An Accurate VO[subscript 2]max Nonexercise Regression Model for 18-65-Year-Old Adults
ERIC Educational Resources Information Center
Bradshaw, Danielle I.; George, James D.; Hyde, Annette; LaMonte, Michael J.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.
2005-01-01
The purpose of this study was to develop a regression equation to predict maximal oxygen uptake (VO[subscript 2]max) based on nonexercise (N-EX) data. All participants (N = 100), ages 18-65 years, successfully completed a maximal graded exercise test (GXT) to assess VO[subscript 2]max (M = 39.96 mL[middle dot]kg[superscript -1][middle…
ERIC Educational Resources Information Center
Tarnus, Evelyne; Catan, Aurelie; Verkindt, Chantal; Bourdon, Emmanuel
2011-01-01
The maximal rate of O[subscript 2] consumption (VO[subscript 2max]) constitutes one of the oldest fitness indexes established for the measure of cardiorespiratory fitness and aerobic performance. Procedures have been developed in which VO[subscript 2max]is estimated from physiological responses during submaximal exercise. Generally, VO[subscript…
Submaximal Treadmill Exercise Test to Predict VO[subscript 2]max in Fit Adults
ERIC Educational Resources Information Center
Vehrs, Pat R.; George, James D.; Fellingham, Gilbert W.; Plowman, Sharon A.; Dustman-Allen, Kymberli
2007-01-01
This study was designed to develop a single-stage submaximal treadmill jogging (TMJ) test to predict VO[subscript 2]max in fit adults. Participants (N = 400; men = 250 and women = 150), ages 18 to 40 years, successfully completed a maximal graded exercise test (GXT) at 1 of 3 laboratories to determine VO[subscript 2]max. The TMJ test was completed…
Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data
ERIC Educational Resources Information Center
George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.
2009-01-01
This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…
Specific Effects of Acute Moderate Exercise on Cognitive Control
ERIC Educational Resources Information Center
Davranche, Karen; McMorris, Terry
2009-01-01
The main issue of this study was to determine whether cognitive control is affected by acute moderate exercise. Twelve participants [4 females (VO[subscript 2 max]=42 ml/kg/min) and 8 males (VO[subscript 2 max]=48 ml/kg/min)] performed a Simon task while cycling at a carefully controlled workload intensity corresponding to their individual…
ERIC Educational Resources Information Center
Nielson, David E.; George, James D.; Vehrs, Pat R.; Hager, Ron L.; Webb, Carrie V.
2010-01-01
The purpose of this study was to develop a multiple linear regression model to predict treadmill VO[subscript 2max] scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill.…
ERIC Educational Resources Information Center
Black, Nate E.; Vehrs, Pat R.; Fellingham, Gilbert W.; George, James D.; Hager, Ron
2016-01-01
Purpose: The purpose of this study was to evaluate the use of a treadmill walk-jog-run exercise test previously validated in adults and physical activity questionnaire data to estimate maximum oxygen consumption (VO[subscript 2]max) in boys (n = 62) and girls (n = 66) aged 12 to 17 years old. Methods: Data were collected from Physical Activity…
ERIC Educational Resources Information Center
Eler, Nebahat; Acar, Hakan
2018-01-01
The aim of this study is to examine the effects of rope-jump training program in physical education lessons on strength, speed and VO[subscript 2] max in 10-12 year old boys. 240 male students; rope-jump group (n = 120) and control group (n = 120) participated in the study. Rope-Jump group continued 10 weeks of regular physical education and sport…
The Relationship among HRpeak, RERpeak, and VO[subscript 2]peak during Treadmill Testing in Girls
ERIC Educational Resources Information Center
Peyer, Karissa; Pivarnik, James M.; Coe, Dawn Podulka
2011-01-01
Clear criteria for maximal oxygen consumption (VO[subscript 2]max) determination in youth are not available, and no studies have examined this issue in girls. Our purpose was to determine whether different peak heart rate (HRpeak) and peak respiratory exchange ratio (RERpeak) cut points affect girls' (N = 453; M age = 13.3 years, SD = 0.1)…
Evaluation of the Virtual Physiology of Exercise Laboratory Program
ERIC Educational Resources Information Center
Dobson, John L.
2009-01-01
The Virtual Physiology of Exercise Laboratory (VPEL) program was created to simulate the test design, data collection, and analysis phases of selected exercise physiology laboratories. The VPEL program consists of four modules: (1) cardiovascular, (2) maximal O[subscript 2] consumption [Vo[subscript 2max], (3) lactate and ventilatory thresholds,…
Ventilation and Speech Characteristics during Submaximal Aerobic Exercise
ERIC Educational Resources Information Center
Baker, Susan E.; Hipp, Jenny; Alessio, Helaine
2008-01-01
Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…
Benefits of Moderate-Intensity Exercise during a Calorie-Restricted Low-Fat Diet
ERIC Educational Resources Information Center
Apekey, Tanefa A.; Morris, A. E. J.; Fagbemi, S.; Griffiths, G. J.
2012-01-01
Objective: Despite the health benefits, many people do not undertake regular exercise. This study investigated the effects of moderate-intensity exercise on cardiorespiratory fitness (lung age, blood pressure and maximal aerobic power, VO[subscript 2]max), serum lipids concentration and body mass index (BMI) in sedentary overweight/obese adults…
A Primer-Test Centered Equating Method for Setting Cut-Off Scores
ERIC Educational Resources Information Center
Zhu, Weimo; Plowman, Sharon Ann; Park, Youngsik
2010-01-01
This study evaluated the use of a new primary field test method based on test equating to address inconsistent classification among field tests. We analyzed students' information on the Progressive Aerobic Cardiovascular Endurance Run (PACER), mile run (MR), and VO[subscript 2]max from three data sets (college: n = 94; middle school: n = 39;…
ERIC Educational Resources Information Center
Garner, Dena; Erck, Elizabeth G.
2008-01-01
Background: Lack of physical activity has been noted in breast cancer survivors and been attributed to decreased physical function. Purpose: This study assessed the effects of a moderate-to-vigorous physical exercise program on body fat percentage, maximal oxygen consumption (VO[subscript 2] max), body mass index, and bone mineral density (BMD) of…
Development of 1-Mile Walk Tests to Estimate Aerobic Fitness in Children
ERIC Educational Resources Information Center
Sung, Hoyong; Collier, David N.; DuBose, Katrina D.; Kemble, C. David; Mahar, Matthew T.
2018-01-01
To examine the reliability and validity of 1-mile walk tests for estimation of aerobic fitness (VO[subscript 2max]) in 10- to 13-year-old children and to cross-validate previously published equations. Participants (n = 61) walked 1-mile on two different days. Self-reported physical activity, demographic variables, and aerobic fitness were used in…
Prediction of Energy Expenditure during Walking in Adults with Down Syndrome
ERIC Educational Resources Information Center
Agiovlasitis, Stamatis; Mendonca, Goncalo V.; McCubbin, Jeffrey A.; Fernhall, Bo
2018-01-01
Background: When developing walking programmes for improving health in adults with Down syndrome (DS), physical activity professionals are in need of an equation for predicting energy expenditure. We therefore developed and cross-validated an equation for predicting the rate of oxygen uptake (VO[subscript 2]; an index of energy expenditure) for…
Top 10 Research Questions Related to Youth Aerobic Fitness
ERIC Educational Resources Information Center
Armstrong, Neil
2017-01-01
Peak oxygen uptake (VO[subscript 2]) is internationally recognized as the criterion measure of youth aerobic fitness, but despite pediatric data being available for almost 80 years, its measurement and interpretation in relation to growth, maturation, and health remain controversial. The trainability of youth aerobic fitness continues to be hotly…
ERIC Educational Resources Information Center
Sam, Cemil Tugrulhan
2015-01-01
The purpose of the research was to evaluate the effect of 4-week vitamin C and E supplementation on the markers of oxidative stress after exercise session in students. 30 non-athlete persons (25.21 ± 1.5 years, 173.42 ± 5.62 cm, 75.6±5.75 kg, VO[subscript 2] max of 42.26 ± 1.11 ml/kg/min, and waist-hip ratio of 0.91 ±0.02 cm) volunteered for the…
Heart Rate and VO[subscript 2] Responses to Cycle Ergometry in White and African American Men
ERIC Educational Resources Information Center
Vehrs, Pat R.; Fellingham, Gilbert W.
2006-01-01
The validity of estimates of peak oxygen consumption (VO[subscript 2]peak) using submaximal exercise tests may be compromised when the participants being tested are not similar to the participants used to develop the test. This study compared ethnic differences in the heart rate (HR) and oxygen consumption (VO[subscript 2]) responses to submaximal…
ERIC Educational Resources Information Center
Nasuti, Gabriella; Stuart-Hill, Lynneth; Temple, Viviene A.
2013-01-01
Background: The Six-Minute Walk Test (6MWT) has been used with clinical and healthy populations to assess functional capacity and cardiovascular fitness. The aim of this study was to determine the test-retest reliability of a modified-6MWT as well as concurrent validity of walk distance with peak oxygen uptake (VO[subscript 2] peak). Method:…
VO[subscript 2] Prediction and Cardiorespiratory Responses during Underwater Treadmill Exercise
ERIC Educational Resources Information Center
Greene, Nicholas P.; Greene, Elizabeth S.; Carbuhn, Aaron F.; Green, John S.; Crouse, Stephen F.
2011-01-01
We compared cardiorespiratory responses to exercise on an underwater treadmill (UTM) and land treadmill (LTM) and derived an equation to estimate oxygen consumption (VO[subscript 2]) during UTM exercise. Fifty-five men and women completed one LTM and five UTM exercise sessions on separate days. The UTM sessions consisted of chest-deep immersion,…
Agreement between VO[subscript 2peak] Predicted from PACER and One-Mile Run Time-Equated Laps
ERIC Educational Resources Information Center
Saint-Maurice, Pedro F.; Anderson, Katelin; Bai, Yang; Welk, Gregory J.
2016-01-01
Purpose: This study examined the agreement between estimated peak oxygen consumption (VO[subscript 2peak]) obtained from the Progressive Aerobic Cardiovascular Endurance Run (PACER) fitness test and equated PACER laps derived from One-Mile Run time (MR). Methods: A sample of 680 participants (324 boys and 356 girls) in Grades 7 through 12…
ERIC Educational Resources Information Center
Cairney, John; Hay, John; Veldhuizen, Scott; Faught, Brent
2010-01-01
Oxygen consumption at peak physical exertion (VO[subscript 2] maximum) is the most widely used indicator of cardiorespiratory fitness. The purpose of this study was to compare two protocols for its estimation, cycle ergometer testing and the 20 m shuttle run, among children with and without probable developmental coordination disorder (pDCD). The…
ERIC Educational Resources Information Center
Bonafiglia, Jacob T.; Sawula, Laura J.; Gurd, Brendon J.
2018-01-01
The purpose of this study was to determine if the counting talk test can be used to discern whether an individual is exercising above or at/below maximal lactate steady state. Twenty-two participants completed VO[subscript 2]peak and counting talk test incremental step tests followed by an endurance test at 65% of work rate at VO[subscript 2]peak…
NASA Technical Reports Server (NTRS)
2008-01-01
Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions (VO2max) will document changes in maximum oxygen uptake for crewmembers onboard the International Space Station (ISS) on long-duration missions, greater than 90 days. This investigation will establish the characteristics of VO2max during flight and assess the validity of the current methods of tracking aerobic capacity change during and following the ISS missions.
Billat, V L; Hamard, L; Koralsztein, J P
2002-12-01
The purpose of this study was to examine the influence of time run at maximal oxygen uptake (VO2 max) on the off-transient pulmonary oxygen uptake phase after supra-lactate threshold runs. We hypothesised: 1) that among the velocities eliciting VO2 max there is a velocity threshold from which there is a slow component in the VO2-off transient, and 2) that at this velocity the longer the duration of this time at VO2 max (associated with an accumulated oxygen kinetics since VO2 can not overlap VO2 max), the longer is the off-transient phase of oxygen uptake kinetics. Nine long-distance runners performed five maximal tests on a synthetic track (400 m) while breathing through the COSMED K4b2 portable, telemetric metabolic analyser: i) an incremental test which determined VO2 max, the minimal velocity associated with VO2 max (vVO2 max) and the velocity at the lactate threshold (vLT), ii) and in a random order, four supra-lactate threshold runs performed until exhaustion at vLT + 25, 50, 75 and 100% of the difference between vLT and vVO2 max (vdelta25, vdelta50, vdelta75, vdelta100). At vdelta25, vdelta50 (= 91.0 +/- 0.9% vVO2 max) and vdelta75, an asymmetry was found between the VO2 on (double exponential) and off-transient (mono exponential) phases. Only at vdelta75 there was at positive relationship between the time run at VO2 max (%tlimtot) and the VO2 recovery time constant (Z = 1.8, P = 0.05). In conclusion, this study showed that among the velocities eliciting VO2 max, vdelta75 is the velocity at which the longer the duration of the time at VO2 max, the longer is the off-transient phase of oxygen uptake kinetics. It may be possible that at vdelta50 there is not an accumulated oxygen deficit during the plateau of VO2 at VO2 max and that the duration of the time at VO2 max during the exhaustive runs at vdelta100, could be too short to induce an accumulating oxygen deficit affecting the oxygen recovery.
Blood flow regulation and oxygen uptake during high-intensity forearm exercise.
Nyberg, S K; Berg, O K; Helgerud, J; Wang, E
2017-04-01
The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25 ± 2 yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound, and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO 2diff ) during 6-min bouts of 60, 80, and 100% of maximal work rate (WR max ), respectively. Blood flow and oxygen uptake increased ( P < 0.05) from 60%WR max [557 ± 177(SD) ml/min; 56.0 ± 21.6 ml/min] to 80%WR max (679 ± 190 ml/min; 70.6 ± 24.8 ml/min), but no change was seen from 80%WR max to 100%WR max Blood velocity (49.5 ± 11.5 to 58.1 ± 11.6 cm/s) and brachial diameter (0.49 ± 0.05 to 0.50 ± 0.06 cm) showed concomitant increases ( P < 0.05) with blood flow from 60% to 80%WR max, whereas no differences were observed in a-vO 2diff Shear rate also increased ( P < 0.05) from 60% (822 ± 196 s -1 ) to 80% (951 ± 234 s -1 ) of WR max The mean response time (MRT) was slower ( P < 0.05) for blood flow (60%WR max 50 ± 22 s; 80%WR max 51 ± 20 s; 100%WR max 51 ± 23 s) than a-vO 2diff (60%WR max 29 ± 9 s; 80%WR max 29 ± 5 s; 100%WR max 20 ± 5 s), but not different from oxygen uptake (60%WR max 44 ± 25 s; 80%WR max 43 ± 14 s; 100%WR max 41 ± 32 s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WR max and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations. NEW & NOTEWORTHY This study evaluated blood flow regulation and oxygen uptake during small muscle mass forearm exercise with high to maximal intensity. Despite utilizing only a fraction of cardiac output, blood flow reached a plateau at 80% of maximal work rate and regulated peak oxygen uptake. Furthermore, the results revealed that muscle contractions dictated bulk oxygen delivery and yielded three times higher peak blood flow in the relaxation phase compared with mean values. Copyright © 2017 the American Physiological Society.
ERIC Educational Resources Information Center
Weltman, Arthur; Katch, Victor
1976-01-01
No statistically meaningful differences in steady-state vo2 uptake for high and low max vo2 groups was indicated in this study, but a clear tendency was observed for the high max vo2 group to reach the steady-state at a faster rate. (MB)
Findings of 2-fluoro-2-deoxy-d-glucose positron emission tomography in hemorrhoids.
Tsai, Shih-Chuan; Jeng, Long-Bin; Yeh, Jun-Jun; Lin, Cheng-Chieh; Chen, Jin-Hua; Lin, Wan-Yu; Kao, Chia-Hung
2011-10-01
Hemorrhoids are very common in adults. The data regarding the incidence of high 2-fluoro-2-deoxy-D: -glucose (FDG) uptake in hemorrhoids is incomplete. In this study, we evaluated FDG uptake in hemorrhoids and calculated the rate of high FDG uptake in these lesions. One hundred and seventy six subjects who undertook whole body FDG-PET for health screening examination were investigated retrospectively. All patients had colonoscopy and 156 subjects were found to have hemorrhoids and 20 had no hemorrhoids. Quantitative analysis of FDG uptake in the anal region was performed by calculating the maximum standard uptake value (SUV(max)). The SUV(max) ranged from 1.8 to 4.1 (2.8 ± 0.6) for normal subjects and ranged from 1.4 to 8.3 (2.9 ± 0.8) for patients with hemorrhoids. No statistical difference was noted between these two groups using a Student's t-tests. If the highest SUV(max), which was 4.1 in normal subjects, was used as a cutoff, 5.1% (8/156) hemorrhoid patients had a SUV(max) greater than 4.1. Hemorrhoids can be one possible cause of focal high FDG uptake in the rectum.
Prediction of maximal oxygen uptake by bioelectrical impedance analysis in overweight adolescents.
Roberts, M D; Drinkard, B; Ranzenhofer, L M; Salaita, C G; Sebring, N G; Brady, S M; Pinchbeck, C; Hoehl, J; Yanoff, L B; Savastano, D M; Han, J C; Yanovski, J A
2009-09-01
Maximal oxygen uptake (VO(2max)), the gold standard for measurement of cardiorespiratory fitness, is frequently difficult to assess in overweight individuals due to physical limitations. Reactance and resistance measures obtained from bioelectrical impedance analysis (BIA) have been suggested as easily obtainable predictors of cardiorespiratory fitness, but the accuracy with which ht(2)/Z can predict VO(2max) has not previously been examined in overweight adolescents. The impedance index was used as a predictor of VO(2max) in 87 overweight girls and 47 overweight boys ages 12 to 17 with mean BMI of 38.6 + or - 7.3 and 42.5 + or - 8.2 in girls and boys respectively. The Bland Altman procedure assessed agreement between predicted and actual VO(2max). Predicted VO(2max) was significantly correlated with measured VO(2max) (r(2)=0.48, P<0.0001). Using the Bland Altman procedure, there was significant magnitude bias (r(2)=0.10; P<0.002). The limits of agreement for predicted relative to actual VO(2max) were -589 to 574 mL O(2)/min. The impedance index was highly correlated with VO(2max) in overweight adolescents. However, using BIA data to predict maximal oxygen uptake over-predicted VO(2max) at low levels of oxygen consumption and under-predicted VO(2max) at high levels of oxygen consumption. This magnitude bias, along with the large limits of agreement of BIA-derived predicted VO(2max), limit its usefulness in the clinical setting for overweight adolescents.
Changes in Cervical Cancer FDG Uptake During Chemoradiation and Association With Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidd, Elizabeth A., E-mail: ekidd@stanford.edu; Thomas, Maria; Siegel, Barry A.
2013-01-01
Purpose: Previous research showed that pretreatment uptake of F-18 fluorodeoxyglucose (FDG), as assessed by the maximal standardized uptake value (SUV{sub max}) and the variability of uptake (FDG{sub hetero}), predicted for posttreatment response in cervical cancer. In this pilot study, we evaluated the changes in SUV{sub max} and FDG{sub hetero} during concurrent chemoradiation for cervical cancer and their association with post-treatment response. Methods and Materials: Twenty-five patients with stage Ib1-IVa cervical cancer were enrolled. SUV{sub max}, FDG{sub hetero}, and metabolic tumor volume (MTV) were recorded from FDG-positron emission tomography (PET)/computed tomography (CT) scans performed pretreatment and during weeks 2 and 4more » of treatment and were evaluated for changes and association with response assessed on 3-month post-treatment FDG-PET/CT. Results: For all patients, the average pretreatment SUV{sub max} was 17.8, MTV was 55.4 cm{sup 3}, and FDG{sub hetero} was -1.33. A similar decline in SUV{sub max} was seen at week 2 compared with baseline and week 4 compared with week 2 (34%). The areas of highest FDG uptake in the tumor remained relatively consistent on serial scans. Mean FDG{sub hetero} decreased during treatment. For all patients, MTV decreased more from week 2 to week 4 than from pretreatment to week 2. By week 4, the average SUV{sub max} had decreased by 57% and the MTV had decreased by 30%. Five patients showed persistent or new disease on 3-month post-treatment PET. These poor responders showed a higher average SUV{sub max}, larger MTV, and greater heterogeneity at all 3 times. Week 4 SUV{sub max} (P=.037), week 4 FDG{sub hetero} (P=.005), pretreatment MTV (P=.008), and pretreatment FDG{sub hetero} (P=.008) were all significantly associated with post-treatment PET response. Conclusions: SUV{sub max} shows a consistent rate of decline during treatment and declines at a faster rate than MTV regresses. Based on this pilot study, pretreatment and week 4 of treatment represent the best time points for prediction of response.« less
Exercise modality effect on oxygen uptake off-transient kinetics at maximal oxygen uptake intensity.
Sousa, Ana; Rodríguez, Ferran A; Machado, Leandro; Vilas-Boas, J Paulo; Fernandes, Ricardo J
2015-06-01
What is the central question of this study? Do the mechanical differences between swimming, rowing, running and cycling have a potential effect on the oxygen uptake (V̇O2) off-kinetics after an exercise sustained until exhaustion at 100% of maximal oxygen uptake (V̇O2max) intensity? What is the main finding and its importance? The mechanical differences between exercise modes had a potential effect and contributed to distinct amplitude of the fast component (higher in running compared with cycling) and time constant (higher in swimming compared with rowing and cycling) in the V̇O2 off-kinetic patterns at 100% of V̇O2max intensity. This suggests that swimmers, unlike rowers and cyclists, would benefit more from a longer duration of training intervals after each set of exercise performed at V̇O2max intensity. The kinetics of oxygen uptake (V̇O2) during recovery (off-transient kinetics) for different exercise modes is largely unexplored, hampering the prescription of training and recovery to enhance performance. The purpose of this study was to compare the V̇O2 off-transient kinetics response between swimmers, rowers, runners and cyclists during their specific mode of exercise at 100% of maximal oxygen uptake (V̇O2max) intensity and to examine the on-off symmetry. Groups of swimmers, rowers, runners and cyclists (n = 8 per group) performed (i) an incremental exercise protocol to assess the velocity or power associated with V̇O2max (vV̇O2max or wV̇O2max, respectively) and (ii) a square-wave exercise transition from rest to vV̇O2max/vV̇O2maxwV̇O2maxwV̇O2max until volitional exhaustion. Pulmonary exchange parameters were measured using a telemetric portable gas analyser (K4b(2) ; Cosmed, Rome, Italy), and the on- and off-transient kinetics were analysed through a double-exponential approach. For all exercise modes, both transient periods were symmetrical in shape once they had both been adequately fitted by a double-exponential model. However, differences were found in the off-kinetic parameters between exercise modes; the amplitude of the fast component of the V̇O2 off-response was higher in running compared with cycling (48 ± 5 and 36 ± 7 ml kg(-1) min(-1) , respectively; P < 0.001), and the time constant of the same phase was higher in swimming compared with rowing and cycling (63 ± 5, 56 ± 5 and 55 ± 3 s, respectively; P < 0.001). Although both phases were well described by a double-exponential model, the differences between exercise modes had a potential effect and contributed to distinct V̇O2 off-transient kinetic patterns at 100% of V̇O2max intensity. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Effect of Toe Clips During Bicycle Ergometry on VO2 max.
ERIC Educational Resources Information Center
Moffat, Roger S.; Sparling, Phillip B.
1985-01-01
Eight men participated in three randomized maximal oxygen uptake tests to investigate the hypothesis that the use of toe clips on bicycle ergometers produced a higher VO2 max. No significant difference in mean VO2 max or performance time was observed. (Author/MT)
Determinants of maximal oxygen uptake (VO2 max) in fire fighter testing.
Vandersmissen, G J M; Verhoogen, R A J R; Van Cauwenbergh, A F M; Godderis, L
2014-07-01
The aim of this study was to evaluate current daily practice of aerobic capacity testing in Belgian fire fighters. The impact of personal and test-related parameters on the outcome has been evaluated. Maximal oxygen uptake (VO2 max) results of 605 male fire fighters gathered between 1999 and 2010 were analysed. The maximal cardio respiratory exercise tests were performed at 22 different centres using different types of tests (tread mill or bicycle), different exercise protocols and measuring equipment. Mean VO2 max was 43.3 (SD = 9.8) ml/kg.min. Besides waist circumference and age, the type of test, the degree of performance of the test and the test centre were statistically significant determinants of maximal oxygen uptake. Test-related parameters have to be taken into account when interpreting and comparing maximal oxygen uptake tests of fire fighters. It highlights the need for standardization of aerobic capacity testing in the medical evaluation of fire fighters. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Cardiovascular consequences of bed rest: effect on maximal oxygen uptake
NASA Technical Reports Server (NTRS)
Convertino, V. A.
1997-01-01
Maximal oxygen uptake (VO2max) is reduced in healthy individuals confined to bed rest, suggesting it is independent of any disease state. The magnitude of reduction in VO2max is dependent on duration of bed rest and the initial level of aerobic fitness (VO2max), but it appears to be independent of age or gender. Bed rest induces an elevated maximal heart rate which, in turn, is associated with decreased cardiac vagal tone, increased sympathetic catecholamine secretion, and greater cardiac beta-receptor sensitivity. Despite the elevation in heart rate, VO2max is reduced primarily from decreased maximal stroke volume and cardiac output. An elevated ejection fraction during exercise following bed rest suggests that the lower stroke volume is not caused by ventricular dysfunction but is primarily the result of decreased venous return associated with lower circulating blood volume, reduced central venous pressure, and higher venous compliance in the lower extremities. VO2max, stroke volume, and cardiac output are further compromised by exercise in the upright posture. The contribution of hypovolemia to reduced cardiac output during exercise following bed rest is supported by the close relationship between the relative magnitude (% delta) and time course of change in blood volume and VO2max during bed rest, and also by the fact that retention of plasma volume is associated with maintenance of VO2max after bed rest. Arteriovenous oxygen difference during maximal exercise is not altered by bed rest, suggesting that peripheral mechanisms may not contribute significantly to the decreased VO2max. However reduction in baseline and maximal muscle blood flow, red blood cell volume, and capillarization in working muscles represent peripheral mechanisms that may contribute to limited oxygen delivery and, subsequently, lowered VO2max. Thus, alterations in cardiac and vascular functions induced by prolonged confinement to bed rest contribute to diminution of maximal oxygen uptake and reserve capacity to perform physical work.
Pacing strategy and VO2 kinetics during a 1500-m race.
Hanon, C; Leveque, J-M; Thomas, C; Vivier, L
2008-03-01
We investigated the oxygen uptake response (V.O (2)) to a 1500-m test conducted using a competition race strategy. On an outdoor track, eleven middle-distance runners performed a test to determine V.O (2max), velocity associated with V.O (2max) (v-V.O (2max)) and a supramaximal 1500-m running test (each test at least two days apart). V.O (2max) response was measured with the use of a miniaturised telemetric gas exchange system (Cosmed, K4, Roma, Italy). The 1500-m running test was performed at a mean velocity of 107. 6 + 2 % v-V.O (2max). The maximal value of oxygen uptake recorded during the 1500-m test (V.O (2peak)) was reached by subjects at 75.9 + 7.5 s (mean + SD) (i.e., 459 +/- 59 m). The time to reach V.O (2max) (TV.O (2peak)) and the start velocity (200- to 400-m after the onset of the 1500 m) expressed in % v-V.O (2max) were negatively and significantly correlated (p < 0.05), but our results indicate that a fast start does not necessarily induce a good performance. These results suggest that V.O (2max) is reached by all the subjects at the onset of a simulated 1500-m running event and are therefore in contrast with previous results obtained during treadmill running.
Uprimny, Christian; Kroiss, Alexander Stephan; Decristoforo, Clemens; Fritz, Josef; von Guggenberg, Elisabeth; Kendler, Dorota; Scarpa, Lorenza; di Santo, Gianpaolo; Roig, Llanos Geraldo; Maffey-Steffan, Johanna; Horninger, Wolfgang; Virgolini, Irene Johanna
2017-06-01
Prostate cancer (PC) cells typically show increased expression of prostate-specific membrane antigen (PSMA), which can be visualized by 68 Ga-PSMA-11 PET/CT. The aim of this study was to assess the intensity of 68 Ga-PSMA-11 uptake in the primary tumour and metastases in patients with biopsy-proven PC prior to therapy, and to determine whether a correlation exists between the primary tumour-related 68 Ga-PSMA-11 accumulation and the Gleason score (GS) or prostate-specific antigen (PSA) level. Ninety patients with transrectal ultrasound biopsy-proven PC (GS 6-10; median PSA: 9.7 ng/ml) referred for 68 Ga-PSMA-11 PET/CT were retrospectively analysed. PET images were analysed visually and semiquantitatively by measuring the maximum standardized uptake value (SUV max ). The SUV max of the primary tumour and pathologic lesions suspicious for lymphatic or distant metastases were then compared to the physiologic background activity of normal prostate tissue and gluteal muscle. The SUV max of the primary tumour was assessed in relation to both PSA level and GS. Eighty-two patients (91.1%) demonstrated pathologic tracer accumulation in the primary tumour that exceeded physiologic tracer uptake in normal prostate tissue (median SUV max : 12.5 vs. 3.9). Tumours with GS of 6, 7a (3+4) and 7b (4+3) showed significantly lower 68 Ga-PSMA-11 uptake, with median SUV max of 5.9, 8.3 and 8.2, respectively, compared to patients with GS >7 (median SUV max : 21.2; p < 0.001). PC patients with PSA ≥10.0 ng/ml exhibited significantly higher uptake than those with PSA levels <10.0 ng/ml (median SUV max : 17.6 versus 7.7; p < 0.001). In 24 patients (26.7%), 82 lymph nodes with pathologic tracer accumulation consistent with metastases were detected (median SUV max : 10.6). Eleven patients (12.2%) revealed 55 pathologic osseous lesions suspicious for bone metastases (median SUV max : 11.6). The GS and PSA level correlated with the intensity of tracer accumulation in the primary tumours of PC patients on 68 Ga-PSMA-11 PET/CT. As PC tumours with GS 6+7 and patients with PSA values ≤10 ng/ml showed significantly lower 68 Ga-PSMA-11 uptake, 68 Ga-PSMA-11 PET/CT should be preferentially applied for primary staging of PC in patients with GS >7 or PSA levels ≥10 ng/ml.
Bandyopadhyay, Amit
2011-12-01
The present study was aimed to develop a simple method, i.e. the modified Fox test protocol (MFT) to predict VO2(max) in female sedentary university students of Kolkata, India. One hundred and eleven (111) healthy untrained female students of the University of Calcutta (mean age, body height and body mass of 22.76 ± 1.72 years, 163.52 ± 4.70 cm and 53.03 ± 3.78 kg, respectively) were randomly sampled for the study. They were further randomly divided into the study group (n = 60) and confirmatory group (n = 51). Direct estimation of the maximum oxygen uptake (VO2(max)) comprised an incremental bicycle exercise followed by expired gas analysis by the Scholander micro-gas analyzer. The submaximal heart rate (HR(sub)) was measured at the completion of five min of exercise at 110W workload. HR(sub) exhibited significant negative correlation (r = -0.87, P < 0.001) with VO2(max). Application of the computed norm in the confirmatory group depicted insignificant difference between VO2(max) and predicted VO2(max) or PVO2(max). Limits of agreement between PVO2(max) and VO2(max) were substantially small. The standard error of estimate of the norm was also substantially small. From the present study, MFT is recommended for application in the sedentary female university students for accurate and reliable assessment of cardiorespiratory fitness in terms of VO2(max).
Shaw, Andrew J; Ingham, Stephen A; Atkinson, Greg; Folland, Jonathan P
2015-01-01
A positive relationship between running economy and maximal oxygen uptake (V̇O2max) has been postulated in trained athletes, but previous evidence is equivocal and could have been confounded by statistical artefacts. Whether this relationship is preserved in response to running training (changes in running economy and V̇O2max) has yet to be explored. This study examined the relationships of (i) running economy and V̇O2max between runners, and (ii) the changes in running economy and V̇O2max that occur within runners in response to habitual training. 168 trained distance runners (males, n = 98, V̇O2max 73.0 ± 6.3 mL∙kg-1∙min-1; females, n = 70, V̇O2max 65.2 ± 5.9 mL kg-1∙min-1) performed a discontinuous submaximal running test to determine running economy (kcal∙km-1). A continuous incremental treadmill running test to volitional exhaustion was used to determine V̇O2max 54 participants (males, n = 27; females, n = 27) also completed at least one follow up assessment. Partial correlation analysis revealed small positive relationships between running economy and V̇O2max (males r = 0.26, females r = 0.25; P<0.006), in addition to moderate positive relationships between the changes in running economy and V̇O2max in response to habitual training (r = 0.35; P<0.001). In conclusion, the current investigation demonstrates that only a small to moderate relationship exists between running economy and V̇O2max in highly trained distance runners. With >85% of the variance in these parameters unexplained by this relationship, these findings reaffirm that running economy and V̇O2max are primarily determined independently.
Prognostic value of pre-treatment 18F-FDG PET uptake for nasopharyngeal carcinoma.
Aktan, Meryem; Kanyilmaz, Gul; Yavuz, Berrin Benli; Koc, Mehmet; Eryılmaz, Mehmet Akif; Adli, Mustafa
2017-11-25
To evaluate the prognostic value of maximal standardized uptake values (SUV max ) from serial fluor-18-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) in patients with nasopharyngeal carcinoma (NPC). Fifty-two patients with NPC who underwent 18 F-FDG PET/CT scan before radiotherapy with/without chemotherapy were reviewed retrospectively. Twenty-seven patients (52%) were applied 3-D conformal radiotherapy and 25 patients (48%) applied intensity-modulated radiotherapy (IMRT). Fourteen (27%) patients were given neoadjuvant chemotherapy and forty-four (84.6%) patients were given concomitant and adjuvant chemotherapy. Median follow-up time was 34 months (range 5.6-66.4 months). Forty-four (84.6%) patients were alive at last follow-up and eight (15.4%) had died. The best cut-off value of the SUV max for the primary tumor site (SUV max -PT) was 13 and 9 for the lymph nodes (SUV max -LN). Patients with SUV max -PT ≥ 13.0 and SUV max -LN ≥ 9 had a significantly higher risk for the development of the distant metastases (p = 0.044 and p = 0.038). DFS was affected in patients with SUV max -PT ≥ 13 (log rank χ 2 = 2.54, p = 0.017) and was significantly lower in patients with SUV max -LN ≥ 9 for the lymph nodes (log rank χ 2 = 5.81, p = 0.013). OS was not affected by SUV levels. A multivariate Cox proportional hazard model of DFS included age (≥ 40), SUV max -LN (< 9), T stage (T1-2) and neoadjuvant chemotherapy are significantly better prognosis for the DFS. 18 F-FDG PET/CT uptake before treatment, as determined by SUV max , may be a valuable tool to evaluate prognosis in NPC patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suranyi-Cadotte, B.E.; Quirion, R.; Nair, N.P.V.
1985-02-25
Uptake of serotonin and /sup 3/H-imipramine binding in platelets of depressed patients were investigated simultaneously with changes in clinical state. Both V/sub max/ for serotonin uptake and B/sub max/ for /sup 3/H-imipramine binding were significantly lower in unmedicated depressed patients with respect to normal subjects. Successful treatment with imipramine led to a significant increase in B/sub max/ for /sup 3/H-imipramine binding, without significant change in V/sub max/ for serotonin uptake. B/sub max/ values increased to the normal range following complete, rather than partial clinical improvement. These data indicate that successful antidepressant treatment may increase the density of /sup 3/H-imipramine bindingmore » sites on platelets by a process which is independent of the uptake of serotonin. 29 references, 1 table.« less
Oosting, Sjoukje F; Brouwers, Adrienne H; van Es, Suzanne C; Nagengast, Wouter B; Oude Munnink, Thijs H; Lub-de Hooge, Marjolijn N; Hollema, Harry; de Jong, Johan R; de Jong, Igle J; de Haas, Sanne; Scherer, Stefan J; Sluiter, Wim J; Dierckx, Rudi A; Bongaerts, Alfons H H; Gietema, Jourik A; de Vries, Elisabeth G E
2015-01-01
No validated predictive biomarkers for antiangiogenic treatment of metastatic renal cell carcinoma (mRCC) exist. Tumor vascular endothelial growth factor A (VEGF-A) level may be useful. We determined tumor uptake of (89)Zr-bevacizumab, a VEGF-A-binding PET tracer, in mRCC patients before and during antiangiogenic treatment in a pilot study. Patients underwent (89)Zr-bevacizumab PET scans at baseline and 2 and 6 wk after initiating either bevacizumab (10 mg/kg every 2 wk) with interferon-α (3-9 million IU 3 times/wk) (n = 11) or sunitinib (50 mg daily, 4 of every 6 wk) (n = 11). Standardized uptake values were compared with plasma VEGF-A and time to disease progression. (89)Zr-bevacizumab PET scans visualized 125 evaluable tumor lesions in 22 patients, with a median SUV(max) (maximum standardized uptake value) of 6.9 (range, 2.3-46.9). Bevacizumab/interferon-α induced a mean change in tumor SUV(max) of -47.0% (range, -84.7 to +20.0%; P < 0.0001) at 2 wk and an additional -9.7% (range, -44.8 to +38.9%; P = 0.015) at 6 wk. In the sunitinib group, the mean change in tumor SUV(max) was -14.3% at 2 wk (range, -80.4 to +269.9; P = 0.006), but at 6 wk the mean change in tumor SUV(max) was +72.6% (range, -46.4 to +236%; P < 0.0001) above baseline. SUV(max) was not related to plasma VEGF-A at all scan moments. A baseline mean tumor SUV(max) greater than 10.0 in the 3 most intense lesions corresponded with longer time to disease progression (89.7 vs. 23.0 wk; hazard ratio, 0.22; 95% confidence interval, 0.05-1.00). Tumor uptake of (89)Zr-bevacizumab is high in mRCC, with remarkable interpatient and intrapatient heterogeneity. Bevacizumab/interferon-α strongly decreases tumor uptake whereas sunitinib results in a modest reduction with an overshoot after 2 drug-free weeks. High baseline tumor SUV(max) was associated with longer time to progression. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Prediction of Maximal Oxygen Uptake by Six-Minute Walk Test and Body Mass Index in Healthy Boys.
Jalili, Majid; Nazem, Farzad; Sazvar, Akbar; Ranjbar, Kamal
2018-05-14
To develop an equation to predict maximal oxygen uptake (VO2max) based on the 6-minute walk test (6MWT) and body composition in healthy boys. Direct VO2max, 6-minute walk distance, and anthropometric characteristics were measured in 349 healthy boys (12.49 ± 2.72 years). Multiple regression analysis was used to generate VO2max prediction equations. Cross-validation of the VO2max prediction equations was assessed with predicted residual sum of squares statistics. Pearson correlation was used to assess the correlation between measured and predicted VO2max. Objectively measured VO2max had a significant correlation with demographic and 6MWT characteristics (R = 0.11-0.723, P < .01). Multiple regression analysis revealed the following VO2max prediction equation: VO2max (mL/kg/min) = 12.701 + (0.06 × 6-minute walk distance m ) - (0.732 × body mass index kg/m2 ) (R 2 = 0.79, standard error of the estimate [SEE] = 2.91 mL/kg/min, %SEE = 6.9%). There was strong correlation between measured and predicted VO2max (r = 0.875, P < .001). Cross-validation revealed minimal shrinkage (R 2 p = 0.78 and predicted residual sum of squares SEE = 2.99 mL/kg/min). This study provides a relatively accurate and convenient VO2max prediction equation based on the 6MWT and body mass index in healthy boys. This model can be used for evaluation of cardiorespiratory fitness of boys in different settings. Copyright © 2018 Elsevier Inc. All rights reserved.
Cross-Validation of the YMCA Submaximal Cycle Ergometer Test to Predict V[o.sub.2] Max
ERIC Educational Resources Information Center
Beekley, Matthew D.; Brechue, William F.; deHoyos, Diego V.; Garzarella, Linda; Werber-Zion, Galila; Pollock, Michael L.
2004-01-01
Maximal oxygen uptake (V[O.sub.2]max) is an important indicator of health-risk status, specifically for coronary heart disease (Blair et al., 1989). Direct measurement of V[O.sub.2]max is considered to be the most accurate means of determining cardiovascular fitness level. Typically, this measurement is taken using a progressive exercise test on a…
York, Larry M; Silberbush, Moshe; Lynch, Jonathan P
2016-06-01
Increasing maize nitrogen acquisition efficiency is a major goal for the 21st century. Nitrate uptake kinetics (NUK) are defined by I max and K m, which denote the maximum uptake rate and the affinity of transporters, respectively. Because NUK have been studied predominantly at the molecular and whole-root system levels, little is known about the functional importance of NUK variation within root systems. A novel method was created to measure NUK of root segments that demonstrated variation in NUK among root classes (seminal, lateral, crown, and brace). I max varied among root class, plant age, and nitrate deprivation combinations, but was most affected by plant age, which increased I max, and nitrate deprivation time, which decreased I max K m was greatest for crown roots. The functional-structural simulation SimRoot was used for sensitivity analysis of plant growth to root segment I max and K m, as well as to test interactions of I max with root system architectural phenes. Simulated plant growth was more sensitive to I max than K m, and reached an asymptote near the maximum I max observed in the empirical studies. Increasing the I max of lateral roots had the largest effect on shoot growth. Additive effects of I max and architectural phenes on nitrate uptake were observed. Empirically, only lateral root tips aged 20 d operated at the maximum I max, and simulations demonstrated that increasing all seminal and lateral classes to this maximum rate could increase plant growth by as much as 26%. Therefore, optimizing I max for all maize root classes merits attention as a promising breeding goal. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Elliott, Adrian D; Skowno, Justin; Prabhu, Mahesh; Noakes, Timothy David; Ansley, Les
2015-01-01
There remains considerable debate regarding the limiting factor(s) for maximal oxygen uptake (VO2max). Previous studies have shown that the central circulation may be the primary limiting factor for VO2max and that cardiac work increases beyond VO2max. We sought to evaluate whether the work of the heart limits VO2max during upright incremental cycle exercise to exhaustion. Eight trained men completed two incremental exercise trials, each terminating with exercise at two different rates of work eliciting VO2max (MAX and SUPRAMAX). During each exercise trial we continuously recorded cardiac output using pulse-contour analysis calibrated with a lithium dilution method. Intra-arterial pressure was recorded from the radial artery while pulmonary gas exchange was measured continuously for an assessment of oxygen uptake. The workload during SUPRAMAX (mean±SD: 346.5±43.2 W) was 10% greater than that achieved during MAX (315±39.3 W). There was no significant difference between MAX and SUPRAMAX for Q (28.7 vs 29.4 L/min) or VO2 (4.3 vs 4.3 L/min). Mean arterial pressure was significantly higher during SUPRAMAX, corresponding to a higher cardiac power output (8.1 vs 8.5 W; p<0.06). Despite similar VO2 and Q, the greater cardiac work during SUPRAMAX supports the view that the heart is working submaximally at exhaustion during an incremental exercise test (MAX). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Kokkinos, Peter; Kaminsky, Leonard A; Arena, Ross; Zhang, Jiajia; Myers, Jonathan
2017-08-15
Impaired cardiorespiratory fitness (CRF) is closely linked to chronic illness and associated with adverse events. The American College of Sports Medicine (ACSM) regression equations (ACSM equations) developed to estimate oxygen uptake have known limitations leading to well-documented overestimation of CRF, especially at higher work rates. Thus, there is a need to explore alternative equations to more accurately predict CRF. We assessed maximal oxygen uptake (VO 2 max) obtained directly by open-circuit spirometry in 7,983 apparently healthy subjects who participated in the Fitness Registry and the Importance of Exercise National Database (FRIEND). We randomly sampled 70% of the participants from each of the following age categories: <40, 40 to 50, 50 to 70, and ≥70 and used the remaining 30% for validation. Multivariable linear regression analysis was applied to identify the most relevant variables and construct the best prediction model for VO 2 max. Treadmill speed and treadmill speed × grade were considered in the final model as predictors of measured VO 2 max and the following equation was generated: VO 2 max in ml O 2 /kg/min = speed (m/min) × (0.17 + fractional grade × 0.79) + 3.5. The FRIEND equation predicted VO 2 max with an overall error >4 times lower than the error associated with the traditional ACSM equations (5.1 ± 18.3% vs 21.4 ± 24.9%, respectively). Overestimation associated with the ACSM equation was accentuated when different protocols were considered separately. In conclusion, The FRIEND equation predicts VO 2 max more precisely than the traditional ACSM equations with an overall error >4 times lower than that associated with the ACSM equations. Published by Elsevier Inc.
Aerobic Capacity in Children and Adolescents with Cerebral Palsy
ERIC Educational Resources Information Center
Verschuren, Olaf; Takken, Tim
2010-01-01
This study described the aerobic capacity [VO[subscript 2peak] (ml/kg/min)] in contemporary children and adolescents with cerebral palsy (CP) using a maximal exercise test protocol. Twenty-four children and adolescents with CP classified at Gross Motor Functional Classification Scale (GMFCS) level I or level II and 336 typically developing…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bollineni, Vikram Rao, E-mail: v.r.bollineni@umcg.nl; Widder, Joachim; Pruim, Jan
2012-07-15
Purpose: To investigate the prognostic value of [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) uptake at 12 weeks after stereotactic ablative radiotherapy (SABR) for stage I non-small-cell lung cancer (NSCLC). Methods and Materials: From November 2006 to February 2010, 132 medically inoperable patients with proven Stage I NSCLC or FDG-PET-positive primary lung tumors were analyzed retrospectively. SABR consisted of 60 Gy delivered in 3 to 8 fractions. Maximum standardized uptake value (SUV{sub max}) of the treated lesion was assessed 12 weeks after SABR, using FDG-PET. Patients were subsequently followed at regular intervals using computed tomography (CT) scans. Association between post-SABR SUV{submore » max} and local control (LC), mediastinal failure, distant failure, overall survival (OS), and disease-specific survival (DSS) was examined. Results: Median follow-up time was 17 months (range, 3-40 months). Median lesion size was 25 mm (range, 9-70 mm). There were 6 local failures: 15 mediastinal failures, 15 distant failures, 13 disease-related deaths, and 16 deaths from intercurrent diseases. Glucose corrected post-SABR median SUV{sub max} was 3.0 (range, 0.55-14.50). Using SUV{sub max} 5.0 as a cutoff, the 2-year LC was 80% versus 97.7% for high versus low SUV{sub max}, yielding an adjusted subhazard ratio (SHR) for high post-SABR SUV{sub max} of 7.3 (95% confidence interval [CI], 1.4-38.5; p = 0.019). Two-year DSS rates were 74% versus 91%, respectively, for high and low SUV{sub max} values (SHR, 2.2; 95% CI, 0.8-6.3; p = 0.113). Two-year OS was 62% versus 81% (hazard ratio [HR], 1.6; 95% CI, 0.7-3.7; p = 0.268). Conclusions: Residual FDG uptake (SUV{sub max} {>=}5.0) 12 weeks after SABR signifies increased risk of local failure. A single FDG-PET scan at 12 weeks could be used to tailor further follow-up according to the risk of failure, especially in patients potentially eligible for salvage surgery.« less
2012-08-08
ISS032-E-016876 (8 Aug. 2012) --- NASA astronaut Sunita Williams, Expedition 32 flight engineer, performs a VO2max experiment while using the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station. VO2max uses the Portable Pulmonary Function System (PPFS), CEVIS, Pulmonary Function System (PFS) gas cylinders and mixing bag system, plus multiple other pieces of hardware to measure oxygen uptake and cardiac output.
Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka
2013-01-01
This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO(2max)) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO(2max) between Bruce Light, PIP Light, and PSP Light. However, VO(2max) was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO(2) in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO(2) but not VO(2max). These results suggest that firefighters' maximal performance determined from a typical VO(2max) test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE.
Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka
2015-01-01
This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO2max) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO2max between Bruce Light, PIP Light, and PSP Light. However, VO2max was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO2 in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO2 but not VO2max. These results suggest that firefighters’ maximal performance determined from a typical VO2max test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE. PMID:23668854
Allisse, Maxime; Bui, Hung Tien; Léger, Luc; Comtois, Alain-Steve; Leone, Mario
2018-05-07
Allisse, M, Bui, HT, Léger, L, Comtois, A-S, and Leone, M. Updating the skating multistage aerobic test and correction for V[Combining Dot Above]O2max prediction using a new skating economy index in elite youth ice hockey players. J Strength Cond Res XX(X): 000-000, 2018-A number of field tests, including the skating multistage aerobic test (SMAT), have been developed to predict V[Combining Dot Above]O2max in ice hockey players. The SMAT, like most field tests, assumes that participants who reach a given stage have the same oxygen uptake, which is not usually true. Thus, the objectives of this research are to update the V[Combining Dot Above]O2 values during the SMAT using a portable breath-by-breath metabolic analyzer and to propose a simple index of skating economy to improve the prediction of oxygen uptake. Twenty-six elite hockey players (age 15.8 ± 1.3 years) participated in this study. The oxygen uptake was assessed using a portable metabolic analyzer (K4b) during an on-ice maximal shuttle skate test. To develop an index of skating economy called the skating stride index (SSI), the number of skating strides was compiled for each stage of the test. The SMAT enabled the prediction of the V[Combining Dot Above]O2max (ml·kg·min) from the maximal velocity (m·s) and the SSI (skating strides·kg) using the following regression equation: V[Combining Dot Above]O2max = (14.94 × maximal velocity) + (3.68 × SSI) - 24.98 (r = 0.95, SEE = 1.92). This research allowed for the update of the oxygen uptake values of the SMAT and proposed a simple measure of skating efficiency for a more accurate evaluation of V[Combining Dot Above]O2max in elite youth hockey players. By comparing the highest and lowest observed SSI scores in our sample, it was noted that the V[Combining Dot Above]O2 values can vary by up to 5 ml·kg·min. Our results suggest that skating economy should be included in the prediction of V[Combining Dot Above]O2max to improve prediction accuracy.
Scaling maximal oxygen uptake to predict performance in elite-standard men cross-country skiers.
Carlsson, Tomas; Carlsson, Magnus; Felleki, Majbritt; Hammarström, Daniel; Heil, Daniel; Malm, Christer; Tonkonogi, Michail
2013-01-01
The purpose of this study was to: 1) establish the optimal body-mass exponent for maximal oxygen uptake (VO(2)max) to indicate performance in elite-standard men cross-country skiers; and 2) evaluate the influence of course inclination on the body-mass exponent. Twelve elite-standard men skiers completed an incremental treadmill roller-skiing test to determine VO(2)max and performance data came from the 2008 Swedish National Championship 15-km classic-technique race. Log-transformation of power-function models was used to predict skiing speeds. The optimal models were found to be: Race speed = 7.86 · VO(2)max · m(-0.48) and Section speed = 5.96 · [VO(2)max · m(-(0.38 + 0.03 · α)) · e(-0.003 · Δ) (where m is body mass, α is the section's inclination and Δ is the altitude difference of the previous section), that explained 68% and 84% of the variance in skiing speed, respectively. A body-mass exponent of 0.48 (95% confidence interval: 0.19 to 0.77) best described VO(2)max as an indicator of performance in elite-standard men skiers. The confidence interval did not support the use of either "1" (simple ratio-standard scaled) or "0" (absolute expression) as body-mass exponents for expressing VO(2)max as an indicator of performance. Moreover, results suggest that course inclination increases the body-mass exponent for VO(2)max.
Sex differences in performance-matched marathon runners.
Helgerud, J; Ingjer, F; Strømme, S B
1990-01-01
Six male and six female runners were chosen on the basis of age (20-30 years) and their performance over the marathon distance (mean time = 199.4, SEM 2.3 min for men and 201.8, SEM 1.8 min for women). The purpose was to find possible sex differences in maximal aerobic power (VO2max), anaerobic threshold, running economy, degree and utilization of VO2max (when running a marathon) and amount of training. The results showed that performance-matched male and female marathon runners had approximately the same VO2max (about 60 ml.kg-1.min-1). For both sexes the anaerobic threshold was reached at an exercise intensity of about 83% of VO2max, or 88%-90% of maximal heart rate. The females' running economy was poorer, i.e. their oxygen uptake during running at a standard submaximal speed was higher (P less than 0.05). The heart rate, respiratory exchange ratio and blood lactate concentration also confirmed that a given running speed resulted in higher physiological strain for the females. The percentage utilization of VO2max at the average marathon running speed was somewhat higher for the females, but the difference was not significant. For both sexes the oxygen uptake at average speed was 93%-94% of the oxygen uptake corresponding to the anaerobic threshold. Answers to a questionnaire showed that the females' training programme over the last 2 months prior to running the actual marathon comprised almost twice as many kilometers of running per week compared to the males (60 and 33 km, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)
Crisafulli, Antonio; Tangianu, Flavio; Tocco, Filippo; Concu, Alberto; Mameli, Ombretta; Mulliri, Gabriele; Caria, Marcello A
2011-08-01
Brief episodes of nonlethal ischemia, commonly known as "ischemic preconditioning" (IP), are protective against cell injury induced by infarction. Moreover, muscle IP has been found capable of improving exercise performance. The aim of the study was the comparison of standard exercise performances carried out in normal conditions with those carried out following IP, achieved by brief muscle ischemia at rest (RIP) and after exercise (EIP). Seventeen physically active, healthy male subjects performed three incremental, randomly assigned maximal exercise tests on a cycle ergometer up to exhaustion. One was the reference (REF) test, whereas the others were performed after the RIP and EIP sessions. Total exercise time (TET), total work (TW), and maximal power output (W(max)), oxygen uptake (VO(2max)), and pulmonary ventilation (VE(max)) were assessed. Furthermore, impedance cardiography was used to measure maximal heart rate (HR(max)), stroke volume (SV(max)), and cardiac output (CO(max)). A subgroup of volunteers (n = 10) performed all-out tests to assess their anaerobic capacity. We found that both RIP and EIP protocols increased in a similar fashion TET, TW, W(max), VE(max), and HR(max) with respect to the REF test. In particular, W(max) increased by ∼ 4% in both preconditioning procedures. However, preconditioning sessions failed to increase traditionally measured variables such as VO(2max), SV(max,) CO(max), and anaerobic capacity(.) It was concluded that muscle IP improves performance without any difference between RIP and EIP procedures. The mechanism of this effect could be related to changes in fatigue perception.
Oxygen uptake and blood metabolic responses to a 400-m run.
Hanon, Christine; Lepretre, Pierre-Marie; Bishop, David; Thomas, Claire
2010-05-01
This study aimed to investigate the oxygen uptake and metabolic responses during a 400-m run reproducing the pacing strategy used in competition. A portable gas analyser was used to measure the oxygen uptake (VO2) of ten specifically trained runners racing on an outdoor track. The tests included (1) an incremental test to determine maximal VO2 (VO2max) and the velocity associated with VO2(max) (v - VO2max), (2) a maximal 400-m (400T) and 3) a 300-m running test (300T) reproducing the exact pacing pattern of the 400T. Blood lactate, bicarbonate concentrations [HCO3(-)], pH and arterial oxygen saturation were analysed at rest and 1, 4, 7, 10 min after the end of the 400 and 300T. The peak VO2 recorded during the 400T corresponded to 93.9 +/- 3.9% of VO2max and was reached at 24.4 +/- 3.2 s (192 +/- 22 m). A significant decrease in VO2 (P < 0.05) was observed in all subjects during the last 100 m, although the velocity did not decrease below v - VO2max. The VO2 in the last 5 s was correlated with the pH (r = 0.86, P < 0.0005) and [HCO3(-)] (r = 0.70, P < 0.05) measured at the end of 300T. Additionally, the velocity decrease observed in the last 100 m was inversely correlated with [HCO3(-)] and pH at 300T (r = -0.83, P < 0.001, r = -0.69, P < 0.05, respectively). These track running data demonstrate that acidosis at 300 m was related to both the VO2 response and the velocity decrease during the final 100 m of a 400-m run.
[Is physical activity an elixir?].
Lacza, Gyöngyvér; Radák, Zsolt
2013-05-19
Physical exercise has systemic effects, and it can regulate all the organs. The relative maximal aerobic oxygen uptake (VO2max) could have been important in the evolution of humans, since higher VO2max meant better hunting abilities for the Stone Age man. However, it appears that high level of VO2max is also important today, in the 21st century to prevent cardiovascular diseases, cancer and neurodegenerative diseases. High level of VO2max is not just preventive against a wide spectrum of diseases, but it associated with better function of many organs. Relevant data suggest that high level of VO2max is a key factor in prevention of diseases and survival even at the modern civilized world.
The Maximal Oxygen Uptake Verification Phase: a Light at the End of the Tunnel?
Schaun, Gustavo Z
2017-12-08
Commonly performed during an incremental test to exhaustion, maximal oxygen uptake (V̇O 2max ) assessment has become a recurring practice in clinical and experimental settings. To validate the test, several criteria were proposed. In this context, the plateau in oxygen uptake (V̇O 2 ) is inconsistent in its frequency, reducing its usefulness as a robust method to determine "true" V̇O 2max . Moreover, secondary criteria previously suggested, such as expiratory exchange ratios or percentages of maximal heart rate, are highly dependent on protocol design and often are achieved at V̇O 2 percentages well below V̇O 2max . Thus, an alternative method termed verification phase was proposed. Currently, it is clear that the verification phase can be a practical and sensitive method to confirm V̇O 2max ; however, procedures to conduct it are not standardized across the literature and no previous research tried to summarize how it has been employed. Therefore, in this review the knowledge on the verification phase was updated, while suggestions on how it can be performed (e.g. intensity, duration, recovery) were provided according to population and protocol design. Future studies should focus to identify a verification protocol feasible for different populations and to compare square-wave and multistage verification phases. Additionally, studies assessing verification phases in different patient populations are still warranted.
Tumor Uptake of 64Cu-DOTA-Trastuzumab in Patients with Metastatic Breast Cancer.
Mortimer, Joanne E; Bading, James R; Park, Jinha M; Frankel, Paul H; Carroll, Mary I; Tran, Tri T; Poku, Erasmus K; Rockne, Russell C; Raubitschek, Andrew A; Shively, John E; Colcher, David M
2018-01-01
The goal of this study was to characterize the relationship between tumor uptake of 64 Cu-DOTA-trastuzumab as measured by PET/CT and standard, immunohistochemistry (IHC)-based, histopathologic classification of human epidermal growth factor receptor 2 (HER2) status in women with metastatic breast cancer (MBC). Methods: Women with biopsy-confirmed MBC and not given trastuzumab for 2 mo or more underwent complete staging, including 18 F-FDG PET/CT. Patients were classified as HER2-positive (HER2+) or -negative (HER2-) based on fluorescence in situ hybridization (FISH)-supplemented immunohistochemistry of biopsied tumor tissue. Eighteen patients underwent 64 Cu-DOTA-trastuzumab injection, preceded in 16 cases by trastuzumab infusion (45 mg). PET/CT was performed 21-25 (day 1) and 47-49 (day 2) h after 64 Cu-DOTA-trastuzumab injection. Radiolabel uptake in prominent lesions was measured as SUV max Average intrapatient SUV max (
[Dynamics of oxygen uptake during a 100 m front crawl event, performed during competition ].
Jalab, Chadi; Enea, Carina; Delpech, Nathalie; Bernard, Olivier
2011-04-01
The main purpose of this study is to estimate the dynamics of oxygen uptake (VO2) during a 100 m front crawl event, performed in competition conditions. Eleven trained swimmers participated in 2 separate sessions, in a 25 m swimming pool. Maximal oxygen uptake (VO2max) was determined during a 400 m maximal event. Swimmers also performed a 100 m front crawl in competition conditions, and then, 3 tests (25, 50, and 75 m) following the pacing strategy of the 100 m event. To be free of technical constraints, VO2 was not measured during the tests, but before and just at the end of each test with a 1 min breath-by-breath method. Each post-test VO2 measurement (after 25, 50, 75, and 100 m) allows us to reconstruct the VO2 kinetics of the 100 m performance. Our results differ from previous studies in that VO2 increases faster in the first half of the race (at 50 m, VO2 ≈ 94% VO2max), reaches VO2max at the 75 m mark; then a decrease in VO2 corresponding to 7% of VO2max appears during the last 25 m. These differences are supposed to be mainly the consequences of the adoption of technical elements and a pacing strategy similar to competition conditions. In the future, these observations may lead to different considerations of the bioenergetic contributions.
Estimation of maximal oxygen uptake by bioelectrical impedance analysis.
Stahn, Alexander; Terblanche, Elmarie; Grunert, Sven; Strobel, Günther
2006-02-01
Previous non-exercise models for the prediction of maximal oxygen uptake VO(2max) have failed to accurately discriminate cardiorespiratory fitness within large cohorts. The aim of the present study was to evaluate the feasibility of a completely indirect method for predicting VO(2max) that was based on bioelectrical impedance analysis (BIA) in 66 young, healthy fit men and women. Multiple, stepwise regression analysis was used to determine the usefulness of BIA and additional covariates to estimate VO(2max) (ml min(-1)). BIA was highly correlated to VO(2max) (r = 0.914; P < 0.001) and entered the regression equation first. The inclusion of gender and a physical activity rating further improved the model which accounted for 88% of the variance in VO(2max) and resulted in a relative standard error of the estimate (SEE) of 7.2%. Substantial agreement between the methods was confirmed by the fact that nearly all the differences were within +/-2 SD. Furthermore, in contrast to previously published non-exercise models, no trend of a reduction in prediction accuracy with increasing VO(2max) values was apparent. It was concluded that a non-exercise model based on BIA might be a rapid and useful technique to estimate VO(2max), when a direct test does not seem feasible. However, though the present results are useful to determine the viability of the method, further refinement of the BIA approach and its validation in a large, diverse population is needed before it can be applied to the clinical and epidemiological settings.
Cycling Power Outputs Predict Functional Threshold Power And Maximum Oxygen Uptake.
Denham, Joshua; Scott-Hamilton, John; Hagstrom, Amanda D; Gray, Adrian J
2017-09-11
Functional threshold power (FTP) has emerged as a correlate of lactate threshold and is commonly assessed by recreational and professional cyclists for tailored exercise programing. To identify whether results from traditional aerobic and anaerobic cycling tests could predict FTP and V˙ O2max, we analysed the association between estimated FTP, maximum oxygen uptake (V˙ O2max [mlkgmin]) and power outputs obtained from a maximal cycle ergometry cardiopulmonary exercise test (CPET) and a 30-s Wingate test in a heterogeneous cohort of cycle-trained and untrained individuals (N=40, mean±SD; age: 32.6±10.6 y; relative V˙ O2max: 46.8±9.1 mlkgmin). The accuracy and sensitivity of the prediction equations was also assessed in young men (N=11) before and after a 6-wk sprint interval training intervention.Moderate to strong positive correlations were observed between FTP, relative V˙ O2max and power outputs achieved during incremental and 30-s Wingate cycling tests (r=.39-.965, all P<.05). While maximum power achieved during incremental cycle testing (Pmax) and relative V˙ O2max were predictors of FTP (r =.93), age and FTP (Wkg) estimated relative V˙ O2max (r=.80). Our findings confirm that FTP predominantly relies on aerobic metabolism and indicate both prediction models are sensitive enough to detect meaningful exercise-induced changes in FTP and V˙ O2max. Thus, coaches should consider limiting the time and load demands placed on athletes by conducting a maximal cycle ergometry CPET to estimate FTP. Additionally, a 20-min FTP test is a convenient method to assess V˙ O2max and is particularly relevant for exercise professionals without access to expensive CPET equipment.
von Heimburg, Erna D; Rasmussen, Anna Kari R; Medbø, Jon Ingulf
2006-02-10
There is incomplete information about how physically demanding rescue work may be. The aim therefore of this paper was to examine the physiological responses of firefighters during a simulated rescue of hospital patients and to relate the firefighters' performance to their endurance, strength and working technique. Fourteen part-time male firefighters with a maximal oxygen uptake (VO(2max)) of 4.4 +/- 0.3 l/min (mean +/- SD) served as subjects in this study. First, each firefighter ascended six floors (a 20.5 m vertical ascent) carrying tools, wearing protective clothing and a breathing apparatus, an extra mass of 37 kg. He thereafter 'rescued' six persons by dragging each person on a fire-sheet on a flat floor. The technique used was recorded and the O(2) uptake and the heart rate were measured continuously during the whole operation. The blood lactate concentration and the subjective rating of perceived exertion were measured during and just after the rescue. The VO(2max) and the muscle strength were measured in the laboratory. The whole operation was carried out in the course of 5-9 min. The operation was a virtual all-out effort and the peak blood lactate concentration was 13 +/- 3 mmol/l. The peak oxygen uptake was 3.7 +/- 0.5 l/min (84% of the VO(2max)) during the operation. Large and heavy firefighters carried out the task faster than smaller ones. The VO(2max) in absolute terms and the dragging technique used were both related to the rescue performance. Rescuing patients at a hospital was physically very demanding and the time needed to complete the task depended on the VO(2max) in absolute values and the working technique used. A minimum VO(2max) of 4 l/min for firefighters was recommended.
Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running.
ERIC Educational Resources Information Center
Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.
2002-01-01
Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…
Running-specific prostheses permit energy cost similar to nonamputees.
Brown, Mary Beth; Millard-Stafford, Mindy L; Allison, Andrew R
2009-05-01
Improvements in prosthesis design have facilitated participation in competitive running for persons with lower limb loss (AMP). The purpose of this study was to examine the physiological responses of AMP using a run-specific prosthesis (RP) versus a traditional prosthesis (P) and cross-referenced with nonamputee controls (C) matched by training status, age, gender, and body composition during level treadmill running (TM). Twelve trained runners completed a multistage submaximal TM exercise during which HR and oxygen uptake (VO(2)) were obtained. Steady state measures at 134 m x min(-1) were compared between RP and P in AMP. AMP using RP (AMP-RP) and C also performed a continuous speed-incremented maximal TM test until volitional fatigue. RP elicited lower HR and VO(2) compared with P in AMP. Using RP, AMP achieved similar VO(2max) and peak TM speed compared with C but with higher HR(max). Relative HR (%HR(max)) and oxygen uptake (%VO(2max)), the regression intercept, slope, SEE, and Pearson's r correlation were not different between AMP-RP and C. %HR(max) calculated with the published equation, %HR(max) = 0.73(%VO(2max)) + 30, was not significantly different from actual %HR(max) for AMP-RP or C in any stage. RP permits AMP to attain peak TM speed and aerobic capacity similar to trained nonamputees and significantly attenuates HR and energy cost of submaximal running compared with a P. Use of RP confers no physiological advantage compared with nonamputee runners because energy cost at the set speed was not significantly different for AMP-RP. Current equations on the basis of the relative HR-VO(2) relationship seem appropriate to prescribe exercise intensity for persons with transtibial amputations using RP.
van der Zwaard, Stephan; de Ruiter, C Jo; Noordhof, Dionne A; Sterrenburg, Renske; Bloemers, Frank W; de Koning, Jos J; Jaspers, Richard T; van der Laarse, Willem J
2016-09-01
V̇o2 max during whole body exercise is presumably constrained by oxygen delivery to mitochondria rather than by mitochondria's ability to consume oxygen. Humans and animals have been reported to exploit only 60-80% of their mitochondrial oxidative capacity at maximal oxygen uptake (V̇o2 max). However, ex vivo quantification of mitochondrial overcapacity is complicated by isolation or permeabilization procedures. An alternative method for estimating mitochondrial oxidative capacity is via enzyme histochemical quantification of succinate dehydrogenase (SDH) activity. We determined to what extent V̇o2 max attained during cycling exercise differs from mitochondrial oxidative capacity predicted from SDH activity of vastus lateralis muscle in chronic heart failure patients, healthy controls, and cyclists. V̇o2 max was assessed in 20 healthy subjects and 28 cyclists, and SDH activity was determined from biopsy cryosections of vastus lateralis using quantitative histochemistry. Similar data from our laboratory of 14 chronic heart failure patients and 6 controls were included. Mitochondrial oxidative capacity was predicted from SDH activity using estimated skeletal muscle mass and the relationship between ex vivo fiber V̇o2 max and SDH activity of isolated single muscle fibers and myocardial trabecula under hyperoxic conditions. Mitochondrial oxidative capacity predicted from SDH activity was related (r(2) = 0.89, P < 0.001) to V̇o2 max measured during cycling in subjects with V̇o2 max ranging from 9.8 to 79.0 ml·kg(-1)·min(-1) V̇o2 max measured during cycling was on average 90 ± 14% of mitochondrial oxidative capacity. We conclude that human V̇o2 max is related to mitochondrial oxidative capacity predicted from skeletal muscle SDH activity. Mitochondrial oxidative capacity is likely marginally limited by oxygen supply to mitochondria. Copyright © 2016 the American Physiological Society.
Photosynthesis, Earth System Models and the Arctic
NASA Astrophysics Data System (ADS)
Rogers, A.; Sloan, V. L.; Xu, C.; Wullschleger, S. D.
2013-12-01
The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the huge carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is the largest of these fluxes, and is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. Most ESMs use a derivation of the FvCB model to calculate gross primary productivity (GPP). One of the key parameters required by the FvCB model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT). Although Arctic GPP a small flux relative to global GPP, uncertainty is large. Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max for the Arctic PFT in these models relies on small data sets and unjustified assumptions. As part of a multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we examined the derivation of Vc,max in current Arctic PFTs and estimated Vc,max for 12 species representing both dominant vegetation and key PFTs growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max currently used to represent Arctic PFTs in ESMs are 70% lower than the values we measured in these species. Separate measurements of CO2 assimilation (A) made at ambient conditions were compared with A modeled using the Vc,max values we measured in Barrow and those used by the ESMs. The A modeled with the Vc,max values used by the ESMs was 80% lower than the observed A. When our measured Vc,max values were used, modeled A was within 5% of observed A. Examination of the derivation of Vc,max in ESMs identified that the cause of the relatively low Vc,max value was the result of underestimating both the leaf N content and the investment of that N in Rubisco. Here we have identified possible improvements to the derivation of Vc,max in ESMs and provided new physiological characterization of Arctic species that is mechanistically consistent with observed leaf level CO2 uptake. These data suggest that the Arctic tundra has a much greater capacity for CO2 uptake than is currently represented in ESMs. Our parameterization can be used in future model projections to improve representation of the Arctic landscape in ESMs.
Astorino, Todd A; Edmunds, Ross M; Clark, Amy; King, Leesa; Gallant, Rachael M; Namm, Samantha; Fischer, Anthony; Wood, Kimi A
2018-01-01
Increases in maximal oxygen uptake (VO2max) are widely reported in response to completion of high intensity interval training (HIIT), yet the mechanism explaining this result is poorly understood. This study examined changes in VO2max and cardiac output (CO) in response to 10 sessions of low-volume HIIT. Participants included 30 active men and women (mean age and VO2max=22.9±5.4 years and 39.6±5.6 mL/kg/min) who performed HIIT and 30 men and women (age and VO2max=25.7±4.5 years and 40.7±5.2 mL/kg/min) who served as non-exercising controls (CON). High intensity interval training consisted of 6-10 s bouts of cycling per session at 90-110 percent peak power output (PPO) interspersed with 75 s recovery. Before and after training, progressive cycling to exhaustion was completed during which CO, stroke volume (SV), and heart rate (HR) were estimated using thoracic impedance. To confirm VO2max attainment, a verification test was completed after progressive cycling at a work rate equal to 110%PPO. Data demonstrated significant improvements in VO2max (2.71±0.63 L/min to 2.86±0.63 L/min, P<0.001) and COmax (20.0±3.1 L/min to 21.7±3.2 L/min, P=0.04) via HIIT that were not exhibited in CON. Maximal SV was increased in HIIT (P=0.04) although there was no change in maximal HR (P=0.57). The increase in VO2max seen in response to ten sessions of HIIT is due to improvements in oxygen delivery.
Ried-Larsen, Mathias; Aarts, Hugo M; Joyner, Michael J
2017-10-01
The aim of this systematic review and meta-analysis [International Prospective Register of Systematic Reviews (PROSPERO) CRD42017055619] was to assess the effects of strict prolonged bed rest (without countermeasures) on maximal oxygen uptake (V̇o 2max ) and to explore sources of variation therein. Since 1949, 80 studies with a total of 949 participants (>90% men) have been published with data on strict bed rest and V̇o 2max The studies were conducted mainly in young participants [median age (interquartile range) 24.5 (22.4-34.0) yr]. The duration of bed rest ranged from 1 to 90 days. V̇o 2max declined linearly across bed rest duration. No statistical difference in the decline among studies reporting V̇o 2max as l/min (-0.3% per day) compared with studies reporting V̇o 2max normalized to body weight (ml·kg -1 ·min -1 ; -0.43% per day) was observed. Although both total body weight and lean body mass declined in response to bed rest, we did not see any associations with the decline in V̇o 2max However, 15-26% of the variation in the decline in V̇o 2max was explained by the pre-bed-rest V̇o 2max levels, independent of the duration of bed rest (i.e., higher pre-bed-rest V̇o 2max levels were associated with larger declines in V̇o 2max ). Furthermore, the systematic review revealed a gap in the knowledge about the cardiovascular response to extreme physical inactivity, particularly in older subjects and women of any age group. In addition to its relevance to spaceflight, this lack of data has significant translational implications because younger women sometimes undergo prolonged periods of bed rest associated with the complications of pregnancy and the incidence of hospitalization including prolonged periods of bed rest increases with age. NEW & NOTEWORTHY Large interindividual responses of maximal oxygen uptake (V̇o 2max ) to aerobic exercise training exist. However, less is known about the variability in the response of V̇o 2max to prolonged bed rest. This systematic review and meta-analysis showed that pre-bed-rest V̇o 2max values were inversely associated with the change in V̇o 2max independent of the duration of bed rest. Moreover, we identified a large knowledge gap about the causes of decline in V̇o 2max , particularly in postmenopausal women, which may have clinical implications. Copyright © 2017 the American Physiological Society.
Nygård, Lotte; Aznar, Marianne C; Fischer, Barbara M; Persson, Gitte F; Christensen, Charlotte B; Andersen, Flemming L; Josipovic, Mirjana; Langer, Seppo W; Kjær, Andreas; Vogelius, Ivan R; Bentzen, Søren M
2018-01-01
We measured the repeatability of FDG PET/CT uptake metrics when acquiring scans in free breathing (FB) conditions compared with deep inspiration breath hold (DIBH) for locally advanced lung cancer. Twenty patients were enrolled in this prospective study. Two FDG PET/CT scans per patient were conducted few days apart and in two breathing conditions (FB and DIBH). This resulted in four scans per patient. Up to four FDG PET avid lesions per patient were contoured. The following FDG metrics were measured in all lesions and in all four scans: Standardized uptake value (SUV) peak , SUV max , SUV mean , metabolic tumor volume (MTV) and total lesion glycolysis (TLG), based on an isocontur of 50% of SUV max . FDG PET avid volumes were delineated by a nuclear medicine physician. The gross tumor volumes (GTV) were contoured on the corresponding CT scans. Nineteen patients were available for analysis. Test-retest standard deviations of FDG uptake metrics in FB and DIBH were: SUV peak FB/DIBH: 16.2%/16.5%; SUV max : 18.2%/22.1%; SUV mean : 18.3%/22.1%; TLG: 32.4%/40.5%. DIBH compared to FB resulted in higher values with mean differences in SUV max of 12.6%, SUV peak 4.4% and SUV mean 11.9%. MTV, TLG and GTV were all significantly smaller on day 1 in DIBH compared to FB. However, the differences between metrics under FB and DIBH were in all cases smaller than 1 SD of the day to day repeatability. FDG acquisition in DIBH does not have a clinically relevant impact on the uptake metrics and does not improve the test-retest repeatability of FDG uptake metrics in lung cancer patients.
NASA Technical Reports Server (NTRS)
Moore, Alan; Evetts, Simon; Feiveson, Alan; Lee, Stuart; McCleary, Frank; Platts, Steven
2009-01-01
NASA's Human Research Program Integrated Research Plan (HRP-47065) serves as a road-map identifying critically needed information for future space flight operations (Lunar, Martian). VO2max (often termed aerobic capacity) reflects the maximum rate at which oxygen can be taken up and utilized by the body during exercise. Lack of in-flight and immediate postflight VO2max measurements was one area identified as a concern. The risk associated with not knowing this information is: Unnecessary Operational Limitations due to Inaccurate Assessment of Cardiovascular Performance (HRP-47065).
Löw, M; Häberle, K-H; Warren, C R; Matyssek, R
2007-03-01
Knowledge of responses of photosynthesis, respiration, and stomatal conductance to cumulative ozone uptake (COU) is still scarce, and this is particularly the case for adult trees. The effect of ozone (O(3)) exposure on trees was examined with 60-year-old beech trees (FAGUS SYLVATICA) at a forest site of southern Germany. Trees were exposed to the ambient O(3) regime (1 x O(3)) or an experimentally elevated twice-ambient O(3) regime (2 x O(3)). The elevated 2 x O (3) regime was provided by means of a free-air O(3) canopy exposure system. The hypotheses were tested that (1) gas exchange is negatively affected by O(3) and (2) the effects of O(3) are dose-dependent and thus the sizes of differences between treatments are positively related to COU. Gas exchange (light-saturated CO(2) uptake rate A(max), stomatal conductance g (s), maximum rate of carboxylation Vc (max), ribulose-1,5-bisphosphate turnover limited rate of photosynthesis J (max), CO(2) compensation point CP, apparent quantum yield of net CO(2) uptake AQ, carboxylation efficiency CE, day- and nighttime respiration) and chlorophyll fluorescence (electron transfer rate, ETR) were measured IN SITU on attached sun and shade leaves. Measurements were made periodically throughout the growing seasons of 2003 (an exceptionally dry year) and 2004 (a year with average rainfall). In 2004 Vc(max), J(max), and CE were lower in trees receiving 2 x O(3) compared with the ambient O(3) regime (1 x O(3)). Treatment differences in Vc (max), J (max), CE were rather small in 2004 (i.e., parameter levels were lower by 10 - 30 % in 2 x O(3) than 1 x O(3)) and not significant in 2003. In 2004 COU was positively correlated with the difference between treatments in A (max), g (s), and ETR (i.e., consistent with the dose-dependence of O(3)'s deleterious effects). However, in 2003, differences in A(max), g (s), and ETR between the two O(3) regimes were smaller at the end of the dry summer 2003 (i.e., when COU was greatest). The relationship of COU with effects on gas exchange can apparently be complex and, in fact, varied between years and within the growing season. In addition, high doses of O(3) did not always have significant effects on leaf gas exchange. In view of the key findings, both hypotheses were to be rejected.
Use of the HR index to predict maximal oxygen uptake during different exercise protocols.
Haller, Jeannie M; Fehling, Patricia C; Barr, David A; Storer, Thomas W; Cooper, Christopher B; Smith, Denise L
2013-10-01
This study examined the ability of the HRindex model to accurately predict maximal oxygen uptake ([Formula: see text]O2max) across a variety of incremental exercise protocols. Ten men completed five incremental protocols to volitional exhaustion. Protocols included three treadmill (Bruce, UCLA running, Wellness Fitness Initiative [WFI]), one cycle, and one field (shuttle) test. The HRindex prediction equation (METs = 6 × HRindex - 5, where HRindex = HRmax/HRrest) was used to generate estimates of energy expenditure, which were converted to body mass-specific estimates of [Formula: see text]O2max. Estimated [Formula: see text]O2max was compared with measured [Formula: see text]O2max. Across all protocols, the HRindex model significantly underestimated [Formula: see text]O2max by 5.1 mL·kg(-1)·min(-1) (95% CI: -7.4, -2.7) and the standard error of the estimate (SEE) was 6.7 mL·kg(-1)·min(-1). Accuracy of the model was protocol-dependent, with [Formula: see text]O2max significantly underestimated for the Bruce and WFI protocols but not the UCLA, Cycle, or Shuttle protocols. Although no significant differences in [Formula: see text]O2max estimates were identified for these three protocols, predictive accuracy among them was not high, with root mean squared errors and SEEs ranging from 7.6 to 10.3 mL·kg(-1)·min(-1) and from 4.5 to 8.0 mL·kg(-1)·min(-1), respectively. Correlations between measured and predicted [Formula: see text]O2max were between 0.27 and 0.53. Individual prediction errors indicated that prediction accuracy varied considerably within protocols and among participants. In conclusion, across various protocols the HRindex model significantly underestimated [Formula: see text]O2max in a group of aerobically fit young men. Estimates generated using the model did not differ from measured [Formula: see text]O2max for three of the five protocols studied; nevertheless, some individual prediction errors were large. The lack of precision among estimates may limit the utility of the HRindex model; however, further investigation to establish the model's predictive accuracy is warranted.
Svedenhag, J; Sjödin, B
1984-10-01
Physiological characteristics of elite runners from different racing events were studied. Twenty-seven middle- and long-distance runners and two 400-m runners belonging to the Swedish national team in track and field were divided, according to their distance preferences, into six groups from 400 m up to the marathon. The maximal oxygen uptake (VO2 max, ml X kg-1 X min-1) on the treadmill was higher the longer the main distance except for the marathon runners (e.g., 800-1500-m group, 72.1; 5000-10,000-m group, 78.7 ml X kg-1 X min-1). Running economy evaluated from oxygen uptake measurements at 15 km/h (VO2 15) and 20 km/h (VO2 20) did not differ significantly between the groups even though VO2 15 tended to be lower in the long-distance runners. The running velocity corresponding to a blood lactate concentration of 4 mmol/l (vHla 4.0) differed markedly between the groups with the highest value (5.61 m/s) in the 5000-10,000-m group. The oxygen uptake (VO2) at vHla 4.0 in percentage of VO2 max did not differ significantly between the groups. The blood lactate concentration after exhaustion (VO2 max test) was lower in the long-distance runners. In summary, the present study demonstrates differences in physiological characteristics of elite runners specializing in different racing events. The two single (but certainly inter-related) variables in which this was most clearly seen were the maximal oxygen uptake (ml X kg-1 X min-1) and the running velocity corresponding to a blood lactate concentration of 4 mmol/l.
Physiological and Psychological Characteristics of Successful Combat Controller Trainees
2010-12-01
body fat , VO2max of 59ml/kg/min, vertical jump of 62cm, able to generate 11.4W/kg peak power and 9.3W/Kg mean power during Wingate tests, overall...who completed Phase I of the pipeline and achieved their 3-level rating: 23 years old, 1.8 m tall, 81 kg, 12% body fat , VO2max of 59 ml/kg/min... fat percentage was computed from body density using the Siri equation.6 Cardiorespiratory Endurance: Maximal oxygen uptake (VO2max) and running economy
Hansen, Dominique; Jacobs, Nele; Thijs, Herbert; Dendale, Paul; Claes, Neree
2016-09-01
Healthcare professionals with limited access to ergospirometry remain in need of valid and simple submaximal exercise tests to predict maximal oxygen uptake (VO2max ). Despite previous validation studies concerning fixed-rate step tests, accurate equations for the estimation of VO2max remain to be formulated from a large sample of healthy adults between age 18-75 years (n > 100). The aim of this study was to develop a valid equation to estimate VO2max from a fixed-rate step test in a larger sample of healthy adults. A maximal ergospirometry test, with assessment of cardiopulmonary parameters and VO2max , and a 5-min fixed-rate single-stage step test were executed in 112 healthy adults (age 18-75 years). During the step test and subsequent recovery, heart rate was monitored continuously. By linear regression analysis, an equation to predict VO2max from the step test was formulated. This equation was assessed for level of agreement by displaying Bland-Altman plots and calculation of intraclass correlations with measured VO2max . Validity further was assessed by employing a Jackknife procedure. The linear regression analysis generated the following equation to predict VO2max (l min(-1) ) from the step test: 0·054(BMI)+0·612(gender)+3·359(body height in m)+0·019(fitness index)-0·012(HRmax)-0·011(age)-3·475. This equation explained 78% of the variance in measured VO2max (F = 66·15, P<0·001). The level of agreement and intraclass correlation was high (ICC = 0·94, P<0·001) between measured and predicted VO2max . From this study, a valid fixed-rate single-stage step test equation has been developed to estimate VO2max in healthy adults. This tool could be employed by healthcare professionals with limited access to ergospirometry. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Klein Nulent, Thomas J W; Valstar, Matthijs H; de Keizer, Bart; Willems, Stefan M; Smit, Laura A; Al-Mamgani, Abrahim; Smeele, Ludwig E; van Es, Robert J J; de Bree, Remco; Vogel, Wouter V
2018-05-01
Prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) is used for detection and (re)staging of prostate cancer. However, healthy salivary, seromucous, and lacrimal glands also have high PSMA-ligand uptake. This study aimed to describe physiologic PSMA-ligand uptake distribution characteristics in the head and neck to aid in PSMA PET/CT interpretation and to identify possible new clinical applications for PSMA-ligand imaging. Thirty consecutive patients who underwent PSMA PET/CT for prostate cancer were evaluated. Tracer maximum standardized uptake values (SUV max ) in the salivary, seromucous, and lacrimal glands were determined visually and quantitatively. Overall and intraindividual variations were reported. All gland locations had increased tracer uptake. The mean SUV max ± standard deviation varied: parotid 12.3 ± 3.9; submandibular 11.7 ± 3.5; sublingual 4.5 ± 1.9; soft palate 2.4 ± 0.5; pharyngeal wall 4.3 ± 1.3; nasal mucosa 3.4 ± 0.9; supraglottic larynx 2.7 ± 0.7; and lacrimal 6.2 ± 2.2. The parotid had the largest overall variation in SUV max (5.2-22.9), and the sublingual glands had the largest mean intraindividual difference (18.1%). Major and minor salivary and seromucous glands consistently have high PSMA-ligand uptake. Minor gland locations can be selectively visualized by this technique for the first time. This provides potential new applications such as quantification of present salivary gland tissues and individualization of radiotherapy for head and neck cancer or lutetium-177-PSMA radionuclide treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Gronek, Piotr; Holdys, Joanna; Kryściak, Jakub; Wieliński, Dariusz; Słomski, Ryszard
2014-01-01
Physical fitness is a trait determined by multiple genes, and its genetic basis is modified by numerous environmental factors. The present study examines the effects of the (CA)n tandem repeats polymorphism in IGFI gene and SNP Alw21I restriction site -202 A>C polymorphism in IGF1BP3 on VO2max--a physiological index of aerobic capacity of high heritability. The study sample consisted of 239 (154 male and 85 female) students of the University School of Physical Education in Poznań and athletes practicing various sports, including members of the Polish national team. An association was found between -202 A/C polymorphism of IGFBP3 gene with VO2max in men. Higher VO2max values were attained by men with CC genotype, especially male athletes practicing endurance sports and sports featuring energy metabolism of aerobic/anaerobic character. A statistically significant influence of allele 188 and genotype 188/188 of tandem repeats (CA)n polymorphism of IGF1 gene on VO2max was found in women. Also, lower values of maximal oxygen uptake were noted in individuals with allele 186 or genotype 186/186, and higher VO2max values in athletes with allele 194.
Influence of acute moderate hypoxia on time to exhaustion at vVO2max in unacclimatized runners.
Billat, V L; Lepretre, P M; Heubert, R P; Koralsztein, J P; Gazeau, F P
2003-01-01
Eight unacclimatized long-distance runners performed, on a level treadmill, an incremental test to determine the maximal oxygen uptake (VO2max) and the minimal velocity eliciting VO2max (vVO2max) in normoxia (N) and acute moderate hypoxia (H) corresponding to an altitude of 2,400 m (PIO 2 of 109 mmHg). Afterwards, on separate days, they performed two all-out constant velocity runs at vO2 max in a random order (one in N and the other in H). The decrease in VO2max between N and H showed a great degree of variability amongst subjects as VO2max decreased by 8.9 +/- 4 ml x min(-1) x kg)(-1) in H vs. N conditions (-15.3 +/- 6.3 % with a range from -7.9 % to -23.8 %). This decrease in VO2max was proportional to the value of VO2max (VO2max vs. delta VO2max N-H, r = 0.75, p = 0.03). The time run at vVO2max was not affected by hypoxia (483 +/- 122 vs. 506 +/- 148 s, in N and H, respectively, p = 0.37). However, the greater the decrease in vVO2max during hypoxia, the greater the runners increased their time to exhaustion at vVO2max (vVO2max N-H vs. tlim @vVO2max N-H, r = -0.75, p = 0.03). In conclusion, this study showed that there was a positive association between the extent of decrease in vVO2max, and the increase in run time at vVO2max in hypoxia.
Toward development of an in vitro model of methamphetamine-induced dopamine nerve terminal toxicity.
Kim, S; Westphalen, R; Callahan, B; Hatzidimitriou, G; Yuan, J; Ricaurte, G A
2000-05-01
To develop an in vitro model of methamphetamine (METH)-induced dopamine (DA) neurotoxicity, striatal synaptosomes were incubated at 37 degrees C with METH for different periods of time (10-80 min), washed once, then tested for DA transporter function at 37 degrees C. METH produced time- and dose-dependent reductions in the V(max) of DA uptake, without producing any change in K(m). Incubation of synaptosomes with the DA neurotoxins 1-methyl-4-phenyl-pyridinium ion, 6-hydroxydopamine, and amphetamine under similar conditions produced comparable effects. In contrast, incubation with fenfluramine, a serotonin neurotoxin, did not. METH-induced decreases in DA uptake were selective, insofar as striatal glutamate uptake was unaffected. Various DA transporter blockers (cocaine, methylphenidate, and bupropion) afforded complete protection against METH-induced decreases in DA uptake, without producing any effect themselves. METH's effects were also temperature dependent, with greater decreases in DA uptake occurring at higher temperatures. Tests for residual drug revealed small amounts (0.1-0.2 microM) of remaining METH, but kinetic studies indicated that decreases in DA uptake were not likely to be due to METH acting as a competitive inhibitor of DA uptake. Decreases in the V(max) of DA uptake were not accompanied by decreases in B(max) of [(3)H]WIN 35,428 binding, possibly because there is no mechanism for removing damaged DA nerve endings from the in vitro preparation Collectively, these results give good support to the development of a valid in vitro model that may prove helpful for elucidating the mechanisms underlying METH-induced DA neurotoxicity.
