model predicts that the charging level of different isoacceptors carrying the same amino acid respond very differently to variation in supply of the amino acid or of the rate of charging. It has also been shown that ribosome bypassing is specifically stimulated at ‘hungry' codons calling for an aminoacyl-tRNA in short supply. We have constructed two reporters of bypassing, which differ only in the identity of the serine codon subjected to starvation. The stimulation of bypassing as a function of starvation differed greatly between the two serine codons, in good agreement with the quantitative predictions of the model. PMID:15678161

  18. Hydrazine engine start system air start performance and controls sizing

    SciTech Connect

    Johnson, A.T.

    1992-01-01

    Hydrazine has been used as an energy source in many applications to fuel in-flight main engine starting. In a current application, an existing hydrazine engine start system (ESS) design was adapted to meet new fuel control requirements. This paper presents a brief system description, historical context, and the motivating factors for the hydrazine controls changes and three case studies of controls design and analysis from the ESS program. 4 refs.

  19. Translational control of the Xenopus laevis connexin-41 5'-untranslated region by three upstream open reading frames.

    PubMed

    Meijer, H A; Dictus, W J; Keuning, E D; Thomas, A A

    2000-10-06

    The Xenopus laevis Connexin-41 (Cx41) mRNA contains three upstream open reading frames (uORFs) in the 5'-untranslated region (UTR). We analyzed the translation efficiency of constructs containing the Cx41 5'-UTR linked to the green fluorescent protein reporter after injection of transcripts into one-cell stage Xenopus embryos. The translational efficiency of the wild-type Cx41 5'-UTR was only 2% compared with that of the beta-globin 5'-UTR. Mutation of each of the three uAUGs into AAG codons enhanced translation 82-, 9-, and 4-fold compared with the wild-type Cx41 5'-UTR. Based on these increased translation efficiencies, the percentages of ribosomes that recognized the uAUGs were calculated. Only 0.03% of the ribosomes that entered at the cap structure scanned the entire 5'-UTR and translated the main ORF. The results indicate that all uAUGs are recognized by the majority of the scanning ribosomes and that the three uAUGs strongly modulate translation efficiency in Xenopus laevis embryos. Based on these data, a model of ribosomal flow along the mRNA is postulated. We conclude that the three uORFs may play an important role in the regulation of Cx41 expression.

  20. The START III bargaining space

    SciTech Connect

    Karas, T.H.

    1998-08-01

    The declining state of the Russian military and precarious Russian economic condition will give the US considerable advantages at the START III bargaining table. Taking the US-RF asymmetries into account, this paper discusses a menu of START III measures the US could ask for, and measures it could offer in return, in attempting to negotiate an equitable treaty. Measures the US might seek in a START III treaty include: further reductions in deployed strategic nuclear warheads, irreversibility of reductions through warhead dismantlement; beginning to bring theater nuclear weapons under mutual control, and increased transparency into the Russian nuclear weapons complex. The US may, however, wish to apply its bargaining advantages to attempting to achieve the first steps toward two long-range goals that would enhance US security: bringing theater nuclear weapons into the US-RF arms control arena, and increasing transparency into the Russian nuclear weapons complex. In exchange for measures relating to these objectives, the US might consider offering to Russia: Further strategic weapons reductions approaching levels at which the Russians believe they could maintain a degree of parity with the US; Measures to decrease the large disparities in potential deliver-system uploading capabilities that appear likely under current START II/START III scenarios; and Financial assistance in achieving START II/START III reductions as rapidly as is technically possible.

  1. Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 translational control.

    PubMed Central

    Grant, C M; Hinnebusch, A G

    1994-01-01

    Translational control of the GCN4 gene involves two short open reading frames in the mRNA leader (uORF1 and uORF4) that differ greatly in the ability to allow reinitiation at GCN4 following their own translation. The low efficiency of reinitiation characteristic of uORF4 can be reconstituted in a hybrid element in which the last codon of uORF1 and 10 nucleotides 3' to its stop codon (the termination region) are substituted with the corresponding nucleotides from uORF4. To define the features of these 13 nucleotides that determine their effects on reinitiation, we separately randomized the sequence of the third codon and termination region of the uORF1-uORF4 hybrid and selected mutant alleles with the high-level reinitiation that is characteristic of uORF1. The results indicate that many different A+U-rich triplets present at the third codon of uORF1 can overcome the inhibitory effect of the termination region derived from uORF4 on the efficiency of reinitiation at GCN4. Efficient reinitiation is not associated with codons specifying a particular amino acid or isoacceptor tRNA. Similarly, we found that a diverse collection of A+U-rich sequences present in the termination region of uORF1 could restore efficient reinitiation at GCN4 in the presence of the third codon derived from uORF4. To explain these results, we propose that reinitiation can be impaired by stable base pairing between nucleotides flanking the uORF1 stop codon and either the tRNA which pairs with the third codon, the rRNA, or sequences located elsewhere in GCN4 mRNA. We suggest that these interactions delay the resumption of scanning following peptide chain termination at the uORF and thereby lead to ribosome dissociation from the mRNA. Images PMID:8264629

  2. Increased risk of oesophageal adenocarcinoma among upstream petroleum workers

    PubMed Central

    Kirkeleit, Jorunn; Riise, Trond; Bjørge, Tone; Moen, Bente E; Bråtveit, Magne; Christiani, David C

    2013-01-01

    Objectives To investigate cancer risk, particularly oesophageal cancer, among male upstream petroleum workers offshore potentially exposed to various carcinogenic agents. Methods Using the Norwegian Registry of Employers and Employees, 24 765 male offshore workers registered from 1981 to 2003 was compared with 283 002 male referents from the general working population matched by age and community of residence. The historical cohort was linked to the Cancer Registry of Norway and the Norwegian Cause of Death Registry. Results Male offshore workers had excess risk of oesophageal cancer (RR 2.6, 95% CI 1.4 to 4.8) compared with the reference population. Only the adenocarcinoma type had a significantly increased risk (RR 2.7, 95% CI 1.0 to 7.0), mainly because of an increased risk among upstream operators (RR 4.3, 95% CI 1.3 to 14.5). Upstream operators did not have significant excess of respiratory system or colon cancer or mortality from any other lifestyle-related diseases investigated. Conclusion We found a fourfold excess risk of oesophageal adenocarcinoma among male workers assumed to have had the most extensive contact with crude oil. Due to the small number of cases, and a lack of detailed data on occupational exposure and lifestyle factors associated with oesophageal adenocarcinoma, the results must be interpreted with caution. Nevertheless, given the low risk of lifestyle-related cancers and causes of death in this working group, the results add to the observations in other low-powered studies on oesophageal cancer, further suggesting that factors related to the petroleum stream or carcinogenic agents used in the production process might be associated with risk of oesophageal adenocarcinoma. PMID:19858535

  3. Upstream processes in antibody production: evaluation of critical parameters.

    PubMed

    Jain, Era; Kumar, Ashok

    2008-01-01

    The demand for monoclonal antibody for therapeutic and diagnostic applications is rising constantly which puts up a need to bring down the cost of its production. In this context it becomes a prerequisite to improve the efficiency of the existing processes used for monoclonal antibody production. This review describes various upstream processes used for monoclonal antibody production and evaluates critical parameters and efforts which are being made to enhance the efficiency of the process. The upstream technology has tremendously been upgraded from host cells used for manufacturing to bioreactors type and capacity. The host cells used range from microbial, mammalian to plant cells with mammalian cells dominating the scenario. Disposable bioreactors are being promoted for small scale production due to easy adaptation to process validation and flexibility, though they are limited by the scale of production. In this respect Wave bioreactors for suspension culture have been introduced recently. A novel bioreactor for immobilized cells is described which permits an economical and easy alternative to hollow fiber bioreactor at lab scale production. Modification of the cellular machinery to alter their metabolic characteristics has further added to robustness of cells and perks up cell specific productivity. The process parameters including feeding strategies and environmental parameters are being improved and efforts to validate them to get reproducible results are becoming a trend. Online monitoring of the process and product characterization is increasingly gaining importance. In total the advancement of upstream processes have led to the increase in volumetric productivity by 100-fold over last decade and make the monoclonal antibody production more economical and realistic option for therapeutic applications.

  4. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    SciTech Connect

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  5. Hybrid simulation codes with application to shocks and upstream waves

    NASA Technical Reports Server (NTRS)

    Winske, D.

    1985-01-01

    Hybrid codes in which part of the plasma is represented as particles and the rest as a fluid are discussed. In the past few years such codes with particle ions and massless, fluid electrons have been applied to space plasmas, especially to collisionless shocks. All of these simulation codes are one-dimensional and similar in structure, except for how the field equations are solved. The various approaches that are used (resistive Ohm's law, predictor-corrector, Hamiltonian) are described in detail and results from the various codes are compared with examples taken from collisionless shocks and low frequency wave phenomena upstream of shocks.

  6. 2. View of Potomac River at Great Falls looking upstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Potomac River at Great Falls looking upstream from Observation Tower. The majestic character of this wild and untrammeled spot is vividly shown. Scanty flow is evidenced by light colored normal water line markings on rock formation. Washington Agueduct Dam is shown in upper portion. Maryland on right and Virginia on left. Natives quoted as saying the water was as low or lower than during the drought conditions of 1930. Mr. Horyduzak, Photographer, 1943. - Potowmack Company: Great Falls Canal & Locks, Great Falls, Fairfax County, VA

  7. Energetic Ions and Magnetic Fields Upstream From the Kronian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Krimigis, S. M.; Sarris, E.; Sergis, N.; Dialynas, K.; Mitchell, D. G.; Hamilton, D. C.; Dougherty, M.

    2008-12-01

    The existence of energetic particle events to ~200 Rs upstream and ~1300 Rs downstream of Saturn was established during the Voyager 1, 2 flybys in 1980 and 1981, respectively. The origin of the events could not be determined with certainty because of lack of particle charge state and species measurements at lower (<300 keV) energies, which dominate the spectra. High sensitivity observations of energetic ion directional intensities, energy spectra, and ion composition were obtained by the Ion and Neutral Camera (INCA) of the MIMI instrument complement with a geometry factor of ~2.5 cm2 sr and some capability of separating light (H, He) and heavier (C, N, O) ion groups (henceforth referred to as "hydrogen" and "oxygen" respectively). Charge state information was provided where possible by the Charge-Energy-Mass-Spectrometer (CHEMS) over the range ~3 to 220 keV per charge, and magnetic field (IMF) data by the MAG instrument on Cassini. The observations revealed the presence of distinct upstream bursts of energetic hydrogen and oxygen ions whenever the IMF connected the spacecraft to the planetary bow shock, up to distances of 135 RS. The events exhibited the following characteristics: (1) Hydrogen ion bursts are observed in the energy range 3 to 220 keV (and occasionally to E > 220 keV) and oxygen ion bursts in the energy range 32 to -300 keV. (2) Particle onsets are nearly field-aligned, but the distribution tends to isotropize as the event progresses in time. (3) The duration of the ion bursts is several minutes up to 4 hrs. (4) The events are of varying composition, with some exhibiting significant fluxes of oxygen. (5) The bursts have a filamentary structure with some exhibiting distinct signatures of "velocity- filtering effects" at the edges of convecting IMF filaments. (6) Some ion bursts are accompanied by distinct diamagnetic field depressions and exhibit wave structures consistent with ion cyclotron waves for H+, and O+. Given the repeated magnetic field

  8. Characterization of the promoter and upstream activating sequence from the Pseudomonas alcaligenes lipase gene.

    PubMed

    Cox, M; Gerritse, G; Dankmeyer, L; Quax, W J

    2001-03-09

    Pseudomonas alcaligenes secretes a lipase with a high pH optimum, which has interesting properties for application in detergents. The expression of the lipase is strongly dependent on the presence of lipids in the growth medium such as soybean oil. The promoter of the gene was characterized and found to have resemblance to sigma54 controlled promoters, which are known to be tightly regulated. The transcription start was mapped precisely downstream of a sequence with close similarity to the -12/-24 consensus sequence of sigma54 controlled promoters. Interestingly, a hyperproducer mutant strain was isolated and found to have a C to T mutation in the -12/-24 promoter consensus region. In addition an Upstream Activating Sequence (UAS) with homology to sigma54 UAS consensus sequences was identified. It was demonstrated that an increase of the distance from the UAS to the transcription start or the deletion of the UAS results in significantly lower expression levels of lipase. A systematic mutational analysis of the UAS sequence has resulted in a variant with an increased lipase expression.

  9. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels

    PubMed Central

    Frenkel-Morgenstern, Milana; Danon, Tamar; Christian, Thomas; Igarashi, Takao; Cohen, Lydia; Hou, Ya-Ming; Jensen, Lars Juhl

    2012-01-01

    The cell cycle is a temporal program that regulates DNA synthesis and cell division. When we compared the codon usage of cell cycle-regulated genes with that of other genes, we discovered that there is a significant preference for non-optimal codons. Moreover, genes encoding proteins that cycle at the protein level exhibit non-optimal codon preferences. Remarkably, cell cycle-regulated genes expressed in different phases display different codon preferences. Here, we show empirically that transfer RNA (tRNA) expression is indeed highest in the G2 phase of the cell cycle, consistent with the non-optimal codon usage of genes expressed at this time, and lowest toward the end of G1, reflecting the optimal codon usage of G1 genes. Accordingly, protein levels of human glycyl-, threonyl-, and glutamyl-prolyl tRNA synthetases were found to oscillate, peaking in G2/M phase. In light of our findings, we propose that non-optimal (wobbly) matching codons influence protein synthesis during the cell cycle. We describe a new mathematical model that shows how codon usage can give rise to cell-cycle regulation. In summary, our data indicate that cells exploit wobbling to generate cell cycle-dependent dynamics of proteins. PMID:22373820

  10. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    ERIC Educational Resources Information Center

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  11. Effective population size does not predict codon usage bias in mammals

    PubMed Central

    Kessler, Michael D; Dean, Matthew D

    2014-01-01

    Synonymous codons are not used at equal frequency throughout the genome, a phenomenon termed codon usage bias (CUB). It is often assumed that interspecific variation in the intensity of CUB is related to species differences in effective population sizes (Ne), with selection on CUB operating less efficiently in species with small Ne. Here, we specifically ask whether variation in Ne predicts differences in CUB in mammals and report two main findings. First, across 41 mammalian genomes, CUB was not correlated with two indirect proxies of Ne (body mass and generation time), even though there was statistically significant evidence of selection shaping CUB across all species. Interestingly, autosomal genes showed higher codon usage bias compared to X-linked genes, and high-recombination genes showed higher codon usage bias compared to low recombination genes, suggesting intraspecific variation in Ne predicts variation in CUB. Second, across six mammalian species with genetic estimates of Ne (human, chimpanzee, rabbit, and three mouse species: Mus musculus, M. domesticus, and M. castaneus), Ne and CUB were weakly and inconsistently correlated. At least in mammals, interspecific divergence in Ne does not strongly predict variation in CUB. One hypothesis is that each species responds to a unique distribution of selection coefficients, confounding any straightforward link between Ne and CUB. PMID:25505518

  12. Characterization of the stop codon readthrough signal of Colorado tick fever virus segment 9 RNA.

    PubMed

    Napthine, Sawsan; Yek, Christina; Powell, Michael L; Brown, T David K; Brierley, Ian

    2012-02-01

    Termination codon readthrough is utilized as a mechanism of expression of a growing number of viral and cellular proteins, but in many cases the mRNA signals that promote readthrough are poorly characterized. Here, we investigated the readthrough signal of Colorado tick fever virus (CTFV) segment 9 RNA (Seg-9). CTFV is the type-species of the genus Coltivirus within the family Reoviridae and is a tick-borne, double-stranded, segmented RNA virus. Seg-9 encodes a 36-kDa protein VP9, and by readthrough of a UGA stop codon, a 65-kDa product, VP9'. Using a reporter system, we defined the minimal sequence requirements for readthrough and confirmed activity in both mammalian and insect cell-free translation systems, and in transfected mammalian cells. Mutational analysis revealed that readthrough was UGA specific, and that the local sequence context around the UGA influenced readthrough efficiency. Readthrough was also dependent upon a stable RNA stem-loop structure beginning eight bases downstream from the UGA codon. Mutational analysis of this stem-loop revealed a requirement for the stem region but not for substructures identified within the loop. Unexpectedly, we were unable to detect a ribosomal pause during translation of the CTFV signal, suggesting that the mechanism of readthrough, at least at this site, is unlikely to be dependent upon RNA secondary-structure induced ribosomal pausing at the recoded stop codon.

  13. p53 codon 72 polymorphism in vulval cancer and vulval intraepithelial neoplasia

    PubMed Central

    Rosenthal, A N; Ryan, A; Hopster, D; Jacobs, I J

    2000-01-01

    p53 codon 72 polymorphism was analysed in UK women with human papillomavirus (HPV)-associated vulval intraepithelial neoplasia and vulval squamous cell carcinoma. Arginine homozygotes were significantly less common in either group compared with controls. We conclude that the arginine polymorphism may confer protection against the development of HPV-associated vulval neoplasia. © 2000 Cancer Research Campaign PMID:11044351

  14. Predicting Gene Expression Level from Relative Codon Usage Bias: An Application to Escherichia coli Genome

    PubMed Central

    Roymondal, Uttam; Das, Shibsankar; Sahoo, Satyabrata

    2009-01-01

    We present an expression measure of a gene, devised to predict the level of gene expression from relative codon bias (RCB). There are a number of measures currently in use that quantify codon usage in genes. Based on the hypothesis that gene expressivity and codon composition is strongly correlated, RCB has been defined to provide an intuitively meaningful measure of an extent of the codon preference in a gene. We outline a simple approach to assess the strength of RCB (RCBS) in genes as a guide to their likely expression levels and illustrate this with an analysis of Escherichia coli (E. coli) genome. Our efforts to quantitatively predict gene expression levels in E. coli met with a high level of success. Surprisingly, we observe a strong correlation between RCBS and protein length indicating natural selection in favour of the shorter genes to be expressed at higher level. The agreement of our result with high protein abundances, microarray data and radioactive data demonstrates that the genomic expression profile available in our method can be applied in a meaningful way to the study of cell physiology and also for more detailed studies of particular genes of interest. PMID:19131380

  15. System analysis of synonymous codon usage biases in archaeal virus genomes.

    PubMed

    Li, Sen; Yang, Jie

    2014-08-21

    Recent studies of geothermally heated aquatic ecosystems have found widely divergent viruses with unusual morphotypes. Archaeal viruses isolated from these hot habitats usually have double-stranded DNA genomes, linear or circular, and can infect members of the Archaea domain. In this study, the synonymous codon usage bias (SCUB) and dinucleotide composition in the available complete archaeal virus genome sequences have been investigated. It was found that there is a significant variation in SCUB among different Archaeal virus species, which is mainly determined by the base composition. The outcome of correspondence analysis (COA) and Spearman׳s rank correlation analysis shows that codon usage of selected archaeal virus genes depends mainly on GC richness of genome, and the gene׳s function, albeit with smaller effects, also contributes to codon usage in this virus. Furthermore, this investigation reveals that aromaticity of each protein is also critical in affecting SCUB of these viral genes although it was less important than that of the mutational bias. Especially, mutational pressure may influence SCUB in SIRV1, SIRV2, ARV1, AFV1, and PhiCh1 viruses, whereas translational selection could play a leading role in HRPV1׳s SCUB. These conclusions not only can offer an insight into the codon usage biases of archaeal virus and subsequently the possible relationship between archaeal viruses and their host, but also may help in understanding the evolution of archaeal viruses and their gene classification, and more helpful to explore the origin of life and the evolution of biology.

  16. Conservation of CFTR codon frequency through primates suggests synonymous mutations could have a functional effect.

    PubMed

    Pizzo, Lucilla; Iriarte, Andrés; Alvarez-Valin, Fernando; Marín, Mónica

    2015-05-01

    Cystic fibrosis is an inherited chronic disease that affects the lungs and digestive system, with a prevalence of about 1:3000 people. Cystic fibrosis is caused by mutations in CFTR gene, which lead to a defective function of the chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Up-to-date, more than 1900 mutations have been reported in CFTR. However for an important proportion of them, their functional effects and the relation to disease are still not understood. Many of these mutations are silent (or synonymous), namely they do not alter the encoded amino acid. These synonymous mutations have been considered as neutral to protein function. However, more recent evidence in bacterial and human proteins has put this concept under revision. With the aim of understanding possible functional effects of synonymous mutations in CFTR, we analyzed human and primates CFTR codon usage and divergence patterns. We report the presence of regions enriched in rare and frequent codons. This spatial pattern of codon preferences is conserved in primates, but this cannot be explained by sequence conservation alone. In sum, the results presented herein suggest a functional implication of these regions of the gene that may be maintained by purifying selection acting to preserve a particular codon usage pattern along the sequence. Overall these results support the idea that several synonymous mutations in CFTR may have functional importance, and could be involved in the disease.

  17. Four-base codons ACCA, ACCU and ACCC are recognized by frameshift suppressor sufJ.

    PubMed

    Bossi, L; Roth, J R

    1981-08-01

    The frameshift suppressor sufJ acts to correct a set of +1 frameshift mutations having very different sequences at their mutant sites. This suppressor acts by reading a 4 base codon located near, but not at, the site of each suppressible mutation. Suppression thus necessitates out-of-phase translation of the short stretch of mRNA between the site of action of the suppressor tRNA and the site of the frameshift mutation. We have identified the site read by sufJ by mutationally creating a series of such sites in the neighborhood of a previously nonsuppressible frameshift mutation. Each of the newly generated sites was formed by base substitution. Four independently generated sites were analyzed by DNA sequencing. At each site the quadruplet codon ACCX was generated (where X is A, U or C). Thus sufJ is able to read a 4 base codon in which any of three bases is acceptable in the fourth position. This is the first frameshift suppressor that does not read a run of three repeated bases in the first three positions of its codon.

  18. Analysis of Low Frequency Protein Truncating Stop-Codon Variants and Fasting Concentration of Growth Hormone

    PubMed Central

    Hallengren, Erik; Almgren, Peter; Engström, Gunnar; Persson, Margaretha; Melander, Olle

    2015-01-01

    Background The genetic background of Growth Hormone (GH) secretion is not well understood. Mutations giving rise to a stop codon have a high likelihood of affecting protein function. Objectives To analyze likely functional stop codon mutations that are associated with fasting plasma concentration of Growth Hormone. Methods We analyzed stop codon mutations in 5451 individuals in the Malmö Diet and Cancer study by genotyping the Illumina Exome Chip. To enrich for stop codon mutations with likely functional effects on protein function, we focused on those disrupting >80% of the predicted amino acid sequence, which were carried by ≥10 individuals. Such mutations were related to GH concentration, measured with a high sensitivity assay (hs-GH) and, if nominally significant, to GH related phenotypes, using linear regression analysis. Results Two stop codon mutations were associated with the fasting concentration of hs-GH. rs121909305 (NP_005370.1:p.R93*) [Minor Allele Frequency (MAF) = 0.8%] in the Myosin 1A gene (MYO1A) was associated with a 0.36 (95%CI, 0.04 to 0.54; p=0.02) increment of the standardized value of the natural logarithm of hs-GH per 1 minor allele and rs35699176 (NP_067040.1:p.Q100*) in the Zink Finger protein 77 gene (ZNF77) (MAF = 4.8%) was associated with a 0.12 (95%CI, 0.02 to 0.22; p = 0.02) increase of hs-GH. The mutated high hs-GH associated allele of MYO1A was related to lower BMI (β-coefficient, -0.22; p = 0.05), waist (β-coefficient, -0.22; p = 0.04), body fat percentage (β-coefficient, -0.23; p = 0.03) and with higher HDL (β-coefficient, 0.23; p = 0.04). The ZNF77 stop codon was associated with height (β-coefficient, 0.11; p = 0.02) but not with cardiometabolic risk factors. Conclusion We here suggest that a stop codon of MYO1A, disrupting 91% of the predicted amino acid sequence, is associated with higher hs-GH and GH-related traits suggesting that MYO1A is involved in GH metabolism and possibly body fat distribution. However, our

  19. Identification of a new mutation on the beta-globin gene: codons 8/9 (+AGAA); GAG.AAG.TCT(Glu-Lys-Ser)>GAG. AAAGAAG, in a patient from the north of France with a phenotype of beta-thalassemia minor.

    PubMed

    Georgel, Anne France; Méreau, Claude; Willekens, Christophe; Bourgeois, Emmanuelle; Maboudou, Patrice; Crépin, Michel; Pissard, Serge; Rose, Christian

    2010-01-01

    A 37-year-old man presented a slight debility. The hemogram showed a phenotype of beta-thalassemia minor: Hb (13.1 g/dL), mean corpuscular volume (MCV) (62 fL) with low mean corpuscular hemoglobin (MCH) (20.8 pg), associated with a high level of Hb A(2) of 5.3%. The serum ferritin level was 1,072 ng/mL. The sequencing of the mutated fragment revealed a duplication of four bases of codons 7/8 involving a shift in the open reading frame starting from codon 9 with a TGA stop codon at codon 23: codons 7/8/9 (+AGAA); GAG.AAG.TCT(Gly-Lys-Ser)>GAG.AAAGAAG. The human hemoglobin (Hb) instability tests were negative. The patient did not present the high iron Fe (HFE) mutation (C282Y, H63D). The same mutation was found in five other unrelated families (representing a total of 23 patients). All of their ancestors came from the north of France. This mutation has not been described before and could have its origins in the native populations of Northern France.

  20. A Large Eddy Simulation Study for upstream wind energy conditioning

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Calaf, M.; Parlange, M. B.

    2013-12-01

    The wind energy industry is increasingly focusing on optimal power extraction strategies based on layout design of wind farms and yaw alignment algorithms. Recent field studies by Mikkelsen et al. (Wind Energy, 2013) have explored the possibility of using wind lidar technology installed at hub height to anticipate incoming wind direction and strength for optimizing yaw alignment. In this work we study the benefits of using remote sensing technology for predicting the incoming flow by using large eddy simulations of a wind farm. The wind turbines are modeled using the classic actuator disk concept with rotation, together with a new algorithm that permits the turbines to adapt to varying flow directions. This allows for simulations of a more realistic atmospheric boundary layer driven by a time-varying geostrophic wind. Various simulations are performed to investigate possible improvement in power generation by utilizing upstream data. Specifically, yaw-correction of the wind-turbine is based on spatio-temporally averaged wind values at selected upstream locations. Velocity and turbulence intensity are also considered at those locations. A base case scenario with the yaw alignment varying according to wind data measured at the wind turbine's hub is also used for comparison. This reproduces the present state of the art where wind vanes and cup anemometers installed behind the rotor blades are used for alignment control.

  1. Computational sciences in the upstream oil and gas industry.

    PubMed

    Halsey, Thomas C

    2016-10-13

    The predominant technical challenge of the upstream oil and gas industry has always been the fundamental uncertainty of the subsurface from which it produces hydrocarbon fluids. The subsurface can be detected remotely by, for example, seismic waves, or it can be penetrated and studied in the extremely limited vicinity of wells. Inevitably, a great deal of uncertainty remains. Computational sciences have been a key avenue to reduce and manage this uncertainty. In this review, we discuss at a relatively non-technical level the current state of three applications of computational sciences in the industry. The first of these is seismic imaging, which is currently being revolutionized by the emergence of full wavefield inversion, enabled by algorithmic advances and petascale computing. The second is reservoir simulation, also being advanced through the use of modern highly parallel computing architectures. Finally, we comment on the role of data analytics in the upstream industry.This article is part of the themed issue 'Energy and the subsurface'.

  2. Systematic Clustering of Transcription Start Site Landscapes

    PubMed Central

    Zhao, Xiaobei; Valen, Eivind; Parker, Brian J.; Sandelin, Albin

    2011-01-01

    Genome-wide, high-throughput methods for transcription start site (TSS) detection have shown that most promoters have an array of neighboring TSSs where some are used more than others, forming a distribution of initiation propensities. TSS distributions (TSSDs) vary widely between promoters and earlier studies have shown that the TSSDs have biological implications in both regulation and function. However, no systematic study has been made to explore how many types of TSSDs and by extension core promoters exist and to understand which biological features distinguish them. In this study, we developed a new non-parametric dissimilarity measure and clustering approach to explore the similarities and stabilities of clusters of TSSDs. Previous studies have used arbitrary thresholds to arrive at two general classes: broad and sharp. We demonstrated that in addition to the previous broad/sharp dichotomy an additional category of promoters exists. Unlike typical TATA-driven sharp TSSDs where the TSS position can vary a few nucleotides, in this category virtually all TSSs originate from the same genomic position. These promoters lack epigenetic signatures of typical mRNA promoters and a substantial subset of them are mapping upstream of ribosomal protein pseudogenes. We present evidence that these are likely mapping errors, which have confounded earlier analyses, due to the high similarity of ribosomal gene promoters in combination with known G addition bias in the CAGE libraries. Thus, previous two-class separations of promoter based on TSS distributions are motivated, but the ultra-sharp TSS distributions will confound downstream analyses if not removed. PMID:21887249

  3. Structural characterization of eRF1 mutants indicate a complex mechanism of stop codon recognition

    PubMed Central

    Pillay, Shubhadra; Li, Yan; Wong, Leo E; Pervushin, Konstantin

    2016-01-01

    Eukarya translation termination requires the stop codon recognizing protein eRF1. In contrast to the multiple proteins required for translation termination in Bacteria, eRF1 retains the ability to recognize all three of the stop codons. The details of the mechanism that eRF1 uses to recognize stop codons has remained elusive. This study describes the structural effects of mutations in the eRF1 N-domain that have previously been shown to alter stop codon recognition specificity. Here, we propose a model of eRF1 binding to the pre-translation termination ribosomal complex that is based in part on our solution NMR structures of the wild-type and mutant eRF1 N-domains. Since structural perturbations induced by these mutations were spread throughout the protein structure, residual dipolar coupling (RDC) data were recorded to establish the long-range effects of the specific mutations, E55Q, Y125F, Q122FM(Y)F126. RDCs were recorded on 15N-labeled eRF1 N-domain weakly aligned in either 5% w/v n-octyl-penta (ethylene glycol)/octanol (C8E5) or the filamentous phage Pf1. These data indicate that the mutations alter the conformation and dynamics of the GTS loop that is distant from the mutation sites. We propose that the GTS loop forms a switch that is key for the multiple codon recognition capability of eRF1. PMID:26725946

  4. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota

    PubMed Central

    Campbell, James H.; O’Donoghue, Patrick; Campbell, Alisha G.; Schwientek, Patrick; Sczyrba, Alexander; Woyke, Tanja; Söll, Dieter; Podar, Mircea

    2013-01-01

    The composition of the human microbiota is recognized as an important factor in human health and disease. Many of our cohabitating microbes belong to phylum-level divisions for which there are no cultivated representatives and are only represented by small subunit rRNA sequences. For one such taxon (SR1), which includes bacteria with elevated abundance in periodontitis, we provide a single-cell genome sequence from a healthy oral sample. SR1 bacteria use a unique genetic code. In-frame TGA (opal) codons are found in most genes (85%), often at loci normally encoding conserved glycine residues. UGA appears not to function as a stop codon and is in equilibrium with the canonical GGN glycine codons, displaying strain-specific variation across the human population. SR1 encodes a divergent tRNAGlyUCA with an opal-decoding anticodon. SR1 glycyl-tRNA synthetase acylates tRNAGlyUCA with glycine in vitro with similar activity compared with normal tRNAGlyUCC. Coexpression of SR1 glycyl-tRNA synthetase and tRNAGlyUCA in Escherichia coli yields significant β-galactosidase activity in vivo from a lacZ gene containing an in-frame TGA codon. Comparative genomic analysis with Human Microbiome Project data revealed that the human body harbors a striking diversity of SR1 bacteria. This is a surprising finding because SR1 is most closely related to bacteria that live in anoxic and thermal environments. Some of these bacteria share common genetic and metabolic features with SR1, including UGA to glycine reassignment and an archaeal-type ribulose-1,5-bisphosphate carboxylase (RubisCO) involved in AMP recycling. UGA codon reassignment renders SR1 genes untranslatable by other bacteria, which impacts horizontal gene transfer within the human microbiota. PMID:23509275

  5. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii.