Mechanisms of Mitochondrial Defects in Gulf War Syndrome
2011-08-01
complaining of exercise limitations due to fatigue . An abnormal maximum oxygen uptake (VO2 max) and anaerobic threshold (AT) significantly increases...syndromes, muscle complaints that include fatigue and myalgias, as well as other neurological symptoms. Approximately 100,000 individuals have...pyruvate (> 0.90 mg/dl) (14/57) Abnormal Anaerobic Threshold (≤50% predicted VO2 max) 78.4% (40/51) Abnormal Alanine (>563 µmol/L) 10.2% (6
Schwarzenböck, Sarah M; Eiber, Matthias; Kundt, Günther; Retz, Margitta; Sakretz, Monique; Kurth, Jens; Treiber, Uwe; Nawroth, Roman; Rummeny, Ernst J; Gschwend, Jürgen E; Schwaiger, Markus; Thalgott, Mark; Krause, Bernd J
2016-11-01
The aim of this study was to prospectively evaluate the value of [ 11 C] Choline PET/CT in monitoring early and late response to a standardized first-line docetaxel chemotherapy in castration refractory prostate cancer (mCRPC) patients. Thirty-two patients were referred for [ 11 C] Choline PET/CT before the start of docetaxel chemotherapy, after one and ten chemotherapy cycles (or - in case of discontinuation - after the last administered cycle) for therapy response assessment. [ 11 C] Choline uptake (SUV max , SUV mean ), CT derived Houndsfield units (HU max , HU mean ), and volume of bone, lung, and nodal metastases and local recurrence were measured semi-automatically at these timepoints. Change in SUV max , SUV mean , HU max , HU mean, and volume was assessed between PET 2 and 1 (early response assessment, ERA) and PET 3 and 1 (late response assessment, LRA) on a patient and lesion basis. Results of PET/CT were compared to clinically used RECIST 1.1 and clinical criteria based therapy response assessment including PSA for defining progressive disease (PD) and non-progressive disease (nPD), respectively. Relationships between changes of SUV max and SUV mean (early and late) and changes of PSA early and PSA late were evaluated. Prognostic value of initial SUV max and SUV mean was assessed. Statistical analyses were performed using SPSS. In the patient-based ERA and LRA there were no statistically significant differences in change of choline uptake, HU, and volume between PD and nPD applying RECIST or clinical response criteria. In the lesion-based ERA, decrease in choline uptake of bone metastases was even higher in PD (applying RECIST criteria), whereas in LRA the decrease was higher in nPD (applying clinical criteria). There were only significant correlations between change in choline uptake and PSA in ERA in PD, in LRA no significant correlations were discovered. Initial SUV max and SUV mean were statistically significantly higher in nPD (applying clinical criteria). There is no significant correlation between change in choline uptake in [ 11 C] Choline PET/CT and clinically routinely used objective response assessment during the early and late course of docetaxel chemotherapy. Therefore, [ 11 C] Choline PET/CT seems to be of limited use in therapy response assessment in standardized first-line chemotherapy in mCRPC patients.
A Maximal Graded Exercise Test to Accurately Predict VO2max in 18-65-Year-Old Adults
ERIC Educational Resources Information Center
George, James D.; Bradshaw, Danielle I.; Hyde, Annette; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.
2007-01-01
The purpose of this study was to develop an age-generalized regression model to predict maximal oxygen uptake (VO sub 2 max) based on a maximal treadmill graded exercise test (GXT; George, 1996). Participants (N = 100), ages 18-65 years, reached a maximal level of exertion (mean plus or minus standard deviation [SD]; maximal heart rate [HR sub…
Koschate, Jessica; Drescher, Uwe; Brinkmann, Christian; Baum, Klaus; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe
2016-11-01
Cardiorespiratory kinetics were analyzed in type 2 diabetes patients before and after a 12-week endurance exercise-training intervention. It was hypothesized that muscular oxygen uptake and heart rate (HR) kinetics would be faster after the training intervention and that this would be detectable using a standardized work rate protocol with pseudo-random binary sequences. The cardiorespiratory kinetics of 13 male sedentary, middle-aged, overweight type 2 diabetes patients (age, 60 ± 8 years; body mass index, 33 ± 4 kg·m -2 ) were tested before and after the 12-week exercise intervention. Subjects performed endurance training 3 times a week on nonconsecutive days. Pseudo-random binary sequences exercise protocols in combination with time series analysis were used to estimate kinetics. Greater maxima in cross-correlation functions (CCF max ) represent faster kinetics of the respective parameter. CCF max of muscular oxygen uptake (pre-training: 0.31 ± 0.03; post-training: 0.37 ± 0.1, P = 0.024) and CCF max of HR (pre-training: 0.25 ± 0.04; post-training: 0.29 ± 0.06, P = 0.007) as well as peak oxygen uptake (pre-training: 24.4 ± 4.7 mL·kg -1 ·min -1 ; post-training: 29.3 ± 6.5 mL·kg -1 ·min -1 , P = 0.004) increased significantly over the course of the exercise intervention. In conclusion, kinetic responses to changing work rates in the moderate-intensity range are similar to metabolic demands occurring in everyday habitual activities. Moderate endurance training accelerated the kinetic responses of HR and muscular oxygen uptake. Furthermore, the applicability of the used method to detect these accelerations was demonstrated.
Dong, Xinzhe; Xing, Ligang; Wu, Peipei; Fu, Zheng; Wan, Honglin; Li, Dengwang; Yin, Yong; Sun, Xiaorong; Yu, Jinming
2013-01-01
To explore the relationship of a new PET image parameter, (18)F-fluorodeoxyglucose ((18)F-FDG) uptake heterogeneity assessed by texture analysis, with maximum standardized uptake value (SUV(max)) and tumor TNM staging. Forty consecutive patients with esophageal squamous cell carcinoma were enrolled. All patients underwent whole-body preoperative (18)F-FDG PET/CT. Heterogeneity of intratumoral (18)F-FDG uptake was assessed on the basis of the textural features (entropy and energy) of the three-dimensional images using MATLAB software. The correlations between the textural parameters and SUV(max), histological grade, tumor location, and TNM stage were analyzed. Tumors with higher SUV(max) were seen to be more heterogenous on (18)F-FDG uptake. Significant correlations were observed between T stage and SUV(max) (r(s)=0.390, P=0.013), entropy (rs=0.693, P<0.001), and energy (r(s)=-0.469, P=0.002). Correlations were also found between SUV(max), entropy, energy, and N stage (r(s)=0.326, P=0.04; r(s)=0.501, P=0.001; r(s)=-0.413, P=0.008). The American Joint Committee on Cancer stage correlated significantly with all metabolic parameters. The receiver-operating characteristic curve demonstrated an entropy of 4.699 as the optimal cutoff point for detecting tumors above stage II(b) with an areas under the ROC curve of 0.789 (P<0.001). This study provides initial evidence for the relationship between the new parameter of tumor uptake heterogeneity and the commonly used simplistic parameter of SUV and tumor stage. Our findings suggest a complementary role of these parameters in the staging and prognosis of esophageal squamous cell carcinoma.
Damjanovic, Jonathan; Janssen, Jan-Carlo; Furth, Christian; Diederichs, Gerd; Walter, Thula; Amthauer, Holger; Makowski, Marcus R
2018-05-16
The purpose of this study was to investigate the imaging properties of pulmonary metastases and benign opacities in 68 Ga-PSMA positron emission tomography (PET) in patients with prostate cancer (PC). 68 Ga-PSMA-PET/CT scans of 739 PC patients available in our database were evaluated retrospectively for lung metastases and non-solid focal pulmonary opacities. Maximum standardized uptake values (SUV max ) were assessed by two- and three-dimensional regions of interest (2D/3D ROI). Additionally CT features of the lesions, such as location, morphology and size were identified. Ninety-one pulmonary metastases and fourteen opacities were identified in 34 PC patients. In total, 66 PSMA-positive (72.5%) and 25 PSMA-negative (27.5%) metastases were identified. The mean SUV max of pulmonary opacities was 2.2±0.7 in 2D ROI and 2.4±0.8 in 3D ROI. The mean SUV max of PSMA-positive pulmonary metastases was 4.5±2.7 in 2D ROI and in 4.7±2.9 in 3D ROI; this was significantly higher than the SUV max of pulmonary opacities in both 2D and 3D ROI (p<0.001). The mean SUV max of PSMA-negative metastases was 1.0±0.5 in 2D ROI and 1.0±0.4 in 3D ROI, and significantly lower than that of the pulmonary opacities (p<0.001). A significant (p<0.05) weak linear correlation between size and 3D SUV max in lung metastases (ρ Spearman =0.207) was found. Based on the SUV max in 68 Ga-PSMA-PET alone, it was not possible to differentiate between pulmonary metastases and pulmonary opacities. The majority of lung metastases highly overexpressed PSMA, while a relevant number of metastases were PSMA-negative. Pulmonary opacities demonstrated a moderate tracer uptake, significantly lower than PSMA-positive lung metastases, yet significantly higher than PSMA-negative metastases.
Mollard, P; Woorons, X; Letournel, M; Cornolo, J; Lamberto, C; Beaudry, M; Richalet, J-P
2007-03-01
We aimed to evaluate 1) the altitude where maximal heart rate (HR (max)) decreases significantly in both trained and untrained subjects in moderate acute hypoxia, and 2) if the HR (max) decrease could partly explain the drop of V.O (2max). Seventeen healthy males, nine trained endurance athletes (TS) and eight untrained individuals (US) were studied. Subjects performed incremental exercise tests at sea level and at 5 simulated altitudes (1000, 1500, 2500, 3500, 4500 meters). Power output (PO), heart rate (HR), arterial oxygen saturation (SaO (2)), oxygen uptake (V.O (2)), arterialized blood pH and lactate were measured. Both groups showed a progressive reduction in V.O (2max). The decrement in HR (max) (DeltaHR (max)) was significant from 1000 m for TS and 2500 m for US and more important in TS than US (at 1500 m and 3500 m). At maximal exercise, TS had a greater reduction in SaO (2) (DeltaSaO (2)) at each altitude. DeltaHR (max) observed in TS was correlated with DeltaSaO (2). When the two groups were pooled, simple regressions showed that DeltaV.O (2max) was correlated with both DeltaSaO (2) and DeltaHR (max). However, a multiple regression analysis demonstrated that DeltaSaO (2) alone may account for DeltaV.O (2max). Furthermore, in spite of a greater reduction in SaO (2) and HR (max) in TS, no difference was evidenced in relative DeltaV.O (2max) between groups. Thus, in moderate acute hypoxia, the reduction in SaO (2) is the primary factor to explain the drop of V.O (2max) in trained and untrained subjects.
Effects of training on muscle O2 transport at VO2max
NASA Technical Reports Server (NTRS)
Roca, J.; Agusti, A. G.; Alonso, A.; Poole, D. C.; Viegas, C.; Barbera, J. A.; Rodriguez-Roisin, R.; Ferrer, A.; Wagner, P. D.
1992-01-01
To quantify the relative contributions of convective and peripheral diffusive components of O2 transport to the increase in leg O2 uptake (VO2leg) at maximum O2 uptake (VO2max) after 9 wk of endurance training, 12 sedentary subjects (age 21.8 +/- 3.4 yr, VO2max 36.9 +/- 5.9 ml.min-1.kg-1) were studied. VO2max, leg blood flow (Qleg), and arterial and femoral venous PO2, and thus VO2leg, were measured while the subjects breathed room air, 15% O2, and 12% O2. The sequence of the three inspirates was balanced. After training, VO2max and VO2leg increased at each inspired O2 concentration [FIO2; mean over the 3 FIO2 values 25.2 +/- 17.8 and 36.5 +/- 33% (SD), respectively]. Before training, VO2leg and mean capillary PO2 were linearly related through the origin during hypoxia but not during room air breathing, suggesting that, at 21% O2, VO2max was not limited by O2 supply. After training, VO2leg and mean capillary PO2 at each FIO2 fell along a straight line with zero intercept, just as in athletes (Roca et al. J. Appl. Physiol. 67: 291-299, 1989). Calculated muscle O2 diffusing capacity (DO2) rose 34% while Qleg increased 19%. The relatively greater rise in DO2 increased the DO2/Qleg, which led to 9.9% greater O2 extraction. By numerical analysis, the increase in Qleg alone (constant DO2) would have raised VO2leg by 35 ml/min (mean), but that of DO2 (constant Qleg) would have increased VO2leg by 85 ml/min, more than twice as much. The sum of these individual effects (120 ml/min) was less (P = 0.013) than the observed rise of 164 ml/min (mean). This synergism (explained by the increase in DO2/Qleg) seems to be an important contribution to increases in VO2max with training.
2012-03-07
ISS030-E-132542 (7 March 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, performs a VO2max experiment while using the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station. VO2max uses the Portable Pulmonary Function System (PPFS), CEVIS, Pulmonary Function System (PFS) gas cylinders and mixing bag system, plus multiple other pieces of hardware to measure oxygen uptake and cardiac output.
2012-03-07
ISS030-E-132541 (7 March 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, performs a VO2max experiment while using the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station. VO2max uses the Portable Pulmonary Function System (PPFS), CEVIS, Pulmonary Function System (PFS) gas cylinders and mixing bag system, plus multiple other pieces of hardware to measure oxygen uptake and cardiac output.
Effects of Hemopure on maximal oxygen uptake and endurance performance in healthy humans.
Ashenden, M J; Schumacher, Y O; Sharpe, K; Varlet-Marie, E; Audran, M
2007-05-01
Haemoglobin-based oxygen carriers (HBOCs) such as Hemopure are touted as a tenable substitute for red blood cells and therefore potential doping agents, although the mechanisms of oxygen transport of HBOCs are incompletely understood. We investigated whether infusion of Hemopure increased maximal oxygen uptake (V.O 2max) and endurance performance in healthy subjects. Twelve male subjects performed two 4-minute submaximal exercise bouts equivalent to 60 % and 75 % of V.O (2max) on a cycle ergometer, followed by a ramped incremental protocol to elicit V.O (2max). A crossover design tested the effect of infusing either 30 g (6 subjects) or 45 g (6 subjects) of Hemopure versus a placebo. Under our study conditions, Hemopure did not increase V.O (2max) nor endurance performance. However, the infusion of Hemopure caused a decrease in heart rate of approximately 10 bpm (p=0.009) and an average increase in mean ( approximately 7 mmHg) and diastolic blood pressure ( approximately 8 mmHg) (p=0.046) at submaximal and maximal exercise intensities. Infusion of Hemopure did not bestow the same physiological advantages generally associated with infusion of red blood cells. It is conceivable that under exercise conditions, the hypertensive effects of Hemopure counter the performance-enhancing effect of improved blood oxygen carrying capacity.
Bouchard, C; An, P; Rice, T; Skinner, J S; Wilmore, J H; Gagnon, J; Pérusse, L; Leon, A S; Rao, D C
1999-09-01
The aim of this study was to test the hypothesis that individual differences in the response of maximal O(2) uptake (VO(2max)) to a standardized training program are characterized by familial aggregation. A total of 481 sedentary adult Caucasians from 98 two-generation families was exercise trained for 20 wk and was tested for VO(2max) on a cycle ergometer twice before and twice after the training program. The mean increase in VO(2max) reached approximately 400 ml/min, but there was considerable heterogeneity in responsiveness, with some individuals experiencing little or no gain, whereas others gained >1.0 l/min. An ANOVA revealed that there was 2.5 times more variance between families than within families in the VO(2max) response variance. With the use of a model-fitting procedure, the most parsimonious models yielded a maximal heritability estimate of 47% for the VO(2max) response, which was adjusted for age and sex with a maternal transmission of 28% in one of the models. We conclude that the trainability of VO(2max) is highly familial and includes a significant genetic component.
Is Recreational Soccer Effective for Improving VO2max A Systematic Review and Meta-Analysis.
Milanović, Zoran; Pantelić, Saša; Čović, Nedim; Sporiš, Goran; Krustrup, Peter
2015-09-01
Soccer is the most popular sport worldwide, with a long history and currently more than 500 million active participants, of whom 300 million are registered football club members. On the basis of scientific findings showing positive fitness and health effects of recreational soccer, FIFA (Fédération Internationale de Football Association) introduced the slogan "Playing football for 45 min twice a week-best prevention of non-communicable diseases" in 2010. The objective of this paper was to perform a systematic review and meta-analysis of the literature to determine the effects of recreational soccer on maximal oxygen uptake (VO2max). Six electronic databases (MEDLINE, PubMed, SPORTDiscus, Web of Science, CINAHL and Google Scholar) were searched for original research articles. A manual search was performed to cover the areas of recreational soccer, recreational physical activity, recreational small-sided games and VO2max using the following key terms, either singly or in combination: recreational small-sided games, recreational football, recreational soccer, street football, street soccer, effect, maximal oxygen uptake, peak oxygen uptake, cardiorespiratory fitness, VO2max. The inclusion criteria were divided into four sections: type of study, type of participants, type of interventions and type of outcome measures. Probabilistic magnitude-based inferences for meta-analysed effects were based on standardised thresholds for small, moderate and large changes (0.2, 0.6 and 1.2, respectively) derived from between-subject standard deviations for baseline fitness. Seventeen studies met the inclusion criteria and were included in the systematic review and meta-analysis. Mean differences showed that VO2max increased by 3.51 mL/kg/min (95 % CI 3.07-4.15) over a recreational soccer training programme in comparison with other training models. The meta-analysed effects of recreational soccer on VO2max compared with the controls of no exercise, continuous running and strength training were most likely largely beneficial [effect size (ES) = 1.46; 95 % confidence interval (CI) 0.91, 2.01; I (2) = 88.35 %], most likely moderately beneficial (ES = 0.68; 95 % CI 0.06, 1.29; I (2) = 69.13 %) and most likely moderately beneficial (ES = 1.08; 95 % CI -0.25, 2.42; I (2) = 71.06 %), respectively. In men and women, the meta-analysed effect was most likely largely beneficial for men (ES = 1.22) and most likely moderately beneficial for women (ES = 0.96) compared with the controls. After 12 weeks of recreational soccer with an intensity of 78-84 % maximal heart rate (HRmax), healthy untrained men improved their VO2max by 8-13 %, while untrained elderly participants improved their VO2max by 15-18 %. Soccer training for 12-70 weeks in healthy women resulted in an improvement in VO2max of 5-16 %. Significant improvements in VO2max have been observed in patients with diabetes mellitus, hypertension and prostate cancer. Recreational soccer produces large improvements in VO2max compared to strength training and no exercise, regardless of the age, sex and health status of the participants. Furthermore, recreational soccer is better than continuous endurance running, albeit the additional effect is moderate. This kind of physical activity has great potential for enhancing aerobic fitness, and for preventing and treating non-communicable diseases, and is ideal for addressing lack of motivation, a key component in physical (in)activity.
Büsing, Karen A; Schönberg, Stefan O; Brade, Joachim; Wasser, Klaus
2013-02-01
Chronically altered glucose metabolism interferes with (18)F-FDG uptake in malignant tissue and healthy organs and may therefore lower tumor detection in (18)F-FDG PET/CT. The present study assesses the impact of elevated blood glucose levels (BGL), diabetes, insulin treatment, and obesity on (18)F-FDG uptake in tumors and biodistribution in normal organ tissues. (18)F-FDG PET/CT was analyzed in 90 patients with BGL ranging from 50 to 372 mg/dl. Of those, 29 patients were diabetic and 21 patients had received insulin prior to PET/CT; 28 patients were obese with a body mass index >25. The maximum standardized uptake value (SUV(max)) of normal organs and the main tumor site was measured. Differences in SUV(max) in patients with and without elevated BGLs, diabetes, insulin treatment, and obesity were compared and analyzed for statistical significance. Increased BGLs were associated with decreased cerebral FDG uptake and increased uptake in skeletal muscle. Diabetes and insulin diminished this effect, whereas obesity slightly enhanced the outcome. Diabetes and insulin also increased the average SUV(max) in muscle cells and fat, whereas the mean cerebral SUV(max) was reduced. Obesity decreased tracer uptake in several healthy organs by up to 30%. Tumoral uptake was not significantly influenced by BGL, diabetes, insulin, or obesity. Changes in BGLs, diabetes, insulin, and obesity affect the FDG biodistribution in muscular tissue and the brain. Although tumoral uptake is not significantly impaired, these findings may influence the tumor detection rate and are therefore essential for diagnosis and follow-up of malignant diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
Gjesing, Anette P.; Sandholt, Camilla H.; Jonsson, Anna; Mahendran, Yuvaraj; Have, Christian T.; Ekstrøm, Claus T.; Bjerregaard, Anne-Louise; Brage, Soren; Witte, Daniel R.; Jørgensen, Marit E.; Aadahl, Mette; Thuesen, Betina H.; Linneberg, Allan; Eiberg, Hans; Pedersen, Oluf; Grarup, Niels; Kilpeläinen, Tuomas O.; Hansen, Torben
2016-01-01
Objectives It has long been discussed whether fitness or fatness is a more important determinant of health status. If the same genetic factors that promote body fat percentage (body fat%) are related to cardiorespiratory fitness (CRF), part of the concurrent associations with health outcomes could reflect a common genetic origin. In this study we aimed to 1) examine genetic correlations between body fat% and CRF; 2) determine whether CRF can be attributed to a genetic risk score (GRS) based on known body fat% increasing loci; and 3) examine whether the fat mass and obesity associated (FTO) locus associates with CRF. Methods Genetic correlations based on pedigree information were examined in a family based cohort (n = 230 from 55 families). For the genetic association analyses, we examined two Danish population-based cohorts (ntotal = 3206). The body fat% GRS was created by summing the alleles of twelve independent risk variants known to associate with body fat%. We assessed CRF as maximal oxygen uptake expressed in millilitres of oxygen uptake per kg of body mass (VO2max), per kg fat-free mass (VO2maxFFM), or per kg fat mass (VO2maxFM). All analyses were adjusted for age and sex, and when relevant, for body composition. Results We found a significant negative genetic correlation between VO2max and body fat% (ρG = -0.72 (SE ±0.13)). The body fat% GRS associated with decreased VO2max (β = -0.15 mL/kg/min per allele, p = 0.0034, age and sex adjusted). The body fat%-increasing FTO allele was associated with a 0.42 mL/kg/min unit decrease in VO2max per allele (p = 0.0092, age and sex adjusted). Both associations were abolished after additional adjustment for body fat%. The fat% increasing GRS and FTO risk allele were associated with decreased VO2maxFM but not with VO2maxFFM. Conclusions Our findings suggest a shared genetic etiology between whole body fat% and CRF. PMID:27846319
Exercise intensities during a ballet lesson in female adolescents with different technical ability.
Guidetti, L; Gallotta, M C; Emerenziani, G P; Baldari, C
2007-09-01
To investigate the exercise intensity during a typical grade five ballet lesson, thirty-nine dancers (13 - 16 yrs) were divided into three different technical proficiency groups: low level (n = 13), intermediate level (n = 14), and high level (n = 12). A progressively incremented treadmill test was administered to determine VO(2max), individual ventilatory threshold (IVT), and the individual anaerobic threshold (IAT). Oxygen uptake (VO(2)), heart rate (HR) and blood lactate (La) were then evaluated during a grade five ballet lesson. Oxygen uptake at IVT, IAT and maximal oxygen uptake were greater (p < 0.05) in the high-level dancers indicating a higher level of fitness. HR and %VO(2max) obtained during the various exercises of the ballet lesson were similar among groups. During the ballet lesson, low technical level dancers had more V.O (2) and La values above (p < 0.05) the IAT than the other groups. Correlation analysis revealed that the number of exercises performed above IAT was positively related to anthropometric characteristics (BMI, %FM; r = 0.36, p < 0.05; r = 0.46, p < 0.01), negatively related to fitness parameters (VO(2IVT), VO(2IAT), VO(2max); r between - 0.43 and - 0.69; p < 0.001) and to technical level (r = - 0.70; p < 0.001). The subjects classified as having low technical abilities had lower fitness levels and performed more exercises above IAT than the more skilled dancers.
Ogawa, Takeshi; Calbet, Jose A L; Honda, Yasushi; Fujii, Naoto; Nishiyasu, Takeshi
2010-11-01
To test the hypothesis that maximal exercise pulmonary ventilation (VE max) is a limiting factor affecting maximal oxygen uptake (VO2 max) in moderate hypobaric hypoxia (H), we examined the effect of breathing a helium-oxygen gas mixture (He-O(2); 20.9% O(2)), which would reduce air density and would be expected to increase VE max. Fourteen healthy young male subjects performed incremental treadmill running tests to exhaustion in normobaric normoxia (N; sea level) and in H (atmospheric pressure equivalent to 2,500 m above sea level). These exercise tests were carried out under three conditions [H with He-O(2), H with normal air and N] in random order. VO2 max and arterial oxy-hemoglobin saturation (SaO(2)) were, respectively, 15.2, 7.5 and 4.0% higher (all p < 0.05) with He-O(2) than with normal air (VE max, 171.9 ± 16.1 vs. 150.1 ± 16.9 L/min; VO2 max, 52.50 ± 9.13 vs. 48.72 ± 5.35 mL/kg/min; arterial oxyhemoglobin saturation (SaO(2)), 79 ± 3 vs. 76 ± 3%). There was a linear relationship between the increment in VE max and the increment in VO2 max in H (r = 0.77; p < 0.05). When subjects were divided into two groups based on their VO2 max, both groups showed increased VE max and SaO(2) in H with He-O(2), but VO2 max was increased only in the high VO2 max group. These findings suggest that in acute moderate hypobaric hypoxia, air-flow resistance can be a limiting factor affecting VE max; consequently, VO2 max is limited in part by VE max especially in subjects with high VO2 max.
Verification testing to confirm VO2max attainment in persons with spinal cord injury.
Astorino, Todd A; Bediamol, Noelle; Cotoia, Sarah; Ines, Kenneth; Koeu, Nicolas; Menard, Natasha; Nyugen, Brianna; Olivo, Cassandra; Phillips, Gabrielle; Tirados, Ardreen; Cruz, Gabriela Velasco
2018-01-22
Maximal oxygen uptake (VO 2 max) is a widely used measure of cardiorespiratory fitness, aerobic function, and overall health risk. Although VO 2 max has been measured for almost 100 yr, no standardized criteria exist to verify VO 2 max attainment. Studies document that incidence of 'true' VO 2 max obtained from incremental exercise (INC) can be confirmed using a subsequent verification test (VER). In this study, we examined efficacy of VER in persons with spinal cord injury (SCI). Repeated measures, within-subjects study. University laboratory in San Diego, CA. Ten individuals (age and injury duration = 33.3 ± 10.5 yr and 6.8 ± 6.2 yr) with SCI and 10 able-bodied (AB) individuals (age = 24.1 ± 7.4 yr). Peak oxygen uptake (VO 2 peak) was determined during INC on an arm ergometer followed by VER at 105 percent of peak power output (% PPO). Gas exchange data, heart rate (HR), and blood lactate concentration (BLa) were measured during exercise. Across all participants, VO 2 peak was highly related between protocols (ICC = 0.98) and the mean difference was equal to 0.08 ± 0.11 L/min. Compared to INC, VO 2 peak from VER was not different in SCI (1.30 ± 0.45 L/min vs. 1.31 ± 0.43 L/min) but higher in AB (1.63 ± 0.40 L/min vs. 1.76 ± 0.40 L/min). Data show similar VO 2 peak between incremental and verification tests in SCI, suggesting that VER confirms VO 2 max attainment. However, in AB participants completing arm ergometry, VER is essential to validate appearance of 'true' VO 2 peak.
Stegmayr, Carina; Stoffels, Gabriele; Kops, Elena Rota; Lohmann, Philipp; Galldiks, Norbert; Shah, Nadim J; Neumaier, Bernd; Langen, Karl-Josef
2018-05-29
O-(2-[ 18 F]fluoroethyl)-L-tyrosine ([ 18 F]FET) is an established positron emission tomography (PET) tracer for brain tumor imaging. This study explores the influence of dexamethasone therapy on [ 18 F]FET uptake in the normal brain and its influence on the maximum and mean tumor-to-brain ratio (TBR). [ 18 F]FET PET scans of 160 brain tumor patients were evaluated (80 dexamethasone treated, 80 untreated; each group with 40 men/40 women). The standardized uptake value of [ 18 F]FET uptake in the normal brain (SUV brain ) in the different groups was compared. Nine patients were examined repeatedly with and without dexamethasone therapy. SUV brain of [ 18 F]FET uptake was significantly higher in dexamethasone-treated patients than in untreated patients (SUV brain 1.33 ± 0.1 versus 1.06 ± 0.16 in male and 1.45 ± 0.25 versus 1.31 ± 0.28 in female patients). Similar results were observed in patients with serial PET scans. Furthermore, compared to men, a significantly higher SUV brain was found in women, both with and without dexamethasone treatment. There were no significant differences between the different groups for TBR max and TBR mean , which could have been masked by the high standard deviation. In a patient with a stable brain metastasis investigated twice with and without dexamethasone, the TBR max and the biological tumor volume (BTV) decreased considerably after dexamethasone due to an increased SUV brain . Dexamethasone treatment appears to increase the [ 18 F]FET uptake in the normal brain. An effect on TBR max , TBR mean , and BTV cannot be excluded which should be considered especially for treatment monitoring and the estimation of BTV using [ 18 F]FET PET.
Ade, C J; Broxterman, R M; Moore, A D; Barstow, T J
2017-04-01
We have previously predicted that the decrease in maximal oxygen uptake (V̇o 2max ) that accompanies time in microgravity reflects decrements in both convective and diffusive O 2 transport to the mitochondria of the contracting myocytes. The aim of this investigation was therefore to quantify the relative changes in convective O 2 transport (Q̇o 2 ) and O 2 diffusing capacity (Do 2 ) following long-duration spaceflight. In nine astronauts, resting hemoglobin concentration ([Hb]), V̇o 2max , maximal cardiac output (Q̇ Tmax ), and differences in arterial and venous O 2 contents ([Formula: see text]-[Formula: see text]) were obtained retrospectively for International Space Station Increments 19-33 (April 2009-November 2012). Q̇o 2 and Do 2 were calculated from these variables via integration of Fick's Principle of Mass Conservation and Fick's Law of Diffusion. V̇o 2max significantly decreased from pre- to postflight (-53.9 ± 45.5%, P = 0.008). The significant decrease in Q̇ Tmax (-7.8 ± 9.1%, P = 0.05), despite an unchanged [Hb], resulted in a significantly decreased Q̇o 2 (-11.4 ± 10.5%, P = 0.02). Do 2 significantly decreased from pre- to postflight by -27.5 ± 24.5% ( P = 0.04), as did the peak [Formula: see text]-[Formula: see text] (-9.2 ± 7.5%, P = 0.007). With the use of linear regression analysis, changes in V̇o 2max were significantly correlated with changes in Do 2 ( R 2 = 0.47; P = 0.04). These data suggest that spaceflight decreases both convective and diffusive O 2 transport. These results have practical implications for future long-duration space missions and highlight the need to resolve the specific mechanisms underlying these spaceflight-induced changes along the O 2 transport pathway. NEW & NOTEWORTHY Long-duration spaceflight elicited a significant decrease in maximal oxygen uptake. Given the adverse physiological adaptations to microgravity along the O 2 transport pathway that have been reported, an integrative approach to the determinants of postflight maximal oxygen uptake is needed. We demonstrate that both convective and diffusive oxygen transport are decreased following ~6 mo International Space Station missions. Copyright © 2017 the American Physiological Society.
Running economy : the forgotten factor in elite performance.
Foster, Carl; Lucia, Alejandro
2007-01-01
Running performance depends on maximal oxygen uptake (VO(2max)), the ability to sustain a high percentage of VO(2max) for an extended period of time and running economy. Running economy has been studied relatively less than the other factors. Running economy, measured as steady state oxygen uptake (VO(2)) at intensities below the ventilatory threshold is the standard method. Extrapolation to a common running speed (268 m/min) or as the VO(2) required to run a kilometer is the standard method of assessment. Individuals of East African origin may be systematically more economical, although a smaller body size and a thinner lower leg may be the primary factors. Strategies for improving running economy remain to be developed, although it appears that high intensity running may be a common element acting to improve economy.
Maximum Oxygen Uptake During Long-Duration Space Flight: Preliminary Results
NASA Technical Reports Server (NTRS)
Moore, A. D., Jr.; Evetts, S. N.; Feiveson, A.H.; Lee, S. M. C.; McCleary, F. A.; Platts, S. H.; Ploutz-Snyder, L.
2010-01-01
INTRODUCTION: Maximum oxygen uptake (VO2max) is maintained during space flight lasting <15 d, but has not been measured during long-duration missions. This abstract describes pre-flight and in-flight preliminary findings from the International Space Station (ISS) VO2max experiment. METHODS: Seven astronauts (4 M, 3 F: 47 +/- 5 yr, 174 +/- 7 cm, 74.1 +/- 14.7 kg [mean +/- SD]) performed cycle exercise tests to volitional maximum approx.45 d before flight and tests were scheduled every 30 d during flight beginning on flight day (FD) 14. Tests consisted of three 5-min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W/min increases. VO2 and heart rate (HR) were measured using the ISS Portable Pulmonary Function System (PPFS) (Damec, Odense, DK). Unfortunately the PPFS did not arrive at the ISS in time to support early test sessions for 3 crewmembers. Descriptive statistics are presented for pre-flight vs. late-flight (FD 147 +/- 33 d) comparisons for all subjects (n=7); and pre-flight, early (FD 18 +/- 3) and late-flight (FD 156 +/- 5) data are presented for subjects (n=4) who completed all of these test sessions. RESULTS: When all subjects are considered, average VO2max decreased from pre- to late in-flight (2.98 +/- 0.85 vs. 2.57 +/- 0.50 L/min) while maximum HR late-flight seemed unchanged (178 +/- 9 vs. 175 +/- 8 beats/min). Similarly, for subjects who completed pre-, early, and late flight measurements (n=4), mean VO2max declined from 3.19 +/- 0.75 L/min preflight to 2.43 +/- 0.43 and 2.62 +/- 0.38 L/min early and late-flight, respectively. Maximum HR was 183 +/- 8, 174 +/- 8, and 179 +/- 6 beats/min pre-, early- and late-flight. DISCUSSION: Average VO2max declined during flight and did not appreciably recover as flight duration increased; however much inter-subject variation occurred in these changes.
Left ventricular longitudinal strain in soccer referees.
Gianturco, Luigi; Bodini, Bruno; Gianturco, Vincenzo; Lippo, Giuseppina; Solbiati, Agnese; Turiel, Maurizio
2017-06-13
Along the years, the analysis of soccer referees perfomance has interested the experts and we can find several types of studies in literature using in particular cardiac imaging. The aim of this retrospective study was to observe relationship between VO2max uptake and some conventional and not-conventional echocardiographic parameters. In order to perform this evaluation, we have enrolled 20 referees, belonging to Italian Soccer Referees' Association and we have investigated cardiovascular profile of them. We found a strong direct relationship between VO2max and global longitudinal strain of left ventricle assessed by means of speckle tracking echocardiographic analysis (R2=0.8464). The most common classic echocardiographic indexes have showed mild relations (respectively, VO2max vs EF: R2=0.4444; VO2max vs LV indexed mass: R2=0.2268). Therefore, our study suggests that longitudinal strain could be proposed as a specific echocardiographic parameter to evaluate the soccer referees performance.
Vetter, Roland; Rehfeld, Uwe; Reissfelder, Christoph; Fechner, Henry; Seppet, Enn; Kreutz, Reinhold
2011-03-01
The sarco/endoplasmic reticulum (SR) Ca(2+)-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca(2+) reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca(2+) handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6-N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/dt(max), and dP/dt(min) in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT (P < 0.05). In parallel, a 1.4-fold higher V(max) value of homogenate SR Ca(2+) uptake was observed in hypothyroid TG (P < 0.05 vs. hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by -24% was markedly less than the decrease of -49% in WT (P < 0.05). A linear relationship was observed between the SERCA2a/PLB mRNA ratio values and the V(max) values of SR Ca(2+) uptake when the respective data of all experimental groups were plotted together (r = 0.90). The data show that expression of the TH-insensitive SERCA2a minigene compensates for loss of expressional activity of the TH-responsive native SERCA2a gene in the female hypothyroid rat heart. However, SR Ca(2+) uptake and in vivo heart function were only partially rescued.
[New methods for determining the relative load due to physical effort of the human body].
Szubert, Józef; Szubert, Sławomir; Koszada-Włodarczyk, Wiesława; Bortkiewicz, Alicja
2014-01-01
The relative physical load (% VO2max) is the quotient of oxygen uptake (Vo2) during physical effort and maximum oxygen uptake (VO2max) by the human body. For this purpose the stress test must be performed. The relative load shows a high correlation with minute ventilation, cardiac output, heart rate, stroke volume, increased concentrations of catecholamines in the blood, inner temperature, weight, height and human body surface area. The relative load is a criterion for the maximum workloads admissible for healthy and sick workers. Besides, the classification of effort can be more precise when based on the relative load than on the energy output. Based on our own and international empirical evidence and the laws of heat transfer and fluid mechanics, a model of temperature control system has been developed, involving the elements of human cardiovascular and respiratory systems. Using this model, we have been able to develop our own methods of determining the relative load, applying only the body core temperature (Tw) or heart rate within one minute (HR), body mass (m), height (H), and body surface area (AD) instead of VO,max. The values of the relative physical load (% VO2max) obtained by using our own methods do not differ significantly from those obtained by other methods and by other researchers. The developed methods for determining the relative physical load (% VO2max) do not require the exercise test to be performed, therefore, they may be considered (after verification in an experimental study) a feasible alternative to current methods.
Yoo, Jinho; Kim, Bo-Hyung; Kim, Soo-Hwan; Kim, Yangseok; Yim, Sung-Vin
2016-05-01
The study aimed to identify single nucleotide polymorphisms (SNPs) that significantly influenced the level of improvement of two kinds of training responses, including maximal O2 uptake (V'O2max) and knee peak torque of healthy adults participating in the high intensity training (HIT) program. The study also aimed to use these SNPs to develop prediction models for individual training responses. 79 Healthy volunteers participated in the HIT program. A genome-wide association study, based on 2,391,739 SNPs, was performed to identify SNPs that were significantly associated with gains in V'O2max and knee peak torque, following 9 weeks of the HIT program. To predict two training responses, two independent SNPs sets were determined using linear regression and iterative binary logistic regression analysis. False discovery rate analysis and permutation tests were performed to avoid false-positive findings. To predict gains in V'O2max, 7 SNPs were identified. These SNPs accounted for 26.0 % of the variance in the increment of V'O2max, and discriminated the subjects into three subgroups, non-responders, medium responders, and high responders, with prediction accuracy of 86.1 %. For the knee peak torque, 6 SNPs were identified, and accounted for 27.5 % of the variance in the increment of knee peak torque. The prediction accuracy discriminating the subjects into the three subgroups was estimated as 77.2 %. Novel SNPs found in this study could explain, and predict inter-individual variability in gains of V'O2max, and knee peak torque. Furthermore, with these genetic markers, a methodology suggested in this study provides a sound approach for the personalized training program.
Helgerud, J
1994-01-01
Sex differences in running economy (gross oxygen cost of running, CR), maximal oxygen uptake (VO2max), anaerobic threshold (Th(an)), percentage utilization of aerobic power (% VO2max), and Th(an) during running were investigated. There were six men and six women aged 20-30 years with a performance time of 2 h 40 min over the marathon distance. The VO2max, Th(an), and CR were measured during controlled running on a treadmill at 1 degree and 3 degrees gradient. From each subject's recorded time of running in the marathon, the average speed (vM) was calculated and maintained during the treadmill running for 11 min. The VO2max was inversely related to body mass (mb), there were no sex differences, and the mean values of the reduced exponent were 0.65 for women and 0.81 for men. These results indicate that for running the unit ml.kg-0.75.min-1 is convenient when comparing individuals with different mb. The VO2max was about 10% (23 ml.kg-0.75.min-1) higher in the men than in the women. The women had on the average 10-12 ml.kg-0.75.min-1 lower VO2 than the men when running at comparable velocities. Disregarding sex, the mean value of CR was 0.211 (SEM 0.005) ml.kg-1.m-1 (resting included), and was independent of treadmill speed. No sex differences in Th(an) expressed as % VO2max or percentage maximal heart rate were found, but Th(an) expressed as VO2 in ml.kg-0.75.min-1 was significantly higher in the men compared to the women. The percentage utilization of fcmax and concentration of blood lactate at vM was higher for the female runners.(ABSTRACT TRUNCATED AT 250 WORDS)
Merry, K L; Glaister, M; Howatson, G; Van Someren, K
2015-10-01
This study evaluated the effects of protocol variation on the time spent exercising at ≥95% V̇O2max during cycle ergometer trials performed at the exercise intensity associated with V̇O2max (iV̇O2max). Nine male triathletes (age: 32±10 years; body mass: 73.3±6.1 kg; stature: 1.79±0.07 m; V̇O2max: 3.58±0.45 L.min(-1)) performed four exercise tests. During tests 1 and 2, participants performed a maximal incremental cycle ergometer test using different stage durations (1 min and 3 min) for the determination of iV̇O2max (1 min) and iV̇O2max (3 min). During tests 3 and 4, participants performed a continuous bout of exhaustive cycling at iV̇O2max (1 min) (CONT1) and iV̇O2max (3 min) (CONT3). iV̇O2max (1 min) was significantly greater (P<0.001) than iV̇O2max (3 min) (340±31 W vs. 299±44 W). Time to exhaustion (TTE) measured during CONT3 was significantly longer (P<0.001) than CONT1 (529±140 s vs. 214±65 s). Time spent at V̇O2max was significantly longer (P=0.036) during CONT3 than CONT1 (146±158 s vs. 11±20 s), and time spent at ≥95% V̇O2max was significantly longer (P=0.005) during CONT3 than CONT1 (326±211 s vs. 57±51 s). These results show that when exercising continuously at iV̇O2max, time spent at ≥95% V̇O2max is influenced by the initial measurement of iV̇O2max.
Challapalli, Amarnath; Barwick, Tara; Tomasi, Giampaolo; O' Doherty, Michael; Contractor, Kaiyumars; Stewart, Simon; Al-Nahhas, Adil; Behan, Kevin; Coombes, Charles; Aboagye, Eric O; Mangar, Stephen
2014-01-01
The aim of the study was to assess the effects of neoadjuvant androgen deprivation (NAD) and radical prostate radiotherapy with concurrent androgen deprivation (RT-CAD) on prostatic [C]choline kinetics and thus develop methodology for the use of [C]choline-PET/computed tomography (CT) as an early imaging biomarker. Ten patients with histologically confirmed prostate cancer underwent three sequential dynamic [C]choline-PET/CT pelvic scans: at baseline, after NAD and 4 months after RT-CAD. [C]Choline uptake was quantified using the average and maximum standardized uptake values at 60 min (SUV60,ave and SUV60,max), the tumour-to-muscle ratios (TMR60,max) and net irreversible retention of [C]choline at steady state (Kimod-pat). The combination of NAD and RT-CAD significantly decreased tumour [C]choline uptake (SUV60,ave, SUV60,max, TMR60,max or Kimod-pat) and prostate-specific antigen (PSA) levels (analysis of variance, P<0.001 for all variables). Although the magnitude of reduction in the variables was larger after NAD, there was a smaller additional reduction after RT-CAD. A wide range of reduction in tumour SUV60,ave (38-83.7%) and SUV60,max (22.2-85.3%) was seen with combined NAD and RT-CAD despite patients universally achieving PSA suppression (narrow range of 93.5-99.7%). There was good association between baseline SUV60,max and initial PSA levels (Pearson's r=0.7, P=0.04). The reduction in tumour SUV60,ave after NAD was associated with PSA reduction (r=0.7, P=0.04). This association occurred despite the larger reduction in PSA (94%) compared with SUV60,ave (58%). This feasibility study shows that [C]choline-PET/CT detects metabolic changes within tumours following NAD and RT-CAD to the prostate. A differential reduction in [C]choline uptake despite a global reduction in PSA following NAD and RT-CAD could provide prognostic information and warrants further evaluation as an imaging biomarker in this setting.
Ahmed, Rais; Singh, Satinder P; Mittal, Bhagwant R; Rattan, Vidya; Parghane, Rahul; Utreja, Ashok
2016-03-01
This prospective study was aimed to determine and quantify the change in mandibular condylar hyperactivity over a period of time by using a fluorine-18 (18F) fluoride PET-computed tomography (CT) scan. Sixteen patients (age 19.50 ± 2.58 years) with noticeable faciomandibular asymmetry caused by unilateral condylar hyperplasia (UCH) were included in the test group and underwent an 18F-fluoride PET-CT scan at the beginning of the study (T0); these patients were then followed up for a minimum of 12 months, after which the 18F-fluoride PET-CT scan was repeated at first follow-up (T1). An age-matched control group consisted of 10 patients with apparently symmetrical faces whose PET-CT scans were acquired for some other medical conditions. Statistical analysis of maximum standardized uptake values (SUV max) obtained through 18F-fluoride PET-CT was performed using the paired t-test. Mean SUV max of the affected condyle at T0 and T1 was 9.18 ± 4.07 and 9.18 ± 3.88, respectively. The mean SUV max of the contralateral condyle at T0 and T1 was 6.21 ± 2.30 and 6.66 ± 2.64, respectively. The mean right-left difference in tracer uptake between the test and control groups both at T0 and T1 was statistically significant. Right-left percentage difference of isotope uptake of the test group was 16.87 ± 15.75% at T0 and 14.97 ± 12.72% at T1. Right-left percentage difference of isotope uptake of the control group was 5.51 ± 5.72%. Although these differences were statistically significant, their clinical relevance was insignificant. SUV max of the higher uptake side and the lower uptake side of the control group was 5.63 ± 1.85 and 5.09 ± 1.83, respectively. Great diversity exists in the clinical presentation of UCH. The growth trend of UCH is highly variable because of the age and sex of patients. The results of the present study show that the 18F-fluoride PET-CT scan may guide us in determining the right time and in making the right choice of surgico-orthodontic intervention in UCH patients. The clinical presentation and SUV max of PET-CT of UCH patients were in agreement with each other. The baseline values of the control group indicated that these could also be used to differentiate normal from abnormal condylar growth in potential class III skeletal pattern cases - that is, patients having sagittal skeletal dysplasia resulting from either maxillary deficiency or mandibular protrusion, or both in combination, thus resulting in a concave facial profile.
LIGUORI, GARY; KREBSBACH, KASSIE; SCHUNA, JOHN
2012-01-01
During the academic year, Army ROTC cadets are required to participate in mandatory physical training; however, during summer months training is not required. The purpose of this study was to determine if there is a change in cadet VO2max after the summer when training is not mandatory. Participants completed a graded exercise treadmill test to determine their VO2max in late spring of 2010 and again in early fall of 2010. Results indicated that over a three-month break from mandatory physical training, a significant decrease in VO2max was seen for both genders in ROTC cadets. PMID:27182392
Ugwu, Malachy C; Oli, Angus; Esimone, Charles O; Agu, Remigius U
The aim of this study was to investigate the suitability of rhodamine-123, rhodamine-6G and rhodamine B as non-radioactive probes for characterizing organic cation transporters in respiratory cells. Fluorescent characteristics of the compounds were validated under standard in vitro drug transport conditions (buffers, pH, and light). Uptake/transport kinetics and intracellular accumulation of the compounds were investigated. Uptake/transport mechanisms were investigated by comparing the effect of pH, temperature, concentration, polarity, OCTs/OCTNs inhibitors/substrates, and metabolic inhibitors on the cationic dyes uptake in Calu-3 cells. Fluorescence stability and intensity of the compounds were altered by buffer composition, light, and pH. Uptake of the dyes was concentration-, temperature- and pH-dependent. OCTs/OCTNs inhibitors significantly reduced intracellular accumulation of the compounds. Whereas rhodamine-B uptake was sodium-dependent, pH had no effect on rhodamine-123 and rhodamine-6G uptake. Transport of the dyes across the cells was polarized: (AP→BL>BL→AP transport) and saturable: {V max =14.08±2.074, K m =1821±380.4 (rhodamine-B); V max =6.555±0.4106, K m =1353±130.4 (rhodamine-123) and V max =0.3056±0.01402, K m =702.9±60.97 (rhodamine-6G)}. The dyes were co-localized with MitoTracker®, the mitochondrial marker. Cationic rhodamines, especially rhodamine-B and rhodamine- 6G can be used as organic cation transporter substrates in respiratory cells. During such studies, buffer selection, pH and light exposure should be taken into consideration. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shusharina, Nadya, E-mail: nshusharina@partners.org; Cho, Joseph; Sharp, Gregory C.
2014-05-01
Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial {sup 18}F-FDG PET examinations aftermore » therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUV{sub max}) (≥50% of SUV{sub max}) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUV{sub max}. The VOI of pretherapy and posttherapy {sup 18}F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUV{sub max}-≥50% isocontour may be a biological target volume for escalated radiation dose.« less
Improving the representation of Arctic photosynthesis in Earth system models
NASA Astrophysics Data System (ADS)
Rogers, A.; Serbin, S.; Ely, K.; Sloan, V. L.; Wyatt, R. A.; Kubien, D. S.; Ali, A. A.; Xu, C.; Wullschleger, S. D.
2015-12-01
The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the carbon fluxes associated with the terrestrial carbon cycle. Although Arctic carbon fluxes are small - relative to global carbon fluxes - uncertainty is large. As part of a multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we are examining the photosynthetic parameterization of the Arctic plant functional type (PFT) in ESMs. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. Most ESMs use a derivation of the FvCB model to calculate gross primary productivity. Two key parameters required by the FvCB model are an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max) and the maximum rate of electron transport (Jmax). In ESMs the parameter Vc,max is usually fixed for a given PFT. Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max for the Arctic PFT in these models relies on small data sets and unjustified assumptions. We examined the derivation of Vc,max and Jmax in current Arctic PFTs and estimated Vc,max and Jmax for 7 species representing both dominant vegetation and key Arctic PFTs growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max currently used to represent Arctic PFTs in ESMs are 70% lower than the values we measured in these species. Examination of the derivation of Vc,max in ESMs identified that the cause of the relatively low Vc,max value was the result of underestimating both the leaf N content and the investment of that N in Rubisco. Contemporary temperature response functions for Vc,max also appear to underestimate Vc,max at low temperature. ESMs typically use a single multiplier (JVratio) to convert Vc,max to Jmax for all PFTs. We found that the JVratio of Arctic plants is higher than current estimates suggesting that the Arctic PFT will be more responsive to rising carbon dioxide than currently projected. Our data suggest that the Arctic tundra has a much greater capacity for CO2 uptake, particularly at low temperature, and will be more CO2 responsive than is currently represented in ESMs.
Holdys, Joanna; Gronek, Piotr; Kryściak, Jakub; Stanisławski, Daniel
2013-01-01
Uncoupling proteins 2 and 3 (UCP2 and UCP3) as mitochondrial electron transporters are involved in regulation of ATP production and energy dissipation as heat. Energy efficiency plays an important role in physical performance, especially in aerobic fitness. The aim of this study was to examine the association between maximal oxygen uptake and genetic variants of the UCP2 and UCP3 genes. The studies were carried out in a group of 154 men and 85 women, professional athletes representing various sports and fitness levels and students of the University of Physical Education in Poznań. Physiological and molecular procedures were used, i.e. direct measurement of maximum oxygen uptake (VO₂max) and analysis of an insertion/deletion (I/D) polymorphism in the 3'untranslated region of exon 8 of the UCP2 gene and a C>T substitution in exon 5 (Y210Y) of the UCP3 gene. No statistically significant associations were found, only certain trends. Insertion allele (I) of the I/D UCP2 and the T allele of the UCP3 gene were favourable in obtaining higher VO₂max level and might be considered as endurance-related alleles.
VO(2max) and Microgravity Exposure: Convective versus Diffusive O(2) Transport.
Ade, Carl J; Broxterman, Ryan M; Barstow, Thomas J
2015-07-01
Exposure to a microgravity environment decreases the maximal rate of O2 uptake (VO(2max)) in healthy individuals returning to a gravitational environment. The magnitude of this decrease in VO(2max) is, in part, dependent on the duration of microgravity exposure, such that long exposure may result in up to a 38% decrease in VO(2max). This review identifies the components within the O(2) transport pathway that determine the decrease in postmicrogravity VO(2max) and highlights the potential contributing physiological mechanisms. A retrospective analysis revealed that the decline in VO(2max) is initially mediated by a decrease in convective and diffusive O(2) transport that occurs as the duration of microgravity exposure is extended. Mechanistically, the attenuation of O(2) transport is the combined result of a deconditioning across multiple organ systems including decreases in total blood volume, red blood cell mass, cardiac function and mass, vascular function, skeletal muscle mass, and, potentially, capillary hemodynamics, which become evident during exercise upon re-exposure to the head-to-foot gravitational forces of upright posture on Earth. In summary, VO(2max) is determined by the integration of central and peripheral O(2) transport mechanisms, which, if not maintained during microgravity, will have a substantial long-term detrimental impact on space mission performance and astronaut health.
Pickett, Craig W; Nosaka, Kazunori; Zois, James; Hopkins, Will G; J, Anthony; Blazevich
2017-12-27
Current training and monitoring methods in sprint kayaking are based on the premise that upper-body muscular strength and aerobic power are both important for performance, but limited evidence exists to support this premise in high-level athletes. Relationships between measures of strength, maximal oxygen uptake (VO2max) and 200-m race times in kayakers competing at national-to-international levels were examined. Data collected from Australian Canoeing training camps and competitions for 7 elite, 7 national and 8 club level male sprint kayakers were analyzed for relationships between maximal isoinertial strength (3-RM bench press, bench row, chin-up and deadlift), VO2max on a kayak ergometer, and 200-m race time. Correlations between race time and bench press, bench row, chin-up, and VO2max were -0.80, -0.76, -0.73, -0.02 and 0.71, respectively (90% confidence limits ∼±0.17). The multiple correlation coefficient for 200-m race time with bench press and VO2max was 0.84. Errors in prediction of 200-m race time in regression analyses were extremely large (∼4%) in relation to the smallest important change of 0.3%. However, from the slopes of the regressions, the smallest important change could be achieved with a 1.4% (±0.5%) change in bench-press strength and a 0.9% (±0.5%) change in VO2max. Substantial relationships were found between upper-body strength or aerobic power and 200-m performances. These measures may not accurately predict individual performance times, but would be practicable for talent identification purposes. Training aimed at improving upper-body strength or aerobic power in lowerperforming athletes could also enhance the performance in 200-m kayak sprints.
McGavock, Jonathan M.; Hastings, Jeffrey L.; Snell, Peter G.; McGuire, Darren K.; Pacini, Eric L.; Mitchell, Jere H.
2009-01-01
Background In 1966, five 20-year-old men underwent a comprehensive physiological evaluation of the capacity for adaptation of the cardiovascular system in response to 3 weeks of bed rest and 8 weeks of heavy endurance training; these same participants were reevaluated before and after training at the age of 50. The aim of the present study was to reexamine these same men 40 years following the original assessments. Methods and Results In all three studies, minute ventilation and expired gases were analyzed during exercise testing with Douglas bag collection. Cardiac output (CO) was determined using the acetylene rebreathing technique. Compared with the original 30-year interval, the decline in maximal oxygen uptake (VO2max) (−11% vs −25%), maximal CO (+6% vs −11%), and maximal stroke volume (+10% vs −10%) were greater between 50 and 60 years of age. The annualized decline in VO2max (55 mL/min/y) between ages 50 and 60 was approximately fourfold higher than the decline between 20 and 50 years (12 mL/min/y). Conclusions In the original five participants of the Dallas Bed Rest and Training Study, VO2max declined after 40 years of living due to a balanced decrease in central and peripheral determinants of oxygen uptake. The rate of decline in VO2max and its components accelerated after the age of 50 years secondary to age and clinical comorbidities. The net proportional decline in VO2max for a period of 40 years of life was comparable with that experienced after 3 weeks of strict bed rest at the age of 20 (27% vs 26%, respectively). PMID:19196908
Denadai, Benedito S; Ortiz, Marcelo J; Greco, Camila C; de Mello, Marco T
2006-12-01
The objective of this study was to analyze the effect of two different high-intensity interval training (HIT) programs on selected aerobic physiological indices and 1500 and 5000 m running performance in well-trained runners. The following tests were completed (n=17): (i) incremental treadmill test to determine maximal oxygen uptake (VO2 max), running velocity associated with VO2 max (vVO2 max), and the velocity corresponding to 3.5 mmol/L of blood lactate concentration (vOBLA); (ii) submaximal constant-intensity test to determine running economy (RE); and (iii) 1500 and 5000 m time trials on a 400 m track. Runners were then randomized into 95% vVO2 max or 100% vVO2 max groups, and undertook a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO2 max, respectively) and 4 submaximal run sessions per week. Runners were retested on all parameters at the completion of the training program. The VO2 max values were not different after training for both groups. There was a significant increase in post-training vVO2 max, RE, and 1500 m running performance in the 100% vVO2 max group. The vOBLA and 5000 m running performance were significantly higher after the training period for both groups. We conclude that vOBLA and 5000 m running performance can be significantly improved in well-trained runners using a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO2 max) and 4 submaximal run sessions per week. However, the improvement in vVO2 max, RE, and 1500 m running performance seems to be dependent on the HIT program at 100% vVO2 max.
Alcohol ADME in primates studied with positron emission tomography.
Li, Zizhong; Xu, Youwen; Warner, Don; Volkow, Nora D
2012-01-01
The sensitivity to the intoxicating effects of alcohol as well as its adverse medical consequences differ markedly among individuals, which reflects in part differences in alcohol's absorption, distribution, metabolism, and elimination (ADME) properties. The ADME of alcohol in the body and its relationship with alcohol's brain bioavailability, however, is not well understood. The ADME of C-11 labeled alcohol, CH(3) (11)CH(2)OH, 1 and C-11 and deuterium dual labeled alcohol, CH(3) (11)CD(2)OH, 2 in baboons was compared based on the principle that C-D bond is stronger than C-H bond, thus the reaction is slower if C-D bond breaking occurs in a rate-determining metabolic step. The following ADME parameters in peripheral organs and brain were derived from time activity curve (TAC) of positron emission tomography (PET) scans: peak uptake (C(max)); peak uptake time (T(max)), half-life of peak uptake (T(1/2)), the area under the curve (AUC(60 min)), and the residue uptake (C(60 min)). For 1 the highest uptake occurred in the kidney whereas for 2 it occurred in the liver. A deuterium isotope effect was observed in the kidneys in both animals studied and in the liver of one animal but not the other. The highest uptake for 1 and 2 in the brain was in striatum and cerebellum but 2 had higher uptake than 1 in all brain regions most evidently in thalamus and cingulate. Alcohol's brain uptake was significantly higher when given intravenously than when given orally and also when the animal was pretreated with a pharmacological dose of alcohol. The study shows that alcohol metabolism in peripheral organs had a large effect on alcohol's brain bioavailability. This study sets the stage for clinical investigation on how genetics, gender and alcohol abuse affect alcohol's ADME and its relationship to intoxication and medical consequences.
Physiological and biological factors associated with a 24 h treadmill ultra-marathon performance.
Millet, G Y; Banfi, J C; Kerherve, H; Morin, J B; Vincent, L; Estrade, C; Geyssant, A; Feasson, L
2011-02-01
The purpose of this study was to examine the physiological and biological factors associated with ultra-endurance performance. Fourteen male runners volunteered to run on a treadmill as many kilometers as possible over a 24-h period (24TR). Maximal oxygen uptake (VO(2max)), velocity associated with VO(2max)(VO(2max)) and running economy (RE) at 8 km/h were measured. A muscle biopsy was also performed in the vastus lateralis muscle. The subjects ran 149.2 ± 15.7 km in 18 h 39 ± 41 min of effective attendance on the treadmill, corresponding to 39.4 ± 4.2% of . Standard multiple-regression analysis showed that performance was significantly (R(2) = 0.82; P = 0.005) related to VO(2max) and specific endurance, i.e. the average speed sustained over the 24TR expressed in . VO(2max) was associated with a high capillary tortuosity (R(2) = 0.66; P = 0.01). Specific endurance was significantly related to RE and citrate synthase activity. It is concluded that a high VO(2max) and an associated developed capillary network are essential for ultra-endurance running performance. The ability to maintain a high %VO(2max) over a 24TR is another factor associated with performance and is mainly related to RE and high mitochondrial oxidative capacity in the vastus lateralis. © 2009 John Wiley & Sons A/S.
Kaewput, Chalermrat; Suppiah, Subapriya; Vinjamuri, Sobhan
2018-01-01
The aim of our study was to correlate tumor uptake of 68 Ga-DOTA-NOC positron emission tomography/computed tomography (PET/CT) with the pathological grade of neuroendocrine tumors (NETs). 68 Ga-DOTA-NOC PET/CT examinations in 41 patients with histopathologically proven NETs were included in the study. Maximum standardized uptake value (SUV max ) and averaged SUV SUV mean of "main tumor lesions" were calculated for quantitative analyses after background subtraction. Uptake on main tumor lesions was compared and correlated with the tumor histological grade based on Ki-67 index and pathological differentiation. Classification was performed into three grades according to Ki-67 levels; low grade: Ki-67 <2, intermediate grade: Ki-67 3-20, and high grade: Ki-67 >20. Pathological differentiation was graded into well- and poorly differentiated groups. The values were compared and evaluated for correlation and agreement between the two parameters was performed. Our study revealed negatively fair agreement between SUV max of tumor and Ki-67 index ( r = -0.241) and negatively poor agreement between SUV mean of tumor and Ki-67 index ( r = -0.094). SUV max of low-grade, intermediate-grade, and high-grade Ki-67 index is 26.18 ± 14.56, 30.71 ± 24.44, and 6.60 ± 4.59, respectively. Meanwhile, SUV mean of low-grade, intermediate-grade, and high-grade Ki-67 is 8.92 ± 7.15, 9.09 ± 5.18, and 3.00 ± 1.38, respectively. As expected, there was statistically significant decreased SUV max and SUV mean in high-grade tumors (poorly differentiated NETs) as compared with low- and intermediate-grade tumors (well-differentiated NETs). SUV of 68 Ga-DOTA-NOC PET/CT is not correlated with histological grade of NETs. However, there was statistically significant decreased tumor uptake of 68 Ga-DOTA-NOC in poorly differentiated NETs as compared with the well-differentiated group. As a result of this pilot study, we confirm that the lower tumor uptake of 68 Ga-DOTA-NOC may be associated with aggressive behavior and may, therefore, result in poor prognosis.
Wakefield, Benjamin R; Glaister, Mark
2009-12-01
The purpose of this study was to examine the effect of work-interval duration (WID) and intensity on the time spent at, or above, 95% VO2max (T95 VO2max) during intermittent bouts of supramaximal exercise. Over a 5-week period, 7 physically active men with a mean (+/-SD) age, height, body mass, and VO2max of 22 +/- 5 years, 181.5 +/- 5.6 cm, 86.4 +/- 11.4 kg, and 51.5 +/- 1.5 ml.kg-1.min-1, respectively, attended 7 testing sessions. After completing a submaximal incremental test on a treadmill to identify individual oxygen uptake/running velocity relationships, subjects completed a maximal incremental test to exhaustion to VO2max and subsequently (from the aforementioned relationship) the minimum velocity required to elicit VO2max (vVO2max). In a random order, subjects then carried out 3 intermittent runs to exhaustion at both 105% and 115% vVO2max. Each test used a different WID (20 s, 25 s, or 30 s) interspersed with 20-second passive recovery periods. Results revealed no significant difference in T95 vVO2max for intermittent runs at 105% versus 115% vVO2max (p = 0.142). There was, however, a significant effect (p < 0.001) of WID on T95 VO2max, with WIDs of 30 seconds enabling more time relative to WIDs of 20 seconds (p = 0.018) and 25 seconds (p = 0.009). Moreover, there was an interaction between intensity and duration such that the effect of WID was magnified at the lower exercise intensity (p = 0.046). In conclusion, despite a number of limitations, the results of this investigation suggest that exercise intensities of approximately 105% vVO2max combined with WIDs greater than 25 seconds provide the best way of optimizing T95 VO2max when using fixed 20-second stationary rest periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Vimoj J.; MacRae, Robert; Ottawa Hospital Research Institute, Ottawa, Ontario
2014-02-01
Purpose: The aim of this study was to determine whether the preradiation maximum standardized uptake value (SUV{sub max}) of the primary tumor for [{sup 18}F]-fluoro-2-deoxy-glucose positron emission tomography (FDG-PET) has a prognostic significance in patients with Stage T1 or T2N0 non-small cell lung cancer (NSCLC) treated with curative radiation therapy, whether conventional or stereotactic body radiation therapy (SBRT). Methods and Materials: Between January 2007 and December 2011, a total of 163 patients (180 tumors) with medically inoperable histologically proven Stage T1 or T2N0 NSCLC and treated with radiation therapy (both conventional and SBRT) were entered in a research ethics boardmore » approved database. All patients received pretreatment FDG-PET / computed tomography (CT) at 1 institution with consistent acquisition technique. The medical records and radiologic images of these patients were analyzed. Results: The overall survival at 2 years and 3 years for the whole group was 76% and 67%, respectively. The mean and median SUV{sub max} were 8.1 and 7, respectively. Progression-free survival at 2 years with SUV{sub max} <7 was better than that of the patients with tumor SUV{sub max} ≥7 (67% vs 51%; P=.0096). Tumors with SUV{sub max} ≥7 were associated with a worse regional recurrence-free survival and distant metastasis-free survival. In the multivariate analysis, SUV{sub max} ≥7 was an independent prognostic factor for distant metastasis-free survival. Conclusion: In early-stage NSCLC managed with radiation alone, patients with SUV{sub max} ≥7 on FDG-PET / CT scan have poorer outcomes and high risk of progression, possibly because of aggressive biology. There is a potential role for adjuvant therapies for these high-risk patients with intent to improve outcomes.« less
Running Performance, VO2max, and Running Economy: The Widespread Issue of Endogenous Selection Bias.
Borgen, Nicolai T
2018-05-01
Studies in sport and exercise medicine routinely use samples of highly trained individuals in order to understand what characterizes elite endurance performance, such as running economy and maximal oxygen uptake VO 2max . However, it is not well understood in the literature that using such samples most certainly leads to biased findings and accordingly potentially erroneous conclusions because of endogenous selection bias. In this paper, I review the current literature on running economy and VO 2max , and discuss the literature in light of endogenous selection bias. I demonstrate that the results in a large part of the literature may be misleading, and provide some practical suggestions as to how future studies may alleviate endogenous selection bias.
Leon, Arthur S; Togashi, Kenji; Rankinen, Tuomo; Després, Jean-Piérre; Rao, D C; Skinner, James S; Wilmore, Jack H; Bouchard, Claude
2004-01-01
The relationship of apolipoprotein E (apo E) genotypes to plasma lipid and maximal oxygen uptake (Vo(2max)) was studied in the sedentary state and after a supervised exercise training program in black and white men and women. At baseline, the apo E 2/3 genotype was associated with the lowest, and apo E 3/4 and E4/4 with the highest low-density liporpotein (LDL) cholesterol and apo B levels in men and women of both races, while female (not male) carriers of apo E3 had higher high-density lipoprotein (HDL) cholesterol levels than carriers of other genotypes. Very-low-density lipoprotein (VLDL) cholesterol and triglyceride levels were significantly higher in carriers of both apo E2 and apo E4 in white men only. Racial and sex differences were noted in lipid responses to exercise training across genotypes with a significantly greater increase in HDL cholesterol observed only in white female carriers of apo E 2/3 and E3/3, as compared to apo E4/4. Apo E polymorphism was not found to be associated with Vo(2max) levels either in the sedentary state nor the Vo(2max) response to exercise training, contrary to previous reports.
Dandanell, Sune; Præst, Charlotte Boslev; Søndergård, Stine Dam; Skovborg, Camilla; Dela, Flemming; Larsen, Steen; Helge, Jørn Wulff
2017-04-01
Maximal fat oxidation (MFO) and the exercise intensity that elicits MFO (Fat Max ) are commonly determined by indirect calorimetry during graded exercise tests in both obese and normal-weight individuals. However, no protocol has been validated in individuals with obesity. Thus, the aims were to develop a graded exercise protocol for determination of Fat Max in individuals with obesity, and to test validity and inter-method reliability. Fat oxidation was assessed over a range of exercise intensities in 16 individuals (age: 28 (26-29) years; body mass index: 36 (35-38) kg·m -2 ; 95% confidence interval) on a cycle ergometer. The graded exercise protocol was validated against a short continuous exercise (SCE) protocol, in which Fat Max was determined from fat oxidation at rest and during 10 min of continuous exercise at 35%, 50%, and 65% of maximal oxygen uptake. Intraclass and Pearson correlation coefficients between the protocols were 0.75 and 0.72 and within-subject coefficient of variation (CV) was 5 (3-7)%. A Bland-Altman plot revealed a bias of -3% points of maximal oxygen uptake (limits of agreement: -12 to 7). A tendency towards a systematic difference (p = 0.06) was observed, where Fat Max occurred at 42 (40-44)% and 45 (43-47)% of maximal oxygen uptake with the graded and the SCE protocol, respectively. In conclusion, there was a high-excellent correlation and a low CV between the 2 protocols, suggesting that the graded exercise protocol has a high inter-method reliability. However, considerable intra-individual variation and a trend towards systematic difference between the protocols reveal that further optimization of the graded exercise protocol is needed to improve validity.
Physical activity and maximal oxygen uptake in adults with Prader-Willi syndrome.
Gross, Itai; Hirsch, Harry J; Constantini, Naama; Nice, Shachar; Pollak, Yehuda; Genstil, Larry; Eldar-Geva, Talia; Tsur, Varda Gross
2017-03-16
Prader-Willi Syndrome (PWS) is the most common genetic syndrome causing life-threatening obesity. Strict adherence to a low-calorie diet and regular physical activity are needed to prevent weight gain. Direct measurement of maximal oxygen uptake (VO 2 max), the "gold standard" for assessing aerobic exercise capacity, has not been previously described in PWS. Assess aerobic capacity by direct measurement of VO 2 max in adults with PWS, and in age and BMI-matched controls (OC), and compare the results with values obtained by indirect prediction methods. Seventeen individuals (12 males) age: 19-35 (28.6 ± 4.9) years, BMI: 19.4-38.1 (27.8 ± 5) kg/m 2 with genetically confirmed PWS who exercise daily, and 32 matched OC (22 males) age: 19-36 (29.3 ± 5.2) years, BMI: 21.1-48.1 (26.3 ± 4.9) kg/m 2 . All completed a medical questionnaire and performed strength and flexibility tests. VO 2 max was determined by measuring oxygen consumption during a graded exercise test on a treadmill. VO 2 max (24.6 ± 3.4 vs 46.5 ± 12.2 ml/kg/min, p < 0.001) and ventilatory threshold (20 ± 2 and 36.2 ± 10.5 ml/kg/min, p < 0.001), maximal strength of both hands (36 ± 4 vs 91.4 ± 21.2 kg, p < 0.001), and flexibility (15.2 ± 9.5 vs 26 ± 11.1 cm, p = 0.001) were all significantly lower for PWS compared to OC. Predicted estimates and direct measurements of VO 2 max were almost identical for the OC group (p = 0.995), for the PWS group, both methods for estimating VO 2 max gave values which were significantly greater (p < 0.001) than results obtained by direct measurements. Aerobic capacity, assessed by direct measurement of VO 2 max, is significantly lower in PWS adults, even in those who exercise daily, compared to OCs. Indirect estimates of VO 2 max are accurate for OC, but unreliable in PWS. Direct measurement of VO 2 should be used for designing personal training programs and in clinical studies of exercise in PWS.
Pisor, Anne C.; Gurven, Michael; Blackwell, Aaron D.; Kaplan, Hillard; Yetish, Gandhi
2014-01-01
Objectives This study explores whether cardiovascular fitness levels and senescent decline are similar in the Tsimane of Bolivia and Canadians, as well as other subsistence and industrialized populations. Among Tsimane, we examine whether morbidity predicts lower levels and faster decline of cardiovascular fitness, or whether their lifestyle (e.g., high physical activity) promotes high levels and slow decline. Alternatively, high activity levels and morbidity might counterbalance such that Tsimane fitness levels and decline are similar to those in industrialized populations. Methods Maximal oxygen uptake (VO2max) was estimated using a step test heart rate method for 701 participants. We compared these estimates to the Canadian Health Measures Survey and previous studies in industrialized and subsistence populations. We evaluated whether health indicators and proxies for market integration were associated with VO2max levels and rate of decline for the Tsimane. Results The Tsimane have significantly higher levels of VO2max and slower rates of decline than Canadians; initial evidence suggests differences in VO2max levels between other subsistence and industrialized populations. Low hemoglobin predicts low VO2max for Tsimane women while helminth infection predicts high VO2max for Tsimane men, though results might be specific to the VO2max scaling parameter used. No variables tested interact with age to moderate decline. Conclusions The Tsimane demonstrate higher levels of cardiovascular fitness than industrialized populations, but levels similar to other subsistence populations. The high VO2max of Tsimane is consistent with their high physical activity and few indicators of cardiovascular disease, measured in previous studies. PMID:24022886
Human mitochondrial haplogroup H: the highest VO2max consumer--is it a paradox?
Martínez-Redondo, Diana; Marcuello, Ana; Casajús, José A; Ara, Ignacio; Dahmani, Yahya; Montoya, Julio; Ruiz-Pesini, Eduardo; López-Pérez, Manuel J; Díez-Sánchez, Carmen
2010-03-01
Mitochondrial background has been demonstrated to influence maximal oxygen uptake (VO(2max), in mLkg(-1)min(-1)), but this genetic influence can be compensated for by regular exercise. A positive correlation among electron transport chain (ETC) coupling, ATP and reactive oxygen species (ROS) production has been established, and mitochondrial variants have been reported to show differences in their ETC performance. In this study, we examined in detail the VO(2max) differences found among mitochondrial haplogroups. We recruited 81 healthy male Spanish Caucasian individuals and determined their mitochondrial haplogroup. Their VO(2max) was determined using incremental cycling exercise (ICE). VO(2max) was lower in J than in non-J haplogroup individuals (P=0.04). The H haplogroup was responsible for this difference (VO(2max); J vs. H; P=0.008) and this group also had significantly higher mitochondrial oxidative damage (mtOD) than the J haplogroup (P=0.04). In agreement with these results, VO(2max) and mtOD were positively correlated (P=0.01). Given that ROS production is the major contributor to mtOD and consumes four times more oxygen per electron than the ETC, our results strongly suggest that ROS production is responsible for the higher VO(2max) found in the H variant. These findings not only contribute to a better understanding of the mechanisms underneath VO(2max), but also help to explain some reported associations between mitochondrial haplogroups and mtOD with longevity, sperm motility, premature aging and susceptibility to different pathologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Carryn M., E-mail: carryn-anderson@uiowa.edu; Chang, Tangel; Graham, Michael M.
Purpose: To evaluate dynamic [{sup 18}F]-fluorodeoxyglucose (FDG) uptake methodology as a post–radiation therapy (RT) response assessment tool, potentially enabling accurate tumor and therapy-related inflammation differentiation, improving the posttherapy value of FDG–positron emission tomography/computed tomography (FDG-PET/CT). Methods and Materials: We prospectively enrolled head-and-neck squamous cell carcinoma patients who completed RT, with scheduled 3-month post-RT FDG-PET/CT. Patients underwent our standard whole-body PET/CT scan at 90 minutes, with the addition of head-and-neck PET/CT scans at 60 and 120 minutes. Maximum standardized uptake values (SUV{sub max}) of regions of interest were measured at 60, 90, and 120 minutes. The SUV{sub max} slope between 60 and 120 minutes and changemore » of SUV{sub max} slope before and after 90 minutes were calculated. Data were analyzed by primary site and nodal site disease status using the Cox regression model and Wilcoxon rank sum test. Outcomes were based on pathologic and clinical follow-up. Results: A total of 84 patients were enrolled, with 79 primary and 43 nodal evaluable sites. Twenty-eight sites were interpreted as positive or equivocal (18 primary, 8 nodal, 2 distant) on 3-month 90-minute FDG-PET/CT. Median follow-up was 13.3 months. All measured SUV endpoints predicted recurrence. Change of SUV{sub max} slope after 90 minutes more accurately identified nonrecurrence in positive or equivocal sites than our current standard of SUV{sub max} ≥2.5 (P=.02). Conclusions: The positive predictive value of post-RT FDG-PET/CT may significantly improve using novel second derivative analysis of dynamic triphasic FDG-PET/CT SUV{sub max} slope, accurately distinguishing tumor from inflammation on positive and equivocal scans.« less
Does respiratory muscle training increase physical performance?
Sperlich, Billy; Fricke, Hannes; de Marées, Markus; Linville, John W; Mester, Joachim
2009-09-01
Special force units and military personnel undergo demanding physical exercise and might benefit from high-intensity respiratory muscle training (RMT) by increasing their endurance performance. This study examined the effects of a 6-week high-intensity RMT on running performance and oxygen uptake (VO2max) in a group of German Special Force Squad members. 17 participants were randomly assigned to a training or control group. Baseline and post-testing included a ramp test, as well as an incremental test on a treadmill, performed to physical exhaustion. VO2, respiratory exchange ratio, and heart rate were measured breath by breath. Furthermore, maximum running speed (V(max)), 4 mmol x 1(-1) lactate threshold (V4) and perception of respiratory effort were determined. During pulmonary testing, sustained maximum inspiratory and expiratory pressure (PI(max) and PE(max)) were obtained. RMT was performed daily at approximately 90% PI(max) for 6 weeks with 2 x 30 breath cycles using an Ultrabreathe lung trainer. No statistical differences were detected between the groups for any parameter after RMT. High-intensity RMT did not show any benefits on VO2max and endurance performance and are unlikely to be of benefit to military or paramilitary training programs for an increase in endurance performance.
Improving the representation of Arctic photosynthesis in Earth System Models
NASA Astrophysics Data System (ADS)
Rogers, A.; Serbin, S.; Sloan, V. L.; Norby, R. J.; Wullschleger, S. D.
2014-12-01
The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this models must accurately represent the terrestrial carbon cycle. Although Arctic carbon fluxes are small relative to global carbon fluxes, uncertainty is large. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis and most ESMs use a derivation of the FvCB model to calculate gross primary productivity. Two key parameters required by the FvCB model are an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max) and the maximum rate of electron transport (Jmax). In ESMs the parameter Vc,max is typically fixed for a given plant functional type (PFT). Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max in these models relies on small data sets and unjustified assumptions. We examined the derivation of Vc,max and Jmax in current Arctic PFTs and estimated Vc,max and Jmax for a range of Arctic PFTs growing on the Barrow Environmental Observatory, Barrow, AK. We found that the values of Vc,max currently used to represent Arctic plants in ESMs are 70% lower than the values we measured, and contemporary temperature response functions for Vc,max also appear to underestimate Vc,max at low temperature. ESMs typically use a single multiplier (JVratio) to convert Vc,max to Jmax, however we found that the JVratio of Arctic plants is higher than current estimates suggesting that Arctic PFTs will be more responsive to rising carbon dioxide than currently projected. In addition we are exploring remotely sensed methods to scale up key biochemical (e.g. leaf N, leaf mass area) and physiological (e.g. Vc,max and Jmax) properties that drive model representation of photosynthesis in the Arctic. Our data suggest that the Arctic tundra has a much greater capacity for CO2 uptake, particularly at low temperature, and will be more CO2 responsive than is currently represented in ESMs. As we build robust relationships between physiology and spectral signatures we hope to provide spatially and temporally resolved trait maps of key model parameters that can be ingested by new model frameworks, or used to validate emergent model properties.
VO2 attained during treadmill running: the influence of a specialist (400-m or 800-m) event.
James, David V B; Sandals, Leigh E; Draper, Stephen B; Maldonado-Martin, Sara; Wood, Dan M
2007-06-01
Previously it has been observed that, in well-trained 800-m athletes, VO2max is not attained during middle-distance running events on a treadmill, even when a race-type pacing strategy is adopted. Therefore, the authors investigated whether specialization in a particular running distance (400-m or 800-m) influences the VO2 attained during running on a treadmill. Six 400-m and six 800-m running specialists participated in the study.A 400-m trial and a progressive test to determine VO2max were completed in a counterbalanced order. Oxygen uptakes attained during the 400-m trial were compared to examine the influence of specialist event. A VO2 plateau was observed in all participants for the progressive test, demonstrating the attainment of VO2max. The VO2max values were 56.2 +/- 4.7 and 69.3 +/- 4.5 mL x kg-1 x min-1 for the 400-m- and 800-m-event specialists, respectively (P = .0003). Durations for the 400-m trial were 55.1 +/- 4.2 s and 55.8 +/- 2.3 s for the 400-m- and 800-m-event specialists, respectively. The VO2 responses achieved were 93.1% +/- 2.0% and 85.7% +/- 3.0% VO2max for the 400-m- and 800-m-event specialists, respectively (P = .001). These results demonstrate that specialist running events do appear to influence the percentage of VO2max achieved in the 400-m trial, with the 800-m specialists attaining a lower percentage of VO2max than the 400-m specialists. The 400-m specialists appear to compensate for a lower VO2max by attaining a higher percentage VO2max during a 400-m trial.
Solution and particle effects on the biosorption of heavy metals by seaweed biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leusch, A.; Holan, Z.R.; Volesky, B.
Biosorption of cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) by six fractions of particle sizes, ranging from 0.063 to 1.4 mm of dry marine algal biomass of Sargassum fluitans and Ascophyllum nodosum, is examined. Equilibrium metal uptake by larger particles was higher than that by smaller particles in the order of Pb > Cd > Cu > Co > Zn > Ni for both biomass types, with S. fluitans sorbing slightly more than A. nodosum. Uptakes of metals ranged from the highest, q{sub max} = 369 mg Pb/g (particle size 0.84-1.00 mm), to themore » low Zn and Ni uptakes, q{sub max} = 77 mg/g (size 0.84-1.00 mm) for S. fluitans. A. nodosum adsorbed metals in the range from q{sub max} = 287 mg Pg/g (particle size 0.84-1.00 mm) to q{sub max} = 73 mg Zn/g (particle size 0.84-1.00mm). Harder stipe fractions of S. fluitans demonstrated generally higher metal uptakes than the softer fractions derived from its blades (leaves). The pH dependence of the Zn uptake by S. fluitans exhibited an S-shaped curve between pH 1.5 and pH 7, with 50% of the maximum (pH 7.0) uptake at pH 3.5. Monovalent Na and K ions at higher concentrations inhibited the biosorption of Zn by S. fluitans. A significant inhibition started at 50 mM potassium chloride or sodium acetate, and at 1M the biosorption was completely blocked. 40 refs., 8 figs., 3 tabs.« less
Cardiopulmonary fitness in a sample of Malaysian population.
Singh, R; Singh, H J; Sirisinghe, R G
1989-01-01
Lung capacity and maximum oxygen uptake (VO2max) were measured directly in 167 healthy males, from all the main races in Malaysia. Their ages ranged from 13 to 59 years. They were divided into five age groups (A to E), ranging from the second to the sixth decade. Lung capacities were determined using a dry spirometer and VO2max was taken as the maximum rate of oxygen consumption during exhaustive exercise on a cycle ergometer. Mean forced vital capacity (FVC) was 3.3 +/- 0.5 l and it correlated negatively with age. Mean VO2max was 3.2 +/- 0.2 l.min-1 (56.8 +/- 3.5 ml.kg-1.min-1) in Group A (13-19 years) compared to 1.7 +/- 0.2 l.min-1 (28.9 +/- 2.9 ml.kg-1.min-1) in Group E (50-59 years). Regression analysis revealed an age-related decline in VO2max of 0.77 ml.kg-1.min-1.year-1. Multiple regression of the data gave the following equations for the prediction of an individual's VO2max: VO2max (l.min-1) = 1.99 + 0.035 (weight)-0.04 (age), VO2max (ml.kg-1.min-1) = 67.7-0.77 (age), where age is in years, weight in kg. In terms of VO2max as an index of cardiopulmonary performance. Malaysians have a relatively lower capacity when related to the Swedish norms or even to those of some Chilean workers. Malaysians were, however, within the average norms of the American Heart Association's recommendations. Age-related decline in VO2max was also somewhat higher in the Malaysians.
Maximum Oxygen Uptake During and After Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Moore, Alan D., Jr.; Evetts, Simon N.; Feiveson, Alan H.; Lee, Stuart M. C.; McCleary. Frank A.; Platts, Steven H.
2010-01-01
Decreased maximum oxygen consumption (VO2max) during and after space flight may impair a crewmember s ability to perform mission-critical work that is high intensity and/or long duration in nature (Human Research Program Integrated Research Plan Risk 2.1.2: Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity). When VO2max was measured in Space Shuttle experiments, investigators reported that it did not change during short-duration space flight but decreased immediately after flight. Similar conclusions, based on the heart rate (HR) response of Skylab crewmembers, were made previously concerning long-duration space flight. Specifically, no change in the in-flight exercise HR response in 8 of 9 Skylab crewmembers indicated that VO2max was maintained during flight, but the elevated exercise HR after flight indicated that VO2max was decreased after landing. More recently, a different pattern of in-flight exercise HR response, and assumed changes in VO2max, emerged from routine testing of International Space Station (ISS) crewmembers. Most ISS crewmembers experience an elevated in-flight exercise HR response early in their mission, with a gradual return toward preflight levels as the mission progresses. Similar to previous reports, exercise HR is elevated after ISS missions and returns to preflight levels by 30 days after landing. VO2max has not been measured either during or after long-duration space flight. The purposes of the ISS VO2max experiment are (1) to measure VO2max during and after long-duration spaceflight, and (2) to determine if submaximal exercise test results can be used to accurately estimate VO 2max.
Burtscher, Martin; Gatterer, Hannes
2013-04-01
Anthropometric and training data have been reported as statistically significant predictors of race performance in endurance events. However, it is well established that physiological characteristics, i.e., maximal oxygen uptake (VO2max), the use of a high percentage of VO2max during sustained exercise, and work efficiency are predominant predictors of performance in those events. Thus, the essential issue is whether the anthropometric and training data give additional predictive power beyond these other measures.
Edvardsen, Elisabeth; Hem, Erlend; Anderssen, Sigmund A.
2014-01-01
Objective To describe different end criteria for reaching maximal oxygen uptake (VO2max) during a continuous graded exercise test on the treadmill, and to explore the manner by which different end criteria have an impact on the magnitude of the VO2max result. Methods A sample of 861 individuals (390 women) aged 20–85 years performed an exercise test on a treadmill until exhaustion. Gas exchange, heart rate, blood lactate concentration and Borg Scale6–20 rating were measured, and the impact of different end criteria on VO2max was studied;VO2 leveling off, maximal heart rate (HRmax), different levels of respiratory exchange ratio (RER), and postexercise blood lactate concentration. Results Eight hundred and four healthy participants (93%) fulfilled the exercise test until voluntary exhaustion. There were no sex-related differences in HRmax, RER, or Borg Scale rating, whereas blood lactate concentration was 18% lower in women (P<0.001). Forty-two percent of the participants achieved a plateau in VO2; these individuals had 5% higher ventilation (P = 0.033), 4% higher RER (P<0.001), and 5% higher blood lactate concentration (P = 0.047) compared with participants who did not reach a VO2 plateau. When using RER ≥1.15 or blood lactate concentration ≥8.0 mmol•L–1, VO2max was 4% (P = 0.012) and 10% greater (P<0.001), respectively. A blood lactate concentration ≥8.0 mmol•L–1 excluded 63% of the participants in the 50–85-year-old cohort. Conclusions A range of typical end criteria are presented in a random sample of subjects aged 20–85 years. The choice of end criteria will have an impact on the number of the participants as well as the VO2max outcome. Suggestions for new recommendations are given. PMID:24454832
Zullo, Letizia; Buschiazzo, Ambra; Massollo, Michela; Riondato, Mattia; Democrito, Alessia; Marini, Cecilia; Benfenati, Fabio; Sambuceti, Gianmario
2018-03-09
This study aimed at developing a method for administration of 18 F-Fludeoxyglucose ( 18 F-FDG) in the common octopus and micro-positron emission tomography (micro-PET) bio-distribution assay for the characterization of glucose metabolism in body organs and regenerating tissues. Methods: Seven animals (two with one regenerating arm) were anesthetized with 3.7% MgCl 2 in artificial seawater. Each octopus was injected with 18-30 MBq of isosmotic 18 F-FDG by accessing the branchial heart or the anterior vena cava. After an uptake time of ~50 minutes, the animal was sacrificed, placed on a bed of a micro-PET scanner and submitted to 10 min static 3-4 bed acquisitions to visualize the entire body. To confirm the interpretation of images, internal organs of interest were collected. The level of radioactivity of each organ was counted with a γ-counter. Results: Micro-PET scanning documented a good 18 F-FDG full body distribution following vena cava administration. A high mantle mass radioactivity facing a relatively low tracer uptake in the arms was revealed. In particular, the following organs were clearly identified and measured for their uptake: brain (standardized uptake value, SUV max of 6.57±1.86), optic lobes (SUV max of 7.59±1.66) and arms (SUV max of 1.12±0.06). Interestingly, 18 F-FDG uptake was up to threefold higher in the regenerating arm stumps at the level of highly proliferating areas. Conclusion: This study represents a stepping-stone over the use of non-invasive functional techniques to address questions relevant to invertebrate neuroscience and regenerative medicine. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
The Effects of a Duathlon Simulation on Ventilatory Threshold and Running Economy
Berry, Nathaniel T.; Wideman, Laurie; Shields, Edgar W.; Battaglini, Claudio L.