    PubMed

    Young, Rosanna E B; Purton, Saul

    2016-05-01

    There is a growing interest in the use of microalgae as low-cost hosts for the synthesis of recombinant products such as therapeutic proteins and bioactive metabolites. In particular, the chloroplast, with its small, genetically tractable genome (plastome) and elaborate metabolism, represents an attractive platform for genetic engineering. In Chlamydomonas reinhardtii, none of the 69 protein-coding genes in the plastome uses the stop codon UGA, therefore this spare codon can be exploited as a useful synthetic biology tool. Here, we report the assignment of the codon to one for tryptophan and show that this can be used as an effective strategy for addressing a key problem in chloroplast engineering: namely, the assembly of expression cassettes in Escherichia coli when the gene product is toxic to the bacterium. This problem arises because the prokaryotic nature of chloroplast promoters and ribosome-binding sites used in such cassettes often results in transgene expression in E. coli, and is a potential issue when cloning genes for metabolic enzymes, antibacterial proteins and integral membrane proteins. We show that replacement of tryptophan codons with the spare codon (UGG→UGA) within a transgene prevents functional expression in E. coli and in the chloroplast, and that co-introduction of a plastidial trnW gene carrying a modified anticodon restores function only in the latter by allowing UGA readthrough. We demonstrate the utility of this system by expressing two genes known to be highly toxic to E. coli and discuss its value in providing an enhanced level of biocontainment for transplastomic microalgae.

  6. Gene Composer: database software for protein construct design, codon engineering, and gene synthesis

    PubMed Central

    Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance

    2009-01-01

    Background To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. Results An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. Conclusion We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis

  7. Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition.

    PubMed Central

    Bertram, G; Bell, H A; Ritchie, D W; Fullerton, G; Stansfield, I

    2000-01-01

    Eukaryote ribosomal translation is terminated when release factor eRF1, in a complex with eRF3, binds to one of the three stop codons. The tertiary structure and dimensions of eRF1 are similar to that of a tRNA, supporting the hypothesis that release factors may act as molecular mimics of tRNAs. To identify the yeast eRF1 stop codon recognition domain (analogous to a tRNA anticodon), a genetic screen was performed to select for mutants with disabled recognition of only one of the three stop codons. Nine out of ten mutations isolated map to conserved residues within the eRF1 N-terminal domain 1. A subset of these mutants, although wild-type for ribosome and eRF3 interaction, differ in their respective abilities to recognize each of the three stop codons, indicating codon-specific discrimination defects. Five of six of these stop codon-specific mutants define yeast domain 1 residues (I32, M48, V68, L123, and H129) that locate at three pockets on the eRF1 domain 1 molecular surface into which a stop codon can be modeled. The genetic screen results and the mutant phenotypes are therefore consistent with a role for domain 1 in stop codon recognition; the topology of this eRF1 domain, together with eRF1-stop codon complex modeling further supports the proposal that this domain may represent the site of stop codon binding itself. PMID:10999601

  8. Impulsively started incompressible turbulent jet

    SciTech Connect

    Witze, P O

    1980-10-01

    Hot-film anemometer measurements are presented for the centerline velocity of a suddenly started jet of air. The tip penetration of the jet is shown to be proportional to the square-root of time. A theoretical model is developed that assumes the transient jet can be characterized as a spherical vortex interacting with a steady-state jet. The model demonstrates that the ratio of nozzle radius to jet velocity defines a time constant that uniquely characterizes the behavior and similarity of impulsively started incompressible turbulent jets.

  9. The Bastille Day Magnetic Clouds and Upstream Shocks: Near Earth Interplanetary Observations

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Berdichevsky, D. B.; Burlaga, L. F.; Lazarus, A. J.; Kasper, J.; Desch, M. D.; Wu, C.-C.; Reames, D. V.; Singer, H. J.; Singer, H. J.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The energetic charged particle, interplanetary magnetic field, and plasma characteristics of the 'Bastille Day' shock and ejecta/magnetic cloud events at 1 AU occurring over the days 14-16 July 2000 are described. Profiles of MeV (WIND/LEMT) energetic ions help to organize the overall sequence of events from the solar source to 1 AU. Stressed are analyses of an outstanding magnetic cloud (MC2) starting late on 15 July and its upstream shock about 4 hours earlier in WIND magnetic field and plasma data. Also analyzed is a less certain, but likely, magnetic cloud (MC1) occurring early on 15 July; this was separated from MC2 by its upstream shock and many heliospheric current sheet (HCS) crossings. Other HCS crossings occurred throughout the 3-day period. Overall this dramatic series of interplanetary events caused a large multi-phase magnetic storm with min Dst lower than -300 nT. The very fast solar wind speed (greater than or equal to 1100 km/s) in and around the front of MC2 (for near average densities) was responsible for a very high solar wind ram pressure driving in the front of the magnetosphere to geocentric distances estimated to be as low as approx. 5 R(sub E), much lower than the geosynchronous orbit radius. This was consistent with magnetic field observations from two GOES satellites which indicated they were in the magnetosheath for extended times. A static force free field model is used to fit the two magnetic cloud profiles providing estimates of the clouds' physical and geometrical properties. MC2 was much larger than MCI, but their axes were nearly antiparallel, and their magnetic fields had the same left-handed helicity. MC2's axis and its upstream shock normal were very close to being perpendicular to each other, as might be expected if the cloud were driving the shock at the time of observation. The estimated axial magnetic flux carried by MC2 was 52 x 10(exp 20) Mx, which is about 5 times the typical magnetic flux estimated for other magnetic

  10. Sporadic—but Not Variant—Creutzfeldt-Jakob Disease Is Associated with Polymorphisms Upstream of PRNP Exon 1

    PubMed Central

    Mead, Simon; Mahal, Sukhvir P; Beck, John; Campbell, Tracy; Farrall, Martin; Fisher, Elizabeth; Collinge, John

    2001-01-01

    Human prion diseases have inherited, sporadic, and acquired etiologies. The appearance of the novel acquired prion disease, variant Creutzfeldt-Jakob disease (vCJD), and the demonstration that it is caused by the same prion strain as that causing bovine spongiform encephalopathy, has led to fears of a major human epidemic. The etiology of classical (sporadic) CJD, which has a worldwide incidence, remains obscure. A common human prion-protein–gene (PRNP) polymorphism (encoding either methionine or valine at codon 129) is a strong susceptibility factor for sporadic and acquired prion disease. However, a quantitative-trait–locus study of prion incubation periods in mice has demonstrated an important factor that is close to Prnp but is independent of its coding sequence or that of the nearby prion-like doppel gene (Prnd). We have analyzed the PRNP locus for such tightly linked susceptibility factors. Fifty-six polymorphic sites have been identified within 25 kb of the PRNP open reading frame, including sites within the PRNP promoter and the PRNP 3′ untranslated region. These have been characterized in 61 Centre d’Étude du Polymorphisme Humain (CEPH) families, demonstrating extensive linkage disequilibrium around PRNP and the existence of 11 major European PRNP haplotypes. Haplotype frequencies estimated in healthy U.K. control individuals were very similar to those deduced in the CEPH families. A common haplotype was overrepresented in patients with sporadic CJD (sCJD). Through use of a log-linear modeling approach to simultaneously model Hardy-Weinberg and linkage disequilibria, a significant independent association was found between sCJD and a polymorphism upstream of PRNP exon 1 (P=.005), in addition to the strong susceptibility conferred by codon 129 (P=2×10-8). However, although our sample size was necessarily small, no association was found between these polymorphisms and vCJD or iatrogenic CJD, in keeping with their having distinct disease mechanisms

  11. Identification of a novel first exon in the human dystrophin gene and of a new promoter located more than 500 kb upstream of the nearest known promoter

    SciTech Connect

    Yanagawa, H.; Nishio, H.; Takeshima, Y.

    1994-09-01

    The dystrophin gene, which is muted in patients with Duchenne and Becker muscular dystrophies, is the largest known human gene. Five alternative promoters have been characterized until now. Here we show that a novel dystrophin isoform with a different first exon can be produced through transcription initiation at a previously-unidentified alternative promoter. The case study presented is that of patient with Duchenne muscular dystrophy who had a deletion extending from 5{prime} end of the dystrophin gene to exon 2, including all promoters previously mapped in the 5{prime} part of the gene. Transcripts from lymphoblastoid cells were found to contain sequences corresponding to exon 3, indicating the presence of new promoter upstream of this exon. The nucleotide sequence of amplified cDNA corresponding to the 5{prime} end of the new transcript indicated that the 5{prime} end of exon 3 was extended by 9 codons, only the last (most 3{prime}) of which codes for methionine. The genomic nucleotide sequence upstream from the new exon, as determined using inverse polymerase chain reaction, revealed the presence of sequences similar to a TATA box, an octamer motif and an MEF-2 element. The identified promoter/exon did not map to intron 2, as might have been expected, but to a position more than 500 kb upstream of the most 5{prime} of the previously-identified promoters, thereby adding 500 kb to the dystrophin gene. The sequence of part of the new promoter region is very similar to that of certain medium reiteration frequency repetitive sequences. These findings may help us understand the molecular evolution of the dystrophin gene.

  12. Head Start Dental Health Curriculum.

    ERIC Educational Resources Information Center

    Administration for Children, Youth, and Families (DHHS), Washington, DC. Head Start Bureau.

    This curriculum for Head Start programs provides preschool learning experiences that teach about dental health. The majority of the curriculum guide is devoted to the following lesson plans: (1) "Introduction of 'Smiley the Super Pup'," an optional puppet character which may be used to review the concepts covered in each lesson; (2)…

  13. Rigor Made Easy: Getting Started

    ERIC Educational Resources Information Center

    Blackburn, Barbara R.

    2012-01-01

    Bestselling author and noted rigor expert Barbara Blackburn shares the secrets to getting started, maintaining momentum, and reaching your goals. Learn what rigor looks like in the classroom, understand what it means for your students, and get the keys to successful implementation. Learn how to use rigor to raise expectations, provide appropriate…

  14. Off to a Good Start.

    ERIC Educational Resources Information Center

    Hoffman, Carl

    1994-01-01

    Caring Start is a mobile-clinic program that provides prenatal care, well-baby clinics, childhood immunizations, counseling services, and contraceptives to rural poor families in northwest Pennsylvania. Before the mobile clinic, many rural women (mostly teenagers) went without prenatal health care due to lack of transportation. (LP)

  15. Entrepreneur Training Program. Getting Started.

    ERIC Educational Resources Information Center

    De Maria, Richard

    This student workbook on starting a small business is part of the entrepreneur training program at Ocean County (New Jersey) Vocational-Technical Schools. The workbook consists of 16 units containing goals and objectives, study questions, exercises, sample materials, and information sheets. Unit topics are as follows: being a small business owner;…

  16. Employment Obtaining and Business Starting

    ERIC Educational Resources Information Center

    Lan, Jian

    2009-01-01

    The implementation of business starting education in higher vocational colleges is of important and realistic meanings for cultivating advanced technology application-type talents and for releasing the employment obtaining pressure of higher vocational students. Based on the analysis on the employment situation of higher vocational graduates, this…

  17. Head Start Planned Variation Program.

    ERIC Educational Resources Information Center

    Klein, Jenny

    There is little agreement concerning which methods of preschool intervention are most effective. In order to evaluate several approaches to early childhood education, Project Head Start, in conjunction with Project Follow Through, has initiated the Planned Variation program. This year only a pilot project is underway with eight schools…

  18. Near Field of Starting Plumes

    NASA Astrophysics Data System (ADS)

    Johari, H.; Gharib, M.; Dabiri, D.

    1997-11-01

    Although steady jets and plumes have been studied extensively in the past, there is relatively little known about the initial stages of starting buoyant jets. The present investigation examined buoyancy-driven flows resulting from cylindrical containers w ith length to diameter ratios (L/D) between 2 and 13. Density ratios up to ten percent were utilized. A technique was developed to release the column of buoyant fluid with minimal disturbance during the discharge. Our observations indicate that the majori ty of the released fluid gets entrained into the starting vortex ring for L/D < 4. Longer columns result in a jet trailing behind the starting vortex. In all cases, the starting vortex ring becomes unstable as a result of the baroclinic torque generation around its perimeter, and disintegrates into a turbulent mass within the first 5 diameters. This fluid mass then gets reorganized into a larger, more diffuse thermal. The thermal formation occurs closer to the source as the length to diameter ratio of th e buoyant column gets smaller. The temporal evolution of the circulation associated with the buoyant fluid, which was derived from the digital particle image velocimetry technique, will be presented.

  19. Thinking Upstream: A 25-Year Retrospective and Conceptual Model Aimed at Reducing Health Inequities.

    PubMed

    Butterfield, Patricia G

    Thinking upstream was first introduced into the nursing vernacular in 1990 with the goal of advancing broad and context-rich perspectives of health. Initially invoked as conceptual framing language, upstream precepts were subsequently adopted and adapted by a generation of thoughtful nursing scholars. Their work reduced health inequities by redirecting actions further up etiologic pathways and by emphasizing economic, political, and environmental health determinants. US health care reform has fostered a much broader adoption of upstream language in policy documents. This article includes a semantic exploration of thinking upstream and a new model, the Butterfield Upstream Model for Population Health (BUMP Health).

  20. Upstream Swirl Effects on the Flow Inside a Labyrinth Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Johnson, Mark C.

    1997-01-01

    The flow field inside a seven cavity tooth on rotor labyrinth seal was measured using a 3D laser Doppler anemometer system. The seal was operated at a Reynolds number of 24,000 and a Taylor number of 6,600 using water as the working fluid. Swirl vanes were placed upstream of the seal to produce positive, negative, and no preswirl. It was found that the axial and radial velocities were minimally effected. The tangential velocity, both in the clearance region and the seal cavities on the rotor, were greatly altered by the preswirl. By applying negative preswirl, the tangential velocity was suppressed, even in the seventh cavity. The turbulence levels decreased as the preswirl varied from negative to positive.

  1. Upstream solutions for price-gouging on critical generic medicines.

    PubMed

    Houston, Adam R; Beall, Reed F; Attaran, Amir

    2016-01-01

    Exorbitant price increases for critical off-patent medicines have received considerable media attention in recent months, leading to an investigation by the U.S. Senate. However, much of this attention has focused upon the companies that initiated the price increases, all of whom had recently acquired the drugs in question. Overlooked are upstream interventions with the originators of these drugs to prevent generics trolling in the first place. Using the particular example of Eli Lilly and Company's efforts to divest itself of cycloserine, a flawed process that paved the way for the recent price hike by Rodelis Therapeutics, this article highlights the responsibilities of drug originators, and safeguards to ensure similar rights transfers do not affect ongoing affordable access.

  2. Hot, diamagnetic cavities upstream from the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Thomsen, M. F.; Gosling, J. T.; Fuselier, S. A.; Bame, S. J.; Russell, C. T.

    1986-01-01

    On eight occasions the ISEE 1 and 2 spacecraft registered peculiar plasma structures upstream of the earth's bow shock. The events exhibit a temporary, strong reduction in the magnitude of the magnetic field and strong enhancements of the field strength bordering the reduction zone. The low field strength regions featured temperatures from 1-10 million k and pressure an order of magnitude greater than the solar wind. The pressure gradients exceeded the magnetic tension around the structures, although the field of the cavities may be a closed structure. A model is proposed of hot, expanding diamagnetic plasma cavities with scales on the order of a few earth radii. Speculations on the interaction and origin or impetus for the cavities within the bow shock, foreshock, the magnetosphere and the solar wind are discussed. Similarities between the phenomena detected and signatures obtained with the AMPTE releases of chemicals in the solar wind are noted.

  3. Upstream and downstream signals of nitric oxide in pathogen defence.

    PubMed

    Gaupels, Frank; Kuruthukulangarakoola, Gitto Thomas; Durner, Jörg

    2011-12-01

    Nitric oxide (NO) is now recognised as a crucial player in plant defence against pathogens. Considerable progress has been made in defining upstream and downstream signals of NO. Recently, MAP kinases, cyclic nucleotide phosphates, calcium and phosphatidic acid were demonstrated to be involved in pathogen-induced NO-production. However, the search for inducers of NO synthesis is difficult because of the still ambiguous enzymatic source of NO. Accumulation of NO triggers signal transduction by other second messengers. Here we depict NON-EXPRESSOR OF PATHOGENESIS-RELATED 1 and glyceraldehyde-3-phosphate dehydrogenase as central redox switches translating NO redox signalling into cellular responses. Although the exact position of NO in defence signal networks is unresolved at last some NO-related signal cascades are emerging.