2016-01-01
Multisport events continue to grow in popularity among recreational, amateur, and professional athletes around the world. This study aimed to determine the compounding effects of the initial run and cycling legs of an International Triathlon Union (ITU) Duathlon simulation on maximal oxygen uptake (VO2max), ventilatory threshold (VT) and running economy (RE) within a thermoneutral, laboratory controlled setting. Seven highly trained multisport athletes completed three trials; Trial-1 consisted of a speed only VO2max treadmill protocol (SOVO2max) to determine VO2max, VT, and RE during a single-bout run; Trial-2 consisted of a 10 km run at 98% of VT followed by an incremental VO2max test on the cycle ergometer; Trial-3 consisted of a 10 km run and 30 km cycling bout at 98% of VT followed by a speed only treadmill test to determine the compounding effects of the initial legs of a duathlon on VO2max, VT, and RE. A repeated measures ANOVA was performed to determine differences between variables across trials. No difference in VO2max, VT (%VO2max), maximal HR, or maximal RPE was observed across trials. Oxygen consumption at VT was significantly lower during Trial-3 compared to Trial-1 (p = 0.01). This decrease was coupled with a significant reduction in running speed at VT (p = 0.015). A significant interaction between trial and running speed indicate that RE was significantly altered during Trial-3 compared to Trial-1 (p < 0.001). The first two legs of a laboratory based duathlon simulation negatively impact VT and RE. Our findings may provide a useful method to evaluate multisport athletes since a single-bout incremental treadmill test fails to reveal important alterations in physiological thresholds. Key points Decrease in relative oxygen uptake at VT (ml·kg-1·min-1) during the final leg of a duathlon simulation, compared to a single-bout maximal run. We observed a decrease in running speed at VT during the final leg of a duathlon simulation; resulting in an increase of more than 2 minutes to complete a 5 km run. During our study, highly trained athletes were unable to complete the final 5 km run at the same intensity that they completed the initial 10 km run (in a laboratory setting). A better understanding, and determination, of training loads during multisport training may help to better periodize training programs; additional research is required. PMID:27274661
Astorino, Todd A; deRevere, Jamie; Anderson, Theodore; Kellogg, Erin; Holstrom, Patrick; Ring, Sebastian; Ghaseb, Nicholas
2018-06-19
Completion of high-intensity interval training (HIIT) leads to significant increases in maximal oxygen uptake (VO 2max ) and oxidative capacity. However, individual responses to HIIT have been identified as approximately 20-40% of individuals show no change in VO 2max , which may be due to the relatively homogeneous approach to implementing HIIT. This study tested the effects of HIIT prescribed using ventilatory threshold (VT) on changes in VO 2max and cycling performance. Fourteen active men and women (age and VO 2max = 27 ± 8 year and 38 ± 4 mL/kg/min) underwent nine sessions of HIIT, and 14 additional men and women (age and VO 2max = 22 ± 3 year and 40 ± 5 mL/kg/min) served as controls. Training was performed on a cycle ergometer at a work rate equal to 130%VT and consisted of eight to ten 1 min bouts interspersed with 75 s of recovery. At baseline and post-testing, they completed progressive cycling to exhaustion to determine VO 2max , and on a separate day, a 5 mile cycling time trial. Compared to the control group, HIIT led to significant increases in VO 2max (6%, p = 0.007), cycling performance (2.5%, p = 0.003), and absolute VT (9 W, p = 0.005). However, only 57% of participants revealed meaningful increases in VO 2max and cycling performance in response to training, and two showed no change in either outcome. A greater volume of HIIT may be needed to maximize the training response for all individuals.
Critical evaluation of oxygen-uptake assessment in swimming.
Sousa, Ana; Figueiredo, Pedro; Pendergast, David; Kjendlie, Per-Ludvik; Vilas-Boas, João P; Fernandes, Ricardo J
2014-03-01
Swimming has become an important area of sport science research since the 1970s, with the bioenergetic factors assuming a fundamental performance-influencing role. The purpose of this study was to conduct a critical evaluation of the literature concerning oxygen-uptake (VO2) assessment in swimming, by describing the equipment and methods used and emphasizing the recent works conducted in ecological conditions. Particularly in swimming, due to the inherent technical constraints imposed by swimming in a water environment, assessment of VO2max was not accomplished until the 1960s. Later, the development of automated portable measurement devices allowed VO2max to be assessed more easily, even in ecological swimming conditions, but few studies have been conducted in swimming-pool conditions with portable breath-by-breath telemetric systems. An inverse relationship exists between the velocity corresponding to VO2max and the time a swimmer can sustain it at this velocity. The energy cost of swimming varies according to its association with velocity variability. As, in the end, the supply of oxygen (whose limitation may be due to central-O2 delivery and transportation to the working muscles-or peripheral factors-O2 diffusion and utilization in the muscles) is one of the critical factors that determine swimming performance, VO2 kinetics and its maximal values are critical in understanding swimmers' behavior in competition and to develop efficient training programs.
Verger, Antoine; Stoffels, Gabriele; Galldiks, Norbert; Lohmann, Philipp; Willuweit, Antje; Neumaier, Bernd; Geisler, Stefanie; Langen, Karl-Josef
2018-04-23
Cis-4-[ 18 F]fluoro-D-proline (D-cis-[ 18 F]FPro) has been shown to pass the intact blood-brain barrier and to accumulate in areas of secondary neurodegeneration and necrosis in the rat brain while uptake in experimental brain tumors is low. This pilot study explores the uptake behavior of D-cis-[ 18 F]FPro in human brain tumors after multimodal treatment. In a prospective study, 27 patients with suspected recurrent brain tumor after treatment with surgery, radiotherapy, and/or chemotherapy (SRC) were investigated by dynamic positron emission tomography (PET) using D-cis-[ 18 F]FPro (22 high-grade gliomas, one unspecified glioma, and 4 metastases). Furthermore, two patients with untreated lesions were included (one glioblastoma, one reactive astrogliosis). Data were compared with the results of PET using O-(2-[ 18 F]fluoroethyl)-L-tyrosine ([ 18 F]FET) which detects viable tumor tissue. Tracer distribution, mean and maximum lesion-to-brain ratios (LBR mean , LBR max ), and time-to-peak (TTP) of the time activity curve (TAC) of tracer uptake were evaluated. Final diagnosis was determined by histology (n = 9), clinical follow-up (n = 10), or by [ 18 F]FET PET (n = 10). D-cis-[ 18 F]FPro showed high uptake in both recurrent brain tumors (n = 11) and lesions classified as treatment-related changes (TRC) only (n = 16) (LBR mean 2.2 ± 0.7 and 2.1 ± 0.6, n.s.; LBR max 3.4 ± 1.2 and 3.2 ± 1.3, n.s.). The untreated glioblastoma and the lesion showing reactive astrogliosis exhibited low D-cis-[ 18 F]FPro uptake. Distribution of [ 18 F]FET and D-cis-[ 18 F]FPro uptake was discordant in 21/29 cases indicating that the uptake mechanisms are different. The high accumulation of D-cis-[ 18 F]FPro in pretreated brain tumors and TRC supports the hypothesis that tracer uptake is related to cell death. Further studies before and after therapy are needed to assess the potential of D-cis-[ 18 F]FPro for treatment monitoring.
Aerobic Fitness of Starter and Non-Starter Soccer Players in the Champion’s League
Paraskevas, Giorgos; Hadjicharalambous, Marios
2018-01-01
Abstract To identify individual response patterns in selected aerobic fitness variables of regular starters (ST; N = 7) and non-starters (Non-ST; N = 10), top level professional soccer players were tested for maximal oxygen uptake (VO2max), velocity at 4 mM of lactate (V4), velocity at maximal oxygen uptake (νVO2max) and oxygen pulse (O2-pulse) in July and December following consecutive periods of fixture congestion. V4 was the only variable that increased significantly in December compared to July (15.1 ± 0.5 vs. 14.6 ± 0.5, p = 0.001). There was an almost certain beneficial large mean team change for V4 (ES = 1.2 (0.67; 1.57), 100/0/0), while beneficial mean team changes were less likely for νVO2max and O2-pulse [ES = 0.31 (-0.08; 0.70), 68/30/2 and ES = 0.24 (0.01; 0.49), 64/36/0, respectively] and unclear for VO2max (ES = 0.02 (-0.31; 0.70), 18/69/13). With the exception of V4 where 10 out of 17 players (7 ST and 3 Non-ST) showed positive changes higher than the biological variability, all other variables were characterized by a substantial proportion of changes lower than the biological variability. The present study demonstrated that aerobic fitness variables that require maximal effort may be characterized by greater variability of the individual response pattern compared to that of submaximal aerobic fitness variables irrespective of the accumulated game time. Submaximal aerobic fitness variables appear to be more informative in the physiological evaluation of top level soccer players and this may be an advantage during exposure to periods of consecutive games. PMID:29599863
Payabvash, Seyedmehdi; Meric, Kaan; Cayci, Zuzan
2016-01-01
To differentiate malignant from benign cervical lymph nodes in patients with head/neck cancer. In this retrospective study, 39 patients with primary head/neck cancer who underwent Positron Emission Tomography (PET)/Computerized Tomography (CT) and image-guided lymph node biopsy were included. Overall, 23 (59%) patients had biopsy-proven malignant cervical lymphadenopathy. Malignant lymph nodes had higher maximum standardized uptake (SUV-max) value (P<.001) and short-axis diameter (P=.015) compared to benign nodes. An SUV-max of ≥2.5 was 100% sensitive, and an SUV-max ≥5.5 was 100% specific for malignant lymphadenopathy. The PET/CT SUV-max value can help with differentiation of malignant cervical lymph nodes in patients with head/neck cancer. Published by Elsevier Inc.
Liao, Chun-Ta; Chang, Joseph Tung-Chieh; Wang, Hung-Ming; Ng, Shu-Hang; Hsueh, Chuen; Lee, Li-Yu; Lin, Chih-Hung; Chen, I-How; Huang, Shiang-Fu; Cheng, Ann-Joy; Yen, Tzu-Chen
2009-07-15
Survival in oral cavity squamous cell carcinoma (OSCC) depends heavily on locoregional control. In this prospective study, we sought to investigate whether preoperative maximum standardized uptake value of the neck lymph nodes (SUVnodal-max) may predict prognosis in OSCC patients. A total of 120 OSCC patients with pathologically positive lymph nodes were investigated. All subjects underwent a [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) scan within 2 weeks before radical surgery and neck dissection. All patients were followed up for at least 24 months after surgery or until death. Postoperative adjuvant therapy was performed in the presence of pathologic risk factors. Optimal cutoff values of SUVnodal-max were chosen based on 5-year disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). Independent prognosticators were identified by Cox regression analysis. The median follow-up for surviving patients was 41 months. The optimal cutoff value for SUVnodal-max was 5.7. Multivariate analyses identified the following independent predictors of poor outcome: SUVnodal-max >or=5.7 for the 5-year neck cancer control rate, distant metastatic rate, DFS, DSS, and extracapsular spread (ECS) for the 5-year DSS and OS. Among ECS patients, the presence of a SUVnodal-max >or=5.7 identified patients with the worst prognosis. A SUVnodal-max of 5.7, either alone or in combination with ECS, is an independent prognosticator for 5-year neck cancer control and survival rates in OSCC patients with pathologically positive lymph nodes.
18F-FDG positron emission tomography/computed tomography in infective endocarditis.
Salomäki, Soile Pauliina; Saraste, Antti; Kemppainen, Jukka; Bax, Jeroen J; Knuuti, Juhani; Nuutila, Pirjo; Seppänen, Marko; Roivainen, Anne; Airaksinen, Juhani; Pirilä, Laura; Oksi, Jarmo; Hohenthal, Ulla
2017-02-01
The diagnosis of infective endocarditis (IE), especially the diagnosis of prosthetic valve endocarditis (PVE) is challenging since echocardiographic findings are often scarce in the early phase of the disease. We studied the use of 2-[ 18 F]fluoro-2-deoxy-D-glucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) in IE. Sixteen patients with suspected PVE and 7 patients with NVE underwent visual evaluation of 18 F-FDG-PET/CT. 18 F-FDG uptake was measured also semiquantitatively as maximum standardized uptake value (SUV max ) and target-to-background ratio (TBR). The modified Duke criteria were used as a reference. There was strong, focal 18 F-FDG uptake in the area of the affected valve in all 6 cases of definite PVE, in 3 of 5 possible PVE cases, and in 2 of 5 rejected cases. In all patients with definite PVE, SUV max of the affected valve was higher than 4 and TBR higher than 1.8. In contrast to PVE, only 1 of 7 patients with NVE had uptake of 18 F-FDG by PET/CT in the valve area. Embolic infectious foci were detected in 58% of the patients with definite IE. 18 F-FDG-PET/CT appears to be a sensitive method for the detection of paravalvular infection associated with PVE. Instead, the sensitivity of PET/CT is limited in NVE.
The self-paced VO2max test to assess maximal oxygen uptake in highly trained runners.
Hogg, James S; Hopker, James G; Mauger, Alexis R
2015-03-01
The novel self-paced maximal-oxygen-uptake (VO2max) test (SPV) may be a more suitable alternative to traditional maximal tests for elite athletes due to the ability to self-regulate pace. This study aimed to examine whether the SPV can be administered on a motorized treadmill. Fourteen highly trained male distance runners performed a standard graded exercise test (GXT), an incline-based SPV (SPVincline), and a speed-based SPV (SPVspeed). The GXT included a plateau-verification stage. Both SPV protocols included 5×2-min stages (and a plateau-verification stage) and allowed for self-pacing based on fixed increments of rating of perceived exertion: 11, 13, 15, 17, and 20. The participants varied their speed and incline on the treadmill by moving between different marked zones in which the tester would then adjust the intensity. There was no significant difference (P=.319, ES=0.21) in the VO2max achieved in the SPVspeed (67.6±3.6 mL·kg(-1)·min(-1), 95%CI=65.6-69.7 mL·kg(-1)·min(-1)) compared with that achieved in the GXT (68.6±6.0 mL·kg(-1)·min(-1), 95%CI=65.1-72.1 mL·kg(-1)·min(-1)). Participants achieved a significantly higher VO2max in the SPVincline (70.6±4.3 mL·kg(-1)·min(-1), 95%CI=68.1-73.0 mL·kg(-1)·min(-1)) than in either the GXT (P=.027, ES=0.39) or SPVspeed (P=.001, ES=0.76). The SPVspeed protocol produces VO2max values similar to those obtained in the GXT and may represent a more appropriate and athlete-friendly test that is more oriented toward the variable speed found in competitive sport.
Gnacinski, Stacy L; Ebersole, Kyle T; Cornell, David J; Mims, Jason; Zamzow, Aaron; Meyer, Barbara B
2016-03-09
Firefighters' cardiovascular fitness remains a foremost concern among fire departments and organizations, yet very little research has been conducted to examine the cardiovascular fitness adaptations that occur during firefighter training academies. To describe the cardiovascular adaptations observed among firefighter recruits during firefighter training academies using measures of estimated maximal oxygen uptake (VO2max) and heart rate recovery (ΔHR). Firefighter recruits (n = 41) enrolled in a 16-week firefighter training academy completed a 5-minute step test during the first, eighth, and sixteenth week of training. Repeated measures analysis of variance (RM ANOVA) calculations were conducted to determine changes in estimated VO2max and ΔHR. Results of the RM ANOVA calculations revealed that mean estimated VO2max and mean ΔHR differed significantly between time points: F(2, 80) = 75.525, p < 0.001, and F(2, 80) = 4.368, p = 0.016, respectively. No significant changes were observed in mean estimated VO2max and mean ΔHR beyond the eighth week of training. No significant relationship was identified between estimated VO2max and ΔHR. Although firefighter recruits' estimated VO2max and ΔHR change significantly over the course of the firefighter training academy, the measures may not be equal predictors of cardiovascular fitness.
Radial pulse waveform and parameters in different types of athletes
Wang, An-Ran; Su, Jun; Zhang, Song; Yang, Lin
2016-01-01
Objective: To classify the sports events by the maximal oxygen uptake (MaxO2) and the maximal muscular voluntary contraction (MVC) and to collect the radial pulse wave of different sports events and discuss the pulse waveform and characteristic parameters. Patients or other participants: 304 professional athletes were enrolled from Beijing Muxiyuan Sports Technical School. Main outcome measure(s): Normalize each radial pulse waveform and let the waveform cycle and amplitude distribute in the range of 0-100. Analyze the relative time of the maximum point Tm, the abscissa X and ordinate Y of dicrotic notch, the pulse waveform area K and the pulse wave age index SDPTG. Results: According to the different degree of MaxO2 and MVC, the radial descending curves have the distinctive downtrend. The characteristic parameters of MaxO2 and MVC groups, such as Tm, X, Y, K and SDPTG are as well as different. Conclusions: The pulse waveform changing trend of MVC (< 50%) group and MVC (> 50%) group are different while the sports have the same MaxO2. And the pulse waveform changing trend of MaxO2 (< 40%) group, MaxO2 (40-70%) group and MaxO2 (> 70%) group are as well as different while the sports have the same MVC. The various parameters of the most specific group F are the smallest suggests the sports in group F are the most benefit for the cardiovascular. PMID:27158404
Anaerobic Threshold: Its Concept and Role in Endurance Sport
Ghosh, Asok Kumar
2004-01-01
aerobic to anaerobic transition intensity is one of the most significant physiological variable in endurance sports. Scientists have explained the term in various ways, like, Lactate Threshold, Ventilatory Anaerobic Threshold, Onset of Blood Lactate Accumulation, Onset of Plasma Lactate Accumulation, Heart Rate Deflection Point and Maximum Lactate Steady State. But all of these have great role both in monitoring training schedule and in determining sports performance. Individuals endowed with the possibility to obtain a high oxygen uptake need to complement with rigorous training program in order to achieve maximal performance. If they engage in endurance events, they must also develop the ability to sustain a high fractional utilization of their maximal oxygen uptake (%VO2 max) and become physiologically efficient in performing their activity. Anaerobic threshold is highly correlated to the distance running performance as compared to maximum aerobic capacity or VO2 max, because sustaining a high fractional utilization of the VO2 max for a long time delays the metabolic acidosis. Training at or little above the anaerobic threshold intensity improves both the aerobic capacity and anaerobic threshold level. Anaerobic Threshold can also be determined from the speed-heart rate relationship in the field situation, without undergoing sophisticated laboratory techniques. However, controversies also exist among scientists regarding its role in high performance sports. PMID:22977357
Anaerobic threshold: its concept and role in endurance sport.
Ghosh, Asok Kumar
2004-01-01
aerobic to anaerobic transition intensity is one of the most significant physiological variable in endurance sports. Scientists have explained the term in various ways, like, Lactate Threshold, Ventilatory Anaerobic Threshold, Onset of Blood Lactate Accumulation, Onset of Plasma Lactate Accumulation, Heart Rate Deflection Point and Maximum Lactate Steady State. But all of these have great role both in monitoring training schedule and in determining sports performance. Individuals endowed with the possibility to obtain a high oxygen uptake need to complement with rigorous training program in order to achieve maximal performance. If they engage in endurance events, they must also develop the ability to sustain a high fractional utilization of their maximal oxygen uptake (%VO(2) max) and become physiologically efficient in performing their activity. Anaerobic threshold is highly correlated to the distance running performance as compared to maximum aerobic capacity or VO(2) max, because sustaining a high fractional utilization of the VO(2) max for a long time delays the metabolic acidosis. Training at or little above the anaerobic threshold intensity improves both the aerobic capacity and anaerobic threshold level. Anaerobic Threshold can also be determined from the speed-heart rate relationship in the field situation, without undergoing sophisticated laboratory techniques. However, controversies also exist among scientists regarding its role in high performance sports.
Effect of 400 ml blood loss on adaptation of certain functions of the organism to exercise.
Markiewicz, K; Cholewa, M; Górski, L; Jaszczuk, J; Chmura, J; Bartniczak, Z
1981-01-01
Eighteen men aged 19-23 years, volunteer blood donors, donated 400 ml of blood. Twenty-four hours before donation, one hour and 24 hours after it they performed a 10-minute exercise on Monark cycle ergometer at workloads raising the heart rate to 170/min. During the exercise the oxygen uptake (VO2), carbon dioxide elimination (VCO2), respiratory quotient (RQ), oxygen uptake to maximal oxygen uptake ratio (VO2/VO2 max), heart rate (HR) and systolic and diastolic arterial blood pressure (Ps and Pd) were determined. The obtained results were compared with the values of haemoglobin concentration and erythrocyte count. One hour after blood donation raised values of HR and Pd were obtained (p less than 0.05) with decreased Ps (p less than 0.05) and VO2 (p less than 0.05). Twenty-four hours after blood loss these parameters were not different from the initial ones (p less than 0.05). Submaximal exercise performed 1 hour after blood loss produced a significantly greater increase of the heart rate than this exercise performed before blood loss. The values of VO2, VCO2, and VO2/VO2 max were slightly lower and those of RQ and HRXPs slightly higher than during control exercise (p less than 0.05). Exercise performed 24 hours after blood loss caused identical changes in these parameters as during control tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapoport, R.M.; Van Gorp, C.; Chang, Ki-Churl
1990-01-01
{sup 3}H-inositol uptake into deendothelialized aorta was linear for at least 2 h and was composed of both a saturable, Na{sup +}-dependent, and a nonsaturable, Na{sup +}-independent component. The Na{sup +}-dependent component of inositol uptake had a K{sub m} of 50 {mu}M and a V{sub max} of 289 pmol/mg prot/h. Exposure to LiCl, ouabain, or Ca{sup 2+} - free Krebs-Ringer bicarbonate solution inhibited uptake. Metabolic poisoning with dinitrophenol, as well as incubation with phloretin, an inhibitor of carrier-mediated hexose transport, also inhibited uptake. Exposure to norepinephrine decreased inositol uptake, while phorbol myristate acetate was without effect. Isobutylmethylxanthine significantly increased inositolmore » uptake, while the increased uptake due to dibutyryl cyclic AMP and forskolin were not statistically significant. Sodium nitroprusside, and activator of guanylate cyclase, and 8-bromo cyclic GMP, were without effect on uptake, as was methylene blue, an inhibitor of guanylate cyclase. Inositol uptake into the aorta was increased when the endothelium was allowed to remain intact, although this effect was likely due to uptake in both the endothelial and smooth muscle cells.« less
Overspeed HIIT in Lower-Body Positive Pressure Treadmill Improves Running Performance.
Gojanovic, Boris; Shultz, Rebecca; Feihl, Francois; Matheson, Gordon
2015-12-01
Optimal high-intensity interval training (HIIT) regimens for running performance are unknown, although most protocols result in some benefit to key performance factors (running economy (RE), anaerobic threshold (AT), or maximal oxygen uptake (VO2max)). Lower-body positive pressure (LBPP) treadmills offer the unique possibility to partially unload runners and reach supramaximal speeds. We studied the use of LBPP to test an overspeed HIIT protocol in trained runners. Eleven trained runners (35 ± 8 yr, VO2max, 55.7 ± 6.4 mL·kg⁻¹·min⁻¹) were randomized to an LBPP (n = 6) or a regular treadmill (CON, n = 5), eight sessions over 4 wk of HIIT program. Four to five intervals were run at 100% of velocity at VO2max (vVO2max) during 60% of time to exhaustion at vVO2max (Tlim) with a 1:1 work:recovery ratio. Performance outcomes were 2-mile track time trial, VO2max, vVO2max, vAT, Tlim, and RE. LBPP sessions were carried out at 90% body weight. Group-time effects were present for vVO2max (CON, 17.5 vs. 18.3, P = 0.03; LBPP, 19.7 vs. 22.3 km·h⁻¹; P < 0.001) and Tlim (CON, 307.0 vs. 404.4 s, P = 0.28; LBPP, 444.5 vs. 855.5, P < 0.001). Simple main effects for time were present for field performance (CON, -18; LBPP, -25 s; P = 0.002), VO2max (CON, 57.6 vs. 59.6; LBPP, 54.1 vs. 55.1 mL·kg⁻¹·min⁻¹; P = 0.04) and submaximal HR (157.7 vs. 154.3 and 151.4 vs. 148.5 bpm; P = 0.002). RE was unchanged. A 4-wk HIIT protocol at 100% vVO2max improves field performance, vVO2max, VO2max and submaximal HR in trained runners. Improvements are similar if intervals are run on a regular treadmill or at higher speeds on a LPBB treadmill with 10% body weight reduction. LBPP could provide an alternative for taxing HIIT sessions.
Sleep bruxism frequency and platelet serotonin transporter activities in young adult subjects.
Minakuchi, Hajime; Sogawa, Chiharu; Miki, Haruna; Hara, Emilio S; Maekawa, Kenji; Sogawa, Norio; Kitayama, Shigeo; Matsuka, Yoshizo; Clark, Glenn Thomas; Kuboki, Takuo
2016-03-01
To evaluate correlations between serotonin transporter (SERT) uptake ability in human peripheral platelets and sleep bruxism (SB) frequency. Subjects were consecutively recruited from sixth-year students at Okayama University Dental School. Subjects were excluded if they (1) were receiving orthodontic treatment, (2) had a dermatological disease, (3) had taken an antidepressant within 6 months, or (4) had used an oral appliance within 6 months. SB frequency was determined as the summary score of three consecutive night assessments using a self-contained electromyography detector/analyzer in their home. Fasting peripheral venous blood samples were collected in the morning following the final SB assessment. SERT amount and platelet number were quantified via an ELISA assay and flow cytometry, respectively. Functional SERT characterization, 5-hydroxytryptamine (5-HT) uptake, maximum velocity (V max), and an affinity constant (K m ) were assessed with a [(3)H] 5-HT uptake assay. The correlations between these variables and SB level were evaluated. Among 50 eligible subjects (26 males, mean age 25.4 ± 2.41 years), 7 were excluded because of venipuncture failure, smoking, and alcohol intake during the experimental period. A small but significant negative correlation between SB level and [(3)H] 5-HT uptake was observed (Spearman's correlation R (2) = 0.063, p = 0.04). However, there were no significant correlations between SB level and total platelet amount, SERT, V max, and K m values (p = 0.08, 0.12, 0.71, and 0.68, respectively). Platelet serotonin uptake is significantly associated with SB frequency, yet only explains a small amount of SB variability.
A high 18F-FDOPA uptake is associated with a slow growth rate in diffuse Grade II-III gliomas.
Isal, Sibel; Gauchotte, Guillaume; Rech, Fabien; Blonski, Marie; Planel, Sophie; Chawki, Mohammad B; Karcher, Gilles; Marie, Pierre-Yves; Taillandier, Luc; Verger, Antoine
2018-04-01
In diffuse Grade II-III gliomas, a high 3,4-dihydroxy-6-( 18 F)-fluoro-L-phenylalanine ( 18 F-FDOPA) positron emission tomography (PET) uptake, with a standardized uptake value (SUV max )/contralateral brain tissue ratio greater than 1.8, was previously found to be consistently associated with the presence of an isocitrate dehydrogenase (IDH) mutation, whereas this mutation is typically associated with a better prognosis. This pilot study was aimed to ascertain the prognostic value of this high 18 F-FDOPA uptake in diffuse Grade II-III gliomas with regard to the velocity of diameter expansion (VDE), which represents an established landmark of better prognosis when below 4 mm per year. 20 patients (42 ± 10 years, 10 female) with newly-diagnosed diffuse Grade II-III gliomas (17 with IDH mutation) were retrospectively included. All had a 18 F-FDOPA PET, quantified with SUV max ratio, along with a serial MRI enabling VDE determination. SUV max ratio was above 1.8 in 5 patients (25%) all of whom had a VDE <4 mm/year (100%) and IDH mutation (100%). Moreover, a SUV max ratio above 1.8 was associated with higher rates of VDE <4 mm/year in the overall population (45 vs 0%, p = 0.04) and also in the subgroup of patients with IDH mutation (45 vs 0%, p = 0.10). This pilot study shows that in diffuse Grade II-III gliomas, a high 18 F-FDOPA uptake would be predictive of low tumour growth, with a different prognostic significance than IDH mutation. Advances in knowledge: 18 F-FDOPA PET in a single session imaging could have prognostic value in initial diagnosis of diffuse Grade II-III gliomas.
Heli, Valkeinen; Ihab, Hajjar; Kun, Hu; Brad, Manor; Jessica, Wisocky; Vera, Novak
2013-12-01
The purpose of this study was to examine effects of mixed interval aerobic and strength training (MAST) program on physiological functions in older women with metabolic syndrome. 12 subjects were randomly assigned to the exercise group (16-week MAST program) or the control group. Outcomes included oxygen uptake (VO 2max ), cerebral blood flow velocity (BFV) and cognitive functions. The exercise group demonstrated increased VO 2max and certain improvements in cognitive functions. No changes were observed in BFV for both groups. These results can be used as a preliminary data for planning larger studies.
Liao, Chun-Ta; Chang, Joseph Tung-Chieh; Wang, Hung-Ming; Ng, Shu-Hang; Huang, Shiang-Fu; Chen, I-How; Hsueh, Chuen; Lee, Li-Yu; Lin, Chih-Hung; Cheng, Ann-Joy; Yen, Tzu-Chen
2009-11-01
Relapse of tumours in patients with oral cavity squamous cell carcinoma (OSCC) is associated with a dismal outcome. In this prospective study, we sought to investigate the clinical significance of the preoperative maximal standardized uptake value (SUVmax) at the neck lymph nodes in selecting patients with OSCC for salvage therapy after relapse. Between 2002 and 2007, 108 patients with early relapse of OSCC (n=75) or late relapse of OSCC (n=33) were identified. Salvage therapy was performed in 47 patients. All patients underwent 2-deoxy-2[(18)F]-fluoro-D: -glucose positron emission tomography during the 2 weeks before surgery and neck dissection. All patients were followed for 12 months or more after surgery or until death. The optimal cut-off value for the neck lymph node SUVmax (SUVnodal-max) was selected according to the 5-year disease-specific survival (DSS) rate. Independent risk factors were identified by Cox regression analysis. The mean follow-up for all patients was 20.3 months (41.1 months for surviving patients). In the early relapse group, several prognostic factors were identified in univariate and multivariate analyses, including a SUVnodal-max value of >or=4.2. A scoring system based on univariate analysis was formulated. Patients with a score of 0 had a better 5-year DSS than those with scores of 1 or higher (58% vs. 5%, p=0.0003). In patients with late relapse, a SUVnodal-max value of >or=4.2 had the highest prognostic value for predicting the 5-year DSS (45% vs. 0%, p=0.0005). Among patients with relapsed OSCC, the SUVnodal-max value may aid in selecting patients for salvage therapy.
Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro.
Gonzalez, R J; Wilson, R W; Wood, C M; Patrick, M L; Val, A L
2002-01-01
We measured unidirectional ion fluxes of fish collected directly from the Rio Negro, an extremely dilute, acidic blackwater tributary of the Amazon. Kinetic analysis of Na(+) uptake revealed that most species had fairly similar J(max) values, ranging from 1,150 to 1,750 nmol g(-1) h(-1), while K(m) values varied to a greater extent. Three species had K(m) values <33 micromol L(-1), while the rest had K(m) values >or=110 micromol L(-1). Because of the extremely low Na(+) concentration of Rio Negro water, the differences in K(m) values yield very different rates of Na(+) uptake. However, regardless of the rate of Na(+) uptake, measurements of Na(+) efflux show that Na(+) balance was maintained at very low Na(+) levels (<50 micromol L(-1)) by most species. Unlike other species with high K(m) values, the catfish Corydoras julii maintained high rates of Na(+) uptake in dilute waters by having a J(max) value at least 100% higher than the other species. Corydoras julii also demonstrated the ability to modulate kinetic parameters in response to changes in water chemistry. After 2 wk in 2 mmol L(-1) NaCl, J(max) fell >50%, and K(m) dropped about 70%. The unusual acclimatory drop in K(m) may represent a mechanism to ensure high rates of Na(+) uptake on return to dilute water. As well as being tolerant of extremely dilute waters, Rio Negro fish generally were fairly tolerant of low pH. Still, there were significant differences in sensitivity to pH among the species on the basis of degree of stimulation of Na(+) efflux at low pH. There were also differences in sensitivity to low pH of Na(+) uptake, and two species maintained significant rates of uptake even at pH 3.5. When fish were exposed to low pH in Rio Negro water instead of deionized water (with the same concentrations of major ions), the effects of low pH were reduced. This suggests that high concentrations of dissolved organic molecules in the water, which give it its dark tea color, may interact with the branchial epithelium in some protective manner.
Pignon, Charles P.; Jaiswal, Deepak; McGrath, Justin M.
2017-01-01
Abstract The wild progenitors of major C4 crops grew as individuals subjected to little shading. Today they are grown in dense stands where most leaves are shaded. Do they maintain photosynthetic efficiency in these low light conditions produced by modern cultivation? The apparent maximum quantum yield of CO2 assimilation (ΦCO2max,app), a key determinant of light-limited photosynthesis, has not been systematically studied in field stands of C4 crops. ΦCO2max,app was derived from the initial slope of the response of leaf CO2 uptake (A) to photon flux (Q). Leaf fractional light absorptance (α) was measured to determine the absolute maximum quantum yield of CO2 assimilation on an absorbed light basis (ΦCO2max,abs). Light response curves were determined on sun and shade leaves of 49 field plants of Miscanthus × giganteus and Zea mays following canopy closure. ΦCO2max,app and ΦCO2max,abs declined significantly by 15–27% (P<0.05) with canopy depth. Experimentally, leaf age was shown unlikely to cause this loss. Modeling canopy CO2 assimilation over diurnal courses suggested that the observed decline in ΦCO2max,app with canopy depth costs 10% of potential carbon gain. Overcoming this limitation could substantially increase the productivity of major C4 crops. PMID:28110277
Figueira, Tiago R.; Caputo, Fabrizio; Machado, Carlos E.P.; Denadai, Benedito S.
2008-01-01
The aim of this study was to address the question if the VO2 kinetics is further improved as the aerobic training status increases from trained to elite level athletes. Maximal oxygen uptake (VO2max), work-rate associated to VO2max (IVO2max) and VO2 kinetics of moderate (Mod) and maximal exercise (Max) were determined in fifty- five subjects. Then, they were assigned into three groups: low (LF), intermediate (IF) and high (HF) aerobic fitness level. In average, the VO2max of LF, IF and HF groups were, respectively, 36.0 ± 3.1, 51.1 ± 4.5 and 68.1 ± 3.9 ml·kg·min-1 (p ≤ 0.05 among each other). VO2 kinetics mean response time of both exercise intensities were significantly faster (p ≤ 0.05) in HF (Mod, 27.5 ± 5.5 s; Max, 32.6 ± 8.3 s) and IF (Mod, 25.0 ± 3.1 s; Max, 42.6 ± 10.4 s) when compared to LF (Mod, 35.7 ± 7.9 s; Max: 57.8 ± 17.8 s). We can conclude that VO2 kinetics is improved as the fitness level is increased from low to intermediate but not further improved as the aerobic fitness level increases from intermediate to high. Key points Currently, it is reasonable to believe that the rate-limiting step of VO2 kinetics depends on exercise intensity. The well known physiological adaptations induced by endurance training are likely the most extreme means to overcome rate-limiting steps determining VO2 kinetics across exercise intensities. However, exercise adaptation leading individuals to the high-end of aerobic fitness level range (VO2max > 65 ml.kg.min-1) is not able to further improve VO2 kinetics during both, moderate and maximal intensity exercise. PMID:24150145
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, C.-T.; Head and Neck Oncology Group, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Chang, J.T.-C.
Purpose: Survival in oral cavity squamous cell carcinoma (OSCC) depends heavily on locoregional control. In this prospective study, we sought to investigate whether preoperative maximum standardized uptake value of the neck lymph nodes (SUVnodal-max) may predict prognosis in OSCC patients. Methods and Materials: A total of 120 OSCC patients with pathologically positive lymph nodes were investigated. All subjects underwent a [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) scan within 2 weeks before radical surgery and neck dissection. All patients were followed up for at least 24 months after surgery or until death. Postoperative adjuvant therapy was performed in the presence ofmore » pathologic risk factors. Optimal cutoff values of SUVnodal-max were chosen based on 5-year disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). Independent prognosticators were identified by Cox regression analysis. Results: The median follow-up for surviving patients was 41 months. The optimal cutoff value for SUVnodal-max was 5.7. Multivariate analyses identified the following independent predictors of poor outcome: SUVnodal-max {>=}5.7 for the 5-year neck cancer control rate, distant metastatic rate, DFS, DSS, and extracapsular spread (ECS) for the 5-year DSS and OS. Among ECS patients, the presence of a SUVnodal-max {>=}5.7 identified patients with the worst prognosis. Conclusion: A SUVnodal-max of 5.7, either alone or in combination with ECS, is an independent prognosticator for 5-year neck cancer control and survival rates in OSCC patients with pathologically positive lymph nodes.« less
Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure.
Saunders, Philo U; Garvican-Lewis, Laura A; Schmidt, Walter F; Gore, Christopher J
2013-12-01
Endurance athletes have been using altitude training for decades to improve near sea-level performance. The predominant mechanism is thought to be accelerated erythropoiesis increasing haemoglobin mass (Hb(mass)) resulting in a greater maximal oxygen uptake (VO₂(max)). Not all studies have shown a proportionate increase in VO₂(max) as a result of increased Hb(mass). The aim of this study was to determine the relationship between the two parameters in a large group of endurance athletes after altitude training. 145 elite endurance athletes (94 male and 51 female) who participated in various altitude studies as altitude or control participants were used for the analysis. Participants performed Hb(mass) and VO₂(max) testing before and after intervention. For the pooled data, the correlation between per cent change in Hb(mass) and per cent change in VO₂(max) was significant (p<0.0001, r(2)=0.15), with a slope (95% CI) of 0.48 (0.30 to 0.67) intercept free to vary and 0.62 (0.46 to 0.77) when constrained through the origin. When separated, the correlations were significant for the altitude and control groups, with the correlation being stronger for the altitude group (slope of 0.57 to 0.72). With high statistical power, we conclude that altitude training of endurance athletes will result in an increase in VO₂(max) of more than half the magnitude of the increase in Hb(mass), which supports the use of altitude training by athletes. But race performance is not perfectly related to relative VO₂(max), and other non-haematological factors altered from altitude training, such as running economy and lactate threshold, may also be beneficial to performance.
Effect of long-term training and acute physical exercise on red cell 2,3-diphosphoglycerate.
Remes, K; Vuopio, P; Härkönen, M
1979-11-01
A statistically significant 10% increase (p less than 0.005) in mean red cell 2,3-diphosphoglycerate (2,3-DPG) concentration, concomitantly with a mean 16% increase (p less than 0.001) in the predicted maximal oxygen uptake (VO2max) was observed in 29 recruits, who were studied during 6 months of physical training in military service. The increase in 2,3-DPG was higher, the lower the initial 2,3-DPG and VO2max levels. The mean initial 2,3-DPG level was higher in the subjects with a higher initial VO2max. A strenuous but highly aerobic 21-km marching exercise elicited a mean 9% increase (p less than 0.005) in red cell 2,3-DPG concentration. A significantly greater response of 2,3-DPG to marching exercise was observed in subjects with a lower pre-test VO2max than in those with a higher pre-test VO2max. During another more competitive march 2,3-DPG remained almost unchanged and was associated with a tendency towards a negative correlation with the acccompanying lactate response (r = -0.60, p less than 0.05). Red cell 2,3-DPG response to a standardized exercise is considered to be a suitable indicator for evaluating the effect of training on an individual.
Follador, Lucio; Alves, Ragami C; Ferreira, Sandro Dos S; Buzzachera, Cosme F; Andrade, Vinicius F Dos S; Garcia, Erick D S de A; Osiecki, Raul; Barbosa, Sara C; de Oliveira, Letícia M; da Silva, Sergio G
2018-04-01
This study examined the extent to which different high-intensity interval training (HIIT) and sprint interval training (SIT) protocols could influence psychophysiological responses in moderately active young men. Fourteen participants completed, in a randomized order, three cycling protocols (SIT: 4 × 30-second all-out sprints; Tabata: 7 × 20 seconds at 170% ⋮O 2max ; and HIIT: 10 × 60 seconds at 90% HR max ) and three running HIIT protocols (4 × 4 minutes at 90%-95% HR max , 5 × at v⋮O 2max , and 4 × 1,000 meters at a rating of perceived exertion (RPE) of 8, from the OMNI-Walk/Run scale). Oxygen uptake (⋮O 2 ), heart rate, and RPE were recorded during each interval. Affective responses were assessed before and after each trial. The Tabata protocol elicited the highest ⋮O 2 and RPE responses, and the least pleasant session-affect among the cycling trials. The v⋮O 2max elicited the highest ⋮O 2 and RPE responses and the lowest mean session-affect among the running trials. Findings highlight the limited application of SIT and some HIIT protocols to individuals with low fitness levels.
Multicenter comparison of 18F-FDG and 68Ga-DOTA-peptide PET/CT for pulmonary carcinoid.
Lococo, Filippo; Perotti, Germano; Cardillo, Giuseppe; De Waure, Chiara; Filice, Angelina; Graziano, Paolo; Rossi, Giulio; Sgarbi, Giorgio; Stefanelli, Antonella; Giordano, Alessandro; Granone, Pierluigi; Rindi, Guido; Versari, Annibale; Rufini, Vittoria
2015-03-01
The aims of this study were to retrospectively evaluate and compare the detection rate (DR) of 68Ga-DOTA-peptide and 18F-FDG PET/CT in the preoperative workup of patients with pulmonary carcinoid (PC) and to assess the utility of various functional indices obtained with the 2 tracers in predicting the histological characterization of PC, that is, typical versus atypical. Thirty-three consecutive patients with confirmed PC referred for 18F-FDG and 68Ga-DOTA-peptide PET/CT in 2 centers between January 2009 and April 2013 were included. The semiquantitative evaluation included the SUV max, the SUV of the tumor relative to the maximal liver uptake for 18F-FDG (SUV T/L) or the maximal spleen uptake for 68Ga-DOTA-peptides (SUV T/S), the ratio between SUV max of 68Ga-DOTA-peptides PET/CT, and the SUV max of 18F-FDG PET/CT (SUV max ratio). Histology was used as reference standard. Definitive diagnosis consisted of 23 typical carcinoids (TCs) and 10 atypical carcinoids. 18F-FDG PET/CT was positive in 18 cases and negative in 15 (55% DR). 68Ga-DOTA-peptide PET/CT was positive in 26 cases and negative in 7 (79% DR). In the subgroup analysis, 68Ga-DOTA-peptide PET/CT was superior in detecting TC (91% DR; P < 0.001), whereas 18F-FDG PET/CT was superior in detecting atypical carcinoid (100% DR; P = 0.04). The SUV max ratio was the most accurate semiquantitative index in identifying TC. Overall diagnostic performance of PET/CT in detecting PC is optimal when integrating 18F-FDG and 68Ga-DOTA-peptide PET/CT findings. In the subgroup analysis, the SUV max ratio seems to be the most accurate index in predicting TC. Both methods should be performed when PC is suspected or when the histological subtype is undefined.
Genomic predictors of the maximal O2 uptake response to standardized exercise training programs
Sarzynski, Mark A.; Rice, Treva K.; Kraus, William E.; Church, Timothy S.; Sung, Yun Ju; Rao, D. C.; Rankinen, Tuomo
2011-01-01
Low cardiorespiratory fitness is a powerful predictor of morbidity and cardiovascular mortality. In 473 sedentary adults, all whites, from 99 families of the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) Family Study, the heritability of gains in maximal O2 uptake (V̇o2max) after exposure to a standardized 20-wk exercise program was estimated at 47%. A genome-wide association study based on 324,611 single-nucleotide polymorphisms (SNPs) was undertaken to identify SNPs associated with improvements in V̇o2max Based on single-SNP analysis, 39 SNPs were associated with the gains with P < 1.5 × 10−4. Stepwise multiple regression analysis of the 39 SNPs identified a panel of 21 SNPs that accounted for 49% of the variance in V̇o2max trainability. Subjects who carried ≤9 favorable alleles at these 21 SNPs improved their V̇o2max by 221 ml/min, whereas those who carried ≥19 of these alleles gained, on average, 604 ml/min. The strongest association was with rs6552828, located in the acyl-CoA synthase long-chain member 1 (ACSL1) gene, which accounted by itself for ∼6% of the training response of V̇o2max. The genes nearest to the SNPs that were the strongest predictors were PR domain-containing 1 with ZNF domain (PRDM1); glutamate receptor, ionotropic, N-methyl-d-aspartate 3A (GRIN3A); K+ channel, voltage gated, subfamily H, member 8 (KCNH8); and zinc finger protein of the cerebellum 4 (ZIC4). The association with the SNP nearest to ZIC4 was replicated in 40- to 65-yr-old, sedentary, overweight, and dyslipidemic subjects trained in Studies of a Targeted Risk Reduction Intervention Through Defined Exercise (STRRIDE; n = 183). Two SNPs were replicated in sedentary obese white women exercise trained in the Dose Response to Exercise (DREW) study (n = 112): rs1956197 near dishevelled associated activator of morphogenesis 1 (DAAM1) and rs17117533 in the vicinity of necdin (NDN). The association of SNPs rs884736 in the calmodulin-binding transcription activator 1 (CAMTA1) locus and rs17581162 ∼68 kb upstream from regulator of G protein signaling 18 (RGS18) with the gains in V̇o2max in HERITAGE whites were replicated in HERITAGE blacks (n = 247). These genomic predictors of the response of V̇o2max to regular exercise provide new targets for the study of the biology of fitness and its adaptation to regular exercise. Large-scale replication studies are warranted. PMID:21183627
Ní Chéilleachair, Niamh J; Harrison, Andrew J; Warrington, Giles D
2017-06-01
This study compared the effects of long slow distance training (LSD) with high-intensity interval training (HIIT) in rowers. Nineteen well-trained rowers performed three tests before and after an 8-week training intervention: (1) 2000 m time trial; (2) seven-stage incremental step test to determine maximum oxygen uptake ([Formula: see text]O 2max ), power output at [Formula: see text]O 2max (W[Formula: see text]O 2max ), peak power output (PPO), rowing economy and blood lactate indices and (3) seven-stroke power-output test to determine maximal power output (W max ) and force (F max ). After baseline testing, participants were randomly assigned either to a HIIT or LSD group. The LSD comprised 10 weekly aerobic sessions. The HIIT also comprised 10 weekly sessions: 8 aerobic and 2 HIIT. The HIIT sessions comprised 6-8 × 2.5 min intervals at 100% PPO with recovery time based on heart rate (HR) returning to 70% HR max . Results demonstrated that the HIIT produced greater improvement in 2000 m time trial performance than the LSD (effect size (ES) = 0.25). Moreover, the HIIT produced greater improvements in [Formula: see text]O 2max (ES = 0.95, P = 0.035) and power output at lactate threshold (W LT ) (ES = 1.15, P = 0.008). Eight weeks of HIIT performed at 100% PPO is more effective than LSD in improving performance and aerobic characteristics in well-trained rowers.
Significance of the velocity at VO2max and time to exhaustion at this velocity.
Billat, L V; Koralsztein, J P
1996-08-01
In 1923, Hill and Lupton pointed out that for Hill himself, 'the rate of oxygen intake due to exercise increases as speed increases, reaching a maximum for the speeds beyond about 256 m/min. At this particular speed, for which no further increases in O2 intake can occur, the heart, lungs, circulation, and the diffusion of oxygen to the active muscle-fibres have attained their maximum activity. At higher speeds the requirement of the body for oxygen is far higher but cannot be satisfied, and the oxygen debt continuously increases'. In 1975, this minimal velocity which elicits maximal oxygen uptake (VO2max) was called 'critical speed' and was used to measure the maximal aerobic capacity (max Eox), i.e. the total oxygen consumed at VO2max. This should not be confused with the term 'critical power' which is closes to the power output at the 'lactate threshold'. In 1984, the term 'velocity at VO2max' and the abbreviation 'vVO2max' was introduced. It was reported that vVO2max is a useful variable that combines VO2max and economy into a single factor which can identify aerobic differences between various runners or categories of runners. vVO2max explained individual differences in performance that VO2max or running economy alone did not. Following that, the concept of a maximal aerobic running velocity (Vamax in m/sec) was formulated. This was a running velocity at which VO2max occurred and was calculated as the ratio between VO2max (ml/kg/min) minus oxygen consumption at rest, and the energy cost of running (ml/kg/sec). There are many ways to determine the velocity associated with VO2max making it difficult to compare maintenance times. In fact, the time to exhaustion (tlim) at vVO2max is reproducible in an individual, however, there is a great variability among individuals with a low coefficient of variation for vVO2max. For an average value of about 6 minutes, the coefficient of variation is about 25%. It seems that the lactate threshold which is correlated with the tlim at vVO2max can explain this difference among individuals, the role of the anaerobic contribution being significant. An inverse relationship has been found between tlim at vVO2max and VO2max, and a positive one between vVO2max and the velocity at the lactate threshold expressed as a fraction of vVO2max. These results are similar for different sports (e.g. running, cycling, kayaking, swimming). It seems that the real time spent at VO2max is significantly different from an exhaustive run at a velocity close to vVO2max (105% vVO2max). However, the minimal velocity which elicits VO2max, and the tlim at this velocity appear to convey valuable information when analysing a runner's performance over 1500m to a marathon.
The Dangers of Estimating V˙O2max Using Linear, Nonexercise Prediction Models.
Nevill, Alan M; Cooke, Carlton B
2017-05-01
This study aimed to compare the accuracy and goodness of fit of two competing models (linear vs allometric) when estimating V˙O2max (mL·kg·min) using nonexercise prediction models. The two competing models were fitted to the V˙O2max (mL·kg·min) data taken from two previously published studies. Study 1 (the Allied Dunbar National Fitness Survey) recruited 1732 randomly selected healthy participants, 16 yr and older, from 30 English parliamentary constituencies. Estimates of V˙O2max were obtained using a progressive incremental test on a motorized treadmill. In study 2, maximal oxygen uptake was measured directly during a fatigue limited treadmill test in older men (n = 152) and women (n = 146) 55 to 86 yr old. In both studies, the quality of fit associated with estimating V˙O2max (mL·kg·min) was superior using allometric rather than linear (additive) models based on all criteria (R, maximum log-likelihood, and Akaike information criteria). Results suggest that linear models will systematically overestimate V˙O2max for participants in their 20s and underestimate V˙O2max for participants in their 60s and older. The residuals saved from the linear models were neither normally distributed nor independent of the predicted values nor age. This will probably explain the absence of a key quadratic age term in the linear models, crucially identified using allometric models. Not only does the curvilinear age decline within an exponential function follow a more realistic age decline (the right-hand side of a bell-shaped curve), but the allometric models identified either a stature-to-body mass ratio (study 1) or a fat-free mass-to-body mass ratio (study 2), both associated with leanness when estimating V˙O2max. Adopting allometric models will provide more accurate predictions of V˙O2max (mL·kg·min) using plausible, biologically sound, and interpretable models.
Oxygen uptake during repeated-sprint exercise.
McGawley, Kerry; Bishop, David J
2015-03-01
Repeated-sprint ability appears to be influenced by oxidative metabolism, with reductions in fatigue and improved sprint times related to markers of aerobic fitness. The aim of the current study was to measure the oxygen uptake (VO₂) during the first and last sprints during two, 5 × 6-s repeated-sprint bouts. Cross-sectional study. Eight female soccer players performed two, consecutive, 5 × 6-s maximal sprint bouts (B1 and B2) on five separate occasions, in order to identify the minimum time (trec) required to recover total work done (Wtot) in B1. On a sixth occasion, expired air was collected during the first and last sprint of B1 and B2, which were separated by trec. The trec was 10.9 ± 1.1 min. The VO₂ during the first sprint was significantly less than the last sprint in each bout (p<0.001), and the estimated aerobic contribution to the final sprint (measured in kJ) was significantly related to VO₂max in both B1 (r=0.81, p=0.015) and B2 (r=0.93, p=0.001). In addition, the VO₂ attained in the final sprint was not significantly different from VO₂max in B1 (p=0.284) or B2 (p=0.448). The current study shows that the VO₂ increases from the first to the last of 5 × 6-s sprints and that VO₂max may be a limiting factor to performance in latter sprints. Increasing V˙O₂max in team-sport athletes may enable increased aerobic energy delivery, and consequently work done, during a bout of repeated sprints. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Sauter, Alexander W; Stieltjes, Bram; Weikert, Thomas; Gatidis, Sergios; Wiese, Mark; Klarhöfer, Markus; Wild, Damian; Lardinois, Didier; Bremerich, Jens; Sommer, Gregor
2017-01-01
The minimum apparent diffusion coefficient (ADC min ) derived from diffusion-weighted MRI (DW-MRI) and the maximum standardized uptake value (SUV max ) of FDG-PET are markers of aggressiveness in lung cancer. The numeric correlation of the two parameters has been extensively studied, but their spatial interplay is not well understood. After FDG-PET and DW-MRI coregistration, values and location of ADC min - and SUV max -voxels were analyzed. The upper limit of the 95% confidence interval for registration accuracy of sequential PET/MRI was 12 mm, and the mean distance ( D ) between ADC min - and SUV max -voxels was 14.0 mm (average of two readers). Spatial mismatch ( D > 12 mm) between ADC min and SUV max was found in 9/25 patients. A considerable number of mismatch cases (65%) was also seen in a control group that underwent simultaneous PET/MRI. In the entire patient cohort, no statistically significant correlation between SUV max and ADC min was seen, while a moderate negative linear relationship ( r = -0.5) between SUV max and ADC min was observed in tumors with a spatial match ( D ≤ 12 mm). In conclusion, spatial mismatch between ADC min and SUV max is found in a considerable percentage of patients. The spatial connection of the two parameters SUV max and ADC min has a crucial influence on their numeric correlation.
Malwina, Kamelska Anna; Krzysztof, Mazurek; Piotr, Zmijewski
2015-01-01
The study aimed to investigate the differences in the effects of 7-month training on aerobic and anaerobic capacity in tandem cycling athletes with and without visual impairment. In this study, Polish elite (n=13) and sub-elite (n=13) visually impaired (VI) (n=13; 40.8 ±12.8 years) and properly sighted (PS) (n=13; 36.7 ±12.2 years) tandem-cycling athletes participated voluntarily in 7-month routine training. The following pre-/post-training measurements were conducted on separate days: maximal oxygen uptake (VO2max) was estimated with age correction using the Physical Working Capacity test on a bicycle ergometer according to the Astrand-Ryhming method. Maximal power output (Pmax) was evaluated using the Quebec test on a bicycle ergometer. At baseline, VO2max (47.8 ±14.1 vs 42.0 ±8.3 ml/kg/min, respectively) and Pmax (11.5 ±1.5 vs 11.5 ±1.0 W/kg) did not differ significantly between PS and VI cyclists. However, differences in aerobic capacity were considered as clinically significant. Two-way ANOVA revealed that after 7 month training, there were statistically significant increases in VO2max (p=0.003) and Pmax (p=0.009) among VI (VO2max, +9.1%; Pmax, +6.3%) and PS (VO2max, +9.1%; Pmax, +11.7%) cyclists, however, no time × visual impairment interaction effect was found (VO2max, p=0.467; Pmax, p=0.364). After training, VO2max (p=0.03), but not Pmax (p=0.13), was significantly greater in elite compared to sub-elite tandem cyclists. VI and PS tandem cyclists showed similar rates of improvement in VO2max and Pmax after 7-month training. VO2max was a significant determinant of success in tandem cycling. This is one of the first studies providing reference values for aerobic and anaerobic capacity in visually impaired cyclists. PMID:26834877
Gronek, Piotr; Holdys, Joanna; Kryściak, Jakub; Stanisławski, Daniel
2013-01-01
The search for genes with a positive influence on physical fitness is a difficult process. Physical fitness is a trait determined by multiple genes, and its genetic basis is then modified by numerous environmental factors. The present study examines the effects of the polymorphism of creatine kinase (CKM) gene on VO2max – a physiological index of aerobic capacity of high heritability. The study sample consisted of 154 men and 85 women, who were students of the University School of Physical Education in Poznań and athletes practicing various sports, including members of the Polish national team. The study revealed a positive effect of a rare G (NcoI−) allele of the CKM gene on maximal oxygen uptake in Caucasian women practicing sports requiring aerobic and anaerobic exercise metabolism. Also a tendency was noted in individuals with NcoI−/− (GG) and NcoI−/+ (GA) genotypes to reach higher VO2max levels. PMID:24511349
Physical fitness and physical training during Norwegian military service.
Dyrstad, Sindre M; Soltvedt, Rune; Hallén, Jostein
2006-08-01
Evaluate the physical fitness and training of Norwegian infantry soldiers during 10 months of compulsory military service. Maximal oxygen uptake (VO2max) and maximal numbers of sit-ups, push-ups, and chin-ups and 3-km running time were tested in 107 male infantry soldiers at the beginning and end of basic training (BT), and again at demobilization. The amount of physical training was registered throughout the military service. During BT, major improvements in sit-ups and push-ups were found. VO2max increased in soldiers with the lowest initial VO2max, but decreased to pre-BT level at demobilization. The amount of obligatory physical training was 8.5 hours x week(-1) during BT and 35% lower after BT, and was usually performed in uniform at low to moderate intensity. The amount of high-intensity endurance and strength training during compulsory military service is to low to improve the soldiers' endurance and muscular strength.
Defining the determinants of endurance running performance in the heat
James, Carl A.; Hayes, Mark; Willmott, Ashley G. B.; Gibson, Oliver R.; Schlader, Zachary J.; Maxwell, Neil S.
2017-01-01
ABSTRACT In cool conditions, physiologic markers accurately predict endurance performance, but it is unclear whether thermal strain and perceived thermal strain modify the strength of these relationships. This study examined the relationships between traditional determinants of endurance performance and time to complete a 5-km time trial in the heat. Seventeen club runners completed graded exercise tests (GXT) in hot (GXTHOT; 32°C, 60% RH, 27.2°C WBGT) and cool conditions (GXTCOOL; 13°C, 50% RH, 9.3°C WBGT) to determine maximal oxygen uptake (V̇O2max), running economy (RE), velocity at V̇O2max (vV̇O2max), and running speeds corresponding to the lactate threshold (LT, 2 mmol.l−1) and lactate turnpoint (LTP, 4 mmol.l−1). Simultaneous multiple linear regression was used to predict 5 km time, using these determinants, indicating neither GXTHOT (R2 = 0.72) nor GXTCOOL (R2 = 0.86) predicted performance in the heat as strongly has previously been reported in cool conditions. vV̇O2max was the strongest individual predictor of performance, both when assessed in GXTHOT (r = −0.83) and GXTCOOL (r = −0.90). The GXTs revealed the following correlations for individual predictors in GXTHOT; V̇O2max r = −0.7, RE r = 0.36, LT r = −0.77, LTP r = −0.78 and in GXTCOOL; V̇O2max r = −0.67, RE r = 0.62, LT r = −0.79, LTP r = −0.8. These data indicate (i) GXTHOT does not predict 5 km running performance in the heat as strongly as a GXTCOOL, (ii) as in cool conditions, vV̇O2max may best predict running performance in the heat. PMID:28944273
Applied physiology of marathon running.
Sjödin, B; Svedenhag, J
1985-01-01
Performance in marathon running is influenced by a variety of factors, most of which are of a physiological nature. Accordingly, the marathon runner must rely to a large extent on a high aerobic capacity. But great variations in maximal oxygen uptake (VO2 max) have been observed among runners with a similar performance capacity, indicating complementary factors are of importance for performance. The oxygen cost of running or the running economy (expressed, e.g. as VO2 15 at 15 km/h) as well as the fractional utilisation of VO2 max at marathon race pace (%VO2 Ma X VO2 max-1) [where Ma = mean marathon velocity] are additional factors which are known to affect the performance capacity. Together VO2 max, VO2 15 and %VO2 Ma X VO2 max-1 can almost entirely explain the variation in marathon performance. To a similar degree, these variables have also been found to explain the variations in the 'anaerobic threshold'. This factor, which is closely related to the metabolic response to increasing exercise intensities, is the single variable that has the highest predictive power for marathon performance. But a major limiting factor to marathon performance is probably the choice of fuels for the exercising muscles, which factor is related to the %VO2 Ma X VO2 max-1. Present indications are that marathon runners, compared with normal individuals, have a higher turnover rate in fat metabolism at given high exercise intensities expressed both in absolute (m/sec) and relative (%VO2 max) terms. The selection of fat for oxidation by the muscles is important since the stores of the most efficient fuel, the carbohydrates, are limited. The large amount of endurance training done by marathon runners is probably responsible for similar metabolic adaptations, which contribute to a delayed onset of fatigue and raise the VO2 Ma X VO2max-1. There is probably an upper limit in training kilometrage above which there are no improvements in the fractional utilisation of VO2 max at the marathon race pace. The influence of training on VO2 max and, to some extent, on the running economy appears, however, to be limited by genetic factors.
Rosalie Driehuis, Emma; van den Akker, Lizanne Eva; de Groot, Vincent; Beckerman, Heleen
2018-02-13
To investigate whether aerobic capacity explains the level of self-reported physical activity, physical functioning, and participation and autonomy in daily living in persons with multiple sclerosis-related fatigue. A cross-sectional study. Sixty-two participants with multiple sclerosis-related fatigue. Aerobic capacity was measured with a leg ergometer and was expressed as maximal oxygen uptake (VO2max, in ml/kg/min). Physical activity was measured with the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD), physical functioning with the Short Form 36 - physical functioning (SF36-pf), and participation and autonomy in daily living with the Impact on Participation and Autonomy questionnaire (IPA). Multiple regression analyses were performed, adjusted for potential confounders (gender, age, body mass index, educational level, and employment status). Mean maximal oxygen uptake (VO2max) was 23.9 ml/kg/min (standard deviation (SD) 6.3 ml/kg/min). There was no significant relationship between VO2max and physical activity (PASIPD): β = 0.320, 95% confidence interval (95% CI) = -0.109 to 0.749, R2 = 10.8%. Higher VO2max correlated with better physical functioning (SF36-pf): β = 1.527, 95% CI = 0.820-2.234, R2 = 25.9%, and was significantly related to IPA domains "autonomy indoors" (β = -0.043, 95% CI = -0.067 to -0.020, R2 = 20.6%), "autonomy outdoors" (β = -0.037, 95% CI = -0.062 to -0.012, R2 = 18.2%) and "social life and relationships" (β=-0.033, 95% CI = -0.060 to -0.007, R2 = 21.3%). Maximum aerobic capacity was severely reduced in persons with multiple sclerosis-related fatigue. This partly explains the limited physical functioning and restrictions in participation and autonomy indoors, outdoors and in social life and relationships in these persons.
Sartor, Francesco; Vernillo, Gianluca; de Morree, Helma M; Bonomi, Alberto G; La Torre, Antonio; Kubis, Hans-Peter; Veicsteinas, Arsenio
2013-09-01
Assessment of the functional capacity of the cardiovascular system is essential in sports medicine. For athletes, the maximal oxygen uptake [Formula: see text] provides valuable information about their aerobic power. In the clinical setting, the (VO(2max)) provides important diagnostic and prognostic information in several clinical populations, such as patients with coronary artery disease or heart failure. Likewise, VO(2max) assessment can be very important to evaluate fitness in asymptomatic adults. Although direct determination of [VO(2max) is the most accurate method, it requires a maximal level of exertion, which brings a higher risk of adverse events in individuals with an intermediate to high risk of cardiovascular problems. Estimation of VO(2max) during submaximal exercise testing can offer a precious alternative. Over the past decades, many protocols have been developed for this purpose. The present review gives an overview of these submaximal protocols and aims to facilitate appropriate test selection in sports, clinical, and home settings. Several factors must be considered when selecting a protocol: (i) The population being tested and its specific needs in terms of safety, supervision, and accuracy and repeatability of the VO(2max) estimation. (ii) The parameters upon which the prediction is based (e.g. heart rate, power output, rating of perceived exertion [RPE]), as well as the need for additional clinically relevant parameters (e.g. blood pressure, ECG). (iii) The appropriate test modality that should meet the above-mentioned requirements should also be in line with the functional mobility of the target population, and depends on the available equipment. In the sports setting, high repeatability is crucial to track training-induced seasonal changes. In the clinical setting, special attention must be paid to the test modality, because multiple physiological parameters often need to be measured during test execution. When estimating VO(2max), one has to be aware of the effects of medication on heart rate-based submaximal protocols. In the home setting, the submaximal protocols need to be accessible to users with a broad range of characteristics in terms of age, equipment, time available, and an absence of supervision. In this setting, the smart use of sensors such as accelerometers and heart rate monitors will result in protocol-free VO(2max) assessments. In conclusion, the need for a low-risk, low-cost, low-supervision, and objective evaluation of VO(2max) has brought about the development and the validation of a large number of submaximal exercise tests. It is of paramount importance to use these tests in the right context (sports, clinical, home), to consider the population in which they were developed, and to be aware of their limitations.
Hypoxia and training-induced adaptation of hormonal responses to exercise in humans.
Engfred, K; Kjaer, M; Secher, N H; Friedman, D B; Hanel, B; Nielsen, O J; Bach, F W; Galbo, H; Levine, B D
1994-01-01
To establish whether or not hypoxia influences the training-induced adaptation of hormonal responses to exercise, 21 healthy, untrained subjects (2) years, mean (SE)] were studied in three groups before and after 5 weeks' training (cycle ergometer, 45 min.day-1, 5 days.week-1). Group 1 trained at sea level at 70% maximal oxygen uptake (VO2max), group 2 in a hypobaric chamber at a simulated altitude of 2500 m at 70% of altitude VO2max, and group 3 at a simulated altitude of 2500 m at the same absolute work rate as group 1. Arterial blood was sampled before, during and at the end of exhaustive cycling at sea level (85% of pretraining VO2max). VO2max increased by 12 (2)% with no significant difference between groups, whereas endurance improved most in group 1 (P < 0.05). Training-induced changes in response to exercise of noradrenaline, adrenaline, growth hormone, beta-endorphin, glucagon, and insulin were similar in the three groups. Concentrations of erythropoietin and 2,3-diphosphoglycerate at rest did not change over the training period. In conclusion, within 5 weeks of training, no further adaptation of hormonal exercise responses takes place if intensity is increased above 70% VO2max. Furthermore, hypoxia per se does not add to the training-induced hormonal responses to exercise.
Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F
2017-10-01
There is ample evidence for supporting the positive impact of aerobic fitness on cognitive function, but little is known about the physiological mechanisms. The objective of this study was to investigate whether the positive cognitive impact of aerobic fitness is associated with inflammatory and neurotrophic peripheral biomarkers in young adults aged 18 to 29years (n=87). For the objective assessment of aerobic fitness, we measured maximal oxygen uptake (VO 2 max) as a parametric measure of cardiorespiratory capacity. We demonstrated that young adults with the higher levels of VO 2 max performed better on computerized cognitive tasks assessing sustained attention and working memory. This positive VO 2 max-cognitive performance association existed independently of confounders (e.g., years of education, intelligence scores) but was significantly dependent on resting peripheral blood levels of inflammatory (C-reactive protein, CRP) and neurotrophic (brain-derived neurotrophic factor, BDNF) biomarkers. Statistical models showed that CRP was a mediator of the effect of VO 2 max on working memory. Further, BDNF was a moderator of the effect of VO 2 max on working memory. These mediating and moderating effects occurred in individuals with higher levels of aerobic fitness. The results suggest that higher aerobic fitness, as measured by VO 2 max, is associated with enhanced cognitive functioning and favorable resting peripheral levels of inflammatory and brain-derived neurotrophic biomarkers in young adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger
2012-06-01
The aim of the present study was to investigate the transport of γ-aminobutyric acid (GABA) across the basolateral membrane of intestinal cells. The proton-coupled amino acid transporter, hPAT1, mediates the influx of GABA and GABA mimetic drug substances such as vigabatrin and gaboxadol and the anticancer prodrug δ-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290 μM and V(max) of 75 pmol cm(-2) min(-1) and a low affinity system with a K(m) of approximately 64 mM and V(max) of 1.6 nmol cm(-2) min(-1). The high-affinity transporter is Na(+) and Cl(-) dependent. The substrate specificity of the high-affinity transporter was further studied and Gly-Sar, Leucine, gaboxadol, sarcosine, lysine, betaine, 5-hydroxythryptophan, proline and glycine reduced the GABA uptake to approximately 44-70% of the GABA uptake in the absence of inhibitor. Other substances such as β-alanine, GABA, 5-aminovaleric acid, taurine and δ-aminolevulinic acid reduced the basolateral GABA uptake to 6-25% of the uptake in the absence of inhibitor. Our results indicate that the distance between the charged amino- and acid-groups is particular important for inhibition of basolateral GABA uptake. Thus, there seems to be a partial substrate overlap between the basolateral GABA transporter and hPAT1, which may prove important for understanding drug interactions at the level of intestinal transport. Copyright © 2012 Elsevier B.V. All rights reserved.
Liapi, Eleni; Geschwind, Jean-Francois H; Vali, Mustafa; Khwaja, Afsheen A; Prieto-Ventura, Veronica; Buijs, Manon; Vossen, Josephina A; Ganapathy-Kanniappan, Shanmugasudaram; Ganapathy, Shanmugasudaram; Wahl, Richard L
2011-02-01
The purpose of this study was to determine the effects of 3-bromopyruvate (3-BrPA) on tumor glucose metabolism as imaged with (18)F-FDG PET/CT at multiple time points after treatment and compare them with those after intraarterial control injections of saline. Twenty-three New Zealand White rabbits implanted intrahepatically with VX2 tumors were assigned to 1 of 2 groups: 14 rabbits were assigned to the treatment group (TG) and 9 to the saline control group (SG). All animals were infused with 25 mL of either 1.75 mM 3-BrPA or saline over 1 h via a 2-French catheter, which was secured in the hepatic artery. For PET/CT, the animals were injected with 37 MBq of (18)F-FDG at 1 d before treatment and 2 h, 24 h, and 1 wk after treatment. Tumor size, tumor and liver maximal standardized uptake value (SUV(max)), and tumor-to-background ratios were calculated for all studies. Seven TG and 5 SG animals were sacrificed at 1 wk after treatment for histopathologic analysis. Intense (18)F-FDG uptake was seen in untreated tumors. A significant reduction in tumor SUV(max) was noted in TG animals, when compared with SG animals, at 1 wk after treatment (P = 0.006). The tumor-to-liver background ratio in the TG animals, compared with the SG animals, was significantly reduced as early as 24 h after treatment (P = 0.01) and remained reduced at 1 wk (P = 0.003). Tumor SUV(max) increased from the baseline levels at 7 d in controls (P = 0.05). The histopathologic analysis of explanted livers revealed increased tumor necrosis in all TG samples. There was a significant inverse correlation (r(2) = 0.538, P = 0.005) between the percentage of tumor necrosis on histopathology and tumor SUV(max) on (18)F-FDG PET at 7 d after treatment with 3-BrPA. Intraarterial injection of 3-BrPA resulted in markedly decreased (18)F-FDG uptake as imaged by PET/CT and increased tumor necrosis on histopathology at 1 wk after treatment in the VX2 rabbit liver tumor. PET/CT appears to be a useful means to follow antiglycolytic therapy with 3-BrPA.
Raleigh, James P; Giles, Matthew D; Islam, Hashim; Nelms, Matthew William; Bentley, Robert F; Jones, Joshua H; Neder, J Alberto; Boonstra, Kristen; Quadrilatero, Joe; Simpson, Craig A; Tschakovsky, Michael E; Gurd, Brendon J
2018-05-07
The current study examined the contribution of central and peripheral adaptations to changes in maximal oxygen uptake (VO2max) following sprint interval training (SIT). Twenty-three males completed four weekly SIT sessions (8 x 20 second cycling bouts at ~170% of work rate at VO2max, 10 second recovery) for four weeks. Following completion of training, the relationship between changes in VO2max and changes in central (cardiac output) and peripheral (a-vO2diff, muscle capillary density, oxidative capacity, fibre-type distribution) adaptations was determined in all participants using correlation analysis. Participants were then divided in to tertiles based on the magnitude of their individual VO2max responses and differences in central/peripheral adaptations were examined in the top (HI; ~10 mL/kg/min increase in VO2max, p<0.05) and bottom (LO; no change in VO2max, p>0.05) tertiles (n=8 each). Training had no impact on Qmax and no differences were observed between the LO and HI groups (p>0.05). A-vO2diff increased in the HI group only (p<0.05) and correlated significantly (r=0.71, p<0.01) with changes in VO2max across all participants. Muscle capillary density (p<0.02) and ß-hydroxyacyl-CoA dehydrogenase maximal activity (p<0.05) increased in both groups, with no between-group differences (p>0.05). Citrate synthase maximal activity (p<0.01) and type IIA fibre composition (p<0.05) increased in the LO group only. Collectively, while the heterogeneity in the observed VO2max response following four weeks of SIT appears to be attributable to individual differences in systemic vascular and/or muscular adaptations, the markers examined in the current study were unable to explain the divergent VO2max responses in the LO and HI groups.
Kusy, K; Zieliński, J
2014-02-01
We studied relationships between age and aerobic capacity in three groups of subjects adhering to different exercise modalities. A total of 203 men aged 20-90 years were examined: 52 speed-power track and field athletes (SP), 89 endurance runners (ER) and 62 untrained individuals (UT). Maximal exercise characteristics were obtained during a graded treadmill test until exhaustion: oxygen uptake (VO2max), heart rate (HRmax), oxygen pulse (O2 Pulsemax) and maximal distance (Distmax). Information about training history and weekly training amount was collected. A linear model of regression was adopted. VO2max in SP was lower than in ER, but significantly higher than in UT. The cross-sectional rates of decline in body mass-adjusted VO2max and Distmax were significantly smaller in SP than in ER and UT. About 80 years of age, the levels of VO2max and Distmax reached similar values in SP and ER. The decline in HRmax, but not in O2 Pulsemax was suggested as a cardiac adaptation accounting for between-group differences in VO2max loss. Weekly training volume was a significant positive predictor of age-related changes in aerobic capacity. In conclusion, not only endurance, but also speed-power exercise appears adequate to ensure an elevated aerobic capacity at old age. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sampathirao, Nikita; Basu, Sandip
2017-03-01
Our aim was to comparatively assess dual-tracer PET/CT ( 68 Ga-DOTATATE and 18 F-FDG) and multimodality anatomic imaging in studying metastatic neuroendocrine tumors (NETs) of unknown primary (CUP-NETs) scheduled for peptide receptor radionuclide therapy for divergence of tracer uptake on dual-tracer PET/CT, detection of primary, and overall lesion detection vis-a-vis tumor proliferation index (MIB-1/Ki-67). Methods: Fifty-one patients with CUP-NETs (25 men, 26 women; age, 22-74 y), histopathologically proven and thoroughly investigated with conventional imaging modalities (ultrasonography, CT/contrast-enhanced CT, MRI, and endoscopic ultrasound, wherever applicable), were retrospectively analyzed. Patients were primarily referred for deciding on feasibility of peptide receptor radionuclide therapy (except 2 patients), and all had undergone 68 Ga-DOTATATE and 18 F-FDG PET/CT as part of pretreatment workup. The sites of metastases included liver, lung/mediastinum, skeleton, abdominal nodes, and other soft-tissue sites. Patients were divided into 5 groups on the basis of MIB-1/Ki-67 index on a 5-point scale: group I (1%-5%) ( n = 35), group II (6%-10%) ( n = 8), group III (11%-15%) ( n = 4), group IV (16%-20%) ( n = 2), and group V (>20%) ( n = 2). Semiquantitative analysis of tracer uptake was undertaken by SUV max of metastatic lesions and the primary (when detected). The SUV max values were studied over increasing MIB-1/Ki-67 index. The detection sensitivity of 68 Ga-DOTATATE for primary and metastatic lesions was assessed and compared with other imaging modalities including 18 F-FDG PET/CT. Results: Unknown primary was detected on 68 Ga-DOTATATE in 31 of 51 patients, resulting in sensitivity of 60.78% whereas overall lesion detection sensitivity was 96.87%. The overall lesion detection sensitivities (individual groupwise from group I to group V) were 97.75%, 87.5%, 100%, 100%, and 66.67%, respectively. As MIB-1/Ki-67 index increased, 68 Ga-DOTATATE uptake decreased in metastatic and primary lesions (mean SUV max , 43.5 and 22.68 g/dL in group I to 22.54 and 16.83 g/dL in group V, respectively), whereas 18 F-FDG uptake showed a gradual rise (mean SUV max , 3.66 and 2.86 g/dL in group I to 7.53 and 9.58 g/dL in group V, respectively). There was a corresponding decrease in the 68 Ga-DOTATATE-to- 18 F-FDG uptake ratio with increasing MIB-1/Ki-67 index (from 11.89 in group I to 2.99 in group V). Conclusion: In CUP-NETs, the pattern of uptake on dual-tracer PET ( 68 Ga-DOTATATE and 18 F-FDG) correlates well with tumor proliferation index with a few outliers; combined dual-tracer PET/CT with MIB-1/Ki-67 index would aid in better whole-body assessment of tumor biology in CUP-NETs. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Lundgaard, E; Wouda, M F; Strøm, V
2017-10-01
This is a comparative study of two exercise testing protocols. The objective of this study was to compare maximal oxygen uptake (VO 2 max) and achieved criteria for maximal exercise testing between the Sunnaas Protocol-a newly designed treadmill exercise test protocol-and the Modified Bruce Protocol in persons with incomplete spinal cord injury (SCI). This study was conducted in Sunnaas Rehabilitation Hospital, Norway. Twenty persons (19 men) with incomplete SCI (AIS D) capable of ambulating without assistive devices performed two treadmill walking exercise tests (Sunnaas Protocol and Modified Bruce Protocol) until exhaustion 1-3 days apart. The key differences between the protocols are the smaller increments in speed and shorter duration on each workload in the Sunnaas Protocol. Cardiovascular responses were measured continuously throughout both tests. The subjects exhibited statistically significantly higher VO 2 max when using the Sunnaas Protocol (37.1±9.9 vs 35.4±9.8 ml kg -1 min -1 , P=0.01), with a mean between-test difference of 1.8 ml kg -1 min -1 (95% confidence interval: 0.49-3.16). There was no significant difference in mean maximal heart rate (HR max). Nineteen (95%) subjects achieved at least three of the four criteria for maximal oxygen uptake using the Sunnaas Protocol. Thirteen (65%) subjects achieved at least three of the criteria using a Modified Bruce protocol. The small differences in both VO 2 max and achieved criteria in favor of the Sunnaas Protocol suggest that it could be a useful alternative treadmill exercise test protocol for ambulating persons with incomplete SCI.
de Souza E Silva, Christina G; Kaminsky, Leonard A; Arena, Ross; Christle, Jeffrey W; Araújo, Claudio Gil S; Lima, Ricardo M; Ashley, Euan A; Myers, Jonathan
2018-05-01
Background Maximal oxygen uptake (VO 2 max) is a powerful predictor of health outcomes. Valid and portable reference values are integral to interpreting measured VO 2 max; however, available reference standards lack validation and are specific to exercise mode. This study was undertaken to develop and validate a single equation for normal standards for VO 2 max for the treadmill or cycle ergometer in men and women. Methods Healthy individuals ( N = 10,881; 67.8% men, 20-85 years) who performed a maximal cardiopulmonary exercise test on either a treadmill or a cycle ergometer were studied. Of these, 7617 and 3264 individuals were randomly selected for development and validation of the equation, respectively. A Brazilian sample (1619 individuals) constituted a second validation cohort. The prediction equation was determined using multiple regression analysis, and comparisons were made with the widely-used Wasserman and European equations. Results Age, sex, weight, height and exercise mode were significant predictors of VO 2 max. The regression equation was: VO 2 max (ml kg -1 min -1 ) = 45.2 - 0.35*Age - 10.9*Sex (male = 1; female = 2) - 0.15*Weight (pounds) + 0.68*Height (inches) - 0.46*Exercise Mode (treadmill = 1; bike = 2) ( R = 0.79, R 2 = 0.62, standard error of the estimate = 6.6 ml kg -1 min -1 ). Percentage predicted VO 2 max for the US and Brazilian validation cohorts were 102.8% and 95.8%, respectively. The new equation performed better than traditional equations, particularly among women and individuals ≥60 years old. Conclusion A combined equation was developed for normal standards for VO 2 max for different exercise modes derived from a US national registry. The equation provided a lower average error between measured and predicted VO 2 max than traditional equations even when applied to an independent cohort. Additional studies are needed to determine its portability.
Pulmonary rehabilitation improves cardiovascular response to exercise in COPD.
Ramponi, Sara; Tzani, Panagiota; Aiello, Marina; Marangio, Emilio; Clini, Enrico; Chetta, Alfredo
2013-01-01
Pulmonary rehabilitation (PR) has emerged as a recommended standard of care in symptomatic COPD. We now studied whether PR may affect cardiovascular response to exercise in these patients. Twenty-seven patients (9 females aged 69 ± 8 years) with moderate-to-severe airflow obstruction admitted to a 9-week PR course performed a pre-to-post evaluation of lung function test and symptom-limited cardiopulmonary exercise test (CPET). Oxygen uptake (VO2), tidal volume (V(T)), dyspnea and leg fatigue scores were measured during CPET. Cardiovas-cular response was assessed by means of oxygen pulse (O2Pulse), the oxygen uptake efficiency slope and heart rate recovery at the 1st min. A significant increase in peak VO2 and in all cardiovascular parameters (p < 0.05) was found following PR when compared to baseline. Leg fatigue (p < 0.05), but not dyspnea, was significantly reduced after PR. When assessed at metabolic and ventilatory iso levels [% VCO2max and % minute ventilation (VEmax)], O2Pulse and V(T) were significantly higher (p < 0.05) at submaximal exercise (75 and 50% of VCO2max and VEmax) after PR when compared to baseline. V(T) percent changes at 75% VCO2max and 75% VEmax after PR significantly correlated with corresponding changes in O2Pulse (p < 0.01). In COPD patients, a PR training program improved the cardiovascular response during exercise at submaximal exercise independent of the external workload. This change was associated with an enhanced ventilatory function during exercise. Copyright © 2013 S. Karger AG, Basel.
Panascì, Marco; Lepers, Romuald; La Torre, Antonio; Bonato, Matteo; Assadi, Hervè
2017-09-01
The aim of this study was to compare the physiological responses during 15 min of intermittent running consisting of 30 s of high-intensity running exercise at maximal aerobic velocity (MAV) interspersed with 30 s of passive recovery (30-30) performed outdoor versus on a motorized treadmill. Fifteen collegiate physically active males (age, 22 ± 1 years old; body mass, 66 ± 7 kg; stature, 176 ± 06 cm; weekly training volume, 5 ± 2 h·week -1 ), performed the Fitness Intermittent Test 45-15 to determine maximal oxygen uptake (V̇O 2max ) and MAV and then completed in random order 3 different training sessions consisting of a 30-s run/30-s rest on an outdoor athletic track (30-30 Track) at MAV; a 30-s run/30-s rest on a treadmill (30-30 Treadmill) at MAV; a 30-s run/30-s rest at MAV+15% (30-30 + 15% MAV Treadmill). Oxygen uptake (V̇O 2 ), time above 90%V̇O 2max (t90%V̇O 2max ), and rating of perceived exertion (RPE) were measured during each training session. We observed a statistical significant underestimation of V̇O 2 (53.1 ± 5.4 mL·kg -1 ·min -1 vs 49.8 ± 6.7 mL·kg -1 ·min -1 , -6.3%, P = 0.012), t90%V̇O 2max (8.6% ± 11.5% vs 38.7% ± 32.5%, -77.8%, P = 0.008), RPE (11.4 ± 1.4 vs 16.5 ± 1.7, -31%, P < 0.0001) during the 30-30 Treadmill compared with the same training session performed on track. No statistical differences between 30-30 +15 % MAV Treadmill and 30-30 Track were observed. The present study demonstrates that a 15% increase in running velocity during a high-intensity intermittent treadmill training session is the optimal solution to reach the same physiological responses than an outdoor training session.
Bagley, Liam; Slevin, Mark; Bradburn, Steven; Liu, Donghui; Murgatroyd, Chris; Morrissey, George; Carroll, Michael; Piasecki, Mathew; Gilmore, William S; McPhee, Jamie S
2016-01-01
The purpose of this study was to examine whether very short duration, very high intensity sprint interval training (SIT) leads to loss of body fat mass in association with improvements to VO 2 max and fatty acid oxidation, and to assess the extent of sex dimorphism in these physiological responses. A total of 24 men and 17 women (mean (SEM) age: 39 (±2) years; body mass index 24.6 (0.6)) completed measurements of the maximal rate of oxygen uptake (VO 2 max) and fatty acid oxidation (FATmax). Body fat and lean mass were measured by dual emission x-ray absorptiometry, and fasting blood lipid, glucose and insulin profiles were assessed before and after training. SIT consisted of 4×20 s sprints on a cycle ergometer at approximately 175% VO 2 max, three times per week for 12 weeks. Fat mass decreased by 1.0 kg, although men lost statistically significantly more fat than women both when expressed in Kg and as % body fat. VO 2 max increased by around 9%, but women improved VO 2 max significantly more than men. FATmax improved by around 13%, but fasting plasma glucose, insulin, total triglyceride, total cholesterol and high-density lipoprotein (HDL) did not change after training, while low-density lipoprotein decreased by 8% (p=0.028) and the HDL:Total Cholesterol ratio improved by 6%. There were no sex differences in these metabolic responses to training. These results show lower body fat %, and higher rates of fatty acid oxidation and VO 2 max after 12 weeks of training for just 4 min per week. Notably, women improved VO 2 max more than men, while men lost more fat than women.
Bagley, Liam; Slevin, Mark; Bradburn, Steven; Liu, Donghui; Murgatroyd, Chris; Morrissey, George; Carroll, Michael; Piasecki, Mathew; Gilmore, William S; McPhee, Jamie S
2016-01-01
Background The purpose of this study was to examine whether very short duration, very high intensity sprint interval training (SIT) leads to loss of body fat mass in association with improvements to VO2max and fatty acid oxidation, and to assess the extent of sex dimorphism in these physiological responses. Methods A total of 24 men and 17 women (mean (SEM) age: 39 (±2) years; body mass index 24.6 (0.6)) completed measurements of the maximal rate of oxygen uptake (VO2max) and fatty acid oxidation (FATmax). Body fat and lean mass were measured by dual emission x-ray absorptiometry, and fasting blood lipid, glucose and insulin profiles were assessed before and after training. SIT consisted of 4×20 s sprints on a cycle ergometer at approximately 175% VO2max, three times per week for 12 weeks. Results Fat mass decreased by 1.0 kg, although men lost statistically significantly more fat than women both when expressed in Kg and as % body fat. VO2max increased by around 9%, but women improved VO2max significantly more than men. FATmax improved by around 13%, but fasting plasma glucose, insulin, total triglyceride, total cholesterol and high-density lipoprotein (HDL) did not change after training, while low-density lipoprotein decreased by 8% (p=0.028) and the HDL:Total Cholesterol ratio improved by 6%. There were no sex differences in these metabolic responses to training. Conclusions These results show lower body fat %, and higher rates of fatty acid oxidation and VO2max after 12 weeks of training for just 4 min per week. Notably, women improved VO2max more than men, while men lost more fat than women. PMID:27900150
2018-01-01
Introduction The aim of this study was to evaluate different clusters of anthropometric indicators (body mass index | BMI |, waist circumference | WC |, waist-to-height ratio | WHtR |, triceps skinfold |TR SF|, subscapular skinfold |SE SF|, sum of the triceps and subscapular skinfolds | ΣTR + SE |, and sum of the triceps, subscapular and suprailiac folds | ΣTR + SE + SI|) associated with the VO2max levels in adolescents. Methods The study included 1,132 adolescents (aged 14–19 years) enrolled in public schools of São José, Santa Catarina, Brazil, in the 2014 academic year. The dependent variable was the cluster of anthropometric indicators (BMI, WC, WHtR, TR SF, SE SF, SI SF, ΣTR + SE and ΣTR + SE + SI) of excess body fat. The independent variable was maximum oxygen uptake (VO2max), estimated by the modified Canadian aerobic fitness test—mCAFT. Control variables were: age, skin color, economic level, maternal education, physical activity and sexual maturation. Multinomial logistic regression was used for associations between the dependent and independent variables. Binary logistic regression was performed to identify the association between adolescents with all anthropometric indicators in excess and independent variables. Results One in ten adolescents presented all anthropometric indicators of excess body fat. Multinomial regression showed that with each increase of one VO2max unit, the odds of adolescents having three, four, five or more anthropometric indicators of excess body fat decreased by 0.92, 0.85 and 0.73 times, respectively. In the binary regression, this fact was reconfirmed, demonstrating that with each increase of one VO2max unit, the odds of adolescents having simultaneously the eight anthropometric indicators of excess body fat decreased by 0.55. Conclusion It was concluded that with each increase of one VO2max unit, adolescents decreased the odds of simultaneously presenting three or more anthropometric indicators of excess body fat, regardless of biological, economic and lifestyle factors. In addition, the present study identified that one in ten adolescents had all anthropometric indicators of excess body fat. PMID:29534098
Gonçalves, Eliane Cristina de Andrade; Nunes, Heloyse Elaine Gimenes; Silva, Diego Augusto Santos
2018-01-01
The aim of this study was to evaluate different clusters of anthropometric indicators (body mass index | BMI |, waist circumference | WC |, waist-to-height ratio | WHtR |, triceps skinfold |TR SF|, subscapular skinfold |SE SF|, sum of the triceps and subscapular skinfolds | ΣTR + SE |, and sum of the triceps, subscapular and suprailiac folds | ΣTR + SE + SI|) associated with the VO2max levels in adolescents. The study included 1,132 adolescents (aged 14-19 years) enrolled in public schools of São José, Santa Catarina, Brazil, in the 2014 academic year. The dependent variable was the cluster of anthropometric indicators (BMI, WC, WHtR, TR SF, SE SF, SI SF, ΣTR + SE and ΣTR + SE + SI) of excess body fat. The independent variable was maximum oxygen uptake (VO2max), estimated by the modified Canadian aerobic fitness test-mCAFT. Control variables were: age, skin color, economic level, maternal education, physical activity and sexual maturation. Multinomial logistic regression was used for associations between the dependent and independent variables. Binary logistic regression was performed to identify the association between adolescents with all anthropometric indicators in excess and independent variables. One in ten adolescents presented all anthropometric indicators of excess body fat. Multinomial regression showed that with each increase of one VO2max unit, the odds of adolescents having three, four, five or more anthropometric indicators of excess body fat decreased by 0.92, 0.85 and 0.73 times, respectively. In the binary regression, this fact was reconfirmed, demonstrating that with each increase of one VO2max unit, the odds of adolescents having simultaneously the eight anthropometric indicators of excess body fat decreased by 0.55. It was concluded that with each increase of one VO2max unit, adolescents decreased the odds of simultaneously presenting three or more anthropometric indicators of excess body fat, regardless of biological, economic and lifestyle factors. In addition, the present study identified that one in ten adolescents had all anthropometric indicators of excess body fat.