  4. The Effect of Upstream Vane Wakes on Annular Diffuser Flows

    NASA Astrophysics Data System (ADS)

    Cherry, Erica; Padilla, Angelina; Elkins, Christopher; Eaton, John

    2008-11-01

    Experiments were performed to determine the sensitivity to inlet conditions of the flow in two annular diffusers. One of the diffusers was a conservative design typical of a diffuser directly upstream of the combustor in a jet engine. The other had the same length and inlet shape as the first diffuser but a larger area ratio and was meant to operate on the verge of separation. Each diffuser was connected to two different inlets, one containing a fully-developed channel flow, the other containing wakes from a row of airfoils. Three-component velocity measurements were taken on the flow in each inlet/diffuser combination using Magnetic Resonance Velocimetry. Results will be presented on the 3D velocity fields in the two diffusers and the effect of the airfoil wakes on separation and secondary flows.

  5. Diabetes mellitus and atrial remodeling: mechanisms and potential upstream therapies.

    PubMed

    Zhang, Qitong; Liu, Tong; Ng, Chee Y; Li, Guangping

    2014-10-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice, and its prevalence has increasing substantially over the last decades. Recent data suggest that there is an increased risk of AF among the patients with diabetes mellitus (DM). However, the potential molecular mechanisms regarding DM-related AF and diabetic atrial remodeling are not fully understood. In this comprehensive review, we would like to summarize the potential relationship between diabetes and atrial remodeling, including structural, electrical, and autonomic remodeling. Also, some upstream therapies, such as thiazolidinediones, probucol, ACEI/ARBs, may play an important role in the prevention and treatment of AF. Therefore, large prospective randomized, controlled trials and further experimental studies should be challengingly continued.

  6. Solar wind flow upstream of the coronal slow shock

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1986-01-01

    Slow shocks have been predicted to exist embedded in large coronal holes at low altitude. Two or more curved slow shocks may link together to form a composite discontinuity surface around the sun which may be called the coronal slow shock (CSS). Here a solar-wind model is studied under the assumption that a standing CSS exists and cororates with the sun at a constant angular velocity. A steady, axisymmetrical one-fluid model is introduced to study the expansion of solar wind in the open-field region upstream of the CSS. The model requires that the conditions downstream of the CSS near the equatorial plane can produce a solar wind agreeable with the observations made near the earth's orbit. The paper presents an illustrative calculation in which the polar caps within 60 deg of the polar angle are assumed to be the source region of the solar wind.

  7. From worker health to citizen health: moving upstream.

    PubMed

    Sepulveda, Martin-Jose

    2013-12-01

    New rapid growth economies, urbanization, health systems crises, and "big data" are causing fundamental changes in social structures and systems, including health. These forces for change have significant consequences for occupational and environmental medicine and will challenge the specialty to think beyond workers and workplaces as the principal locus of innovation for health and performance. These trends are placing great emphasis on upstream strategies for addressing the complex systems dynamics of the social determinants of health. The need to engage systems in communities for healthier workforces is a shift in orientation from worker and workplace centric to citizen and community centric. This change for occupational and environmental medicine requires extending systems approaches in the workplace to communities that are systems of systems and that require different skills, data, tools, and partnerships.

  8. Shape and shear guide sperm cells spiraling upstream

    NASA Astrophysics Data System (ADS)

    Kantsler, Vasily; Dunkel, Jorn; Goldstein, Raymond E.

    2014-11-01

    A major puzzle in biology is how mammalian sperm determine and maintain the correct swimming direction during the various phases of the sexual reproduction process. Currently debated mechanisms for sperm long range travel vary from peristaltic pumping to temperature sensing (thermotaxis) and direct response to fluid flow (rheotaxis), but little is known quantitatively about their relative importance. Here, we report the first quantitative experimental study of mammalian sperm rheotaxis. Using microfluidic devices, we investigate systematically the swimming behavior of human and bull sperm over a wide range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions and chirality of the flagellar beat leads to a stable upstream spiraling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilization. To rationalize these findings, we identify a minimal mathematical model that is capable of describing quantitatively the experimental observations.

  9. Upstream Structures and Their Effects on the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    2011-01-01

    Kinetic processes within the Earth's foreshock generate a profusion of plasma and magnetic field structures with sizes and durations ranging from the microscale (e.g. SLAMs, solitons, and density holes) to the mesoscale (e.g. foreshock cavities or boundaries, hot flow anomalies, and bubbles). Swept into the bow shock by the solar wind flow, the perturbations associated with these features batter the magnetosphere, driving a wide variety of magnetospheric effects, including large amplitude magnetopause motion, bursty reconnection and the generation of flux transfer events, enhanced pulsation activity within the magnetosphere, diffusion and energization of radiation belt particles, enhanced particle precipitation resulting in dayside aurora and riometer absorption, and the generation of field-aligned currents and magnetic impulse events in high-latitude ground magnetometers. This talk reviews the ever growing menagery of structures observed upstream from the bow shock, examines their possible interrelationships, and considers their magnetospheric consequences.

  10. The foreshock region upstream from the Comet Halley bow shock

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Anderson, K. A.; Balsiger, H.; Glassmeier, K. H.; Goldstein, B. E.; Neugebauer, M.; Rosenbauer, H.; Shelley, E. G.

    1987-01-01

    A few hours prior to the crossing of the Comet Halley bow shock, the Giotto spacecraft intermittently encountered an electron foreshock region. The electron foreshock is characterized by magnetic connection to the cometary bow shock and increased field aligned electron heat flux directed away from the bow shock. A similar region was intermittently encountered by the ICE spacecraft prior to its crossing of the Giacobini-Zinner bow wave. During periods of magnetic connection with the Halley bow shock, enhanced magnetic field fluctuations were observed. These enhancements are interpreted as indirect evidence of an ion foreshock in the electron foreshock. No clearly identifiable backstreaming protons are observed during these periods of magnetic connection, however, because it may be difficult to separate a backstreaming population from the cometary pick-up proton population already present in the upstream region.

  11. Assessing upstream fish passage connectivity with network analysis.

    PubMed

    McKay, S Kyle; Schramski, John R; Conyngham, Jock N; Fischenich, J Craig

    2013-09-01

    Hydrologic connectivity is critical to the structure, function, and dynamic process of river ecosystems. Dams, road crossings, and water diversions impact connectivity by altering flow regimes, behavioral cues, local geomorphology, and nutrient cycling. This longitudinal fragmentation of river ecosystems also increases genetic and reproductive isolation of aquatic biota such as migratory fishes. The cumulative effects on fish passage of many structures along a river are often substantial, even when individual barriers have negligible impact. Habitat connectivity can be improved through dam removal or other means of fish passage improvement (e.g., ladders, bypasses, culvert improvement). Environmental managers require techniques for comparing alternative fish passage restoration actions at alternative or multiple locations. Herein, we examined a graph-theoretic algorithm for assessing upstream habitat connectivity to investigate both basic and applied fish passage connectivity problems. First, we used hypothetical watershed configurations to assess general alterations to upstream fish passage connectivity with changes in watershed network topology (e.g., linear vs. highly dendritic) and the quantity, location, and passability of each barrier. Our hypothetical network modeling indicates that locations of dams with limited passage efficiency near the watershed outlet create a strong fragmentation signal but are not individually sufficient to disconnect the system. Furthermore, there exists a threshold in the number of dams beyond which connectivity declines precipitously, regardless of watershed topology and dam configuration. Watersheds with highly branched configurations are shown to be less susceptible to disconnection as measured by this metric. Second, we applied the model to prioritize barrier improvement in the mainstem of the Truckee River, Nevada, USA. The Truckee River application demonstrates the ability of the algorithm to address conditions common in fish

  12. Explosion Clad for Upstream Oil and Gas Equipment

    SciTech Connect

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-17

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO{sub 2} and/or H{sub 2}S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  13. Association between the p53 codon 72 Arg/Pro polymorphism and hepatocellular carcinoma risk.

    PubMed

    Lv, Long; Wang, Ping; Zhou, Xiaoqing; Sun, Beicheng

    2013-06-01

    Previous studies regarding the association of p53 codon 72 Arg/Pro polymorphism with hepatocellular carcinoma (HCC) risk have provided conflicting and inconclusive findings. Thus, a meta-analysis of all currently available publications was performed to address this issue. Eleven individual case-control studies involving a total of 2,718 cases and 3,752 controls were identified after a systematic search of the PubMed, Embase, Web of Science, and Wanfang databases. The strength of the association of p53 codon 72 Arg/Pro polymorphism with HCC risk was estimated by the pooled odds ratio (OR) with its corresponding 95 % confidence interval (95 % CI). Subgroup analyses stratified by ethnicity, source of controls, gender, hepatitis virus infection status, and family history of HCC were also conducted to assess the association. Overall, significantly increased risk of HCC was identified among carriers of the homozygous genotype ProPro (ORProPro vs. ArgArg=1.38 (95 % CI, 1.03-1.85), P OR=0.033; ORProPro vs. ArgArg + ArgPro =1.28 (95 % CI, 1.03-1.59), P OR=0.026). In subgroup analysis by ethnicity, the pooled results suggested that the p53 codon 72 Arg/Pro polymorphism was associated with an increased risk of HCC in Asians and Caucasians (for Asians, ORProPro vs. ArgArg + ArgPro=1.17 (95 % CI, 1.02-1.34), P OR=0.025; for Caucasians, ORProPro vs. ArgArg = 1.65 (95 % CI, 1.07-2.56), P OR=0.025; ORProPro vs. ArgArg + ArgPro=1.74 (95 % CI, 1.14-2.66), P OR=0.010). Subgroup analyses by source of controls and hepatitis virus infection status further demonstrated the significant association, whereas stratification factors involving gender and family history of HCC did not modify the association between p53 codon 72 Arg/Pro polymorphism and HCC risk. This meta-analysis suggests that the p53 codon 72 Arg/Pro polymorphism may play a critical role in the development of HCC, and gender and family history of HCC may not modulate the effect of p53 codon 72 Arg/Pro in HCC risk.

  14. Antagonistic relationships between intron content and codon usage bias of genes in three mosquito species: functional and evolutionary implications

    PubMed Central

    Behura, Susanta K; Singh, Brajendra K; Severson, David W

    2013-01-01

    Genome biology of mosquitoes holds potential in developing knowledge-based control strategies against vectorborne diseases such as malaria, dengue, West Nile, and others. Although the genomes of three major vector mosquitoes have been sequenced, attempts to elucidate the relationship between intron and codon usage bias across species in phylogenetic contexts are limited. In this study, we investigated the relationship between intron content and codon bias of orthologous genes among three vector mosquito species. We found an antagonistic relationship between codon usage bias and the intron number of genes in each mosquito species. The pattern is further evident among the intronless and the intron-containing orthologous genes associated with either low or high codon bias among the three species. Furthermore, the covariance between codon bias and intron number has a directional component associated with the species phylogeny when compared with other nonmosquito insects. By applying a maximum likelihood–based continuous regression method, we show that codon bias and intron content of genes vary among the insects in a phylogeny-dependent manner, but with no evidence of adaptive radiation or species-specific adaptation. We discuss the functional and evolutionary significance of antagonistic relationships between intron content and codon bias. PMID:24187589

  15. Insight into pattern of codon biasness and nucleotide base usage in serotonin receptor gene family from different mammalian species.

    PubMed

    Dass, J Febin Prabhu; Sudandiradoss, C

    2012-07-15

    5-HT (5-Hydroxy-tryptamine) or serotonin receptors are found both in central and peripheral nervous system as well as in non-neuronal tissues. In the animal and human nervous system, serotonin produces various functional effects through a variety of membrane bound receptors. In this study, we focus on 5-HT receptor family from different mammals and examined the factors that account for codon and nucleotide usage variation. A total of 110 homologous coding sequences from 11 different mammalian species were analyzed using relative synonymous codon usage (RSCU), correspondence analysis (COA) and hierarchical cluster analysis together with nucleotide base usage frequency of chemically similar amino acid codons. The mean effective number of codon (ENc) value of 37.06 for 5-HT(6) shows very high codon bias within the family and may be due to high selective translational efficiency. The COA and Spearman's rank correlation reveals that the nucleotide compositional mutation bias as the major factors influencing the codon usage in serotonin receptor genes. The hierarchical cluster analysis suggests that gene function is another dominant factor that affects the codon usage bias, while species is a minor factor. Nucleotide base usage was reported using Goldman, Engelman, Stietz (GES) scale reveals the presence of high uracil (>45%) content at functionally important hydrophobic regions. Our in silico approach will certainly help for further investigations on critical inference on evolution, structure, function and gene expression aspects of 5-HT receptors family which are potential antipsychotic drug targets.

  16. New insights into the codon usage patterns of the bactericidal/permeability-increasing (BPI) gene across nine species.

    PubMed

    Qin, Wei-Yun; Gan, Li-Na; Xia, Ri-Wei; Sun, Shou-Yong; Zhu, Guo-Qiang; Wu, Sheng-Long; Bao, Wen-Bin

    2017-03-20

    Bactericidal/permeability-increasing (BPI) protein is a member of a new generation of proteins known as super-antibiotics that are implicated as endotoxin neutralising agents. Non-uniform usage of synonymous codons for a specific amino acid during translation of a protein is known as codon usage bias (CUB). Analysis of CUB and compositional dynamics of coding sequences could contribute to a better understanding of the molecular mechanism and the evolution of a particular gene. In this study, we performed CUB analysis of the complete coding sequences of the BPI gene from nine different species. The codon usage patterns of BPI across different species were found to be influenced by GC bias, particularly GC3s, with a moderate bias in the codon usage of BPI. We found significant similarities in the codon usage patterns in BPI gene among closely related species, such as Sus_scrofa and Bos_taurus. Moreover, we observed evolutionary conservation of the most over-represented codon CUG for the amino acid leucine in the BPI gene across all species. In conclusion, our analysis provides a novel insight into the codon usage patterns of BPI. This information facilitates an improved understanding of the structural, functional and evolutionary significance of BPI gene among species, and provides a theoretical reference for developing antiseptic drug proteins with high efficiency across species.

  17. Expression of varied GFPs in Saccharomyces cerevisiae: codon optimization yields stronger than expected expression and fluorescence intensity

    PubMed Central

    Kaishima, Misato; Ishii, Jun; Matsuno, Toshihide; Fukuda, Nobuo; Kondo, Akihiko

    2016-01-01

    Green fluorescent protein (GFP), which was originally isolated from jellyfish, is a widely used tool in biological research, and homologs from other organisms are available. However, researchers must determine which GFP is the most suitable for a specific host. Here, we expressed GFPs from several sources in codon-optimized and non-codon-optimized forms in the yeast Saccharomyces cerevisiae, which represents an ideal eukaryotic model. Surprisingly, codon-optimized mWasabi and mNeonGreen, which are typically the brightest GFPs, emitted less green fluorescence than did the other five codon-optimized GFPs tested in S. cerevisiae. Further, commercially available GFPs that have been optimized for mammalian codon usage (e.g., EGFP, AcGFP1 and TagGFP2) unexpectedly exhibited extremely low expression levels in S. cerevisiae. In contrast, codon-optimization of the GFPs for S. cerevisiae markedly increased their expression levels, and the fluorescence intensity of the cells increased by a maximum of 101-fold. Among the tested GFPs, the codon-optimized monomeric mUkG1 from soft coral showed the highest levels of both expression and fluorescence. Finally, the expression of this protein as a fusion-tagged protein successfully improved the reporting system’s ability to sense signal transduction and protein–protein interactions in S. cerevisiae and increased the detection rates of target cells using flow cytometry. PMID:27782154

  18. Mutations to Less-Preferred Synonymous Codons in a Highly Expressed Gene of Escherichia coli: Fitness and Epistatic Interactions.

    PubMed

    Hauber, David J; Grogan, Dennis W; DeBry, Ronald W

    2016-01-01

    Codon-tRNA coevolution to maximize protein production has been, until recently, the dominant hypothesis to explain codon-usage bias in highly expressed bacterial genes. Two predictions of this hypothesis are 1) selection is weak; and 2) similar silent replacements at different codons should have similar fitness consequence. We used an allele-replacement strategy to change five specific 3rd-codon-position (silent) sites in the highly expressed Escherichia coli ribosomal protein gene rplQ from the wild type to a less-preferred alternative. We introduced the five mutations within a 10-codon region. Four of the silent sites were chosen to test the second prediction, with a CTG to CTA mutation being introduced at two closely linked leucine codons and an AAA to AAG mutation being introduced at two closely linked lysine codons. We also introduced a fifth silent mutation, a GTG to GTA mutation at a valine codon in the same genic region. We measured the fitness effect of the individual mutations by competing each single-mutant strain against the parental wild-type strain, using a disrupted form of the araA gene as a selectively neutral phenotypic marker to distinguish between strains in direct competition experiments. Three of the silent mutations had a fitness effect of |s| > 0.02, which is contradictory to the prediction that selection will be weak. The two leucine mutations had significantly different fitness effects, as did the two lysine mutations, contradictory to the prediction that similar mutations at different codons should have similar fitness effects. We also constructed a strain carrying all five silent mutations in combination. Its fitness effect was greater than that predicted from the individual fitness values, suggesting that negative synergistic epistasis acts on the combination allele.

  19. Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events

    PubMed Central

    Chartier, Matthieu; Gaudreault, Francis; Najmanovich, Rafael

    2012-01-01

    Motivation: An increasing amount of evidence from experimental and computational analysis suggests that rare codon clusters are functionally important for protein activity. Most of the studies on rare codon clusters were performed on a limited number of proteins or protein families. In the present study, we present the Sherlocc program and how it can be used for large scale protein family analysis of evolutionarily conserved rare codon clusters and their relation to protein function and structure. This large-scale analysis was performed using the whole Pfam database covering over 70% of the known protein sequence universe. Our program Sherlocc, detects statistically relevant conserved rare codon clusters and produces a user-friendly HTML output. Results: Statistically significant rare codon clusters were detected in a multitude of Pfam protein families. The most statistically significant rare codon clusters were predominantly identified in N-terminal Pfam families. Many of the longest rare codon clusters are found in membrane-related proteins which are required to interact with other proteins as part of their function, for example in targeting or insertion. We identified some cases where rare codon clusters can play a regulating role in the folding of catalytically important domains. Our results support the existence of a widespread functional role for rare codon clusters across species. Finally, we developed an online filter-based search interface that provides access to Sherlocc results for all Pfam families. Availability: The Sherlocc program and search interface are open access and are available at http://bcb.med.usherbrooke.ca Contact: rafael.najmanovich@usherbrooke.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22467916

  20. Numeral series hidden in the distribution of atomic mass of amino acids to codon domains in the genetic code.

    PubMed

    Wohlin, Åsa

    2015-03-21

    The distribution of codons in the nearly universal genetic code is a long discussed issue. At the atomic level, the numeral series 2x(2) (x=5-0) lies behind electron shells and orbitals. Numeral series appear in formulas for spectral lines of hydrogen. The question here was if some similar scheme could be found in the genetic code. A table of 24 codons was constructed (synonyms counted as one) for 20 amino acids, four of which have two different codons. An atomic mass analysis was performed, built on common isotopes. It was found that a numeral series 5 to 0 with exponent 2/3 times 10(2) revealed detailed congruency with codon-grouped amino acid side-chains, simultaneously with the division on atom kinds, further with main 3rd base groups, backbone chains and with codon-grouped amino acids in relation to their origin from glycolysis or the citrate cycle. Hence, it is proposed that this series in a dynamic way may have guided the selection of amino acids into codon domains. Series with simpler exponents also showed noteworthy correlations with the atomic mass distribution on main codon domains; especially the 2x(2)-series times a factor 16 appeared as a conceivable underlying level, both for the atomic mass and charge distribution. Furthermore, it was found that atomic mass transformations between numeral systems, possibly interpretable as dimension degree steps, connected the atomic mass of codon bases with codon-grouped amino acids and with the exponent 2/3-series in several astonishing ways. Thus, it is suggested that they may be part of a deeper reference system.

  1. School start times for adolescents.

    PubMed

    2014-09-01

    The American Academy of Pediatrics recognizes insufficient sleep in adolescents as an important public health issue that significantly affects the health and safety, as well as the academic success, of our nation's middle and high school students. Although a number of factors, including biological changes in sleep associated with puberty, lifestyle choices, and academic demands, negatively affect middle and high school students' ability to obtain sufficient sleep, the evidence strongly implicates earlier school start times (ie, before 8:30 am) as a key modifiable contributor to insufficient sleep, as well as circadian rhythm disruption, in this population. Furthermore, a substantial body of research has now demonstrated that delaying school start times is an effective countermeasure to chronic sleep loss and has a wide range of potential benefits to students with regard to physical and mental health, safety, and academic achievement. The American Academy of Pediatrics strongly supports the efforts of school districts to optimize sleep in students and urges high schools and middle schools to aim for start times that allow students the opportunity to achieve optimal levels of sleep (8.5-9.5 hours) and to improve physical (eg, reduced obesity risk) and mental (eg, lower rates of depression) health, safety (eg, drowsy driving crashes), academic performance, and quality of life.

  2. Upstream migration of two pre-spawning shortnose sturgeon passed upstream of Pinopolis Dam, Cooper River, South Carolina

    USGS Publications Warehouse

    Finney, S.T.; Isely, J.J.; Cooke, D.W.

    2006-01-01

    Two shortnose sturgeon were artificially passed above the Pinopolis Lock and Dam into the Santee-Cooper Lakes in order to simulate the use of a fish-passage mechanism. Movement patterns and spawning behavior were studied to determine the potential success of future shortnose sturgeon migrations if and when a fish-migration bypass structure is installed. In addition to movement patterns, water temperature was monitored in areas that shortnose sturgeons utilized. Shortnose sturgeon migrated through a large static system to a known shortnose sturgeon spawning area more than 160 km upstream where water temperatures were consistent with known shortnose sturgeon spawning temperatures. No specific movement patterns in the reservoir system were recorded during downstream migrations.

  3. Starting apparatus for internal combustion engines

    DOEpatents

    Dyches, G.M.; Dudar, A.M.

    1995-01-01

    This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

  4. Head Start Impact Study: First Year Findings

    ERIC Educational Resources Information Center

    Puma, Michael; Bell, Stephen; Cook, Ronna; Heid, Camilla; Lopez, Michael

    2005-01-01

    The Congressionally-mandated Head Start Impact Study is being conducted across 84 nationally representative grantee/delegate agencies. Approximately 5,000 newly entering 3- and 4-year-old children applying for Head Start were randomly assigned to either a Head Start group that had access to Head Start program services or to a non-Head Start group…

  5. [BIG-H3 protein: mutation of codon 124 and corneal amyloidosis].

    PubMed

    Schmitt-Bernard, C-F; Pouliquen, Y; Argilès, A

    2004-05-01

    In 1997, a group of hereditary corneal dystrophies was related to mutations in the TGFBI (BIGH3) gene. Within this group, some corneal dystrophies present particular biochemical features in that they are characterized by corneal amyloid deposition. Contrary to clinical and genetic knowledge, the biochemical characteristics of the encoded protein (Big-h3) and the mechanisms of its amyloid conversion remain unclear. We review the current knowledge on the Big-h3 protein and focus on the behavior of the codon 124 region. We discuss this protein's mechanisms of amyloid conversion from our results and previous reports as well as from other types of amyloidosis. These data provide a better understanding of the putative processes leading to the phenotypic variations linked with their respective codon 124 mutation.

  6. Key for protein coding sequences identification: computer analysis of codon strategy.

    PubMed Central

    Rodier, F; Gabarro-Arpa, J; Ehrlich, R; Reiss, C

    1982-01-01

    The signal qualifying an AUG or GUG as an initiator in mRNAs processed by E. coli ribosomes is not found to be a systematic, literal homology sequence. In contrast, stability analysis reveals that initiators always occur within nucleic acid domains of low stability, for which a high A/U content is observed. Since no aminoacid selection pressure can be detected at N-termini of the proteins, the A/U enrichment results from a biased usage of the code degeneracy. A computer analysis is presented which allows easy detection of the codon strategy. N-terminal codons carry rather systematically A or U in third position, which suggests a mechanism for translation initiation and helps to detect protein coding sequences in sequenced DNA. PMID:7038623

  7. Development of the genetic code: insights from a fungal codon reassignment.

    PubMed

    Moura, Gabriela R; Paredes, João A; Santos, Manuel A S

    2010-01-21

    The high conservation of the genetic code and its fundamental role in genome decoding suggest that its evolution is highly restricted or even frozen. However, various prokaryotic and eukaryotic genetic code alterations, several alternative tRNA-dependent amino acid biosynthesis pathways, regulation of tRNA decoding by diverse nucleoside modifications and recent in vivo incorporation of non-natural amino acids into prokaryotic and eukaryotic proteins, show that the code evolves and is surprisingly flexible. The cellular mechanisms and the proteome buffering capacity that support such evolutionary processes remain unclear. Here we explore the hypothesis that codon misreading and reassignment played fundamental roles in the development of the genetic code and we show how a fungal codon reassignment is enlightening its evolution.

  8. Lack of IRS-1 codon 513 and 972 polymorphism in Pima Indians

    SciTech Connect

    Celi, F.S.; Silver, K.; Walston, J.

    1995-09-01

    Insulin receptor substrate-1 (IRS-1), a 1242 amino acid protein, an endogenous substrate for the insulin receptor tyrosine kinase, mediates many or all of the metabolic actions of insulin. Recently, polymorphism at codons 513 and 972 of the IRS-1 gene resulting in 2 amino acid substitutions that were associated with type II diabetes were found in a Caucasian population. Using allele specific oligonucleotide (ASO) hybridization, we screened 242 diabetic and 190 nondiabetic Pima Indians, a population with a very high prevalence of type II diabetes. Neither of the two mutations was present in either diabetic or nondiabetic subjects. We conclude that polymorphism at codons 513 and 972 of the IRS-1 gene observed in certain Caucasian populations is very rare or absent in Pima Indians. 20 refs., 2 figs., 1 tab.

  9. [Genetic code: codon bases--the symbols of amino acid synthesis and catabolism pathways].

    PubMed

    Konyshev, V A

    1983-01-01

    The correlations between genetic codes of amino acids and pathways of synthesis and catabolism of carbon backbone of amino acids are considered. Codes of amino acids which are synthesized from oxoacids of glycolysis, the Krebs cycle and glyoxalic cycle via transamination without any additional chemical reactions, are initiated with guanine (alanine, glutamic and aspartic acids, glycine). Codons of amino acids which are formed on the branches of glycolysis at the level of compounds with three carbon atoms, begin with uracil (phenylalanine, serine, leucine, tyrosine, cysteine, tryptophan). Codes of amino acids formed from aspartate begin with adenine (methionine, isoleucine, threonine, asparagine, lysine, serine), while those of the amino acids formed from the compounds with five carbon atoms (glutamic acid and phosphoribosyl pyrophosphate) begin with cytosine (arginine, proline, glutamine, histidine). The second letter of codons is linked to catabolic pathways of amino acids: most of amino acids entering glycolysis and the Krebs cycle through even-numbered carbon compounds, have adenine and uracil at the second position of codes (A-U type); most of amino acids entering the glycolysis and the Krebs cycle via odd-numbered carbon compounds, have codons with guanine and cytidine at the second position (G-C type). The usage of purine and pyrimidine as the third letter of weak codones in most of amino acids is linked to the enthropy of amino acid formation. A hypothesis claiming that the linear genetic code was assembled from the purine and pyrimidine derivatives which have acted as participants of primitive control of amino acid synthesis and catabolism, is suggested.

  10. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1.

    PubMed

    Letzring, Daniel P; Wolf, Andrew S; Brule, Christina E; Grayhack, Elizabeth J

    2013-09-01

    Translation of CGA codon repeats in the yeast Saccharomyces cerevisiae is inefficient, resulting in dose-dependent reduction in expression and in production of an mRNA cleavage product, indicative of a stalled ribosome. Here, we use genetics and translation inhibitors to understand how ribosomes respond to CGA repeats. We find that CGA codon repeats result in a truncated polypeptide that is targeted for degradation by Ltn1, an E3 ubiquitin ligase involved in nonstop decay, although deletion of LTN1 does not improve expression downstream from CGA repeats. Expression downstream from CGA codons at residue 318, but not at residue 4, is improved by deletion of either ASC1 or HEL2, previously implicated in inhibition of translation by polybasic sequences. Thus, translation of CGA repeats likely causes ribosomes to stall and exploits known quality control systems. Expression downstream from CGA repeats at amino acid 4 is improved by paromomycin, an aminoglycoside that relaxes decoding specificity. Paromomycin has no effect if native tRNA(Arg(ICG)) is highly expressed, consistent with the idea that failure to efficiently decode CGA codons might occur in part due to rejection of the cognate tRNA(Arg(ICG)). Furthermore, expression downstream from CGA repeats is improved by inactivation of RPL1B, one of two genes encoding the universally conserved ribosomal protein L1. The effects of rpl1b-Δ and of either paromomycin or tRNA(Arg(ICG)) on CGA decoding are additive, suggesting that the rpl1b-Δ mutant suppresses CGA inhibition by means other than increased acceptance of tRNA(Arg(ICG)). Thus, inefficient decoding of CGA likely involves at least two independent defects in translation.

  11. Hepatocellular carcinoma p53 G > T transversions at codon 249: the fingerprint of aflatoxin exposure?

    PubMed

    Lasky, T; Magder, L

    1997-04-01

    The molecular epidemiology of p53 mutations allows the possibility of correlating particular mutations with specific environmental carcinogens and establishing one step in the causal pathway between exposure to carcinogens and the development of cancer. A striking example is the G > T transversion at the third base pair of codon 249 observed in liver cancer patients possibly exposed to high levels of aflatoxins in their agricultural products. In this paper, we describe a systematic review of the literature and access the quality of the available data. We found methodologic limitations in the studies. In particular, the key independent variable, aflatoxin exposure, was not assessed in these studies, with the exception of one study that measured a marker of exposure. Instead, nationality, geographic residence, or geographic site of hospital were used as surrogate markers for exposure. Patients from areas with high aflatoxin levels were more likely to have p53 mutations than were patients from areas with low aflatoxin levels. In the group with p53 mutations, patients from areas with high aflatoxin levels had higher proportions of mutations with codon 249 G > T transversions. The differences in proportions with p53 mutations were significant, as were the differences in proportions of codon 249 G > T transversions among patients with p53 mutations. Aflatoxin may increase the proportion of p53 mutations by causing a single mutation, the codon 249 G > T transversion, thus explaining some of the excess liver cancer associated with aflatoxin exposure. However, it is premature to conclude that p53 mutations are established markers for environmental carcinogens.

  12. Codon-based phylogenetics introduces novel flagellar gene markers to oomycete systematics.

    PubMed

    Robideau, Gregg P; Rodrigue, Nicolas; André Lévesque, C

    2014-10-01

    Oomycete systematics has traditionally been reliant on ribosomal RNA and mitochondrial cytochrome oxidase sequences. Here we report the use of two single-copy protein-coding flagellar genes, PF16 and OCM1, in oomycete systematics, showing their utility in phylogenetic reconstruction and species identification. Applying a recently proposed mutation-selection model of codon substitution, the phylogenetic relationships inferred by flagellar genes are largely in agreement with the current views of oomycete evolution, whereas nucleotide- and amino acid-level models produce biologically implausible reconstructions. Interesting parallels exist between the phylogeny inferred from the flagellar genes and zoospore ontology, providing external support for the tree obtained using the codon model. The resolution achieved for species identification is ample using PF16, and quite robust using OCM1, and the described PCR primers are able to amplify both genes for a range of oomycete genera. Altogether, when analyzed with a rich codon substitution model, these flagellar genes provide useful markers for the oomycete molecular toolbox.

  13. Evolution of codon usage in the smallest photosynthetic eukaryotes and their giant viruses.

    PubMed

    Michely, Stephanie; Toulza, Eve; Subirana, Lucie; John, Uwe; Cognat, Valérie; Maréchal-Drouard, Laurence; Grimsley, Nigel; Moreau, Hervé; Piganeau, Gwenaël

    2013-01-01

    Prasinoviruses are among the largest viruses (>200 kb) and encode several hundreds of protein coding genes, including most genes of the DNA replication machinery and several genes involved in transcription and translation, as well as transfer RNAs (tRNAs). They can infect and lyse small eukaryotic planktonic marine green algae, thereby affecting global algal population dynamics. Here, we investigate the causes of codon usage bias (CUB) in one prasinovirus, OtV5, and its host Ostreococcus tauri, during a viral infection using microarray expression data. We show that 1) CUB in the host and in the viral genes increases with expression levels and 2) optimal codons use those tRNAs encoded by the most abundant host tRNA genes, supporting the notion of translational optimization by natural selection. We find evidence that viral tRNA genes complement the host tRNA pool for those viral amino acids whose host tRNAs are in short supply. We further discuss the coevolution of CUB in hosts and prasinoviruses by comparing optimal codons in three evolutionary diverged host-virus-specific pairs whose complete genome sequences are known.