Radiolabelled D2 agonists as prolactinoma imaging agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otto, C.A.
1989-08-01
During the past year, further studies on mAChR were conducted. These studies included verification of the difference in pituitary distribution based on ligand charge. The pituitary localization of TRB. A neutral mAChR ligand, was verified. The lack of QNB blockade of TRB uptake was tested by blockage with scopolamine, another mAChR antagonist and by testing the effect in a different strain of rat. Neither scopolamine or change of rat strain had any effect. We concluded that TRB uptake in pituitary is not a receptor-mediated process. Further studies were conducted with an additional quaternized mAChR ligand: MQNB. Pituitary localization of MQNB,more » like MTRB, could be blocked by pretreatment with QNB. We have tentatively concluded that permanent charge on a mAChR antagonist changes the mechanism of uptake in the pituitary. Time course studies and the effects of DES on myocardial uptake are reported. A brief report on preliminary results of evaluation of quaternized mAChR ligands in the heart is included. In a limited series of such ligands, we have observed a single binding site and a difference in B{sub max} values: QNB competition studies yield larger B{sub max} values than studies with {sup 3}H-NMS. Progress in the synthesis of D{sub 2} agonists includes solving a synthetic problem and preparation of the cold'' analogue of N-0437 using procedures applicable to eventual synthesis with {sup 11}C-CH{sub 3}I. 2 refs., 5 figs., 1 tab.« less
Bai, Bing; Huang, Hui-Qiang; Cai, Qi-Chun; Fan, Wei; Wang, Xiao-Xiao; Zhang, Xu; Lin, Ze-Xiao; Gao, Yan; Xia, Yun-Fei; Guo, Ying; Cai, Qing-Qing; Jiang, Wen-Qi; Lin, Tong-Yu
2013-03-01
The role of (18)Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) in extranodal natural killer/T-cell lymphoma (ENKL) is not well established. This study aimed to investigate the prognostic role of the pretreatment maximum standardized uptake value (SUV(max)) on PET/CT in patients with newly diagnosed ENKL. Among 364 consecutive patients with newly diagnosed ENKL, 81 patients were included and reviewed. The impact of SUV(max) on survival and the relationship between SUV(max) and other clinicopathological parameters were analyzed. The median SUV(max) was 14.6 (range 2.0-45.4). The optimal cutoff value of SUV(max) to predict overall survival (OS) was 15. Patients with high SUV(max) (SUVmax >15) were associated with bulky disease (P < 0.001), local invasion (P = 0.030), high score of Korean Prognostic Index (KPI, P = 0.046), resistance to primary treatment (P = 0.014), poor OS (P < 0.001), and unfavorable progression-free survival (P < 0.001). With a median follow-up of 25.0 months, the median OS was 63.0 months (range 2.0-99.0 months). Multivariate analyses revealed the following independent prognostic factors for OS: age >60 years (P = 0.001), stage III-IV (P = 0.023), SUV(max) >15 (P = 0.020), and bulky disease (>5 cm) (P = 0.002). By using the SUV(max), patients in most subgroups stratified by the KPI or the International Prognostic Index (IPI) were further discriminated in OS with significant statistical difference. Our results suggest the pretreatment SUV(max) is predictive of prognosis in patients with newly diagnosed ENKL. The SUV(max) may provide additional prognostic information for IPI and KPI.
Vandbakk, Kristine; Welde, Boye; Kruken, Andrea Hovstein; Baumgart, Julia; Ettema, Gertjan; Karlsen, Trine; Sandbakk, Øyvind
2017-01-01
This study compared the effects of adding upper-body sprint-intervals or continuous double poling endurance training to the normal training on maximal upper-body strength and endurance capacity in female cross-country skiers. In total, 17 female skiers (age: 18.1±0.8yr, body mass: 60±7 kg, maximal oxygen uptake (VO2max): 3.30±0.37 L.min-1) performed an 8-week training intervention. Here, either two weekly sessions of six to eight 30-s maximal upper-body double poling sprint-intervals (SIG, n = 8) or 45–75 min of continuous low-to-moderate intensity double poling on roller skis (CG, n = 9) were added to their training. Before and after the intervention, the participants were tested for physiological and kinematical responses during submaximal and maximal diagonal and double poling treadmill roller skiing. Additionally, we measured maximal upper-body strength (1RM) and average power at 40% 1RM in a poling-specific strength exercise. SIG improved absolute VO2max in diagonal skiing more than CG (8% vs 2%, p<0.05), and showed a tendency towards higher body-mass normalized VO2max (7% vs 2%, p = 0.07). Both groups had an overall improvement in double poling peak oxygen uptake (10% vs 6% for SIG and CG) (both p<0.01), but no group-difference was observed. SIG improved 1RM strength more than CG (18% vs 10%, p<0.05), while there was a tendency for difference in average power at 40% 1RM (20% vs 14%, p = 0.06). Oxygen cost and kinematics (cycle length and rate) in double poling and diagonal remained unchanged in both groups. In conclusion, our study demonstrates that adding upper-body sprint-interval training is more effective than continuous endurance training in improving upper-body maximal strength and VO2max. PMID:28241030
Brooks, Scott C.; Brandt, Craig C.; Griffiths, Natalie A.
2016-10-07
Nutrient spiraling is an important ecosystem process characterizing nutrient transport and uptake in streams. Various nutrient addition methods are used to estimate uptake metrics; however, uncertainty in the metrics is not often evaluated. A method was developed to quantify uncertainty in ambient and saturation nutrient uptake metrics estimated from saturating pulse nutrient additions (Tracer Additions for Spiraling Curve Characterization; TASCC). Using a Monte Carlo (MC) approach, the 95% confidence interval (CI) was estimated for ambient uptake lengths (S w-amb) and maximum areal uptake rates (U max) based on 100,000 datasets generated from each of four nitrogen and five phosphorous TASCCmore » experiments conducted seasonally in a forest stream in eastern Tennessee, U.S.A. Uncertainty estimates from the MC approach were compared to the CIs estimated from ordinary least squares (OLS) and non-linear least squares (NLS) models used to calculate S w-amb and U max, respectively, from the TASCC method. The CIs for Sw-amb and Umax were large, but were not consistently larger using the MC method. Despite the large CIs, significant differences (based on nonoverlapping CIs) in nutrient metrics among seasons were found with more significant differences using the OLS/NLS vs. the MC method. Lastly, we suggest that the MC approach is a robust way to estimate uncertainty, as the calculation of S w-amb and U max violates assumptions of OLS/NLS while the MC approach is free of these assumptions. The MC approach can be applied to other ecosystem metrics that are calculated from multiple parameters, providing a more robust estimate of these metrics and their associated uncertainties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Scott C.; Brandt, Craig C.; Griffiths, Natalie A.
Nutrient spiraling is an important ecosystem process characterizing nutrient transport and uptake in streams. Various nutrient addition methods are used to estimate uptake metrics; however, uncertainty in the metrics is not often evaluated. A method was developed to quantify uncertainty in ambient and saturation nutrient uptake metrics estimated from saturating pulse nutrient additions (Tracer Additions for Spiraling Curve Characterization; TASCC). Using a Monte Carlo (MC) approach, the 95% confidence interval (CI) was estimated for ambient uptake lengths (S w-amb) and maximum areal uptake rates (U max) based on 100,000 datasets generated from each of four nitrogen and five phosphorous TASCCmore » experiments conducted seasonally in a forest stream in eastern Tennessee, U.S.A. Uncertainty estimates from the MC approach were compared to the CIs estimated from ordinary least squares (OLS) and non-linear least squares (NLS) models used to calculate S w-amb and U max, respectively, from the TASCC method. The CIs for Sw-amb and Umax were large, but were not consistently larger using the MC method. Despite the large CIs, significant differences (based on nonoverlapping CIs) in nutrient metrics among seasons were found with more significant differences using the OLS/NLS vs. the MC method. Lastly, we suggest that the MC approach is a robust way to estimate uncertainty, as the calculation of S w-amb and U max violates assumptions of OLS/NLS while the MC approach is free of these assumptions. The MC approach can be applied to other ecosystem metrics that are calculated from multiple parameters, providing a more robust estimate of these metrics and their associated uncertainties.« less
Karoline de Morais, Pâmella; Sales, Marcelo Magalhães; Alves de Almeida, Jeeser; Motta-Santos, Daisy; Victor de Sousa, Caio; Simões, Herbert Gustavo
2015-01-01
[Purpose] To verify the effects of different intensities of aerobic exercise on 24-hour ambulatory blood pressure (BP) responses in individuals with type 2 diabetes mellitus (T2D) and prehypertension. [Subjects and Methods] Ten individuals with T2D and prehypertension (55.8 ± 7.7 years old; blood glucose 133.0 ± 36.7 mg·dL−1 and awake BP 130.6 ± 1.6/ 80.5 ± 1.8 mmHg) completed three randomly assigned experiments: non-exercise control (CON) and exercise at moderate (MOD) and maximal (MAX) intensities. Heart rate (HR), BP, blood lactate concentrations ([Lac]), oxygen uptake (VO2), and rate of perceived exertion (RPE) were measured at rest, during the experimental sessions, and during the 60 min recovery period. After this period, ambulatory blood pressure was monitored for 24 h. [Results] The results indicate that [Lac] (MAX: 6.7±2.0 vs. MOD: 3.8±1.2 mM), RPE (MAX: 19±1.3 vs. MOD: 11±2.3) and VO2peak (MAX: 20.2±4.1 vs. MOD: 14.0±3.0 mL·kg−1·min−1) were highest following the MAX session. Compared with CON, only MAX elicited post-exercise BP reduction that lasted for 8 h after exercise and during sleep. [Conclusion] A single session of aerobic exercise resulted in 24 h BP reductions in individuals with T2D, especially while sleeping, and this reduction seems to be dependent on the intensity of the exercise performed. PMID:25642036
Biokinetic Analysis and Metabolic Fate of 2,4-D in 2,4-D-Resistant Soybean (Glycine max).
Skelton, Joshua J; Simpson, David M; Peterson, Mark A; Riechers, Dean E
2017-07-26
The Enlist weed control system allows the use of 2,4-D in soybean but slight necrosis in treated leaves may be observed in the field. The objectives of this research were to measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist (E, resistant) and non-AAD-12 transformed (NT, sensitive) soybeans. The adjuvant from the Enlist Duo herbicide formulation (ADJ) increased 2,4-D uptake (36%) and displayed the fastest rate of uptake (U 50 = 0.2 h) among treatments. E soybean demonstrated a faster rate of 2,4-D metabolism (M 50 = 0.2 h) compared to NT soybean, but glyphosate did not affect 2,4-D metabolism. Metabolites of 2,4-D in E soybean were qualitatively different than NT. Applying 2,4-D-ethylhexyl ester instead of 2,4-D choline (a quaternary ammonium salt) eliminated visual injury to E soybean, likely due to the time required for initial de-esterification and bioactivation. Excessive 2,4-D acid concentrations in E soybean resulting from ADJ-increased uptake may significantly contribute to foliar injury.
Hwang, Jungyun; Kim, Kiyoung; Brothers, R Matthew; Castelli, Darla M; Gonzalez-Lima, F
2018-05-01
Studies of the effects of physical activity on cognition suggest that aerobic fitness can improve cognitive abilities. However, the physiological mechanisms for the cognitive benefit of aerobic fitness are less well understood. We examined the association between aerobic fitness and cerebrovascular function with neurocognitive functions in healthy, young adults. Participants aged 18-29 years underwent measurements of cerebral vasomotor reactivity (CVMR) in response to rebreathing-induced hypercapnia, maximal oxygen uptake (VO 2 max) during cycle ergometry to voluntary exhaustion, and simple- and complex-neurocognitive assessments at rest. Ten subjects were identified as having low-aerobic fitness (LF < 15th fitness percentile), and twelve subjects were identified as having high-aerobic fitness (HF > 80th fitness percentile). There were no LF versus HF group differences in cerebrovascular hemodynamics during the baseline condition. Changes in middle cerebral artery blood velocity and CVMR during hypercapnia were elevated more in the HF than the LF group. Compared to the LF, the HF performed better on a complex-cognitive task assessing fluid reasoning, but not on simple attentional abilities. Statistical modeling showed that measures of VO 2 max, CVMR, and fluid reasoning were positively inter-correlated. The relationship between VO 2 max and fluid reasoning, however, did not appear to be reliably mediated by CVMR. In conclusion, a high capacity for maximal oxygen uptake among healthy, young adults was associated with greater CVMR and better fluid reasoning, implying that high-aerobic fitness may promote cerebrovascular and cognitive functioning abilities.
Human Physiological Responses to Cycle Ergometer Leg Exercise During +Gz Acceleration
NASA Technical Reports Server (NTRS)
Chou, J. L.; Stad, N. J.; Barnes, P. R.; Leftheriotis, G. P. N.; Arndt, N. F.; Simonson, S.; Greenleaf, J. E.
1998-01-01
Spaceflight and bed-rest deconditioning decrease maximal oxygen uptake (aerobic power), strength, endurance capacity, and orthostatic tolerance. In addition to extensive use of muscular exercise conditioning as a countermeasure for the reduction in aerobic power (VO(sub 2max)), stimuli from some form of +Gz acceleration conditioning may be necessary to attenuate the orthostatic intolerance component of this deconditioning. Hypothesis: There will be no significant difference in the physiological responses (oxygen uptake, heart rate, ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.
NASA Human Research Program (HRP). International Space Station Medical Project (ISSMP)
NASA Technical Reports Server (NTRS)
Sams, Clarence F.
2009-01-01
This viewgraph presentation describes the various flight investigations performed on the International Space Station as part of the NASA Human Research Program (HRP). The evaluations include: 1) Stability; 2) Periodic Fitness Evaluation with Oxygen Uptake Measurement; 3) Nutrition; 4) CCISS; 5) Sleep; 6) Braslet; 7) Integrated Immune; 8) Epstein Barr; 9) Biophosphonates; 10) Integrated cardiovascular; and 11) VO2 max.
The response of the soil microbial food web to extreme rainfall under different plant systems
NASA Astrophysics Data System (ADS)
Sun, Feng; Pan, Kaiwen; Tariq, Akash; Zhang, Lin; Sun, Xiaoming; Li, Zilong; Wang, Sizhong; Xiong, Qinli; Song, Dagang; Olatunji, Olusanya Abiodun
2016-11-01
An agroforestry experiment was conducted that involved four planting systems: monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Capsicum annuum, Z. bungeanum and Medicago sativa and Z. bungeanum and Glycine max. Soil microbial food web (microorganisms and nematodes) was investigated under manipulated extreme rainfall in the four planting systems to assess whether presence of neighbor species alleviated the magnitude of extreme rainfall on nutrient uptake of the focal species by increasing the stability of soil food web. Our results indicate that in the focal species and G. max mixed culture, leaf nitrogen contents of the focal species were higher than in the monoculture and in the other mixed cultures under extreme rainfall. This result was mainly due to the significant increase under extreme rainfall of G. max species root biomass, resulting in enhanced microbial resistance and subsequent net nitrogen mineralization rate and leaf nitrogen uptake for the focal species. Differences in functional traits of neighbors had additive effects and led to a marked divergence of soil food-web resistance and nutrient uptake of the focal species. Climate change can indirectly alleviate focal species via its influence on their neighbors.
The response of the soil microbial food web to extreme rainfall under different plant systems
Sun, Feng; Pan, Kaiwen; Tariq, Akash; Zhang, Lin; Sun, Xiaoming; Li, Zilong; Wang, Sizhong; Xiong, Qinli; Song, Dagang; Olatunji, Olusanya Abiodun
2016-01-01
An agroforestry experiment was conducted that involved four planting systems: monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Capsicum annuum, Z. bungeanum and Medicago sativa and Z. bungeanum and Glycine max. Soil microbial food web (microorganisms and nematodes) was investigated under manipulated extreme rainfall in the four planting systems to assess whether presence of neighbor species alleviated the magnitude of extreme rainfall on nutrient uptake of the focal species by increasing the stability of soil food web. Our results indicate that in the focal species and G. max mixed culture, leaf nitrogen contents of the focal species were higher than in the monoculture and in the other mixed cultures under extreme rainfall. This result was mainly due to the significant increase under extreme rainfall of G. max species root biomass, resulting in enhanced microbial resistance and subsequent net nitrogen mineralization rate and leaf nitrogen uptake for the focal species. Differences in functional traits of neighbors had additive effects and led to a marked divergence of soil food-web resistance and nutrient uptake of the focal species. Climate change can indirectly alleviate focal species via its influence on their neighbors. PMID:27874081
Murias, Juan M; Pogliaghi, Silvia; Paterson, Donald H
2018-01-01
The accuracy of an exhaustive ramp incremental (RI) test to determine maximal oxygen uptake ([Formula: see text]O 2max ) was recently questioned and the utilization of a verification phase proposed as a gold standard. This study compared the oxygen uptake ([Formula: see text]O 2 ) during a RI test to that obtained during a verification phase aimed to confirm attainment of [Formula: see text]O 2max . Sixty-one healthy males [31 older (O) 65 ± 5 yrs; 30 younger (Y) 25 ± 4 yrs] performed a RI test (15-20 W/min for O and 25 W/min for Y). At the end of the RI test, a 5-min recovery period was followed by a verification phase of constant load cycling to fatigue at either 85% ( n = 16) or 105% ( n = 45) of the peak power output obtained from the RI test. The highest [Formula: see text]O 2 after the RI test (39.8 ± 11.5 mL·kg -1 ·min -1 ) and the verification phase (40.1 ± 11.2 mL·kg -1 ·min -1 ) were not different ( p = 0.33) and they were highly correlated ( r = 0.99; p < 0.01). This response was not affected by age or intensity of the verification phase. The Bland-Altman analysis revealed a very small absolute bias (-0.25 mL·kg -1 ·min -1 , not different from 0) and a precision of ±1.56 mL·kg -1 ·min -1 between measures. This study indicated that a verification phase does not highlight an under-estimation of [Formula: see text]O 2max derived from a RI test, in a large and heterogeneous group of healthy younger and older men naïve to laboratory testing procedures. Moreover, only minor within-individual differences were observed between the maximal [Formula: see text]O 2 elicited during the RI and the verification phase. Thus a verification phase does not add any validation of the determination of a [Formula: see text]O 2max . Therefore, the recommendation that a verification phase should become a gold standard procedure, although initially appealing, is not supported by the experimental data.
Borges, Juliano H; Carter, Stephen J; Singh, Harshvardhan; Hunter, Gary R
2018-05-16
The aims of this study were to: (1) determine the relationships between maximum oxygen uptake ([Formula: see text]O 2max ) and walking economy during non-graded and graded walking among overweight women and (2) examine potential differences in [Formula: see text]O 2max and walking economy before and after weight loss. One-hundred and twenty-four premenopausal women with a body mass index (BMI) between 27 and 30 kg/m 2 were randomly assigned to one of three groups: (a) diet only; (b) diet and aerobic exercise training; and (c) diet and resistance exercise training. All were furnished with standard, very-low calorie diet to reduce BMI to < 25 kg/m 2 . [Formula: see text]O 2max was measured using a modified-Bruce protocol while walking economy (1-net [Formula: see text]O 2 ) was obtained during fixed-speed (4.8 k·h -1 ), steady-state treadmill walking at 0% grade and 2.5% grade. Assessments were conducted before and after achieving target BMI. Prior to weight loss, [Formula: see text]O 2max was inversely related (P < 0.05) with non-graded and graded walking economy (r = - 0.28 to - 0.35). Similar results were also observed following weight loss (r = - 0.22 to - 0.28). Additionally, we also detected a significant inverse relationship (P < 0.05) between the changes (∆, after weight loss) in ∆[Formula: see text]O 2max , adjusted for fat-free mass, with non-graded and graded ∆walking economy (r = - 0.37 to - 0.41). Our results demonstrate [Formula: see text]O 2max and walking economy are inversely related (cross-sectional) before and after weight loss. Importantly though, ∆[Formula: see text]O 2max and ∆walking economy were also found to be inversely related, suggesting a strong synchrony between maximal aerobic capacity and metabolic cost of exercise.
Can more than one incremental cycling test be performed within one day?
Scharhag-Rosenberger, Friederike; Carlsohn, Anja; Lundby, Carsten; Schüler, Stefan; Mayer, Frank; Scharhag, Jürgen
2014-01-01
Changes in performance parameters over four consecutive maximal incremental cycling tests were investigated to determine how many tests can be performed within one single day without negatively affecting performance. Sixteen male and female subjects (eight trained (T): 25 ± 3 yr, BMI 22.6 ± 2.5 kg·m(-2), maximal power output (P(max)) 4.6 ± 0.5 W·kg(-1); eight untrained (UT): 27 ± 3 yr, BMI 22.3 ± 1.2 kg·m(-2), P(max) 2.9 ± 0.3 W·kg(-1)) performed four successive maximal incremental cycling tests separated by 1.5 h of passive rest. Individual energy requirements were covered by standardised meals between trials. Maximal oxygen uptake (VO(2max)) remained unchanged over the four tests in both groups (P = 0.20 and P = 0.33, respectively). P(max) did not change in the T group (P = 0.32), but decreased from the third test in the UT group (P < 0.01). Heart rate responses to submaximal exercise were elevated from the third test in the T group and from the second test in the UT group (P < 0.05). The increase in blood lactate shifted rightward over the four tests in both groups (P < 0.001 and P < 0.01, respectively). Exercise-induced net increases in epinephrine and norepinephrine were not different between the tests in either group (P ≥ 0.15). If VO(2max) is the main parameter of interest, trained and untrained individuals can perform at least four maximal incremental cycling tests per day. However, because other parameters changed after the first and second test, respectively, no more than one test per day should be performed if parameters other than VO(2max) are the prime focus.
Aerobic fitness, maturation, and training experience in youth basketball.
Carvalho, Humberto M; Coelho-e-Silva, Manuel J; Eisenmann, Joey C; Malina, Robert M
2013-07-01
Relationships among chronological age (CA), maturation, training experience, and body dimensions with peak oxygen uptake (VO2max) were considered in male basketball players 14-16 y of age. Data for all players included maturity status estimated as percentage of predicted adult height attained at the time of the study (Khamis-Roche protocol), years of training, body dimensions, and VO2max (incremental maximal test on a treadmill). Proportional allometric models derived from stepwise regressions were used to incorporate either CA or maturity status and to incorporate years of formal training in basketball. Estimates for size exponents (95% CI) from the separate allometric models for VO2max were height 2.16 (1.23-3.09), body mass 0.65 (0.37-0.93), and fat-free mass 0.73 (0.46-1.02). Body dimensions explained 39% to 44% of variance. The independent variables in the proportional allometric models explained 47% to 60% of variance in VO2max. Estimated maturity status (11-16% of explained variance) and training experience (7-11% of explained variance) were significant predictors with either body mass or estimated fat-free mass (P ≤ .01) but not with height. Biological maturity status and training experience in basketball had a significant contribution to VO2max via body mass and fat-free fat mass and also had an independent positive relation with aerobic performance. The results highlight the importance of considering variation associated with biological maturation in aerobic performance of late-adolescent boys.
Zhu, W; Xing, L; Yue, J; Sun, X; Sun, X; Zhao, H; Yu, J
2012-09-01
The objective of this study was to comprehensively review the evidence for use of pre-treatment, post-treatment and changes in tumour glucose uptake that were assessed by 18-fludeoxyglucose ((18)F-FDG) positron emission tomography (PET) early, during or immediately after neoadjuvant chemotherapy/chemoradiation to predict prognosis of localised oesophagogastric junction (AEG) cancer. We searched for articles published in English; limited to AEG; (18)F-FDG uptake on PET performed on a dedicated device; dealt with the impact of standard uptake value (SUV) on survival. We extracted an estimate of the log hazard ratios (HRs) and their variances and performed meta-analysis. 798 patients with AEG were included. And the scan time for (18)F-FDG-PET was as follows: prior to therapy (PET1, n=646), exactly 2 weeks after initiation of neoadjuvant therapy (PET2, n=245), and pre-operatively (PET3, n=278). In the two meta-analyses for overall survival, including the studies that dealt with reduction of tumour maximum SUV (SUV(max)) (from PET1 to PET2/PET3 and from PET1 to PET2), the results were similar, with the overall HR for non-responders being 1.83 [95% confidence interval (CI), 1.41-2.36] and 2.62 (95% CI, 1.61-4.26), respectively; as for disease-free survival, the combined HR was 2.92 (95% CI, 2.08-4.10) and 2.39 (95% CI, 1.57-3.64), respectively. The meta-analyses did not attribute significant prognostic values to SUV(max) before and during therapy in localised AEG. Relative changes in FDG-uptake of AEG are better prognosticators. Early metabolic changes from PET1 to PET2 may provide the same accuracy for prediction of treatment outcome as late changes from PET1 to PET3.
NASA Technical Reports Server (NTRS)
Moore, Alan D.; Lee, S.M.C.; Everett, M.E.; Guined, J.R.; Knudsen, P.
2010-01-01
Maximum oxygen uptake (VO2max) is reduced immediately following space flights lasting <15 d, but has not been measured following long-duration missions. The purpose of this study is to measure VO2max and maximum work rate (WRmax) data from astronauts following ISS flights (91 to 188 d). Methods: Five astronauts [3 M, 2 F: 47+/-6 yr, 174+/-6 cm, 71.9+/-10.9 kg (mean +/- SD)] have participated in the study. Subjects performed upright cycle exercise tests to symptom-limited maximum. An initial test was done approx.270 d before flight to establish work rates for subsequent tests. Subsequent tests, conducted approx.45 d before flight and repeated on the first or second day (R+1/2) and at approx.10 d (R+10) following landing, consisted of 3 5 min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W(dot)/min increases. VO2, WR, and heart rate (HR) were measured using the ISS Portable Pulmonary Function System [Damec, Odense, DK]. Descriptive statistics are reported. Results: On R+1/2 mean VO2max decreased compared to preflight (Pre: 2.98+/-0.99, R+1/2: 2.63+/-0.56 L(dot)/min); 4 of 5 subjects demonstrated a loss of > 6%. WRmax also decreased on R+1/2 compared to preflight (Pre: 245+/-69, R+1/2: 210+/-45 W). On R+10, VO2max was 2.86+/-0.62 L(dot)/min, with 2 subjects still demonstrating a loss of > 6% from preflight. WRmax on R+10 was 240+/-49 W. HRmax did not change from pre to post-flight. Conclusions: These preliminary results, from the first 5 of 12 planned subjects of an ongoing ISS study, suggest that the majority of astronauts will experience a decrease in VO2max after long-duration space-flight. Interestingly, the two astronauts with the highest preflight VO2max had the greatest loss on R+1/2, and the astronaut with the lowest preflight VO2max increased by 13%. Thus, maintenance of VO2max may be more difficult in astronauts who have a high aerobic capacity, perhaps requiring more intense in-flight exercise countermeasure prescriptions.
Outermans, Jacqueline C; van de Port, Ingrid; Kwakkel, Gert; Visser-Meily, Johanna M; Wittink, Harriet
2018-03-12
Reports on the association between aerobic capacity and walking capacity in people after stroke show disparate results. To determine (1) if the predictive validity of peak oxygen uptake (VO2peak) for walking capacity post stroke is different from that of maximal oxygen uptake (VO2max) and (2) if postural control, hemiplegic lower extremity muscle strength, age and gender distort the association between aerobic capacity and walking capacity. Cross-sectional study. General community in Utrecht, the Netherlands. Community-dwelling people more than three months after stroke. Measurement of aerobic capacity were performed with cardiopulmonary exercise testing (CPET) and differentiated between the achievement of VO2peak or VO2max. Measurement of walking capacity with the Six Minute Walk Test (6MWT), postural control with the Performance Oriented Mobility Assessment (POMA) and hemiplegic lower extremity muscle strength with the Motricity Index (MI-LE). Fifty-one out of 62 eligible participants, aged 64.7 (±12.5) years were included. Analysis of covariance (ANCOVA) showed a nonsignificant difference between the predictive validities of VO2max (N = 22, β = 0.56; 95%CI 0.12 - 0.97) and VO2peak (N = 29, β = 0.72; 95%CI 0.38 - 0.92). Multiple regression analysis of the pooled sample showed a significant decrease in the β value of VO2peak (21.6%) for the 6MWT when adding the POMA as a covariate in the association model. VO2peak remained significantly related to 6MWT after correcting for the POMA (β = 0.56 (95%CI 0.39 - 0.75)) CONCLUSIONS: The results suggest similar predictive validity of aerobic capacity for walking capacity in participants achieving VO2max compared to those only achieving VO2peak. Postural control confounds the association between aerobic capacity and walking capacity. Aerobic capacity remains a valid predictor of walking capacity. Aerobic capacity is an important factor associated with walking capacity after stroke. However, to understand this relationship, postural control needs to be measured. Both aerobic capacity and postural control may need to be addressed during interventions aiming to improve walking capacity after stroke.
Differences in Pedaling Technique in Cycling: A Cluster Analysis.
Lanferdini, Fábio J; Bini, Rodrigo R; Figueiredo, Pedro; Diefenthaeler, Fernando; Mota, Carlos B; Arndt, Anton; Vaz, Marco A
2016-10-01
To employ cluster analysis to assess if cyclists would opt for different strategies in terms of neuromuscular patterns when pedaling at the power output of their second ventilatory threshold (PO VT2 ) compared with cycling at their maximal power output (PO MAX ). Twenty athletes performed an incremental cycling test to determine their power output (PO MAX and PO VT2 ; first session), and pedal forces, muscle activation, muscle-tendon unit length, and vastus lateralis architecture (fascicle length, pennation angle, and muscle thickness) were recorded (second session) in PO MAX and PO VT2 . Athletes were assigned to 2 clusters based on the behavior of outcome variables at PO VT2 and PO MAX using cluster analysis. Clusters 1 (n = 14) and 2 (n = 6) showed similar power output and oxygen uptake. Cluster 1 presented larger increases in pedal force and knee power than cluster 2, without differences for the index of effectiveness. Cluster 1 presented less variation in knee angle, muscle-tendon unit length, pennation angle, and tendon length than cluster 2. However, clusters 1 and 2 showed similar muscle thickness, fascicle length, and muscle activation. When cycling at PO VT2 vs PO MAX , cyclists could opt for keeping a constant knee power and pedal-force production, associated with an increase in tendon excursion and a constant fascicle length. Increases in power output lead to greater variations in knee angle, muscle-tendon unit length, tendon length, and pennation angle of vastus lateralis for a similar knee-extensor activation and smaller pedal-force changes in cyclists from cluster 2 than in cluster 1.
Nordgren, Birgitta; Fridén, Cecilia; Jansson, Eva; Österlund, Ted; Grooten, Wilhelmus Johannes; Opava, Christina H; Rickenlund, Anette
2014-09-17
Aerobic capacity tests are important to evaluate exercise programs and to encourage individuals to have a physically active lifestyle. Submaximal tests, if proven valid and reliable could be used for estimation of maximal oxygen uptake (VO2max). The purpose of the study was to examine the criterion-validity of the submaximal self-monitoring Fox-walk test and the submaximal Åstrand cycle test against a maximal cycle test in people with rheumatoid arthritis (RA). A secondary aim was to study the influence of different formulas for age predicted maximal heart rate when estimating VO2max by the Åstrand test. Twenty seven subjects (81% female), mean (SD) age 62 (8.1) years, diagnosed with RA since 17.9 (11.7) years, participated in the study. They performed the Fox-walk test (775 meters), the Åstrand test and the maximal cycle test (measured VO2max test). Pearson's correlation coefficients were calculated to determine the direction and strength of the association between the tests, and paired t-tests were used to test potential differences between the tests. Bland and Altman methods were used to assess whether there was any systematic disagreement between the submaximal tests and the maximal test. The correlation between the estimated and measured VO2max values were strong and ranged between r = 0.52 and r = 0.82 including the use of different formulas for age predicted maximal heart rate, when estimating VO2max by the Åstrand test. VO2max was overestimated by 30% by the Fox-walk test and underestimated by 10% by the Åstrand test corrected for age. When the different formulas for age predicted maximal heart rate were used, the results showed that two formulas better predicted maximal heart rate and consequently a more precise estimation of VO2max. Despite the fact that the Fox-walk test overestimated VO2max substantially, the test is a promising method for self-monitoring VO2max and further development of the test is encouraged. The Åstrand test should be considered as highly valid and feasible and the two newly developed formulas for predicting maximal heart rate according to age are preferable to use when estimating VO2max by the Åstrand test.
PET/MRI of metabolic activity in osteoarthritis: A feasibility study.
Kogan, Feliks; Fan, Audrey P; McWalter, Emily J; Oei, Edwin H G; Quon, Andrew; Gold, Garry E
2017-06-01
To evaluate positron emission tomography / magnetic resonance imaging (PET/MRI) knee imaging to detect and characterize osseous metabolic abnormalities and correlate PET radiotracer uptake with osseous abnormalities and cartilage degeneration observed on MRI. Both knees of 22 subjects with knee pain or injury were scanned at one timepoint, without gadolinium, on a hybrid 3.0T PET-MRI system following injection of 18 F-fluoride or 18 F-fluorodeoxyglucose (FDG). A musculoskeletal radiologist identified volumes of interest (VOIs) around bone abnormalities on MR images and scored bone marrow lesions (BMLs) and osteophytes using a MOAKS scoring system. Cartilage appearance adjacent to bone abnormalities was graded with MRI-modified Outerbridge classifications. On PET standardized uptake values (SUV) maps, VOIs with SUV greater than 5 times the SUV in normal-appearing bone were identified as high-uptake VOI (VOI High ). Differences in 18 F-fluoride uptake between bone abnormalities, BML, and osteophyte grades and adjacent cartilage grades on MRI were identified using Mann-Whitney U-tests. SUV max in all subchondral bone lesions (BML, osteophytes, sclerosis) was significantly higher than that of normal-appearing bone on MRI (P < 0.001 for all). Of the 172 high-uptake regions on 18 F-fluoride PET, 63 (37%) corresponded to normal-appearing subchondral bone on MRI. Furthermore, many small grade 1 osteophytes (40 of 82 [49%]), often described as the earliest signs of osteoarthritis (OA), did not show high uptake. Lastly, PET SUV max in subchondral bone adjacent to grade 0 cartilage was significantly lower compared to that of grades 1-2 (P < 0.05) and grades 3-4 cartilage (P < 0.001). PET/MRI can simultaneously assess multiple early metabolic and morphologic markers of knee OA across multiple tissues in the joint. Our findings suggest that PET/MR may detect metabolic abnormalities in subchondral bone, which appear normal on MRI. 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;45:1736-1745. © 2016 International Society for Magnetic Resonance in Medicine.
Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holan, Z.R.; Volesky, B.
Native fungal biomass of fungi Absidia orchids, Penicillium chrysogenum, Rhizopus arrhizus, Rhizopus nugricans, and modified spruce sawdust (Picea engelmanii) sequestered metals in the following decreasing preference: Pb>Cd>Ni. The highest metal uptake was q{sub max}=351 mg Pb/g for A. orchidis biomass. P. chrysogenum biomass could accumulate cadmium best at 56 mg Cd/G. The sorption of nickel was the weakest always at >5 mg Ni/g. The spruce sawdust was modified by crosslinking, oxidation to acidic oxoforms, and by substitution. The highest metal uptake was observed in phosorylated sawdust reaching q{sub max}=224 mg Pb/g, 56 mg Cd/g, and 26 mg Ni/g. The lattermore » value is comparable to the value of nickel sorption by wet commercial resin Duolite GT-73. Some improvement in metal uptake was also observed after reinforcement of fungal biomass. 40 refs., 5 figs., 3 tabs.« less
Validity of VO(2 max) in predicting blood volume: implications for the effect of fitness on aging
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Ludwig, D. A.
2000-01-01
A multiple regression model was constructed to investigate the premise that blood volume (BV) could be predicted using several anthropometric variables, age, and maximal oxygen uptake (VO(2 max)). To test this hypothesis, age, calculated body surface area (height/weight composite), percent body fat (hydrostatic weight), and VO(2 max) were regressed on to BV using data obtained from 66 normal healthy men. Results from the evaluation of the full model indicated that the most parsimonious result was obtained when age and VO(2 max) were regressed on BV expressed per kilogram body weight. The full model accounted for 52% of the total variance in BV per kilogram body weight. Both age and VO(2 max) were related to BV in the positive direction. Percent body fat contributed <1% to the explained variance in BV when expressed in absolute BV (ml) or as BV per kilogram body weight. When the model was cross validated on 41 new subjects and BV per kilogram body weight was reexpressed as raw BV, the results indicated that the statistical model would be stable under cross validation (e.g., predictive applications) with an accuracy of +/- 1,200 ml at 95% confidence. Our results support the hypothesis that BV is an increasing function of aerobic fitness and to a lesser extent the age of the subject. The results may have implication as to a mechanism by which aerobic fitness and activity may be protective against reduced BV associated with aging.
Martínez-Lagunas, Vanessa; Hartmann, Ulrich
2014-09-01
To evaluate the validity of the Yo-Yo Intermittent Recovery Test Level 1 (YYIR1) for the direct assessment and the indirect estimation of maximal oxygen consumption (VO2max) in female soccer players compared with a maximal laboratory treadmill test (LTT). Eighteen female soccer players (21.5 ± 3.4 y, 165.6 ± 7.5 cm, 63.3 ± 7.4 kg; mean ± SD) completed an LTT and a YYIR1 in random order (1 wk apart). Their VO2max was directly measured via portable spirometry during both tests and indirectly estimated from a published non-gender-specific formula (YYIR1-F1). The measured VO2max values in LTT and YYIR1 were 55.0 ± 5.3 and 49.9 ± 4.9 mL · kg-1 · min-1, respectively, while the estimated VO2max values from YYIR1-F1 corresponded to 45.2 ± 3.4 mL · kg-1 · min-1. Large positive correlations between the VO2max values from YYIR1 and LTT (r = .83, P < .001, 90% confidence interval = .64-.92) and YYIR1-F1 and LTT (r = .67, P = .002, .37-.84) were found. However, the YYIR1 significantly underestimated players' VO2max by 9.4% compared with LTT (P < .001) with Bland-Altman 95% limits of agreement ranging from -20.0% to 1.4%. A significant underestimation from the YYIR1-F1 (P < .001) was also identified (17.8% with Bland-Altman 95% limits of agreement ranging from -31.8% to -3.8%). The YYIR1 and YYIR1-F1 are not accurate methods for the direct assessment or indirect estimation of VO2max in female soccer players. The YYIR1-F1 lacks gender specificity, which might have been the reason for its larger error.
Faria-Urbina, Mariana; Oliveira, Rudolf K F; Segrera, Sergio A; Lawler, Laurie; Waxman, Aaron B; Systrom, David M
2018-01-01
Ambrisentan in 22 patients with pulmonary hypertension diagnosed during exercise (ePH) improved pulmonary hemodynamics; however, there was only a trend toward increased maximum oxygen uptake (VO 2 max) secondary to decreased maximum exercise systemic oxygen extraction (Ca-vO 2 ). We speculate that improved pulmonary hemodynamics at maximum exercise "unmasked" a pre-existing skeletal muscle abnormality.
Endurance running performance in athletes with asthma.
Freeman, W; Williams, C; Nute, M G
1990-01-01
Laboratory assessment was made during maximal and submaximal exercise on 16 endurance trained male runners with asthma (aged 35 +/- 9 years) (mean +/- S.D.). Eleven of these asthmatic athletes had recent performance times over a half-marathon, which were examined in light of the results from the laboratory tests. The maximum oxygen uptake (VO2max) of the group was 61.8 +/- 6.3 ml kg-1 min-1 and the maximum ventilation (VEmax) was 138.7 +/- 24.7 l min-1. These maximum cardio-respiratory responses to exercise were positively correlated to the degree of airflow obstruction, defined as the forced expiratory volume in 1 s (expressed as a percentage of predicted normal). The half-marathon performance times of 11 of the athletes ranged from those of recreational to elite runners (82.4 +/- 8.8 min, range 69-94). Race pace was correlated with VO2max (r = 0.863, P less than 0.01) but the highest correlation was with the running velocity at a blood lactate concentration of 2 mmol l-1 (r = 0.971, P less than 0.01). The asthmatic athletes utilized 82 +/- 4% VO2max during the half-marathon, which was correlated with the %VO2max at 2 mmol l-1 blood lactate (r = 0.817, P less than 0.01). The results of this study suggest that athletes with mild to moderate asthma can possess high VO2max values and can develop a high degree of endurance fitness, as defined by their ability to sustain a high percentage of VO2max over an endurance race. In athletes with more severe airflow obstruction, the maximum ventilation rate may be reduced and so VO2max may be impaired. The athletes in the present study have adapted to this limitation by being able to sustain a higher %VO2max before the accumulation of blood lactate, which is an advantage during an endurance race. Therefore, with appropriate training and medication, asthmatics can successfully participate in endurance running at a competitive level.
Effect of 8 Weeks Soccer Training on Health and Physical Performance in Untrained Women.
Ortiz, Jaelson G; da Silva, Juliano F; Carminatti, Lorival J; Guglielmo, Luiz G A; Diefenthaeler, Fernando
2018-03-01
This study aims to analyze the physiological, neuromuscular, and biochemical responses in untrained women after eight weeks of regular participation in small-sided soccer games compared to aerobic training. Twenty-seven healthy untrained women were divided into two groups [soccer group (SG = 17) and running group (RG = 10)]. Both groups trained three times per week for eight weeks. The variables measured in this study were maximal oxygen uptake (VO 2 max), relative velocity at VO 2 max (vVO 2 max), peak velocity, relative intensity at lactate threshold (vLT), relative intensity at onset of blood lactate accumulation (vOBLA), peak force, total cholesterol, HDL, LDL, triglycerides, and cholesterol ratio (LDL/HDL). VO 2 max, vLT, and vOBLA increased significantly in both groups (12.8 and 16.7%, 11.1 and 15.3%, 11.6 and 19.8%, in SG and RG respectively). However, knee extensors peak isometric strength and triglyceride levels, total cholesterol, LDL, and HDL did not differ after eight weeks of training in both groups. On the other hand, the LDL/HDL ratio significantly reduced in both groups. In conclusion, eight weeks of regular participation in small-sided soccer games was sufficient to increase aerobic performance and promote health benefits related to similar aerobic training in untrained adult women.
Löser, Benjamin; Werner, Yuki B; Punke, Mark A; Saugel, Bernd; Haas, Sebastian; Reuter, Daniel A; Mann, Oliver; Duprée, Anna; Schachschal, Guido; Rösch, Thomas; Petzoldt, Martin
2017-05-01
Peroral endoscopic myotomy (POEM) is a novel technique for treating esophageal achalasia. During POEM, carbon dioxide (CO 2 ) is insufflated to aid surgical dissection, but it may inadvertently track into surrounding tissues, causing systemic CO 2 uptake and tension capnoperitoneum. This in turn may affect cardiorespiratory function. This study quantified these cardiorespiratory effects and treatment by hyperventilation and percutaneous abdominal needle decompression (PND). One hundred and seventy-three consecutive patients who underwent POEM were included in this four-year retrospective study. Procedure-related changes in peak inspiratory pressure (p max ), end-tidal CO 2 levels (etCO 2 ), minute ventilation (MV), mean arterial pressure (MAP), and heart rate (HR) were analyzed. We also quantified the impact of PND on these cardiorespiratory parameters. During the endoscopic procedure, cardiorespiratory parameters increased from baseline: p max 15.1 (4.5) vs 19.8 (4.7) cm H 2 O; etCO 2 4.5 (0.4) vs 5.5 (0.9) kPa [34.0 (2.9) vs 41.6 (6.9) mmHg]; MAP 73.9 (9.7) vs 99.3 (15.2) mmHg; HR 67.6 (12.4) vs 85.3 (16.4) min -1 (P < 0.001 for each). Hyperventilation [MV 5.9 (1.2) vs 9.0 (1.8) L·min -1 , P < 0.001] was applied to counteract iatrogenic hypercapnia. Individuals with tension capnoperitoneum treated with PND (n = 55) had higher peak p max values [22.8 (5.7) vs 18.4 (3.3) cm H 2 O, P < 0.001] than patients who did not require PND. After PND, p max [22.8 (5.7) vs 19.9 (4.3) cm H 2 O, P = 0.045] and MAP [98.2 (16.3) vs 88.6 (11.8) mmHg, P = 0.013] decreased. Adverse events included pneumothorax (n = 1), transient myocardial ischemia (n = 1), and subcutaneous emphysema (n = 49). The latter precluded immediate extubation in eight cases. Postanesthesia care unit (PACU) stay was longer in individuals with subcutaneous emphysema than in those without [74.9 min (34.5) vs 61.5 (26.8 min), P = 0.007]. Carbon dioxide insufflation during POEM produces systemic CO 2 uptake and increased intra-abdominal pressure. Changes in cardiorespiratory parameters include increased p max , etCO 2 , MAP, and HR. Hyperventilation and PND help mitigate some of these changes. Subcutaneous emphysema is common and may delay extubation and prolong PACU stay.
Schaun, Gustavo Z; Pinto, Stephanie S; Silva, Mariana R; Dolinski, Davi B; Alberton, Cristine L
2018-05-07
Schaun, GZ, Pinto, SS, Silva, MR, Dolinski, DB, and Alberton, CL. Sixteen weeks of whole-body high-intensity interval training induce similar cardiorespiratory responses compared with traditional high-intensity interval training and moderate-intensity continuous training in healthy men. J Strength Cond Res XX(X): 000-000, 2018-Low-volume high-intensity interval training (HIIT) protocols that use the body weight as resistance could be an interesting and inexpensive alternative to traditional ergometer-based high-intensity interval training (HIIT-T) and moderate-intensity continuous training (MICT). Therefore, our aim was to compare the effects of 16 weeks of whole-body HIIT (HIIT-WB), HIIT-T, and MICT on maximal oxygen uptake (V[Combining Dot Above]O2max), second ventilatory threshold (VT2), and running economy (RE) outcomes. Fifty-five healthy men (23.7 ± 0.7 years, 1.79 ± 0.01 m, 78.5 ± 1.7 kg) were randomized into 3 training groups (HIIT-T = 17; HIIT-WB = 19; MICT = 19) for 16 weeks (3× per week). The HIIT-T group performed eight 20-second bouts at 130% of the velocity associated to V[Combining Dot Above]O2max (vV[Combining Dot Above]O2max) interspersed by 10-second passive recovery on a treadmill, whereas HIIT-WB group performed the same protocol but used calisthenics exercises at an all-out intensity instead of treadmill running. Finally, MICT group exercised for 30 minutes at 90-95% of the heart rate (HR) associated to VT2. After the intervention, all groups improved V[Combining Dot Above]O2max, vV[Combining Dot Above]O2max, time to exhaustion (Tmax), VT2, velocity associated with VT2 (vVT2), and time to reach VT2 (tVT2) significantly (p < 0.05). Moreover, Tmax, vVT2, and tVT2 were greater after HIIT-T compared with HIIT-WB (p < 0.05), whereas oxygen uptake increased and HR decreased during the RE test in all groups (p < 0.05). Our results demonstrate that HIIT-WB can be as effective as traditional HIIT while also being time-efficient compared with MICT to improve health-related outcomes after 16 weeks of training. However, HIIT-T and MICT seem preferable to enhance performance-related outcomes compared with HIIT-WB.
18F-FDOPA PET/CT imaging of MAX-related pheochromocytoma.
Taïeb, David; Jha, Abhishek; Guerin, Carole; Pang, Ying; Adams, Karen T; Chen, Clara C; Romanet, Pauline; Roche, Philippe; Essamet, Wassim; Ling, Alexander; Quezado, Martha M; Castinetti, Frédéric; Sebag, Fréderic; Pacak, Karel
2018-03-08
MYC associated factor X (MAX) has been recently described as a new susceptibility pheochromocytoma (PHEO) gene with a total of approximately 40 reported cases. At present, no study has specifically described the functional imaging phenotype of MAX-related PHEO. The objective of this study was to present our experience with contrast-enhanced CT and 18F-FDOPA PET/CT imaging in 6 consecutive patients (4 at initial diagnosis and 2 at follow-up evaluation) with rare but clinically important MAX-related PHEOs. In 5 patients, 18F-FDOPA was also compared to other radiopharmaceuticals. Patients had 5 different mutations in the MAX gene that caused disruption of Max/Myc interaction and/or abolished interaction with DNA based on in-silico analyses. All but one patient developed bilateral PHEOs during their lifetime. In all cases, 18F-FDOPA PET/CT accurately visualized PHEOs that were often multiple within the same gland or bilateral and detected more adrenal and extradrenal lesions than CT (per lesion sensitivity 90.5% vs 52.4% for CT/MRI). The 2 missed PHEO on 18F-FDOPA PET/CT were <1cm, corresponding to nodular adrenomedullary hyperplasia. 68Ga-DOTATATE PET/CT detected fewer lesions than 18F-FDOPA PET/CT in 1/3 patients and 18F-FDG PET/CT was only faintly positive in 2/4 patients with underestimation of extraadrenal lesions in 1 patient. MAX-related PHEO exihibit a marked 18F-FDOPA uptake, a finding that illustrates the common well-differentiated chromaffin pattern of PHEO associated with activation of kinase signaling pathways. 18F-FDOPA PET/CT should be considered as the first-line functional imaging modality for diagnostic or follow-up evaluation in these patients.
Farrag, Ashraf; Ceulemans, Gaëtane; Voordeckers, Mia; Everaert, Hendrik; Storme, Guy
2010-06-01
We investigated if (18F) fluoro-2-deoxy-D-glucose positron emission tomography (F-FDG-PET) during radiotherapy or concurrent chemoradiotherapy adds information about the treatment outcome compared with an FDG-PET study before treatment. Forty-three patients with head and neck cancer were treated with helical tomotherapy. F-FDG-PET was performed at baseline and during the treatment after 47 Gy. Tracer accumulation at the tumor site was assessed visually and semiquantitatively using the maximal standardized uptake values (SUV(max)). With median SUV(max) of both the studies as cutoff, patients were categorized into low and high SUV(max) groups. For visual analysis, two independent observers classified patients as complete metabolic responders (CMR) or noncomplete metabolic responders (NCMR). At baseline the median SUV(max) was 8.11 (2.41-15.13). The overall survival (OS) and disease-free survival (DFS) were 81 and 67% versus 50 and 40% for the low and high SUV(max), respectively. OS was significantly different (P=0.027). During therapy, median SUV(max) was 4.03 (1.94-7.58). OS and DFS were 82 and 63%, versus 47 and 42% for the low and high SUV(max) group, respectively. OS was significantly different (P=0.026). No significant differences between CMR versus NCMR in OS (72 vs. 60%), and DFS (56 vs. 49%) were found. Categorizing patients on the basis of a semiquantitative approach resulted in significant differences in OS for both the scans before and during therapy. Future work on a larger number of patients is warranted to determine SUV(max) cutoff values which could be used for the early identification of patients with poor treatment outcome or perhaps other therapeutic approaches.
Arboleda Serna, Víctor Hugo; Arango Vélez, Elkin Fernando; Gómez Arias, Rubén Darío; Feito, Yuri
2016-08-18
Participation in aerobic exercise generates increased cardiorespiratory fitness, which results in a protective factor for cardiovascular disease and all-cause mortality. High-intensity interval training might cause higher increases in cardiorespiratory fitness in comparison with moderate-intensity continuous training; nevertheless, current evidence is not conclusive. To our knowledge, this is the first study to test the effect of high-intensity interval training with total load duration of 7.5 min per session. A randomized controlled trial will be performed on two groups of healthy, sedentary male volunteers (n = 44). The study protocol will include 24 exercise sessions, three times a week, including aerobic training on a treadmill and strength training exercises. The intervention group will perform 15 bouts of 30 s, each at an intensity between 90 % and 95 % of maximal heart rate. The control group will complete 40 min of continuous exercise, ranging between 65 % and 75 % of maximal heart rate. The primary outcome measure to be evaluated will be maximal oxygen uptake (VO2max), and systolic and diastolic blood pressure will be evaluated as secondary outcome measures. Waist circumference, body mass index, and body composition will also be evaluated. Epidemiological evidence shows the link between VO2max and its association with chronic conditions that trigger CVD. Therefore, finding ways to improve VO2max and reduce blood pressure it is of vital importance to public health. NCT02288403 . Registered on 4 November 2014.
Effect of lime on lead uptake by five plant species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, W.J.; Rains, D.W.
1972-01-01
Liming at 0, 2.2, and 4.4 tons/hectare (0, 1, and 2 English tons/acre) was tested as a means of reducing Pb uptake by five species from two Pb contaminated soils. The soils represent the 0- to 10- and 10- to 30-cm horizons of Los Osos clay loam (a Typic Argixeroll) and contained 94 +/- 18 and 32 +/- 7 ppm Pb, respectively. There was no effect of lime on yield, but Pb concentrations in tops were reduced. At all times of harvest and lime rates the Pb concentration followed the series Glycine max L. much greater than Trifolium subterraneum L.more » > Zea mays L. = Avena sativa L. = Triticum aestivum L. 10 references, 2 figures, 3 tables.« less
Griffin, Lynn R; Thamm, Doug H; Selmic, Laura E; Ehrhart, E J; Randall, Elissa
2018-03-23
The goal of this prospective pilot study was to use naturally occurring canine mast cell tumors of various grades and stages as a model for attempting to determine how glucose uptake and markers of biologic behavior are correlated. It was hypothesized that enhanced glucose uptake, as measured by 2-[fluorine-18]fluoro-d-glucose-positron emission tomography/computed tomography (F18 FDG PET-CT), would correlate with histologic grade. Dogs were recruited for this study from a population referred for treatment of cytologically or histologically confirmed mast cell tumors. Patients were staged utilizing standard of care methods (abdominal ultrasound and three view thoracic radiographs), followed by a whole body F18 FDG PET-CT. Results of the F18 FDG PET-CT were analyzed for possible metastasis and standard uptake value maximum (SUV max ) of identified lesions. Incisional or excisional biopsies of the accessible mast cell tumors were obtained and histology performed. Results were then analyzed to look for a possible correlation between the grade of mast cell tumors and SUV max . A total of nine animals were included in the sample. Findings indicated that there was a correlation between grade of mast cell tumors and SUV max as determined by F18 FDG PET-CT (p-value = 0.073, significance ≤ 0.1). Based on the limited power of this study, it is felt that further research to examine the relationship between glucose utilization and biologic aggressiveness in canine mast cell tumors is warranted. This study was unable to show that F18 FDG PET-CT was a better staging tool than standard of care methods. © 2018 American College of Veterinary Radiology.
Gaspard, Dany; Kass, Jonathan; Akers, Stephen; Hunter, Krystal; Pratter, Melvin
2017-10-01
Patient-reported dyspnea plays a central role in assessing cardiopulmonary disease. There is little evidence, however, that dyspnea correlates with objective exercise capacity measurements. If the correlation is poor, dyspnea as a proxy for objective assessment may be misleading. To compare patient's perception of dyspnea with maximum oxygen uptake (MaxVO2) during cardiopulmonary exercise testing (CPET). Fifty patients undergoing CPET for dyspnea evaluation were studied prospectively. Dyspnea assessment was measured by a metabolic equivalent of task (METs) table, Mahler Dyspnea Index, Borg Index, number of blocks walked, and flights of stairs climbed before stopping due to dyspnea. These descriptors were compared to MaxVO2. MaxVO2 showed low correlation with METs table (r = 0.388, p = 0.005) and no correlation with Mahler Index (r = 0.24, p = 0.093), Borg Index (r = -0.017, p = 0.905), number of blocks walked (r = 0.266, p = 0.077) or flights of stairs climbed (r = 0.188, p = 0.217). When adjusted for weight (maxVO2/kg), there was significant correlation between MaxVO2 and METs table (r = 0.711, p < 0.001), moderate correlation with blocks walked (r = 0.614, p < 0.001), and low correlation with Mahler Index (r = 0.488 p = 0.001), Borg Index (r = -0.333 p = 0.036), and flights of stairs (r = 0.457 p = 0.004). Subgroup analysis showed worse correlation when patients with normal CPET were excluded (12/50 excluded). Patients with BMI < 30 had no correlation between Max VO2 and the assessment methods, while patients with BMI > 30 had moderate correlation between MaxVO2 and METs table (r = 0.568, p = 0.002). Patient-reported dyspnea correlates poorly with MaxVO2 and fails to predict exercise capacity. Reliance on reported dyspnea may result in suboptimal categorization of cardiopulmonary disease severity.
Peak Velocity as an Alternative Method for Training Prescription in Mice
Picoli, Caroline de Carvalho; Romero, Paulo Vitor da Silva; Gilio, Gustavo R.; Guariglia, Débora A.; Tófolo, Laize P.; de Moraes, Solange M. F.; Machado, Fabiana A.; Peres, Sidney B.
2018-01-01
Purpose: To compare the efficiency of an aerobic physical training program prescribed according to either velocity associated with maximum oxygen uptake (vVO2max) or peak running speed obtained during an incremental treadmill test (Vpeak_K) in mice. Methods: Twenty male Swiss mice, 60 days old, were randomly divided into two groups with 10 animals each: 1. group trained by vVO2max (GVO2), 2. group trained by Vpeak_K (GVP). After the adaptation training period, an incremental test was performed at the beginning of each week to adjust training load and to determine the amount of VO2 and VCO2 fluxes consumed, energy expenditure (EE) and run distance during the incremental test. Mice were submitted to 4 weeks of aerobic exercise training of moderate intensity (velocity referring to 70% of vVO2max and Vpeak_K) in a programmable treadmill. The sessions lasted from 30 to 40 min in the first week, to reach 60 min in the fourth week, in order to provide the mice with a moderate intensity exercise, totaling 20 training sessions. Results: Mice demonstrated increases in VO2max (ml·kg−1·min−1) (GVO2 = 49.1% and GVP = 56.2%), Vpeak_K (cm·s−1) (GVO2 = 50.9% and GVP = 22.3%), EE (ml·kg−0,75·min−1) (GVO2 = 39.9% and GVP = 51.5%), and run distance (cm) (GVO2 = 43.5% and GVP = 33.4%), after 4 weeks of aerobic training (time effect, P < 0.05); there were no differences between the groups. Conclusions: Vpeak_K, as well as vVO2max, can be adopted as an alternative test to determine the performance and correct prescription of systemized aerobic protocol training to mice. PMID:29467664
Uptake of (/sup 3/H)serotonin into plasma membrane vesicles from mouse cerebral cortex
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Reilly, C.A.; Reith, M.E.A.
1988-05-05
Preparations of plasma membrane vesicles were used as a tool to study the properties of the serotonin transporter in the central nervous system. The vesicles were obtained after hypotonic shock of synaptosomes purified from mouse cerebral cortex. Uptake of (/sup 3/H)serotonin had a Na/sup +/-dependent and Na/sup +/-independent component. The Na/sup +/-dependent uptake was inhibited by classical blockers of serotonin uptake and had a K/sub m/ of 63-180 nM, and a V/sub max/ of 0.1-0.3 pmol mg/sup -1/ s/sup -1/ at 77 mM Na/sup +/. The uptake required the presence of external Na/sup +/ and internal K/sup +/. Replacement ofmore » Cl/sup -/ by other anions (NO/sub 2//sup -/, S/sub 2/O/sub 3//sup 2 -/) reduced uptake appreciably. Gramicidin prevented uptake. Although valinomycin increased uptake somewhat, the membrane potential per se could not drive uptake because no uptake was observed when a membrane potential was generated by the SCN/sup -/ ion in the absence of internal K/sup +/ and with equal (Na/sup +/) inside and outside. The increase of uptake as a function of (Na/sup +/) indicated a K/sub m/ for Na/sup +/ of 118 mM and a Hill number of 2.0, suggesting a requirement of two sodium ions for serotonin transport. The present results are accommodated very well by the model developed for porcine platelet serotonin transport except for the number of sodium ions that are required for transport.« less
Inverse relationship between exercise economy and oxidative capacity in muscle.
Hunter, Gary R; Bamman, Marcas M; Larson-Meyer, D Enette; Joanisse, Denis R; McCarthy, John P; Blaudeau, Tamilane E; Newcomer, Bradley R
2005-08-01
An inverse relationship has been shown between running and cycling exercise economy and maximum oxygen uptake (VO2max). The purposes were: 1) determine the relationship between walking economy and VO2max; and 2) determine the relationship between muscle metabolic economy and muscle oxidative capacity and fiber type. Subjects were 77 premenopausal normal weight women. Walking economy (1/VO2max) was measured at 3 mph and VO2max during graded treadmill test. Muscle oxidative phosphorylation rate (OxPhos), and muscle metabolic economy (force/ATP) were measured in calf muscle using 31P MRS during isometric plantar flexion at 70 and 100% of maximum force, (HI) and (MI) respectively. Muscle fiber type and citrate synthase activity were determined in the lateral gastrocnemius. Significant inverse relationships (r from -0.28 to -0.74) were observed between oxidative metabolism measures and exercise economy (walking and muscle). Type IIa fiber distribution was inversely related to all measures of exercise economy (r from -0.51 to -0.64) and citrate synthase activity was inversely related to muscle metabolic economy at MI (r = -0.56). In addition, Type IIa fiber distribution and citrate synthase activity were positively related to VO2max and muscle OxPhos at HI and MI (r from 0.49 to 0.70). Type I fiber distribution was not related to any measure of exercise economy or oxidative capacity. Our results support the concept that exercise economy and oxidative capacity are inversely related. We have demonstrated this inverse relationship in women both by indirect calorimetry during walking and in muscle tissue by 31P MRS.
Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Matsumoto, Nozomi; Saito, Shigeyoshi; Nishiura, Motoko
2015-06-01
The purpose of this study was to develop a method for analyzing the kinetic behavior of superparamagnetic iron oxide nanoparticles (SPIONs) in the murine liver under control of body temperature using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and an empirical mathematical model (EMM). First, we investigated the influence of body temperature on the kinetic behavior of SPIONs in the liver by controlling body temperature using our temperature-control system. Second, we investigated the kinetic behavior of SPIONs in the liver when mice were injected with various doses of GdCl3, while keeping the body temperature at 36°C. Finally, we investigated it when mice were injected with various doses of zymosan, while keeping the body temperature at 36°C. We also investigated the effect of these substances on the number of Kupffer cells by immunohistochemical analysis using the specific surface antigen of Kupffer cells (CD68). To quantify the kinetic behavior of SPIONs in the liver, we calculated the upper limit of the relative enhancement (A), the rates of early contrast uptake (α) and washout or late contrast uptake (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum change of transverse relaxation rate (ΔR2) (ΔR2(max)), the time to ΔR2(max) (Tmax), and ΔR2 at the last time point (ΔR2(last)) from the time courses of ΔR2 using the EMM. The β and Tmax values significantly decreased and increased, respectively, with decreasing body temperature, suggesting that the phagocytic activity of Kupffer cells is significantly affected by body temperature. The AUC, ΔR2(max), and ΔR2(last) values decreased significantly with increasing dose of GdCl3, which was consistent with the change in the number of CD68-positive cells. They increased with increasing dose of zymosan, which was also consistent with the change in the number of CD68-positive cells. These results suggest that AUC, ΔR2(max), and ΔR2(last) reflect the number of Kupffer cells. In conclusion, we presented a method for analyzing the kinetic behavior of SPIONs in the liver using DSC-MRI and EMM, and investigated the influence of body temperature, GdCl3, and zymosan using body-temperature-controlled mice. The present study suggests that control of body temperature is essential for investigating the kinetic behavior of SPIONs in the liver and that our method will be applicable and useful for quantifying the responses of Kupffer cells to various drugs under control of body temperature. Copyright © 2015 Elsevier Inc. All rights reserved.
Narumi, Katsuya; Kobayashi, Masaki; Kondo, Ayuko; Furugen, Ayako; Yamada, Takehiro; Takahashi, Natsuko; Iseki, Ken
2016-11-01
Loxoprofen, a propionate non-steroidal anti-inflammatory drug (NSAID), is used widely in East Asian countries. However, little is known about the transport mechanisms contributing to its intestinal absorption. The objectives of this study were to characterize the intestinal transport of loxoprofen using the human intestinal Caco-2 cell model. The transport of loxoprofen was investigated in cellular uptake studies. The uptake of loxoprofen into Caco-2 cells was pH- and concentration-dependent, and was described by a Michaelis-Menten equation with passive diffusion (K m : 4.8 mm, V max : 142 nmol/mg protein/30 s, and K d : 2.2 μl/mg protein/30 s). Moreover, the uptake of loxoprofen was inhibited by a typical monocarboxylate transporter (MCT) inhibitor as well as by various monocarboxylates. The uptake of [ 14 C] l-lactic acid, a typical MCT substrate, in Caco-2 cells was saturable with relatively high affinity for MCT. Because loxoprofen inhibited the uptake of [ 14 C] l-lactic acid in a noncompetitive manner, it was unlikely that loxoprofen uptake was mediated by high-affinity MCT(s). Our results suggest that transport of loxoprofen in Caco-2 cells is, at least in part, mediated by a proton-dependent transport system. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Glover, Chris N; Wood, Chris M
2005-03-01
Daphnia are highly sensitive to sodium metabolism disruption caused by aquatic acidification and ionoregulatory toxicants, due to their finely balanced ion homeostasis. Nine different water chemistries of varying pH (4, 6 and 8) and calcium concentration (0, 0.5 and 1 mmol l(-1)) were used to delineate the mechanism of sodium influx in Daphnia magna. Lowering water pH severely inhibited sodium influx when calcium concentration was high, but transport kinetic analysis revealed a stimulated sodium influx capacity (J(max)) when calcium was absent. At low pH increasing water calcium levels decreased J(max) and raised K(m) (decreased sodium influx affinity), while at high pH the opposite pattern was observed (elevated J(max) and reduced K(m)). These effects on sodium influx were mirrored by changes in whole body sodium levels. Further examination of the effect of calcium on sodium influx showed a severe inhibition of sodium uptake by 100 micromol l(-1) calcium gluconate at both low (50 micromol l(-1)) and high (1000 micromol l(-1)) sodium concentrations. At high sodium concentrations, stimulated sodium influx was noted with elevated calcium levels. These results, in addition to data showing amiloride inhibition of sodium influx (K(i)=180 micromol l(-1)), suggest a mechanism of sodium influx in Daphnia magna that involves the electrogenic 2Na(+)/1H(+) exchanger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Z.; Reiske, H.R.; Wilson, D.B.
1999-11-01
Two different Cd{sup 2+} uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn{sup 2+} uptake system which also takes up Cd{sup 2+} and is induced by Mn{sup 2+} starvation. The calculated K{sub m} and V{sub max} are 0.26 {mu}M and 3.6 {mu}mol g of dry cell{sup {minus}1} min{sup {minus}1}, respectively. Unlike Mn{sup 2+} uptake, which is facilitated by citrate and related tricarboxylic acids, Cd{sup 2+} uptake is weakly inhibited by citrate. Cd{sup 2+} and Mn{sup 2+} are competitive inhibitors of each other, and the affinity of the system for Cd{sup 2+} is higher than that formore » Mn{sup 2+}. The other Cd{sup 2+} uptake system is expressed in Mn{sup 2+}-sufficient cells, and no K{sub m} can be calculated for it because uptake is nonsaturable. Mn{sup 2+} does not compete for transport through this system, nor does any other tested cation, i.e., Zn{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Fe{sup 2+}, or Ni{sup 2+}. Both systems require energy, since uncouplers completely inhibit their activities. Two Mn{sup 2+}-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn{sup 2+} for growth as the parental strain. Mn{sup 2+} starvation-induced Cd{sup 2+} uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn{sup 2+} or Cd{sup 2+} accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn{sup 2+} and Cd{sup 2+} uptake system.« less
Effect of Short-Term, High-Intensity Exercise on Anaerobic Threshold in Women.
ERIC Educational Resources Information Center
Evans, Blanche W.
This study investigated the effects of a six-week, high-intensity cycling program on anaerobic threshold (AT) in ten women. Subjects trained four days a week using high-intensity interval-type cycle exercises. Workouts included six 4-minute intervals cycling at 85 percent maximal oxygen uptake (VO sub 2 max), separated by 3-minute intervals of…
Cardiovascular fitness and executive control during task-switching: an ERP study.
Scisco, Jenna L; Leynes, P Andrew; Kang, Jie
2008-07-01
Cardiovascular fitness recently has been linked to executive control function in older adults. The present study examined the relationship between cardiovascular fitness and executive control in young adults using event-related potentials (ERPs). Participants completed a two-part experiment. In part one, a graded exercise test (GXT) was administered using a cycle ergometer to obtain VO(2)max, a measure of maximal oxygen uptake. High-fit participants had VO(2)max measures at or above the 70th percentile based on age and sex, and low-fit participants had VO(2)max measures at or below the 30th percentile. In part two, a task-switching paradigm was used to investigate executive control. Task-switching trials produced slower response times and greater amplitude for both the P3a and P3b components of the ERP relative to a non-switch trial block. No ERP components varied as a function of fitness group. These findings, combined with results from previous research, suggest that the relationship between greater cardiovascular fitness and better cognitive function emerges after early adulthood.
Na, Sae Jung; Park, Hye Lim; O, Joo Hyun; Lee, Sung Yong; Song, Kyo Young; Kim, Sung Hoon
2017-01-01
Epstein-Barr virus-associated gastric cancer (EBVaGC) is one of the four molecular subtypes of gastric cancer, as defined by the classification recently proposed by The Cancer Genome Atlas. We evaluated the correlation between EBV positivity and 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake by positron emission tomography/computed tomography (PET/CT) in patients with gastric cancer. We retrospectively enrolled patients with gastric cancer who underwent pretreatment 18 F-FDG PET/CT and subsequent surgical resection, and then were diagnosed with advanced gastric cancer (pathologic stage ≥T2 with any N stage). Maximum standardized uptake values (SUV max ) of gastric cancer were measured by pretreatment 18 F-FDG PET/CT. EBV sequences were detected by in situ hybridization (ISH) techniques. We analyzed the correlation between EBV positivity, clinicopathologic features and metabolic activity of the primary tumor. A total of 205 patients were included and 15 (7.3%) patients were identified as having EBV-positive gastric cancer. Age, gender, tumor location, and histological type showed no significant differences between EBV-positive and negative groups. EBV-positive cancer is significantly more frequent in the higher-metabolic-tumor group than in the lower one (p=0.032). The mean SUV max of gastric cancers showed significant differences between EBV-positive and negative groups (9.9±4.2 vs. 7.0±4.8, p=0.026). The infection status of EBV was significantly related to the 18 F-FDG uptake of primary tumors in patients with advanced gastric cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Barbosa, Luis F; Denadai, Benedito S; Greco, Camila C
2016-01-01
Slow component of oxygen uptake (VO 2 SC) kinetics and maximal oxygen uptake (VO 2 max) attainment seem to influence endurance performance during constant-work rate exercise (CWR) performed within the severe intensity domain. In this study, it was hypothesized that delaying the attainment of VO 2 max by reducing the rates at which VO 2 increases with time (VO 2 SC kinetics) would improve the endurance performance during severe-intensity intermittent exercise performed with different work:recovery duration and recovery type in active individuals. After the estimation of the parameters of the VO 2 SC kinetics during CWR exercise, 18 males were divided into two groups (Passive and Active recovery) and performed at different days, two intermittent exercises to exhaustion (at 95% IVO 2 max, with work: recovery ratio of 2:1) with the duration of the repetitions calculated from the onset of the exercise to the beginning of the VO 2 SC (Short) or to the half duration of the VO 2 SC (Long). The active recovery was performed at 50% IVO 2 max. The endurance performance during intermittent exercises for the Passive (Short = 1523 ± 411; Long = 984 ± 260 s) and Active (Short = 902 ± 239; Long = 886 ± 254 s) groups was improved compared with CWR condition (Passive = 540 ± 116; Active = 489 ± 84 s). For Passive group, the endurance performance was significantly higher for Short than Long condition. However, no significant difference between Short and Long conditions was found for Active group. Additionally, the endurance performance during Short condition was higher for Passive than Active group. The VO 2 SC kinetics was significantly increased for CWR (Passive = 0.16 ± 0.04; Active = 0.16 ± 0.04 L.min -2 ) compared with Short (Passive = 0.01 ± 0.01; Active = 0.03 ± 0.04 L.min -2 ) and Long (Passive = 0.02 ± 0.01; Active = 0.01 ± 0.01 L.min -2 ) intermittent exercise conditions. No significant difference was found among the intermittent exercises. It can be concluded that the endurance performance is negatively influenced by active recovery only during shorter high-intensity intermittent exercise. Moreover, the improvement in endurance performance seems not be explained by differences in the VO 2 SC kinetics, since its values were similar among all intermittent exercise conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomioka, Shigemasa, E-mail: tomioka@dent.tokushima-u.ac.jp; Kaneko, Miyuki; Satomura, Kazuhito
2009-10-09
We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2-{sup 3}H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 {mu}M) significantly increased V{sub max} but not K{sub m} of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucosemore » uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahara, Takatoshi, E-mail: taka.t-may7@med.Tottori-u.ac.jp; Fujii, Shinya; Ogawa, Toshihide
Purpose: To determine whether fluorodeoxyglucose positron emission tomography (FDG-PET) before and after palliative radiation therapy (RT) can predict long-term pain control in patients with painful bone metastases. Methods and Materials: Thirty-one patients with bone metastases who received RT were prospectively included. Forty painful metastatic treatment fields were evaluated. All patients had undergone pre-RT and post-RT PET/CT scanning. We evaluated the relationships between the pre-RT, post-RT, and changes in maximum standardized uptake value (SUV{sub max}) and the pain response, and between SUV{sub max} and pain relapse of the bone metastases in the treatment field. In addition, we compared the SUV{sub max}more » according to the length of time from the completion of RT to pain relapse of the bone metastases. Results: Regarding the pain response at 4 weeks after the completion of RT, there were 36 lesions of 27 patients in the responder group and 4 lesions of 4 patients in the nonresponder group. Changes in the SUV{sub max} differed significantly between the responder and nonresponder groups in both the early and delayed phases (P=.0292 and P=.0139, respectively), but no relationship was observed between the pre-RT and post-RT SUV{sub max} relative to the pain response. The responder group was evaluated for the rate of relapse. Thirty-five lesions of 26 patients in the responder group were evaluated, because 1 patient died of acute renal failure at 2 months after RT. Twelve lesions (34%) showed pain relapse, and 23 lesions (66%) did not. There were significant differences between the relapse and nonrelapse patients in terms of the pre-RT (early/delayed phases: P<.0001/P<.0001), post-RT (P=.0199/P=.0261), and changes in SUV{sub max} (P=.0004/P=.004). Conclusions: FDG-PET may help predict the outcome of pain control in the treatment field after palliative RT for painful bone metastases.« less
Duerr, Jeffrey M; Tucker, Kristina
2007-08-01
Cardiac mitochondria were isolated from Bufo marinus and Rana catesbeiana, two species of amphibian whose cardiovascular systems are adapted to either predominantly aerobic or glycolytic modes of locomotion. Mitochondrial oxidative capacity was compared using VO2 max and respiratory control ratios in the presence of a variety of substrates including pyruvate, lactate, oxaloacetate, beta-hydroxybutyrate, and octanoyl-carnitine. B. marinus cardiac mitochondria exhibited VO2 max values twice that of R. catesbeiana cardiac mitochondria when oxidizing carbohydrate substrates. Pyruvate transport was measured via a radiolabeled-tracer assay in isolated B. marinus and R. catesbeiana cardiac mitochondria. Time-course experiments described both alpha-cyano-4-hydroxycinnamate-sensitive (MCT-like) and phenylsuccinate-sensitive pyruvate uptake mechanisms in both species. Pyruvate uptake by the MCT-like transporter was enhanced in the presence of a pH gradient, whereas the phenylsuccinate-sensitive transporter was inhibited. Notably, anuran cardiac mitochondria exhibited activities of lactate dehydrogenase and pyruvate carboxylase. The presence of both transporters on the inner mitochondrial membrane affords the net uptake of monocarboxylates including pyruvate, beta-hydroxybutyrate, and lactate; the latter potentially indicating the presence of a lactate/pyruvate shuttle allowing oxidation of extramitochondrial NADH. Intramitochondrial lactate dehydrogenase and pyruvate carboxylase enables lactate to be oxidized to pyruvate or converted to anaplerotic oxaloacetate. Kinetics of the MCT-like transporter differed significantly between the two species, suggesting differences in aerobic scope may be in part attributable to differences in mitochondrial carbohydrate utilization. (c) 2007 Wiley-Liss, Inc.
Kang, Yeon-Koo; Song, Yoo Sung; Cho, Sukki; Jheon, Sanghoon; Lee, Won Woo; Kim, Kwhanmien; Kim, Sang Eun
2018-05-01
In the management of non-small cell lung cancer (NSCLC), the prognostic stratification of stage I tumors without indication of adjuvant therapy, remains to be elucidated in order to better select patients who can benefit from additional therapies. We aimed to stratify the prognosis of patients with stage I NSCLC adenocarcinoma using clinicopathologic factors and F-18 FDG PET. We retrospectively enrolled 128 patients with stage I NSCLC without any high-risk factors, who underwent curative surgical resection without adjuvant therapies. Preoperative clinical and postoperative pathologic factors were evaluated by medical record review. Standardized uptake value corrected with lean body mass (SUL max ) was measured on F-18 FDG PET. Among the factors, independent predictors for recurrence-free survival (RFS) were selected using univariate and stepwise multivariate survival analyses. A prognostic stratification model for RFS was designed using the selected factors. Tumors recurred in nineteen patients (14.8%). Among the investigated clinicopathologic and FDG PET factors, SUL max on PET and spread through air spaces (STAS) on pathologic review were determined to be independent prognostic factors for RFS. A prognostic model was designed using these two factors in the following manner: (1) Low-risk: SUL max ≤ 1.9 and no STAS, (2) intermediate-risk: neither low-risk nor high-risk, (3) high-risk: SUL max> 1.9 and observed STAS. This model exhibited significant predictive power for RFS. We showed that FDG uptake and STAS are significant prognostic markers in stage I NSCLC adenocarcinoma treated with surgical resection without adjuvant therapies. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Rubin; Zhan, Likui; Sun, Shaoming; Peng, Wei; Sun, Yining
2017-09-01
The maximum oxygen uptake (V̇O 2 max), determined from graded maximal or submaximal exercise tests, is used to classify the cardiorespiratory fitness level of individuals. The purpose of this study was to examine the validity and reliability of the YMCA submaximal exercise test protocol performed on a newly-designed rectilinear stepping ergometer (RSE) that used up and down reciprocating vertical motion in place of conventional circular motion and giving precise measurement of workload, to determine V̇O 2 max in young healthy male adults. Thirty-two young healthy male adults (32 males; age range: 20-35 years; height: 1.75 ± 0.05 m; weight: 67.5 ± 8.6 kg) firstly participated in a maximal-effort graded exercise test using a cycle ergometer (CE) to directly obtain measured V̇O 2 max. Subjects then completed the progressive multistage test on the RSE beginning at 50W and including additional stages of 70, 90, 110, 130, and 150W, and the RSE YMCA submaximal test consisting of a workload increase every 3 minutes until the termination criterion was reached. A metabolic equation was derived from the RSE multistage exercise test to predict oxygen consumption (V̇O 2 ) from power output (W) during the submaximal exercise test (V̇O 2 (mL·min -1 )=12.4 ×W(watts)+3.5 mL·kg -1 ·min -1 ×M+160mL·min -1 , R 2 = 0.91, standard error of the estimate (SEE) = 134.8mL·min -1 ). A high correlation was observed between the RSE YMCA estimated V̇O 2 max and the CE measured V̇O 2 max (r=0.87). The mean difference between estimated and measured V̇O 2 max was 2.5 mL·kg -1 ·min -1 , with an SEE of 3.55 mL·kg -1 ·min -1 . The data suggest that the RSE YMCA submaximal exercise test is valid for predicting V̇O 2 max in young healthy male adults. The findings show that the rectilinear stepping exercise is an effective submaximal exercise for predicting V̇O 2 max. The newly-designed RSE may be potentially further developed as an alternative ergometer for assessing cardiorespiratory fitness and the promotion of personalized health interventions for health care professionals.
Comparison of Three Popular Exercise Modalities on V˙O2max in Overweight and Obese.
Bækkerud, Fredrik Hjulstad; Solberg, Frederic; Leinan, Ingeborg Megård; Wisløff, Ulrik; Karlsen, Trine; Rognmo, Øivind
2016-03-01
In this prospective randomized trial, we examined the effect of three popular exercise training modalities on maximal oxygen uptake (V˙O2max) in overweight and obese individuals. In addition, we examined possible concomitant adaptations in endurance exercise performance (time to exhaustion (TTE)), citrate synthase (CS) activity, venous and arterial function, blood volume, and calculated stroke volume (SV). Thirty subjects were recruited (age, 41 ± 9 yr; weight, 91 ± 14 kg; height, 173 ± 8 cm; body mass index, 30 ± 4 kg·m(-2)) and randomized to either 6 wk of 4 × 4-min high-intensity interval training (4HIIT) at 85%-95% of HRmax, 10 × 1-min HIIT (1HIIT) at V˙O2max load, or 45-min moderate-intensity continuous training (MICT) at 70% of HRmax. V˙O2max, TTE, CS activity, venous and arterial function, as well as blood volume were measured before and after the training period. O2 pulse was calculated and used to estimate SV. Analysis was conducted per protocol. Only 4HIIT increased V˙O2max (P < 0.01) and significantly more compared with 1HIIT (P = 0.04) and MICT (P = 0.03) (4HIIT, 10%; 1HIIT, 3.3%; and MICT, 3.1%). All groups increased TTE (4HIIT, 198%; 1HIIT, 116%; MICT, 52%), with a higher increase after 4HIIT compared with that after MICT (P = 0.02). Calculated SV increased only after 4HIIT (14.4%). Plasma volume and hemoglobin mass increased after 1HIIT only (5.6% and 6.5%); however, no group differences were found. All groups increased CS activity (4HIIT, 35%; 1HIIT, 35%; MICT, 56%), with no group differences. Arterial inflow (15.7%) and venous outflow (22.7%) decreased after MICT, but there were no group differences. 4HIIT was superior to 1HIIT and MICT in improving V˙O2max likely because of an increased SV.
GEDAE-LaB: A Free Software to Calculate the Energy System Contributions during Exercise
Bertuzzi, Rômulo; Melegati, Jorge; Bueno, Salomão; Ghiarone, Thaysa; Pasqua, Leonardo A.; Gáspari, Arthur Fernandes; Lima-Silva, Adriano E.; Goldman, Alfredo
2016-01-01
Purpose The aim of the current study is to describe the functionality of free software developed for energy system contributions and energy expenditure calculation during exercise, namely GEDAE-LaB. Methods Eleven participants performed the following tests: 1) a maximal cycling incremental test to measure the ventilatory threshold and maximal oxygen uptake (V˙O2max); 2) a cycling workload constant test at moderate domain (90% ventilatory threshold); 3) a cycling workload constant test at severe domain (110% V˙O2max). Oxygen uptake and plasma lactate were measured during the tests. The contributions of the aerobic (AMET), anaerobic lactic (LAMET), and anaerobic alactic (ALMET) systems were calculated based on the oxygen uptake during exercise, the oxygen energy equivalents provided by lactate accumulation, and the fast component of excess post-exercise oxygen consumption, respectively. In order to assess the intra-investigator variation, four different investigators performed the analyses independently using GEDAE-LaB. A direct comparison with commercial software was also provided. Results All subjects completed 10 min of exercise at moderate domain, while the time to exhaustion at severe domain was 144 ± 65 s. The AMET, LAMET, and ALMET contributions during moderate domain were about 93, 2, and 5%, respectively. The AMET, LAMET, and ALMET contributions during severe domain were about 66, 21, and 13%, respectively. No statistical differences were found between the energy system contributions and energy expenditure obtained by GEDAE-LaB and commercial software for both moderate and severe domains (P > 0.05). The ICC revealed that these estimates were highly reliable among the four investigators for both moderate and severe domains (all ICC ≥ 0.94). Conclusion These findings suggest that GEDAE-LaB is a free software easily comprehended by users minimally familiarized with adopted procedures for calculations of energetic profile using oxygen uptake and lactate accumulation during exercise. By providing availability of the software and its source code we hope to facilitate future related research. PMID:26727499
GEDAE-LaB: A Free Software to Calculate the Energy System Contributions during Exercise.
Bertuzzi, Rômulo; Melegati, Jorge; Bueno, Salomão; Ghiarone, Thaysa; Pasqua, Leonardo A; Gáspari, Arthur Fernandes; Lima-Silva, Adriano E; Goldman, Alfredo
2016-01-01
The aim of the current study is to describe the functionality of free software developed for energy system contributions and energy expenditure calculation during exercise, namely GEDAE-LaB. Eleven participants performed the following tests: 1) a maximal cycling incremental test to measure the ventilatory threshold and maximal oxygen uptake (V̇O2max); 2) a cycling workload constant test at moderate domain (90% ventilatory threshold); 3) a cycling workload constant test at severe domain (110% V̇O2max). Oxygen uptake and plasma lactate were measured during the tests. The contributions of the aerobic (AMET), anaerobic lactic (LAMET), and anaerobic alactic (ALMET) systems were calculated based on the oxygen uptake during exercise, the oxygen energy equivalents provided by lactate accumulation, and the fast component of excess post-exercise oxygen consumption, respectively. In order to assess the intra-investigator variation, four different investigators performed the analyses independently using GEDAE-LaB. A direct comparison with commercial software was also provided. All subjects completed 10 min of exercise at moderate domain, while the time to exhaustion at severe domain was 144 ± 65 s. The AMET, LAMET, and ALMET contributions during moderate domain were about 93, 2, and 5%, respectively. The AMET, LAMET, and ALMET contributions during severe domain were about 66, 21, and 13%, respectively. No statistical differences were found between the energy system contributions and energy expenditure obtained by GEDAE-LaB and commercial software for both moderate and severe domains (P > 0.05). The ICC revealed that these estimates were highly reliable among the four investigators for both moderate and severe domains (all ICC ≥ 0.94). These findings suggest that GEDAE-LaB is a free software easily comprehended by users minimally familiarized with adopted procedures for calculations of energetic profile using oxygen uptake and lactate accumulation during exercise. By providing availability of the software and its source code we hope to facilitate future related research.
High-Intensity Interval Training Increases Cardiac Output and V˙O2max.
Astorino, Todd A; Edmunds, Ross M; Clark, Amy; King, Leesa; Gallant, Rachael A; Namm, Samantha; Fischer, Anthony; Wood, Kimi M
2017-02-01
Increases in maximal oxygen uptake (V˙O2max) frequently occur with high-intensity interval training (HIIT), yet the specific adaptation explaining this result remains elusive. This study examined changes in V˙O2max and cardiac output (CO) in response to periodized HIIT. Thirty-nine active men and women (mean age and V˙O2max = 22.9 ± 5.4 yr and 39.6 ± 5.6 mL·kg·min) performed HIIT and 32 men and women (age and V˙O2max = 25.7 ± 4.5 yr and 40.7 ± 5.2 mL·kg·min) were nonexercising controls (CON). The first 10 sessions of HIIT required eight to ten 60 s bouts of cycling at 90%-110% percent peak power output interspersed with 75 s recovery, followed by randomization to one of three regimes (sprint interval training (SIT), high-volume interval training (HIITHI), or periodized interval training (PER) for the subsequent 10 sessions. Before, midway, and at the end of training, progressive cycling to exhaustion was completed during which V˙O2max and maximal CO were estimated. Compared with CON, significant (P < 0.001) increases in V˙O2max in HIIT + SIT (39.8 ± 7.3 mL·kg·min to 43.6 ± 6.1 mL·kg·min), HIIT + HIITHI (41.1 ± 4.9 mL·kg·min to 44.6 ± 7.0 mL·kg·min), and HIIT + PER (39.5 ± 5.6 mL·kg·min to 44.1 ± 5.4 mL·kg·min) occurred which were mediated by significant increases in maximal CO (20.0 ± 3.1 L·min to 21.7 ± 3.2 L·min, P = 0.04). Maximal stroke volume was increased with HIIT (P = 0.04), although there was no change in maximal HR (P = 0.88) or arteriovenous O2 difference (P = 0.36). These CO data are accurate and represent the mean changes from pre- to post-HIIT across all three training groups. Increases in V˙O2max exhibited in response to different HIIT regimes are due to improvements in oxygen delivery.