  14. Codon Optimization Significantly Improves the Expression Level of a Keratinase Gene in Pichia pastoris

    PubMed Central

    Hu, Hong; Gao, Jie; He, Jun; Yu, Bing; Zheng, Ping; Huang, Zhiqing; Mao, Xiangbing; Yu, Jie; Han, Guoquan; Chen, Daiwen

    2013-01-01

    The main keratinase (kerA) gene from the Bacillus licheniformis S90 was optimized by two codon optimization strategies and expressed in Pichia pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in Pichia pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZαA-kerAwt, pPICZαA-kerAopti1 and pPICZαA-kerAopti2 was 195 U/ml, 324 U/ml and 293 U/ml respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. The molecular weight of keratinase secreted by recombinant P. pastori was approx. 39 kDa. It was optimally active at pH 7.5 and 50°C. The recombinant keratinase could efficiently degrade both α-keratin (keratin azure) and β-keratin (chicken feather meal). These properties make the P. pastoris pPICZαA-kerAopti1 a suitable candidate for industrial production of keratinases. PMID:23472192

  15. Mismatch repair at stop codons is directed independent of GATC methylation on the Escherichia coli chromosome.

    PubMed

    Sneppen, Kim; Semsey, Szabolcs

    2014-12-05

    The mismatch repair system (MMR) corrects replication errors that escape proofreading. Previous studies on extrachromosomal DNA in Escherichia coli suggested that MMR uses hemimethylated GATC sites to identify the newly synthesized strand. In this work we asked how the distance of GATC sites and their methylation status affect the occurrence of single base substitutions on the E. coli chromosome. As a reporter system we used a lacZ gene containing an early TAA stop codon. We found that occurrence of point mutations at this stop codon is unaffected by GATC sites located more than 115 base pairs away. However, a GATC site located about 50 base pairs away resulted in a decreased mutation rate. This effect was independent of Dam methylation. The reversion rate of the stop codon increased only slightly in dam mutants compared to mutL and mutS mutants. We suggest that unlike on extrachromosomal DNA, GATC methylation is not the only strand discrimination signal for MMR on the E. coli chromosome.

  16. Mismatch repair at stop codons is directed independent of GATC methylation on the Escherichia coli chromosome

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim; Semsey, Szabolcs

    2014-12-01

    The mismatch repair system (MMR) corrects replication errors that escape proofreading. Previous studies on extrachromosomal DNA in Escherichia coli suggested that MMR uses hemimethylated GATC sites to identify the newly synthesized strand. In this work we asked how the distance of GATC sites and their methylation status affect the occurrence of single base substitutions on the E. coli chromosome. As a reporter system we used a lacZ gene containing an early TAA stop codon. We found that occurrence of point mutations at this stop codon is unaffected by GATC sites located more than 115 base pairs away. However, a GATC site located about 50 base pairs away resulted in a decreased mutation rate. This effect was independent of Dam methylation. The reversion rate of the stop codon increased only slightly in dam mutants compared to mutL and mutS mutants. We suggest that unlike on extrachromosomal DNA, GATC methylation is not the only strand discrimination signal for MMR on the E. coli chromosome.

  17. Mismatch repair at stop codons is directed independent of GATC methylation on the Escherichia coli chromosome

    PubMed Central

    Sneppen, Kim; Semsey, Szabolcs

    2014-01-01

    The mismatch repair system (MMR) corrects replication errors that escape proofreading. Previous studies on extrachromosomal DNA in Escherichia coli suggested that MMR uses hemimethylated GATC sites to identify the newly synthesized strand. In this work we asked how the distance of GATC sites and their methylation status affect the occurrence of single base substitutions on the E. coli chromosome. As a reporter system we used a lacZ gene containing an early TAA stop codon. We found that occurrence of point mutations at this stop codon is unaffected by GATC sites located more than 115 base pairs away. However, a GATC site located about 50 base pairs away resulted in a decreased mutation rate. This effect was independent of Dam methylation. The reversion rate of the stop codon increased only slightly in dam mutants compared to mutL and mutS mutants. We suggest that unlike on extrachromosomal DNA, GATC methylation is not the only strand discrimination signal for MMR on the E. coli chromosome. PMID:25475788

  18. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius

    PubMed Central

    Johnston, Christopher D.; Bannantine, John P.; Govender, Rodney; Endersen, Lorraine; Pletzer, Daniel; Weingart, Helge; Coffey, Aidan; O'Mahony, Jim; Sleator, Roy D.

    2014-01-01

    It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, we previously engineered MAP3733c (encoding MptD) and show herein that MptD displays the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adheres to the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne's disease. PMID:25237653

  19. Comparison of two codon optimization strategies enhancing recombinant Sus scrofa lysozyme production in Pichia pastoris.

    PubMed

    Zhu, D; Cai, G; Wu, D; Lu, J

    2015-05-16

    Lysozyme has played an important role in animal feed additive industry, food additive industry and biological engineering. For improving expression efficiency of recombinant lysozyme from Sus scrofa, two genes respectively designed by the most used codon optimization strategies, "one amino acid one codon" and "codon randomization", were synthesized and expressed in Pichia pastoris X—33. At shaking flask level, Sus scrofa lysozyme (SSL) under two conditions had a highest activity of 153.33±10.41 and 538.33±15.18 U/mL after a 5 days induction of 1% methanol, with secreted protein concentration 80.03±1.94 and 239.60±4.16 mg/L, respectively. Compared with the original SSL gene, the expression of optimized SSL gene by the second strategy showed a 2.6 fold higher level, while the first method had no obvious improvement in production. In total secreted protein, the proportions of recombinant SSL encoded by the original gene, first method optimized gene and the second—strategy optimized one were 75.06±0.25%, 74.56±0.14% and 79.00±0.14%, respectively, with the same molecular weight about 18 kDa, optimum acidity pH 6.0 and optimum temperature 35degC.

  20. Recognition of the amber UAG stop codon by release factor RF1

    SciTech Connect

    Korostelev, Andrei; Zhu, Jianyu; Asahara, Haruichi; Noller, Harry F.

    2010-08-23

    We report the crystal structure of a termination complex containing release factor RF1 bound to the 70S ribosome in response to an amber (UAG) codon at 3.6-{angstrom} resolution. The amber codon is recognized in the 30S subunit-decoding centre directly by conserved elements of domain 2 of RF1, including T186 of the PVT motif. Together with earlier structures, the mechanisms of recognition of all three stop codons by release factors RF1 and RF2 can now be described. Our structure confirms that the backbone amide of Q230 of the universally conserved GGQ motif is positioned to contribute directly to the catalysis of the peptidyl-tRNA hydrolysis reaction through stabilization of the leaving group and/or transition state. We also observe synthetic-negative interactions between mutations in the switch loop of RF1 and in helix 69 of 23S rRNA, revealing that these structural features interact functionally in the termination process. These findings are consistent with our proposal that structural rearrangements of RF1 and RF2 are critical to accurate translation termination.

  1. Reattachment heating upstream of short compression ramps in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Estruch-Samper, David

    2016-05-01

    Hypersonic shock-wave/boundary-layer interactions with separation induce unsteady thermal loads of particularly high intensity in flow reattachment regions. Building on earlier semi-empirical correlations, the maximum heat transfer rates upstream of short compression ramp obstacles of angles 15° ⩽ θ ⩽ 135° are here discretised based on time-dependent experimental measurements to develop insight into their transient nature (Me = 8.2-12.3, Re_h= 0.17× 105-0.47× 105). Interactions with an incoming laminar boundary layer experience transition at separation, with heat transfer oscillating between laminar and turbulent levels exceeding slightly those in fully turbulent interactions. Peak heat transfer rates are strongly influenced by the stagnation of the flow upon reattachment close ahead of obstacles and increase with ramp angle all the way up to θ =135°, whereby rates well over two orders of magnitude above the undisturbed laminar levels are intermittently measured (q'_max>10^2q_{u,L}). Bearing in mind the varying degrees of strength in the competing effect between the inviscid and viscous terms—namely the square of the hypersonic similarity parameter (Mθ )^2 for strong interactions and the viscous interaction parameter bar{χ } (primarily a function of Re and M)—the two physical factors that appear to most globally encompass the effects of peak heating for blunt ramps (θ ⩾ 45°) are deflection angle and stagnation heat transfer, so that this may be fundamentally expressed as q'_max∝ {q_{o,2D}} θ ^2 with further parameters in turn influencing the interaction to a lesser extent. The dominant effect of deflection angle is restricted to short obstacle heights, where the rapid expansion at the top edge of the obstacle influences the relaxation region just downstream of reattachment and leads to an upstream displacement of the separation front. The extreme heating rates result from the strengthening of the reattaching shear layer with the increase in

  2. Scalable, massively parallel approaches to upstream drainage area computation

    NASA Astrophysics Data System (ADS)

    Richardson, A.; Hill, C. N.; Perron, T.

    2011-12-01

    Accumulated drainage area maps of large regions are required for several applications. Among these are assessments of regional patterns of flow and sediment routing, high-resolution landscape evolution models in which drainage basin geometry evolves with time, and surveys of the characteristics of river basins that drain to continental margins. The computation of accumulated drainage areas is accomplished by inferring the vector field of drainage flow directions from a two-dimensional digital elevation map, and then computing the area that drains to each tile. From this map of elevations we can compute the integrated, upstream area that drains to each tile of the map. Generally this last step is done with a recursive algorithm, that accumulates upstream areas sequentially. The inherently serial nature of this restricts the number of tiles that can be included, thereby limiting the resolution of continental-size domains. This is because of the requirements of both memory, which will rise proportionally to the number of tiles, N, and computing time, which is O(N2). The fundamental sequential property of this approach prohibits effective use of large scale parallelism. An alternate method of calculating accumulated drainage area from drainage direction data can be arrived at by reformulating the problem as the solution of a system of simultaneous linear equations. The equations define the relation that the total upslope area of a particular tile is the sum of all the upslope areas for tiles immediately adjacent to that tile that drain to it, and the tile's own area. Solving these equations amounts to finding the solution of a sparse, nine-diagonal matrix operating on a vector for a right-hand-side that is simply the individual tile areas and where the diagonals of the matrix are determined by the landscape geometry. We show how an iterative method, Bi-CGSTAB, can be used to solve this problem in a scalable, massively parallel manner. However, this introduces

  3. Formula Feeding FAQs: Starting Solids and Milk

    MedlinePlus

    ... Year-Old Formula Feeding FAQs: Starting Solids and Milk KidsHealth > For Parents > Formula Feeding FAQs: Starting Solids ... When can I start giving my baby cow's milk? Before their first birthday, babies still need the ...

  4. Self-catalytic DNA Depurination Underlies Human β-Globin Gene Mutations at Codon 6 That Cause Anemias and Thalassemias*

    PubMed Central

    Alvarez-Dominguez, Juan R.; Amosova, Olga; Fresco, Jacques R.

    2013-01-01

    The human β-globin gene contains an 18-nucleotide coding strand sequence centered at codon 6 and capable of forming a stem-loop structure that can self-catalyze depurination of the 5′G residue of that codon. The resultant apurinic lesion is subject to error-prone repair, consistent with the occurrence about this codon of mutations responsible for 6 anemias and β-thalassemias and additional substitutions without clinical consequences. The 4-residue loop of this stem-loop-forming sequence shows the highest incidence of mutation across the gene. The loop and first stem base pair-forming residues appeared early in the mammalian clade. The other stem-forming segments evolved more recently among primates, thereby conferring self-depurination capacity at codon 6. These observations indicate a conserved molecular mechanism leading to β-globin variants underlying phenotypic diversity and disease. PMID:23457306

  5. Self-catalytic DNA depurination underlies human β-globin gene mutations at codon 6 that cause anemias and thalassemias.

    PubMed

    Alvarez-Dominguez, Juan R; Amosova, Olga; Fresco, Jacques R

    2013-04-19

    The human β-globin gene contains an 18-nucleotide coding strand sequence centered at codon 6 and capable of forming a stem-loop structure that can self-catalyze depurination of the 5'G residue of that codon. The resultant apurinic lesion is subject to error-prone repair, consistent with the occurrence about this codon of mutations responsible for 6 anemias and β-thalassemias and additional substitutions without clinical consequences. The 4-residue loop of this stem-loop-forming sequence shows the highest incidence of mutation across the gene. The loop and first stem base pair-forming residues appeared early in the mammalian clade. The other stem-forming segments evolved more recently among primates, thereby conferring self-depurination capacity at codon 6. These observations indicate a conserved molecular mechanism leading to β-globin variants underlying phenotypic diversity and disease.

  6. Upstream oversight assessment for agrifood nanotechnology: a case studies approach.

    PubMed

    Kuzma, Jennifer; Romanchek, James; Kokotovich, Adam

    2008-08-01

    Although nanotechnology is broadly receiving attention in public and academic circles, oversight issues associated with applications for agriculture and food remain largely unexplored. Agrifood nanotechnology is at a critical stage in which informed analysis can help shape funding priorities, risk assessment, and oversight activities. This analysis is designed to help society and policymakers anticipate and prepare for challenges posed by complicated, convergent applications of agrifood nanotechnology. The goal is to identify data, risk assessment, regulatory policy, and engagement needs for overseeing these products so they can be addressed prior to market entry. Our approach, termed upstream oversight assessment (UOA), has potential as a key element of anticipatory governance. It relies on distinct case studies of proposed applications of agrifood nanotechnology to highlight areas that need study and attention. As a tool for preparation, UOA anticipates the types and features of emerging applications; their endpoints of use in society; the extent to which users, workers, ecosystems, or consumers will be exposed; the nature of the material and its safety; whether and where the technologies might fit into current regulatory system(s); the strengths and weaknesses of the system(s) in light of these novel applications; and the possible social concerns related to oversight for them.

  7. Electron plasma waves upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Lacombe, C.; Mangeney, A.; Harvey, C. C.; Scudder, J. D.

    1985-01-01

    Electrostatic waves are observed around the plasma frequency fpe in the electron foreshock, together with electrons backstreaming from the bow shock. Using data from the sounder aboard ISEE 1, it is shown that this noise, previously understood as narrow band Langmuir waves more or less widened by Doppler shift or nonlinear effects, is in fact composed of two distinct parts: one is a narrow band noise, emitted just above fpe, and observed at the upstream boundary of the electron foreshock. This component has been interpreted as Langmuir waves emitted by a beam-plasma instability. It is suggested that it is of sufficiently large amplitude and monochromatic enough to trap resonant electrons. The other is a broad band noise, more impulsive than the narrow band noise, observed well above and/or well below fpe, deeper in the electron foreshock. The broad band noise has an average spectrum with a typical bi-exponential shape; its peak frequency is not exactly equal to fpe and depends on the Deybe length. This peak frequency also depends on the velocity for which the electron distribution has maximum skew. An experimental determination of the dispersion relation of the broad band noise shows that this noise, as well as the narrow band noise, may be due to the instability of a hot beam in a plasma.

  8. Rating Curve Estimation from Local Levels and Upstream Discharges

    NASA Astrophysics Data System (ADS)

    Franchini, M.; Mascellani, G.

    2003-04-01

    Current technology allows for low cost and easy level measurements while the discharge measurements are still difficult and expensive. Thus, these are rarely performed and usually not in flood conditions because of lack of safety and difficulty in activating the measurement team in due time. As a consequence, long series of levels are frequently available without the corresponding discharge values. However, for the purpose of planning, management of water resources and real time flood forecasting, discharge is needed and it is therefore essential to convert local levels into discharge values by using the appropriate rating curve. Over this last decade, several methods have been proposed to relate local levels at a site of interest to data recorded at a river section located upstream where a rating curve is available. Some of these methods are based on a routing approach which uses the Muskingum model structure in different ways; others are based on the entropy concepts. Lately, fuzzy logic has been applied more and more frequently in the framework of hydraulic and hydrologic problems and this has prompted to the authors to use it for synthesising the rating curves. A comparison between all these strategies is performed, highlighting the difficulties and advantages of each of them, with reference to a long reach of the Po river in Italy, where several hydrometers and the relevant rating curves are available, thus allowing for both a parameterization and validation of the different strategies.