Koyama, Kazuya; Mitsumoto, Takuya; Shiraishi, Takahiro; Tsuda, Keisuke; Nishiyama, Atsushi; Inoue, Kazumasa; Yoshikawa, Kyosan; Hatano, Kazuo; Kubota, Kazuo; Fukushi, Masahiro
2017-09-01
We aimed to determine the difference in tumor volume associated with the reconstruction model in positron-emission tomography (PET). To reduce the influence of the reconstruction model, we suggested a method to measure the tumor volume using the relative threshold method with a fixed threshold based on peak standardized uptake value (SUV peak ). The efficacy of our method was verified using 18 F-2-fluoro-2-deoxy-D-glucose PET/computed tomography images of 20 patients with lung cancer. The tumor volume was determined using the relative threshold method with a fixed threshold based on the SUV peak . The PET data were reconstructed using the ordered-subset expectation maximization (OSEM) model, the OSEM + time-of-flight (TOF) model, and the OSEM + TOF + point-spread function (PSF) model. The volume differences associated with the reconstruction algorithm (%VD) were compared. For comparison, the tumor volume was measured using the relative threshold method based on the maximum SUV (SUV max ). For the OSEM and TOF models, the mean %VD values were -0.06 ± 8.07 and -2.04 ± 4.23% for the fixed 40% threshold according to the SUV max and the SUV peak, respectively. The effect of our method in this case seemed to be minor. For the OSEM and PSF models, the mean %VD values were -20.41 ± 14.47 and -13.87 ± 6.59% for the fixed 40% threshold according to the SUV max and SUV peak , respectively. Our new method enabled the measurement of tumor volume with a fixed threshold and reduced the influence of the changes in tumor volume associated with the reconstruction model.
Hatle, Håvard; Støbakk, Per Kristian; Mølmen, Harald Edvard; Brønstad, Eivind; Tjønna, Arnt Erik; Steinshamn, Sigurd; Skogvoll, Eirik; Wisløff, Ulrik; Ingul, Charlotte Björk; Rognmo, Øivind
2014-01-01
The training response of an intensified period of high-intensity exercise is not clear. Therefore, we compared the cardiovascular adaptations of completing 24 high-intensity aerobic interval training sessions carried out for either three or eight weeks, respectively. Twenty-one healthy subjects (23.0±2.1 years, 10 females) completed 24 high-intensity training sessions throughout a time-period of either eight weeks (moderate frequency, MF) or three weeks (high frequency, HF) followed by a detraining period of nine weeks without any training. In both groups, maximal oxygen uptake (VO2max) was evaluated before training, at the 9(th) and 17(th) session and four days after the final 24(th) training session. In the detraining phase VO2max was evaluated after 12 days and thereafter every second week for eight weeks. Left ventricular echocardiography, carbon monoxide lung diffusion transfer factor, brachial artery flow mediated dilatation and vastus lateralis citrate maximal synthase activity was tested before and after training. The cardiovascular adaptation after HF training was delayed compared to training with MF. Four days after ending training the HF group showed no improvement (+3.0%, p = 0.126), whereas the MF group reached their highest VO2max with a 10.7% improvement (p<0.001: group difference p = 0.035). The HF group reached their highest VO2max (6.1% increase, p = 0.026) twelve days into the detraining period, compared to a concomitant reduction to 7.9% of VO2max (p<0.001) above baseline in the MF group (group difference p = 0.609). Both HF and MF training of high-intensity aerobic exercise improves VO2max. The cardiovascular adaptation following a HF programme of high-intensity exercise is however delayed compared to MF training. ClinicalTrials.gov NCT00733941.
Koschate, J; Thieschäfer, L; Drescher, U; Hoffmann, U
2018-06-26
The effects of 60 days of head down tilt bed rest (HDBR) with and without the application of a reactive jump countermeasure were investigated, using a method which enables to discriminate between pulmonary ([Formula: see text]O 2 pulm) and muscular ([Formula: see text]O 2 musc) oxygen uptake kinetics to control for hemodynamic influences. 22 subjects were randomly allocated to either a group performing a reactive jumps countermeasure (JUMP; n = 11, male, 29 ± 7 years, 23.9 ± 1.3 kg m - 2 ) or a control group (CTRL; n = 11, male, 29 ± 6 years, 23.3 ± 2.0 kg m - 2 ). Heart rate (HR) and [Formula: see text]O 2 pulm were measured in response to repeated changes in work rate between 30 and 80 W before (BDC-9) and two times after HDBR (R+ 2, R+ 13). Kinetic responses of HR, [Formula: see text]O 2 pulm, and [Formula: see text]O 2 musc were assessed applying time series analysis. Higher maxima in cross-correlation functions (CCF max (x)) between work rate and the respective parameter indicate faster kinetics responses. Statistical analysis was performed applying multifactorial analysis of variance. CCF max ([Formula: see text]O 2 musc) and CCF max ([Formula: see text]O 2 pulm) were not significantly different before and after HDBR (P > 0.05). CCF max (HR) decreased following bed rest (JUMP: BDC-9: 0.30 ± 0.09 vs. R+ 2: 0.28 ± 0.06 vs. R+13: 0.28 ± 0.07; CTRL: 0.35 ± 0.09 vs. 0.27 ± 0.06 vs. 0.33 ± 0.07 P = 0.025). No significant differences between the groups were observed (P > 0.05). Significant alterations were found for CCF max of mean arterial blood pressure (mBP) after HDBR (JUMP: BDC-9: 0.21 ± 0.07 vs. R+ 2: 0.30 ± 0.13 vs. R+ 13: 0.28 ± 0.08; CTRL: 0.25 ± 0.07 vs. 0.38 ± 0.13 vs. 0.28 ± 0.08; P = 0.008). Despite hemodynamic changes, [Formula: see text]O 2 kinetics seem to be preserved for a longer period of HDBR, even without the application of a countermeasure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Osamu; Tsukagoshi, Kensuke; Endo, Tetsuya
2008-03-15
The cellular uptake mechanism of 4-chloro-2-methylphenoxyacetic acid (MCPA), a phenoxyacetic acid derivative, was investigated using Caco-2 epithelial cells. The cells were incubated with 50 {mu}M MCPA at pH 6.0 and 37 deg. C, and the uptake of MCPA from the apical membranes was measured. The uptake of MCPA was significantly decreased by incubation at low temperature (4 {sup o}C) and markedly increased by lowering the extracellular pH. Pretreatment with a protonophore, carbonylcyanide-p-(trifluoromethoxy)phenylhydrazone (25 {mu}M), or metabolic inhibitors, 2,4-dinitrophenol (1 mM) and sodium azide (10 mM), significantly decreased the uptake of MCPA by 53%, 45% and 48%, respectively. Coincubation of MCPAmore » with 10 mM L-lactic acid or {alpha}-cyano-4-hydroxycinnamate, which is a substrate or an inhibitor of the monocarboxylic acid transporters (MCTs), significantly decreased the uptake of MCPA by 31% and 20%, respectively, and coincubation with benzoic acid profoundly decreased the uptake by 68%. In contrast, coincubation with succinic acid (a dicarboxylic acid) did not affect the uptake. Kinetic analysis of initial MCPA uptake suggested that MCPA is taken up via a carrier-mediated process [K{sub m} = 1.37 {+-} 0.15 mM, V{sub max} = 115 {+-} 6 nmol (mg protein){sup -1} (3 min){sup -1}]. Lineweaver-Burk plots show that benzoic acid competitively inhibits the uptake of MCPA with a K{sub i} value of 4.68 {+-} 1.76 mM. A trans-stimulation effect on MCPA uptake was found in cells preloaded with benzoic acid. These results suggest that the uptake of MCPA from the apical membrane of Caco-2 cells is mainly mediated by common MCTs along with benzoic acid but also in part by L-lactic acid.« less
Curran, L S; Zhuang, J; Droma, T; Moore, L G
1998-01-01
Few environments challenge human populations more than high altitude, since the accompanying low oxygen pressures (hypoxia) are pervasive and impervious to cultural modification. Work capacity is an important factor in a population's ability to thrive in such an environment. The performance of work or exercise is a measure of the integrated functioning of the O2 transport system, with maximal O2 uptake (.VO2max) a convenient index of that function. Hypoxia limits the ability to transport oxygen: maximal O2 uptake decreases with ascent to high altitude, and years of high altitude residence do not restore sea level .VO2max values. Since Tibetans live and work at some of the highest altitudes in the world, their ability to exercise at very high altitude (>4,000 m) may define the limits of human adaptation to hypoxia. We transported 20 Tibetan lifelong residents of > or =4,400 m down to 3,658 m in order to compare them with 16 previously studied Tibetan residents of Lhasa (3,658 m). The two groups of Tibetans were matched for age, weight, and height. All studies were performed in Lhasa within 3 days of the 4,400 m Tibetans' arrival. Standard test protocol and criteria were used for attaining .VO2max on a Monark bicycle ergometer, while measuring oxygen uptake (.VO2, ml/kg - min STPD), heart rate (bpm), minute ventilation (VE, 1/min BTPS), and arterial oxygen saturation (SaO2, %). The 4,400 m compared with 3,658 m residents had, at maximal effort, similar .VO2 (48.5 +/- 1.2 vs. 51.2 +/- 1.4 ml/kg - min, P = NS), higher workload attained (211 +/- 6 vs. 177 +/- 7 watts, P < 0.01), lower heart rate(176 +/- 2 vs. 191 +/- 2 bpm, P < 0.01), lower ventilation (127 +/- 5 vs. 149 +/- 5 l/min BTPS, P < 0.01), and similar SaO2(81.9 +/- 1.0 vs. 83.7 +/- 1.2%, P = NS). Furthermore, over the range of submaximal workloads, 4,400 m compared with 3,658 m Tibetans had lower .VO2 (P < 0.01), lower heart rates (P < 0.01), and lower ventilation (P < 0.01) and SaO2 (P < 0.05). We conclude that Tibetans living at 4,400 m compared with those residing at 3,658 m achieve greater work performance for a given .VO2 at submaximal and maximal workloads with less cardiorespiratory effort.
Karakoç, Barış; Akalan, Cengiz; Alemdaroğlu, Utku; Arslan, Erşan
2012-12-01
The purposes of this study were to determine the relationship between performance in the Yo-Yo intermittent recovery test level 1 (YIRT1), the Yo-Yo intermittent recovery test level 2 (YIRT2) and the Yo-Yo endurance test (continuous) (YET) with maximal oxygen uptake (VO2max) and Wingate anaerobic performance (WaNT) test results in young soccer players (age 15.00 ± 0.0 years, body height 176.3 ± 4.2 cm and body mass 68.1 ± 3.6 kg). An ergospirometry device was used during the treadmill test (TRT) to determine VO2max. At the end of the study, significant differences were found between the Yo-Yo tests and TRT in terms of HRmax (TRT = 195,92, YIRT1 = 197,83, YIRT2 = 198,5 YET = 198) (p > 0.05). While there were moderate correlations between VO2max and YIRT 1-2 performances (respectively, r = 0.56, r = 0.53), there was only a weak relationship between VO2max and YET performance (r = 0.43) (distance covered). There were also moderate significant negative correlations between performance in the YIRT2 and peak power measured in the WaNT (r = -0.55), although there were no significant correlations between performance in the three tests and average power. A moderate negative correlation was found between performance in the YIRT2 and Fatigue index (FI) (r = -0,66). In conclusion, the YIRT2 may be a more suitable field test for determining both aerobic and anaerobic performance in soccer players.
Karakoç, Barış; Akalan, Cengiz; Alemdaroğlu, Utku; Arslan, Erşan
2012-01-01
The purposes of this study were to determine the relationship between performance in the Yo-Yo intermittent recovery test level 1 (YIRT1), the Yo-Yo intermittent recovery test level 2 (YIRT2) and the Yo-Yo endurance test (continuous) (YET) with maximal oxygen uptake (VO2max) and Wingate anaerobic performance (WaNT) test results in young soccer players (age 15.00 ± 0.0 years, body height 176.3 ± 4.2 cm and body mass 68.1 ± 3.6 kg). An ergospirometry device was used during the treadmill test (TRT) to determine VO2max. At the end of the study, significant differences were found between the Yo-Yo tests and TRT in terms of HRmax (TRT = 195,92, YIRT1 = 197,83, YIRT2 = 198,5 YET = 198) (p > 0.05). While there were moderate correlations between VO2max and YIRT 1–2 performances (respectively, r = 0.56, r = 0.53), there was only a weak relationship between VO2max and YET performance (r = 0.43) (distance covered). There were also moderate significant negative correlations between performance in the YIRT2 and peak power measured in the WaNT (r = −0.55), although there were no significant correlations between performance in the three tests and average power. A moderate negative correlation was found between performance in the YIRT2 and Fatigue index (FI) (r = −0,66). In conclusion, the YIRT2 may be a more suitable field test for determining both aerobic and anaerobic performance in soccer players. PMID:23486008
Nautiyal, C. S.; Hegde, S. V.; van Berkum, P.
1988-01-01
The pigeon pea strains of Bradyrhizobium CC-1, CC-8, UASGR(S), and F4 were evaluated for nodulation, effectiveness for N2 fixation, and H2 oxidation with homologous and nonhomologous host plants. Strain CC-1 nodulated Macroptilium atropurpureum, Vigna unguiculata, Glycine max, and G. soja but did not nodulate Pisum sativum, Phaseolus vulgaris, Trigonella foenum-graecum, and Trifolium repens. Strain F4 nodulated G. max cv. Peking and PI 434937 (Malayan), but the symbioses formed were poor. Similarly, G. max cv. Peking, cv. Bragg, PI 434937, PR 13-28-2-8-7, and HM-1 were nodulated by strain CC-1, and symbioses were also poor. G. max cv. Williams and cv. Clark were not nodulated. H2 uptake activity was expressed with pigeon pea and cowpea, but not with soybean. G. max cv. Bragg grown in Bangalore, India, in local soil not previously exposed to Bradyrhizobium japonicum formed nodules with indigenous Bradyrhizobium spp. Six randomly chosen isolates, each originating from a different nodule, formed effective symbioses with pigeon pea host ICPL-407, nodulated PR 13-28-2-8-7 soybean forming moderately effective symbioses, and did not nodulate Williams soybean. These results indicate the six isolates to be pigeon pea strains although they originated from soybean nodules. Host-determined nodulation of soybean by pigeon pea Bradyrhizobium spp. may depend upon the ancestral backgrounds of the cultivars. The poor symbioses formed by the pigeon pea strains with soybean indicate that this crop should be inoculated with B. japonicum for its cultivation in soils containing only pigeon pea Bradyrhizobium spp. PMID:16347542
Reliability and intensity of the six-minute walk test in healthy elderly subjects.
Kervio, Gaelle; Carre, Francois; Ville, Nathalie S
2003-01-01
The 6-min walk test (6-MWT) is an easy and validated field test, generally used in patients to assess their physical capacity. We think that the 6-MWT could also be conducted in the same perspective in healthy subjects, aged 60-70 yr. However, little is known about the effect of the familiarization on the 6-MWT performance and the relative intensity of this test. The aims of this study were therefore to bring precision to the 6-MWT reliability and intensity in this population. METHODS; Over 3 d, 12 subjects performed two maximal exercise tests on treadmill and five 6-MWT (two in the morning and three in the afternoon) with a portable metabolic measurement system (Cosmed K4, Rome, Italy). The distance, walking speed, oxygen uptake (VO2 (max)), and heart rate (HR) values were measured during the 6-MWT. Distance, walking speed, and VO2(max) were only lower during the first two 6-MWT (respectively, P< 0.001, P< 0.001, and P< 0.05). HR was reliable from the first 6-MWT and was higher during the tests performed in the afternoon (P< 0.001). The intensity of the 6-MWT corresponded to 79.6 +/- 4.5% of the VO2(max), 85.8 +/- 2.5% of the HR (max), and 78.0 +/- 6.3% of the HR (reserve). Moreover, it was higher than the ventilatory threshold in each subject (P< 0.01). In healthy elderly subjects, the 6-MWT represents a submaximal exercise, but at almost 80% of the VO2(max). To be exploitable, two familiarization attempts are required to limit the learning effect. Finally, the 6-MWT time of day must be taken into account when assessing HR.
Gonçalves, Thiago R; Farinatti, Paulo de Tarso Veras; Gurgel, Jonas L; da Silva Soares, Pedro P
2015-05-01
Increased heart rate variability (HRV) at rest is frequently associated to maximal oxygen uptake (VO2max), physical activity, and markers of quality of life (QoL). However, the HRV has not been observed during physical exercise or orthostatic (ORT) challenge. This study investigated the associations of HRV changes (ΔHRV) from rest at supine (SUP) to ORT positions with (VO2max), physical activity level, and QoL in young adults. Cardiac autonomic modulation was assessed by spectral analysis of R-R time series measured from SUP to ORT positions in 15 healthy volunteers (26 ± 7 years). Questionnaires were applied for evaluation of QoL (SF-36 score), to estimate (VO2max), and to quantify physical activity (Baecke Sport Score). All HRV indices at SUP, but not ORT, strongly correlated to QoL, estimated (VO2max), and physical activity. The ΔHRV from SUP to ORT showed significant correlations with all questionnaire scores (r = 0.52-0.61 for low frequency and r = -0.61 to -0.65 for high frequency, p ≤ 0.05). Higher vagal activity at rest and greater changes in adrenergic and parasympathetic modulation from SUP to ORT were detected in the volunteers exhibiting higher scores of QoL, estimated (VO2max), and physical activity. Taken together, the level of neural adaptations from resting SUP position to active standing, and physical activity and QoL questionnaires seem to be a simple approach to understand the physiological and lifestyle adaptations to exercise that may be applied to a large sample of subjects in almost any sports facilities at a low cost.
Impairment of Performance Variables After In-Season Strength-Training Cessation in Elite Cyclists.
Rønnestad, Bent R; Hansen, Joar; Hollan, Ivana; Spencer, Matt; Ellefsen, Stian
2016-09-01
The current study investigated the effects of 8 wk of strength-training cessation after 25 wk of strength training on strength- and cycling-performance characteristics. Elite cyclists were randomly assigned to either 25 wk of endurance training combined with heavy strength training (EXP, n = 7, maximal oxygen uptake [V̇O 2max ] 77 ± 6 mL . kg -1 . min -1 ; 3 × 4-10 RM, 1 to 2 d/wk) or to endurance training only (CON, n = 7, V̇O 2max 73 ± 5 mL . kg -1 . min -1 ). Thereafter, both groups performed endurance training only for 8 wk, coinciding with the initial part of the competition season. Data were assessed for practical significance using magnitude-based inferences. During the 25-wk preparatory period, EXP had a larger positive impact on maximal isometric half-squat force, squat jump (SJ), maximal aerobic power (W max ), power output at 4 mmol/L [La], and mean power in 30-s Wingate test than did CON (ES = 0.46-0.74). Conversely, during the 8-wk competition period EXP had a reduction in SJ, W max , and mean power in the 30-s Wingate test compared with CON (ES = 0.49-0.84). The present findings suggest rapid decline of adaptations on termination of strength training during the first 8 wk of the competition period in elite cyclists.
Exercise- and cold-induced changes in plasma beta-endorphin and beta-lipotropin in men and women.
Viswanathan, M; Van Dijk, J P; Graham, T E; Bonen, A; George, J C
1987-02-01
The plasma beta-endorphin (beta-EP) and beta-lipotropin (beta-LPH) response of men, eumenorrheic women, and amenorrheic women (n = 6) to 1 h of rest or to a bicycle ergometer test [20 min at 30% maximum O2 uptake (VO2max), 20 min at 60% VO2max, and at 90% VO2max to exhaustion] was studied in both normal (22 degrees C) and cold (5 degrees C) environments. beta-EP and beta-LPH was measured by radioimmunoassay in venous samples collected every 20 min during rest or after each exercise bout. Exhaustive exercise at ambient temperature (Ta) 22 degrees C induced significant increases in plasma beta-EP and beta-LPH in all subjects as did work at 60% VO2max in amenorrheic and eumenorrheic women. During work at Ta 5 degrees C, the relative increase in beta-EP and beta-LPH was suppressed in eumenorrheic women and completely prevented in amenorrheic women. Although significant lowering of beta-EP and beta-LPH was observed in men and eumenorrheic women during rest at 5 degrees C, amenorrheic women maintained precold exposure levels. These findings suggest that plasma beta-EP and beta-LPH may reflect a thermoregulatory response to heat load. There appears to be a sexual dimorphism in exercise- and cold-induced release of beta-EP and beta-LPH and amenorrhea may be accompanied by alterations in these responses.
Effect of aerobic fitness on the physiological stress responses at work.
Ritvanen, Tiina; Louhevaara, Veikko; Helin, Pertti; Halonen, Toivo; Hänninen, Osmo
2007-01-01
The aim of the present study was to examine the effects of aerobic fitness on physiological stress responses experienced by teachers during working hours. Twenty-six healthy female and male teachers aged 33-62 years participated in the study. The ratings of perceived stress visual analogue scale (VAS), and the measurement of physiological responses (norepinephrine, epinephrine, cortisol, diastolic and systolic blood pressure, heart rate (HR), and trapezius muscle activity by electromyography (EMG), were determined. Predicted maximal oxygen uptake (VO(2)max) was measured using the submaximal bicycle ergometer test. The predicted VO(2)max was standardized for age using residuals of linear regression analyses. Static EMG activity, HR and VAS were associated with aerobic fitness in teachers. The results suggest that a higher level of aerobic fitness may reduce muscle tension, HR and perceived work stress in teachers.
Polat, Metin; Korkmaz Eryılmaz, Selcen; Aydoğan, Sami
2018-01-01
In order to ensure that athletes achieve their highest performance levels during competitive seasons, monitoring their long-term performance data is crucial for understanding the impact of ongoing training programs and evaluating training strategies. The present study was thus designed to investigate the variations in body composition, maximal oxygen uptake (VO 2max ), and gas exchange threshold values of cross-country skiers across training phases throughout a season. In total, 15 athletes who participate in international cross-country ski competitions voluntarily took part in this study. The athletes underwent incremental treadmill running tests at 3 different time points over a period of 1 year. The first measurements were obtained in July, during the first preparation period; the second measurements were obtained in October, during the second preparation period; and the third measurements were obtained in February, during the competition period. Body weight, body mass index (BMI), body fat (%), as well as VO 2max values and gas exchange threshold, measured using V-slope method during the incremental running tests, were assessed at all 3 time points. The collected data were analyzed using SPSS 20 package software. Significant differences between the measurements were assessed using Friedman's twoway variance analysis with a post hoc option. The athletes' body weights and BMI measurements at the third point were significantly lower compared with the results of the second measurement ( p <0.001). Moreover, the incremental running test time was significantly higher at the third measurement, compared with both the first ( p <0.05) and the second ( p <0.01) measurements. Similarly, the running speed during the test was significantly higher at the third measurement time point compared with the first measurement time point ( p <0.05). Body fat (%), time to reach the gas exchange threshold, running speed at the gas exchange threshold, VO 2max , amount of oxygen consumed at gas exchange threshold level (VO 2GET ), maximal heart rate (HR max ), and heart rate at gas exchange threshold level (HR GET ) values did not significantly differ between the measurement time points ( p >0.05). VO 2max and gas exchange threshold values recorded during the third measurements, the timing of which coincided with the competitive season of the cross-country skiers, did not significantly change, but their incremental running test time and running speed significantly increased while their body weight and BMI significantly decreased. These results indicate that the cross-country skiers developed a tolerance for high-intensity exercise and reached their highest level of athletic performance during the competitive season.
Peak Velocity as an Alternative Method for Training Prescription in Mice.
Picoli, Caroline de Carvalho; Romero, Paulo Vitor da Silva; Gilio, Gustavo R; Guariglia, Débora A; Tófolo, Laize P; de Moraes, Solange M F; Machado, Fabiana A; Peres, Sidney B
2018-01-01
Purpose: To compare the efficiency of an aerobic physical training program prescribed according to either velocity associated with maximum oxygen uptake (vVO 2max ) or peak running speed obtained during an incremental treadmill test (V peak_K ) in mice. Methods: Twenty male Swiss mice, 60 days old, were randomly divided into two groups with 10 animals each: 1. group trained by vVO 2max (GVO 2 ), 2. group trained by V peak_K (GVP). After the adaptation training period, an incremental test was performed at the beginning of each week to adjust training load and to determine the amount of VO 2 and VCO 2 fluxes consumed, energy expenditure (EE) and run distance during the incremental test. Mice were submitted to 4 weeks of aerobic exercise training of moderate intensity (velocity referring to 70% of vVO 2max and V peak_K ) in a programmable treadmill. The sessions lasted from 30 to 40 min in the first week, to reach 60 min in the fourth week, in order to provide the mice with a moderate intensity exercise, totaling 20 training sessions. Results: Mice demonstrated increases in VO 2max (ml·kg -1 ·min -1 ) (GVO 2 = 49.1% and GVP = 56.2%), V peak_K (cm·s -1 ) (GVO 2 = 50.9% and GVP = 22.3%), EE (ml·kg -0,75 ·min -1 ) (GVO 2 = 39.9% and GVP = 51.5%), and run distance (cm) (GVO 2 = 43.5% and GVP = 33.4%), after 4 weeks of aerobic training (time effect, P < 0.05); there were no differences between the groups. Conclusions: V peak_K , as well as vVO 2max , can be adopted as an alternative test to determine the performance and correct prescription of systemized aerobic protocol training to mice.
Rakhshaee, Roohan; Khosravi, Morteza; Ganji, Masoud Taghi
2006-06-30
Dead Azolla filiculoides can remove Pb(2+),Cd(2+), Ni(2+) and Zn(2+) corresponding to second-order kinetic model. The maximum adsorption capacity (Q(max)) to remove these metal ions by the alkali and CaCl(2)/MgCl(2)/NaCl (2:1:1, molar ratio) activated Azolla from 283 to 313K was 1.431-1.272, 1.173-0.990, 1.365-1.198 and 1.291-0.981mmol/g dry biomass, respectively. Q(max) to remove these heavy metals by the non-activated Azolla at the mentioned temperature range was obtained 1.131-0.977, 1.092-0.921, 1.212-0.931 and 1.103-0.923mmol/g dry biomass, respectively. In order to remove these metal ions by the activated Azolla, the enthalpy change (DeltaH) was -4.403, -4.495, -4.557 and -4.365kcal/mol and the entropy change (DeltaS) was 2.290, 1.268, 1.745 and 1.006cal/molK, respectively. While, to remove these metal ions by the non-activated Azolla, DeltaH was -3.685, -3.766, -3.967 and -3.731kcal/mol and DeltaS was 2.440, 1.265, 1.036 and 0.933cal/molK, respectively. On the other hand, the living Azolla removed these heavy metals corresponding to first-order kinetic model. It was also shown that pH, temperature and photoperiod were effective both on the rate of Azolla growth and the rate of heavy metals uptake during 10 days. It was appeared the use of Ca(NO(3))(2) increased both Azolla growth rate and the rate of heavy metals uptake while the using KNO(3) although increased Azolla growth rate but decreased the rate of heavy metals uptake.
Increased cardiac output elicits higher V̇O2max in response to self-paced exercise.
Astorino, Todd Anthony; McMillan, David William; Edmunds, Ross Montgomery; Sanchez, Eduardo
2015-03-01
Recently, a self-paced protocol demonstrated higher maximal oxygen uptake versus the traditional ramp protocol. The primary aim of the current study was to further explore potential differences in maximal oxygen uptake between the ramp and self-paced protocols using simultaneous measurement of cardiac output. Active men and women of various fitness levels (N = 30, mean age = 26.0 ± 5.0 years) completed 3 graded exercise tests separated by a minimum of 48 h. Participants initially completed progressive ramp exercise to exhaustion to determine maximal oxygen uptake followed by a verification test to confirm maximal oxygen uptake attainment. Over the next 2 sessions, they performed a self-paced and an additional ramp protocol. During exercise, gas exchange data were obtained using indirect calorimetry, and thoracic impedance was utilized to estimate hemodynamic function (stroke volume and cardiac output). One-way ANOVA with repeated measures was used to determine differences in maximal oxygen uptake and cardiac output between ramp and self-paced testing. Results demonstrated lower (p < 0.001) maximal oxygen uptake via the ramp (47.2 ± 10.2 mL·kg(-1)·min(-1)) versus the self-paced (50.2 ± 9.6 mL·kg(-1)·min(-1)) protocol, with no interaction (p = 0.06) seen for fitness level. Maximal heart rate and cardiac output (p = 0.02) were higher in the self-paced protocol versus ramp exercise. In conclusion, data show that the traditional ramp protocol may underestimate maximal oxygen uptake compared with a newly developed self-paced protocol, with a greater cardiac output potentially responsible for this outcome.
Novakova, Katerina; Kummer, Oliver; Bouitbir, Jamal; Stoffel, Sonja D; Hoerler-Koerner, Ulrike; Bodmer, Michael; Roberts, Paul; Urwyler, Albert; Ehrsam, Rolf; Krähenbühl, Stephan
2016-02-01
More than 95% of the body carnitine is located in skeletal muscle, where it is essential for energy metabolism. Vegetarians ingest less carnitine and carnitine precursors and have lower plasma carnitine concentrations than omnivores. Principle aims of the current study were to assess the plasma and skeletal muscle carnitine content and physical performance of male vegetarians and matched omnivores under basal conditions and after L-carnitine supplementation. Sixteen vegetarians and eight omnivores participated in this interventional study with oral supplementation of 2 g L-carnitine for 12 weeks. Before carnitine supplementation, vegetarians had a 10% lower plasma carnitine concentration, but maintained skeletal muscle carnitine stores compared to omnivores. Skeletal muscle phosphocreatine, ATP, glycogen and lactate contents were also not different from omnivores. Maximal oxygen uptake (VO2max) and workload (P max) per bodyweight (bicycle spiroergometry) were not significantly different between vegetarians and omnivores. Sub-maximal exercise (75% VO2max for 1 h) revealed no significant differences between vegetarians and omnivores (respiratory exchange ratio, blood lactate and muscle metabolites). Supplementation with L-carnitine significantly increased the total plasma carnitine concentration (24% in omnivores, 31% in vegetarians) and the muscle carnitine content in vegetarians (13%). Despite this increase, P max and VO2max as well as muscle phosphocreatine, lactate and glycogen were not significantly affected by carnitine administration. Vegetarians have lower plasma carnitine concentrations, but maintained muscle carnitine stores compared to omnivores. Oral L-carnitine supplementation normalizes the plasma carnitine stores and slightly increases the skeletal muscle carnitine content in vegetarians, but without affecting muscle function and energy metabolism.
Hogg, James S; Hopker, James G; Coakley, Sarah L; Mauger, Alexis R
2018-05-01
The self-paced maximal oxygen uptake test (SPV) may offer effective training prescription metrics for athletes. This study aimed to examine whether SPV-derived data could be used for training prescription. Twenty-four recreationally active male and female runners were randomly assigned between two training groups: (1) Standardised (STND) and (2) Self-Paced (S-P). Participants completed 4 running sessions a week using a global positioning system-enabled (GPS) watch: 2 × interval sessions; 1 × recovery run; and 1 × tempo run. STND had training prescribed via graded exercise test (GXT) data, whereas S-P had training prescribed via SPV data. In STND, intervals were prescribed as 6 × 60% of the time that velocity at [Formula: see text] ([Formula: see text]) could be maintained (T max ). In S-P, intervals were prescribed as 7 × 120 s at the mean velocity of rating of perceived exertion 20 ( v RPE20). Both groups used 1:2 work:recovery ratio. Maximal oxygen uptake ([Formula: see text]), [Formula: see text], T max, v RPE20, critical speed (CS), and lactate threshold (LT) were determined before and after the 6-week training. STND and S-P training significantly improved [Formula: see text] by 4 ± 8 and 6 ± 6%, CS by 7 ± 7 and 3 ± 3%; LT by 5 ± 4% and 7 ± 8%, respectively (all P < .05), with no differences observed between groups. Novel metrics obtained from the SPV can offer similar training prescription and improvement in [Formula: see text], CS and LT compared to training derived from a traditional GXT.
The effect of lifelong exercise dose on cardiovascular function during exercise
Carrick-Ranson, Graeme; Hastings, Jeffrey L.; Bhella, Paul S.; Fujimoto, Naoki; Shibata, Shigeki; Palmer, M. Dean; Boyd, Kara; Livingston, Sheryl; Dijk, Erika
2014-01-01
An increased “dose” of endurance exercise training is associated with a greater maximal oxygen uptake (V̇o2max), a larger left ventricular (LV) mass, and improved heart rate and blood pressure control. However, the effect of lifelong exercise dose on metabolic and hemodynamic response during exercise has not been previously examined. We performed a cross-sectional study on 101 (69 men) seniors (60 yr and older) focusing on lifelong exercise frequency as an index of exercise dose. These included 27 who had performed ≤2 exercise sessions/wk (sedentary), 25 who performed 2–3 sessions/wk (casual), 24 who performed 4–5 sessions/wk (committed) and 25 who performed ≥6 sessions/wk plus regular competitions (Masters athletes) over at least the last 25 yr. Oxygen uptake and hemodynamics [cardiac output, stroke volume (SV)] were collected at rest, two levels of steady-state submaximal exercise, and maximal exercise. Doppler ultrasound measures of LV diastolic filling were assessed at rest and during LV loading (saline infusion) to simulate increased LV filling. Body composition, total blood volume, and heart rate recovery after maximal exercise were also examined. V̇o2max increased in a dose-dependent manner (P < 0.05). At maximal exercise, cardiac output and SV were largest in committed exercisers and Masters athletes (P < 0.05), while arteriovenous oxygen difference was greater in all trained groups (P < 0.05). At maximal exercise, effective arterial elastance, an index of ventricular-arterial coupling, was lower in committed exercisers and Masters athletes (P < 0.05). Doppler measures of LV filling were not enhanced at any condition, irrespective of lifelong exercise frequency. These data suggest that performing four or more weekly endurance exercise sessions over a lifetime results in significant gains in V̇o2max, SV, and heart rate regulation during exercise; however, improved SV regulation during exercise is not coupled with favorable effects on LV filling, even when the heart is fully loaded. PMID:24458750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Jason M.; Rani, Sudheer D.; Li, Xia
2015-07-15
Purpose: Previous studies have demonstrated how imaging of the breast with patients lying prone using a supportive positioning device markedly facilitates longitudinal and/or multimodal image registration. In this contribution, the authors’ primary objective was to determine if there are differences in the standardized uptake value (SUV) derived from [{sup 18}F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in breast tumors imaged in the standard supine position and in the prone position using a specialized positioning device. Methods: A custom positioning device was constructed to allow for breast scanning in the prone position. Rigid and nonrigid phantom studies evaluated differences in prone andmore » supine PET. Clinical studies comprised 18F-FDG-PET of 34 patients with locally advanced breast cancer imaged in the prone position (with the custom support) followed by imaging in the supine position (without the support). Mean and maximum values (SUV{sub peak} and SUV{sub max}, respectively) were obtained from tumor regions-of-interest for both positions. Prone and supine SUV were linearly corrected to account for the differences in 18F-FDG uptake time. Correlation, Bland–Altman, and nonparametric analyses were performed on uptake time-corrected and uncorrected data. Results: SUV from the rigid PET breast phantom imaged in the prone position with the support device was 1.9% lower than without the support device. In the nonrigid PET breast phantom, prone SUV with the support device was 5.0% lower than supine SUV without the support device. In patients, the median (range) difference in uptake time between prone and supine scans was 16.4 min (13.4–30.9 min), which was significantly—but not completely—reduced by the linear correction method. SUV{sub peak} and SUV{sub max} from prone versus supine scans were highly correlated, with concordance correlation coefficients of 0.91 and 0.90, respectively. Prone SUV{sub peak} and SUV{sub max} were significantly lower than supine in both original and uptake time-adjusted data across a range of index times (P < < 0.0001, Wilcoxon signed rank test). Before correcting for uptake time differences, Bland–Altman analyses revealed proportional bias between prone and supine measurements (SUV{sub peak} and SUV{sub max}) that increased with higher levels of FDG uptake. After uptake time correction, this bias was significantly reduced (P < 0.01). Significant prone-supine differences, with regard to the spatial distribution of lesions relative to isocenter, were observed between the two scan positions, but this was poorly correlated with the residual (uptake time-corrected) prone-supine SUV{sub peak} difference (P = 0.78). Conclusions: Quantitative 18F-FDG-PET/CT of the breast in the prone position is not deleteriously affected by the support device but yields SUV that is consistently lower than those obtained in the standard supine position. SUV differences between scans arising from FDG uptake time differences can be substantially reduced, but not removed entirely, with the current correction method. SUV from the two scan orientations is quantitatively different and should not be assumed equivalent or interchangeable within the same subject. These findings have clinical relevance in that they underscore the importance of patient positioning while scanning as a clinical variable that must be accounted for with longitudinal PET measurement, for example, in the assessment of treatment response.« less
Leelarungrayub, Donrawee; Khansuwan, Raphiphat; Pothongsunun, Prapas; Klaphajone, Jakkrit
2011-01-01
Aim of this study was to evaluate the effects of short-term (7 days) N-acetylcysteine (NAC) at 1,200 mg daily supplementation on muscle fatigue, maximal oxygen uptake (VO(2max)), total antioxidant capacity (TAC), lactate, creatine kinase (CK), and tumor necrotic factor-alpha (TNF-α). Twenty-nine sedentary men (13 controls; 16 in the supplement group) from a randomized control were included. At before and after supplementation, fatigue index (FI) was evaluated in the quadriceps muscle, and performed a graded exercise treadmill test to induce oxidative stress, and as a measure of VO(2max). Blood samples were taken before exercise and 20 minutes after it at before and after supplementation, to determine TAC, CK, lactate, and TNF-α levels. Results showed that FI and VO(2max) increased significantly in the supplement group. After exercise decreased the levels of TAC and increased lactate, CK, and TNF-α of both groups at before supplementation. After supplementation, lactate, CK, and TNF-α levels significantly increased and TAC decreased after exercise in the control group. Whereas the TAC and lactate levels did not change significantly, but CK and TNF-α increased significantly in the supplement group. Therefore, this results showed that NAC improved the muscle fatigue, VO(2max), maintained TAC, controlled lactate production, but had no influence on CK and TNF-α.
Nakadate, Masashi; Yoshida, Katsuya; Ishii, Akihiro; Koizumi, Masayuki; Tochigi, Naobumi; Suzuki, Yoshio; Ryu, Yoshiharu; Nakagawa, Tassei; Umehara, Isao; Shibuya, Hitoshi
2013-09-01
This study aims to investigate the usefulness of (18)F-FDG PET/CT for distinguishing between primary thyroid lymphoma (PTL) and chronic thyroiditis. We retrospectively reviewed the data of 196 patients with diffuse (18)F-FDG uptake of the thyroid gland and enrolled patients who were diagnosed as having PTL or chronic thyroiditis based on the medical records, pathological findings, and laboratory data. The enrolled patients comprised 10 PTL patients (M/F = 4:6) and 51 chronic thyroiditis patients (M/F = 8:43). Images had been acquired on a PET/CT scanner at 100 minutes after intravenous injection of (18)F-FDG. The PTL group consisted of 7 patients with diffuse large B-cell lymphoma (DLBCL) and 3 with mucosa-associated lymphoid tissue (MALT) lymphoma. The maximum standardized uptake value (SUV(max)) was significantly higher in the PTL group than that in the chronic thyroiditis group (25.3 ± 8.0 and 7.4 ± 3.2, P < 0.001). On the other hand, the CT density (Hounsfield unit: HU) was significantly lower in the PTL group than that in the chronic thyroiditis group (46.1 ± 7.0 HU and 62.1 ± 6.9 HU, P < 0.001). Within the PTL group, the SUV(max) was significantly higher in the cases of DLBCL than in those of MALT lymphoma (29.0 ± 6.4 and 16.7 ± 2.3, P = 0.017). The SUV(max) was significantly higher and the CT density was significantly lower in PTL as compared with those in chronic thyroiditis. Thus, (18)F-FDG PET/CT may be useful for distinguishing between PTL and chronic thyroiditis.
Effect of aging on intestinal absorption of aromatic amino acids in vitro in the rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navab, F.; Winter, C.G.
Whole-thickness everted jejunal rings were used to measure uptake of L-tyrosine (L-Tyr), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) in 6-, 12-, and 24-mo-old rats. The rate of uptake of all tree amino acids (1 mM) was significantly reduced after 20 min of incubation in 24-mo-old compared with 6-mo-old rats. Results of influx (2 min) of 0.5-40.0 mL L-Phe and L-Trp suggested an increased affinity but decreased capacity for the transporter with age; these differences were significant for L-Trp. Respective values for apparent K{sub t} and V{sub max} are given.
Physiological profiles and sport specific fitness of Asian elite squash players.
Chin, M K; Steininger, K; So, R C; Clark, C R; Wong, A S
1995-01-01
There is a scarcity of descriptive data on the physiological characteristics of elite Asian squash players. The purpose of this study was to evaluate the physiological profile and sports specific fitness of Hong Kong elite squash players. It was conducted before the selection of the Hong Kong national squash team for the 1992 Asian Squash Championship. Ten elite squash players were selected as subjects for the study. Maximum oxygen uptake was measured using a continuous treadmill running test. A sports specific field test was performed in a squash court. The following means (s.d.) were observed: height 172.6(4.3) cm; weight 67.7(6.9) kg; body fat 7.4(3.4)%; forced vital capacity (FVC) 5.13(0.26) litres; maximum oxygen uptake (VO2max) 61.7(3.4) ml.kg-1.min-1; anaerobic threshold (AT) 80.2(3.3)% of VO2max; alactic power index 15.5(1.8) W.kg-1; lactic work index 323.5(29.4) J.kg-1, peak isokinetic dominant knee extensor and flexor strengths 3.11(0.29) Nm.kg-1 and 1.87(0.18) Nm.kg-1. The results show that the Hong Kong squash players have relatively high cardiorespiratory sports specific fitness and muscle strength which may be one of the key factors that contributed to the success of the Hong Kong team in the Asian Championship. PMID:8800847
Krautgasser, Sabine; Scheiber, Peter; von Duvillard, Serge P.; Müller, Erich
2011-01-01
We measured physiological responses of elderly recreational skiers of different fitness and skiing abilities. Six subjects (mean age: 61.2 ± 4.6 yrs; Wt: 76.8 ± 15.6 kg; Ht: 1.69 ± 0.10 m; BMI: 26.9 ± 5.0) were tested in a laboratory and during 30 and 75 min of recreational downhill skiing. Oxygen uptake (VO2), heart rate (HR), blood lactate (LA) concentration, and diastolic (DBP) and systolic (SBP) blood pressure were used to estimate energy demands while skiing. During maximal testing in a laboratory, subjects achieved a mean maximal VO2max of 28.2 ± 7.5 ml.kg-1.min-1 and a mean HRpeak of 165 ± 4 bpm (98 ± 1% of HRmax). Mean maximal workload measured on a cycle ergometer was 2.2 ± 0.7 W.kg-1 with a mean LApeak of 7.4 ± 1 mmol.l-1. During field testing, mean VO2 during skiing was 12 ± 2 ml.kg-1.min-1 (45 ± 16% of VO2max). Skiing VO2peak was 19 ± 5 ml. kg-1.min-1 (72 ± 23% of VO2max) was lower than VO2max in the lab (p = 0.04). Mean HR during skiing was 126 ± 2 bpm (77 ± 1% of HRmax from lab tests). Skiing HRpeak was 162 ± 2 bpm. This was not different from HRmax in the lab (p = 0.68). Mean LA after 30 and 75 min of skiing was not different (2.2 ± 0.8 mmol.l-1 and 2.0 ± 0.8, respectively, p = 0.71). Both LA samples during skiing were lower than lab tests (p < 0.0001). There was no difference for DBP between field and laboratory tests; however, SBP increased after 30 min of skiing to 171 ± 20 (p < 0.009) and 165 ± 17 (p < 0.003) after 75 min. These remained below the mean peak SBP determined in lab tests (218+31). Mean oxygen demand during 30 and 75 min of recreational skiing is only 45% of VO2max while mean HR is 77% of HRmax. This departure from linearity not often seen in typical aerobic activities suggests that alpine skiing requires a combination of aerobic and anaerobic activity. Blood LA remained low during skiing suggesting that elderly skiers may govern their intensity via signals closer to VO2 and LA compared to HR or BP. Key points Recreational Alpine skiing for elderly population does not pose health risks Blood pressure and heart rate during recreational Alpine skiing is retain within normal limits Blood lactate levels remain relatively low and do not contribute to fatigue Oxygen uptake and blood lactate are better markers of intensity in elderly Alpine skier compared to heart rate and blood pressure. PMID:24149569
Applied physiology of triathlon.
O'Toole, M L; Douglas, P S
1995-04-01
The triathlon is a 3-event endurance sport in which athletes compete sequentially in swimming, cycling and running. The primary determinant of success is the ability to sustain a high rate of energy expenditure for prolonged periods of time. Exercise training-induced physiological adaptations in virtually all systems of the body allow the athlete to accomplish this. Aerobic capacity (measured as maximal oxygen uptake, VO2max), economy of motion (submaximal VO2) and fractional utilisation of maximal capacity (%VO2max) reflect the integrated responses of these physiological adaptations. Numerous studies have reported relatively high mean VO2max values for various groups of triathletes that are comparable to those reported for athletes in single-event endurance sports and clearly above those reported for untrained individuals. In shorter distance triathlons and in studies using recreational (rather than elite) triathletes, VO2max is related to performance in the corresponding event of the triathlon (e.g. tethered swimming VO2max with swim time). In longer events and with more elite triathletes, VO2max correlates less well with performance. The physiological adaptations that correspond to and facilitate improved VO2max occur centrally in the cardiovascular system, centred on increased maximal cardiac output, and peripherally in the metabolic systems, centred around increased arterio-venous O2 (a-v O2) difference. While a high VO2max in individuals is clearly of importance to triathlon performance, energy output must be sustained for long periods of time, making economy of motion also very important. Studies suggests that competitive swimmers have better swimming economy than triathletes. However, since many triathletes have previously been competitive swimmers this finding is questionable. The finding suggests that triathletes from nonswimming backgrounds would benefit from improving swimming technique rather than concentrating training workouts solely on distance. In cycling and running, comparison studies have not been done. Economy of motion in swimming, cycling and running have all been found to be correlated with comparable event performance. Training to improve swimming economy can be done without prior exercise, but training to improve swimming economy can be done without prior exercise, but training to improve cycling and running economy should take the multimode nature of a triathlon into consideration. That is, swimming should precede cycling economy training, and cycling should precede running economy training. Cardiovascular, metabolic and neuromuscular adaptations are the main physiological correlates of improved movement economy. Since exercise-induced stress on most physiological systems is based on relative, rather than absolute, exercise intensity, training and racing intensities are frequently quantified as a percentage of maximal capacity of %VO2max.(ABSTRACT TRUNCATED AT 400 WORDS)
The Yo-Yo intermittent recovery test in basketball players.
Castagna, Carlo; Impellizzeri, Franco M; Rampinini, Ermanno; D'Ottavio, Stefano; Manzi, Vincenzo
2008-04-01
The purpose of this study was to examine the physiological correlates of the Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1) in basketball players. Twenty-two male basketball players (means+/-S.D., body mass 72.4+/-11.4kg, height 181.7+/-6.9cm, age 16.8+/-2.0 years) were tested for maximal oxygen uptake (VO(2max)), ventilatory threshold (VT) and running economy (RE) on a motorized treadmill. Lower limb explosive strength and anaerobic-capacity was assessed using vertical jumps (CMJ), 15m shuttle running sprint (15mSR) and line drill (LD), respectively. The same test battery was replicated after an experimental basketball game in order to assess selective effect of fatigue on physical performance. Pre to post-game CMJ (40.3+/-5.7 versus 39.9+/-5.9cm) and 15mSR (5.80+/-0.25 versus 5.77+/-0.22s) performances were not significantly different (p>0.05). LD performance decreased significantly post-game (from 26.7+/-1.3 to 27.7+/-2.7s, p<0.001). Yo-Yo IR1 performances (m) were significantly related to VO(2max) (r=0.77, p=0.0001), speed at VO(2max) (r=0.71, p=0.0001) and %VO(2max) at VT (r=-0.60, p=0.04). Yo-Yo IR1 performance was significantly correlated to post-game LD decrements (r=-0.52, p=0.02). These findings show that Yo-Yo IR1 may be considered as a valid basketball-specific test for the assessment of aerobic fitness and game-related endurance.
The Diurnal Variation on Cardiovascular Endurance Performance of Secondary School Athlete Student
Chin, Chun-Yip; Chow, Gary Chi-Ching; Hung, Kwong-Chung; Kam, Lik-Hang; Chan, Ka-Chun; Mok, Yuen-Ting; Cheng, Nga-Mei
2015-01-01
Background: The previous investigations in diurnal variation of endurance sports performance did not reach a consensus and have been limited. This study would be a valuable resource for endurance sports trainers and event managers to plan their training and competition in a specific time of day. Objectives: The aim of this study is to find out the diurnal variation in cardiovascular endurance performance in the young athletes. Materials and Methods: Thirty five athlete students (15.17 ± 1.62 years) participated in this study. Maximal oxygen uptake (VO2max), post-exercise percentage of maximal heart rate (MHR% post-ex), post-exercise body temperature (BTemppost-ex), and post exercise blood lactic acid level (LApost-ex) were measured in this study. Three non-consecutive testings: A) Morning (09:00-10:00; AM), B) Noon (12:00-13:00; NN) and C) Afternoon (16:00-17:00; PM) were conducted. Participants were required to follow the meal plan and resting schedule for all testing days. Results: VO2max was significantly higher at NN (F2. 68 = 3.29, P < 0.05, η2 = 0.088) in comparison with PM. The MHR%post-ex, BTemppost-ex, LApost-ex was not significantly different among three times of day. Conclusions: Diurnal effect on endurance performance was found and the highest exercise VO2max was identified at noon. Secondary school students or young athletes are recommended to have sports training related to VO2max at noon for the purpose of maximizing training effectiveness. PMID:26448833
Heart rate response to submaximal and maximal workloads during running and swimming.
Hauber, C; Sharp, R L; Franke, W D
1997-07-01
The purpose of the present study was to determine if common indexes of exercise intensity, assessed with land-based exercise, could be applied to swimming. Consequently, the heart rate (HR) and oxygen uptake (VO2) responses to submaximal and maximal treadmill running (TR) and free swimming (SW) in 11 fitness swimmers were assessed to determine if the responses to TR could be used to predict those of SW. A maximal graded exercise test using a discontinuous protocol was used for TR, while four graded submaximal 200 yd swims and one 400 yd maximal swim was used for SW. Rest periods were similar for each mode. Significantly lower (p < 0.05) peak values were found in SW compared to TR for both HR (174 +/- 3 vs 183 +/- 3 bt x min(-1)) and VO2 (3.58 +/- 0.18 vs 3.97 +/- 0.22 L x min(-1)), SW vs TR; +/- SE, respectively. However, regression analyses of submaximal HR vs VO2 for each subject revealed similar slopes for TR and SW (30.5 +/- 1.7 vs 29.9 +/- 3.5 bt x L(-1), p > 0.05) and similar intercepts (67.3 +/- 2.6 vs 66.5 +/- 11.5 bt x min(-1), p > 0.05). At the VO2 equivalent to 50% treadmill VO2max, the heart rate predicted from SW did not differ significantly from TR (118 +/- 5 vs 124 +/- 1 bt x min(-1), p > 0.05). This was also true at 85% treadmill VO2max (171 +/- 4 vs 166 +/- 3 bt x min(-1), SW vs TR, respectively; p > 0.05). These data suggest that peak heart rate and oxygen uptake appear to be mode specific, but exercising at a given submaximal oxygen uptake will elicit a similar heart rate regardless of the mode. Thus, target heart rate ranges designed for land-based exercise appear to be appropriate for fitness swimmers during swimming.
Astorino, Todd A.; Schubert, Matthew M.
2014-01-01
Alterations in maximal oxygen uptake (VO2max), heart rate (HR), and fat oxidation occur in response to chronic endurance training. However, many studies report frequent incidence of “non-responders” who do not adapt to continuous moderate exercise. Whether this is the case in response to high intensity interval training (HIT), which elicits similar adaptations as endurance training, is unknown. The aim of this retrospective study was to examine individual responses to two paradigms of interval training. In the first study (study 1), twenty active men and women (age and baseline VO2max = 24.0±4.6 yr and 42.8±4.8 mL/kg/min) performed 6 d of sprint interval training (SIT) consisting of 4–6 Wingate tests per day, while in a separate study (study 2), 20 sedentary women (age and baseline VO2max = 23.7±6.2 yr and 30.0±4.9 mL/kg/min) performed 12 wk of high-volume HIT at workloads ranging from 60–90% maximal workload. Individual changes in VO2max, HR, and fat oxidation were examined in each study, and multiple regression analysis was used to identify predictors of training adaptations to SIT and HIT. Data showed high frequency of increased VO2max (95%) and attenuated exercise HR (85%) in response to HIT, and low frequency of response for VO2max (65%) and exercise HR (55%) via SIT. Frequency of improved fat oxidation was similar (60–65%) across regimens. Only one participant across both interventions showed non-response for all variables. Baseline values of VO2max, exercise HR, respiratory exchange ratio, and body fat were significant predictors of adaptations to interval training. Frequency of positive responses to interval training seems to be greater in response to prolonged, higher volume interval training compared to similar durations of endurance training. PMID:24847797
Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy.
Andersen, Søren P; Sveen, Marie-Louise; Hansen, Regitze S; Madsen, Karen L; Hansen, Jonas B; Madsen, Mads; Vissing, John
2013-12-01
We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies. Fourteen patients with Becker (BMD), facioscapulohumeral (FSHD), or limb-girdle type 2 (LGMD2) muscular dystrophy, and 8 healthy subjects performed 5 cycling tests: an incremental max test, and tests at 65%, 75%, 85%, and 95% of maximal oxygen uptake (VO2max ). Heart rate and oxygen consumption were measured during the tests, and plasma CK was measured before, immediately after, and 24 hours after exercise. All subjects were able to perform high-intensity exercise at the different levels. In patients with LGMD2 and FSHD, CK normalized 24 hours after exercise compared with the pre-exercise value, whereas those with BMD and healthy controls had elevated CK values 24 hours after exercise. The findings suggest that high-intensity exercise is generally well tolerated in patients with LGMD2 and FSHD, whereas those with BMD may be more prone to exercise-induced damage. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Brigette; King, Ann; Lo, Y.M. Dennis
Purpose: Plasma Epstein-Barr virus DNA (pEBV DNA) is an important prognostic marker in nasopharyngeal carcinoma (NPC). This study tested the hypotheses that pEBV DNA reflects tumor burden and metabolic activity by evaluating its relationship with tumor volume and {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) uptake in NPC. Methods and Materials: Pre-treatment pEBV DNA analysis, {sup 18}F-FDG positron emission tomography-computed tomography scan (PET-CT) and magnetic resonance imaging (MRI) of the head and neck were performed in 57 patients. Net volume (cm{sup 3}) of the primary tumor (T{sub vol}) and regional nodes (N{sub vol}) were quantified on MRI. {sup 18}F-FDG uptake was expressed asmore » the maximum standardized uptake value (SUV{sub max}) at the primary tumor (T{sub suv}) and regional nodes (N{sub suv}). Lesions with SUV{sub max} {>=} 2.5 were considered malignant. Relationship between SUV{sub max}, natural logarithm (log) of pEBV DNA, and square root (sq) of MRI volumes was analyzed using the Wilcoxon test. A linear regression model was constructed to test for any interaction between variables and disease stage. Results: Log-pEBV DNA showed significant correlation with sq-T{sub vol} (r = 0.393), sq-N{sub vol} (r = 0.452), total tumor volume (sq-Total{sub vol} = T{sub vol} + N{sub vol}, r = 0.554), T{sub suv} (r = 0.276), N{sub suv} (r = 0.434), and total SUV{sub max} (Total{sub suv} = T{sub suv} + N{sub suv}, r = 0.457). Likewise, sq-T{sub vol} was correlated to T{sub suv} (r 0.426), and sq-N{sub vol} with N{sub suv} (r = 0.651). Regression analysis showed that only log-pEBV DNA was significantly associated with sq-Total{sub vol} (p < 0.001; parameter estimate = 8.844; 95% confidence interval = 3.986-13.703), whereas Sq-T{sub vol} was significantly associated with T{sub suv} (p = 0.002; parameter estimate = 3.923; 95% confidence interval = 1.498-6.348). Conclusion: This study supports the hypothesis that cell-free plasma EBV DNA is a marker of tumor burden in EBV-related NPC.« less
Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark
2011-07-01
In this study we investigated nitrite (NO₂⁻) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO(2max)) and critical swimming speed (U(crit)) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC₅₀ of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO(2max) and U(crit). The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO(2max) and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish. Copyright © 2011 Elsevier B.V. All rights reserved.
Zwetsloot, Kevin A; John, Casey S; Lawrence, Marcus M; Battista, Rebecca A; Shanely, R Andrew
2014-01-01
The purpose of this study was to determine: 1) the extent to which an acute session of high-intensity interval training (HIIT) increases systemic inflammatory cytokines and chemokines, and 2) whether 2 weeks of HIIT training alters the inflammatory response. Eight recreationally active males (aged 22±2 years) performed 2 weeks of HIIT on a cycle ergometer (six HIIT sessions at 8–12 intervals; 60-second intervals, 75-second active rest) at a power output equivalent to 100% of their predetermined peak oxygen uptake (VO2max). Serum samples were collected during the first and sixth HIIT sessions at rest and immediately, 15, 30, and 45 minutes post-exercise. An acute session of HIIT induced significant increases in interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α, and monocyte chemotactic protein-1 compared with rest. The concentrations of interferon-γ, granulocyte macrophage-colony-stimulating factor, and IL-1β were unaltered with an acute session of HIIT Two weeks of training did not alter the inflammatory response to an acute bout of HIIT exercise. Maximal power achieved during a VO2max test significantly increased 4.6%, despite no improvements in VO2max after 2 weeks of HIIT. These data suggest that HIIT exercise induces a small inflammatory response in young, recreationally active men; however, 2 weeks of HIIT does not alter this response. PMID:24520199
Hebisz, Rafał; Hebisz, Paulina; Zatoń, Marek; Michalik, Kamil
2017-04-01
In the literature, the exercise capacity of cyclists is typically assessed using incremental and endurance exercise tests. The aim of the present study was to confirm whether peak oxygen uptake (V̇O 2peak ) attained in a sprint interval testing protocol correlates with cycling performance, and whether it corresponds to maximal oxygen uptake (V̇O 2max ) determined by an incremental testing protocol. A sample of 28 trained mountain bike cyclists executed 3 performance tests: (i) incremental testing protocol (ITP) in which the participant cycled to volitional exhaustion, (ii) sprint interval testing protocol (SITP) composed of four 30 s maximal intensity cycling bouts interspersed with 90 s recovery periods, (iii) competition in a simulated mountain biking race. Oxygen uptake, pulmonary ventilation, work, and power output were measured during the ITP and SITP with postexercise blood lactate and hydrogen ion concentrations collected. Race times were recorded. No significant inter-individual differences were observed in regards to any of the ITP-associated variables. However, 9 individuals presented significantly increased oxygen uptake, pulmonary ventilation, and work output in the SITP compared with the remaining cyclists. In addition, in this group of 9 cyclists, oxygen uptake in SITP was significantly higher than in ITP. After the simulated race, this group of 9 cyclists achieved significantly better competition times (99.5 ± 5.2 min) than the other cyclists (110.5 ± 6.7 min). We conclude that mountain bike cyclists who demonstrate higher peak oxygen uptake in a sprint interval testing protocol than maximal oxygen uptake attained in an incremental testing protocol demonstrate superior competitive performance.
Effects of acute moderate hypoxia on anaerobic capacity in endurance-trained runners.
Friedmann, Birgit; Frese, Falko; Menold, Elmar; Bärtsch, Peter
2007-09-01
While there is some controversy whether anaerobic capacity might be improved after altitude training little is known about changes in anaerobic capacity during hypoxic exposure in highly trained athletes. In order to analyze the effects of acute moderate normobaric hypoxia on anaerobic capacity, 18 male competitive triathletes, middle- and long-distance runners VO2max 67.4 +/- 3.8 ml kg min(-1) performed 2 supra-VO2max treadmill runs with the same speed, one in normoxia and one after 4 h exposure to normobaric hypoxia (FiO(2) 0.15), for estimation of their maximal accumulated oxygen deficit (MAOD) and measurement of peak capillary lactate and peak capillary ammonia concentration. MAOD was not significantly different in normoxia and in moderate hypoxia while time to exhaustion and accumulated O(2) uptake were significantly (P < 0.001) reduced in hypoxia compared to normoxia by 28 and 45%, respectively. The reduction in time to exhaustion was significantly correlated to the decrement in accumulated O(2) uptake (R = 0.730, P = 0.001). In hypoxia, there was a tendency for peak capillary lactate concentration to be decreased compared to normoxia (12.9 +/- 2.1 vs. 13.8 +/- 2.2 mmol l(-1), P = 0.082); peak capillary ammonia concentration was significantly decreased in hypoxia (97 +/- 52 vs. 121 +/- 44 micromol l(-1), P = 0.032). In conclusion, anaerobic capacity is not significantly changed during acute exposure to moderate hypoxia in endurance-trained athletes. The performance reduction during all-out exercise of short duration has to be attributed to the decrement in aerobic capacity.
Mertens, Jeroen; Dobbeleir, André; Ham, Hamphrey; D'Asseler, Yves; Goethals, Ingeborg; Van de Wiele, Christophe
2012-09-01
The standardized added metabolic activity (SAM) is a new marker of total lesion glycolysis that avoids partial volume effect (PVE) and thresholding. SAM is calculated by drawing a volume of interest (VOI(1)) around the tumour and a larger VOI (VOI(2)) around VOI(1). Subtracting the background activity in VOI(2)-VOI(1) from VOI(1) yields SAM. If VOI(1) is set at a reasonable distance from the tumour, PVE are avoided. Phantom and initial clinical validation data are presented. Spheres of a Jaszczak phantom were filled with a 5.4, 3.64 and 2.0 times higher concentration relative to background activity and positron emission tomography (PET) data were acquired during 10 min. SAM of all spheres was expressed as a percentage of the expected value (the actual activity ratio minus 1). In 15 patients a 10-min list-mode acquisition PET study centred on their primary squamous cell carcinoma (PSCC) was performed and images of 1-10 min reconstructed. SAM1-9min values of PSCC were expressed as a percentage of SAM10min. Nineteen patients suffering from liver metastases treated with chemotherapy underwent PET/CT prior to (scan 1) and after 3-6 cycles of chemotherapy (scan 2). SAM and maximum standardized uptake values (SUV(max)) of the liver lesions on scan 1 (SAM1 and SUV(max)1) and the percentage reduction between both ΔSAM and ΔSUV(max) were related to Response Evaluation Criteria in Solid Tumors (RECIST) response. For the phantom acquisitions, the mean normalized SAM/sphere volume calculated was 94.9 % (SD 5.9 %) of the expected value. In the PSCC patients, the mean difference between SAM1min and SAM10min was only 4 % (SD 5 %). SUV(max)1min and SUV(max)10min proved to be not significantly different, but the variability was slightly larger than that of SAM (SD 6.4 %). SAM1 and ΔSAM values for responders versus non-responders were, respectively, 57 (SD 119) versus 297 (SD 625) for SAM1 (p = 0.2) and 99 % (SD 3 %) versus 32 % (SD 44 %) for ΔSAM (p = 0.001). SUV(max)1 and ΔSUV(max) values in responders versus non-responders were, respectively, 3.9 (SD 2.4) versus 6.3 (SD 3.1) for SUV(max)1 (p = 0.08) and 94 % (SD 17) versus 7 % (SD 40 %) for ΔSUV(max) (p = 0.0001). The AUC of ΔSAM and ΔSUV(max) were not significantly different on receiver-operating characteristic (ROC) analysis (AUC 1.0 and 0.99, respectively, p = 0.6). SAM is a promising parameter for tumour response assessment of liver metastases by means of (18)F-fluorodeoxyglucose PET.
Lactate-related factors as a critical determinant of endurance.
Tanaka, K
1990-04-01
Many interrelated physiological and/or morphological factors have been demonstrated to influence endurance exercise performance. Some of these factors include skeletal musculature, running economy, maximal oxygen uptake (VO2max), maximal steady state (MSS), onset of blood lactate accumulation (OBLA), onset of plasma lactate accumulation (OPLA), and anaerobic (or lactate) threshold (AT or LT). The present paper focuses mainly on VO2max, MSS, OBLA, OPLA and LT, all of which have been postulated as a prerequisite in endurance exercise success. This paper consists of: (1) significance of La-related variables, (2) longitudinal studies, (3) comments, and (4) conclusion. Briefly, it is suggested that estimation of endurance exercise potential could be obtained with relatively high precision using laboratoriously measured La-related variables. The most critical determinant of endurance exercise performance such as marathon time is considered running velocity (V) at which LT is detected (V / LT), VO2 / LT, or V / MSS, while V / OBLA appears to be the best predictor of performance in endurance events of 16 km or shorter distances.
Alkhawaldeh, Khaled; Biersack, Hans-J; Henke, Anna; Ezziddin, Samer
2011-06-01
The aim of this study was to assess the utility of dual-time-point F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) in differentiating benign from malignant pleural disease, in patients with non-small-cell lung cancer. A total of 61 patients with non-small-cell lung cancer and pleural effusion were included in this retrospective study. All patients had whole-body FDG PET/CT imaging at 60 ± 10 minutes post-FDG injection, whereas 31 patients had second-time delayed imaging repeated at 90 ± 10 minutes for the chest. Maximum standardized uptake values (SUV(max)) and the average percent change in SUV(max) (%SUV) between time point 1 and time point 2 were calculated. Malignancy was defined using the following criteria: (1) visual assessment using 3-points grading scale; (2) SUV(max) ≥2.4; (3) %SUV ≥ +9; and (4) SUV(max) ≥2.4 and/or %SUV ≥ +9. Analysis of variance test and receiver operating characteristic analysis were used in statistical analysis. P < 0.05 was considered significant. Follow-up revealed 29 patient with malignant pleural disease and 31 patients with benign pleural effusion. The average SUV(max) in malignant effusions was 6.5 ± 4 versus 2.2 ± 0.9 in benign effusions (P < 0.0001). The average %SUV in malignant effusions was +13 ± 10 versus -8 ± 11 in benign effusions (P < 0.0004). Sensitivity, specificity, and accuracy for the 5 criteria were as follows: (1) 86%, 72%, and 79%; (2) 93%, 72%, and 82%; (3) 67%, 94%, and 81%; (4) 100%, 94%, and 97%. Dual-time-point F-18 FDG PET can improve the diagnostic accuracy in differentiating benign from malignant pleural disease, with high sensitivity and good specificity.
Change in anthropometrics and aerobic fitness in Air Force cadets during 3 years of academy studies.
Aandstad, Anders; Hageberg, Rune; Saether, Øystein; Nilsen, Rune O
2012-01-01
Favorable anthropometrical status and aerobic fitness levels are emphasized in Norwegian Air Force personnel. However, it is unknown how these variables develop in Air Force cadets. Thus, the main aim of the present study was to examine how anthropometrics and maximal oxygen uptake (VO2(max)) change among Norwegian Air Force cadets during 3 yr of Academy studies. There were 30 male cadets included in the study. Bodyweight, body mass index (BMI), estimated percent body fat, and VO2(max) were measured at entry and at the end of the first year of Academy studies. After the first year, 14 cadets left the Academy, while the remaining cadets were retested at the end of the second and third years. RESULTS63: At entry, mean (95% CI) bodyweight, BMI, percent body fat, and VO2(max) were 78.4 (75.2, 81.6) kg, 24.3 (23.5, 25.1) kg x m(-2), 17.8 (16.3, 19.3)%, and 4.48 (4.25, 4.72) L x min(-1), respectively. Percent body fat decreased significantly by 1.1 (0.2, 2.0) percentage points at the end of the first year, while the other variables did not change during the first year. Between entry and end of third year there was no change in any of the main outcome variables. Anthropometrical status and VO2(max) did not change in Norwegian Air Force cadets between entry and the end of 3 yr of Air Force Academy studies. From the 1- and 3-yr follow-up analysis, the only significant change was a small reduction in estimated percent body fat from entry to the end of the first year.
Duka, Ada; Ahearn, Gregory A
2013-08-01
Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of (3)H-L-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. (3)H-L-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na(+)- and K(+)-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. (3)H-L-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, L-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM (3)H-L-leucine in both Na(+)- and K(+)-containing incubation media. The residual (3)H-L-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an L-methionine- and cation-independent transport system. (3)H-L-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [L-leucine], following the carrier-mediated Michaelis-Menten equation. In NaCl, (3)H-L-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. L-methionine or L-phenylalanine (7 and 20 mM) were competitive inhibitors of (3)H-L-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in (3)H-L-leucine influx K M, but no significant response in (3)H-L-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with (3)H-L-leucine, significantly (p < 0.01) increasing (3)H-L-leucine influx K M in the presence of sodium, but having negligible effect on (3)H-L-leucine influx J max in the same medium. These results suggest that shrimp BBMV transport (3)H-L-leucine by a single L-methionine- and L-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na(+) or K(+) acting as co-transport drivers binding to shared activator sites.
Effect of exercise intensity on post-exercise oxygen consumption and heart rate recovery.
Mann, Theresa N; Webster, Christopher; Lamberts, Robert P; Lambert, Michael I
2014-09-01
There is some evidence that measures of acute post-exercise recovery are sensitive to the homeostatic stress of the preceding exercise and these measurements warrant further investigation as possible markers of training load. The current study investigated which of four different measures of metabolic and autonomic recovery was most sensitive to changes in exercise intensity. Thirty-eight moderately trained runners completed 20-min bouts of treadmill exercise at 60, 70 and 80% of maximal oxygen uptake (VO2max) and four different recovery measurements were determined: the magnitude of excess post-exercise oxygen consumption (EPOCMAG), the time constant of the oxygen consumption recovery curve (EPOCτ), heart rate recovery within 1 min (HRR60s) and the time constant of the heart rate recovery curve (HRRτ) . Despite significant differences in exercise parameters at each exercise intensity, only EPOCMAG showed significantly slower recovery with each increase in exercise intensity at the group level and in the majority of individuals. EPOCτ was significantly slower at 70 and 80% of VO₂max vs. 60% VO₂max and HRRτ was only significantly slower when comparing the 80 vs. 60% VO₂max exercise bouts. In contrast, HRR60s reflected faster recovery at 70 and 80% of VO₂max than at 60% VO₂max. Of the four recovery measurements investigated, EPOCMAG was the most sensitive to changes in exercise intensity and shows potential to reflect changes in the homeostatic stress of exercise at the group and individual level. Determining EPOCMAG may help to interpret the homeostatic stress of laboratory-based research trials or training sessions.
Májer, Ferenc; Salomon, Johanna J; Sharma, Ruchika; Etzbach, Simona V; Najib, Mohd Nadzri Mohd; Keaveny, Ray; Long, Aideen; Wang, Jun; Ehrhardt, Carsten; Gilmer, John F
2012-03-01
Deoxycholic acid (DCA), a secondary bile acid (BA), and ursodeoxycholic acid (UDCA), a tertiary BA, cause opposing effects in vivo and in cell suspensions. Fluorescent analogues of DCA and UDCA could help investigate important questions about their cellular interactions and distribution. We have prepared a set of isomeric 3α- and 3β-amino analogues of UDCA and DCA and derivatised these with the discrete fluorophore, 4-nitrobenzo-2-oxa-1,3-diazol (NBD), forming the corresponding four fluorescent adducts. These absorb in the range 465-470 nm and fluoresce at approx. 535 nm. In order to determine the ability of the new fluorescent bile acids to mimic the parents, their uptake was studied using monolayers of Caco-2 cells, which are known to express multiple proteins of the organic anion-transporting peptide (OATP) subfamily of transporters. Cellular uptake was monitored over time at 4 and 37°C to distinguish between passive and active transport. All four BA analogues were taken up but in a strikingly stereo- and structure-specific manner, suggesting highly discriminatory interactions with transporter protein(s). The α-analogues of DCA and to a lesser extent UDCA were actively transported, whereas the β-analogues were not. The active transport process was saturable, with Michaelis-Menten constants for 3α-NBD DCA (5) being K(m)=42.27±12.98 μM and V(max)=2.8 ± 0.4 nmol/(mg protein*min) and for 3α-NBD UDCA (3) K(m)=28.20 ± 7.45 μM and V(max)=1.8 ± 0.2 nmol/(mg protein*min). These fluorescent bile acids are promising agents for investigating questions of bile acid biology and for detection of bile acids and related organic anion transport processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lin, Jun-Tao; Yang, Xue-Ning; Zhong, Wen-Zhao; Liao, Ri-Qiang; Dong, Song; Nie, Qiang; Weng, Si-Xian; Fang, Xiao-Jing; Zheng, Jun-Yi; Wu, Yi-Long
2016-11-01
The management of non-small cell lung cancer (NSCLC) relies on the tumour-node-metastasis (TNM) stage, and the treatment regimen differs based on the N status. Positron emission tomography-computed tomography (PET-CT) has emerged as a powerful imaging tool for the detection of various cancers with a relatively low false-negative rate. We explored predictors to identify false-negative N2 disease in PET-CT. A total of 284 consecutive cN0 patients with peripheral NSCLC who underwent PET-CT scans followed by curative intent resections were enrolled as a training set to identify predictors of occult N2 metastases by multivariable analysis. The accuracy and cut-off values for the predictors were calculated using a receiver operating characteristic curve. Clinical and pathological data were analysed retrospectively. An additional 151 patients were collected as a test set to validate the results, including the occult N2 rate and accuracy. In total, 8.5% (24/284) PET-CT-diagnosed N0 NSCLC cases had pathologically diagnosed N2 metastases. The SUV max of the primary tumour was a unique independent risk factor for occult N2 NSCLC [P = 0.003, 95% confidence interval = 0.81-0.96, odds ratio (OR) = 0.88]. Occult N2 metastases occurred more frequently in the subcarinal (16/24) and right lower paratracheal lymph nodes (12/24). Accordingly, we divided the patients into two groups by SUV max : the occult N2 rates in the SUV max of <2.6 and SUV max of ≥2.6 groups were 1.0% (1/100) and 12.5% (23/184), respectively (P = 0.001). In the test set, the occult N2 incidence rate was 9.3% (14/151), with the highest rates occurring in the subcarinal (9/14) and right lower paratracheal lymph nodes (6/14). In the two groups defined by SUV max , the occult N2 rates were 4% (2/50) and 11.9% (12/101), respectively. The SUV max of the primary tumour was an independent risk factor for occult N2 metastases in NSCLC patients diagnosed as clinical N0 by PET-CT. SUV max of ≥2.6 of the primary tumour may indicate the risk of N2 metastases, and invasive mediastinal staging techniques or comprehensive therapy should not be ignored in these patients. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
NASA Technical Reports Server (NTRS)
Tolley-Henry, L.; Raper, C. D. Jr; Granato, T. C.; Raper CD, J. r. (Principal Investigator)
1988-01-01
Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic cultures containing 0.5, 1.0 and 10.0 mol m-3 NO3- was measured daily during a 24-d period of vegetative development to determine if amplitude of maximum and minimum rates of net NO3- uptake are responsive to external concentrations of NO3-. Removal of NO3- from the replenished solutions during each 24-h period was determined by ion chromatography. Neither dry matter accumulation nor the periodicity of oscillations in net uptake rate was altered by the external NO3- concentrations. The maxima of the oscillations in net uptake rate, however, increased nearly 3-fold in response to external NO3- concentrations. The maxima and minima, respectively, changed from 4.0 and 0.6 mmol NO3- per gram root dry weight per day at an external solution level of 0.5 mol m-3 NO3- to 15.2 and -2.7 mmol NO3- per gram root dry weight per day at an external solution level of 10.0 mol m-3 NO3-. The negative values for minimum net uptake rate from 10.0 mol m-3 NO3- solutions show that net efflux was occurring and indicate that the magnitude of the efflux component of net uptake was responsive to external concentration of NO3-.
Muniz-Pumares, Daniel; Pedlar, Charles; Godfrey, Richard; Glaister, Mark
2017-01-01
The aim of this study was to investigate the relationship between oxygen uptake (V̇O2) and power output at intensities below and above the lactate threshold (LT) in cyclists; and to determine the reliability of supramaximal power outputs linearly projected from these relationships. Nine male cyclists (mean±standard deviation age: 41±8 years; mass: 77±6 kg, height: 1.79±0.05 m and V̇O2max: 54±7 mL∙kg-1∙min-1) completed two cycling trials each consisting of a step test (10×3 min stages at submaximal incremental intensities) followed by a maximal test to exhaustion. The lines of best fit for V̇O2 and power output were determined for: the entire step test; stages below and above the LT, and from rolling clusters of five consecutive stages. Lines were projected to determine a power output predicted to elicit 110% peak V̇O2. There were strong linear correlations (r≥0.953; P<0.01) between V̇O2 and power output using the three approaches; with the slope, intercept, and projected values of these lines unaffected (P≥0.05) by intensity. The coefficient of variation of the predicted power output at 110% V̇O2max was 6.7% when using all ten submaximal stages. Cyclists exhibit a linear V̇O2 and power output relationship when determined using 3 min stages, which allows for prediction of a supramaximal intensity with acceptable reliability.
Vargas, Hebert Alberto; Kramer, Gem M; Scott, Andrew M; Weickhardt, Andrew; Meier, Andreas A; Parada, Nicole; Beattie, Bradley J; Humm, John L; Staton, Kevin D; Zanzonico, Pat B; Lyashchenko, Serge K; Lewis, Jason S; Yaqub, Maqsood; Sosa, Ramon E; van den Eertwegh, Alfons J; Davis, Ian D; Ackermann, Uwe; Pathmaraj, Kunthi; Schuit, Robert C; Windhorst, Albert D; Chua, Sue; Weber, Wolfgang A; Larson, Steven M; Scher, Howard I; Lammertsma, Adriaan A; Hoekstra, Otto; Morris, Michael J
2018-04-06
18 F-fluorodihydrotestosterone ( 18 F-FDHT) is a radiolabeled analogue of the androgen receptor's primary ligand that is currently being credentialed as a biomarker for prognosis, response, and pharmacodynamic effects of new therapeutics. As part of the biomarker qualification process, we prospectively assessed its reproducibility and repeatability in men with metastatic castration-resistant prostate cancer (mCRPC). Methods: We conducted a prospective multi-institutional study of mCRPC patients undergoing two (test/re-test) 18 F-FDHT PET/CT scans on two consecutive days. Two independent readers evaluated all examinations and recorded standardized uptake values (SUVs), androgen receptor-positive tumor volumes (ARTV), and total lesion uptake (TLU) for the most avid lesion detected in each of 32 pre-defined anatomical regions. The relative absolute difference and reproducibility coefficient (RC) of each metric were calculated between the test and re-test scans. Linear regression analyses, intra-class correlation coefficients (ICC), and Bland-Altman plots were used to evaluate repeatability of 18 F-FDHT metrics. The coefficient of variation (COV) and ICC were used to assess inter-observer reproducibility. Results: Twenty-seven patients with 140 18 F-FDHT-avid regions were included. The best repeatability among 18 F-FDHT uptake metrics was found for SUV metrics (SUV max , SUVmean, and SUVpeak), with no significant differences in repeatability found among them. Correlations between the test and re-test scans were strong for all SUV metrics (R2 ≥ 0.92; ICC ≥ 0.97). The RCs of the SUV metrics ranged from 21.3% for SUVpeak to 24.6% for SUV max The test and re-test ARTV and TLU, respectively, were highly correlated (R2 and ICC ≥ 0.97), although variability was significantly higher than that for SUV (RCs > 46.4%). The PSA levels, Gleason score, weight, and age did not affect repeatability, nor did total injected activity, uptake measurement time, or differences in uptake time between the two scans. Including the single most avid lesion per patient, the five most avid lesions per patient, only lesions ≥ 4.2 mL, only lesions with an SUV ≥ 4 g/mL, or normalizing of SUV to area under the parent plasma activity concentration-time curve did not significantly affect repeatability. All metrics showed high inter-observer reproducibility (ICC > 0.98; COV < 0.2-10.8%). Conclusion: 18 F-FDHT is a highly reproducible means of imaging mCRPC. Amongst 18 F-FDHT uptake metrics, SUV had the highest repeatability among the measures assessed. These performance characteristics lend themselves to further biomarker development and clinical qualification of the tracer. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Endothelial function in highly endurance-trained and sedentary, healthy young women.
Moe, Ingvild T; Hoven, Heidi; Hetland, Eva V; Rognmo, Oivind; Slørdahl, Stig A
2005-05-01
Endothelial function is reduced by age, chronic heart failure, coronary artery disease, hypertension or type 2 diabetes, and it is shown that aerobic exercise may reverse this trend. The effect of a high aerobic training status on endothelial function in young, healthy subjects is however less clear. The present study was designed to determine whether endothelial function is improved in highly endurance-trained young women compared to sedentary, healthy controls. Brachial artery diameter was measured in 16 endurance-trained (age: 23.7 +/- 2.5 years, maximal oxygen uptake (VO2max): 60.6 +/- 4.5 ml/kg per min) and 14 sedentary females (age: 23.7 +/- 2.1 years, VO2max: 40.5 +/- 5.6 ml/kg per min) at rest, during flow-mediated dilation (FMD) and after sublingual glycerol trinitrate administration, using high-resolution ultrasound. FMD did not differ between the endurance-trained and the sedentary females (14.8% vs 16.4%, p = NS), despite a substantial difference in VO2max of 50% (p < 0.001). The endurance-trained group possessed however, a 9% larger resting brachial artery diameter when adjusted for body surface area. The results of the present study suggest that endothelial function is well preserved in young, healthy women, and that a high aerobic training status due to long term aerobic training does not improve the dilating capacity any further.
Physical fitness level affects perception of chronic stress in military trainees.
Tuch, Carolin; Teubel, Thomas; La Marca, Roberto; Roos, Lilian; Annen, Hubert; Wyss, Thomas
2017-12-01
This study investigated whether physical fitness affects the perception of chronic stress in military trainees while controlling for established factors influencing stress perception. The sample consisted of 273 men (20.23 ± 1.12 years, 73.56 ± 10.52 kg, 1.78 ± 0.06 m). Physical fitness was measured by progressive endurance run (maximum oxygen uptake; VO 2 max), standing long jump, seated shot put, trunk muscle strength, and one leg standing test. Perceived stress was measured using the Perceived Stress Questionnaire in Weeks 1 and 11 of basic military training (BMT). VO 2 max and four influencing variables (perceived stress in Week 1, neuroticism, transformational leadership style, and education level) explained 44.44% of the variance of the increase in perceived stress during 10 weeks of BMT (R 2 = 0.444, F = 23.334, p < .001). The explained variance of VO 2 max was 4.14% (R 2 = 0.041), with a Cohen's f 2 effect size of 0.045 (assigned as a small effect by Cohen, ). The results indicate a moderating influence of good aerobic fitness on the varied level of perceived stress. We conclude that it is advisable to provide conscripts with a specific endurance training program prior to BMT for stress prevention reasons. Copyright © 2016 John Wiley & Sons, Ltd.
Lacour, Jean-René; Messonnier, Laurent; Bourdin, Muriel
2007-09-01
To assess whether the ability to demonstrate a plateau in oxygen consumption VO2 could be related to adaptation to exercise, the data obtained over a period of 10 years on 94 elite oarsmen who had participated in annual testing were re-evaluated. The test consisted in an incremental step protocol until volitional exhaustion. VO2, heart rate (HR), blood lactate ([La]b) and respiratory exchange ratio (RER) were measured at each step. The maximal oxygen consumption (VO2max), the power corresponding to VO2maxPamax and the maximal power achieved (Ppeak) were recorded. Thirty-eight oarsmen achieved a VO2 plateau and were designated as Pla; 56 did not and were designed as N-Pla. The Pla and N-Pla VO2max, Pamax and maximal HR values were similar. In comparison with N-Pla, the Pla group displayed a rightward shift of the [La]b versus power curve, accounted for by both the increased percentage of VO2max corresponding to 4 mmol l(-1) and the decreased value of [La]b corresponding to Pamax (P<0.05). Pla oarsmen attained a higher Ppeak expressed as % of Pamax (P<0.05) and also showed better ergometer performance (P<0.05). In a sub-group of 53 oarsmen constituted on the basis of Pamax values close to 400 W, for a given power output, the Pla subjects had significantly lower HR, RER, and [La]b values at each sub-maximal stage of the test. These results suggest that achieving a [Formula: see text] plateau during completion of an incremental step protocol accounts for greater muscle ability to maintain homeostasis during exercise. These differences give the oarsmen an advantage in rowing competitions.
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2008-03-01
Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.
Wu, Jiang; Zhu, Hong; Li, Kai; Wang, Xin-Gang; Gui, Yi; Lu, Guang-Ming
2014-10-01
The role of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) in numerous malignant tumors, including gastric lymphoma, is well-established. However, there have been few studies with regard to the 18 F-FDG PET/CT features of gastric lymphoma. The aim of the present study was to characterize the 18 F-FDG PET/CT features of gastric lymphoma, which were compared with those of gastric cancer. Prior to treatment, 18 F-FDG PET/CT was performed on 24 patients with gastric lymphoma and 43 patients with gastric cancer. The 18 F-FDG PET/CT pattern of gastric wall lesions was classified as one of three types: Type I, diffuse thickening of the gastric wall with increased FDG uptake infiltrating more than one-third of the total stomach; type II, segmental thickening of the gastric wall with elevated FDG uptake involving less than one-third of the total stomach; and type III, local thickening of the gastric wall with focal FDG uptake. The incidence of the involvement of more than one region of the stomach was higher in the patients with gastric lymphoma than in those with gastric cancer. Gastric FDG uptake was demonstrated in 23 of the 24 patients (95.8%) with gastric lymphoma and in 40 of the 43 patients (93.0%) with gastric cancer. Gastric lymphoma predominantly presented with type I and II lesions, whereas gastric cancer mainly presented with type II and III lesions. The maximal thickness was larger and the maximal standard uptake value (SUV max ) was higher in the patients with gastric lymphoma compared with those with gastric cancer. A positive correlation between the maximal thickness and SUV max was confirmed for the gastric cancer lesions, but not for the gastric lymphoma lesions. There was no difference in the maximal thickness and SUV max of the gastric wall lesions between the patients without and with extragastric involvement, for gastric lymphoma and gastric cancer. Overall, certain differences exist in the findings between gastric lymphoma and gastric cancer patients on 18 F-FDG PET/CT images, which may contribute to the identification of gastric lymphoma.
Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang
2015-06-01
This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.
Damasceno, M V; Pasqua, L A; Lima-Silva, A E; Bertuzzi, R
2015-11-01
This study aimed to verify the association between the contribution of energy systems during an incremental exercise test (IET), pacing, and performance during a 10-km running time trial. Thirteen male recreational runners completed an incremental exercise test on a treadmill to determine the respiratory compensation point (RCP), maximal oxygen uptake (V˙O2max), peak treadmill speed (PTS), and energy systems contribution; and a 10-km running time trial (T10-km) to determine endurance performance. The fractions of the aerobic (WAER) and glycolytic (WGLYCOL) contributions were calculated for each stage based on the oxygen uptake and the oxygen energy equivalents derived by blood lactate accumulation, respectively. Total metabolic demand (WTOTAL) was the sum of these two energy systems. Endurance performance during the T10-km was moderately correlated with RCP, V˙O2max and PTS (P<@0.05), and moderate-to-highly correlated with WAER, WGLYCOL, and WTOTAL (P<0.05). In addition, WAER, WGLYCOL, and WTOTAL were also significantly correlated with running speed in the middle (P<0.01) and final (P<0.01) sections of the T10-km. These findings suggest that the assessment of energy contribution during IET is potentially useful as an alternative variable in the evaluation of endurance runners, especially because of its relationship with specific parts of a long-distance race.
Variation in heart rate and blood lactate concentration in freestyle kytesurfing.
Camps, A; Vercruyssen, F; Brisswalter, J
2011-06-01
The aim of this paper was to evaluate the physiological demands of freestyle kitesurfing. Ten elite subjects performed an incremental running test on a treadmill and a three 7 min simulated freestyle heats of kitesurfing in MW (Midwind) condition ranging from 15 to 22 knots. Oxygen uptake (VO(2)) was estimated from the heart rate (HR) recorded during the freestyle trial using the individual HR-VO(2) relationship determined during the incremental test. Blood lactate concentration [Lab] was measured at rest and 3 min after the exercise completion. 3 experienced kitesurfers acted as judges to better simulate competition conditions. Linear relationship was demonstrated between scores and % HR(max) on water (r=-0.764, P<0.05), HR(max) on water (r=-0.684, P<0.05) estimated VO(2) on water (r=-0.724, P<0.05), HR on water (r=0.709, P<0.05), % VO(2) on water (r=0.740, P<0.05), final [Lab] (r=-0.884, P<0.05), anaerobic threshold (AT) (r=0.836, P<0.05), HR in AT (r=0.748, P<0.05) and ranking (r=-0,924, P<0.05), mean HR and estimated VO(2) values represented, respectively 85.4±3.0% of maximal heart rate and 80.0±4.5% of maximal oxygen uptake. Mid values for [Lab] were observed at the end of crossing trial (5.2±0.8 mmol L(-1)). This first analysis of freestyle kitesurfing suggests that the energy demand is sustained by both aerobic and anaerobic metabolism during a MW condition and freestyle event of kitesurfing.