  9. Large amplitude MHD waves upstream of the Jovian bow shock

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Smith, C. W.; Matthaeus, W. H.

    1983-01-01

    Observations of large amplitude magnetohydrodynamics (MHD) waves upstream of Jupiter's bow shock are analyzed. The waves are found to be right circularly polarized in the solar wind frame which suggests that they are propagating in the fast magnetosonic mode. A complete spectral and minimum variance eigenvalue analysis of the data was performed. The power spectrum of the magnetic fluctuations contains several peaks. The fluctuations at 2.3 mHz have a direction of minimum variance along the direction of the average magnetic field. The direction of minimum variance of these fluctuations lies at approximately 40 deg. to the magnetic field and is parallel to the radial direction. We argue that these fluctuations are waves excited by protons reflected off the Jovian bow shock. The inferred speed of the reflected protons is about two times the solar wind speed in the plasma rest frame. A linear instability analysis is presented which suggests an explanation for many of the observed features of the observations.

  10. Upstream and Downstream: Anthropological Contributions to River Basin Development

    NASA Astrophysics Data System (ADS)

    Horowitz, M.

    2003-04-01

    It is now almost 30 years since Thayer Scudder and Elizabeth Colson first focused anthropological analysis on the consequences of forced relocation of peoples from the reservoir areas upstream from large dams. The rate of large dam construction has been enormous, more than 50,000 having been built since the mid-1930s, and the total number of persons forcibly relocated has reached the many millions. Inspired by their work, my colleagues and I at the Institute for Development Anthropology began focusing on the downstream consequences of dam construction, particularly on the Senegal River, invited by the Organisation pour la Mise en Valeur du Fleuve Senegal (OMVS). The work resulted not only in an analysis, but in a proposed alternative dam-management approach that would permit hydropower generation yet substantially reduce the costs of changed flow regimes borne by the riparian peoples. In this discussion, I would like to bring the situation up-to-date. What has happened to those recommendations, initially embraced by at least some of the players involved in the river's management?

  11. Upstream gyrating ion events: Cluster observations and simulations

    SciTech Connect

    Sauer, K.; Fraenz, M.; Dubinin, E.; Korth, A.; Mazelle, C.; Reme, H.; Dandouras, I.

    2005-08-01

    Localized events of low-frequency quasi-monochromatic waves in the 30s range observed by Cluster in the upstream region of Earth are analyzed. They are associated with a gyro-motion of the two ion populations consisting of the incoming solar wind protons and the back-streaming ions from the shock. A coordinate system is chosen in which one axis is parallel to the ambient magnetic field B0 and the other one is in the vswxB0 direction. The variation of the plasma parameters is compared with the result of two-fluid Hall-MHD simulations using different beam densities and velocities. Keeping a fixed (relative) beam density (e.g. {alpha}=0.005), non-stationary 'shock-like' structures are generated if the beam velocity exceeds a certain threshold of about ten times the Alfven velocity. Below the threshold, the localized events represent stationary, nonlinear waves (oscillitons) in a beam-plasma system in which the Reynold's stresses of the plasma and beam ions are balanced by the magnetic field stress.

  12. Rheotaxis facilitates upstream navigation of mammalian sperm cells

    PubMed Central

    Kantsler, Vasily; Dunkel, Jörn; Blayney, Martyn; Goldstein, Raymond E

    2014-01-01

    A major puzzle in biology is how mammalian sperm maintain the correct swimming direction during various phases of the sexual reproduction process. Whilst chemotaxis may dominate near the ovum, it is unclear which cues guide spermatozoa on their long journey towards the egg. Hypothesized mechanisms range from peristaltic pumping to temperature sensing and response to fluid flow variations (rheotaxis), but little is known quantitatively about them. We report the first quantitative study of mammalian sperm rheotaxis, using microfluidic devices to investigate systematically swimming of human and bull sperm over a range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions, and chirality of the flagellar beat leads to stable upstream spiralling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilisation. A minimal mathematical model is presented that accounts quantitatively for the experimental observations. DOI: http://dx.doi.org/10.7554/eLife.02403.001 PMID:24867640

  13. Upstream ORFs are prevalent translational repressors in vertebrates.

    PubMed

    Johnstone, Timothy G; Bazzini, Ariel A; Giraldez, Antonio J

    2016-04-01

    Regulation of gene expression is fundamental in establishing cellular diversity and a target of natural selection. Untranslated mRNA regions (UTRs) are key mediators of post-transcriptional regulation. Previous studies have predicted thousands of ORFs in 5'UTRs, the vast majority of which have unknown function. Here, we present a systematic analysis of the translation and function of upstream open reading frames (uORFs) across vertebrates. Using high-resolution ribosome footprinting, we find that (i)uORFs are prevalent within vertebrate transcriptomes, (ii) the majority show signatures of active translation, and (iii)uORFs act as potent regulators of translation and RNA levels, with a similar magnitude to miRNAs. Reporter experiments reveal clear repression of downstream translation by uORFs/oORFs. uORF number, intercistronic distance, overlap with the CDS, and initiation context most strongly influence translation. Evolution has targeted these features to favor uORFs amenable to regulation over constitutively repressive uORFs/oORFs. Finally, we observe that the regulatory potential of uORFs on individual genes is conserved across species. These results provide insight into the regulatory code within mRNA leader sequences and their capacity to modulate translation across vertebrates.

  14. Rapid acceleration of protons upstream of earthward propagating dipolarization fronts

    PubMed Central

    Ukhorskiy, AY; Sitnov, MI; Merkin, VG; Artemyev, AV

    2013-01-01

    [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it. PMID:26167430

  15. The effects of the Snowflake Divertor on upstream SOL profiles

    NASA Astrophysics Data System (ADS)

    Tsui, C. K.; Boedo, J. A.; Coda, S.; Labit, B.; Maurizio, R.; Nespoli, F.; Reimerdes, H.; Theiler, C.; Spolaore, M.; Vianello, N.; Lunt, T.; Vijvers, W. A. J.; Walkden, N.; the EUROfusion MST1 Team Team; the TCV Team Team

    2016-10-01

    The Snowflake Divertor creates separated volumes within the SOL and divertor that feature strikingly different ne, Te profiles, and decay lengths, as measured with a scanning probe. Profiles were taken at the outer midplane of TCV plasmas with snowflake divertors as well as just above the X-points within the region of enhanced βpol. Density shoulders in the far SOL in single null plasmas are relaxed by secondary X-points, while effects are more complex in the near SOL. These changes were observed whether the secondary X-point was placed in the low field side SOL, or in the high field side SOL. Additionally, target profiles measured with IR camera and Langmiur probes that were taken in the divertor leg opposite the secondary X-point also show features on the flux surface corresponding to the secondary X-point. Fluctuation statistics from the reciprocating probe as well as comparisons made between upstream and downstream measurements are considered for their implications on SOL transport. Support from EUROfusion Grant 633053 and US DOE Grant DE-SC0010529 are gratefully acknowledged.

  16. What's Upstream? GIS's critical role in developing nutrient ...

    EPA Pesticide Factsheets

    Eutrophication due to excess levels of nitrogen and phosphorus can seriously impair ecological function in estuaries. Protective criteria for nutrients are difficult to establish because the source can vary spatially and seasonally, originate either from the watershed or the ocean, and be natural or anthropogenic. GIS tools and processes can help in developing nutrient criteria by establishing reference conditions representative of natural background nutrient levels. Along the Oregon Coast in the Pacific Northwest, the primary source of nutrients in the wet season (November-April) is generally riverine. We delineated and extracted explicit spatial data from watersheds upstream of riverine water quality monitoring stations for parametric comparison to recorded nutrient levels. The SPARROW model (Wise and Johnson, 2011) was used to estimate relative contributions of nutrient sources at each station. Both raster and vector spatial data were used and include land use / land cover, demography, geology, terrain, precipitation and forest type. The relationships of nutrients to spatial data were then explored as an approach to establishing the reference expectation. The abstract introduces Geographic Information Systems (GIS) tools and processes employed for research conducted under the Safe and Sustainable Water Resources (SSWR) Task 2.3A, entitled “Nutrient Management for Sustainability of Aquatic Ecosystems.” One of the goals of the EPA Office of Water is to

  17. XPD codon 312 and 751 polymorphisms, and AFB1 exposure, and hepatocellular carcinoma risk

    PubMed Central

    2009-01-01

    Background Genetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity, which may be associated with risk of hepatocellular carcinoma (HCC) related to the exposure of aflatoxin B1 (AFB1). In this study, we have focused on the polymorphisms of xeroderma pigmentosum complementation group D (XPD) codon 312 and 751 (namely Asp312Asn and Lys751Gln), involved in nucleotide excision repair. Methods We conducted a case-control study including 618 HCC cases and 712 controls to evaluate the associations between these two polymorphisms and HCC risk for Guangxi population by means of TaqMan-PCR and PCR-RFLP analysis. Results We found that individuals featuring the XPD genotypes with codon 751 Gln alleles (namely XPD-LG or XPD-GG) were related to an elevated risk of HCC compared to those with the homozygote of XPD codon 751 Lys alleles [namely XPD-LL, adjusted odds ratios (ORs) were 1.75 and 2.47; 95% confidence interval (CIs) were 1.30-2.37 and 1.62-3.76, respectively]. A gender-specific role was evident that showed an higher risk for women (adjusted OR was 8.58 for XPD-GG) than for men (adjusted OR = 2.90 for XPD-GG). Interestingly, the interactive effects of this polymorphism and AFB1-exposure information showed the codon 751 Gln alleles increase the risk of HCC for individuals facing longer exposure years (Pinteraction = 0.011, OR = 0.85). For example, long-exposure-years (> 48 years) individuals who carried XDP-GG had an adjusted OR of 470.25, whereas long-exposure-years people with XDP-LL were at lower risk (adjusted OR = 149.12). However, we did not find that XPD codon 312 polymorphism was significantly associated with HCC risk. Conclusion These findings suggest that XPD Lys751Gln polymorphism is an important modulator of AFB1 related-HCC development in Guangxi population. PMID:19919686

  18. Comparative genome sequence analysis of Sulfolobus acidocaldarius and 9 other isolates of its genus for factors influencing codon and amino acid usage.

    PubMed

    Nayak, Kinshuk Chandra

    2013-01-15

    In the present study, major constraints for codon and amino acid usage of Sulfolobus acidocaldarius, Sulfolobus solfataricus, Sulfolobus tokodali, Sulfolobus islandis and 6 other isolates from islandicus species of genus Sulfolobus were investigated. Correspondence analysis revealed high significant correlation between the major trend of synonymous codon usage and gene expression level, as assessed by the "Codon Adaptation Index" (CAI). There is a significant negative correlation between Nc (Effective number of codons) and CAI demonstrating role of codon bias as an important determinant of codon usage. The significant correlation between major trend of synonymous codon usage and GC3s (G+C at third synonymous position) indicated dominant role of mutational bias in codon usage pattern. The result was further supported from SCUO (synonymous codon usage order) analysis. The amino acid usage was found to be significantly influenced by aromaticity and hydrophobicity of proteins. However, translational selection which causes a preference for codons that are most rapidly translated by current tRNA with multiple copy numbers was not found to be highly dominating for all studied isolates. Notably, 26 codons that were found to be optimally used by genes of S. acidocaldarius at higher expression level and its comparative analysis with 9 other isolates may provide some useful clues for further in vivo genetic studies on this genus.

  19. Upstream pressure variations associated with the bow shock and their effects on the magnetosphere

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Baumjohann, W.; Paschmann, G.; Luehr, H.; Sibeck, D. G.

    1990-01-01

    The AMPTE IRM solar wind data are analyzed to determine the relationship between upstream pressure fluctuations and magnetospheric perturbations. It is argued that the upstream pressure variations are not inherent in the solar wind but rather are associated with the bow shock. This conclusion follows from the fact that the upstream field strength and density associated with perturbations are highly correlated with each other, while they tend to be anticorrelated in the undisturbed solar wind, and that the upstream perturbations occur within the foreshock or at its boundary. The results imply a mode of interaction between the solar wind upstream and the magnetosphere whereby density changes produced in the foreshock subsequently convect through the bow shock and impinge on the magnetosphere. Upstream pressure perturbations should create significant effects on the magnetopause and at the foot of nearby field lines that lead to the polar cusp ionosphere.

  20. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  1. HER2 codon 655 polymorphism and breast cancer: results from kin-cohort and case-control analyses.

    PubMed

    Millikan, Robert C; Hummer, Amanda J; Wolff, Mary S; Hishida, Asahi; Begg, Colin B

    2005-02-01

    Several published epidemiologic studies show increased breast cancer risk for carriers of the Val-allele at codon 655 of the HER2 gene. We conducted additional analyses using data from three studies, including case-control analyses stratified on age and kin-cohort analyses using relatives of cases and controls. The results provide additional evidence that HER2 codon 655 genotype may predispose to early-onset breast cancer.

  2. Potential Start Codon Targeted (SCoT) and Inter-retrotransposon Amplified Polymorphism (IRAP) Markers for Evaluation of Genetic Diversity and Conservation of Wild Pistacia Species Population.

    PubMed

    Sorkheh, Karim; Amirbakhtiar, Nazanin; Ercisli, Sezai

    2016-08-01

    Wild pistachio species is important species in forests regions Iran and provide protection wind and soil erosion. Even though cultivation and utilization of Pistacia are fully exploited, the evolutionary history of the Pistacia genus and the relationships among the species and accessions is still not well understood. Two molecular marker strategies, SCoT and IRAP markers were analyzed for assessment of 50 accessions of this species accumulated from diverse geographical areas of Iran. A thorough of 115 bands were amplified using eight IRAP primers, of which 104 (90.4 %) have been polymorphic, and 246 polymorphic bands (68.7 %) had been located in 358 bands amplified by way of forty-four SCoT primers. Average PIC for IRAP and SCoT markers became 0.32 and 0.48, respectively. This is exposed that SCoT markers have been extra informative than IRAP for the assessment of variety among pistachio accessions. Primarily based on the two extraordinary molecular markers, cluster evaluation revealed that the 50 accessions taken for the evaluation may be divided into three distinct clusters. Those results recommend that the performance of SCoT and IRAP markers was highly the equal in fingerprinting of accessions. The results affirmed a low genetic differentiation among populations, indicating the opportunity of gene drift most of the studied populations. These findings might render striking information in breeding management strategies for genetic conservation and cultivar improvement.

  3. Evaluation of Codon Biology in Citrus and Poncirus trifoliata Based on Genomic Features and Frame Corrected Expressed Sequence Tags

    PubMed Central

    Ahmad, Touqeer; Sablok, Gaurav; Tatarinova, Tatiana V.; Xu, Qiang; Deng, Xiu-Xin; Guo, Wen-Wu

    2013-01-01

    Citrus, as one of the globally important fruit trees, has been an object of interest for understanding genetics and evolutionary process in fruit crops. Meta-analyses of 19 Citrus species, including 4 globally and economically important Citrus sinensis, Citrus clementina, Citrus reticulata, and 1 Citrus relative Poncirus trifoliata, were performed. We observed that codons ending with A- or T- at the wobble position were preferred in contrast to C- or G- ending codons, indicating a close association with AT richness of Citrus species and P. trifoliata. The present study postulates a large repertoire of a set of optimal codons for the Citrus genus and P. trifoliata and demonstrates that GCT and GGT are evolutionary conserved optimal codons. Our observation suggested that mutational bias is the dominating force in shaping the codon usage bias (CUB) in Citrus and P. trifoliata. Correspondence analysis (COA) revealed that the principal axis [axis 1; COA/relative synonymous codon usage (RSCU)] contributes only a minor portion (∼10.96%) of the recorded variance. In all analysed species, except P. trifoliata, Gravy and aromaticity played minor roles in resolving CUB. Compositional constraints were found to be strongly associated with the amino acid signatures in Citrus species and P. trifoliata. Our present analysis postulates compositional constraints in Citrus species and P. trifoliata and plausible role of the stress with GC3 and coevolution pattern of amino acid. PMID:23315666

  4. Synonymous codon bias and functional constraint on GC3-related DNA backbone dynamics in the prokaryotic nucleoid

    PubMed Central

    Babbitt, Gregory A.; Alawad, Mohammed A.; Schulze, Katharina V.; Hudson, André O.

    2014-01-01

    While mRNA stability has been demonstrated to control rates of translation, generating both global and local synonymous codon biases in many unicellular organisms, this explanation cannot adequately explain why codon bias strongly tracks neighboring intergene GC content; suggesting that structural dynamics of DNA might also influence codon choice. Because minor groove width is highly governed by 3-base periodicity in GC, the existence of triplet-based codons might imply a functional role for the optimization of local DNA molecular dynamics via GC content at synonymous sites (≈GC3). We confirm a strong association between GC3-related intrinsic DNA flexibility and codon bias across 24 different prokaryotic multiple whole-genome alignments. We develop a novel test of natural selection targeting synonymous sites and demonstrate that GC3-related DNA backbone dynamics have been subject to moderate selective pressure, perhaps contributing to our observation that many genes possess extreme DNA backbone dynamics for their given protein space. This dual function of codons may impose universal functional constraints affecting the evolution of synonymous and non-synonymous sites. We propose that synonymous sites may have evolved as an ‘accessory’ during an early expansion of a primordial genetic code, allowing for multiplexed protein coding and structural dynamic information within the same molecular context. PMID:25200075

  5. Synonymous codon bias and functional constraint on GC3-related DNA backbone dynamics in the prokaryotic nucleoid.

    PubMed

    Babbitt, Gregory A; Alawad, Mohammed A; Schulze, Katharina V; Hudson, André O

    2014-01-01

    While mRNA stability has been demonstrated to control rates of translation, generating both global and local synonymous codon biases in many unicellular organisms, this explanation cannot adequately explain why codon bias strongly tracks neighboring intergene GC content; suggesting that structural dynamics of DNA might also influence codon choice. Because minor groove width is highly governed by 3-base periodicity in GC, the existence of triplet-based codons might imply a functional role for the optimization of local DNA molecular dynamics via GC content at synonymous sites (≈GC3). We confirm a strong association between GC3-related intrinsic DNA flexibility and codon bias across 24 different prokaryotic multiple whole-genome alignments. We develop a novel test of natural selection targeting synonymous sites and demonstrate that GC3-related DNA backbone dynamics have been subject to moderate selective pressure, perhaps contributing to our observation that many genes possess extreme DNA backbone dynamics for their given protein space. This dual function of codons may impose universal functional constraints affecting the evolution of synonymous and non-synonymous sites. We propose that synonymous sites may have evolved as an 'accessory' during an early expansion of a primordial genetic code, allowing for multiplexed protein coding and structural dynamic information within the same molecular context.

  6. Evaluation of codon biology in citrus and Poncirus trifoliata based on genomic features and frame corrected expressed sequence tags.

    PubMed

    Ahmad, Touqeer; Sablok, Gaurav; Tatarinova, Tatiana V; Xu, Qiang; Deng, Xiu-Xin; Guo, Wen-Wu

    2013-04-01

    Citrus, as one of the globally important fruit trees, has been an object of interest for understanding genetics and evolutionary process in fruit crops. Meta-analyses of 19 Citrus species, including 4 globally and economically important Citrus sinensis, Citrus clementina, Citrus reticulata, and 1 Citrus relative Poncirus trifoliata, were performed. We observed that codons ending with A- or T- at the wobble position were preferred in contrast to C- or G- ending codons, indicating a close association with AT richness of Citrus species and P. trifoliata. The present study postulates a large repertoire of a set of optimal codons for the Citrus genus and P. trifoliata and demonstrates that GCT and GGT are evolutionary conserved optimal codons. Our observation suggested that mutational bias is the dominating force in shaping the codon usage bias (CUB) in Citrus and P. trifoliata. Correspondence analysis (COA) revealed that the principal axis [axis 1; COA/relative synonymous codon usage (RSCU)] contributes only a minor portion (∼10.96%) of the recorded variance. In all analysed species, except P. trifoliata, Gravy and aromaticity played minor roles in resolving CUB. Compositional constraints were found to be strongly associated with the amino acid signatures in Citrus species and P. trifoliata. Our present analysis postulates compositional constraints in Citrus species and P. trifoliata and plausible role of the stress with GC3 and coevolution pattern of amino acid.

  7. Stop codons in the hepatitis B surface proteins are enriched during antiviral therapy and are associated with host cell apoptosis.

    PubMed

    Colledge, Danielle; Soppe, Sally; Yuen, Lilly; Selleck, Lucy; Walsh, Renae; Locarnini, Stephen; Warner, Nadia

    2017-01-15

    Premature stop codons in the hepatitis B virus (HBV) surface protein can be associated with nucleos(t)ide analogue resistance due to overlap of the HBV surface and polymerase genes. The aim of this study was to determine the effect of the replication of three common surface stop codon variants on the hepatocyte. Cell lines were transfected with infectious HBV clones encoding surface stop codons rtM204I/sW196*, rtA181T/sW172*, rtV191I/sW182*, and a panel of substitutions in the surface proteins. HBsAg was measured by Western blotting. Proliferation and apoptosis were measured using flow cytometry. All three surface stop codon variants were defective in HBsAg secretion. Cells transfected with these variants were less proliferative and had higher levels of apoptosis than those transfected with variants that did not encode surface stop codons. The most cytopathic variant was rtM204I/sW196*. Replication of HBV encoding surface stop codons was toxic to the cell and promoted apoptosis, exacerbating disease progression.

  8. Accuracy of initial codon selection by aminoacyl-tRNAs on the mRNA-programmed bacterial ribosome

    PubMed Central

    Zhang, Jingji; Ieong, Ka-Weng; Johansson, Magnus; Ehrenberg, Måns

    2015-01-01

    We used a cell-free system with pure Escherichia coli components to study initial codon selection of aminoacyl-tRNAs in ternary complex with elongation factor Tu and GTP on messenger RNA-programmed ribosomes. We took advantage of the universal rate-accuracy trade-off for all enzymatic selections to determine how the efficiency of initial codon readings decreased linearly toward zero as the accuracy of discrimination against near-cognate and wobble codon readings increased toward the maximal asymptote, the d value. We report data on the rate-accuracy variation for 7 cognate, 7 wobble, and 56 near-cognate codon readings comprising about 15% of the genetic code. Their d values varied about 400-fold in the 200–80,000 range depending on type of mismatch, mismatch position in the codon, and tRNA isoacceptor type. We identified error hot spots (d = 200) for U:G misreading in second and U:U or G:A misreading in third codon position by His-tRNAHis and, as also seen in vivo, Glu-tRNAGlu. We suggest that the proofreading mechanism has evolved to attenuate error hot spots in initial selection such as those found here. PMID:26195797

  9. Accuracy of initial codon selection by aminoacyl-tRNAs on the mRNA-programmed bacterial ribosome.

    PubMed

    Zhang, Jingji; Ieong, Ka-Weng; Johansson, Magnus; Ehrenberg, Måns

    2015-08-04

    We used a cell-free system with pure Escherichia coli components to study initial codon selection of aminoacyl-tRNAs in ternary complex with elongation factor Tu and GTP on messenger RNA-programmed ribosomes. We took advantage of the universal rate-accuracy trade-off for all enzymatic selections to determine how the efficiency of initial codon readings decreased linearly toward zero as the accuracy of discrimination against near-cognate and wobble codon readings increased toward the maximal asymptote, the d value. We report data on the rate-accuracy variation for 7 cognate, 7 wobble, and 56 near-cognate codon readings comprising about 15% of the genetic code. Their d values varied about 400-fold in the 200-80,000 range depending on type of mismatch, mismatch position in the codon, and tRNA isoacceptor type. We identified error hot spots (d = 200) for U:G misreading in second and U:U or G:A misreading in third codon position by His-tRNA(His) and, as also seen in vivo, Glu-tRNA(Glu). We suggest that the proofreading mechanism has evolved to attenuate error hot spots in initial selection such as those found here.

  10. Genome-wide survey of codons under diversifying selection in a highly recombining bacterial species, Helicobacter pylori

    PubMed Central

    Yahara, Koji; Furuta, Yoshikazu; Morimoto, Shinpei; Kikutake, Chie; Komukai, Sho; Matelska, Dorota; Dunin-Horkawicz, Stanisław; Bujnicki, Janusz M.; Uchiyama, Ikuo; Kobayashi, Ichizo

    2016-01-01

    Selection has been a central issue in biology in eukaryotes as well as prokaryotes. Inference of selection in recombining bacterial species, compared with clonal ones, has been a challenge. It is not known how codons under diversifying selection are distributed along the chromosome or among functional categories or how frequently such codons are subject to mutual homologous recombination. Here, we explored these questions by analysing genes present in >90% among 29 genomes of Helicobacter pylori, one of the bacterial species with the highest mutation and recombination rates. By a method for recombining sequences, we identified codons under diversifying selection (dN/dS > 1), which were widely distributed and accounted for ∼0.2% of all the codons of the genome. The codons were enriched in genes of host interaction/cell surface and genome maintenance (DNA replication, recombination, repair, and restriction modification system). The encoded amino acid residues were sometimes found adjacent to critical catalytic/binding residues in protein structures. Furthermore, by estimating the intensity of homologous recombination at a single nucleotide level, we found that these codons appear to be more frequently subject to recombination. We expect that the present study provides a new approach to population genomics of selection in recombining prokaryotes. PMID:26961370

  11. "Upstream Thinking": the catchment management approach of a water provider

    NASA Astrophysics Data System (ADS)

    Grand-Clement, E.; Ross, M.; Smith, D.; Anderson, K.; Luscombe, D.; Le Feuvre, N.; Brazier, R. E.

    2012-04-01

    Human activities have large impacts on water quality and provision. Water companies throughout the UK are faced with the consequences of poor land management and need to find appropriate solutions to decreasing water quality. This is particularly true in the South West of England, where 93% of the drinking water is sourced from rivers and reservoirs: large areas of drained peatlands (i.e. Exmoor and Dartmoor National Parks) are responsible for a significant input of dissolved organic carbon (DOC) discolouring the water, whilst poorly managed farming activities can lead to diffuse pollution. Alongside the direct environmental implications, poor water quality is partly increasing water treatment costs and will drive significant future investment in additional water treatment, with further repercussions on customers. This highlights the need for water companies throughout the UK, and further afield, to be more involved in catchment management. "Upstream Thinking" is South West Water's (SWW) approach to catchment management, where working with stakeholders to improve water quality upstream aims to avoid increasingly costly solutions downstream. This approach has led the company to invest in two major areas of work: (1) The Farmland programme where problematic farm management practices and potential solutions are identified, typically 40% of the required investment is then offered in exchange for a legal undertaking to maintain the new farm assets in good condition for 25 years; (2) The Mires programme which involves heavy investment in peatland restoration through the blocking of open ditches in order to improve water storage and quality in the long term. From these two projects, it has been clear that stakeholder involvement of groups such as local farmers, the Westcountry Rivers Trust, the Exmoor National Park Authority, the Environment Agency, Natural England and the Exmoor Society is essential, first because it draws in catchment improvement expertise which is not

  12. The Home Start Demonstration Program: An Overview.

    ERIC Educational Resources Information Center

    Office of Child Development (DHEW), Washington, DC.

    Following a discussion of the Home Start program and its evaluation plan, the 16 Office of Child Development-funded Home Start projects in the United States are described. Home start is a 3-year Head Start demonstration program, aimed at the 3-5 years of age range, which focuses on enhancing the quality of children's lives by building upon…

  13. 30 CFR 75.1913 - Starting aids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Starting aids. 75.1913 Section 75.1913 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1913 Starting aids. (a) Volatile fuel starting aids shall be used in accordance with recommendations provided by the starting...

  14. 30 CFR 75.1913 - Starting aids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Starting aids. 75.1913 Section 75.1913 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1913 Starting aids. (a) Volatile fuel starting aids shall be used in accordance with recommendations provided by the starting...

  15. 30 CFR 75.1913 - Starting aids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Starting aids. 75.1913 Section 75.1913 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1913 Starting aids. (a) Volatile fuel starting aids shall be used in accordance with recommendations provided by the starting...

  16. 30 CFR 75.1913 - Starting aids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Starting aids. 75.1913 Section 75.1913 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1913 Starting aids. (a) Volatile fuel starting aids shall be used in accordance with recommendations provided by the starting...

  17. 30 CFR 75.1913 - Starting aids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Starting aids. 75.1913 Section 75.1913 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1913 Starting aids. (a) Volatile fuel starting aids shall be used in accordance with recommendations provided by the starting...

  18. Crossflow transition control by upstream flow deformation using plasma actuators

    NASA Astrophysics Data System (ADS)

    Dörr, Philipp C.; Kloker, Markus J.

    2017-02-01

    Control of laminar-turbulent transition in a swept-wing-type boundary-layer flow, subject to primary crossflow instability, is investigated using direct numerical simulations. In our previous works, we explored a direct base-flow stabilization aimed at a spanwise homogenous flow manipulation or a direct crossflow-vortex manipulation by plasma actuators. In this paper, the technique of upstream flow deformation (UFD) is applied, needing by far the least energy input. The actuators, modeled by local volume forcing, are set to excite amplified steady crossflow vortex (CFV) control modes with a higher spanwise wavenumber than the most amplified modes. The resulting nonlinear control CFVs are spaced narrower than the naturally occurring vortices and are less unstable with respect to secondary instability. They generate a beneficial mean-flow distortion attenuating the primary crossflow instability, and thus a delay of the transition to turbulence. Unlike roughness elements for UFD, the employed dielectric barrier discharge plasma actuators allow to set the force direction: Forcing against the crossflow has a direct, fundamental stabilizing effect due to a reduction of the mean crossflow, whereas forcing in the crossflow direction locally invokes the opposite due to a local increase of the mean crossflow. The differences between these settings, also with respect to forcing in streamwise direction, are discussed in detail, and it is shown that a significant transition delay can be achieved indeed with both, however with a differing efficiency and robustness. Additionally, a comparison to a set-up with an excitation of the control modes by synthetic blowing and suction is performed to clarify the role of the direct effect on the base flow.

  19. Innovation and performance: The case of the upstream petroleum sector

    NASA Astrophysics Data System (ADS)

    Persaud, A. C. Jai

    This thesis investigates innovation in the upstream crude oil and natural gas sector, a strategic part of the Canadian economy and a vital industry for North American energy trade and security. Significant interest exists in understanding innovation in this sector from a private and public policy perspective. Interest in the sector has intensified recently due to concerns about world oil supply, Canada's oil sands development, and the potential that Canada may become an "energy superpower." The study examines the factors that drive companies involved in exploration, development, and production in the upstream petroleum sector to innovate and the impact of their innovation activities through major technologies on their performance. The thesis focuses on process innovation, which involves the adoption of new or significantly improved production processes, and is distinct from product innovation, which is based on the development and commercialization of a product with improved product characteristics to deliver new services to the consumer. The thesis provides a comprehensive review of the literature and develops an investigative model framework to examine the drivers of innovation and the impact of innovation on performance in the upstream petroleum sector. The research employs a survey questionnaire that was developed to obtain data and information, which was missing in the literature or not publicly available to test key relationships of innovation and performance indicators. In addition to the survey questionnaire, a number of knowledgeable experts in the industry were also interviewed. A total of 68 respondents completed the survey questionnaire, accounting for 40 percent of the firms in the industry. This percentage goes up to over 50 percent when account is taken of extremely small firms who could not fill out the survey. Further, the 68 respondents account for most of the industry revenues, production, and employment. The respondents include most of the key

  20. Positive regulation of the beta-galactosidase gene from Kluyveromyces lactis is mediated by an upstream activation site that shows homology to the GAL upstream activation site of Saccharomyces cerevisiae.

    PubMed Central

    Ruzzi, M; Breunig, K D; Ficca, A G; Hollenberg, C P

    1987-01-01

    In contrast to the Escherichia coli lac operon, the yeast beta-galactosidase gene is positively regulated. In the 5'-noncoding region of the Kluyveromyces lactis LAC4 gene, we mapped an upstream activation site (UAS) that is required for induction. This sequence, located between positions -435 and -326 from the start of translation, functions irrespective of its orientation and can confer lactose regulation to the heterologous CYC1 promoter. It is composed of at least two subsequences that must act in concert. One of these subsequences showed a strong homology to the UAS consensus sequence of the Saccharomyces cerevisiae GAL genes (E. Giniger, S. M. Varnum, and M. Ptashne, Cell 40:767-774, 1985). We propose that this region of homology located at about position -426 is a binding site for the product of the regulatory gene LAC9 which probably induces transcription of the LAC4 gene in a manner analogous to that of the GAL4 protein. PMID:3104772