Physiological correlates of 2-mile run performance as determined using a novel on-demand treadmill.
Tolfrey, Keith; Hansen, Simon A; Dutton, Katie; McKee, Tom; Jones, Andrew M
2009-08-01
The purpose of this study was to assess the reproducibility of an on-demand motorised treadmill to measure 2-mile (3.2 km) race performance and to examine the physiological variables that best predict this free-running performance in active men. Twelve men (mean (SD): age, 28 (9) years; stature, 1.79 (0.05) m; body mass, 72 (9) kg) completed the study in which maximum oxygen uptake (VO2 max), running economy, and running speedin the abstract section. They appear in the rest of the paper.), running economy, and running speed at VO2 max (vVO2 max), lactate threshold (vLT), and 4 mmol.L-1 fixed blood lactate concentration (v4) were measured. Subsequently, the maximal lactate steady state (MLSS) was identified using a series of 30-min treadmill runs. Finally, each participant completed a 2-mile running performance trial on 2 separate occasions, using an on-demand treadmill that adjusts belt speed according to the participant's position on the moving belt. The average 2-mile run speed was 15.7 (SD, 1.9) km.h-1, with small individual differences between repeat-performance trials (intraclass correlation coefficient = 0.99, 95% CI 0.953 to 0.996; standard error of measurement as coefficient of variation = 1.5%, 95% CI 1.0% to 2.5%). Bivariate regression analyses identified VO2 max, vVO2 max, VO2 (mL.kg-1.min-1) at MLSS, vLT, v4, and velocity at MLSS (vMLSS) as the strongest individual predictor variables (r2 = 0.69 to 0.87; standard error of the estimate = 1.08 to 0.72 km.h-1) for 2-mile running performance. The vLT and vMLSS explained 85% and 87% of the variance in running performance, respectively, suggesting that there is considerable shared variance between these parameters. In conclusion, the on-demand treadmill system provided a reliable measure of distance running performance. Both vLT and vMLSS were strong predictors of 2-mile running performance, with vMLSS explaining marginally more of the variance.
Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E
1986-01-01
The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available. PMID:3722128
Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E
1986-07-01
The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available.
Age predicts cardiovascular, but not thermoregulatory, responses to humid heat stress.
Havenith, G; Inoue, Y; Luttikholt, V; Kenney, W L
1995-01-01
Cross-section comparisons of the effect of age on physiological responses to heat stress have yielded conflicting results, in part because of the inability to separate chronological age from factors which change in concert with the biological aging process. The present study was designed to examine the relative influence of age on cardiovascular and thermoregulatory responses to low intensity cycle exercise (60 W for 1 h) in a warm humid environment (35 degrees C, 80% relative humidity). Specifically, the relative importance of age compared to other individual characteristics [maximal oxygen uptake (VO2max), physical activity level, anthropometry, and adiposity] was determined by multiple regression analysis in a heterogeneous sample of 56 subjects in which age (20-73 years) and VO2max (1.86-4.44 l.min-1) were not interrelated. Dependent variables (with ranges) included final values of thermoregulatory responses [rectal temperature (Tre, 37.8-39.2 degrees C), calculated heat storage (S, 3.4-8.1 J.g-1), sweat loss (238-847 g.m-2)] and cardiovascular responses [heart rate (HR, 94-176 beats.min-1), forearm blood flow (FBF, 5.3-31.3 ml.100 ml-1.min-1), mean arterial blood pressure (MAP, 68-122 mmHg), and forearm vascular conductance (FVC = FBF.MAP-1, 0.06-0.44 ml.100 ml-1.min-1.mmHg-1). Age had no significant influence on Tre, S, or sweat loss, all of which were closely related to VO2max. On the other hand, HR, MAP, FBF, and FVC were related to both age and VO2max. Anthropometric variables and adiposity had secondary, but statistically significant, effects on MAP, FBF, FVC, and sweat loss.(ABSTRACT TRUNCATED AT 250 WORDS)
Adverse effect of outdoor air pollution on cardiorespiratory fitness in Chinese children
NASA Astrophysics Data System (ADS)
Gao, Yang; Chan, Emily Y. Y.; Zhu, Yingjia; Wong, Tze Wai
2013-01-01
Little is known about the health impact of air pollution on children's cardiovascular health. A cross-sectional study was conducted and data was analysed in 2048 Chinese schoolchildren (aged 8-10 years) in three districts of Hong Kong to examine the association between exposure to outdoor air pollution and cardiorespiratory fitness. Annual means of ambient PM10, SO2, NO2 and O3 from 1996 to 2003 were used to estimate individual exposure of the subjects. Cardiorespiratory fitness was measured for maximal oxygen uptake (VO2max), predicted by the multistage fitness test (MFT). Height and weight were measured and other potential confounders were collected with questionnaires. Analysis of covariance was performed to estimate the impact of air pollution on complete speed in the MFT and predicted VO2max. The results showed that children in high-pollution district had significantly lower complete speed and predicted VO2max compared to those in low- and moderate-pollution districts. Complete speed and predicted VO2max was estimated to reduce 0.327 km h-1 and 1.53 ml kg-1 min-1 per 10 μg m-3 increase in PM10 annual mean respectively, with those in girls being greater than in boys. Being physically active could not significantly result in improved cardiorespiratory fitness in polluted districts. The adverse effect seems to be independent of short-term exposure to air pollution. We concluded that long-term exposure to higher outdoor air pollution levels was negatively associated with cardiorespiratory fitness in Chinese schoolchildren, especially for girls. PM10 is the most relevant pollutant of the adverse effect. Elevated cardiorespiratory fitness observed in physically activate children could be negated by increased amount of inhaled pollutants during exercise.
Vivar, Juan C.; Sarzynski, Mark A.; Sung, Yun Ju; Timmons, James A.; Bouchard, Claude; Rankinen, Tuomo
2013-01-01
We previously reported the findings from a genome-wide association study of the response of maximal oxygen uptake (V̇o2max) to an exercise program. Here we follow up on these results to generate hypotheses on genes, pathways, and systems involved in the ability to respond to exercise training. A systems biology approach can help us better establish a comprehensive physiological description of what underlies V̇o2maxtrainability. The primary material for this exploration was the individual single-nucleotide polymorphism (SNP), SNP-gene mapping, and statistical significance levels. We aimed to generate novel hypotheses through analyses that go beyond statistical association of single-locus markers. This was accomplished through three complementary approaches: 1) building de novo evidence of gene candidacy through informatics-driven literature mining; 2) aggregating evidence from statistical associations to link variant enrichment in biological pathways to V̇o2max trainability; and 3) predicting possible consequences of variants residing in the pathways of interest. We started with candidate gene prioritization followed by pathway analysis focused on overrepresentation analysis and gene set enrichment analysis. Subsequently, leads were followed using in silico analysis of predicted SNP functions. Pathways related to cellular energetics (pantothenate and CoA biosynthesis; PPAR signaling) and immune functions (complement and coagulation cascades) had the highest levels of SNP burden. In particular, long-chain fatty acid transport and fatty acid oxidation genes and sequence variants were found to influence differences in V̇o2max trainability. Together, these methods allow for the hypothesis-driven ranking and prioritization of genes and pathways for future experimental testing and validation. PMID:23990238
Physiological responses during continuous work in hot dry and hot humid environments in Indians
NASA Astrophysics Data System (ADS)
Sen Gupta, J.; Swamy, Y. V.; Pichan, G.; Dimri, G. P.
1984-06-01
Studies have been conducted on six young healthy heat acclimatised Indians to determine the physiological changes in prolonged continuous work in thermally neutral and in hot dry and hot humid environments. Physiological responses in maximal efforts i.e. Vo2 max, VE max and Cf max were noted. In addition, duration in continuous work at three sub-maximal rate of work in three simulated environments were also noted. Physiological responses like Vo2, VE and Cf were noted every 15 minutes of work. Besides these responses, rectal temperature (Tre), mean skin temperature (Ts) and mean sweat rate were also recorded during continuous work. Results indicated a significant decrease in maximum oxygen uptake capacity (Vo2 max) in heat with no change in maximum exercise ventilation (VE max) and maximum cardiac frequency. However, the fall in Vo2 max was more severe in the hot humid environment than in the hot dry climate. Cardiac frequency at fixed oxygen consumption of 1.0, 1.5 and 2.0 l/min was distinctly higher in the hot humid environment than in the hot dry and comfortable temperature. The duration in continuous physical effort in various grades of activities decreased in hot dry environment from that in the-comfortable climate and further decreased significantly in hot humid environment. The highest rate of sweating was observed during work in humid heat. The mean skin temperature (Ts) showed a fall in all the three rates of work in comfortable and hot dry conditions whereas in hot humid environment it showed a linear rise during the progress of work. The rectal temperature on the other hand maintained a near steady state while working at 65 and 82 watts in comfortable and hot dry environments but kept on rising during work in hot humid environment. At the highest work rate of 98 watts, the rectal temperature showed a steady increase even in the hot dry condition. It was thus concluded from the study that a hot humid climate imposes more constraints on the thermoregulatory system during work than in the hot dry condition because of less effective heat dissipation so resulting in reduced tolerance to work.
A Healthy Brain in a Healthy Body: Brain Network Correlates of Physical and Mental Fitness
Douw, Linda; Nieboer, Dagmar; van Dijk, Bob W.; Stam, Cornelis J.; Twisk, Jos W. R.
2014-01-01
A healthy lifestyle is an important focus in today's society. The physical benefits of regular exercise are abundantly clear, but physical fitness is also associated with better cognitive performance. How these two factors together relate to characteristics of the brain is still incompletely understood. By applying mathematical concepts from ‘network theory’, insights in the organization and dynamics of brain functioning can be obtained. We test the hypothesis that neural network organization mediates the association between cardio respiratory fitness (i.e. VO2 max) and cognitive functioning. A healthy cohort was studied (n = 219, 113 women, age range 41–44 years). Subjects underwent resting-state eyes-closed magneto-encephalography (MEG). Five artifact-free epochs were analyzed and averaged in six frequency bands (delta-gamma). The phase lag index (PLI) was used as a measure of functional connectivity between all sensors. Modularity analysis was performed, and both within and between-module connectivity of each sensor was calculated. Subjects underwent a maximum oxygen uptake (VO2 max) measurement as an indicator of cardio respiratory fitness. All subjects were tested with a commonly used Dutch intelligence test. Intelligence quotient (IQ) was related to VO2 max. In addition, VO2 max was negatively associated with upper alpha and beta band modularity. Particularly increased intermodular connectivity in the beta band was associated with higher VO2 max and IQ, further indicating a benefit of more global network integration as opposed to local connections. Within-module connectivity showed a spatially varied pattern of correlation, while average connectivity did not show significant results. Mediation analysis was not significant. The occurrence of less modularity in the resting-state is associated with better cardio respiratory fitness, while having increased intermodular connectivity, as opposed to within-module connections, is related to better physical and mental fitness. PMID:24498438
Moberg, Lene Lehmann; Lunde, Lars-Kristian; Koch, Markus; Tveter, Anne Therese; Veiersted, Kaj Bo
2017-03-21
Construction and health care workers have a high prevalence of musculoskeletal disorders, and they are assumed to have physically demanding jobs. Profession- and gender-specific associations between individual capacity and musculoskeletal pain have not been sufficiently investigated. The main aim of this study was to examine the association between individual capacity (maximal oxygen uptake (V̇O 2max ) and handgrip strength) and musculoskeletal pain among construction and health care workers. This cross-sectional study examined 137 construction and health care workers (58 women and 79 men) with a mean age of 41.8 years (standard deviation 12). Aerobic capacity was indirectly assessed by the Åstrand cycle test, and strength was assessed by a handgrip test. Musculoskeletal pain was described by total pain, divided into neck, shoulder, and low back pain, during the last 12 months, and it was dichotomized in below or above 30 days. Logistic regression was used to analyse the associations between V̇O 2max , strength, and musculoskeletal pain in the total study sample and separately for construction and health care workers. Analyses were adjusted for age, gender, body mass index (BMI), and selected mechanical and psychosocial factors. Every second participant (51.8%) reported pain in either neck, shoulders or low back for more than 30 days during the last 12 months. Among the health care workers, a small but significant association was found between a high V̇O 2max , high handgrip strength, and a low level of musculoskeletal pain. No association was found for the construction workers. An association between V̇O 2max, handgrip strength, and musculoskeletal pain was found for health care workers but not for construction workers. These results indicate that activities promoting individual capacity may reduce musculoskeletal pain for health care workers.
Biometrical characteristics and physiological responses to a local cold exposure of the extremities.
Savourey, G; Sendowski, I; Bittel, J
1996-01-01
The aim of this study was firstly to describe the physiological responses observed in 19 subjects during immersion of the arm up to the elbow in water at 5 degrees C (5 min) followed by a 10-min recovery and secondly, to correlate the observed physiological responses with biometrical characteristics of the subjects (maximal oxygen uptake, VO2max, percentage fat content of whole body, BF, and arm, forearm and hand skinfold thickness). The results showed that the time courses of changes in forearm and hand skin temperature were different compared to those of finger skin temperatures both during local cooling and during rewarming (P < 0.05). Cardiovascular responses (heart rate, systolic and diastolic blood pressures) and finger skin temperatures were not related to the biometrical characteristics of the subjects. However, at the end of the immersion, decreased hand skin temperature was correlated to VO2max (r = 0.45, P < or = 0.05) whereas decreased forearm skin temperature was correlated both to VO2max (r = 0.44, P < or = 0.05) and to skinfold thickness (r = -0.44, P < or = 0.05) but not to BF. During the beginning of the recovery period only, outside, inside forearm and hand skin temperatures were related to VO2max (r = 0.54, P < or = 0.05; r = 0.66, P < or = 0.01 and r = 0.45, P < or = 0.05, respectively) and all the skinfold thicknesses (r = -0.47 to -0.71, P < or = 0.05). It was concluded that the local skin temperature profiles differed according to the upper limb segment both during cooling and during early rewarming. Moreover, VO2max and upper limb skinfold thickness but not BF did influence the forearm and hand skin temperature changes during cooling and early rewarming but not the finger skin temperature changes and cardiovascular responses.
Dang, T. C.; Fujii, M.; Rose, A. L.; Bligh, M.
2012-01-01
A continuous culturing system (chemostat) made of metal-free materials was successfully developed and used to maintain Fe-limited cultures of Microcystis aeruginosa PCC7806 at nanomolar iron (Fe) concentrations (20 to 50 nM total Fe). EDTA was used to maintain Fe in solution, with bioavailable Fe controlled by absorption of light by the ferric EDTA complex and resultant reduction of Fe(III) to Fe(II). A kinetic model describing Fe transformations and biological uptake was applied to determine the biologically available form of Fe (i.e., unchelated ferrous iron) that is produced by photoreductive dissociation of the ferric EDTA complex. Prediction by chemostat theory modified to account for the light-mediated formation of bioavailable Fe rather than total Fe was in good agreement with growth characteristics of M. aeruginosa under Fe limitation. The cellular Fe quota increased with increasing dilution rates in a manner consistent with the Droop theory. Short-term Fe uptake assays using cells maintained at steady state indicated that M. aeruginosa cells vary their maximum Fe uptake rate (ρmax) depending on the degree of Fe stress. The rate of Fe uptake was lower for cells grown under conditions of lower Fe availability (i.e., lower dilution rate), suggesting that cells in the continuous cultures adjusted to Fe limitation by decreasing ρmax while maintaining a constant affinity for Fe. PMID:22210212
Bethea, Terrence C; Berry, Diane; Maloney, Ann E; Sikich, Linmarie
2012-02-01
The aim of our feasibility study was to examine the acceptability and utility of "Dance Dance Revolution" (DDR) (Konami of America, Redwood City, CA)) to increase physical fitness in 8-11-year-old black and Hispanic youth. Twenty-eight 4(th) and 5(th) grade children attending an afterschool program participated. Outcomes included physical activity, physical fitness, use of home DDR, survey of safety and acceptability, anthropometrics, and fasting metabolic profile measured at baseline, 12 weeks, and 30 weeks. At 12 weeks, physical fitness (maximum O2 uptake [VO2max]) increased by 4.9±9.9 percent and was sustained through 30 weeks, when the VO2max was 105.0±9.9 percent (range, 93.0-133.9 percent) of baseline values. Absolute VO2max increased by 2.97±4.99 mL/kg/minute (95% confidence interval 0.75-5.19, P=0.013). Participants maintained an average of 1.12 hours/day of increased movement to music. Trends suggested increased total moderate-vigorous physical activity, decreased light activity, and a modest increase in sedentary screen time. There were no significant changes in body mass index, fasting lipids, or glucose. Participants and parents approved of the activity. DDR appears feasible and acceptable to minority youth. DDR may increase moderate-vigorous physical activity and improve physical fitness in at-risk populations.
Transfer cell wall ingrowths and vein loading characteristics in pea leaf discs. [Pisum sativum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wimmers, L.E.; Turgeon, R.
1987-04-01
Transfer cell wall ingrowths are thought to increase transport capacity by increasing plasmalemma surface area. Leaf minor vein phloem transfer cells presumably enhance phloem loading. In Pisum sativum cv. Little marvel grown under different light regimes (150 to 1000 ..mu..mol photons m/sup -2/ sec/sup -1/) there is a positive correlation between light intensity and wall ingrowth area in phloem transfer cells. The extent of ingrowth and correlation to light intensity is greatest in minor veins, decreasing as vein size increases. Vein loading was assayed by floating abraded leaf discs on /sup 14/C-sucrose (10 mM). There is a positive correlation betweenmore » uptake and transfer cell wall area, although the latter increased more than the former. The difference in uptake is stable throughout the photoperiod, and is also stable in mature leaves for at least four days after plants are transfered to a different light intensity. Sucrose uptake is biphasic. The saturable component of uptake is sensitive to light intensity, the Km for sucrose is negatively correlated to light intensity, while V/sub max/remains unchanged.« less
Characteristics of the uridine uptake system in normal and polyoma transformed hamster embryo cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemkin, J.A.
1973-01-01
The lability of the uridine uptake system in the normal and polyoma transformed hamster embryo fibroblast was studied. The major areas investigated were: the kinetic parameters of uridine transport, a comparison of changes in cellular ATP content by factors which modulate uridine uptake, and a comparison of the qualitative and quantitative effects of the same modulating agent on uridine transport, cell growth, and cellular ATP content. Uridine uptake into cells in vitro was examined using tritiated uridine as a tracer to measure the amount of uridine incorporated into the acid soluble and acid-insoluble fractions of the cells studied. The ATPmore » content of the cells was determined by the firefly bioluminescence method. It was found that the K/sub t/ for uridine uptake into the normal hamster embryo cell and two polyoma transformed hamster embryo cell lines was identical. However, the V/sub max/ for uridine transport was higher in both polyoma transformed cell lines. Furthermore, the K/sub t/ in both the normal and transformed cell cultured in serum-less or serum-containing media was identical, although the V/sub max/ was higher in the serum-stimulated cell in both the normal and transformed cell. Stimulation of the normal cell with adenosine produced a different K/sub t/ for uridine transport. Preliminary investigations have demonstrated that treatment of the polyoma transformed with adenosine also induces a different K/sub t/ (not shown). The K/sub i/ for phloretin inhibition in serum-less and serum-stimulated normal and polyoma transformed cells was found to be identical in each case.« less
Modification of Fox protocol for prediction of maximum oxygen uptake in male university students.
Bandyopadhyay, Amit; Pal, Sangita
2015-01-01
Direct estimation of VO₂max involves labourious, exhaustive, hazardous, time consuming and expensive experimental protocols. Hence, application of various indirect protocols for prediction of VO₂max has become popular, subject to proper population-specific standardisation of the indirect protocol. Application of Fox (1973) protocol in male sedentary university students of Kolkata, India led to premature fatigue in their leg muscles that hindered the muscular activity leading to inability in completing the exercise. The present study was aimed at modifying and validating the Fox (1973) protocol with a convenient workload of 110 W (i.e., modified Fox test or MFT) in the said population. Ninety (90) sedentary male students were recruited by simple random sampling from the University of Calcutta, India and they were randomly assigned into study group (n=60) and confirmatory group (n=30). VO₂max was directly estimated by Scholander micro-gas analysis after incremental bicycle exercise. Predicted VO₂max (PVO₂max) was computed from MFT by using the submaximal heart rate (HR(sub). In the Study Group VO₂max (2216.63 ± 316.77 mL.min⁻¹ was significantly different (P< 0.001) from PVO₂max (3131.73 ± 234.32 mL.min⁻¹ measured by using the equation of Fox (1973). Simple and multiple regression equations have been computed for prediction of VO₂max from HR(sub) and physical parameters. Application of these norms in the confirmatory group depicted insignificant difference between VO₂max and PVO₂max with substantially small limits of agreement and lower values of SEE. The modified regression norms are therefore recommended for use in MFT for accurate assessment of VO₂max in the studied population.
A Device and Methodology for Measuring Repetitive Lifting VO2max (Oxygen Consumption Rate)
1987-08-01
variety of lifting and lowering tasks There have been no dcvice related injuries and little down time due to mechanical failure du ng more than 560 1hours...uptake procedure and is suitable to be used for a wide variety of lifting and lowering tasks. There have been no device related injuries and little...worker productivity and decreased injury rates. What has not been -examined in industrial research is high intensity, maximal effort repetitive lifting
Biophysical Determinants of Front-Crawl Swimming at Moderate and Severe Intensities.
Ribeiro, João; Toubekis, Argyris G; Figueiredo, Pedro; de Jesus, Kelly; Toussaint, Huub M; Alves, Francisco; Vilas-Boas, João P; Fernandes, Ricardo J
2017-02-01
To conduct a biophysical analysis of the factors associated with front-crawl performance at moderate and severe swimming intensities, represented by anaerobic-threshold (vAnT) and maximal-oxygen-uptake (vV̇O 2 max) velocities. Ten high-level swimmers performed 2 intermittent incremental tests of 7 × 200 and 12 × 25 m (through a system of underwater push-off pads) to assess vAnT, and vV̇O 2 max, and power output. The 1st protocol was videotaped (3D reconstruction) for kinematic analysis to assess stroke frequency (SF), stroke length (SL), propelling efficiency (η P ), and index of coordination (IdC). V̇O 2 was measured and capillary blood samples (lactate concentrations) were collected, enabling computation of metabolic power. The 2nd protocol allowed calculating mechanical power and performance efficiency from the ratio of mechanical to metabolic power. Neither vAnT nor vV̇O 2 max was explained by SF (0.56 ± 0.06 vs 0.68 ± 0.06 Hz), SL (2.29 ± 0.21 vs 2.06 ± 0.20 m), η P (0.38 ± 0.02 vs 0.36± 0.03), IdC (-12.14 ± 5.24 vs -9.61 ± 5.49), or metabolic-power (1063.00 ± 122.90 vs 1338.18 ± 127.40 W) variability. vV̇O 2 max was explained by power to overcome drag (r = .77, P ≤ .05) and η P (r = .72, P ≤ .05), in contrast with the nonassociation between these parameters and vAnT; both velocities were well related (r = .62, P ≤ .05). The biomechanical parameters, coordination, and metabolic power seemed not to be performance discriminative at either intensity. However, the increase in power to overcome drag, for the less metabolic input, should be the focus of any intervention that aims to improve performance at severe swimming intensity. This is also true for moderate intensities, as vAnT and vV˙O2max are proportional to each other.
The Structure of Performance of a Sport Rock Climber
Magiera, Artur; Roczniok, Robert; Maszczyk, Adam; Czuba, Miłosz; Kantyka, Joanna; Kurek, Piotr
2013-01-01
This study is a contribution to the discussion about the structure of performance of sport rock climbers. Because of the complex and multifaceted nature of this sport, multivariate statistics were applied in the study. The subjects included thirty experienced sport climbers. Forty three variables were scrutinised, namely somatic characteristics, specific physical fitness, coordination abilities, aerobic and anaerobic power, technical and tactical skills, mental characteristics, as well as 2 variables describing the climber’s performance in the OS (Max OS) and RP style (Max RP). The results show that for training effectiveness of advanced climbers to be thoroughly analysed and examined, tests assessing their physical, technical and mental characteristics are necessary. The three sets of variables used in this study explained the structure of performance similarly, but not identically (in 38, 33 and 25%, respectively). They were also complementary to around 30% of the variance. The overall performance capacity of a sport rock climber (Max OS and Max RP) was also evaluated in the study. The canonical weights of the dominant first canonical root were 0.554 and 0.512 for Max OS and Max RP, respectively. Despite the differences between the two styles of climbing, seven variables – the maximal relative strength of the fingers (canonical weight = 0.490), mental endurance (one of scales : The Formal Characteristics of Behaviour–Temperament Inventory (FCB–TI; Strelau and Zawadzki, 1995)) (−0.410), climbing technique (0.370), isometric endurance of the fingers (0.340), the number of errors in the complex reaction time test (−0.319), the ape index (−0.319) and oxygen uptake during arm work at the anaerobic threshold (0.254) were found to explain 77% of performance capacity common to the two styles. PMID:23717360
NASA Technical Reports Server (NTRS)
Raper, C. D. Jr; Vessey, J. K.; Henry, L. T.; Chaillou, S.
1991-01-01
To determine if the daily pattern of NO3- and NH4+ uptake is affected by acidity or NO3- : NH4+ ratio of the nutrient solution, non-nodulated soybean plants (Glycine max) were exposed for 21 days to replenished, complete nutrient solutions at pH 6.0, 5.5, 5.0, and 4.5 which contained either 1.0 mM NH4+, 1.0 mM NO3- [correction of NO3+], 0.67 mM NH4+ plus 0.33 mM NO3- (2:1 NH4+ : NO3-) [correction of (2:1 NH3+ : NO4-)], or 0.33 mM NH4+ plus 0.67 mM NO3- (1:2 NH4+ : NO3-). Net uptake rates of NH4+ and NO3- were measured daily by ion chromatography as depletion from the replenished solutions. When NH4+ and NO3- were supplied together, cumulative uptake of total nitrogen was not affected by pH or solution NH4+ : NO3- ratio. The cumulative proportion of nitrogen absorbed as NH4+ decreased with increasing acidity; however, the proportional uptake of NH4+ and NO3- was not constant, but varied day-to-day. This day-to-day variation in relative proportions of NH4+ and NO3- absorbed when NH4+ : NO3- ratio and pH of solution were constant indicates that the regulatory mechanism is not directly competitive. Regardless of the effect of pH on cumulative uptake of NH4+, the specific nitrogen uptake rates from mixed and from individual NH4+ and NO3- sources oscillated between maxima and minima at each pH with average periodicities similar to the expected interval of leaf emergence.
Kalkanis, Alexandros; Kalkanis, Dimitrios; Drougas, Dimitrios; Vavougios, George D; Datseris, Ioannis; Judson, Marc A; Georgiou, Evangelos
2016-03-01
The objective of our study was to assess the possible relationship between splenic F-18-fluorodeoxyglucose (18F-FDG) uptake and other established biochemical markers of sarcoidosis activity. Thirty treatment-naive sarcoidosis patients were prospectively enrolled in this study. They underwent biochemical laboratory tests, including serum interleukin-2 receptor (sIL-2R), serum C-reactive protein, serum angiotensin-I converting enzyme, and 24-h urine calcium levels, and a whole-body combined 18F-FDG PET/computed tomography (PET/CT) scan as a part of an ongoing study at our institute. These biomarkers were statistically compared in these patients. A statistically significant linear dependence was detected between sIL-2R and log-transformed spleen-average standard uptake value (SUV avg) (R2=0.488, P<0.0001) and log-transformed spleen-maximum standard uptake value (SUV max) (R2=0.490, P<0.0001). sIL-2R levels and splenic size correlated linearly (Pearson's r=0.373, P=0.042). Multivariate linear regression analysis revealed that this correlation remained significant after age and sex adjustment (β=0.001, SE=0.001, P=0.024). No statistically significant associations were detected between (a) any two serum biomarkers or (b) between spleen-SUV measurements and any serum biomarker other than sIL-2R. Our analysis revealed an association between sIL-2R levels and spleen 18F-FDG uptake and size, whereas all other serum biomarkers were not significantly associated with each other or with PET 18F-FDG uptake. Our results suggest that splenic inflammation may be related to the systemic inflammatory response in sarcoidosis that may be associated with elevated sIL-2R levels.
Chan, Joachim; Carver, Antony; Brunt, John N H; Vinjamuri, Sobhan; Syndikus, Isabel
2017-03-01
Prostate dose painting radiotherapy requires the accurate identification of dominant intraprostatic lesions (DILs) to be used as boost volumes; these can be identified on multiparametric MRI (mpMRI) or choline positron emission tomography (PET)/CT. Planning scans are usually performed after 2-3 months of androgen deprivation therapy (ADT). We examine the effect of ADT on choline tracer uptake and boost volumes identified on choline PET/CT. Fluoroethylcholine ( 18 F choline) PET/CT was performed for dose painting radiotherapy planning in patients with intermediate- to high-risk prostate cancer. Initially, they were performed at planning. Owing to low visual tracer uptake, PET/CT for subsequent patients was performed at staging. We compared these two approaches on intraprostatic lesions obtained on PET using both visual and automatic threshold methods [prostate maximum standardized uptake value (SUV max ) 60%] when compared with mpMRI. PET/CT was performed during ADT in 11 patients (median duration of 85 days) and before ADT in 29 patients. ADT significantly reduced overall prostate volume by 17%. During ADT, prostate SUV max was lower although it did not reach statistical significance (4.2 vs 6.6, p = 0.06); three patients had no visually identifiable PET DIL; and visually defined PET DILs were significantly smaller than corresponding mpMRI DILs (p = 0.03). However, all patients scanned before ADT had at least one visually identifiable PET DIL, with no significant size difference between MRI and visually defined PET DILs. In both groups, threshold PET produced larger DILs than visual PET. Both PET methods have moderate sensitivity (0.50-0.68) and high specificity (0.85-0.98) for identifying MRI-defined disease. For visual contouring of boost volumes in prostate dose painting radiotherapy, 18 F choline PET/CT should be performed before ADT. For threshold contouring of boost volumes using our PET/CT scanning protocol, threshold levels of above 60% prostate SUV max may be more suitable. Additional use of PET with MRI for radiotherapy planning can significantly change the overall boost volumes compared with using MRI alone. Advances in knowledge: For prostate dose painting radiotherapy, the additional use of 18 F choline PET with MRI can significantly change the overall boost volumes, and PET should be performed before hormone therapy, especially if boost volumes are visually identified.
Effect of 8 Weeks Soccer Training on Health and Physical Performance in Untrained Women
Ortiz, Jaelson G.; da Silva, Juliano F.; Carminatti, Lorival J.; Guglielmo, Luiz G.A.; Diefenthaeler, Fernando
2018-01-01
This study aims to analyze the physiological, neuromuscular, and biochemical responses in untrained women after eight weeks of regular participation in small-sided soccer games compared to aerobic training. Twenty-seven healthy untrained women were divided into two groups [soccer group (SG = 17) and running group (RG = 10)]. Both groups trained three times per week for eight weeks. The variables measured in this study were maximal oxygen uptake (VO2max), relative velocity at VO2max (vVO2max), peak velocity, relative intensity at lactate threshold (vLT), relative intensity at onset of blood lactate accumulation (vOBLA), peak force, total cholesterol, HDL, LDL, triglycerides, and cholesterol ratio (LDL/HDL). VO2max, vLT, and vOBLA increased significantly in both groups (12.8 and 16.7%, 11.1 and 15.3%, 11.6 and 19.8%, in SG and RG respectively). However, knee extensors peak isometric strength and triglyceride levels, total cholesterol, LDL, and HDL did not differ after eight weeks of training in both groups. On the other hand, the LDL/HDL ratio significantly reduced in both groups. In conclusion, eight weeks of regular participation in small-sided soccer games was sufficient to increase aerobic performance and promote health benefits related to similar aerobic training in untrained adult women. Key points Regular participation in soccer small sided-games increase aerobic performance and promote health benefits related to similar aerobic training in untrained women. 8 weeks soccer training is enough to promote positive physiological and biochemical adaptations in untrained women. Soccer small sided-games have the potential to be more pleasurable and effective among women as other modalities as running and cycling. PMID:29535574
THE ROLE OF AEROBIC CAPACITY IN HIGH-INTENSITY INTERMITTENT EFFORTS IN ICE-HOCKEY
Roczniok, R.; Maszczyk, A.; Pietraszewski, P.; Zając, A.
2014-01-01
The primary objective of this study was to determine a relationship between aerobic capacity (V.O2max) and fatigue from high-intensity skating in elite male hockey players. The subjects were twenty-four male members of the senior national ice hockey team of Poland who played the position of forward or defence. Each subject completed an on-ice Repeated-Skate Sprint test (RSS) consisting of 6 timed 89-m sprints, with 30 s of rest between subsequent efforts, and an incremental test on a cycle ergometer in the laboratory, the aim of which was to establish their maximal oxygen uptake (V.O2max). The analysis of variance showed that each next repetition in the 6x89 m test was significantly longer than the previous one (F5,138=53.33, p<0.001). An analysis of the fatigue index (FI) calculated from the times recorded for subsequent repetitions showed that the value of the FI increased with subsequent repetitions, reaching its maximum between repetitions 5 and 6 (3.10±1.16%). The total FI was 13.77±1.74%. The coefficient of correlation between V.O2max and the total FI for 6 sprints on the distance of 89 m (r =–0.584) was significant (p=0.003). The variance in the index of players’ fatigue in the 6x89 m test accounted for 34% of the variance in V.O2max. The 6x89 m test proposed in this study offers a high test-retest correlation coefficient (r=0.78). Even though the test is criticized for being too exhaustive and thereby for producing highly variable results it still seems that it was well selected for repeated sprint ability testing in hockey players. PMID:25177097
Effects of dynamic hyperinflation on exercise capacity and quality of life in stable COPD patients.
Zhao, Li; Peng, Liyue; Wu, Baomei; Bu, Xiaoning; Wang, Chen
2016-09-01
Dynamic hyperinflation (DH) is an important pathophysiological characteristic of chronic obstructive pulmonary disease (COPD). There is increasing evidence that DH has negative effects on exercise performance and quality of life. The objective of this study was to explore effects of DH on exercise capacity and quality of life in stable COPD patients. Fifty-eight COPD patients and 20 matched healthy individuals underwent pulmonary function test, 6-min walk test and symptom-limited cardiopulmonary exercise test (CPET). End-expiratory lung volume/total lung capacity ratio (EELVmax/TLC) at peak exercise of CPET was evaluated, and EELVmax/TLC ≥ 75% was defined as 'severe dynamic hyperinflation (SDH)'. Of the 58 patients studied, 29 (50.0%) presented with SDH (SDH+ group, EELVmax/TLC 79.60 ± 3.60%), having worse maximal exercise capacity reflected by lower peakload, maximal oxygen uptake (VO2 max), maximal carbon dioxide output (VCO2 max) and maximal minute ventilation (VEmax) than did those without SDH (SDH- group, EELVmax/TLC 67.44 ± 6.53%). The EELVmax/TLC ratio at peak exercise had no association with variables of pulmonary function and 6-min walk distance (6MWD), but correlated inversely with peakload, VO2 max, VCO2 max and VEmax (r = -0.300~-0.351, P < 0.05). Although no significant differences were observed, patients with EELVmax/TLC ≥ 75% tended to have higher COPD assessment test score (15.07 ± 6.55 vs 13.28 ± 6.59, P = 0.303). DH develops variably during exercise and has a greater impact on maximal exercise capacity than 6MWD, even in those with the same extent of pulmonary function impairment at rest. © 2015 John Wiley & Sons Ltd.
THE GSTP1 c.313A>G POLYMORPHISM MODULATES THE CARDIORESPIRATORY RESPONSE TO AEROBIC TRAINING.
Zarebska, A; Jastrzebski, Z; Kaczmarczyk, M; Ficek, K; Maciejewska-Karlowska, A; Sawczuk, M; Leońska-Duniec, A; Krol, P; Cieszczyk, P; Zmijewski, P; Eynon, N
2014-12-01
The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes' responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices - maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) - before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes.
THE GSTP1 c.313A>G POLYMORPHISM MODULATES THE CARDIORESPIRATORY RESPONSE TO AEROBIC TRAINING
Zarebska, A; Jastrzebski, Z; Kaczmarczyk, M; Ficek, K; Maciejewska-Karlowska, A; Sawczuk, M; Leońska-Duniec, A; Krol, P; Cieszczyk, P; Zmijewski, P
2014-01-01
The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes’ responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices – maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) – before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes. PMID:25435667
Lerche, L; Olsen, A; Petersen, K E N; Rostgaard-Hansen, A L; Dragsted, L O; Nordsborg, N B; Tjønneland, A; Halkjaer, J
2017-12-01
Valid assessments of physical activity (PA) and cardiorespiratory fitness (CRF) are essential in epidemiological studies to define dose-response relationship for formulating thorough recommendations of an appropriate pattern of PA to maintain good health. The aim of this study was to validate the Danish step test, the physical activity questionnaire Active-Q, and self-rated fitness against directly measured maximal oxygen uptake (VO 2 max). A population-based subsample (n=125) was included from the "Diet, Cancer and Health-Next Generations" (DCH-NG) cohort which is under establishment. Validity coefficients, which express the correlation between measured and "true" exposure, were calculated, and misclassification across categories was evaluated. The validity of the Danish step test was moderate (women: r=.66, and men: r=.56); however, men were systematically underestimated (43% misclassification). When validating the questionnaire-derived measures of PA, leisure-time physical activity was not correlated with VO 2 max. Positive correlations were found for sports overall, but these were only significant for men: total hours per week of sports (r=.26), MET-hours per week of sports (r=.28) and vigorous sports (0.28) alone were positively correlated with VO 2 max. Finally, the percentage of misclassification was low for self-rated fitness (women: 9% and men: 13%). Thus, self-rated fitness was found to be a superior method to the Danish step test, as well as being less cost prohibitive and more practical than the VO 2 max method. Finally, even if correlations were low, they support the potential for questionnaire outcomes, particularly sports, vigorous sports, and self-rated fitness to be used to estimate CRF. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Carter, Stephen J; Bryan, David R; Neumeier, William H; Glasser, Stephen P; Hunter, Gary R
2018-01-01
The functional implications of serum tumor necrosis factor-alpha (TNF-α), a marker of oxidative stress, on hemodynamic parameters at rest and during physical exertion are unclear. The aims of this investigation were to examine the independent associations of TNF-α on myocardial oxygen demand at rest and during submaximal exercise, while also evaluating the association of TNF-α on exercise tolerance. Forty, postmenopausal women, provided blood samples and completed a modified-Balke protocol to measure maximal oxygen uptake (VO 2max ). Large artery compliance was measured by pulse contour analyses while rate-pressure product (RPP), an index of myocardial oxygen demand, was measured at rest and during two submaximal workloads (i.e., ≈55% and ≈75% VO 2max ). RPP was calculated by dividing the product of heart rate and systolic blood pressure (via auscultation) by 100. Exercise tolerance corresponded with the cessation of the graded exercise test. During higher-intensity exertion, ≈75% VO 2max , multiple linear regression revealed a positive association ( r = 0.43; p = 0.015) between TNF-α and RPP while adjusting for maximal heart rate, VO 2max , large artery compliance, and percent body fat. Path analyses revealed a significant indirect effect of large artery compliance on exercise tolerance through TNF-α, β = 0.13, CI [0.03, 0.35], indicating greater levels of TNF-α associated with poorer exercise tolerance. These data suggest TNF-α independently associates with myocardial oxygen demand during physical exertion, thus highlighting the utility of higher-intensity efforts to expose important phenomena not apparent at rest. TNF-α also appears to be indirectly associated with the link between large artery compliance and exercise tolerance.
Athletes with higher VO2max present reduced oxLDL after a marathon race
Bachi, André L L; Sierra, Ana Paula R; Rios, Francisco J O; Gonçalves, Danieli A; Ghorayeb, Nabil; Abud, Ronaldo L; Victorino, Angélica B; dos Santos, Juliana M B; Kiss, Maria Augusta D P; Pithon-Curi, Tania C; Vaisberg, Mauro
2015-01-01
Background During a session of prolonged and exhaustive exercise, such as a marathon race, large quantities of free radicals are produced and can oxidise (ox) several molecules, such as low-density lipoprotein (LDL). To prevent oxidative damage, athletes present higher antioxidant levels. However, the effect of marathon running on the natural IgM or IgG anti-oxLDL autoantibodies is not understood. Thus, we investigated the effect of a marathon race on oxidative stress and the mechanisms of control of this stress. Methods Blood samples of 20 marathon runners were collected 24 hours before, immediately and 72 hours after a marathon race to evaluate: plasma lipid profile; serum levels of oxLDL and anti-oxLDL autoantibodies (IgM and IgG isotype) and total antioxidant capacity (TAC). Maximum oxygen uptake (VO2max) was also determined. Results Immediately after the race, oxLDL and TAC levels decreased in comparison to the basal levels; however, the IgM or IgG anti-oxLDL levels remain unchanged. Whereas no differences were observed in the IgM or IgG anti-oxLDL levels 72h after the marathon, the oxLDL and TAC levels returned to the basal values. Significant positive correlations were observed between oxLDL and LDL-cholesterol before, and 72h after the marathon. Significant negative correlations were observed between oxLDL and VO2max immediately after the marathon and 72 h later, as well as between oxLDL and TAC 72 h after the race. Conclusions Athletes with a higher VO2max and total antioxidant activity presented reduced LDL oxidation. The levels of IgM or IgG anti-oxLDL autoantibodies were not affected by running the marathon. PMID:27900109
Current and Future Decadal Trends in the Oceanic Carbon Uptake Are Dominated by Internal Variability
NASA Astrophysics Data System (ADS)
Li, Hongmei; Ilyina, Tatiana
2018-01-01
We investigate the internal decadal variability of the ocean carbon uptake using 100 ensemble simulations based on the Max Planck Institute Earth system model (MPI-ESM). We find that on decadal time scales, internal variability (ensemble spread) is as large as the forced temporal variability (ensemble mean), and the largest internal variability is found in major carbon sink regions, that is, the 50-65°S band of the Southern Ocean, the North Pacific, and the North Atlantic. The MPI-ESM ensemble produces both positive and negative 10 year trends in the ocean carbon uptake in agreement with observational estimates. Negative decadal trends are projected to occur in the future under RCP4.5 scenario. Due to the large internal variability, the Southern Ocean and the North Pacific require the most ensemble members (more than 53 and 46, respectively) to reproduce the forced decadal trends. This number increases up to 79 in future decades as CO2 emission trajectory changes.
Steckling, Flávia Mariel; Farinha, Juliano Boufleur; Figueiredo, Felipe da Cunha; Santos, Daniela Lopes Dos; Bresciani, Guilherme; Kretzmann, Nélson Alexandre; Stefanello, Sílvio Terra; Courtes, Aline Alves; Beck, Maristela de Oliveira; Sangoi Cardoso, Manuela; Duarte, Marta Maria Medeiros Frescura; Moresco, Rafael Noal; Soares, Félix Alexandre Antunes
2018-02-12
This study investigate the effects of high-intensity interval training (HIIT) on systemic levels of inflammatory and hormonal markers in postmenopausal women with metabolic syndrome (MS). Fifteen postmenopausal women with MS completed the training on treadmills. Functional, body composition parameters, maximal oxygen uptake (VO 2 max), and lipid profile were assessed before and after HIIT. Serum or plasma levels of cytokines and hormonal markers were measured along the intervention. The analysis of messenger RNA (mRNA) expression of these cytokines was performed in peripheral blood mononuclear cells (PBMC). VO 2 max and some anthropometric parameters were improved after HIIT, while decreased levels of proinflammatory markers and increased levels of interleukin-10 (IL-10) were also found. Adipokines were also modulated after 12 weeks or training. The mRNA expression of the studied genes was unchanged after HIIT. In conclusion, HIIT benefits inflammatory and hormonal axis on serum or plasma samples, without changes on PBMC of postmenopausal MS patients.
Exercise Responses after Inactivity
NASA Technical Reports Server (NTRS)
Convertino, Victor A.
1986-01-01
The exercise response after bed rest inactivity is a reduction in the physical work capacity and is manifested by significant decreases in oxygen uptake. The magnitude of decrease in maximal oxygen intake V(dot)O2max is related to the duration of confinement and the pre-bed-rest level of aerobic fitness; these relationships are relatively independent of age and gender. The reduced exercise performance and V(dot)O2max following bed rest are associated with various physiological adaptations including reductions in blood volume, submaximal and maximal stroke volume, maximal cardiac output, sceletal muscle tone and strength, and aerobic enzyme capacities, as well as increases in venous compliance and submaximal and maximal heart rate. This reduction in physiological capacity can be partially restored by specific countermeasures that provide regular muscular activity or orhtostatic stress or both during the bed rest exposure. The understanding of these physiological and physical responses to exercise following bed rest inactivity has important implications for the solution to safety and health problems that arise in clinical medicine, aerospace medicine, sedentary living, and aging.
Cardiorespiratory responses induced by various military field tasks.
Pihlainen, Kai; Santtila, Matti; Häkkinen, Keijo; Lindholm, Harri; Kyröläinen, Heikki
2014-02-01
Typical military tasks include load carriage, digging, and lifting loads. To avoid accumulation of fatigue, it is important to know the energy expenditure of soldiers during such tasks. The purpose of this study was to measure cardiorespiratory responses during military tasks in field conditions. Unloaded (M1) and loaded (M2) marching, artillery field preparation (AFP), and digging of defensive positions (D) were monitored. 15 conscripts carried additional weight of military outfit (5.4 kg) during M1, AFP, and D and during M2 full combat gear (24.4 kg). Absolute and relative oxygen uptake (VO2) and heart rate (HR) of M1 (n = 8) were 1.5 ± 0.1 L min(-1), 19.9 ± 2.7 mL kg(-1) min(-1) (42 ± 7% VO2max), and 107 ± 8 beats min(-1) (55 ± 3% HRmax), respectively. VO2 of M2 (n = 8) was 1.7 ± 0.2 L min(-1), 22.7 ± 3.4 mL kg(-1) min(-1) (47 ± 6% VO2max) and HR 123 ± 9 beats min(-1) (64 ± 4% HRmax). VO2 of AFP (n = 5) and D (n = 6) were 1.3 ± 0.3 L min(-1), 18.0 ± 3.0 (37 ± 6% VO2max), and 1.8 ± 0.4 L min(-1), 24.3 ± 5.1 mL kg(-1) min(-1) (51 ± 9% VO2max), respectively. Corresponding HR values were 99 ± 8 beats min(-1) (50 ± 3% HRmax) and 132 ± 10 beats min(-1) (68 ± 4% HRmax), respectively. The mean work intensity of soldiers was close to 50% of their maximal aerobic capacity, which has been suggested to be maximal limit of intensity for sustained work. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it; Piva, Cristina; Levis, Mario
Purpose: To validate, in a monoinstitutional cohort with extended follow-up, that post–rituximab chemotherapy (R-CT) {sup 18}F-fluorodeoxyglucose positron emission tomography ({sup 18}FDG-PET) is a prognostic factor allowing discrimination of primary mediastinal B-cell lymphoma (PMBCL) patients at higher risk for progression after radiation therapy. Methods and Materials: We analyzed 51 patients, and {sup 18}FDG-PET scans were re-examined evaluating both the Deauville 5-point scale (D5PS) score and the standardized uptake value (SUV) of residual activity, if present. These parameters were then tested by univariate analysis for a potential correlation with progression-free survival (PFS) as the primary study endpoint. Results: Median follow-up time was 51 monthsmore » (range, 9-153 months). After R-CT, D5PS score was 1 in 10 (19.6%), 2 in 11 (21.6%), 3 in 7 (13.8%), 4 in 17 (33.3%), and 5 in 6 patients (11.7%). Forty-three out of 51 patients (84.3%) had an SUV{sub max} ≤5, and 8 out of 51 (15.7%) had an SUV{sub max} ≥5. Overall, 6 patients experienced progression or relapse: 1 had a D5PS score 2 (with SUV{sub max} ≤5), and 5 had a D5PS score 5 (and SUV{sub max} ≥5). Patients with a D5PS score 5 showed significantly lower PFS rates versus all other scores (log-rank P<.001), as did patients with SUV{sub max} ≥5 when compared with those with SUV{sub max} ≤5 (log-rank P<.001). Conclusions: The present study confirmed the prognostic role of {sup 18}FDG-PET after R-CT, with patients with a D5PS score of 5 and/or an SUV{sub max} ≥5 being at high risk of progression/relapse after RT.« less
Zhang, Rubin; Zhan, Likui; Sun, Shaoming; Peng, Wei; Sun, Yining
2017-01-01
The maximum oxygen uptake (V̇O2 max), determined from graded maximal or submaximal exercise tests, is used to classify the cardiorespiratory fitness level of individuals. The purpose of this study was to examine the validity and reliability of the YMCA submaximal exercise test protocol performed on a newly-designed rectilinear stepping ergometer (RSE) that used up and down reciprocating vertical motion in place of conventional circular motion and giving precise measurement of workload, to determine V̇O2 max in young healthy male adults. Thirty-two young healthy male adults (32 males; age range: 20-35 years; height: 1.75 ± 0.05 m; weight: 67.5 ± 8.6 kg) firstly participated in a maximal-effort graded exercise test using a cycle ergometer (CE) to directly obtain measured V̇O2 max. Subjects then completed the progressive multistage test on the RSE beginning at 50W and including additional stages of 70, 90, 110, 130, and 150W, and the RSE YMCA submaximal test consisting of a workload increase every 3 minutes until the termination criterion was reached. A metabolic equation was derived from the RSE multistage exercise test to predict oxygen consumption (V̇O2) from power output (W) during the submaximal exercise test (V̇O2 (mL·min-1 )=12.4 ×W(watts)+3.5 mL·kg-1·min-1×M+160mL·min-1, R2= 0.91, standard error of the estimate (SEE) = 134.8mL·min-1). A high correlation was observed between the RSE YMCA estimated V̇O2 max and the CE measured V̇O2 max (r=0.87). The mean difference between estimated and measured V̇O2 max was 2.5 mL·kg-1·min-1, with an SEE of 3.55 mL·kg-1·min-1. The data suggest that the RSE YMCA submaximal exercise test is valid for predicting V̇O2 max in young healthy male adults. The findings show that the rectilinear stepping exercise is an effective submaximal exercise for predicting V̇O2 max. The newly-designed RSE may be potentially further developed as an alternative ergometer for assessing cardiorespiratory fitness and the promotion of personalized health interventions for health care professionals. Key points The rectilinear stepping exercise is a simple modality of exercise, which requires only up and down movements of the legs. It overcomes the mechanical dead centers of circular motion and is mechanically efficient. It is potentially applicable to a large group of populations. The RSE gives an accurate measurement of power output and ensures a constant power output independent of stepping cadence. The RSE submaximal exercise test is valid and feasible for estimating V̇O2 max in young healthy male adults compared with the CE maximal exercise test. The rectilinear stepping exercise is an effective submaximal exercise mode for predicting V̇O2 max. The RSE designed for this study may be potentially developed as a new and alternative ergometer to assess cardiorespiratory fitness and could be used in the future by healthcare professionals to promote personalized health interventions. PMID:28912653
da Silva, César Augusto; Helal, Lucas; da Silva, Roberto Pacheco; Belli, Karlyse Claudino; Umpierre, Daniel; Stein, Ricardo
2018-05-02
Although compression garments are used to improve sports performance, methodological approaches and the direction of evidence regarding garments for use in high-intensity exercise settings are diverse. Our primary aim was to summarize the association between lower-limb compression garments (LLCGs) and changes in sports performance during high-intensity exercise. We also aimed to summarize evidence about the following physiological parameters related to sports performance: vertical jump height (VJ), maximal oxygen uptake (VO 2 max), submaximal oxygen uptake (VO 2 submax), blood lactate concentrations ([La]), and ratings of perceived exertion (RPE, 6-20 Borg scale). We searched electronic databases (PubMed, EMBASE, Cochrane Library, and ClinicalTrials.gov) and reference lists for previous reviews. Eligible studies included randomized controlled trials with athletes or physically active subjects (≥ 18 years) using any type of LLCG during high-intensity exercise. The results were described as weighted mean difference (WMD) with a 95% confidence interval (95% CI). The 23 included studies showed low statistical heterogeneity for the pooled outcomes. We found that LLCGs yielded similar running performance to controls (50-400 m: WMD 0.06 s [95% CI - 1.99 to 2.11]; 800-3000 m: WMD 6.10 s [95% CI - 7.23 to 19.43]; > 5000 m: WMD 1.01 s [95% CI - 84.80 to 86.82]). Likewise, we found no evidence that LLCGs were superior in secondary outcomes (VJ: WMD 2.25 cm [95% CI - 2.51 to 7.02]; VO 2 max: WMD 0.24 mL.kg -1 .min -1 [95% CI - 1.48 to 1.95]; VO 2 submax: WMD - 0.26 mL.kg -1 .min -1 [95% CI - 2.66 to 2.14]; [La]: WMD 0.19 mmol/L [95% CI - 0.22 to 0.60]; RPE: WMD - 0.20 points [95% CI - 0.48 to 0.08]). LLCGs were not associated with improved performance in VJ, VO 2 max, VO 2 submax, [La], or RPE during high-intensity exercise. Such evidence should be taken into account when considering using LLCGs to enhance running performance.
Sun, Sen; Chen, Qingshan; Ge, Jiyun; Liu, Xiang; Wang, Xinxia; Zhan, Qi; Zhang, Hai; Zhang, Guoqing
2018-01-01
1. This study aimed to investigate the pharmacokinetic interaction of the three ingredients in a traditional Chinese herbal formulation, Sini Decoction, and provide evidence for its compatibility mechanism. 2. First, the effect of liquiritin and 6-gingerol on the pharmacokinetic parameters of aconitine was investigated in rats by using a sensitive and reliable LC-MS/MS method. Then the Caco-2 cell monolayer model and Rhodamine-123 uptake assay were used to investigate the effect of liquiritin and 6-gingerol on the absorption of aconitine and the activity of P-gp. 3. The C max of aconitine increased significantly (p < 0.05) from 10.34 ± 1.99 to 17.68 ± 2.65 ng/mL with the pretreatment of liquiritin (20 mg/kg), and to 17.43 ± 0.96 ng/mL with 6-gingerol (20 mg/kg). When aconitine was co-administered with liquiritin and 6-gingerol, the C max and AUC (0 -t ) of aconitine increased approximately twofold, and while t 1/2 only increased 1.2-fold. The Caco-2 cell monolayer model and Rhodamine-123 uptake assay indicated that both liquiritin and 6-gingerol could increase the absorption of aconitine by inhibiting the activity of P-gp. 4. These results indicated that both liquiritin and 6-gingerol could promote the absorption of aconitine and increase its drug concentration in blood by inhibiting the activity of P-gp, and it could also provide evidence for compatibility mechanism of the traditional Chinese herbal formula, Sini Decoction.
Manzano, Susana; Williamson, Gary
2010-12-01
The effect of polyphenols, phenolic acids and tannins (PPTs) from strawberry and apple on uptake and apical to basolateral transport of glucose was investigated using Caco-2 intestinal cell monolayers. Substantial inhibition on both uptake and transport was observed by extracts from both strawberry and apple. Using sodium-containing (glucose transporters SGLT1 and GLUT2 both active) and sodium-free (only GLUT2 active) conditions, we show that the inhibition of GLUT2 was greater than that of SGLT1. The extracts were analyzed and some of the constituent PPTs were also tested. Quercetin-3-O-rhamnoside (IC₅₀ =31 μM), phloridzin (IC₅₀=146 μM), and 5-caffeoylquinic acid (IC₅₀=2570 μM) contributed 26, 52 and 12%, respectively, to the inhibitory activity of the apple extract, whereas pelargonidin-3-O-glucoside (IC₅₀=802 μM) contributed 26% to the total inhibition by the strawberry extract. For the strawberry extract, the inhibition of transport was non-competitive based on kinetic analysis, whereas the inhibition of cellular uptake was a mixed-type inhibition, with changes in both V(max) and apparent K(m) . The results in this assay show that some PPTs inhibit glucose transport from the intestinal lumen into cells and also the GLUT2-facilitated exit on the basolateral side. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Köklü, Yusuf; Ersöz, Gülfem; Alemdaroğlu, Utku; Aşç, Alper; Ozkan, Ali
2012-11-01
The purpose of this study was to examine the influence of different team formation methods on the physiological responses to and time-motion characteristics of 4-a-side small-sided games (SSG4) in young soccer players. Thirty-two young soccer players (age 16.2 ± 0.7 years; height 172.9 ± 6.1 cm; body mass 64.1 ± 7.7 kg) voluntarily participated in this study. Anthropometric measurements, technical tests, and maximum oxygen uptake (V[Combining Dot Above]O2max) tests were carried out on the players. The SSG4 teams were then created using 4 different methods: according to the coaches' subjective evaluation (CE), technical scores (TS), V[Combining Dot Above]O2max (AP), and V[Combining Dot Above]O2max multiplied by TSs (CG). The teams thus created played 4 bouts of SSG4 at 2-day intervals. During the SSG4, heart rate (HR) responses, distance covered, and time spent in HRmax zones were recorded. In addition, rating of perceived exertion (RPE) and blood lactate level (La) were determined at the end of the last bout of each SSG4. Percent of HRmax (%HRmax), La, and RPE responses during SSG4 were significantly higher for teams chosen according to AP and CG compared with that according to CE and TS (p < 0.05). In addition, teams chosen by AP and CG spent significantly more time in zone 4 (>90% HRmax ) and covered a greater distance in the high-intensity running zone (>18 km·h) than did teams formed according to TS. Moreover, AP teams covered significantly greater total distance than TS teams did (p < 0.05). In conclusion, to spend more time in both the high-intensity HR zone and the high-intensity running zone, the teams in SSG4 should be formed according to the players' V[Combining Dot Above]O2max values or the values calculated using both the V[Combining Dot Above]O2max and technique scores.
Støa, Eva Maria; Meling, Sondre; Nyhus, Lill-Katrin; Glenn Strømstad; Mangerud, Karl Magnus; Helgerud, Jan; Bratland-Sanda, Solfrid; Støren, Øyvind
2017-03-01
It remains to be established how high-intensity aerobic interval training (HAIT) affects risk factors associated with type 2 diabetes (TD2). This study investigated effects of HAIT on maximal oxygen uptake (VO 2max ), glycated Hemoglobin type A1C (HbA1c), insulin resistance (IR), fat oxidation (FatOx), body weight (BW), percent body fat (%BF), lactate threshold (LT), blood pressure (BP), and blood lipid profile (BLP) among persons with T2D. Results were compared to the effects after a moderate-intensity training (MIT) program. Thirty-eight individuals with T2D completed 12 weeks of supervised training. HAIT consisted of 4 × 4 min of walking or running uphill at 85-95% of maximal heart rate, and MIT consisted of continuous walking at 70-75% of maximal heart rate. A 21% increase in VO 2max (from 25.6 to 30.9 ml kg -1 min -1 , p < 0.001), and a reduction in HbA1c by -0.58% points (from 7.78 to 7.20%, p < 0.001) was found in HAIT. BW and body mass index (BMI) was reduced by 1.9% (p < 0.01). There was a tendency towards an improved FatOx at 60% VO 2max (14%, p = 0.065). These improvements were significant different from MIT. Both HAIT and MIT increased velocity at LT, and reduced %BF, waist circumference, hip circumference, and BP, with no significant differences between the two groups. Correlations were found between change in VO 2max and change in HbA1c when the two intervention groups were combined (R = -0.52, p < 0.01). HAIT is an effective exercise strategy to improve aerobic fitness and reduce risk factors associated with T2D.
Mustelin, L; Latvala, A; Pietiläinen, K H; Piirilä, P; Sovijärvi, A R; Kujala, U M; Rissanen, A; Kaprio, J
2011-03-01
Exercise behavior, cardiorespiratory fitness, and obesity are strongly influenced by genetic factors. By studying young adult twins, we examined to what extent these interrelated traits have shared genetic and environmental etiologies. We studied 304 twin individuals selected from the population-based FinnTwin16 study. Physical activity was assessed with the Baecke questionnaire, yielding three indexes: sport index, leisure-time index, and work index. In this study, we focused on sport index, which describes sports participation. Body composition was determined using dual-energy X-ray absorptiometry and cardiorespiratory fitness using a bicycle ergometer exercise test with gas exchange analysis. The Baecke sport index was associated with high maximal oxygen uptake adjusted for lean body mass (Vo(2max)[adj]) (r = 0.40), with low body fat percentage (BF%) (r = -0.44) and low waist circumference (WC) (r = -0.29). Heritability estimates for the key traits were as follows: 56% for sport index, 71% for Vo(2max)[adj], 77% for body mass index, 66% for WC, and 68% for BF%. The association between sport index and Vo(2max) was mostly explained by genetic factors (70%), as were both the association between sport index and BF% (71%) and that between sport index and WC (59%). Our results suggest that genetic factors explain a considerable part of the associations between sports participation, cardiorespiratory fitness, and obesity.
[Association of muscle strength with early markers of cardiovascular risk in sedentary adults].
Triana-Reina, Héctor Reynaldo; Ramírez-Vélez, Robinson
2013-10-01
To assess the association between muscle strength and early cardiovascular risk (CVR) markers in sedentary adults. A total of 176 sedentary subjects aged 18-30 years were enrolled. Body mass index and fat percentage were calculated, and waist circumference, grip strength by dynamometry, systolic blood pressure, diastolic blood pressure, mean arterial pressure, and maximal oxygen uptake by VO2max were measured as CVR markers. A multivariate logistic regression analysis was used to assess associations between muscle strength and CVR markers. Inverse correlations were found between muscle strength and adiposity (r=-.317; P=.001), waist circumference (r=-.309; P=.001), systolic blood pressure (r=-.401; P=.001), and mean arterial pressure (r=-.256; P=.001). Subjects with lower levels of muscle strength had a 5.79-fold (95% CI 1.57 to 9.34; P=.008) risk of having higher adiposity levels (≥25%) and a 9.67-fold (95% CI=3.86 to 19.22; P<.001) risk of having lower physical capacity values for VO2max (≤31.5mL/kg/min(-1)). In sedentary adults, muscle strength is associated to early manifestations of CVR. It is suggested that muscle strength testing is added to routine measurement of VO2max and traditional risk factors for prevention and treatment of cardiovascular risk. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.
Relationship between the starting age of training and physical fitness in old age.
Aoyagi, Y; Katsuta, S
1990-03-01
The purpose of this study was to test the hypothesis that older persons can minimize the reduction in physical fitness with aging if they start training before approximately 50 years of age, beyond which strength decline has been reported to become more pronounced. Maximal values for isometric strength, dynamic strength and speed of movement of the biceps brachii and quadriceps muscles, back-lift strength, and predicted oxygen uptake (VO2max = VO2max) were measured in 39 male subjects who were 60-68 years old. Four groups were studied: T26, T45, T56, and untrained. The T26 group had been training (jogging 10 km.day-1, 5 days.wk-1 at 10 km.h-1) since before their mid-thirties (mean 26 years), the T45 group since their forties (mean 45 years), the T56 group since their fifties (mean 56 years), and the untrained group had never taken part in any systematic training. Collectively, the T26 and T45 groups had significantly (p less than 0.05) higher values for muscle strength, speed of contraction, and VO2max than the T56 and/or untrained group(s). However, no differences were observed between the T26 and T45 groups. The results support a relation between the starting age of training and the age-dependent decline of physical fitness. Thus, the hypothesis is accepted.
Wiesmüller, Marco; Quick, Harald H; Navalpakkam, Bharath; Lell, Michael M; Uder, Michael; Ritt, Philipp; Schmidt, Daniela; Beck, Michael; Kuwert, Torsten; von Gall, Carl C
2013-01-01
PET/MR hybrid scanners have recently been introduced, but not yet validated. The aim of this study was to compare the PET components of a PET/CT hybrid system and of a simultaneous whole-body PET/MR hybrid system with regard to reproducibility of lesion detection and quantitation of tracer uptake. A total of 46 patients underwent a whole-body PET/CT scan 1 h after injection and an average of 88 min later a second scan using a hybrid PET/MR system. The radioactive tracers used were (18)F-deoxyglucose (FDG), (18)F-ethylcholine (FEC) and (68)Ga-DOTATATE (Ga-DOTATATE). The PET images from PET/CT (PET(CT)) and from PET/MR (PET(MR)) were analysed for tracer-positive lesions. Regional tracer uptake in these foci was quantified using volumes of interest, and maximal and average standardized uptake values (SUV(max) and SUV(avg), respectively) were calculated. Of the 46 patients, 43 were eligible for comparison and statistical analysis. All lesions except one identified by PET(CT) were identified by PET(MR) (99.2 %). In 38 patients (88.4 %), the same number of foci were identified by PET(CT) and by PET(MR). In four patients, more lesions were identified by PET(MR) than by PET(CT), in one patient PET(CT) revealed an additional focus compared to PET(MR). The mean SUV(max) and SUV(avg) of all lesions determined by PET(MR) were by 21 % and 11 % lower, respectively, than the values determined by PET(CT) (p < 0.05), and a strong correlation between these variables was identified (Spearman rho 0.835; p < 0.01). PET/MR showed equivalent performance in terms of qualitative lesion detection to PET/CT. The differences demonstrated in quantitation of tracer uptake between PET(CT) and PET(MR) were minor, but statistically significant. Nevertheless, a more detailed study of the quantitative accuracy of PET(MR) and the factors governing it is needed to ultimately assess its accuracy in measuring tissue tracer concentrations.
Kundu, Soumyakanti; Kand, Purushottam; Basu, Sandip
2017-01-01
18-Fluorodeoxyglucose positron emission tomography (FDG-PET) has established a role in the evaluation of several malignancies. However, its precise clinical role in the neural crest cell tumors continues to evolve. The purpose of this study was to compare iodine-131 metaiodobenzylguanidine ( 131 I-MIBG) and FDG-PET of head to head in patients with neural crest tumors both qualitatively and semiquantitatively and to determine their clinical utility in disease status evaluation and further management. A total of 32 patients who had undergone 131 I-MIBG and FDG-PET prospectively were evaluated and clinicopathologically grouped into three categories: neuroblastoma, pheochromocytoma, and medullary carcinoma thyroid. In 18 patients of neuroblastoma, FDG PET and 131 I-MIBG showed patient-specific sensitivity of 84% and 72%, respectively. The mean maximum standardized uptake value (SUV max ) of primary lesions in patients with unfavorable histology was found to be relatively higher than those with favorable histology (5.18 ± 2.38 vs. 3.21 ± 1.69). The mean SUV max of two common sites (posterior superior iliac spine [PSIS] and greater trochanter) was higher in patients with involved marrow than those with uninvolved one (2.36 and 2.75 vs. 1.26 and 1.34, respectively). The ratio of SUV max of the involved/contralateral normal sites was 2.16 ± 1.9. In equivocal bone marrow results, the uptake pattern with SUV estimation can depict metastatic involvement and help in redirecting the biopsy site. Among seven patients of pheochromocytoma, FDG-PET revealed 100% patient-specific sensitivity. FDG-PET detected more metastatic foci than 131 I-MIBG (18 vs. 13 sites). In seven patients of medullary carcinoma thyroid, FDG-PET localized residual, recurrent, or metastatic disease with much higher sensitivity (32 metastatic foci with 72% patient specific sensitivity) than 131 I-MIBG, trending along the higher serum calcitonin levels. FDG-PET is not only a good complementary modality in the management of neural crest cell tumors but also it can even be superior, especially in cases of 131 I-MIBG nonavid tumors.
The Effects of a Ketogenic Diet on Exercise Metabolism and Physical Performance in Off-Road Cyclists
Zajac, Adam; Poprzecki, Stanisław; Maszczyk, Adam; Czuba, Miłosz; Michalczyk, Małgorzata; Zydek, Grzegorz
2014-01-01
The main objective of this research was to determine the effects of a long-term ketogenic diet, rich in polyunsaturated fatty acids, on aerobic performance and exercise metabolism in off-road cyclists. Additionally, the effects of this diet on body mass and body composition were evaluated, as well as those that occurred in the lipid and lipoprotein profiles due to the dietary intervention. The research material included eight male subjects, aged 28.3 ± 3.9 years, with at least five years of training experience that competed in off-road cycling. Each cyclist performed a continuous exercise protocol on a cycloergometer with varied intensity, after a mixed and ketogenic diet in a crossover design. The ketogenic diet stimulated favorable changes in body mass and body composition, as well as in the lipid and lipoprotein profiles. Important findings of the present study include a significant increase in the relative values of maximal oxygen uptake (VO2max) and oxygen uptake at lactate threshold (VO2 LT) after the ketogenic diet, which can be explained by reductions in body mass and fat mass and/or the greater oxygen uptake necessary to obtain the same energy yield as on a mixed diet, due to increased fat oxidation or by enhanced sympathetic activation. The max work load and the work load at lactate threshold were significantly higher after the mixed diet. The values of the respiratory exchange ratio (RER) were significantly lower at rest and during particular stages of the exercise protocol following the ketogenic diet. The heart rate (HR) and oxygen uptake were significantly higher at rest and during the first three stages of exercise after the ketogenic diet, while the reverse was true during the last stage of the exercise protocol conducted with maximal intensity. Creatine kinase (CK) and lactate dehydrogenase (LDH) activity were significantly lower at rest and during particular stages of the 105-min exercise protocol following the low carbohydrate ketogenic diet. The alterations in insulin and cortisol concentrations due to the dietary intervention confirm the concept that the glucostatic mechanism controls the hormonal and metabolic responses to exercise. PMID:24979615
Zajac, Adam; Poprzecki, Stanisław; Maszczyk, Adam; Czuba, Miłosz; Michalczyk, Małgorzata; Zydek, Grzegorz
2014-06-27
The main objective of this research was to determine the effects of a long-term ketogenic diet, rich in polyunsaturated fatty acids, on aerobic performance and exercise metabolism in off-road cyclists. Additionally, the effects of this diet on body mass and body composition were evaluated, as well as those that occurred in the lipid and lipoprotein profiles due to the dietary intervention. The research material included eight male subjects, aged 28.3 ± 3.9 years, with at least five years of training experience that competed in off-road cycling. Each cyclist performed a continuous exercise protocol on a cycloergometer with varied intensity, after a mixed and ketogenic diet in a crossover design. The ketogenic diet stimulated favorable changes in body mass and body composition, as well as in the lipid and lipoprotein profiles. Important findings of the present study include a significant increase in the relative values of maximal oxygen uptake (VO2max) and oxygen uptake at lactate threshold (VO2 LT) after the ketogenic diet, which can be explained by reductions in body mass and fat mass and/or the greater oxygen uptake necessary to obtain the same energy yield as on a mixed diet, due to increased fat oxidation or by enhanced sympathetic activation. The max work load and the work load at lactate threshold were significantly higher after the mixed diet. The values of the respiratory exchange ratio (RER) were significantly lower at rest and during particular stages of the exercise protocol following the ketogenic diet. The heart rate (HR) and oxygen uptake were significantly higher at rest and during the first three stages of exercise after the ketogenic diet, while the reverse was true during the last stage of the exercise protocol conducted with maximal intensity. Creatine kinase (CK) and lactate dehydrogenase (LDH) activity were significantly lower at rest and during particular stages of the 105-min exercise protocol following the low carbohydrate ketogenic diet. The alterations in insulin and cortisol concentrations due to the dietary intervention confirm the concept that the glucostatic mechanism controls the hormonal and metabolic responses to exercise.
Berry, Diane; Maloney, Ann E.; Sikich, Linmarie
2012-01-01
Abstract Objective The aim of our feasibility study was to examine the acceptability and utility of “Dance Dance Revolution” (DDR) (Konami of America, Redwood City, CA)) to increase physical fitness in 8–11-year-old black and Hispanic youth. Subjects and Methods Twenty-eight 4th and 5th grade children attending an afterschool program participated. Outcomes included physical activity, physical fitness, use of home DDR, survey of safety and acceptability, anthropometrics, and fasting metabolic profile measured at baseline, 12 weeks, and 30 weeks. Results At 12 weeks, physical fitness (maximum O2 uptake [VO2max]) increased by 4.9±9.9 percent and was sustained through 30 weeks, when the VO2max was 105.0±9.9 percent (range, 93.0–133.9 percent) of baseline values. Absolute VO2max increased by 2.97±4.99 mL/kg/minute (95% confidence interval 0.75–5.19, P=0.013). Participants maintained an average of 1.12 hours/day of increased movement to music. Trends suggested increased total moderate–vigorous physical activity, decreased light activity, and a modest increase in sedentary screen time. There were no significant changes in body mass index, fasting lipids, or glucose. Participants and parents approved of the activity. Conclusion DDR appears feasible and acceptable to minority youth. DDR may increase moderate–vigorous physical activity and improve physical fitness in at-risk populations. PMID:26196430
Bailey, Daniel P; Smith, Lindsey R; Chrismas, Bryna C; Taylor, Lee; Stensel, David J; Deighton, Kevin; Douglas, Jessica A; Kerr, Catherine J
2015-06-01
This study investigated the effects of continuous moderate-intensity exercise (MIE) and high-intensity interval exercise (HIIE) in combination with short exposure to hypoxia on appetite and plasma concentrations of acylated ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Twelve healthy males completed four, 2.6 h trials in a random order: (1) MIE-normoxia, (2) MIE-hypoxia, (3) HIIE-normoxia, and (4) HIIE-hypoxia. Exercise took place in an environmental chamber. During MIE, participants ran for 50 min at 70% of altitude-specific maximal oxygen uptake (V˙O2max) and during HIIE performed 6 × 3 min running at 90% V˙O2max interspersed with 6 × 3 min active recovery at 50% V˙O2max with a 7 min warm-up and cool-down at 70% V˙O2max (50 min total). In hypoxic trials, exercise was performed at a simulated altitude of 2980 m (14.5% O2). Exercise was completed after a standardised breakfast. A second meal standardised to 30% of participants' daily energy requirements was provided 45 min after exercise. Appetite was suppressed more in hypoxia than normoxia during exercise, post-exercise, and for the full 2.6 h trial period (linear mixed modelling, p <0.05). Plasma acylated ghrelin concentrations were lower in hypoxia than normoxia post-exercise and for the full 2.6 h trial period (p <0.05). PYY concentrations were higher in HIIE than MIE under hypoxic conditions during exercise (p = 0.042). No differences in GLP-1 were observed between conditions (p > 0.05). These findings demonstrate that short exposure to hypoxia causes suppressions in appetite and plasma acylated ghrelin concentrations. Furthermore, appetite responses to exercise do not appear to be influenced by exercise modality. Copyright © 2015 Elsevier Ltd. All rights reserved.
Koerber, Stefan A; Utzinger, Maximilian T; Kratochwil, Clemens; Kesch, Claudia; Haefner, Matthias F; Katayama, Sonja; Mier, Walter; Iagaru, Andrei H; Herfarth, Klaus; Haberkorn, Uwe; Debus, Juergen; Giesel, Frederik L
2017-12-01
68 Ga-prostate-specific membrane antigen (PSMA) PET/CT is a promising diagnostic tool for patients with prostate cancer. Our study evaluates SUVs in benign prostate tissue and malignant, intraprostatic tumor lesions and correlates results with several clinical parameters. Methods: One hundred four men with newly diagnosed prostate carcinoma and no previous therapy were included in this study. SUV max was measured and correlated with biopsy findings and MRI. Afterward, data were compared with current prostate-specific antigen (PSA) values, Gleason score (GS), and d'Amico risk classification. Results: In this investigation a mean SUV max of 1.88 ± 0.44 in healthy prostate tissue compared with 10.77 ± 8.45 in malignant prostate lesions ( P < 0.001) was observed. Patients with higher PSA, higher GS, and higher d'Amico risk score had statistically significant higher PSMA uptake on PET/CT ( P < 0.001 each). Conclusion: PSMA PET/CT is well suited for detecting the intraprostatic malignant lesion in patients with newly diagnosed prostate cancer. Our findings indicate a significant correlation of PSMA uptake with PSA, GS, and risk classification according to the d'Amico scale. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Szumowski, Piotr; Mojsak, Małgorzata; Abdelrazek, Saeid; Sykała, Monika; Amelian-Fiłonowicz, Anna; Jurgilewicz, Dorota; Myśliwiec, Janusz
2016-12-01
The therapeutic activity of 131 I administered to patients with Graves' disease can be calculated by means of Marinelli's formula. The thyroidal iodine uptake ( 131 IU max ) needed for the calculation is usually determined with the use of 131 I. The purpose of the paper was to estimate 131 IU max on the basis of technetium uptake in the thyroid at 20 min ( 99m TcU 20min ). Eighty patients suffering from Graves' disease were qualified for radioiodine therapy with measurement of fT 4 , fT 3 , thyroid-stimulating hormone and its receptor (TRAb). Prior to the treatment, all the patients were euthyroid. 131 IU max for each patient was determined according to the levels of 131 I after 24 h ( 131 IU 24h ), while effective half-life (T eff ) according to the measurements of 131 IU 24h and 131 I uptake after 48 h ( 131 IU 48h ). Additionally, on the day before measuring 131 IU 24h , 99m TcU 20min was calculated for each patient. It was demonstrated that there existed a correlation, with statistical significance at p < 0.05, between the following pairs of values: TRAb and 131 IU 24h , TRAb and 99m TcU 20min , and 99m TcU 20min and 131 IU 24h . The interdependence between 131 IU 24h and 99m TcU 20min at the level of significance p < 0.05 is described by the following algorithms: 131 IU 24h = 17.72 × ln ( 99m TcU 20min ) + 30.485, if TRAb < 10 IU/ml, and 131 IU 24h = 18.03 × ln ( 99m TcU 20min ) + 38.726, if TRAb > 10 IU/ml. It is possible to predict thyroid iodine uptake 131 IU 24h in Graves' disease on the basis of measuring the uptake of 99m TcU 20min . This shortens the time necessary for diagnosis and enables the calculation of 131 I activity using Marinelli's formula.
Fischer, Wiebke; Neubert, Reinhard H H; Brandsch, Matthias
2010-02-01
This study was performed to characterize the intestinal transport of beta-phenylethylamine (PEA). Uptake of [(14)C]PEA into Caco-2 cells was Na(+)-independent but strongly stimulated by an outside directed H(+) gradient. At extracellular pH 7.5, the concentration-dependent uptake of PEA was saturable with kinetic parameters of 2.6mM (K(t)) and 96.2nmol/min per mg of protein (V(max)). Several biogenic amines such as harmaline and N-methylphenylethylamine as well as cationic drugs such as phenelzine, tranylcypromine, d,l-amphetamine, methadone, chlorphenamine, diphenhydramine and promethazine strongly inhibited the [(14)C]PEA uptake with K(i) values around 1mM. Tetraethylammonium, N-methyl-4-phenylpyridinium and choline had no effect. We also studied the bidirectional transepithelial transport of [(14)C]PEA at cell monolayers cultured on permeable filters. Net transepithelial flux of [(14)C]PEA from apical-to-basolateral side exceeded basolateral-to-apical flux 5-fold. We conclude that PEA is transported into Caco-2 cells by a highly active, saturable, H(+)-dependent (antiport) process. The transport characteristics do not correspond to those of the known carriers for organic cations of the SLC22, SLC44, SLC47 and other families. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Relationship between Short-Form Health SF36 Questionnaire and oxygen uptake in healthy workers.
Oscar García López, Oscar; Duarte Bedoya, Álvaro; Jiménez Gutiérrez, Alfonso; Burgos Postigo, Silvia
2016-03-01
Physical activity is associated with better health levels, and cardiopulmonary fitness is recognized as one of the best indicators of physical performance, which can be related with some items of quality of life (QoL). The aim of this study was to analyze the relationship between the QoL and cardiorespiratory fitness (VO2max) of healthy workers, measured with the Short-Form Health Survey SF36 and incremental cardiopulmonary Test. Sample was formed by 250 healthy workers (90 men, mean age 37.25 and 160 female, mean age 37.91). Analyzing the results, VO2's Mean values were higher in men (39.00 mL/kg/min SD 7.56) than in women (29.70 mL/kg/min SD 5.73) with significant differences (P<0.01). We found differences in all dimensions of SF36 indicating that men had higher scores than women, but significant differences between both are present only in physical functioning (PF) (P<0.01). Correlating the values obtained in the domains of Questionnaire SF36 and the Vo2 Max, correlation was significant (positive) in PF (0.276), bodily pain (0.189), general health (0.155), vitality (0.241) and mental health (0.129). Results showed that better cardiorespiratory fitness is related to higher scores in SF36. These findings suggest that if the values of oxygen uptake in healthy workers are higher, results in SF36 will be better. Therefore it can be assumed that having a good fitness means having a better QoL.
Supiot, Stéphane; Rousseau, Caroline; Dore, Mélanie; Cheze-Le-Rest, Catherine; Kandel-Aznar, Christine; Potiron, Vincent; Guerif, Stéphane; Paris, François; Ferrer, Ludovic; Campion, Loïc; Meingan, Philippe; Delpon, Gregory; Hatt, Mathieu; Visvikis, Dimitris
2018-02-09
Hypoxia is a major factor in prostate cancer aggressiveness and radioresistance. Predicting which patients might be bad candidates for radiotherapy may help better personalize treatment decisions in intermediate-risk prostate cancer patients. We assessed spatial distribution of 18 F-Misonidazole (FMISO) PET/CT uptake in the prostate prior to radiotherapy treatment. Intermediate-risk prostate cancer patients about to receive high-dose (>74 Gy) radiotherapy to the prostate without hormonal treatment were prospectively recruited between 9/2012 and 10/2014. Prior to radiotherapy, all patients underwent a FMISO PET/CT as well as a MRI and 18 F-choline-PET. 18 F-choline and FMISO-positive volumes were semi-automatically determined using the fuzzy locally adaptive Bayesian (FLAB) method. In FMISO-positive patients, a dynamic analysis of early tumor uptake was performed. Group differences were assessed using the Wilcoxon signed rank test. Parameters were correlated using Spearman rank correlation. Of 27 patients (median age 76) recruited to the study, 7 and 9 patients were considered positive at 2.5h and 3.5h FMISO PET/CT respectively. Median SUV max and SUV max tumor to muscle (T/M) ratio were respectively 3.4 and 3.6 at 2.5h, and 3.2 and 4.4 at 3.5h. The median FMISO-positive volume was 1.1 ml. This is the first study regarding hypoxia imaging using FMISO in prostate cancer showing that a small FMISO-positive volume was detected in one third of intermediate-risk prostate cancer patients.
Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG.
Chen, Wei; Cloughesy, Timothy; Kamdar, Nirav; Satyamurthy, Nagichettiar; Bergsneider, Marvin; Liau, Linda; Mischel, Paul; Czernin, Johannes; Phelps, Michael E; Silverman, Daniel H S
2005-06-01
3'-Deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a recently developed PET tracer to image tumor cell proliferation. We characterized (18)F-FLT PET of brain gliomas and compared (18)F-FLT with (18)F-FDG PET in side-by-side studies of the same patients. Twenty-five patients with newly diagnosed or previously treated glioma underwent PET with (18)F-FLT and (18)F-FDG on consecutive days. Three stable patients in long-term remission were included as negative control subjects. Tracer kinetics in normal brain and tumor were measured. Uptake of (18)F-FLT and (18)F-FDG was quantified by the standardized uptake value (SUV) and the tumor-to-normal tissue (T/N) ratio. The accuracy of (18)F-FLT and (18)F-FDG PET in evaluating newly diagnosed and recurrent gliomas was compared. More than half of the patients underwent resection after the PET study and correlations between PET uptake and the Ki-67 proliferation index were examined. Patients were monitored for a mean of 15.4 mo (range, 12-20 mo). The predictive power of PET for tumor progression and survival was analyzed using Kaplan-Meier statistics. (18)F-FLT uptake in tumors was rapid, peaking at 5-10 min after injection and remaining stable up to 75 min. Hence, a 30-min scan beginning at 5 min after injection was sufficient for imaging. (18)F-FLT visualized all high-grade (grade III or IV) tumors. Grade II tumor did not show appreciable (18)F-FLT uptake and neither did the stable lesions. The absolute uptake of (18)F-FLT was low (maximum-pixel SUV [SUV(max)], 1.33) but image contrast was better than with (18)F-FDG (T/N ratio, 3.85 vs. 1.49). (18)F-FDG PET studies were negative in 5 patients with recurrent high-grade glioma who subsequently suffered tumor progression within 1-3 mo. (18)F-FLT SUV(max) correlated more strongly with Ki-67 index (r = 0.84; P < 0.0001) than (18)F-FDG SUV(max) (r = 0.51; P = 0.07). (18)F-FLT uptake also had more significant predictive power with respect to tumor progression and survival (P = 0.0005 and P = 0.001, respectively). Thirty-minute (18)F-FLT PET 5 min after injection was more sensitive than (18)F-FDG to image recurrent high-grade tumors, correlated better with Ki-67 values, and was a more powerful predictor of tumor progression and survival. Thus, (18)F-FLT appears to be a promising tracer as a surrogate marker of proliferation in high-grade gliomas.
Size evolution in microorganisms masks trade-offs predicted by the growth rate hypothesis.
Gounand, Isabelle; Daufresne, Tanguy; Gravel, Dominique; Bouvier, Corinne; Bouvier, Thierry; Combe, Marine; Gougat-Barbera, Claire; Poly, Franck; Torres-Barceló, Clara; Mouquet, Nicolas
2016-12-28
Adaptation to local resource availability depends on responses in growth rate and nutrient acquisition. The growth rate hypothesis (GRH) suggests that growing fast should impair competitive abilities for phosphorus and nitrogen due to high demand for biosynthesis. However, in microorganisms, size influences both growth and uptake rates, which may mask trade-offs and instead generate a positive relationship between these traits (size hypothesis, SH). Here, we evolved a gradient of maximum growth rate (μ max ) from a single bacterium ancestor to test the relationship among μ max , competitive ability for nutrients and cell size, while controlling for evolutionary history. We found a strong positive correlation between μ max and competitive ability for phosphorus, associated with a trade-off between μ max and cell size: strains selected for high μ max were smaller and better competitors for phosphorus. Our results strongly support the SH, while the trade-offs expected under GRH were not apparent. Beyond plasticity, unicellular populations can respond rapidly to selection pressure through joint evolution of their size and maximum growth rate. Our study stresses that physiological links between these traits tightly shape the evolution of competitive strategies. © 2016 The Author(s).
Regier, M; Derlin, T; Schwarz, D; Laqmani, A; Henes, F O; Groth, M; Buhk, J-H; Kooijman, H; Adam, G
2012-10-01
To investigate the potential correlation of the apparent diffusion coefficient assessed by diffusion-weighted MRI (DWI) and glucose metabolism determined by the standardized uptake value (SUV) at 18F-FDG PET/CT in non-small cell lung cancer (NSCLC). 18F-FDG PET/CT and DWI (TR/TE, 2000/66 ms; b-values, 0 and 500 s/mm(2)) were performed in 41 consecutive patients with histologically verified NSCLC. Analysing the PET-CT data calculation of the mean (SUV(mean)) and maximum (SUV(max)) SUV was performed. By placing a region-of-interest (ROI) encovering the entire tumor mean (ADC(mean)) and minimum ADC (ADC(min)) were determined by two independent radiologists. Results of 18F-FDG PET-CT and DWI were compared on a per-patient basis. For statistical analysis Pearson's correlation coefficient, Bland-Altman and regression analysis were assessed. Data analysis revealed a significant inverse correlation of the ADC(min) and SUV(max) (r=-0.46; p=0.032). Testing the correlation of the ADC(min) and SUV(max) for each histological subtype separately revealed that the inverse correlation was good for both adenocarcinomas (r=-0.47; p=0.03) and squamouscell carcinomas (r=-0.71; p=0.002), respectively. No significant correlation was found for the comparison of ADC(min) and SUV(mean) (r=-0.29; p=0.27), ADC(mean) vs. SUV(mean) (r=-0.28; p=0.31) or ADC(mean) vs. SUV(max) (r=-0.33; p=0.23). The κ-value of 0.88 indicated a good agreement between both observers. This preliminary study is the first to verify the relation between the SUV and the ADC in NSCLC. The significant inverse correlation of these two quantitative imaging approaches points out the association of metabolic activity and tumor cellularity. Therefore, DWI with ADC measurement might represent a new prognostic marker in NSCLC. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Kramer, G M; Liu, Y; de Langen, A J; Jansma, E P; Trigonis, I; Asselin, M-C; Jackson, A; Kenny, L; Aboagye, E O; Hoekstra, O S; Boellaard, R
2018-06-01
3'-deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT) positron emission tomography (PET) provides a non-invasive method to assess cellular proliferation and response to antitumor therapy. Quantitative 18 F-FLT uptake metrics are being used for evaluation of proliferative response in investigational setting, however multi-center repeatability needs to be established. The aim of this study was to determine the repeatability of 18 F-FLT tumor uptake metrics by re-analyzing individual patient data from previously published reports using the same tumor segmentation method and repeatability metrics across cohorts. A systematic search in PubMed, EMBASE.com and the Cochrane Library from inception-October 2016 yielded five 18 F-FLT repeatability cohorts in solid tumors. 18 F-FLT avid lesions were delineated using a 50% isocontour adapted for local background on test and retest scans. SUV max , SUV mean , SUV peak , proliferative volume and total lesion uptake (TLU) were calculated. Repeatability was assessed using the repeatability coefficient (RC = 1.96 × SD of test-retest differences), linear regression analysis, and the intra-class correlation coefficient (ICC). The impact of different lesion selection criteria was also evaluated. Images from four cohorts containing 30 patients with 52 lesions were obtained and analyzed (ten in breast cancer, nine in head and neck squamous cell carcinoma, and 33 in non-small cell lung cancer patients). A good correlation was found between test-retest data for all 18 F-FLT uptake metrics (R 2 ≥ 0.93; ICC ≥ 0.96). Best repeatability was found for SUV peak (RC: 23.1%), without significant differences in RC between different SUV metrics. Repeatability of proliferative volume (RC: 36.0%) and TLU (RC: 36.4%) was worse than SUV. Lesion selection methods based on SUV max ≥ 4.0 improved the repeatability of volumetric metrics (RC: 26-28%), but did not affect the repeatability of SUV metrics. In multi-center studies, differences ≥ 25% in 18 F-FLT SUV metrics likely represent a true change in tumor uptake. Larger differences are required for FLT metrics comprising volume estimates when no lesion selection criteria are applied.
Cyclic variations in nitrogen uptake rate in soybean plants: uptake during reproductive growth
NASA Technical Reports Server (NTRS)
Vessey, J. K.; Raper, C. D. Jr; Henry, L. T.; Raper CD, J. r. (Principal Investigator)
1990-01-01
Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic culture was measured daily during a 63 d period of reproductive development between the first florally inductive photoperiod and [unknown word] seed growth. Removal of NO3- from a replenished solution containing 1.0 mol m-3 NO3- was determined by ion chromatography. Uptake of NO3- continued throughout reproductive development. The net uptake rate of NO3- cycled between maxima and minima with a periodicity of oscillation of 3 to 7 d during the floral stage and about 6 d during the fruiting stage. Coupled with increasing concentrations of carbon and C : N ratios in tissues, the oscillations in net uptake rates of NO3- are evidence that the demand for carbohydrate by reproductive organs is contingent on the availability of nitrogen in the shoot pool rather than that the demand for nitrogen follows the flux of carbohydrate into reproductive tissues.
Effects of Strength Training on Postpubertal Adolescent Distance Runners.
Blagrove, Richard C; Howe, Louis P; Cushion, Emily J; Spence, Adam; Howatson, Glyn; Pedlar, Charles R; Hayes, Philip R
2018-06-01
Strength training activities have consistently been shown to improve running economy (RE) and neuromuscular characteristics, such as force-producing ability and maximal speed, in adult distance runners. However, the effects on adolescent (<18 yr) runners remains elusive. This randomized control trial aimed to examine the effect of strength training on several important physiological and neuromuscular qualities associated with distance running performance. Participants (n = 25, 13 female, 17.2 ± 1.2 yr) were paired according to their sex and RE and randomly assigned to a 10-wk strength training group (STG) or a control group who continued their regular training. The STG performed twice weekly sessions of plyometric, sprint, and resistance training in addition to their normal running. Outcome measures included body mass, maximal oxygen uptake (V˙O2max), speed at V˙O2max, RE (quantified as energy cost), speed at fixed blood lactate concentrations, 20-m sprint, and maximal voluntary contraction during an isometric quarter-squat. Eighteen participants (STG: n = 9, 16.1 ± 1.1 yr; control group: n = 9, 17.6 ± 1.2 yr) completed the study. The STG displayed small improvements (3.2%-3.7%; effect size (ES), 0.31-0.51) in RE that were inferred as "possibly beneficial" for an average of three submaximal speeds. Trivial or small changes were observed for body composition variables, V˙O2max and speed at V˙O2max; however, the training period provided likely benefits to speed at fixed blood lactate concentrations in both groups. Strength training elicited a very likely benefit and a possible benefit to sprint time (ES, 0.32) and maximal voluntary contraction (ES, 0.86), respectively. Ten weeks of strength training added to the program of a postpubertal distance runner was highly likely to improve maximal speed and enhances RE by a small extent, without deleterious effects on body composition or other aerobic parameters.
Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos
2012-04-30
We report the various characteristics of Pt-K/MgAl{sub 2}O{sub 4} lean NOx trap (LNT) catalysts including the effect of K loading on nitrate formation/decomposition, NOx storage activity and durability. Upon the adsorption of NO{sub 2} on K/MgAl{sub 2}O{sub 4} samples, potassium nitrates formed on Mg-related sites in MgAl{sub 2}O{sub 4} support are observed, in addition to the typical two potassium nitrates (ionic and bidentate) formed also on Al{sub 2}O{sub 3} supported sample. Based on NO{sub 2} TPD and FTIR results, the Mg-bound KNO{sub 3} thermally decompose at higher temperature than Al-bound KNO{sub 3}, implying its superior thermal stability. At a potassiummore » loading of 5wt%, the temperature of maximum NOx uptake (T{sub max}) is 300 C. Increasing the potassium loading from 5wt% to 10 wt%, the T{sub max} gradually shifted from 300 C to 450 C, indicating the dependence of T{sub max} on the potassium loading. However, increase in potassium loading above 10 wt% only gives rise to the reduction in the overall NOx storage capacity. This work also underlines the obstacles these materials have prior to their practical application (e.g., durability and sulfur poisoning/ removal). This work provides fundamental understanding of Pt-K/MgAl{sub 2}O{sub 4}-based lean NOx trap catalysts, which could be good candidates for high temperature LNT applications.« less
Ratings of perceived exertion in braille: validity and reliability in production mode.
Buckley, J P; Eston, R G; Sim, J
2000-08-01
(a) To assess the validity and reliability of producing and reproducing a given exercise intensity during cycle ergometry using a braille version of Borg's standard 6-20 rating of perceived exertion (RPE) scale, and (b) to determine whether the exercise responses of blind participants, at a given produced RPE, were similar to those reported in recognised guidelines for sighted subjects. Ten healthy registered blind volunteer participants (four women, six men; mean (SD) age 23.2 (9.0) years) performed an initial graded exercise cycle test to determine maximal heart rate (HRMAx) and maximal oxygen uptake (VO2MAX). Three trials of three exercise bouts at RPEs 9, 11, and 13 were then performed in random order on three separate days of the same week, with expired air and heart rate measured continuously. Each exercise bout was followed by 10 minutes of rest. The validity of the scale as a means of producing different exercise intensities was assessed using a two factor (RPE x trial) repeated measures analysis of variance. Intertrial reliability was assessed using intraclass correlation coefficients (ICC) and the bias +/-95% limits of agreement (95%LoA) procedure. Participants reported no difficulty in using the braille RPE scale. When asked to produce exercise intensities equating to RPE 9, 11, and 13, they elicited mean %VO2MAX values of 47%, 53%, and 63% respectively. Analysis of variance showed no significant differences in either %HRMAx or %VO2MAX between trials at each of the three RPEs, but there was a significant difference (p<0.001) in both %HRMAx and %VO2MAX between the three RPE levels. All pairwise comparisons of the three different RPEs were significantly different (p<0.016). The ICC between the second and third trial for %HRMAx was significant (p <0.05) for all three RPEs. Similarly for %VO2MAX, the ICC was significant for RPE 9 and 11 but not 13. The 95%LoA decreased for both %HRMAx and %VO2MAX with each successive trial. Blind participants were successful in using a braille RPE scale to differentiate exercise intensity on a cycle ergometer. In every trial at RPE 13, all participants achieved %HRMAX and %VO2MAX levels, which fell within the recommendedrange for developing cardiorespiratory fitness. Using %HRMAx as a judge of intertrial reliability, the participants were able to repeat similar exercise intensities after two trials at each of the three RPEs (9, 11,13). The same was true for RPE 9 and 11, when %VO2MAX was used as a judge, but further trials were required to achieve similar reliability at RPE 13. A braille RPE scale can be used by healthy blind people during cycle ergometry, with similar effect to the visual analogue scale recommended for use in healthy sighted people.
Metabolic and Cardiovascular Responses to Upright Cycle Exercise with Leg Blood Flow Reduction
Ozaki, Hayao; Brechue, William F.; Sakamaki, Mikako; Yasuda, Tomohiro; Nishikawa, Masato; Aoki, Norikazu; Ogita, Futoshi; Abe, Takashi
2010-01-01
The purpose of this study was to examine the metabolic and cardiovascular response to exercise without (CON) or with (BFR) restricted blood flow to the muscles. Ten young men performed upright cycle exercise at 20, 40, and 60% of maximal oxygen uptake, VO2max in both conditions while metabolic and cardiovascular parameters were determined. Pre-exercise VO2 was not different between CON and BFR. Cardiac output (Q) was similar between the two conditions as a 25% reduction in stroke volume (SV) observed in BFR was associated with a 23% higher heart rate (HR) in BFR compared to CON. As a result rate-pressure product (RPP) was higher in the BFR but there was no difference in mean arterial pressure (MAP) or total peripheral resistance (TPR). During exercise, VO2 tended to increase with BFR (~10%) at each workload. Q increased in proportion to exercise intensity and there were no differences between conditions. The increase in SV with exercise was impaired during BFR; being ~20% lower in BFR at each workload. Both HR and RPP were significantly greater at each workload with BFR. MAP and TPR were greater with BFR at 40 and 60% VO2max. In conclusion, the BFR employed impairs exercise SV but central cardiovascular function is maintained by an increased HR. BFR appears to result in a greater energy demand during continuous exercise between 20 and 60% of control VO2max; probably indicated by a higher energy supply and RPP. When incorporating BFR, HR and RPP may not be valid or reliable indicators of exercise intensity. Key points Blood flow reduction (BFR) employed impairs stroke volume (SV) during exercise, but central cardiovascular function is maintained by an increased heart rate (HR). BFR appears to result in a greater energy demand during continuous exercise between 20 and 60% of control VO2max; Probably indicated by a higher energy supply (VO2) and rate-pressure product (HR x systolic blood pressure). PMID:24149689
Kacerovsky-Bielesz, Gertrud; Kacerovsky, Michaela; Chmelik, Marek; Farukuoye, Michaela; Ling, Charlotte; Pokan, Rochus; Tschan, Harald; Szendroedi, Julia; Schmid, Albrecht Ingo; Gruber, Stephan; Herder, Christian; Wolzt, Michael; Moser, Ewald; Pacini, Giovanni; Smekal, Gerhard; Groop, Leif; Roden, Michael
2012-01-01
OBJECTIVE Myocellular ATP synthesis (fATP) associates with insulin sensitivity in first-degree relatives of subjects with type 2 diabetes. Short-term endurance training can modify their fATP and insulin sensitivity. This study examines the effects of moderate long-term exercise using endurance or resistance training in this cohort. RESEARCH DESIGN AND METHODS A randomized, parallel-group trial tested 16 glucose-tolerant nonobese relatives (8 subjects in the endurance training group and 8 subjects in the resistance training group) before and after 26 weeks of endurance or resistance training. Exercise performance was assessed from power output and oxygen uptake (Vo2) during incremental tests and from maximal torque of knee flexors (MaxTflex) and extensors (MaxText) using isokinetic dynamometry. fATP and ectopic lipids were measured with 1H/31P magnetic resonance spectroscopy. RESULTS Endurance training increased power output and Vo2 by 44 and 30%, respectively (both P < 0.001), whereas resistance training increased MaxText and MaxTflex by 23 and 40%, respectively (both P < 0.001). Across all groups, insulin sensitivity (382 ± 90 vs. 389 ± 40 mL ⋅ min−1 ⋅ m−2) and ectopic lipid contents were comparable after exercise training. However, 8 of 16 relatives had 26% greater fATP, increasing from 9.5 ± 2.3 to 11.9 ± 2.4 μmol ⋅ mL−1 ⋅ m−1 (P < 0.05). Six of eight responders were carriers of the G/G single nucleotide polymorphism rs540467 of the NDUFB6 gene (P = 0.019), which encodes a subunit of mitochondrial complex I. CONCLUSIONS Moderate exercise training for 6 months does not necessarily improve insulin sensitivity but may increase ATP synthase flux. Genetic predisposition can modify the individual response of the ATP synthase flux independently of insulin sensitivity. PMID:22190678
Exercise Training During +Gz Acceleration
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Chou, J. L.; Simonson, S. R.; Jackson, C. G. R.; Barnes, P. R.
1999-01-01
The overall purpose is to study the effect of passive (without exercise) and active (with exercise) +Gz (head-to-foot) acceleration training, using a short-arm (1.9m radius) centrifuge, on post- training maximal oxygen uptake (VO2 max, work capacity) and 70 deg head-up tilt (orthostatic) tolerance in ambulatory subjects to test the hypothesis that (a) both passive and active acceleration training will improve post-training tilt-tolerance, and (b) there will be no difference in tilt-tolerance between passive and active exercise acceleration training because increased hydrostatic and blood pressures, rather than increased muscular metabolism, will provide the major adaptive stimulus. The purpose of the pilot study was to test the hypothesis that there would be no significant difference in the metabolic responses (oxygen uptake, heart rate, pulmonary ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.
High intensity interval exercise training in overweight young women.
Sijie, T; Hainai, Y; Fengying, Y; Jianxiong, W
2012-06-01
The purpose of this study was intended to evaluate the effects of a high intensity interval training (HIIT) program on the body composition, cardiac function and aerobic capacity in overweight young women. Sixty female university students (aged 19-20, BMI≥25kg/m2 and percentage body fat ≥ 30%) were chosen and then randomly assigned to each of the HIIT group, the moderate intensity continuous training (MICT) group and the non-training control group. The subjects in both the HIIT and MICT groups underwent exercise training five times per week for 12 weeks. In each of the training sessions, the HIIT group performed interval exercises at the individualized heart rate (HR) of 85% of VO2max and separated by brief periods of low intensity activity (HR at 50% of VO2max), while the MICT group did continuous walking and/or jogging at the individualized HR of 50% of VO2max. Both of these exercise training programs produced significant improvements in the subjects' body composition, left ventricular ejection fraction, heart rate at rest, maximal oxygen uptake and ventilatory threshold. However, the HIIT group achieved better results than those in the MICT group, as it was evaluated by the amount of the effect size. The control group did not achieve any change in all of the measured variables. The tangible results achieved by our relatively large groups of homogeneous subjects have demonstrated that the HIIT program is an effective measure for the treatment of young women who are overweight.
Lynch, Heidi M.; Wharton, Christopher M.; Johnston, Carol S.
2016-01-01
In spite of well-documented health benefits of vegetarian diets, less is known regarding the effects of these diets on athletic performance. In this cross-sectional study, we compared elite vegetarian and omnivore adult endurance athletes for maximal oxygen uptake (VO2 max) and strength. Twenty-seven vegetarian (VEG) and 43 omnivore (OMN) athletes were evaluated using VO2 max testing on the treadmill, and strength assessment using a dynamometer to determine peak torque for leg extensions. Dietary data were assessed using detailed seven-day food logs. Although total protein intake was lower among vegetarians in comparison to omnivores, protein intake as a function of body mass did not differ by group (1.2 ± 0.3 and 1.4 ± 0.5 g/kg body mass for VEG and OMN respectively, p = 0.220). VO2 max differed for females by diet group (53.0 ± 6.9 and 47.1 ± 8.6 mL/kg/min for VEG and OMN respectively, p < 0.05) but not for males (62.6 ± 15.4 and 55.7 ± 8.4 mL/kg/min respectively). Peak torque did not differ significantly between diet groups. Results from this study indicate that vegetarian endurance athletes’ cardiorespiratory fitness was greater than that for their omnivorous counterparts, but that peak torque did not differ between diet groups. These data suggest that vegetarian diets do not compromise performance outcomes and may facilitate aerobic capacity in athletes. PMID:27854281
Lynch, Heidi M; Wharton, Christopher M; Johnston, Carol S
2016-11-15
In spite of well-documented health benefits of vegetarian diets, less is known regarding the effects of these diets on athletic performance. In this cross-sectional study, we compared elite vegetarian and omnivore adult endurance athletes for maximal oxygen uptake (VO2 max) and strength. Twenty-seven vegetarian (VEG) and 43 omnivore (OMN) athletes were evaluated using VO2 max testing on the treadmill, and strength assessment using a dynamometer to determine peak torque for leg extensions. Dietary data were assessed using detailed seven-day food logs. Although total protein intake was lower among vegetarians in comparison to omnivores, protein intake as a function of body mass did not differ by group (1.2 ± 0.3 and 1.4 ± 0.5 g/kg body mass for VEG and OMN respectively, p = 0.220). VO2 max differed for females by diet group (53.0 ± 6.9 and 47.1 ± 8.6 mL/kg/min for VEG and OMN respectively, p < 0.05) but not for males (62.6 ± 15.4 and 55.7 ± 8.4 mL/kg/min respectively). Peak torque did not differ significantly between diet groups. Results from this study indicate that vegetarian endurance athletes' cardiorespiratory fitness was greater than that for their omnivorous counterparts, but that peak torque did not differ between diet groups. These data suggest that vegetarian diets do not compromise performance outcomes and may facilitate aerobic capacity in athletes.
Mandlik, Satish K; Ranpise, Nisharani S; Mohanty, Bhabani S; Chaudhari, Pradip R
2018-06-01
The present investigation deals with preparation and characterization of anti-migraine zolmitriptan (ZMT) nanostructured polymeric carriers for nose to brain drug targeting. The drug-loaded colloidal nanocarriers of ZMT were prepared by modified ionic gelation of cationic chitosan with anionic sodium tripolyphosphate and characterized for particle size, zeta potential, and entrapment efficiency. Further, in order to investigate nose to brain drug targeting, biodistribution, and brain kinetics studies were performed using 99m technetium radiolabeled nanocarriers ( 99m Tc-ZMTNP) in Swiss albino mice. The results were compared with intranasal pure drug solution ( 99m Tc-ZMT) and intravenous nanocarriers ( 99m Tc-ZMTNP). A single photon emission computerized tomography (SPECT) radioimaging studies were also carried out to visualize and confirm brain uptake of nanocarriers. The optimized nanocarriers showed particle size of 161 nm, entrapment efficiency of 80.6%, and zeta potential of + 23.7 mV. The pharmacokinetic parameters, C max , and AUC 0-∞ values for ZMT concentration in the brain expressed as percent radioactivity per gram of brain in intranasal and intravenous route of administration were calculated. The brain C max and AUC 0-∞ values found in three groups, intranasal 99m Tc-ZMTNP, intranasal 99m Tc-ZMT, and intravenous 99m Tc-ZMTNP were (0.427 and 1.889), (0.272 and 0.7157), and (0.204 and 0.9333), respectively. The higher C max values of intranasal 99m Tc-ZMTNP suggests better brain uptake as compared to other routes of administration. The significant higher values of nose to brain targeting parameters namely, drug targeting index (5.57), drug targeting efficiency (557.08%), and nose to brain drug direct transport (82.05%) confirmed drug targeting to brain via nasal route. The coupled bimodal SPECT-CT scintigrams confirm the brain uptake of intranasal 99m Tc-ZMTNP demonstrating major radioactivity accumulation in brain. This study conclusively demonstrated the greater uptake of ZMT-loaded nanocarriers by nose to brain drug targeting, which proves promising drug delivery system.
Hakeem Said, Inamullah; Gencer, Selin; Ullrich, Matthias S; Kuhnert, Nikolai
2018-06-01
Dietary phenolic compounds are often transformed by gut microbiota prior to absorption. This transformation may modulate their biological activities. Many fundamental questions still need to be addressed to understand how the gut microbiota-diet interactions affect human health. Herein, a UHPLC-QTOF mass spectrometry-based method for the quantification of uptake and determination of intracellular bacterial concentrations of dietary phenolics from coffee and tea was developed. Quantitative uptake data for selected single purified phenolics were determined. The specific uptake from mixtures containing up to four dietary relevant compounds was investigated to assess changes of uptake parameters in a mixture model system. Indeed, perturbation of bacteria by several compounds alters uptake parameter in particular t max . Finally, model bacteria were dosed with complex dietary mixtures such as diluted tea or coffee extracts. The uptake kinetics of the twenty most abundant phenolics was quantified and the findings are discussed. For the first time, quantitative data on in-vitro uptake of dietary phenolics from food matrices were obtained indicating a time-dependent differential uptake of nutritional compounds. Copyright © 2018. Published by Elsevier Ltd.
Ben Abderrahman, Abderraouf; Zouhal, Hassane; Chamari, Karim; Thevenet, Delphine; de Mullenheim, Pierre-Yves; Gastinger, Steven; Tabka, Zouhair; Prioux, Jacques
2013-06-01
The aim of this longitudinal study was to compare two recovery modes (active vs. passive) during a seven-week high-intensity interval training program (SWHITP) aimed to improve maximal oxygen uptake ([Formula: see text]), maximal aerobic velocity (MAV), time to exhaustion (t lim) and time spent at a high percentage of [Formula: see text], i.e., above 90 % (t90 [Formula: see text]) and 95 % (t95 [Formula: see text]) of [Formula: see text]. Twenty-four adults were randomly assigned to a control group that did not train (CG, n = 6) and two training groups: intermittent exercise (30 s exercise/30 s recovery) with active (IEA, n = 9) or passive recovery (IEP, n = 9). Before and after seven weeks with (IEA and IEP) or without (CG) high-intensity interval training (HIT) program, all subjects performed a maximal graded test to determine their [Formula: see text] and MAV. Subsequently only the subjects of IEA and IEP groups carried out an intermittent exercise test consisting of repeating as long as possible 30 s intensive runs at 105 % of MAV alternating with 30 s active recovery at 50 % of MAV (IEA) or 30 s passive recovery (IEP). Within IEA and IEP, mean t lim and MAV significantly increased between the onset and the end of the SWHITP and no significant difference was found in t90 VO2max and t95 VO2max. Furthermore, before and after the SWHITP, passive recovery allowed a longer t lim for a similar time spent at a high percentage of VO2max. Finally, within IEA, but not in IEP, mean VO2max increased significantly between the onset and the end of the SWHITP both in absolute (p < 0.01) and relative values (p < 0.05). In conclusion, our results showed a significant increase in VO2max after a SWHITP with active recovery in spite of the fact that t lim was significantly longer (more than twice longer) with respect to passive recovery.
Effects of hydrogen rich water on prolonged intermittent exercise.
Da Ponte, Alessandro; Giovanelli, Nicola; Nigris, Daniele; Lazzer, Stefano
2018-05-01
Recent studies showed a positive effect of hydrogen rich water (HRW) intake on acid-base homeostasis at rest. We investigated 2-weeks of HRW intake on repeated sprint performance and acid-base status during prolonged intermittent cycling exercise. In a cross over single-blind protocol, 8 trained male cyclists (age [mean±SD] 41±7 years, body mass 72.3±4.4 kg, height 1.77±0.04 m, maximal oxygen uptake [V̇O2max] 52.6±4.4 mL·kg-1·min-1) were provided daily with 2 liters of placebo normal water (PLA, pH 7.6, oxidation/reduction potential [ORP] +230 mV, free hydrogen content 0 ppb) or HRW (pH 9.8, ORP -180 mV, free Hydrogen 450 ppb). Tests were performed at baseline and after each period of 2 weeks of treatment. The treatments were counter-balanced and the sequence randomized. The 30-minute intermittent cycling trial consisted in 10 3-minute blocks, each one composed by 90 seconds at 40% V̇O2max, 60 seconds at 60% V̇O2max, 16 seconds all out sprint, and 14 seconds active recovery. Oxygen uptake (V̇O2), heart rate and power output were measured during the whole test, while mean and peak power output (PPO), time to peak power and Fatigue Index (FI) were determined during all the 16 seconds sprints. Lactate, pH and bicarbonate (HCO3-) concentrations were determined at rest and after each sprint on blood obtained by an antecubital vein indwelling catheter. In the PLA group, PPO in absolute values decreased significantly at the 8th and 9th of 10 sprints and in relative values, ΔPPO, decreased significantly at 6th, 8th and 9th of 10 sprints (by mean: -12±5%, P<0.006), while it remained unchanged in HRW group. Mean power, FI, time to peak power and total work showed no differences between groups. In both conditions lactate levels increased while pH and HCO3- decreased progressively as a function of the number of sprints. Two weeks of HRW intake may help to maintain PPO in repetitive sprints to exhaustion over 30 minutes.
Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source
NASA Technical Reports Server (NTRS)
Henry, L. T.; Raper, C. D. Jr
1989-01-01
When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.
Singh, Jiwan; Lee, Byeong-Kyu
2016-04-01
Phytoremediation is a highly efficient technique for the elimination of trace elements from contaminated soils through the shoots and roots of plants. This study was carried out to investigate the effects of nano-titanium dioxide (TiO2) on Cd uptake by soybean plants. The objective of the present research was to examine the potential to improve the phytoextraction of Cd by the application of nano-TiO2 particles. The results showed that an addition of Cd to the soil significantly decreased plant growth and the biomass, pigment and protein contents. Increases in the proline content and malondialdehyde (MDA) indicate that Cd toxicity stresses the plants. Fourier transform infrared spectroscopy (FTIR) was used to determine variations in functional groups due to the Cd taken up into the shoot and root tissues of plants. An application of nano-TiO2 particles restricts Cd toxicity by increasing the photosynthetic rate and growth parameters of the plants. The uptake of Cd was also increased from 128.5 to 507.6 μg/plant with an increase in the nano-TiO2 concentration from 100 to 300 mg/kg in the soil. The application of nano-TiO2 significantly enhanced Cd uptake in the plants. The results of this study thus demonstrate that an application of nano-TiO2 can increase Cd uptake and minimize Cd stress in soybean plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Uprimny, Christian; Kroiss, Alexander Stephan; Fritz, Josef; Decristoforo, Clemens; Kendler, Dorota; von Guggenberg, Elisabeth; Nilica, Bernhard; Maffey-Steffan, Johanna; di Santo, Gianpaolo; Bektic, Jasmin; Horninger, Wolfgang; Virgolini, Irene Johanna
2017-09-01
PET/CT using 68 Ga-labelled prostate-specific membrane antigen PSMA-11 (HBEDD-CC) has emerged as a promising imaging method in the diagnostic evaluation of prostate cancer (PC) patients with biochemical recurrence. However, assessment of local recurrence (LR) may be limited by intense physiologic tracer accumulation in the urinary bladder on whole-body scans, normally conducted 60 min post-tracer injection (p.i.). It could be shown on early dynamic imaging studies that 68 Ga-PSMA-11 uptake in PC lesions occurs earlier than tracer accumulation in the urinary bladder. This study aims to investigate whether early static PET acquisition increases detection rate of local recurrence on 68 Ga-PSMA-11 PET/CT in comparison to PET imaging 60 min p.i.. 203 consecutive PC patients with biochemical failure referred to 68 Ga-PSMA-11 PET/CT were analysed retrospectively (median prostate specific antigen (PSA) value: 1.44 ng/ml). In addition to whole-body PET/CT scans 60 min p.i., early static imaging of the pelvis was performed, starting at a median time of 283 s p.i. (range: 243-491 s). Assessment was based on visual analysis and calculation of maximum standardized uptake value (SUV max ) of pathologic lesions present in the pelvic area found on early PET imaging and on 60 min-PET scans. 26 patients (12.8%) were judged positive for LR on PET scans 60 min p.i. (median SUV max : 10.8; range: 4.7-40.9), whereas 50 patients (24.6%) revealed a lesion suggestive of LR on early PET imaging (median SUV max : 5.9; range: 2.9-17.6), resulting in a significant rise in detection rate (p < 0.001). Equivocal findings on PET scans 60 min p.i. decreased significantly with the help of early imaging (15.8% vs. 4.5% of patients; p < 0.001). Tracer activity in the urinary bladder with a median SUV max of 8.2 was present in 63 patients on early PET scans (31.0%). However, acquisition starting time of early PET scans differed significantly in the patient groups with and without urinary bladder activity (median starting time of 321 vs. 275 s p.i.; range: 281-491 vs. 243-311 s p.i.; p < 0.001). Median SUV max value of lesions suggestive of LR on early images was significantly higher in comparison to gluteal muscle, inguinal vessels and seminal vesicle/anastomosis (median SUV max : 5.9 vs. 1.9, 4.0 and 2.4, respectively). Performance of early imaging in 68 Ga-PSMA-11 PET/CT in addition to whole-body scans 60 min p.i. increases the detection rate of local recurrence in PC patients with biochemical recurrence. Acquisition of early PET images should be started as early as 5 min p.i. in order to avoid disturbing tracer activity in the urinary bladder occuring at a later time point.
Sport-Specific Physiological Adaptations in Highly Trained Endurance Athletes.
Lundgren, Kari Margrethe; Karlsen, Trine; Sandbakk, Øyvind; James, Philip E; Tjønna, Arnt Erik
2015-10-01
This study aims to compare maximal oxygen uptake (V˙O2max), blood volume (BV), hemoglobin mass (Hbmass), and brachial endothelial function, measured as flow-mediated dilatation (FMD), in international-level endurance athletes primarily exercising with the whole body (cross-country skiing), lower body (orienteering), or upper body (flatwater kayak). Seventeen cross-country skiers, 15 orienteers, and 11 flatwater kayakers were tested for V˙O2max, BV, Hbmass, and FMD. Additionally, body composition and annual training (type, volume, and intensity of training) were analyzed. Absolute and body-mass-normalized V˙O2max values were 11.3% and 9.9% higher, respectively, in skiers (5.83 ± 0.60 L·min and 77.9 ± 4.2 mL·min·kg) compared to orienteers (5.24 ± 0.45 L·min and 70.9 ± 3.5 mL·min·kg) (P < 0.01), whereas kayakers (5.78 ± 0.56 L·min and 73.7 ± 6.3 mL·min·kg) did not differ from skiers. BV was 9.9%-11.8% higher in skiers and orienteers compared to kayakers when normalized for total body mass and fat-free mass, and skiers had 9.2% and 9.9% higher Hbmass normalized for total body mass and fat-free mass compared to kayakers (all P < 0.05). Arterial diameter was 11.8%-15.0% larger in kayakers (4.38 ± 0.63 mm) and skiers (4.22 ± 0.36 mm) compared to orienteers (3.81 ± 0.32 mm) (P < 0.05), whereas FMD did not differ between groups. This study indicates that higher V˙O2max in cross-country skiers and greater arterial diameters in the arms of skiers and kayakers are sport-specific physiological adaptations to chronic endurance training in whole-body and upper-body exercise modes. However, variations in these variables are not associated with BV or Hbmass.
2007-02-21
dependent upon the carbon gross growth efficiency ( GGE ) and the C:N:P ratio of the organic substrate. This calculation and its structural...product of the temperature adjusted maximum gross carbon assimilation rate, the carbon gross growth efficiency ( GGE ), and the uptake kinetics for DOC...substrate: max T 4 [ ]( ) [ ]Cb b DOCg g GGE n DOC ⎛ ⎞ = ⎜ ⎟+⎝ ⎠ (21) and ( )( 30)max T m30 m30min[ , ]Kt Tb b bg g g e −= (22) To
Treatment response assessment with (R)-[11CPAQ PET in the MMTV-PyMT mouse model of breast cancer.
Tegnebratt, T; Lu, L; Eksborg, S; Chireh, A; Damberg, P; Nikkhou-Aski, S; Foukakis, T; Rundqvist, H; Holmin, S; Kuiper, R V; Samen, E
2018-04-03
The goal of the study was to assess the potential of the vascular endothelial growth factor receptor (VEGFR)-2-targeting carbon-11 labeled (R)-N-(4-bromo-2-fluorophenyl)-6-methoxy-7-((1-methyl-3-piperidinyl)methoxy)-4-quinazolineamine ((R)-[ 11 C]PAQ) as a positron emission tomography (PET) imaging biomarker for evaluation of the efficacy of anticancer drugs in preclinical models. MMTV-PyMT mice were treated with vehicle alone (VEH), murine anti-VEGFA antibody (B20-4.1.1), and paclitaxel (PTX) in combination or as single agents. The treatment response was measured with (R)-[ 11 C]PAQ PET as standardized uptake value (SUV) mean , SUV max relative changes at the baseline (day 0) and follow-up (day 4) time points, and magnetic resonance imaging (MRI)-derived PyMT mammary tumor volume (TV) changes. Expression of Ki67, VEGFR-2, and CD31 in tumor tissue was determined by immunohistochemistry (IHC). Non-parametric statistical tests were used to evaluate the relation between (R)-[ 11 C]PAQ radiotracer uptake and therapy response biomarkers. The (R)-[ 11 C]PAQ SUV max in tumors was significantly reduced after 4 days in the B20-4.1.1/PTX combinational and B20-4.1.1 monotherapy groups (p < 0.0005 and p < 0.003, respectively). No significant change was observed in the PTX monotherapy group. There was a significant difference in the SUV max change between the VEH group and B20-4.1.1/PTX combinational group, as well as between the VEH group and the B20-4.1.1 monotherapy group (p < 0.05). MRI revealed significant decreases in TV in the B20-4.1.1/PTX treatment group (p < 0.005) but not the other therapy groups. A positive trend was observed between the (R)-[ 11 C]PAQ SUV max change and TV reduction in the B20-4.1.1/PTX group. Statistical testing showed a significant difference in the blood vessel density between the B20-4.1.1/PTX combinational group and the VEH group (p < 0.05) but no significant difference in the Ki67 positive signal between treatment groups. The results of this study are promising. However, additional studies are necessary before (R)-[ 11 C]PAQ can be approved as a predictive radiotracer for cancer therapy response.
Furumoto, Hideyuki; Shimada, Yoshihisa; Imai, Kentaro; Maehara, Sachio; Maeda, Junichi; Hagiwara, Masaru; Okano, Tetsuya; Masuno, Ryuhei; Kakihana, Masatoshi; Kajiwara, Naohiro; Ohira, Tatsuo; Ikeda, Norihiko
2018-07-01
The aim of this study was to conduct comparative analyses of the biological malignant potential of clinical stage IA adenocarcinoma using positron emission tomography/computed tomography (PET/CT), high-resolution CT (HRCT), and three-dimensional CT (3DCT). The predictive performance of these parameters was evaluated in terms of clinical outcomes and pathological invasiveness (positive lymphatic permeation, blood-vessel invasion, pleural invasion, and lymph-node metastasis). We enrolled 170 patients with c-IA adenocarcinoma who underwent PET/CT, HRCT, and 3D reconstruction of lung structures using the Synapse Vincent system (Fujifilm Corporation, Tokyo, Japan) followed by complete resection. Maximum standardized uptake values (SUV max ) of F 18 -fluorodeoxyglucose and the size and volume of the solid part of the tumor were quantified and analyzed in relation to surgical outcomes. Univariate analysis demonstrated that all the three parameters and whole-tumor volume were associated with unfavorable disease-free survival (DFS), while the volume of the solid part was the independent predictor on multivariate analysis (p < .001). The receiver operating characteristic curves for pathological invasiveness, determined using the variables dichotomized at each cut-off level (SUV max 2.4; solid-part size 1.23 cm; solid-part volume 779 mm 3 ), showed that all were significantly correlated with pathological invasiveness and prognosis, whereas the combination of SUV max and the solid-part volume was the most powerful predictor of survival and pathological invasiveness compared to any other parameters: the 4-year DFS and proportion of pathological invasiveness in patients with SUV max > 2.4 and solid-part volume > 779 mm 3 versus those with SUV max ≤ 2.4 or solid-part volume ≤779 mm 3 were 81.2% versus 98.3% (p < .001) and 84.3% versus 15.1% (p < .001), respectively. In c-IA adenocarcinoma, the volume of the solid part of the tumor was the independent predictor for unfavorable DFS, and the integration of the volume of the solid part and SUV max was highly beneficial for the prediction of survival and pathological invasiveness. Copyright © 2018 Elsevier B.V. All rights reserved.
Pain Response after Maximal Aerobic Exercise in Adolescents across Weight Status
Stolzman, Stacy; Danduran, Michael; Hunter, Sandra K; Bement, Marie Hoeger
2015-01-01
Introduction Pain reports are greater with increasing weight status, and exercise can reduce pain perception. It is unknown however, whether exercise can relieve pain in adolescents of varying weight status. The purpose of this study was to determine if adolescents across weight status report pain relief following high intensity aerobic exercise (exercise-induced hypoalgesia [EIH]). Methods 62 adolescents (15.1±1.8 years, 29 males) participated in three sessions: 1) Pressure pain thresholds (PPTs) before and after quiet rest, clinical pain (McGill Pain Questionnaire), and physical activity levels (self-report and ActiSleep Plus Monitors) were measured; 2) PPTs were measured with a computerized algometer at the 4th finger nailbed, middle deltoid muscle, and quadriceps muscle before and after maximal oxygen uptake test (VO2 max Bruce Treadmill Protocol); and 3) Body composition was measured with Dual-energy X-ray absorptiometry. Results All adolescents met criteria for VO2 max. Based on body mass index z-score, adolescents were categorized as normal weight (n=33) or overweight/obese (n=29). PPTs increased following exercise (EIH) and were unchanged with quiet rest (trial × session: p=0.02). EIH was similar across the 3 sites and between normal weight and overweight/obese adolescents. Physical activity and clinical pain were not correlated with EIH. Overweight/obese adolescents had similar absolute VO2 max (L·min-1) but lower relative VO2 max (ml·kg-1·min-1) compared with normal weight adolescents. When adolescents were categorized using FitnessGram standards as unfit (n=15) and fit (n=46), the EIH response was similar between fitness levels. Conclusion This study is the first to establish that adolescents experience EIH in both overweight and normal weight youth. EIH after high intensity aerobic exercise was robust in adolescents regardless of weight status and not influenced by physical fitness. PMID:25856681
Strategy of nitrogen acquisition and utilization by carnivorous Dionaea muscipula.
Kruse, Jörg; Gao, Peng; Honsel, Anne; Kreuzwieser, Jürgen; Burzlaff, Tim; Alfarraj, Saleh; Hedrich, Rainer; Rennenberg, Heinz
2014-03-01
Plant carnivory represents an exceptional means to acquire N. Snap traps of Dionaea muscipula serve two functions, and provide both N and photosynthate. Using (13)C/(15)N-labelled insect powder, we performed feeding experiments with Dionaea plants that differed in physiological state and N status (spring vs. autumn plants). We measured the effects of (15)N uptake on light-saturated photosynthesis (A(max)), dark respiration (R(D)) and growth. Depending on N status, insect capture briefly altered the dynamics of R(D)/A(max), reflecting high energy demand during insect digestion and nutrient uptake, followed by enhanced photosynthesis and growth. Organic N acquired from insect prey was immediately redistributed, in order to support swift renewal of traps and thereby enhance probability of prey capture. Respiratory costs associated with permanent maintenance of the photosynthetic machinery were thereby minimized. Dionaea's strategy of N utilization is commensurate with the random capture of large prey, occasionally transferring a high load of organic nutrients to the plant. Our results suggest that physiological adaptations to unpredictable resource availability are essential for Dionaea's success with regards to a carnivorous life style.
Phytotoxicity, uptake and metabolism of 1,4-dichlorobenzene by plant cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, M.J.; Bokern, M.; Boehme, C.
1996-07-01
Phytotoxicity, uptake, and metabolism of 1,4-dichlorobenzene (1,4-DCB) by carrot (Daucus carota L.), soybean (Glycine max. L.), tomato (Lycopersicon esculentum Mill.), and red goosefoot (Chenopodiun rubrum L.) cell suspension cultures were studied. Sealed glass systems were utilized for the investigation because 1,4-DCB is volatile. The sealed systems affect the growth of plant cells, but do not provide different results when testing xenobiotic uptake and metabolism. 1,4-Dichlorobenzene (40 {micro}g in 40 ml medium) was taken up by carrot (49%), soybean (50%), and red goosefoot (62%) cells. Only the soybean cell cultures provided evidence of the existence of metabolites of this compound, probablymore » conjugates of chlorophenols. Conditions for phytotoxicity tests were modified because the growth of cell cultures was affected when sealed for longer than 2 d. 1,4-Dichlorobenzene is toxic to cell cultures of the three tested plant species (tomato, soybean, and carrot). Concentrations of 0.5 mM caused 50% growth inhibition in carrot and soybean cultures. The tomato cultures were more sensitive, with 0.05 mM causing 50% growth inhibition.« less
Cross, Sarah; Kim, Soo-Jeong; Weiss, Lauren A; Delahanty, Ryan J; Sutcliffe, James S; Leventhal, Bennett L; Cook, Edwin H; Veenstra-Vanderweele, Jeremy
2008-01-01
Elevated platelet serotonin (5-hydroxytryptamine, 5-HT) is found in a subset of children with autism and in some of their first-degree relatives. Indices of the platelet serotonin system, including whole blood 5-HT, 5-HT binding affinity for the serotonin transporter (K(m)), 5-HT uptake (V(max)), and lysergic acid diethylamide (LSD) receptor binding, were previously studied in 24 first-degree relatives of probands with autism, half of whom were selected for elevated whole blood 5-HT levels. All subjects were then genotyped for selected polymorphisms at the SLC6A4, HTR7, HTR2A, ITGB3, and TPH1 loci. Previous studies allowed an a priori prediction of SLC6A4 haplotypes that separated the subjects into three groups that showed significantly different 5-HT binding affinity (K(m), p=0.005) and 5-HT uptake rate (V(max), p=0.046). Genotypes at four individual polymorphisms in SLC6A4 were not associated with platelet 5-HT indices. Haplotypes at SLC6A4 and individual genotypes of polymorphisms at SLC6A4, HTR7, HTR2A, ITGB3, and TPH1 showed no significant association with whole blood 5-HT. Haplotype analysis of two polymorphisms in TPH1 revealed a nominally significant association with whole blood 5-HT (p=0.046). These initial studies of indices of the 5-HT system with several single-nucleotide polymorphisms at loci in this system generate hypotheses for testing in other samples.
Vinet, A; Bernard, P L; Poulain, M; Varray, A; Le Gallais, D; Micallef, J P
1996-05-01
The aim of this study was to validate an incremental field test performed by wheelchair-dependent (WD) athletes. Nine male paraplegic subjects (mean age 28.9 +/- 4.2 years) performed an incremental field test (FT) and a comparable laboratory test (LT) with their own usual wheelchairs. Both tests started with an initial speed of 4 km.hr(-1) and increased by increments of 1 km.hr(-1) every minute until volitional exhaustion. The FT was an adapted Léger and Boucher test (ALBT) and was conducted on a 400 m tartan field marked-off every 50 m with pylons. Ventilatory data were collected every 15 s using a portable telemetric system (Cosmed K2, JFB International, Italy). The LT was performed on an adapted treadmill (Sopur, Germany) and ventilatory data were collected every minute using a breath-by-breath automated system (CPX, Medical Graphics, MN, USA). The LT and the FT were not significantly different for duration (8 min 50 +/- 1 min 24 vs 9 min 55 +/- 29 s), percentage of maximal heart rate (HR, 86.2 +/- 3.9 vs 89.7 +/- 5.3%), maximal minute ventilation (VE, 101.6 +/- 28.5 vs 96.8 +/- 28.2 1.min(-1)) and peak oxygen uptake (VO2 peak, 39.7 + 7.3 vs 36.1 + 5.8 ml.kg(-1).min(-1) assessed with the CPX and the K2, respectively. We concluded that the FT proposed in the present study is a valid test for direct VO2 peak assessment in wheelchair athletes using a portable VO2 telemetric system. Nonetheless, the Léger and Mercier model equation did not accurately predict VO2 max and further investigation is needed to determine a valid VO2 max prediction equation for these subjects during the FT.
Menendez, Maria I; Hettlich, Bianca; Wei, Lai; Knopp, Michael V
2017-01-01
The aim of this study was to use a multimodal molecular imaging approach to serially assess regional metabolic changes in the knee in an in vivo anterior cruciate ligament transection (ACLT) canine model of osteoarthritis (OA). Five canine underwent ACLT in one knee and the contralateral knee served as uninjured control. Prior, 3, 6, and 12 weeks post-ACLT, the dogs underwent 18 F-fluoro-d-glucose ( 18 F-FDG) positron emission tomography (PET)/computed tomography (CT) and magnetic resonance imaging (MRI). The MRI was coregistered with the PET/CT, and 3-dimensional regions of interest (ROIs) were traced manually and maximum standardized uptake values (SUV max ) were evaluated. 18 F-fluoro-d-glucose SUV max in the ACLT knee ROIs was significantly higher compared to the uninjured contralateral knees at 3, 6, and 12 weeks. Higher 18 F-FDG uptake observed in ACLT knees compared to the uninjured knees reflects greater metabolic changes in the injured knees over time. Knee 18 F-FDG uptake in an in vivo ACLT canine model using combined PET/CT and MRI demonstrated to be highly sensitive in the detection of metabolic alterations in osseous and nonosteochondral structures comprising the knee joint. 18 F-fluoro-d-glucose appeared to be a capable potential imaging biomarker for early human knee OA diagnosis, prognosis, and management.
Catalano, Onofrio Antonio; Horn, Gary Lloyd; Signore, Alberto; Iannace, Carlo; Lepore, Maria; Vangel, Mark; Luongo, Angelo; Catalano, Marco; Lehman, Constance; Salvatore, Marco; Soricelli, Andrea; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce Robert
2017-03-28
Differences in genetics and receptor expression (phenotypes) of invasive ductal breast cancer (IDC) impact on prognosis and treatment response. Immunohistochemistry (IHC), the most used technique for IDC phenotyping, has some limitations including its invasiveness. We explored the possibility of contrast-enhanced positron emission tomography magnetic resonance (CE-FDG PET/MR) to discriminate IDC phenotypes. 21 IDC patients with IHC assessment of oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor-2 (HER2), and antigen Ki-67 (Ki67) underwent CE-FDG PET/MR. Magnetic resonance-perfusion biomarkers, apparent diffusion coefficient (ADC), and standard uptake value (SUV) were compared with IHC markers and phenotypes, using a Student's t-test and one-way ANOVA. ER/PR- tumours demonstrated higher Kep mean and SUV max than ER or PR+ tumours. HER2- tumours displayed higher ADC mean , Kep mean , and SUV max than HER2+tumours. Only ADC mean discriminated Ki67⩽14% tumours (lower ADC mean ) from Ki67>14% tumours. PET/MR biomarkers correlated with IHC phenotype in 13 out of 21 patients (62%; P=0.001). Positron emission tomography magnetic resonance might non-invasively help discriminate IDC phenotypes, helping to optimise individual therapy options.
Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callagon, Erika Blanca R.; Lee, Sang Soo; Eng, Peter J.
Here, the systematic variation of rates and the mechanism of cadmium uptake on the (104) surface of dolomite (CaMg(CO 3) 2) were investigated using in situ and ex situ atomic force microscopy (AFM), ex situ specular X-ray reflectivity (XR), and ex situ X-ray fluorescence (XRF). Selected experiments were performed on the calcite (CaCO 3) (104) surface for comparison. Aqueous solutions of CdCl 2, CaCl 2, and NaHCO 3, undersaturated with respect to calcite and supersaturated with respect to otavite (CdCO 3) and the (Cd xCa 1-x)CO 3 solid solution, were reacted with dolomite surfaces for minutes to days. Calcite substratesmore » were reacted with solutions containing 1-50 μM CdCl 2, and with no added Ca or CO 3. Thin carbonate films following the Stranski-Krastanov growth mode were observed on both substrates. Specular XR and XRF revealed the formation of nm-thick Cd-rich carbonate films that were structurally ordered with respect to the dolomite (104) plane. Epitaxial films adopted the calcite crystal structure with a d 104- spacing (3.00 Å) larger than those of pure dolomite (2.88 Å) and otavite (2.95 Å) indicating either a solid solution with x approximate to 0.5, or a strained Cd-rich carbonate with a composition near that of otavite. The growth rate r of this phase increases with the initial supersaturation of the solution with respect to the solid solution, beta max, and follows the empirical relationship, as determined from XRF measurements, given by: r = 10 -4.88 ± 0.42 (β 2.29 ± 0.24 max - 1), (in units of atoms of Cd/Å 2/h).The morphology of the overgrowth also varied with β max, as exemplified by AFM observations. Growth at step edges occurred over the entire β max range considered, and additional growth features including 3 Å high monolayer islands and ~ 25 Å high tall islands were observed when log β max > 1. On calcite, in situ XR indicated that this phase is similar to the Cd-rich overgrowth formed on dolomite and images obtained from X-ray reflection interface microscopy (XRIM) reveal the existence of laterally variable Cd-rich domains.« less
Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates
Callagon, Erika Blanca R.; Lee, Sang Soo; Eng, Peter J.; ...
2016-12-10
Here, the systematic variation of rates and the mechanism of cadmium uptake on the (104) surface of dolomite (CaMg(CO 3) 2) were investigated using in situ and ex situ atomic force microscopy (AFM), ex situ specular X-ray reflectivity (XR), and ex situ X-ray fluorescence (XRF). Selected experiments were performed on the calcite (CaCO 3) (104) surface for comparison. Aqueous solutions of CdCl 2, CaCl 2, and NaHCO 3, undersaturated with respect to calcite and supersaturated with respect to otavite (CdCO 3) and the (Cd xCa 1-x)CO 3 solid solution, were reacted with dolomite surfaces for minutes to days. Calcite substratesmore » were reacted with solutions containing 1-50 μM CdCl 2, and with no added Ca or CO 3. Thin carbonate films following the Stranski-Krastanov growth mode were observed on both substrates. Specular XR and XRF revealed the formation of nm-thick Cd-rich carbonate films that were structurally ordered with respect to the dolomite (104) plane. Epitaxial films adopted the calcite crystal structure with a d 104- spacing (3.00 Å) larger than those of pure dolomite (2.88 Å) and otavite (2.95 Å) indicating either a solid solution with x approximate to 0.5, or a strained Cd-rich carbonate with a composition near that of otavite. The growth rate r of this phase increases with the initial supersaturation of the solution with respect to the solid solution, beta max, and follows the empirical relationship, as determined from XRF measurements, given by: r = 10 -4.88 ± 0.42 (β 2.29 ± 0.24 max - 1), (in units of atoms of Cd/Å 2/h).The morphology of the overgrowth also varied with β max, as exemplified by AFM observations. Growth at step edges occurred over the entire β max range considered, and additional growth features including 3 Å high monolayer islands and ~ 25 Å high tall islands were observed when log β max > 1. On calcite, in situ XR indicated that this phase is similar to the Cd-rich overgrowth formed on dolomite and images obtained from X-ray reflection interface microscopy (XRIM) reveal the existence of laterally variable Cd-rich domains.« less
Impact of the definition of peak standardized uptake value on quantification of treatment response.
Vanderhoek, Matt; Perlman, Scott B; Jeraj, Robert
2012-01-01
PET-based treatment response assessment typically measures the change in maximum standardized uptake value (SUV(max)), which is adversely affected by noise. Peak SUV (SUV(peak)) has been recommended as a more robust alternative, but its associated region of interest (ROI(peak)) is not uniquely defined. We investigated the impact of different ROI(peak) definitions on quantification of SUV(peak) and tumor response. Seventeen patients with solid malignancies were treated with a multitargeted receptor tyrosine kinase inhibitor resulting in a variety of responses. Using the cellular proliferation marker 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT), whole-body PET/CT scans were acquired at baseline and during treatment. (18)F-FLT-avid lesions (∼2/patient) were segmented on PET images, and tumor response was assessed via the relative change in SUV(peak). For each tumor, 24 different SUV(peaks) were determined by changing ROI(peak) shape (circles vs. spheres), size (7.5-20 mm), and location (centered on SUV(max) vs. placed in highest-uptake region), encompassing different definitions from the literature. Within each tumor, variations in the 24 SUV(peaks) and tumor responses were measured using coefficient of variation (CV), standardized deviation (SD), and range. For each ROI(peak) definition, a population average SUV(peak) and tumor response were determined over all tumors. A substantial variation in both SUV(peak) and tumor response resulted from changing the ROI(peak) definition. The variable ROI(peak) definition led to an intratumor SUV(peak) variation ranging from 49% above to 46% below the mean (CV, 17%) and an intratumor SUV(peak) response variation ranging from 49% above to 35% below the mean (SD, 9%). The variable ROI(peak) definition led to a population average SUV(peak) variation ranging from 24% above to 28% below the mean (CV, 14%) and a population average SUV(peak) response variation ranging from only 3% above to 3% below the mean (SD, 2%). The size of ROI(peak) caused more variation in intratumor response than did the location or shape of ROI(peak). Population average tumor response was independent of size, shape, and location of ROI(peak). Quantification of individual tumor response using SUV(peak) is highly sensitive to the ROI(peak) definition, which can significantly affect the use of SUV(peak) for assessment of treatment response. Clinical trials are necessary to compare the efficacy of SUV(peak) and SUV(max) for quantification of response to therapy.
Smilios, Ilias; Myrkos, Aristides; Zafeiridis, Andreas; Toubekis, Argyris; Spassis, Apostolos; Tokmakidis, Savas P
2017-03-13
The recovery duration and the work to recovery ratio are important aspects to consider when designing a high-intensity aerobic interval exercise (HIIE). This study examined the effects of recovery duration on total exercise time performed above 80, 90 and 95% of maximum oxygen consumption (VO2max) and heart rate (HRmax) during a single-bout HIIE. We also evaluated the effects on VO2 and HR kinetics, blood lactate concentration and rating of perceived exertion (RPE). Eleven moderately trained males (22.1±1 yrs.) executed, on three separate sessions, 4×4-min runs at 90% of maximal aerobic velocity (MAV) with 2-min, 3-min and 4-min of active recovery. Recovery duration did not affect the percentage of VO2max attained and the total exercise time above 80, 90 and 95% of VO2max. Exercise time above 80 and 90% of HRmax was longer with 2 and 3 min (p<0.05) as compared with the 4-min recovery. Oxygen uptake and HR amplitude were lower, mean response time slower (p<0.05), and blood lactate and RPE higher with 2-min compared to 4-min recovery (p<0.05). In conclusion, aerobic metabolism attains its upper functional limits with either 2, or 3 or 4 min of recovery during the 4×4 min HIIE; thus, all rest durations could be used for the enhancement of aerobic capacity in sports, fitness, and clinical settings. The short (2 min) compared to longer (4 min) recovery, however, evokes greater cardiovascular and metabolic stress, and activates to a greater extent anaerobic glycolysis, and hence, could be used by athletes to induce greater overall physiological challenge.
NASA Technical Reports Server (NTRS)
Raper, C. D. Jr; Vessey, J. K.; Henry, L. T.
1991-01-01
Diurnal patterns of net NO3- uptake by nonnodulated soybean [Glycine max (L.) Merr. cv. Ransom] plants growing in flowing hydroponic culture at 26 and 16 degrees C root temperatures were measured at hourly intervals during alternate days of a 12-day growth period. Ion chromatography was used to determine removal of NO3- from the culture solution. Day and night periods of 9 and 15 h were used during growth. The night period included two 6-h dark periods and an intervening 3-h period of night interruption by incandescent lamps to effect a long-day photoperiod and repress floral initiation. At both root temperatures, the average specific rates of NO3- uptake were twice as great during the night interruption period as during the day period; they were greater during the day period than during the dark periods; and they were greater during the dark period immediately following the day period than during the later dark period that followed the night interruption. While these average patterns were repetitious among days, measured rates of uptake varied hourly and included intervals of net efflux scattered through the day period and more frequently through the 2 dark periods. Root temperature did not affect the average daily specific rates of uptake or the qualitative relationships among day, dark and night interruption periods of the diurnal cycle.
Muniz-Pumares, Daniel; Pedlar, Charles; Godfrey, Richard; Glaister, Mark
2017-12-01
This study investigated (i) whether the accumulated oxygen deficit (AOD) and curvature constant of the power-duration relationship (W') are different during constant work-rate to exhaustion (CWR) and 3-min all-out (3MT) tests and (ii) the relationship between AOD and W' during CWR and 3MT. Twenty-one male cyclists (age: 40 ± 6 years; maximal oxygen uptake [V̇O 2max ]: 58 ± 7 ml · kg -1 · min -1 ) completed preliminary tests to determine the V̇O 2 -power output relationship and V̇O 2max . Subsequently, AOD and W' were determined as the difference between oxygen demand and oxygen uptake and work completed above critical power, respectively, in CWR and 3MT. There were no differences between tests for duration, work, or average power output (P ≥ 0.05). AOD was greater in the CWR test (4.18 ± 0.95 vs. 3.68 ± 0.98 L; P = 0.004), whereas W' was greater in 3MT (9.55 ± 4.00 vs. 11.37 ± 3.84 kJ; P = 0.010). AOD and W' were significantly correlated in both CWR (P < 0.001, r = 0.654) and 3MT (P < 0.001, r = 0.654). In conclusion, despite positive correlations between AOD and W' in CWR and 3MT, between-test differences in the magnitude of AOD and W', suggest that both measures have different underpinning mechanisms.
Effects of a 4-Week Very Low-Carbohydrate Diet on High-Intensity Interval Training Responses.
Cipryan, Lukas; Plews, Daniel J; Ferretti, Alessandro; Maffetone, Phil B; Laursen, Paul B
2018-06-01
The purpose of the study was to examine the effects of altering from habitual mixed Western-based (HD) to a very low-carbohydrate high-fat (VLCHF) diet over a 4-week timecourse on performance and physiological responses during high-intensity interval training (HIIT). Eighteen moderately trained males (age 23.8 ± 2.1 years) consuming their HD (48 ± 13% carbohydrate, 17 ± 3% protein, 35 ± 9% fat) were assigned to 2 groups. One group was asked to remain on their HD, while the other was asked to switch to a non-standardized VLCHF diet (8 ± 3% carbohydrate, 29 ± 15% protein, 63 ± 13% fat) for 4 weeks. Participants performed graded exercise tests (GXT) before and after the experiment, and an HIIT session (5x3min, work/rest 2:1, passive recovery, total time 34min) before, and after 2 and 4 weeks. Heart rate (HR), oxygen uptake ( V̇ O 2 ), respiratory exchange ratio (RER), maximal fat oxidation rates (Fat max ) and blood lactate were measured. Total time to exhaustion (TTE) and maximal V̇ O 2 (V̇O 2max ) in the GXT increased in both groups, but between-group changes were trivial (ES ± 90% CI: -0.1 ± 0.3) and small (0.57 ± 0.5), respectively. Between-group difference in Fat max change (VLCHF: 0.8 ± 0.3 to 1.1 ± 0.2 g/min; HD: 0.7 ± 0.2 to 0.8 ± 0.2 g/min) was large (1.2±0.9), revealing greater increases in the VLCHF versus HD group. Between-group comparisons of mean changes in V̇O 2 and HR during the HIIT sessions were trivial to small , whereas mean RER decreased more in the VLCHF group (-1.5 ± 0.1). Lactate changes between groups were unclear . Adoption of a VLCHF diet over 4 weeks increased Fat max and did not adversely affect TTE during the GXT or cardiorespiratory responses to HIIT compared with the HD.
Born, Dennis-Peter; Stöggl, Thomas; Swarén, Mikael; Björklund, Glenn
2017-04-01
To investigate the cardiorespiratory and metabolic response of trail running and evaluate whether heart rate (HR) adequately reflects the exercise intensity or if the tissue-saturation index (TSI) could provide a more accurate measure during running in hilly terrain. Seventeen competitive runners (4 women, V̇O 2 max, 55 ± 6 mL · kg -1 · min -1 ; 13 men, V̇O 2 max, 68 ± 6 mL · kg -1 · min -1 ) performed a time trial on an off-road trail course. The course was made up of 2 laps covering a total distance of 7 km and included 6 steep uphill and downhill sections with an elevation gain of 486 m. All runners were equipped with a portable breath-by-breath gas analyzer, HR belt, global positioning system receiver, and near-infrared spectroscopy (NIRS) device to measure the TSI. During the trail run, the exercise intensity in the uphill and downhill sections was 94% ± 2% and 91% ± 3% of maximal heart rate, respectively, and 84% ± 8% and 68% ± 7% of V̇O 2 max, respectively. The oxygen uptake (V̇O 2 ) increased in the uphill sections and decreased in the downhill sections (P < .01). Although HR was unaffected by the altering slope conditions, the TSI was inversely correlated to the changes in V̇O 2 (r = -.70, P < .05). HR was unaffected by the continuously changing exercise intensity; however, TSI reflected the alternations in V̇O 2 . Recently used exclusively for scientific purposes, this NIRS-based variable may offer a more accurate alternative than HR to monitor running intensity in the future, especially for training and competition in hilly terrain.
Learsi, S K; Bastos-Silva, V J; Lima-Silva, A E; Bertuzzi, R; De Araujo, G G
2015-10-01
The aim of this study was to determine the ergogenic effects of metformin in high-intensity exercise, as well as its effects on anaerobic capacity, in healthy and physically active men. Ten subjects (mean (± standard deviation) maximal oxygen uptake (V˙O2max ) 38.6 ± 4.5 mL/kg per min) performed the following tests in a cycle ergometer: (i) an incremental test; (ii) six submaximal constant workload tests at 40%-90% (V˙O2max ); and (iii) two supramaximal tests (110% (V˙O2max ). Metformin (500 mg) or placebo was ingested 60 min before the supramaximal test. There were no significant differences between the placebo and metformin groups in terms of maximum accumulated oxygen deficit (2.8 ± 0.6 vs 3.0 ± 0.8 L, respectively; P = 0.08), lactate concentrations (7.8 ± 2.6 vs 7.5 ± 3.0 mmol/L, respectively; P = 0.75) or O2 consumed in either the last 30 s of exercise (40.4 ± 4.4 vs 39.9 ± 4.0 mL/kg per min, respectively; P = 0.35) or the first 110 s of exercise (29.0 ± 2.5 vs 29.5 ± 3.0 mL/kg per min, respectively; P = 0.42). Time to exhaustion was significantly higher after metformin than placebo ingestion (191 ± 33 vs 167 ± 32 s, respectively; P = 0.001). The fast component of V˙O2 recovery was higher in the metformin than placebo group (12.71 vs 12.18 mL/kg per min, respectively; P = 0.025). Metformin improved performance and anaerobic alactic contribution during high-intensity exercise, but had no effect on overall anaerobic capacity in healthy subjects. © 2015 Wiley Publishing Asia Pty Ltd.
Greupink, Rick; Dillen, Lieve; Monshouwer, Mario; Huisman, Maarten T; Russel, Frans G M
2011-11-20
It has been reported that polymorphisms in the organic anion transporting polypeptide 1B1 (OATP1B1, SLCO1B1) result in decreased hepatic uptake of simvastatin carboxy acid, the active metabolite of simvastatin. This is not the case for fluvastatin and it has been hypothesized that for this drug other hepatic uptake pathways exist. Here, we studied whether Na(+)-dependent taurocholate co-transporting polypeptide (NTCP, SLC10A1) can be an alternative hepatic uptake route for fluvastatin. Chinese Hamster Ovary cells transfected with human NTCP (CHO-NTCP) were used to investigate the inhibitory effect of fluvastatin and other statins on [(3)H]-taurocholic acid uptake ([(3)H]-TCA). Statin uptake by CHO-NTCP and cryopreserved human hepatocytes was assessed via LC-MS/MS. Fluvastatin appeared to be a potent and competitive inhibitor of [(3)H]-TCA uptake (IC(50) of 40μM), pointing to an interaction at the level of the bile acid binding pocket of NTCP. The inhibitory action of other statins was also studied, which revealed that statin inhibitory potency increased with molecular descriptors of lipophilicity: calculated logP (r(2)=0.82, p=0.034), logD(7.4) (r(2)=0.77, p=0.0001). Studies in CHO-NTCP cells showed that fluvastatin was indeed an NTCP substrate (K(m) 250±30μM, V(max) 1340±50ng/mg total cell protein/min). However, subsequent studies revealed that at clinically relevant plasma concentrations, NTCP contributed minimally to overall accumulation in human hepatocytes. In conclusion, fluvastatin interacts with NTCP at the level of the bile acid binding pocket and is an NTCP substrate. However, under normal conditions, NTCP-mediated uptake of this drug seems not to be a significant hepatocellular uptake pathway. Copyright © 2011 Elsevier B.V. All rights reserved.
Effect of simulated weightlessness on exercise-induced anaerobic threshold
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Karst, G. M.; Kirby, C. R.; Goldwater, D. J.
1986-01-01
The effect of simulated weightlessness, induced by ten days of continuous bedrest (BR) in the -6 deg head-down position, on the exercise-induced anaerobic threshold (AT) was determined by comparing specific ventilatory and gas-exchange measurements during an incremental ergometer test performed before and after BR. The primary index for determining the exercise-induced AT values of each subject was visual identification of the workrate or oxygen uptake (VO2) at which the ratio of the expired minute ventilation volume (VE) to VO2 exhibited a systematic increase without a concomitant increase in the VE/VCO2 value. Following BR, the mean VO2max of the subjects decreased by 7.0 percent, and the AT decreased from a mean of 1.26 L/min VO2 before BR to 0.95 L/min VO2 after BR. The decrease in AT was manifested by a decrease in both absolute and relative workrates. The change in AT correlated significantly with the change in plasma volume but not with the change in VO2max. The results suggest that the reduction in AT cannot be completely explained by the reduction in VO2, and that the AT decrease is associated with the reduction in intravascular fluid volume.
Sharma, Abhishek; Mete, Uttam K; Sood, Ashwani; Kakkar, Nandita; Gorla, Arun K R; Mittal, Bhagwant R
2017-04-01
Accurate pre-treatment grading and staging of bladder cancer are vital for better therapeutic decision and prognosis. The aim of the present study was to evaluate the correlation between maximum standardized uptake value (SUV max ) calculated during early dynamic and post-diuretic fluorine-18 fludeoxyglucose ( 18 F-FDG) positron emission tomography (PET)/CT studies with grade and pT-stage of bladder cancer. 39 patients with suspected/proven bladder carcinoma underwent 10-min early dynamic pelvic imaging and delayed post-diuretic whole-body FDG PET/CT imaging. SUV max of the lesions derived from both studies was compared with grade and pT-stage. Relationship of SUV max with grade and pT-stage was analyzed using independent sample t-test and analysis of variance. SUV max of the early dynamic imaging showing tumour perfusion was independent from the SUV max of delayed imaging. High-grade tumours showed higher SUV max than low-grade tumours in the early dynamic imaging (5.4 ± 1.4 vs 4.7 ± 1.6; p-value 0.144) with statistically significant higher value in Stage pT1 tumours (6.8 ± 0.8 vs 5.5 ± 1.2; p-value 0.04). Non-invasive pTa tumours had significantly less SUV max than higher stage tumours during early dynamic imaging [F(4,29) = 6.860, p 0.001]. Early dynamic imaging may have a role in predicting the grade and aggressiveness of the bladder tumours and thus can help in treatment planning and prognostication. Advances in knowledge: Dynamic PET/CT is a limitedly explored imaging technique. This prospective pilot study demonstrates the utility of this modality as a potential adjunct to standard FDG PET/CT imaging in predicting the grade and aggressiveness of the bladder tumours and thus can impact the patient management.
Muscle Oxygen Supply Impairment during Exercise in Poorly Controlled Type 1 Diabetes
TAGOUGUI, SEMAH; LECLAIR, ERWAN; FONTAINE, PIERRE; MATRAN, RÉGIS; MARAIS, GAELLE; AUCOUTURIER, JULIEN; DESCATOIRE, AURÉLIEN; VAMBERGUE, ANNE; OUSSAIDENE, KAHINA; BAQUET, GEORGES; HEYMAN, ELSA
2015-01-01
ABSTRACT Purpose Aerobic fitness, as reflected by maximal oxygen (O2) uptake (V˙O2max), is impaired in poorly controlled patients with type 1 diabetes. The mechanisms underlying this impairment remain to be explored. This study sought to investigate whether type 1 diabetes and high levels of glycated hemoglobin (HbA1c) influence O2 supply including O2 delivery and release to active muscles during maximal exercise. Methods Two groups of patients with uncomplicated type 1 diabetes (T1D-A, n = 11, with adequate glycemic control, HbA1c <7.0%; T1D-I, n = 12 with inadequate glycemic control, HbA1c >8%) were compared with healthy controls (CON-A, n = 11; CON-I, n = 12, respectively) matched for physical activity and body composition. Subjects performed exhaustive incremental exercise to determine V˙O2max. Throughout the exercise, near-infrared spectroscopy allowed investigation of changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin in the vastus lateralis. Venous and arterialized capillary blood was sampled during exercise to assess arterial O2 transport and factors able to shift the oxyhemoglobin dissociation curve. Results Arterial O2 content was comparable between groups. However, changes in total hemoglobin (i.e., muscle blood volume) was significantly lower in T1D-I compared with that in CON-I. T1D-I also had impaired changes in deoxyhemoglobin levels and increase during high-intensity exercise despite normal erythrocyte 2,3-diphosphoglycerate levels. Finally, V˙O2max was lower in T1D-I compared with that in CON-I. No differences were observed between T1D-A and CON-A. Conclusions Poorly controlled patients displayed lower V˙O2max and blunted muscle deoxyhemoglobin increase. The latter supports the hypotheses of increase in O2 affinity induced by hemoglobin glycation and/or of a disturbed balance between nutritive and nonnutritive muscle blood flow. Furthermore, reduced exercise muscle blood volume in poorly controlled patients may warn clinicians of microvascular dysfunction occurring even before overt microangiopathy. PMID:24983346
Głowacka, Katarzyna; Jørgensen, Uffe; Kjeldsen, Jens B; Kørup, Kirsten; Spitz, Idan; Sacks, Erik J; Long, Stephen P
2015-05-01
A clone of the hybrid perennial C4 grass Miscanthus × giganteus (Mxg) is known for achieving exceptionally high rates of leaf CO2 uptake during chilling. This is a requisite of success in the early spring, as is the ability of the leaves to survive occasional frosts. The aim of this study was to search for genotypes with greater potential than Mxg for photosynthesis and frost survival under these conditions. A total of 864 accessions representing 164 local populations of M. sacchariflorus (Msa), M. sinensis (Msi) and M. tinctorius (Mti) collected across Japan were studied. Accessions whose leaves survived a natural late frost in the field were screened for high maximum photosystem II efficiency (Fv/Fm) following chilling weather, as an indicator of their capacity for light-limited photosynthesis. Those showing the highest Fv/Fm were transferred to a high-light-controlled environment and maintained at chilling temperatures, where they were further screened for their capacities for high-light-limited and light-saturated leaf uptake of CO2 (ΦCO2,max and Asat, respectively). For the first time, relatives of Mxg with significantly superior capacities for photosynthesis at chilling temperatures were identified. Msa accession '73/2' developed leaves in the spring that survived night-time frost, and during growth under chilling maintained a statistically significant 79 % higher ΦCO2,max, as a measure of light-limited photosynthesis, and a 70 % higher Asat, as a measure of light-saturated photosynthesis. A second Msa accession, '73/3' also showed significantly higher rates of leaf uptake of CO2. As remarkable as Mxg has proved in its chilling tolerance of C4 photosynthesis, this study shows that there is still value and potential in searching for yet more superior tolerance. Msa accession '73/2' shows rates of light-limited and light-saturated photosynthesis at chilling temperatures that are comparable with those of the most cold-tolerant C3 species. This adds further proof to the thesis that C4 photosynthesis is not inherently limited to warm climates. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run.
Billat, Véronique; Hamard, Laurence; Koralsztein, Jean Pierre; Morton, R Hugh
2009-08-01
This study examined the hypothesis that running speed over 800- and 1,500-m races is regulated by the prevailing anaerobic (oxygen independent) store (ANS) at each instant of the race up until the all-out phase of the race over the last several meters. Therefore, we hypothesized that the anaerobic power that allows running above the speed at maximal oxygen uptake (VO2max) is regulated by ANS, and as a consequence the time limit at the anaerobic power (tlim PAN=ANS/PAN) is constant until the final sprint. Eight 800-m and seven 1,500-m male runners performed an incremental test to measure VO2max and the minimal velocity associated with the attainment of VO2max (vVO2max), referred to as maximal aerobic power, and ran the 800-m or 1,500-m race with the intent of achieving the lowest time possible. Anaerobic power (PAN) was measured as the difference between total power and aerobic power, and instantaneous ANS as the difference between end-race and instantaneous accumulated oxygen deficits. In 800 m and 1,500 m, tlim PAN was constant during the first 70% of race time in both races. Furthermore, the 1,500-m performance was significantly correlated with tlim PAN during this period (r=-0.92, P<0.01), but the 800-m performance was not (r=-0.05, P=0.89), although it was correlated with the end-race oxygen deficit (r=-0.70, P=0.05). In conclusion, this study shows that in middle-distance races over both 800 m and 1,500 m, the speed variations during the first 70% of the race time serve to maintain constant the time to exhaustion at the instantaneous anaerobic power. This observation is consistent with the hypothesis that at any instant running speed is controlled by the ANS remaining.
Benecke, U; Schulze, E -D; Matyssek, R; Havranek, W M
1981-08-01
CO 2 -assimilation and leaf conductance of Larix decidua Mill. were measured in the field at high (Patscherkofel, Austria) and low (Bayreuth, Germany) elevation in Europe, and outside its natural range along an altitudinal gradient in New Zealand.Phenology of leaf and stem growth showed New Zealand sites to have much longer growing seasons than in Europe, so that the timberline (1,330 m) season was almost twice as long as at the Austrian timberline (1,950 m).The maximum rates of photosynthesis, A max , were similar at all sites after completion of leaf growth, namely 3 to 3.5 μmol m -2 s -1 . Only the sun needles of the Bayreuth tree reached 3.5 to 5 μmol m -2 s -1 . Light response curves for CO 2 -assimilation changed during leaf ontogeny, the slope being less in young than in adult leaves. The temperature optimum for 90% of maximum photosynthesis was at all sites similar between ca. 12-28°C for much of the summer. Only at the cooler high altitude timberline sites were optima lower at ca. 10-16°C in developing needles during early summer.A linear correlation existed between A max and leaf conductance at A max , and this showed no difference between the sites except for sun needles at Bayreuth.Leaf conductance responded strongly to light intensity and this was concurrent with the light response of CO 2 -uptake. A short-term and a long-term effect were differentiated. With increasing age maximum rates of CO 2 -uptake and leaf conductance at A max increased, whereas short-term response during changes in light declined. The stomata became less responsive with increasing age and tended to remain open. The stomatal responses to light have a significant effect on the water use efficiency during diurnal courses. A higher water use efficiency was found for similar atmospheric conditions in spring than in autumn.Stomata responded with progressive closure to declining air humidity in a similar manner under dissimilar climates. Humidity response thus showed insensitivity to habitat differences.From the diurnal course of gas-exchange stomata were more closed at timberline (1,330 m) than at lower elevations but this did not lead to corresponding site differences in CO 2 -exchange suggesting Larix may not be operating at high water use efficiency when air is humid.The main difference between habitats studied was in the time necessary for completion of needle development. Similarity in photosynthesis and leaf conductance existed between sites when tree foliage was compared at the same stage of development. Length of growing season and time requirement for foliar development appear to be a principle factor in the carbon balance of deciduous species. The evergreen habit may be more effective in counterbalancing the effects of cool short summers.
Modeling of Longitudinal Changes in Left Ventricular Dimensions among Female Adolescent Runners
2015-01-01
Purpose Left ventricular (LV) enlargement has been linked to sudden cardiac death among young athletes. This study aimed to model the effect of long-term incessant endurance training on LV dimensions in female adolescent runners. Methods Japanese female adolescent competitive distance runners (n = 36, age: 15 years, height: 158.1 ± 4.6 cm, weight: 44.7 ± 6.1 kg, percent body fat: 17.0 ± 5.2%) underwent echocardiography and underwater weighing every 6 months for 3 years. Since the measurement occasions varied across subjects, multilevel analysis was used for curvilinear modeling of changes in running performance (velocities in 1500 m and 3000 m track race), maximal oxygen uptake (VO2max), body composition, and LV dimensions. Results Initially, LV end-diastolic dimension (LVEDd) and LV mass were 47.0 ± 3.0 mm and 122.6 ± 15.7 g, respectively. Running performance and VO2max improved along with the training duration. The trends of changes in fat-free mass (FFM) and LVEDd were similarly best described by quadratic polynomials. LVEDd did not change over time in the model including FFM as a covariate. Increases in LV wall thicknesses were minimal and independent of FFM. LV mass increased according to a quadratic polynomial trend even after adjusting for FFM. Conclusions FFM was an important factor determining changes in LVEDd and LV mass. Although running performance and VO2max were improved by continued endurance training, further LV cavity enlargement hardly occurred beyond FFM gain in these adolescent female runners, who already demonstrated a large LVEDd. PMID:26469336
Hoffmann, Manuela A; Miederer, Matthias; Wieler, Helmut J; Ruf, Christian; Jakobs, Frank M; Schreckenberger, Mathias
2017-12-19
Radiolabeled prostate-specific membrane antigen (PSMA) has proven to be a highly accurate method to detect recurrence and metastases of prostate cancer, but only sparse data is available about its performance in the diagnosis of clinically significant primary prostate cancer. We compared 68 Ga-PSMA-11 PET/CT in 25 patients with 18 FEC PET/CT in 40 patients with suspected prostate carcinoma based on an increased PSA level.The PET/CT results were compared with the histopathologic Gleason Score (GS) of biopsies. The 68 Ga-PSMA-11 PET/CT revealed highly suspect prostatic lesions (maximum standardized uptake value/SUV max >2.5) in 21/25 patients (84%), associated with GS≥6 (low-grade/high-grade carcinoma). Two histopathologic non-malignancy-relevant cases (GS<6) had PSMA-SUV max ≤2.5; all histopathologic high-grade cases (GS≥7b) showed PSMA-SUV max >12.0 which further increased with rising GS. There were 2 false positives and no false negative findings for high-grade prostate cancer using a cut off-level for SUV max of 2.5.In contrast, the 18 FEC PET/CT showed suspected malignant lesions in 38/40 patients (95%), which included 3 lesions with GS<6. The mean SUV max values did not differ with different GS. There were 11 false positives and 1 false negative for detection of high-grade prostate cancer (cut off 2.5).By means of ROC analysis a SUV max of 5.4 was found to be an optimal cut off-level to distinguish between low- and high-grade carcinoma in 68 Ga-PSMA-11 PET/CT (AUC=0.9692; 95% CI 0.9086;1.0000;SD(AUC)=0.0309)). Choosing a cut off-level of SUV max 5.4, 68 Ga-PSMA-11 PET/CT was able to distinguish between GS ≤7a/≥7b with a sensitivity of 84%, a specificity of 100%, a negative predictive value (NPV) of 67%, and an efficiency of 88% ( p <0.001).The ROC analysis revealed a SUV max 6.5 as an optimal cut off-level to distinguish between low- and high-grade carcinoma in 18 FEC PET/CT (AUC=0.7470; 95% CI 0.5919;0.9020;SD(AUC)=0.0791) with a sensitivity of 61% and a specificity of 92%; but the efficiency was only 70% and the NPV 50% ( p =0.01). 68 Ga-PSMA-11 PET/CT guided biopsy of the prostate increases diagnostic precision and is likely to help to reduce overtreatment of low-grade malignant disease as well as detect the foci of the highest Gleason pattern. Both methods ( 68 Ga-PSMA-11, 18 FEC) were suitable to detect primary prostate cancer, but the excellent image quality, the higher specificity and the good correlation of positive scans with GS are advantages of 68 Ga-PSMA-11.
Appropriate interpretation of aerobic capacity: allometric scaling in adult and young soccer players
Chamari, K; Moussa-Chamari, I; Boussaidi, L; Hachana, Y; Kaouech, F; Wisloff, U
2005-01-01
Objective: To compare aerobic capacity of young and adult elite soccer players using appropriate scaling procedures. Methods: Twenty four male adult (mean (SD) age 24 (2) years, weight 75.7 (7.2) kg, VO2MAX 66.6 (5.2) ml/lbm/min, where lbm is lean body mass in kg) and 21 youth (14 (0.4) years, 60.2 (7.3) kg, 66.5 (5.9) ml/lbm/min) elite soccer players took part in the study. Allometric equations were used to determine the relation between maximal and submaximal oxygen cost of running (running economy) and body mass. Results: Maximal and submaximal oxygen uptake increased in proportion to body mass raised to the power of 0.72 (0.04) and 0.60 (0.06) respectively. The VO2MAX of adult players was similar to that of the youth players when expressed in direct proportion to body mass—that is, ml/kg/min—but 5% higher (p<0.05) when expressed using appropriate procedures for scaling. Conversely, compared with seniors, youth players had 13% higher (p<0.001) energy cost of running—that is, poorer running economy—when expressed as ml/kg/min but not when expressed according to the scaling procedures. Conclusions: Compared with the youth soccer players, VO2MAX in the seniors was underestimated and running economy overestimated when expressed traditionally as ml/lbm/min. The study clearly shows the pitfalls in previous studies when aerobic capacity was evaluated in subjects with different body mass. It further shows that the use of scaling procedures can affect the evaluation of, and the resultant training programme to improve, aerobic capacity. PMID:15665205
Burgos, Carlos; Henríquez-Olguín, Carlos; Andrade, David Cristóbal; Ramírez-Campillo, Rodrigo; Araneda, Oscar F; White, Allan; Cerda-Kohler, Hugo
2016-01-01
The aim of the present study was to determine the effects of three weeks of hyperbaric oxygen (HBO 2 ) training on oxidative stress markers and endurance performance in young soccer players. Participants (18.6 ± 1.6 years) were randomized into hyperbaric-hyperoxic (HH) training ( n = 6) and normobaric normoxic (NN) training ( n = 6) groups. Immediately before and after the 5th, 10th, and 15th training sessions, plasma oxidative stress markers (lipid hydroperoxides and uric acid), plasma antioxidant capacity (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid [TROLOX]), arterial blood gases, acid-base balance, bases excess (BE), and blood lactate analyses were performed. Before and after intervention, maximal oxygen uptake (VO 2 max) and peak power output (PPO) were determined. Neither HH nor NN experienced significant changes on oxidative stress markers or antioxidant capacity during intervention. VO 2 max and PPO were improved (moderate effect size) after HH training. The results suggest that HBO 2 endurance training does not increase oxidative stress markers and improves endurance performance in young soccer players. Our findings warrant future investigation to corroborate that HBO 2 endurance training could be a potential training approach for highly competitive young soccer players.
Henríquez-Olguín, Carlos; Andrade, David Cristóbal; Ramírez-Campillo, Rodrigo; White, Allan; Cerda-Kohler, Hugo
2016-01-01
The aim of the present study was to determine the effects of three weeks of hyperbaric oxygen (HBO2) training on oxidative stress markers and endurance performance in young soccer players. Participants (18.6 ± 1.6 years) were randomized into hyperbaric-hyperoxic (HH) training (n = 6) and normobaric normoxic (NN) training (n = 6) groups. Immediately before and after the 5th, 10th, and 15th training sessions, plasma oxidative stress markers (lipid hydroperoxides and uric acid), plasma antioxidant capacity (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid [TROLOX]), arterial blood gases, acid-base balance, bases excess (BE), and blood lactate analyses were performed. Before and after intervention, maximal oxygen uptake (VO2max) and peak power output (PPO) were determined. Neither HH nor NN experienced significant changes on oxidative stress markers or antioxidant capacity during intervention. VO2max and PPO were improved (moderate effect size) after HH training. The results suggest that HBO2 endurance training does not increase oxidative stress markers and improves endurance performance in young soccer players. Our findings warrant future investigation to corroborate that HBO2 endurance training could be a potential training approach for highly competitive young soccer players. PMID:28083148
NASA Astrophysics Data System (ADS)
Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.
2017-09-01
Irvingia gabonensis endocarp waste was charred (DNc) and subsequently coated with chitosan (CCDNc). Physicochemical characteristics of the two adsorbents were established, while Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods were further employed for characterization. Efficiencies of the prepared adsorbents in the uptake of Rhodamine B (RhB) from aqueous effluent were investigated and adsorption data were tested using four isotherms and four kinetics models. The BET surface areas of the prepared adsorbent were 0.0092 and 4.99 m2/g for DNc and CCDNc, respectively, and maximum adsorption was recorded at pH between 3 and 4, respectively. While monolayer adsorption dominates the uptake of RhB onto DNc, uptake of RhB onto CCDNc was onto heterogeneous surface. The maximum monolayer adsorption capacities ( q max) obtained from the Langmuir equation are 52.90 and 217.39 mg/g for DNc and CCDNc, respectively. Pseudo second order and Elovich kinetic models well described the kinetics of the two adsorption processes. The mean sorption energy ( E) calculated from the D-R model and desorption efficiencies suggests that while the uptake of RhB onto DNc was physical in nature, for RhB-CCDNc system chemisorption dominates.
Mechanisms of vitamin K transport and metabolism in Swiss 3T3 mouse fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canfield, L.M.; Townsend, A.F.; Hibbs, D.B.
Transport of vitamin K into isolated fibroblasts was followed using /sup 3/H vitamin K/sub 1/. The initial rate is saturable by 5 min. at 25..mu..M vitamin K with a Km(app) of 10..mu..M and V/sub max/ of 50 pmols/min/10/sup 6/ cells. Kinetics of uptake are biphasic with a second slower rate ensuing after 10 minutes. Insensitivity of the initial rate of uptake to FCCP or ouabain indicates an ATP-independent transport mechanism. Specificity of transport is shown by competition of uptake of /sup 3/H vitamin K by unlabelled vitamin and strong (>90%) inhibition of the initial rate by equimolar concentrations of themore » vitamin K analog, Chloro-K. In addition, following uptake, both vitamins K/sub 1/ and K/sub 2/ are metabolized to their respective epoxides. Vitamin K/sub 1/ epoxide is also transported into fibroblasts and metabolized to the parent quinone in a Warfarin-sensitive reaction. Following alkaline hydrolysis of isolated intracellular protein, the vitamin K-dependent amino acid, gamma carboxyglutamic acid (gla) was detected. It is concluded that vitamin K is specifically transported into fibroblasts and metabolized via the classical pathway described in liver with the concomitant production of vitamin K-dependent proteins.« less
Assessment of liver function in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI.
Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jonas, Eduard
2010-10-01
Gd-EOB-DTPA (gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid) is a gadolinium-based hepatocyte-specific contrast agent for magnetic resonance imaging (MRI). The aim of this study was to determine whether the hepatic uptake and excretion of Gd-EOB-DTPA differ between patients with primary biliary cirrhosis (PBC) and healthy controls, and whether differences could be quantified. Gd-EOB-DTPA-enhanced liver MRI was performed in 20 healthy volunteers and 12 patients with PBC. The uptake of Gd-EOB-DTPA was assessed using traditional semi-quantitative parameters (C(max) , T(max) and T(1/2) ), as well as model-free parameters derived after deconvolutional analysis (hepatic extraction fraction [HEF], input-relative blood flow [irBF] and mean transit time [MTT]). In each individual, all parameters were calculated for each liver segment and the median of the segmental values was used to define a global liver median (GLM). Although the PBC patients had relatively mild disease according to their Model for End-stage Liver Disease (MELD), Child-Pugh and Mayo risk scores, they had significantly lower HEF and shorter MTT values compared with the healthy controls. These differences significantly increased with increasing MELD and Child-Pugh scores. Dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) has a potential role as an imaging-based liver function test. The high spatial resolution of MRI enables hepatic function to be assessed on segmental and sub-segmental levels. © 2010 International Hepato-Pancreato-Biliary Association.
NASA Astrophysics Data System (ADS)
Oburger, Eva; Vergara Cid, Carolina; Preiner, Julian; Hu, Junjian; Hann, Stephan; Wanek, Wolfgang; Richter, Andreas
2017-04-01
Tungsten (W) is an economically important transition metal that finds a broad scope of applications ranging from household appliances to high-end technology goods. However, in the past decades, increasing industrial and military use of W-based products (particularly ammunition, as well as drilling, milling and cutting tools) opened new pathways of W into natural systems and raise the need for a better understanding of the behavior of W in the environment. Soils play an important role in controlling the bioavailability of pollutants and their entry into the food web via plant uptake as they serve as filter and buffer systems. However, compared to other trace metals, knowledge about the fate of W in the plant-soil environment is rather sketchy. The chemical alikeness of W and molybdenum (Mo) suggests not only similar, typical anionic behaviour in soil but also a potential negative effect of W on important plant physiological processes that require Mo. We examined how soil pH dependent solubility and W speciation affected biomass production, W and nutrient uptake by soy (Glycine max cv Primus) and the activity of molybdoenzymes involved in N assimilation (nitrate reductase) and symbiotic N2 fixation (nitrogenase). Increased solubility of mainly monomeric W in high pH soils resulted in increased W plant uptake, demonstrating a greater risk of entry of W into the food web in alkaline soils. Symbiotic nitrogen fixation was able to compensate for reduced nitrate reductase activity until W soil solution concentrations became too phytotoxic, indicating a more efficient detoxification/compartmentalization mechanism in nodules than in soy leaves. The increasing presence of polymeric W species observed in low pH soils spiked with high W concentrations resulted in decreased W uptake but simultaneously had an overall negative effect on nutrient assimilation and plant growth, suggesting a greater phytotoxicity of W polymers. Our results demonstrate the importance of soil pH for the toxicological behaviour of W in the plant-soil environment, which has been completely ignored in the past.
Body composition and Vo2max of exceptional weight-trained athletes.
Fahey, T D; Akka, L; Rolph, R
1975-10-01
The maximal oxygen uptake and body composition of 30 exceptional athletes who have trained extensively with weights was measured. The sample included 3 world record holders, 8 other world class athletes, and 19 national class competitors. The sports represented were shot-putting, discus throwing, body building, power lifting, wrestling, and olympic lifting. Vo2max as determined on a bicycle ergometer by the open-circuit method was 4.6 +/- 0.7 1-min-1 (mean +/- SD) (48.8 +/- 7 ml-kg-1., 56.4 +/- 8.6 ml-(kg LBW)-1). The mean maximal heart rate was 185.3 +/- 11.6 beats-min-1. The subjects attained a work rate of 1,728.2 +/- 223 kpm-min-1 on a continuous progressive bicycle ergometer test and had mean maximal ventilations of 152.5 +/- 27.7 1-min-1 BTPS. Body composition was determined by densitometry. Body weight averaged 96.0 +/- 14.9 kg, with mean percent fat of 13.8 +/- 4.5. The results of this study indicate that exceptional weight-trained athletes are within the normal college-age population range in body fat and of somewhat higher physical working capacity.
Energy cost of the Trondheim firefighter test for experienced firefighters.
von Heimburg, Erna; Medbø, Jon Ingulf
2013-01-01
The aim of this study was to measure aerobic demands of fire fighting activities including exercise in the heat. Twenty-two experienced firefighters performed the Trondheim test simulating fire fighting tasks including work in the heat. Maximal oxygen uptake (VO2 max), heart rate (HR) and ventilation were recorded continuously. Data were compared with results obtained during a treadmill test during which the participants were dressed as smoke divers. The participants completed physical parts of the Trondheim test in ˜12 min (range: 7.5-17.4). Time to complete the test was closely related to the participant's VO2 max. HR of ˜170 beats/min and pulmonary ventilation of ˜100 L/min were higher than at lactate threshold (LT) during laboratory tests. VO2 averaged over the test's physical part was 35 ± 7 ml/min/kg, which was at the same or below the level corresponding to the participants' LT. Physically fit participants completed the test faster than less fit participants. Slower and physically less fit participants consumed more air and used more oxygen than faster and physically more fit participants. The Trondheim test is physically demanding; it distinguishes physically fit and less fit participants.
Wang, Jong-Shyan
2005-01-01
This study investigated how exercise training and detraining affect the cutaneous microvascular function and the regulatory role of endothelium-dependent dilation in skin vasculature. Ten healthy sedentary subjects cycled on an ergometer at 50% of maximal oxygen uptake (VO(2max)) for 30 min daily, 5 days a week, for 8 weeks, and then detrained for 8 weeks. Plasma nitric oxide (NO) metabolites (nitrite plus nitrate) were measured by a microplate fluorometer. The cutaneous microvascular perfusion responses to six graded levels of iontophoretically applied 1% acetylcholine (ACh) and 1% sodium nitroprusside (SNP) in the forearm skin were determined by laser Doppler. After training, (1) resting heart rate and blood pressure were reduced, whereas VO(2max), skin blood flow and cutaneous vascular conductance to acute exercise were enhanced; (2) plasma NO metabolite levels and ACh-induced cutaneous perfusion were increased; (3) skin vascular responses to SNP did not change significantly. However, detraining reversed these effects on cutaneous microvascular function and plasma NO metabolite levels. The results suggest that endothelium-dependent dilation in skin vasculature is enhanced by moderate exercise training and reversed to the pretraining state with detraining.
Coupling Cover Crops with Alternative Swine Manure Application Strategies: Manure-15N Tracer Studies
USDA-ARS?s Scientific Manuscript database
Integration of rye cover crops with alternative liquid swine (Sus scrofa L.) manure application strategies may enhance retention of manure N in corn (Zea mays L.) - soybean [Glycine max (L.) Merr] cropping systems. The objective of this study was to quantify uptake of manure derived-N by a rye (Seca...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Bergh, Laura, E-mail: laura.vandenbergh@uzleuven.be; Koole, Michel; Isebaert, Sofie
2012-08-01
Purpose: To investigate the additional value of {sup 11}C-choline positron emission tomography (PET)-computed tomography (CT) to T2-weighted (T2w) magnetic resonance imaging (MRI) for localization of intraprostatic tumor nodules. Methods and Materials: Forty-nine prostate cancer patients underwent T2w MRI and {sup 11}C-choline PET-CT before radical prostatectomy and extended lymphadenectomy. Tumor regions were outlined on the whole-mount histopathology sections and on the T2w MR images. Tumor localization was recorded in the basal, middle, and apical part of the prostate by means of an octant grid. To analyze {sup 11}C-choline PET-CT images, the same grid was used to calculate the standardized uptake valuesmore » (SUV) per octant, after rigid registration with the T2w MR images for anatomic reference. Results: In total, 1,176 octants were analyzed. Sensitivity, specificity, and accuracy of T2w MRI were 33.5%, 94.6%, and 70.2%, respectively. For {sup 11}C-choline PET-CT, the mean SUV{sub max} of malignant octants was significantly higher than the mean SUV{sub max} of benign octants (3.69 {+-} 1.29 vs. 3.06 {+-} 0.97, p < 0.0001) which was also true for mean SUV{sub mean} values (2.39 {+-} 0.77 vs. 1.94 {+-} 0.61, p < 0.0001). A positive correlation was observed between SUV{sub mean} and absolute tumor volume (Spearman r = 0.3003, p = 0.0362). No correlation was found between SUVs and prostate-specific antigen, T-stage or Gleason score. The highest accuracy (61.1%) was obtained with a SUV{sub max} cutoff of 2.70, resulting in a sensitivity of 77.4% and a specificity of 44.9%. When both modalities were combined (PET-CT or MRI positive), sensitivity levels increased as a function of SUV{sub max} but at the cost of specificity. When only considering suspect octants on {sup 11}C-choline PET-CT (SUV{sub max} {>=} 2.70) and T2w MRI, 84.7% of these segments were in agreement with the gold standard, compared with 80.5% for T2w MRI alone. Conclusions: The additional value of {sup 11}C-choline PET-CT next to T2w MRI in detecting tumor nodules within the prostate is limited.« less
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Mackowiak, C. L.; Peterson, B. V.; Sager, J. C.; Knott, W. M.; Berry, W. L.; Sharifi, M. R.
1998-01-01
A data set is given describing daily nutrient and water uptake, carbon dioxide (CO2) exchange, ethylene production, and carbon and nutrient partitioning from a 20 sq m stand of soybeans (Glycine max (L.) Merr. cv. McCall] for use in bioregenerative life support systems. Stand CO2 exchange rates were determined from nocturnal increases in CO2 (respiration) and morning drawdowns (net photosynthesis) to a set point of 1000 micromol/ mol each day (i.e., a closed system approach). Atmospheric samples were analyzed throughout growth for ethylene using gas chromatography with photoionization detection (GC/PH)). Water use was monitored by condensate production from the humidity control system, as well as water uptake from the nutrient solution reservoirs each day. Nutrient uptake data were determined from daily additions of stock solution and acid to maintain an EC of 0.12 S/m and pH of 5.8. Dry mass yields of seeds, pods (without seeds), leaves, stems, and roots are provided, as well as elemental and proximate nutritional compositions of the tissues. A methods section is included to qualify any assumptions that might be required for the use of the data in plant growth models, along with a daily event calendar documenting set point adjustments and the occasional equipment or sensor failure.
Mansor, Syahir; Pfaehler, Elisabeth; Heijtel, Dennis; Lodge, Martin A; Boellaard, Ronald; Yaqub, Maqsood
2017-12-01
In longitudinal oncological and brain PET/CT studies, it is important to understand the repeatability of quantitative PET metrics in order to assess change in tracer uptake. The present studies were performed in order to assess precision as function of PET/CT system, reconstruction protocol, analysis method, scan duration (or image noise), and repositioning in the field of view. Multiple (repeated) scans have been performed using a NEMA image quality (IQ) phantom and a 3D Hoffman brain phantom filled with 18 F solutions on two systems. Studies were performed with and without randomly (< 2 cm) repositioning the phantom and all scans (12 replicates for IQ phantom and 10 replicates for Hoffman brain phantom) were performed at equal count statistics. For the NEMA IQ phantom, we studied the recovery coefficients (RC) of the maximum (SUV max ), peak (SUV peak ), and mean (SUV mean ) uptake in each sphere as a function of experimental conditions (noise level, reconstruction settings, and phantom repositioning). For the 3D Hoffman phantom, the mean activity concentration was determined within several volumes of interest and activity recovery and its precision was studied as function of experimental conditions. The impact of phantom repositioning on RC precision was mainly seen on the Philips Ingenuity PET/CT, especially in the case of smaller spheres (< 17 mm diameter, P < 0.05). This effect was much smaller for the Siemens Biograph system. When exploring SUV max , SUV peak , or SUV mean of the spheres in the NEMA IQ phantom, it was observed that precision depended on phantom repositioning, reconstruction algorithm, and scan duration, with SUV max being most and SUV peak least sensitive to phantom repositioning. For the brain phantom, regional averaged SUVs were only minimally affected by phantom repositioning (< 2 cm). The precision of quantitative PET metrics depends on the combination of reconstruction protocol, data analysis methods and scan duration (scan statistics). Moreover, precision was also affected by phantom repositioning but its impact depended on the data analysis method in combination with the reconstructed voxel size (tissue fraction effect). This study suggests that for oncological PET studies the use of SUV peak may be preferred over SUV max because SUV peak is less sensitive to patient repositioning/tumor sampling. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Functional overreaching: the key to peak performance during the taper?
Aubry, Anaël; Hausswirth, Christophe; Louis, Julien; Coutts, Aaron J; LE Meur, Yann
2014-09-01
The purpose of this study is to examine whether performance supercompensation during taper is maximized in endurance athletes after experiencing overreaching during an overload training (OT) period. Thirty-three trained male triathletes were assigned to either OT (n = 23) or normal training groups (n = 10, CTL) during 8 wk. Cycling performance and maximal oxygen uptake (V˙O2max) were measured after 1 wk of moderate training, a 3-wk period of OT, and then each week during 4-wk taper. Eleven of the 23 subjects from the OT group were diagnosed as functionally overreached (F-OR) after the overload period (decreased performance with concomitant high perceived fatigue), whereas the 12 other subjects were only acutely fatigued (AF) (no decrease in performance). According to qualitative statistical analysis, the AF group demonstrated a small to large greater peak performance supercompensation than the F-OR group (2.6% ± 1.1%) and the CTL group (2.6% ± 1.6%). V˙O2max increased significantly from baseline at peak performance only in the CTL and AF groups. Of the peak performances, 60%, 83%, and 73% occurred within the two first weeks of taper in CTL, AF, and OR, respectively. Ten cases of infection were reported during the study with higher prevalence in F-OR (70%) than that in AF (20%) and CTL (10%). This study showed that 1) greater gains in performance and V˙O2max can be achieved when higher training load is prescribed before the taper but not in the presence of F-OR; 2) peak performance is not delayed during taper when heavy training loads are completed immediately prior; and 3) F-OR provides higher risk for training maladaptation, including increased infection risks.
Exertional oxygen uptake kinetics: a stamen of stamina?
Whipp, Brian J; Rossiter, H B; Ward, S A
2002-04-01
The fundamental pulmonary O(2) uptake (.VO(2)) response to moderate, constant-load exercise can be characterized as (d.VO(2)/dt)(tau)+Delta.VO(2) (t)=Delta.VO(2SS) where Delta.VO(2SS) is the steady-state response, and tau is the time constant, with the .VO(2) kinetics reflecting intramuscular O(2) uptake (.QO(2)) kinetics, to within 10%. The role of phosphocreatine (PCr) turnover in .QO(2) control can be explored using (31)P-MR spectroscopy, simultaneously with .VO(2). Although tau.VO(2) and tauPCr vary widely among subjects (approx. 20-65 s), they are not significantly different from each other, either at the on- or off-transient. A caveat to interpreting the "well-fit" exponential is that numerous units of similar Delta.VO(2SS) but with a wide tau distribution can also yield a .VO(2) response with an apparent single tau. This tau is, significantly, inversely correlated with lactate threshold and .VO(2max)(but is poorly predictive; a frail stamen, therefore), consistent with tau not characterizing a compartment with uniform kinetics. At higher intensities, the fundamental kinetics become supplemented with a slowly-developing phase, setting .VO(2)on a trajectory towards maximum .VO(2). This slow component is also demonstrable in Delta[PCr]: the decreased efficiency thereby reflecting a predominantly high phosphate-cost of force production rather than a high O(2)-cost of phosphate production. We also propose that the O(2)-deficit for the slow-component is more likely to reflect shifting Delta.VO(2SS) rather than a single one with a single tau.
Vucetić, Vlatko; Sentija, Davor; Sporis, Goran; Trajković, Nebojsa; Milanović, Zoran
2014-06-01
The purpose of this study was to compare two methods for determination of anaerobic threshold from two different treadmill protocols. Forty-eight Croatian runners of national rank (ten sprinters, fifteen 400-m runners, ten middle distance runners and thirteen long distance runners), mean age 21.7 +/- 5.1 years, participated in the study. They performed two graded maximal exercise tests on a treadmill, a standard ramp treadmill test (T(SR), speed increments of 1 km x h(-1) every 60 seconds) and a fast ramp treadmill test (T(FR), speed increments of 1 km x h(-1) every 30 seconds) to determine and compare the parameters at peak values and at heart rate at the deflection point (HR(DP)) and ventilation threshold (VT). There were no significant differences between protocols (p > 0.05) for peak values of oxygen uptake (VO(2max), 4.48 +/- 0.43 and 4.44 +/- 0.45 L x min(-1)), weight related VO(2max) (62.5 +/- 6.2 and 62.0 +/- 6.0 mL x kg(-1) x min(-1)), pulmonary ventilation (VE(max), 163.1 +/- 18.7 and 161.3 +/- 19.9 L x min(-1)) and heart rate (HR(max), 192.3 +/- 8.5 and 194.4 +/- 8.7 bpm) (T(FR) and T(SR), respectively). Moreover, no significant differences between T(FR) and T(SR) where found for VT and HR(DP) when expressed as VO2 and HR. However, there was a significant effect of ramp slope on running speed at VO(2max) and at the anaerobic threshold (AnT), independent of the method used (VT: 16.0 +/- 2.2 vs 14.9 +/- 2.2 km x h(-1);HR(DP): 16.5 +/- 1.9 vs 14.9 +/- 2.0 km x h(-1) for T(FR) and T(SR) respectively). Linear regression analysis revealed high between-test and between-method correlations for VO2, HR and running speed parameters (r = 0.78-0.89, p < 0.01). The present study has indicated that the VT and HR(DP) for running (VO2, ventilation, and heart rate at VT/HR(DP)) are independent of test protocol, while there is a significant effect of ramp slope on VT and HR(DP) when expressed as running speed. Moreover, this study demonstrates that the point of deflection from linearity of heart rate may be an accurate predictor of the anaerobic threshold in trained runners, independently of the protocol used.
Regulation of substrate use during the marathon.
Spriet, Lawrence L
2007-01-01
The energy required to run a marathon is mainly provided through oxidative phosphorylation in the mitochondria of the active muscles. Small amounts of energy from substrate phosphorylation are also required during transitions and short periods when running speed is increased. The three inputs for adenosine triphosphate production in the mitochondria include oxygen, free adenosine diphosphate and inorganic phosphate, and reducing equivalents. The reducing equivalents are derived from the metabolism of fat and carbohydrate (CHO), which are mobilised from intramuscular stores and also delivered from adipose tissue and liver, respectively. The metabolism of fat and CHO is tightly controlled at several regulatory sites during marathon running. Slower, recreational runners run at 60-65% maximal oxygen uptake (VO(2max)) for approximately 3:45:00 and faster athletes run at 70-75% for approximately 2:45:00. Both groups rely heavily on fat and CHO fuels. However, elite athletes run marathons at speeds requiring between 80% and 90% VO(2max), and finish in times between 2:05:00 and 2:20:00. They are highly adapted to oxidise fat and must do so during training. However, they compete at such high running speeds, that CHO oxidation (also highly adapted) may be the exclusive source of energy while racing. Further work with elite athletes is needed to examine this possibility.
Manzoni, Stefano; Vico, Giulia; Katul, Gabriel; Palmroth, Sari; Jackson, Robert B; Porporato, Amilcare
2013-04-01
Soil and plant hydraulics constrain ecosystem productivity by setting physical limits to water transport and hence carbon uptake by leaves. While more negative xylem water potentials provide a larger driving force for water transport, they also cause cavitation that limits hydraulic conductivity. An optimum balance between driving force and cavitation occurs at intermediate water potentials, thus defining the maximum transpiration rate the xylem can sustain (denoted as E(max)). The presence of this maximum raises the question as to whether plants regulate transpiration through stomata to function near E(max). To address this question, we calculated E(max) across plant functional types and climates using a hydraulic model and a global database of plant hydraulic traits. The predicted E(max) compared well with measured peak transpiration across plant sizes and growth conditions (R = 0.86, P < 0.001) and was relatively conserved among plant types (for a given plant size), while increasing across climates following the atmospheric evaporative demand. The fact that E(max) was roughly conserved across plant types and scales with the product of xylem saturated conductivity and water potential at 50% cavitation was used here to explain the safety-efficiency trade-off in plant xylem. Stomatal conductance allows maximum transpiration rates despite partial cavitation in the xylem thereby suggesting coordination between stomatal regulation and xylem hydraulic characteristics. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Gait-cycle characteristics and running economy in elite Eritrean and European runners.
Santos-Concejero, Jordan; Oliván, Jesús; Maté-Muñoz, José L; Muniesa, Carlos; Montil, Marta; Tucker, Ross; Lucia, Alejandro
2015-04-01
This study aimed to determine whether biomechanical characteristics such as ground-contact time, swing time, and stride length and frequency contribute to the exceptional running economy of East African runners. Seventeen elite long-distance runners (9 Eritrean, 8 European) performed an incremental maximal running test and 3 submaximal running bouts at 17, 19, and 21 km/h. During the tests, gas-exchange parameters were measured to determine maximal oxygen uptake (VO2max) and running economy (RE). In addition, ground-contact time, swing time, stride length, and stride frequency were measured. The European runners had higher VO2max values than the Eritrean runners (77.2 ± 5.2 vs 73.5 ± 6.0 mL · kg-1 · min-1, P = .011, effect sizes [ES] = 0.65), although Eritrean runners were more economical at 19 km/h (191.4 ± 10.4 vs 205.9 ± 13.3 mL · kg-1 · min-1, P = .026, ES = 1.21). There were no differences between groups for ground-contact time, swing time, stride length, or stride frequency at any speed. Swing time was associated with running economy at 21 km/h in the Eritrean runners (r = .71, P = .033), but no other significant association was found between RE and biomechanical variables. Finally, best 10-km performance was significantly correlated with RE (r = -.57; P = .013). Eritrean runners have superior RE compared with elite European runners. This appears to offset their inferior VO2max. However, the current data suggest that their better RE does not have a biomechanical basis. Other factors, not measured in the current study, may contribute to this RE advantage.
Uddin, Jamal; Zwisler, Ann-Dorthe; Lewinter, Christian; Moniruzzaman, Mohammad; Lund, Ken; Tang, Lars H; Taylor, Rod S
2016-05-01
The aim of this study was to undertake a comprehensive assessment of the patient, intervention and trial-level factors that may predict exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure. Meta-analysis and meta-regression analysis. Randomized controlled trials of exercise-based rehabilitation were identified from three published systematic reviews. Exercise capacity was pooled across trials using random effects meta-analysis, and meta-regression used to examine the association between exercise capacity and a range of patient (e.g. age), intervention (e.g. exercise frequency) and trial (e.g. risk of bias) factors. 55 trials (61 exercise-control comparisons, 7553 patients) were included. Following exercise-based rehabilitation compared to control, overall exercise capacity was on average 0.95 (95% CI: 0.76-1.41) standard deviation units higher, and in trials reporting maximum oxygen uptake (VO2max) was 3.3 ml/kg.min(-1) (95% CI: 2.6-4.0) higher. There was evidence of a high level of statistical heterogeneity across trials (I(2) statistic > 50%). In multivariable meta-regression analysis, only exercise intervention intensity was found to be significantly associated with VO2max (P = 0.04); those trials with the highest average exercise intensity had the largest mean post-rehabilitation VO2max compared to control. We found considerable heterogeneity across randomized controlled trials in the magnitude of improvement in exercise capacity following exercise-based rehabilitation compared to control among patients with coronary heart disease or heart failure. Whilst higher exercise intensities were associated with a greater level of post-rehabilitation exercise capacity, there was no strong evidence to support other intervention, patient or trial factors to be predictive. © The European Society of Cardiology 2015.
Physiological characteristics of an aging Olympic athlete.
Nybo, Lars; Schmidt, Jakob F; Fritzdorf, Stephen; Nordsborg, Nikolai B
2014-11-01
To investigate the physiological basis of continued world-class performance of a world-class rower who won medals (three gold and two bronze) at five consecutive Olympic Games. From the age of 19 to 40 yr, maximal oxygen uptake (VO2 max), peak HR, blood lactate, and rowing ergometer performance were assessed annually. During the first years of his elite career (from age 19 to 24), VO2 max increased from 5.5 to approximately 5.9 L · min(-1) (78 mL · min(-1) · kg(-1)) and his average power during 6-min maximal rowing increased from 420 to approximately 460 W. Although his HRmax declined by approximately 20 bpm during the 20-yr period, maximal aerobic power, evaluated both as VO2 max and 6-min test performance, was maintained until the age of 40. Furthermore, peak lactate levels remained unchanged and average power outputs during 10-s, 60-s, and 60-min ergometer tests were all maintained at approximately 800 W, approximately 700 W, and approximately 350 W, respectively, indicating that he was able to preserve both aerobic and anaerobic exercise performances. Echocardiographic analyses revealed a left ventricular mass of 198 g and left ventricular end-diastolic diameter of 5.8 cm. This longitudinal case indicates that until the age of 40 yr, a steady increase in the oxygen pulse may have compensated for the significant decline in the maximal heart frequency. Furthermore, the maintenance of aerobic and anaerobic exercise capacities allowed this Olympic athlete to compete at the highest level for almost two decades.
Photosynthesis in Norway spruce seedlings infected by the needle rust Chrysomyxa rhododendri.
Bauer, Helmut; Plattner, Karin; Volgger, Waltraud
2000-02-01
Chrysomyxa rhododendri (DC.) De Bary is a needle rust with a host shift between Rhododendron sp. and Norway spruce (Picea abies (L.) Karst.), penetrating only the new developing flushes of the conifer. Because little is known about its effects on trees, we investigated several parameters related to photosynthesis in artificially infected 3-year-old Norway spruce seedlings. The potential efficiency of photosystem II (PSII; derived from chlorophyll fluorescence measurements) was reduced in infected current-year needles as soon as disease symptoms were visible, about three weeks after inoculation. Two weeks later, photosynthetic O(2) evolution (P(max)) of infected needles was less than 20% of control needles, whereas respiratory O(2) uptake (R(D)) was about three times higher than that of control needles. Nonstructural carbohydrate concentrations were about 60% of control values in all parts of the shoots of infected trees. Photosynthetic inhibition was associated with marked decreases in chlorophyll concentration and chlorophyll a/b ratio but only a small reduction in carotenoid concentration. In infected trees, P(max) of noninfected 1-year-old and 2-year-old needles was 50 and 80% higher than in the corresponding age class of needles of control trees. Estimation of potential daily net dry mass production, based on P(max), R(D), specific leaf area, carbon content and needle biomass, indicated that seedlings infected once were able to produce 60%, and those infected twice only 25%, of the dry mass of controls. We conclude that afforestation and regeneration of Norway spruce is seriously impaired in regions where seedlings are frequently attacked by Chrysomyxa.
Lamina, Sikiru
2011-03-01
The purpose of the study was to investigate the effect of interval and continuous training program on blood pressure and serum uric acid (SUA) levels in subjects with hypertension. Three hundred and fifty-seven male patients with mild to moderate systolic blood pressure (SBP) between 140 and 179 and diastolic blood pressure (DBP) between 90 and 109 mm Hg essential hypertension were age-matched and grouped into interval, continuous, and control groups. The interval (work:rest ratio of 1:1) and continuous groups were involved in an 8-week interval and continuous training program of 45-60 minutes, at intensities of 60-79% of heart rate maximum, whereas the control group remained sedentary during this period. SBP, DBP, maximum oxygen uptake (VO2max) and SUA concentration were assessed. One-way analysis of variance and Scheffe and Pearson correlation tests were used in data analysis. Findings of the study revealed significant effect of exercise training program on VO2max, SBP, DBP, and SUA. However, there was no significant difference between the interval and continuous groups. Changes in VO2max negatively correlated with changes in SUA (r = -0.220) at p < 0.05. It was concluded that both moderate-intensity interval and continuous training programs are effective and neither seems superior to the other in the nonpharmacological management of hypertension and may prevent cardiovascular events through the downregulation of SUA in hypertension. Findings of the study support the recommendations of moderate-intensity interval and continuous training programs as adjuncts for nonpharmacological management of essential hypertension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, Liliana, E-mail: lilianam87@gmail.com; Araújo, Isabel, E-mail: isa.araujo013@gmail.com; Costa, Tito, E-mail: tito.fmup16@gmail.com
In this study we characterized {sup 3}H-2-deoxy-D-glucose ({sup 3}H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon {sup 3}H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells {sup 3}H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V{sub max}) and affinity (K{sub m}), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that {sup 3}H-DG uptake by both cellmore » types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited {sup 3}H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling.« less
Mandela, Prashant; Chandley, Michelle; Xu, Yao-Yu; Zhu, Meng-Yang; Ordway, Gregory A
2010-01-01
Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5min decreased [(3)H]NE uptake capacity, an effect characterized by a robust decrease in the V(max) of the transport of [(3)H]NE. As expected, reserpine did not displace the binding of [(3)H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [(3)H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [(3)H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca(2+)/Ca(2+)-calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [(3)H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, alpha-methyl-p-tyrosine, increased [(3)H]NE uptake and eliminated the inhibitory effects of reserpine on [(3)H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca(2+)-independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors. Copyright 2010 Elsevier Ltd. All rights reserved.
Saksena, Seema; Theegala, Saritha; Bansal, Nikhil; Gill, Ravinder K; Tyagi, Sangeeta; Alrefai, Waddah A; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K
2009-11-01
Somatostatin (SST), an important neuropeptide of the gastrointestinal tract has been shown to stimulate sodium chloride absorption and inhibit chloride secretion in the intestine. However, the effects of SST on luminal butyrate absorption in the human intestine have not been investigated. Earlier studies from our group and others have shown that monocarboxylate transporter (MCT1) plays an important role in the transport of butyrate in the human intestine. The present studies were undertaken to examine the effects of SST on butyrate uptake utilizing postconfluent human intestinal epithelial Caco2 cells. Apical SST treatment of Caco-2 cells for 30-60 min significantly increased butyrate uptake in a dose-dependent manner with maximal increase at 50 nM ( approximately 60%, P < 0.05). SST receptor 2 agonist, seglitide, mimicked the effects of SST on butyrate uptake. SST-mediated stimulation of butyrate uptake involved the p38 MAP kinase-dependent pathway. Kinetic studies demonstrated that SST increased the maximal velocity (V(max)) of the transporter by approximately twofold without any change in apparent Michaelis-Menten constant (K(m)). The higher butyrate uptake in response to SST was associated with an increase in the apical membrane levels of MCT1 protein parallel to a decrease in the intracellular MCT1 pool. MCT1 has been shown to interact specifically with CD147 glycoprotein/chaperone to facilitate proper expression and function of MCT1 at the cell surface. SST significantly enhanced the membrane levels of CD147 as well as its association with MCT1. This association was completely abolished by the specific p38 MAP kinase inhibitor, SB203580. Our findings demonstrate that increased MCT1 association with CD147 at the apical membrane in response to SST is p38 MAP kinase dependent and underlies the stimulatory effects of SST on butyrate uptake.
Win, Thida; Screaton, Nicholas J; Porter, Joanna C; Ganeshan, Balaji; Maher, Toby M; Fraioli, Francesco; Endozo, Raymondo; Shortman, Robert I; Hurrell, Lynn; Holman, Beverley F; Thielemans, Kris; Rashidnasab, Alaleh; Hutton, Brian F; Lukey, Pauline T; Flynn, Aiden; Ell, Peter J; Groves, Ashley M
2018-05-01
There is a lack of prognostic biomarkers in idiopathic pulmonary fibrosis (IPF) patients. The objective of this study is to investigate the potential of 18 F-FDG-PET/ CT to predict mortality in IPF. A total of 113 IPF patients (93 males, 20 females, mean age ± SD: 70 ± 9 years) were prospectively recruited for 18 F-FDG-PET/CT. The overall maximum pulmonary uptake of 18 F-FDG (SUV max ), the minimum pulmonary uptake or background lung activity (SUV min ), and target-to-background (SUV max / SUV min ) ratio (TBR) were quantified using routine region-of-interest analysis. Kaplan-Meier analysis was used to identify associations of PET measurements with mortality. We also compared PET associations with IPF mortality with the established GAP (gender age and physiology) scoring system. Cox analysis assessed the independence of the significant PET measurement(s) from GAP score. We investigated synergisms between pulmonary 18 F-FDG-PET measurements and GAP score for risk stratification in IPF patients. During a mean follow-up of 29 months, there were 54 deaths. The mean TBR ± SD was 5.6 ± 2.7. Mortality was associated with high pulmonary TBR (p = 0.009), low forced vital capacity (FVC; p = 0.001), low transfer factor (TLCO; p < 0.001), high GAP index (p = 0.003), and high GAP stage (p = 0.003). Stepwise forward-Wald-Cox analysis revealed that the pulmonary TBR was independent of GAP classification (p = 0.010). The median survival in IPF patients with a TBR < 4.9 was 71 months, whilst in those with TBR > 4.9 was 24 months. Combining PET data with GAP data ("PET modified GAP score") refined the ability to predict mortality. A high pulmonary TBR is independently associated with increased risk of mortality in IPF patients.
O'Connor, Isabel A; Veltman, Karin; Huijbregts, Mark A J; Ragas, Ad M J; Russel, Frans G M; Hendriks, A Jan
2014-11-01
Most toxicokinetic models consider passive diffusion as the only mechanism when modeling the oral uptake of chemicals. However, the overall uptake of nutrients and xenobiotics, such as pharmaceuticals and environmental pollutants, can be increased by influx transport proteins. We incorporated carrier-mediated transport into a one-compartment toxicokinetic model originally developed for passive diffusion only. The predictions were compared with measured oral uptake efficiencies of nutrients and pharmaceuticals, i.e. the fraction of the chemical reaching systemic circulation. Including carrier-mediated uptake improved model predictions for hydrophilic nutrients (RMSE=10% vs. 56%, Coefficient of Efficiency CoE=0.5 vs. -9.6) and for pharmaceuticals (RMSE=21% vs. 28% and CoE=-0.4 vs. -1.1). However, the negative CoE for pharmaceuticals indicates that further improvements are needed. Most important in this respect is a more accurate estimation of vMAX and KM as well as the determination of the amount of expressed and functional transport proteins both in vivo and in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.
Manganese acquisition by Lactobacillus plantarum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archibald, F.S.; Duong, M.N.
1984-04-01
Lactobacillus plantarum has an unusually high Mn(II) requirement for growth and accumulated over 30 mM intracellular Mn(II). The acquisition of Mn(II) by L. plantarum occurred via a specific active transport system powered by the transmembrane proton gradient. The Mn(II) uptake system has a K/sub m/ of 0.2 ..mu..M and a V/sub max/ of 24 nmol mg/sup -1/ of protein min/sup -1/. Above a medium Mn(II) concentration of 200 ..mu..M, the intracellular Mn(II) level was independent of the medium Mn(II) and unresponsive to oxygen stresses but was reduced by phosphate limitation. At a pH of 5.5, citrate, isocitrate, and cis-aconitate effectivelymore » promoted MN(II) uptake, although measurable levels of 1,5-(/sup 14/C)citrate were not accumulated. When cells were presented with equimolar Mn(II) and Cd(II), Cd(II) was preferentially taken up by the Mn(II) transport system. Both Mn(II) and Cd(II) uptake were greatly increased by Mn(II) starvation. Mn(II) uptake by Mn(II)-starved cells was subject to a negative feedback regulatory mechanism functioning less than 1 min after exposure of the cells to Mn(II) and independent of protein synthesis. When presented with a relatively large amount of exogenous Mn(II), Mn(II)-starved cells exhibited a measurable efflux of their internal Mn(II), but the rate was only a small fraction of the maximal Mn(II) uptake rate.« less
Meintjes, Marguerite; Endozo, Raymond; Dickson, John; Erlandsson, Kjel; Hussain, Khalid; Townsend, Caroline; Menezes, Leon; Bomanji, Jamshed
2013-06-01
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycaemia in infants and children. Histologically, there are two subgroups, diffuse and focal. The aim of this study was to evaluate the accuracy of (18)F-fluoro-L-dihydroxyphenylalanine ((18)F-DOPA) PET/computed tomography (CT) and contrast-enhanced CT in distinguishing between focal and diffuse lesions in infants with CHI who are unresponsive to medical therapy. In addition, this paper describes the detailed protocol used for imaging and analysis of (18)F-DOPA PET/CT images in our clinical practice. Twenty-two (18)F-DOPA PET/CT and contrast-enhanced CT imaging studies were carried out on 18 consecutive patients (nine boys and nine girls) with CHI (median age, 2 years and 1 month; range, 1-84 months) who had positive dominant ABCC8 mutation genetic results or negative ABCC8/t results but did not respond to first-line medical therapy with high-dose diazoxide. (18)F-DOPA was produced by the cyclotron unit of Woolfson Molecular Imaging Centre, Manchester, and transported to our centre in central London after synthesis and implementation of quality control measures. (18)F-DOPA was administered intravenously at a dose of 4 MBq/kg, and iodine contrast medium was injected intravenously at a dose of 1.5 ml/kg. Single bed position PET/CT images of the pancreas were acquired under light sedation with oral chloral hydrate. Four PET dynamic data acquisition scans were taken 20, 40, 50 and 60 min after injection for a duration of 10 min each. The results were assessed by visual interpretation and quantitative measurements of standardized uptake values (SUVs) in the head, body, and tail of the pancreas. Of the 18 patients, 13 showed diffuse and five showed focal (18)F-DOPA PET pancreatic uptake. Three regions of interest were drawn over the head, body and tail of the pancreas to calculate the SUV(max). Using the formula - highest SUV(max)/next highest SUV(max) - a ratio was calculated. Five patients had an accumulation of F-DOPA in the pancreas and an SUV ratio greater than 1.5, indicating focal disease with an SUV(max) more than 50% higher than that of the unaffected areas of the pancreas. The remaining 13 patients had diffuse accumulation of (18)F-DOPA in the pancreas (SUV ratio<1.3). Using this ratio, a focal lesion can be distinguished from diffuse uptake and normal pancreatic uptake. The sizes of these regions of interest varied according to the age of the child. All patients diagnosed with focal lesions underwent surgery and were cured eventually. Lesions were accurately localized by PET/CT and confirmed by histological results after surgery. Three of these patients had to undergo second (18)F-DOPA scans and second surgeries after unsuccessful excision during their first surgery. Three patients with diffuse disease underwent a partial pancreatectomy, and histological results confirmed diffuse disease. One patient was cured and two remain on high-dose diazoxide therapy because of persistent hypoglycaemia. (18)F-DOPA PET/CT offers excellent differentiation of focal from diffuse CHI, and the contrast-enhanced CT technique permits precise preoperative localization of the lesion and anatomical landmarks.
Müller, Ivan; Coulibaly, Jean T.; Fürst, Thomas; Knopp, Stefanie; Hattendorf, Jan; Krauth, Stefanie J.; Stete, Katarina; Righetti, Aurélie A.; Glinz, Dominik; Yao, Adrien K.; Pühse, Uwe; N'Goran, Eliézer K.; Utzinger, Jürg
2011-01-01
Background Schistosomiasis and soil-transmitted helminthiasis are important public health problems in sub-Saharan Africa causing malnutrition, anemia, and retardation of physical and cognitive development. However, the effect of these diseases on physical fitness remains to be determined. Methodology We investigated the relationship between schistosomiasis, soil-transmitted helminthiasis and physical performance of children, controlling for potential confounding of Plasmodium spp. infections and environmental parameters (i.e., ambient air temperature and humidity). A cross-sectional survey was carried out among 156 school children aged 7–15 years from Côte d'Ivoire. Each child had two stool and two urine samples examined for helminth eggs by microscopy. Additionally, children underwent a clinical examination, were tested for Plasmodium spp. infection with a rapid diagnostic test, and performed a maximal multistage 20 m shuttle run test to assess their maximal oxygen uptake (VO2 max) as a proxy for physical fitness. Principal Findings The prevalence of Schistosoma haematobium, Plasmodium spp., Schistosoma mansoni, hookworm and Ascaris lumbricoides infections was 85.3%, 71.2%, 53.8%, 13.5% and 1.3%, respectively. Children with single, dual, triple, quadruple and quintuple species infections showed VO2 max of 52.7, 53.1, 52.2, 52.6 and 55.6 ml kg−1 min−1, respectively. The VO2 max of children with no parasite infections was 53.5 ml kg−1 min−1. No statistically significant difference was detected between any groups. Multivariable analysis revealed that VO2 max was influenced by sex (reference: female, coef. = 4.02, p<0.001) and age (years, coef. = −1.23, p<0.001), but not by helminth infection and intensity, Plasmodium spp. infection, and environmental parameters. Conclusion/Significance School-aged children in Côte d'Ivoire showed good physical fitness, irrespective of their helminth infection status. Future studies on children's physical fitness in settings where helminthiasis and malaria co-exist should include pre- and post-intervention evaluations and the measurement of hemoglobin and hematocrit levels and nutritional parameters as potential co-factors to determine whether interventions further improve upon fitness. PMID:21811643
[Effect of smoking on weight and cardiopulmonary capacities in young athletes].
Packa-Tchissambou, B; Oniangue, R; Massamba, A; Babela, J R; Makanga, M; Senga, P
2001-01-01
The aim of the study was to determine wether smokers practising sports have reduced weight, if recuperation time after moderate exercise and maximal aerobic power were lowered. Thousand young soldiers [50 smokers (S), 50 no smokers (NS)] averaging 24 years in age were studied. The subjects performed to exhaustion on Ruffier test, then a maximal exercise with Cooper test. Several biometrical and physiological parameters were evaluated: weight (W), percent of body fat (PBF), body mass index (BMI), maximal oxygen uptake (VO2 max) and recuperation index (RI). Kinetics of heart rate (HR) were studied for 7 min considering time constant (1 min) and delay for recovery. The smokers showed significant differences for W (p < 0.001), PBF (p < 0.05), VO2 max (p < 0.01) and recuperation index (p < 0.001). Maximal aerobic power were 45.8 +/- 2.7 and 50.3 +/- 3.2 ml/kg/min for S and NS, and RI were 7.5 +/- 0.9 (S) and 5.0 +/- 1 (NS). figure 1 shows that HR recovery of S has generally two components: the first was fast, the second was a slone none. The smokers who presented a great dependence to tobacco smoking had a significant lower RI (p < 0.001) as those subjects with little tobacco dependence (Table 5). The smokers had lower values of VO2 max, and there exists a tobacco dependence difference. Recuperation time for the aerobically well trained S subjects was more rapid during the lactic phase. Note that correlations obtained between the VO2 max and RI were significant (r = - 0.788; p < 0.05). The smokers and no smokers differences are discussed with reference to nicotinemia effects and the sympathetic-parasympathetic unbatance of influences. The comparison of smokers groups concerning cardiovascular data led to suppose that there exists a tobacco dependence difference in regards of the catecholaminergic sensitivity. In conclusion, this study showed that smoker practising a physical activity have a reduced weight, a higher recuperation time and an anaerobic limitation influenced by the state of tobacco dependence.
Nomura, Masatoshi; Takahashi, Hidekazu; Haraguchi, Naotsugu; Nishimura, Junichi; Hata, Taishi; Matsuda, Chu; Ikenaga, Masakazu; Yamamoto, Hirofumi; Murata, Kohei; Doki, Yuichiro; Mori, Masaki; Mizushima, Tsunekazu
2017-12-01
Pre-operative chemotherapy is an option for patients with local advanced rectal cancer, but the response rate to pre-operative chemotherapy with oxaliplatin is still low. If the therapeutic effect of pre-operative chemotherapy could be assessed, we may be able to convert to surgery early. The purpose of the present study was to validate the correlation between the maximum standardized uptake value (SUV max ) in 18F-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) of the primary tumor and the therapeutic effect of pre-operative chemotherapy in advanced colorectal cancer. Retrospective cohort study from January 2011 to October 2015. We examined 28 patients with pathologically confirmed sigmoid or rectal cancer that underwent pre-operative chemotherapy and surgery. The correlation between Response Index (RI), calculated as (SUV max after chemotherapy)/(SUV max before chemotherapy), and the therapeutic effect on the primary tumor in advanced colorectal cancer. The degree of differentiation (p = 0.04), SUV max in the primary tumor after chemotherapy (p = 0.02), and RI (p = 0.008) were significant predictors of the therapeutic effect in univariate analysis. The areas under the ROC curve constructed with RI and therapeutic effect was 0.77. The optimal cut-off values for the RI in the responder group was < 0.32. RI calculated as (SUV max after chemotherapy)/(SUV max before chemotherapy) in the primary tumor significantly correlated with the therapeutic effect of chemotherapy on advanced colorectal cancer. Thus, RI is potentially useful for predicting the therapeutic effect in advanced colorectal cancer.
Usui, Chiyoko; Asaka, Meiko; Kawano, Hiroshi; Aoyama, Tomoko; Ishijima, Toshimichi; Sakamoto, Shizuo; Higuchi, Mitsuru
2010-01-01
Abdominal adiposity and low cardiorespiratory fitness are associated with insulin resistance in people with impaired glucose tolerance and type 2 diabetes. However, little is known about which factor precedes insulin resistance in people with impaired glucose tolerance and type 2 diabetes, and which is the stronger predictor of insulin resistance in non-diabetic people. The purpose of this study was to examine the relationship between insulin resistance and cardiorespiratory fitness, visceral fat, and subcutaneous fat in non-diabetic people. Subjects included 87 men and 77 women aged 30-72 y (mean+/-SD, 51.3+/-12.3 y). Cardiorespiratory fitness was assessed by measuring the maximal oxygen uptake (VO2max) in a progressive continuous test to exhaustion on a cycle ergometer. The visceral and subcutaneous fat areas were measured by magnetic resonance imaging. The homeostasis model assessment of insulin resistance (HOMA-R) was calculated from the fasting concentrations of glucose and insulin. Stepwise multiple linear regression analysis revealed that visceral and subcutaneous fat were significant correlates of HOMA-R, explaining 24% and 6% of the variance, respectively, whereas sex, age, and VO2max were not significant independent determinants. Abdominal fat deposition rather than cardiorespiratory fitness is a significant predictor of insulin resistance in non-diabetic people; visceral fat is the most important factor.
Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest.
Stremel, R W; Convertino, V A; Bernauer, E M; Greenleaf, J E
1976-12-01
Bed rest deconditioning was assessed in seven healthy men (19-22 yr) following three 14-day periods of controlled activity during recumbency by measuring submaximal and maximal oxygen uptake (VO2), ventilation (VE), heart rate, and plasma volume. Exercise regimens were performed in the supine position and included a) two 30-min periods daily of intermittent static exercise at 21% of maximal leg extension force, and b) two 30-min periods of dynamic bicycle ergometer exercise daily at 68% of VO2max. No prescribed exercise was performed during the third bed rest period. Compared with their respective pre-bed rest control values, VO2max decreased (P less than 0.05) under all exercise conditions; -12.3% with no exercise, -9.2% with dynamic exercise, but only -4.8% with static exercise. Maximal heart rate was increased by 3.3% to 4.9% (P less than 0.05) under the three exercise conditions, while plasma volume decreased (P less than 0.05) -15.1% with no exercise and -10.1% with static, but only -7.8% (NS) with dynamic exercise. Since neither the static nor dynamic exercise training regimes minimized the changes in all the variables studied, some combination of these two types of exercise may be necessary for maximum protection from the effects of the bed deconditioning.
Espada, Mario C; Reis, Joana F; Almeida, Tiago F; Bruno, Paula M; Vleck, Veronica E; Alves, Francisco B
2015-10-01
The purpose of this study was to understand the ventilatory and physiological responses immediately below and above the maximal lactate steady-state (MLSS) velocity and to determine the relationship of oxygen uptake (VO2) kinetics parameters with performance, in swimmers. Competitive athletes (N = 12) completed in random order and on different days a 400-m all-out test, an incremental step test comprising 5 × 250- and 1 × 200-m stages and 30 minutes at a constant swimming velocity (SV) at 87.5, 90, and 92.5% of the maximal aerobic velocity for MLSS velocity (MLSSv) determination. Two square-wave transitions of 500 m, 2.5% above and below the MLSSv were completed to determine VO2 on-kinetics. End-exercise VO2 at 97.5 and 102.5% of MLSSv represented, respectively, 81 and 97% of VO2max; the latter was not significantly different from maximal VO2 (VO2max). The VO2 at MLSSv (49.3 ± 9.2 ml·kg(-1)·min(-1)) was not significantly different from the second ventilatory threshold (VT2) (51.3 ± 7.6 ml·kg(-1)·min(-1)). The velocity associated with MLSS seems to be accurately estimated by the SV at VT2 (vVT2), and vVO2max also seems to be estimated with accuracy from the central 300-m mean velocity of a 400-m trial, indicators that represent a helpful tool for coaches. The 400-m swimming performance (T400) was correlated with the time constant of the primary phase VO2 kinetics (τp) at 97.5% MLSSv, and T800 was correlated with τp in both 97.5 and 102.5% of MLSSv. The assessment of the VO2 kinetics in swimming can help coaches to build training sets according to a swimmer's individual physiological response.
Lefevre, Sjannie; Watson, Sue-Ann; Munday, Philip L; Nilsson, Göran E
2015-10-01
Tropical coral reef organisms are predicted to be especially sensitive to ocean warming because many already live close to their upper thermal limit, and the expected rise in ocean CO2 is proposed to further reduce thermal tolerance. Little, however, is known about the thermal sensitivity of a diverse and abundant group of reef animals, the gastropods. The humpbacked conch (Gibberulus gibberulus gibbosus), inhabiting subtidal zones of the Great Barrier Reef, was chosen as a model because vigorous jumping, causing increased oxygen uptake (ṀO2 ), can be induced by exposure to odour from a predatory cone snail (Conus marmoreus). We investigated the effect of present-day ambient (417-454 µatm) and projected-future (955-987 µatm) PCO2 on resting (ṀO2 , rest) and maximum (ṀO2 , max) ṀO2 , as well as ṀO2 during hypoxia and critical oxygen tension (PO2 , crit), in snails kept at present-day ambient (28°C) or projected-future temperature (33°C). ṀO2 , rest and ṀO2 , max were measured both at the acclimation temperature and during an acute 5°C increase. Jumping caused a 4- to 6-fold increase in ṀO2 , and ṀO2 , max increased with temperature so that absolute aerobic scope was maintained even at 38°C, although factorial scope was reduced. The humpbacked conch has a high hypoxia tolerance with a PO2 , crit of 2.5 kPa at 28°C and 3.5 kPa at 33°C. There was no effect of elevated CO2 on respiratory performance at any temperature. Long-term temperature records and our field measurements suggest that habitat temperature rarely exceeds 32.6°C during the summer, indicating that these snails have aerobic capacity in excess of current and future needs. © 2015. Published by The Company of Biologists Ltd.
Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis.
Bu, Qingyun; Lv, Tianxiao; Shen, Hui; Luong, Phi; Wang, Jimmy; Wang, Zhenyu; Huang, Zhigang; Xiao, Langtao; Engineer, Cawas; Kim, Tae Houn; Schroeder, Julian I; Huq, Enamul
2014-01-01
MAX2 (for MORE AXILLARY GROWTH2) has been shown to regulate diverse biological processes, including plant architecture, photomorphogenesis, senescence, and karrikin signaling. Although karrikin is a smoke-derived abiotic signal, a role for MAX2 in abiotic stress response pathways is least investigated. Here, we show that the max2 mutant is strongly hypersensitive to drought stress compared with wild-type Arabidopsis (Arabidopsis thaliana). Stomatal closure of max2 was less sensitive to abscisic acid (ABA) than that of the wild type. Cuticle thickness of max2 was significantly thinner than that of the wild type. Both of these phenotypes of max2 mutant plants correlate with the increased water loss and drought-sensitive phenotype. Quantitative real-time reverse transcription-polymerase chain reaction analyses showed that the expression of stress-responsive genes and ABA biosynthesis, catabolism, transport, and signaling genes was impaired in max2 compared with wild-type seedlings in response to drought stress. Double mutant analysis of max2 with the ABA-insensitive mutants abi3 and abi5 indicated that MAX2 may function upstream of these genes. The expression of ABA-regulated genes was enhanced in imbibed max2 seeds. In addition, max2 mutant seedlings were hypersensitive to ABA and osmotic stress, including NaCl, mannitol, and glucose. Interestingly, ABA, osmotic stress, and drought-sensitive phenotypes were restricted to max2, and the strigolactone biosynthetic pathway mutants max1, max3, and max4 did not display any defects in these responses. Taken together, these results uncover an important role for MAX2 in plant responses to abiotic stress conditions.
Shimaoka, M; Hiruta, S; Ono, Y; Yabe, K
1995-07-01
To study the relationship of task strain and physical fitness to fatigue among nurses employed at social welfare facilities, we investigated the degree of habitual end-of-work fatigue among 99 nurses (ages 20-49 years) in its relationship to both the degree of strain in various tasks and various indices of physical fitness. Results were as follows: (1) Fatigue complaint rates were nearly the same (35-38%) regardless of age. (2) Mean arm power and maximal oxygen uptake (VO2max) were significantly lower in a high degree of fatigue group than a low degree of fatigue group. (3) Four of 21 tasks elicited strain complaint rates greater than 50%: "nursing of seriously ill patients", "nursing of medical device-assisted patients", "bathing care", and "excretory/diaper changing care". (4) Significant positive correlations were noted between the degree of fatigue and the degree of strain complaint with regard to "nursing of medical device-assisted patients", "bathing care", and "excretory/diaper changing care". (5) Strain complaint rates were significantly higher in a low arm power group than a high arm power group with regard to "nursing of seriously ill patients", "nursing of medical device-assisted patients", and "excretory/diaper changing care". (6) Strain complaint rates were significantly higher in a low VO2max group than a high VO2max group with regard to "nursing of medical device-assisted patients", "bathing care", and "excretory/diaper changing care". These results suggest the need for measures to alleviate task strain and to increase arm strength and overall stamina so that nursing work does not result in excessive fatigue.
Allison, Katelyn Fleishman; Keenan, Karen A; Wohleber, Meleesa F; Perlsweig, Katherine A; Pletcher, Erin R; Lovalekar, Mita; Beals, Kim; Coleman, Lawrence C; Nindl, Bradley C
2017-11-01
Women can serve in all military occupational specialties (MOS); however, musculoskeletal and physiological characteristics that predict successful completion of ground combat MOS schools by female Marines are unknown. To determine which demographic, musculoskeletal, and physiological characteristics predict graduation from infantry and vehicle ground combat MOS schools in female Marines. Prospective cohort study. Prior to MOS school, the following were assessed in 62 female Marines (22.0±3.0yrs, 163.9±5.8cm, 63.4±7.2kg): isokinetic shoulder, trunk, and knee and isometric ankle strength; body composition; anaerobic power (AP)/capacity (AC); maximal oxygen uptake (VO 2 max); and field-based fitness tests (broad jump, medicine ball throw, pro-agility). Both absolute and normalized (%body mass: %BM) values were utilized for strength, AP, AC, and VO 2 max. Select tests from each Marine's most recent Physical Fitness Test (PFT: abdominal crunches, 3-mile run time) and Combat Fitness Test (CFT: Maneuver Under Fire, Movement to Contact) were recorded. Participants were classified as graduated (N=46) or did not graduate (N=16). Simple logistic regression was performed to determine predictors of MOS school graduation. Statistical significance was set a priori at α=0.05. Absolute and normalized ankle inversion and eversion strength, normalized anaerobic capacity, absolute and normalized VO 2 max, right pro-agility, and PFT 3-mile run time significantly predicted MOS school graduation (p<0.05). Greater ankle strength, better agility, and greater anaerobic and aerobic capacity are important for successful completion of ground combat MOS school in female Marines. Prior to entering ground combat MOS school, it is recommended that female Marines should train to optimize these mobility-centric characteristics. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Cottereau, Anne-Ségolène; Mulé, Sébastien; Lin, Chieh; Belhadj, Karim; Vignaud, Alexandre; Copie-Bergman, Christiane; Boyez, Alice; Zerbib, Pierre; Tacher, Vania; Scherman, Elodie; Haioun, Corinne; Luciani, Alain; Itti, Emmanuel; Rahmouni, Alain
2018-02-01
Purpose To analyze the frequency and distribution of low-signal-intensity regions (LSIRs) in lymphoma lesions and to compare these to fluorodeoxyglucose (FDG) uptake and biologic markers of inflammation. Materials and Methods The authors analyzed 61 untreated patients with a bulky lymphoma (at least one tumor mass ≥7 cm in diameter). When a LSIR within tumor lesions was detected on diffusion-weighted images obtained with a b value of 50 sec/mm 2 , a T2-weighted gradient-echo (GRE) sequence was performed and calcifications were searched for with computed tomography (CT). In two patients, Perls staining was performed on tissue samples from the LSIR. LSIRs were compared with biologic inflammatory parameters and baseline FDG positon emission tomography (PET)/CT parameters (maximum standardized uptake value [SUV max ], total metabolic tumor volume [TMTV]). Results LSIRs were detected in 22 patients and corresponded to signal void on GRE images; one LSIR was due to calcifications, and three LSIRS were due to a recent biopsy. In 18 patients, LSIRs appeared to be related to focal iron deposits; this was proven with Perls staining in two patients. The LSIRs presumed to be due to iron deposits were found mostly in patients with aggressive lymphoma (nine of 26 patients with Hodgkin lymphoma and eight of 20 patients with diffuse large B-cell lymphoma vs one of 15 patients with follicular lymphoma; P = .047) and with advanced stage disease (15 of 18 patients). LSIRS were observed in spleen (n = 14), liver (n = 3), and nodal (n = 8) lesions and corresponded to foci FDG uptake, with mean SUV max of 9.8, 6.7, and 16.2, respectively. These patients had significantly higher serum levels of C-reactive protein, α 1 -globulin, and α 2 -globulin and more frequently had microcytic anemia than those without such deposits (P = .0072, P = .003, P = .0068, and P < .0001, respectively). They also had a significantly higher TMTV (P = .0055) and higher levels of spleen involvement (P < .0001). Conclusion LSIRs due to focal iron deposits are detected in lymphoma lesions and are associated with a more pronounced biologic inflammatory syndrome. © RSNA, 2017 Online supplemental material is available for this article.
Ganas, Petra; Brandsch, Roderich
2009-06-01
The mechanism by which l-nicotine is taken up by bacteria that are able to grow on it is unknown. Nicotine degradation by Arthrobacter nicotinovorans, a Gram-positive soil bacterium, is linked to the presence of the catabolic megaplasmid pAO1. l-[(14)C]Nicotine uptake assays with A. nicotinovorans showed transport of nicotine across the cell membrane to be energy-independent and saturable with a K(m) of 6.2+/-0.1 microM and a V(max) of 0.70+/-0.08 micromol min(-1) (mg protein)(-1). This is in accord with a mechanism of facilitated diffusion, driven by the nicotine concentration gradient. Nicotine uptake was coupled to its intracellular degradation, and an A. nicotinovorans strain unable to degrade nicotine (pAO1(-)) showed no nicotine import. However, when the nicotine dehydrogenase genes were expressed in this strain, import of l-[(14)C]nicotine took place. A. nicotinovorans pAO1(-) and Escherichia coli were also unable to import 6-hydroxy-l-nicotine, but expression of the 6-hydroxy-l-nicotine oxidase gene allowed both bacteria to take up this compound. l-Nicotine uptake was inhibited by d-nicotine, 6-hydroxy-l-nicotine and 2-amino-l-nicotine, which may indicate transport of these nicotine derivatives by a common permease. Attempts to correlate nicotine uptake with pAO1 genes possessing similarity to amino acid transporters failed. In contrast to the situation at the blood-brain barrier, nicotine transport across the cell membrane by these bacteria was not by passive diffusion or active transport but by facilitated diffusion.
Flexibility and running economy in female collegiate track athletes.
Beaudoin, C M; Whatley Blum, J
2005-09-01
Limited information exists regarding the association between flexibility and running economy in female athletes. This study examined relationships between lower limb and trunk flexibility and running economy in 17 female collegiate track athletes (20.12+/-1.80 y). Correlational design, subjects completed 4 testing sessions over a 2-week period. The 1st session assessed maximal oxygen uptake (VO2max=55.39+/-6.96 ml.kg-1.min-1). The 2nd session assessed trunk and lower limb flexibility. Two sets of 6 trunk and lower limb flexibility measures were performed after a 10-min treadmill warm-up at 2.68 m.s-1. The 3rd session consisted of 3 10-min accommodation runs at a speed of 2.68 m.s-1 which was approximately 60% VO2max. Each accommodation bout was separated by a 10-min rest. The 4th session assessed running economy. Subjects completed a 5-min warm-up at 2.68 m.s-1 followed by 10-min economy run at 2.68 m.s-1. Pearson product moment correlations revealed no significant correlations between running economy and flexibility measures. Results are in contrast to studies demonstrating an inverse relationship between trunk and/or lower limb flexibility and running economy in males. Furthermore, results are in contrast to studies reporting positive relationships between flexibility and running economy.
Pinho, Maria João; Pinto, Vanda; Serrão, Maria Paula; Jose, Pedro A; Soares-da-Silva, Patrício
2007-07-01
This study examined the inward transport of l-[(14)C]alanine, an ASCT2 preferential substrate, in monolayers of immortalized renal proximal tubular epithelial (PTE) cells from Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. The expression of ASCT2 in WKY and SHR PTE cells and kidney cortices from WKY and SHR was also evaluated. l-[(14)C]alanine uptake was highly dependent on extracellular Na(+). Replacement of NaCl by LiCl or choline chloride abolished transport activity in SHR and WKY PTE cells. In the presence of the system L inhibitor BCH, Na(+)-dependent l-alanine uptake in WKY and SHR PTE cells was inhibited by alanine, serine, and cysteine, which is consistent with amino acid transport through ASCT2. The saturable component of Na(+)-dependent l-alanine transport under V(max) conditions in SHR PTE cells was one-half of that in WKY PTE cells, with similar K(m) values. Differences in magnitude of Na(+)-dependent l-alanine uptake through ASCT2 between WKY and SHR PTE cells correlated positively with differences in ASCT2 protein expression, this being more abundant in WKY PTE cells. Abundance of ASCT2 transcript and protein in kidney cortices of SHR rats was also lower than that in normotensive WKY rats. In conclusion, immortalized SHR and WKY PTE cells take up l-alanine mainly through a high-affinity Na(+)-dependent amino acid transporter, with functional features of ASCT2 transport. The activity and expression of the ASCT2 transporter were considerably lower in the SHR cells.
RF Induced Nonlinear Effects In High-Speed Electronics
2006-07-01
Typ Max Min Typ Max Min Typ Max Min Typ Max Vcc 3 4.5 5.5 4.5 5.5 2 4.5 5.5 4.5 5 5.5 Vil (max) 0.9 1.35 1.65 0.8 0.5 0.9 1.65 0.8 Vih (min) 2.1 3.15...Min Typ Max Min Typ Max Min Typ Max Vcc 1.65 2.3 3.6 2 4.6 6 4.5 5.5 2 3.6 Vil (max) 0.35*Vcc 0.7 0.8 0.3 0.9 1.2 0.8 0.8 0.8 0.7 0.8 Vih (min) 0.65*Vcc...Min Typ Max Vcc 1.65 3.6 2 3 3.6 2 5.5 Vil (max) 0.8 0.5 0.8 0.8 0.5 0.3*Vcc 0.3*Vcc Vih (min) 2 1.5 2 2.4 1.5 0.7*Vcc 0.7*Vcc Vol [V] 0.2 1.9 2.9 2.58
Health status and physical fitness of mines rescue brigadesmen.
Tomaskova, Hana; Jirak, Zdenek; Lvoncik, Samuel; Buzga, Marek; Zavadilova, Vladislava; Trlicova, Michaela
2015-01-01
The aim of the study was to assess health status of regular and part-time mines rescue brigadesmen. A group of 685 mines rescue brigadesmen was examined within the preventive testing - a basic internal, biochemistry and anthropometric examination, physical fitness testing. The average age of the subjects was 41.96±7.18 years, the average exposure in mining was 20±8.1 years, out of that 11.95±7.85 years as mines rescue brigadesmen. Elevated levels of total serum cholesterol (T-CH) and low-density lipoprotein cholesterol (LDL-CH) were found in over 1/2 of the subjects. Systolic hypertension (systolic blood pressure (SBP) ≥ 140 mm Hg) was confirmed in 34%, overweight (body mass index (BMI) ≥ 25) in 62.3% and obesity (BMI ≥ 30) in 20.4% of the examined mines rescue brigadesmen. The metabolic syndrome was found in 15.2% of persons. The highest physical fitness was found in mines rescue brigadesmen and the lowest in mine officers. Limit values of maximum oxygen uptake (VO2 max/kg) determined by the management of the mine rescue station were not reached by every 3rd of all mines rescue brigadesmen. Compared with the control group of the Czech and Slovak population, the rescuers are taller, have greater BMI, higher percentage of body fat in all age categories and proportionally to that they achieve a higher maximum minute oxygen uptake; however, in relative values per kg of body weight their physical fitness is practically the same as that of the controls. The prevalence of risk factors of cardiovascular diseases and VO2 max/kg in the group of the mines rescue brigadesmen is comparable with that in the general untrained Czech population. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Low-level laser therapy improves the VO2 kinetics in competitive cyclists.
Lanferdini, Fábio J; Krüger, Renata L; Baroni, Bruno M; Lazzari, Caetano; Figueiredo, Pedro; Reischak-Oliveira, Alvaro; Vaz, Marco A
2018-04-01
Some evidence supports that low-level laser therapy (LLLT) reduces neuromuscular fatigue, so incrementing sports performance. A previous randomized controlled trial of our group showed increased exercise tolerance in male competitive cyclists treated with three different LLLT doses (3, 6, and 9 J/diode; or 135, 270, and 405 J/thigh) before time-to-exhaustion cycling tests. Now, the present study was designed to evaluate the effects of these LLLT doses on the VO 2 kinetics of athletes during cycling tests. Twenty male competitive cyclists (29 years) participated in a crossover, randomized, double-blind, and placebo-controlled trial. On the first day, the participants performed an incremental cycling test to exhaustion to determine maximal oxygen uptake (VO 2MAX ) and maximal power output (PO MAX ), as well as a familiarization with the time-to-exhaustion test. In the following days (2 to 5), all participants performed time-to-exhaustion tests at PO MAX . Before the exhaustion test, different doses of LLLT (3, 6, and 9 J/diode; or 135, 270, and 405 J/thigh, respectively) or placebo were applied bilaterally to the quadriceps muscle. All exhaustion tests were monitored online by an open-circuit spirometry system in order to analyze the VO 2 amplitude, VO 2 delay time, time constant (tau), and O 2 deficit. Tau and O 2 deficit were decreased with LLLT applications compared to the placebo condition (p < 0.05). No differences (p > 0.05) were found between the experimental conditions for VO 2 amplitude and VO 2 delay time. In conclusion, LLLT decreases tau and O 2 deficit during time-to-exhaustion tests in competitive cyclists, and these changes in VO 2 kinetics response can be one of the possible mechanisms to explain the ergogenic effect induced by LLLT.
Study on the aerobic biodegradability and degradation kinetics of 3-NP; 2,4-DNP and 2,6-DNP.
She, Zonglian; Xie, Tian; Zhu, Yingjie; Li, Leilei; Tang, Gaifeng; Huang, Jian
2012-11-30
Four biodegradability tests (BOD(5)/COD ratio, production of carbon dioxide, relative oxygen uptake rate and relative enzymatic activity) were used to determine the aerobic biodegradability of 3-nitrophenol (3-NP), 2,4-dinitrophenol (2,4-DNP) and 2,6-dinitrophenol (2,6-DNP). Furthermore, biodegradation kinetics of the compounds was investigated in sequencing batch reactors both in the presence of glucose (co-substrate) and with nitrophenol as the sole carbon source. Among the three tested compounds, 3-NP showed the best biodegradability while 2,6-DNP was the most difficult to be biodegraded. The Haldane equation was applied to the kinetic test data of the nitrophenols. The kinetic constants are as follows: the maximum specific degradation rate (K(max)), the saturation constants (K(S)) and the inhibition constants (K(I)) were in the range of 0.005-2.98 mg(mgSS d)(-1), 1.5-51.9 mg L(-1) and 1.8-95.8 mg L(-1), respectively. The presence of glucose enhanced the degradation of the nitrophenols at low glucose concentrations. The degradation of 3-NP was found to be accelerated with the increasing of glucose concentrations from 0 to 660 mg L(-1). At high (1320-2000 mg L(-1)) glucose concentrations, the degradation rate of 3-NP was reduced and the K(max) of 3-NP was even lower than the value obtained in the absence of glucose, suggesting that high concentrations of co-substrate could inhibit 3-NP biodegradation. At 2,4-DNP concentration of 30 mg L(-1), the K(max) of 2,4-DNP with glucose as co-substrate was about 30 times the value with 2,4-DNP as sole substrate. 2,6-DNP preformed high toxicity in the case of sole carbon source degradation and the kinetic data was hardly obtained. Copyright © 2012 Elsevier B.V. All rights reserved.
Tennis Play Intensity Distribution and Relation with Aerobic Fitness in Competitive Players
Baiget, Ernest; Fernández-Fernández, Jaime; Iglesias, Xavier; Rodríguez, Ferran A.
2015-01-01
The aims of this study were (i) to describe the relative intensity of simulated tennis play based on the cumulative time spent in three metabolic intensity zones, and (ii) to determine the relationships between this play intensity distribution and the aerobic fitness of a group of competitive players. 20 male players of advanced to elite level (ITN) performed an incremental on-court specific endurance tennis test to exhaustion to determine maximal oxygen uptake (VO2max) and the first and second ventilatory thresholds (VT1, VT2). Ventilatory and gas exchange parameters were monitored using a telemetric portable gas analyser (K4 b2, Cosmed, Rome, Italy). Two weeks later the participants played a simulated tennis set against an opponent of similar level. Intensity zones (1: low, 2: moderate, and 3: high) were delimited by the individual VO2 values corresponding to VT1 and VT2, and expressed as percentage of maximum VO2 and heart rate. When expressed relative to VO2max, percentage of playing time in zone 1 (77 ± 25%) was significantly higher (p < 0.001) than in zone 2 (20 ± 21%) and zone 3 (3 ± 5%). Moderate to high positive correlations were found between VT1, VT2 and VO2max, and the percentage of playing time spent in zone 1 (r = 0.68–0.75), as well as low to high inverse correlations between the metabolic variables and the percentage of time spent in zone 2 and 3 (r = -0.49–0.75). Players with better aerobic fitness play at relatively lower intensities. We conclude that players spent more than 75% of the time in their low-intensity zone, with less than 25% of the time spent at moderate to high intensities. Aerobic fitness appears to determine the metabolic intensity that players can sustain throughout the game. PMID:26098638
Martini, K; Gygax, C M; Benden, C; Morgan, A R; Parker, G J M; Frauenfelder, T
2018-04-13
To demonstrate, in patients with cystic fibrosis (CF), the correlation between three-dimensional dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) measurements and computed tomography Brody score (CF-CT) and lung function testing (LFT). Twenty-one patients (median age, 25 years; female, n = 8) with a range of CF lung disease and five healthy volunteers (median age, 31 years; female, n = 2) underwent OE-MRI performed on a 1.5-T MRI scanner. Coronal volumes were acquired while patients alternately breathed room air and 100% oxygen. Pre-oxygen T 1 was measured. Dynamic series of T 1 -weighted volumes were then obtained while breathing oxygen. T 1 -parameter maps were generated and the following OE-MRI parameters were measured: oxygen uptake (ΔPO 2max ), wash-in time and wash-out time. High-resolution CT and LFT were performed. The relationship between CF-CT, LFT and OE-MRI parameters were evaluated using Pearson correlation for the whole lung and regionally. Mean CF-CT was 24.1±17.1. Mean ΔPO 2max and mean wash-in as well as skewness of wash-out showed significant correlation with CF-CT (ΔPO 2max : r = -0.741, p < 0.001; mean wash-in: r = 0.501, p = 0.017; skewness of wash-out: r = 0.597, p = 0.001). There was significant correlation for the whole lung and regionally between LFT parameters and OE-MR (ΔPO 2max : r = 0.718, p < 0.001; wash-in: r = -0.576, p = 0.003; wash-out skewness: r = -0.552, p = 0.004). Functional lung imaging using OE-MRI has the capability to assess the severity of CF lung disease and shows a significant correlation with LFT and CF-CT. • Oxygen-enhanced MRI might play a future role in evaluation and follow-up of cystic fibrosis. • Heterogeneity of parameter maps reflects localised functional impairment in cystic fibrosis. • Avoidance of cumulative radiation burden in CF is feasible using OE-MRI.
Regulation of Drought Tolerance by the F-Box Protein MAX2 in Arabidopsis1[C][W][OPEN
Bu, Qingyun; Lv, Tianxiao; Shen, Hui; Luong, Phi; Wang, Jimmy; Wang, Zhenyu; Huang, Zhigang; Xiao, Langtao; Engineer, Cawas; Kim, Tae Houn; Schroeder, Julian I.; Huq, Enamul
2014-01-01
MAX2 (for MORE AXILLARY GROWTH2) has been shown to regulate diverse biological processes, including plant architecture, photomorphogenesis, senescence, and karrikin signaling. Although karrikin is a smoke-derived abiotic signal, a role for MAX2 in abiotic stress response pathways is least investigated. Here, we show that the max2 mutant is strongly hypersensitive to drought stress compared with wild-type Arabidopsis (Arabidopsis thaliana). Stomatal closure of max2 was less sensitive to abscisic acid (ABA) than that of the wild type. Cuticle thickness of max2 was significantly thinner than that of the wild type. Both of these phenotypes of max2 mutant plants correlate with the increased water loss and drought-sensitive phenotype. Quantitative real-time reverse transcription-polymerase chain reaction analyses showed that the expression of stress-responsive genes and ABA biosynthesis, catabolism, transport, and signaling genes was impaired in max2 compared with wild-type seedlings in response to drought stress. Double mutant analysis of max2 with the ABA-insensitive mutants abi3 and abi5 indicated that MAX2 may function upstream of these genes. The expression of ABA-regulated genes was enhanced in imbibed max2 seeds. In addition, max2 mutant seedlings were hypersensitive to ABA and osmotic stress, including NaCl, mannitol, and glucose. Interestingly, ABA, osmotic stress, and drought-sensitive phenotypes were restricted to max2, and the strigolactone biosynthetic pathway mutants max1, max3, and max4 did not display any defects in these responses. Taken together, these results uncover an important role for MAX2 in plant responses to abiotic stress conditions. PMID:24198318
NASA Astrophysics Data System (ADS)
Lee, Hyeon-Guck; Hong, Seong-Jong; Cho, Jae-Hwan; Han, Man-Seok; Kim, Tae-Hyung; Lee, Ik-Han
2013-02-01
The purpose of this study was to assess and compare the changes in the SUV (standardized uptake value), the 18F-FDG (18F-fluorodeoxyglucose) uptake pattern, and the radioactivity level for the diagnosis of thyroid cancer via dual-time-point 18F-FDG PET/CT (positron emission tomographycomputed tomography) imaging. Moreover, the study aimed to verify the usefulness and significance of SUV values and radioactivity levels to discriminate tumor malignancy. A retrospective analysis was performed on 40 patients who received 18F-FDG PET/CT for thyroid cancer as a primary tumor. To set the background, we compared changes in values by calculating the dispersion of scattered rays in the neck area and the lung apex, and by comparing the mean and SD (standard deviation) values of the maxSUV and the radioactivity levels. According to the statistical analysis of the changes in 18F-FDG uptake for the diagnosis of thyroid cancer, a high similarity was observed with the coefficient of determination being R2 = 0.939, in the SUVs and the radioactivity levels. Moreover, similar results were observed in the assessment of tumor malignancy using dual-time-point. The quantitative analysis method for assessing tumor malignancy using radioactivity levels was neither specific nor discriminative compared to the semi-quantitative analysis method.
Working underground: Respiratory adaptations in the blind mole rat
Widmer, Hans R.; Hoppeler, Hans; Nevo, Eviatar; Taylor, C. Richard; Weibel, Ewald R.
1997-01-01
Mole rats (Spalax ehrenbergi superspecies) perform the heavy work of digging their subterranean burrows in Israel under highly hypoxic/hypercapnic conditions. Unlike most other mammals, they can achieve high levels of metabolic rate under these conditions, while their metabolic rate at low work rates is depressed. We explored, by comparing mole rats with white rats, whether and how this is related to adaptations in the design of the respiratory system, which determines the transfer of O2 from the lung to muscle mitochondria. At the same body mass, mole rats were found to have a significantly smaller total skeletal muscle mass than ordinary white rats (−22%). In contrast, the fractional volume of muscle mitochondria was larger by 46%. As a consequence, both species had the same total amount of mitochondria and achieved, under normoxia, the same V̇O2max. Whereas the O2 transport capacity of the blood was not different, we found a larger capillary density (+31%) in the mole rat muscle, resulting in a reduced diffusion distance to mitochondria. The structural pulmonary diffusing capacity for O2 was greater in the mole rat (+44%), thus facilitating O2 uptake in hypoxia. We conclude that structural adaptations in lung and muscle tissue improve O2 diffusion conditions and serve to maintain high metabolic rates in hypoxia but have no consequences for achieving V̇O2max under normoxic conditions. PMID:9050905
Maclaren, D P M; Mohebbi, H; Nirmalan, M; Keegan, M A; Best, C T; Perera, D; Harvie, M N; Campbell, I T
2011-09-01
Carbohydrate stores within muscle are considered essential as a fuel for prolonged endurance exercise, and regimes for enhancing such stores have proved successful in aiding performance. This study explored the effects of a hyperglycaemic-hyperinsulinemic clamp performed 18 h previously on subsequent prolonged endurance performance in cycling. Seven male subjects, accustomed to prolonged endurance cycling, performed 90 min of cycling at ~65% VO(2max) followed by a 16-km time trial 18 h after a 2-h hyperglycemic-hyperinsulinemic clamp (HCC). Hyperglycemia (10 mM) with insulin infused at 300 mU/m(2)/min over a 2-h period resulted in a total glucose uptake of 275 g (assessed by the area under the curve) of which glucose storage accounted for about 73% (i.e. 198 g). Patterns of substrate oxidation during 90-min exercise at 65% VO(2max) were not altered by HCC. Blood glucose and plasma insulin concentrations were higher during exercise after HCC compared with control (p < 0.05) while plasma NEFA was similar. Exercise performance was improved by 49 s and power output was 10-11% higher during the time trial (p < 0.05) after HCC. These data suggest that carbohydrate loading 18 h previously by means of a 2-h HCC improves cycling performance by 3.3% without any change in pattern of substrate oxidation.
Kitahara, Yoshihiro; Hattori, Noboru; Yokoyama, Akihito; Yamane, Kiminori; Sekikawa, Kiyokazu; Inamizu, Tsutomu; Kohno, Nobuoki
2012-06-01
To investigate the influence of cigarette smoking on exercise capacity, respiratory responses and dynamic changes in lung volume during exercise in patients with type 2 diabetes. Forty-one men with type, 2 diabetes without cardiopulmonary disease were recruited and divided into 28 non-current smokers and 13 current smokers. All subjects received lung function tests and cardiopulmonary exercise testing using tracings of the flow-volume loop. Exercise capacity was compared using the percentage of predicted oxygen uptake at maximal workload (%VO2max). Respiratory variables and inspiratory capacity (IC) were compared between the two groups at rest and at 20%, 40%, 60%, 80% and 100% of maximum workload. Although there was no significant difference in lung function tests between the two groups, venous carboxyhemoglobin (CO-Hb) levels were significantly higher in current smokers. %VO2max was inversely correlated with CO-Hb levels. Changing patterns in respiratory rate, respiratory equivalent and IC were significantly different between the two groups. Current smokers had rapid breathing, a greater respiratory equivalent and a limited increase in IC during exercise. Cigarette smoking diminishes the increase in dynamic IC in patients with type 2 diabetes. As this effect of smoking on dynamic changes in lung volume will exacerbate dynamic hyperinflation in cases complicated by chronic obstructive pulmonary disease, physicians should consider smoking habits and lung function when evaluating exercise capacity in patients with type 2 diabetes.
Strobel, Klaus; Rüdy, Matthias; Treyer, Valerie; Veit-Haibach, Patrick; Burger, Cyrill; Hany, Thomas F
2007-07-01
The relative advantage of fully 3-D versus 2-D mode for whole-body imaging is currently the focus of considerable expert debate. The nature of 3-D PET acquisition for FDG PET/CT theoretically allows a shorter scan time and improved efficiency of FDG use than in the standard 2-D acquisition. We therefore objectively and subjectively compared standard 2-D and fully 3-D reconstructed data for FDG PET/CT on a research PET/CT system. In a total of 36 patients (mean 58.9 years, range 17.3-78.9 years; 21 male, 15 female) referred for known or suspected malignancy, FDG PET/CT was performed using a research PET/CT system with advanced detector technology with improved sensitivity and spatial resolution. After 45 min uptake, a low-dose CT (40 mAs) from head to thigh was performed followed by 2-D PET (emission 3 min per field) and 3-D PET (emission 1.5 min per field) with both seven slices overlap to cover the identical anatomical region. Acquisition time was therefore 50% less (seven fields; 21 min vs. 10.5 min). PET data was acquired in a randomized fashion, so in 50% of the cases 2-D data was acquired first. CT data was used for attenuation correction. 2-D (OSEM) and 3-D PET images were iteratively reconstructed. Subjective analysis of 2-D and 3-D images was performed by two readers in a blinded, randomized fashion evaluating the following criteria: sharpness of organs (liver, chest wall/lung), overall image quality and detectability and dignity of each identified lesion. Objective analysis of PET data was investigated measuring maximum standard uptake value with lean body mass (SUV(max,LBM)) of identified lesions. On average, per patient, the SUV(max) was 7.86 (SD 7.79) for 2-D and 6.96 (SD 5.19) for 3-D. On a lesion basis, the average SUV(max) was 7.65 (SD 7.79) for 2-D and 6.75 (SD 5.89) for 3-D. The absolute difference on a paired t-test of SUV 3-D-2-D based on each measured lesion was significant with an average of -0.956 (P=0.002) and an average of -0.884 on a patient base (P<0.05). With 3-D the SUV(max) decreased by an average of 5.2% for each lesion, and an average of 6.0% for each patient. Subjective analysis showed fair inter-observer agreement regarding detectability (kappa=0.24 for 3-D; 0.36 for 3-D) and dignity (kappa=0.44 for 3-D and 0.4 for 2-D) of the lesions. There was no significant diagnostic difference between 3-D and 2-D. Only in one patient, a satellite liver metastasis of a colon cancer was missed in 3-D and detected only in 2-D. On average, the overall image quality for 3-D images was equal (in 24%) or inferior (in 76%) compared to 2-D. A possible major advantage of 3-D data acquisition is the faster patient throughput with a 50% reduction in scan time. The fully 3-D reconstruction technique has overcome the technical drawbacks of current 3-D imaging technique. In our limited number of patients there was no significant diagnostic difference between 2-D and fully 3-D.
Comparison of the 1.5 Mile Run Times at 7,200 Feet and Simulated 850 Feet in a Hyperoxic Room
2012-03-01
Maximal Oxygen Update ( VO2 max) Test ......................................... 7 Figure 3 - VO2 Max results for Male, Female and All Subjects. * p...0.001 between Male and Female VO2 ’s. ............................................................. 11 Figure 4 - VO2 Max vs Predicted VO2 Max at 850...and 7,200 Feet ................. 12 Figure 5 - Actual VO2 Max vs Predicted VO2 Max at ALT (7,200 Feet) ....... 13 Figure 6 - VO2 Max vs Predicted
Hahlbrock, K; Ebel, J; Oaks, A; Auden, J; Liersch, M
1974-03-01
Conductivity changes in the medium of cultured soybean (Glycine max L.) cells were shown to be strictly correlated with nitrate uptake and growth of the cultures. A continuous record of the conductivity was used as a simple and reliable method of determining specific growth stages and concomitant peaks in the activities of nitrate reductase and phenylalanine ammonia-lyase.
Drummond, Revel S. M.; Sheehan, Hester; Simons, Joanne L.; Martínez-Sánchez, N. Marcela; Turner, Rebecca M.; Putterill, Joanna; Snowden, Kimberley C.
2012-01-01
Analysis of mutants with increased branching has revealed the strigolactone synthesis/perception pathway which regulates branching in plants. However, whether variation in this well conserved developmental signaling system contributes to the unique plant architectures of different species is yet to be determined. We examined petunia orthologs of the Arabidopsis MAX1 and MAX2 genes to characterize their role in petunia architecture. A single ortholog of MAX1, PhMAX1 which encodes a cytochrome P450, was identified and was able to complement the max1 mutant of Arabidopsis. Petunia has two copies of the MAX2 gene, PhMAX2A and PhMAX2B which encode F-Box proteins. Differences in the transcript levels of these two MAX2-like genes suggest diverging functions. Unlike PhMAX2B, PhMAX2A mRNA levels change in leaves of differing age/position on the plant. Nonetheless, this gene functionally complements the Arabidopsis max2 mutant indicating that the biochemical activity of the PhMAX2A protein is not significantly different from MAX2. The expression of the petunia strigolactone pathway genes (PhCCD7, PhCCD8, PhMAX1, PhMAX2A, and PhMAX2B) was then further investigated throughout the development of wild-type petunia plants. Three of these genes showed changes in mRNA levels over a development series. Alterations to the expression patterns of these genes may influence the branching growth habit of plants by changing strigolactone production and/or sensitivity. These changes could allow both subtle and dramatic changes to branching within and between species. PMID:22645562
Nitric oxide-mediated inhibition of taurocholate uptake involves S-nitrosylation of NTCP.
Schonhoff, Christopher M; Ramasamy, Umadevi; Anwer, M Sawkat
2011-02-01
The sodium-taurocholate (TC) cotransporting polypeptide (NTCP) facilitates bile formation by mediating sinusoidal Na(+)-TC cotransport. During sepsis-induced cholestasis, there is a decrease in NTCP-dependent uptake of bile acids and an increase in nitric oxide (NO) levels in hepatocytes. In rat hepatocytes NO inhibits Na(+)-dependent uptake of taurocholate. The aim of this study was to extend these findings to human NTCP and to further investigate the mechanism by which NO inhibits TC uptake. Using a human hepatoma cell line stably expressing NTCP (HuH-NTCP), we performed experiments with the NO donors sodium nitroprusside and S-nitrosocysteine and demonstrated that NO inhibits TC uptake in these cells. Kinetic analyses revealed that NO significantly decreased the V(max) but not the K(m) of TC uptake by NTCP, indicating noncompetitive inhibition. NO decreased the amount of NTCP in the plasma membrane, providing a molecular mechanism for the noncompetitive inhibition of TC uptake. One way that NO can modify protein function is through a posttranslational modification known as S-nitrosylation: the binding of NO to cysteine thiols. Using a biotin switch technique we observed that NTCP is S-nitrosylated under conditions in which NO inhibits TC uptake. Moreover, dithiothreitol reversed NO-mediated inhibition of TC uptake and S-nitrosylation of NTCP, indicating that NO inhibits TC uptake via modification of cysteine thiols. In addition, NO treatment led to a decrease in Ntcp phosphorylation. Taken together these results indicate that the inhibition of TC uptake by NO involves S-nitrosylation of NTCP.
Elevated central venous pressure: a consequence of exercise training-induced hypervolemia?
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Mack, G. W.; Nadel, E. R.
1991-01-01
Resting blood volumes and arterial and central venous pressures (CVP) were measured in 14 men before and after exercise training to determine whether training-induced hypervolemia is accompanied by a change in total vascular capacitance. In addition, resting levels of plasma arginine vasopressin (AVP), atrial natriuretic peptide (ANP), aldosterone (Ald), and norepinephrine (NE) were measured. The same measurements were conducted in seven subjects who did not undergo exercise and acted as controls. Exercise training consisted of 10 wk of controlled cycle exercise for 30 min/day, 4 days/wk at 75-80% of maximal O2 uptake (VO2max). A training effect was verified by a 20% increase in VO2max, a resting bradycardia, and a 9% increase in blood volume. Mean arterial blood pressure was unaltered by exercise training, but resting CVP increased by 16% (P less than 0.05). The percent change in blood volume from before to after training was linearly related to the percent change in CVP (r = 0.903, P less than 0.05). As a consequence of elevations in both blood volume and CVP, the volume-to-pressure ratio was unchanged after exercise training. Plasma AVP, ANP, Ald, and NE were unaltered. Our results indicate that elevated CVP is a consequence of training-induced hypervolemia without alteration in total effective venous capacitance.
Acetate transport and utilization in the rat brain.
Deelchand, Dinesh K; Shestov, Alexander A; Koski, Dee M; Uğurbil, Kâmil; Henry, Pierre-Gilles
2009-05-01
Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMR(ace)) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization (K(M)(util) = 0.01 +/- 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) (K(M)(t) = 4.18 +/- 0.83 mM). The maximum transport capacity of acetate through the BBB (V(max)(t) = 0.96 +/- 0.18 micromol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (V(max)(util) = 0.50 +/- 0.08 micromol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.
Patel, Mitesh; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K
2012-08-15
Riboflavin is an important water soluble vitamin (B2) required for metabolic reactions, normal cellular growth, differentiation and function. Mammalian brain cells cannot synthesize riboflavin and must import from systemic circulation. However, the uptake mechanism, cellular translocation and intracellular trafficking of riboflavin in brain capillary endothelial cells are poorly understood. The primary objective of this study is to investigate the existence of a riboflavin-specific transport system and delineate the uptake and intracellular regulation of riboflavin in immortalized rat brain capillary endothelial cells (RBE4). The uptake of [3H]-riboflavin is sodium, temperature and energy dependent but pH independent. [3H]-Riboflavin uptake is saturable with K(m) and V(max) values of 19 ± 3 μM and 0.235 ± 0.012 pmol/min/mg protein, respectively. The uptake process is inhibited by unlabelled structural analogs (lumiflavin, lumichrome) but not by structurally unrelated vitamins. Ca(++)/calmodulin and protein kinase A (PKA) pathways are found to play an important role in the intracellular regulation of [3H]-riboflavin. Apical and baso-lateral uptake of [3H]-riboflavin clearly indicates that a riboflavin specific transport system is predominantly localized on the apical side of RBE4 cells. A 628 bp band corresponding to a riboflavin transporter is revealed in RT-PCR analysis. These findings, for the first time report the existence of a specialized and high affinity transport system for riboflavin in RBE4 cells. The blood-brain barrier (BBB) is a major obstacle limiting drug transport inside the brain as it regulates drug permeation from systemic circulation. This transporter can be utilized for targeted delivery in enhancing brain permeation of highly potent drugs on systemic administration. Copyright © 2012 Elsevier B.V. All rights reserved.
A Scientific Approach to Improve Physiological Capacity of an Elite Cyclist.
Rønnestad, Bent R; Hansen, Joar
2018-03-01
Previous studies in endurance athletes have indicated that block periodization (BP) can be a good alternative to the more traditional organization of training despite the fact that the total volume and intensity of the training are similar. However, these studies usually last only 4-12 wk. The aim of the present single-case study was to investigate the consequences of 58 wk with systematic BP of low-intensity training (LIT), moderate-intensity training (MIT), and high-intensity interval training (HIT) including incorporation of heavy strength training. It is important that a maintenance stimulus on the nonprioritized training modalities was added in the different training blocks. Performance-related variables were tested regularly during the intervention. The studied cyclist started with a maximal oxygen uptake (VO 2 max) of 73.8 mL · kg -1 · min -1 , peak aerobic power (W max ) of 6.14 W/kg, and a power output at 3 mmol/L blood lactate concentration (Power 3la -) of 3.6 W/kg. Total training volume during the 58-wk intervention was 678 h, of which 452 h were LIT (67%), 124 h were MIT (18%), 69 h were HIT (10%), and 34 h were heavy strength training (5%). The weekly training volume had a large range depending on the focus of the training block. After the intervention the cyclist's VO 2 max was 87 mL · kg -1 · min -1 , W max was 7.35 W/kg, and Power 3la - was 4.9 W/kg. This single case indicates that the present training program can be a good alternative to the more traditional organization of long-term training of endurance athletes. However, a general recommendation cannot be given based on this single-case study.
Hofman, Michael S; Eu, Peter; Jackson, Price; Hong, Emily; Binns, David; Iravani, Amir; Murphy, Declan; Mitchell, Catherine; Siva, Shankar; Hicks, Rodney J; Young, Jennifer D; Blower, Philip J; Mullen, Gregory E
2018-04-01
68 Ga-labeled urea-based inhibitors of the prostate-specific membrane antigen (PSMA), such as 68 Ga-labeled N , N '-bis(2-hydroxybenzyl)ethylenediamine- N , N '-diacetic acid (HBED)-PSMA-11, are promising small molecules for targeting prostate cancer. A new radiopharmaceutical, 68 Ga-labeled tris(hydroxypyridinone) (THP)-PSMA, has a simplified design for single-step kit-based radiolabeling. It features the THP ligand, which forms complexes with 68 Ga 3+ rapidly at a low concentration, at room temperature, and over a wide pH range, enabling direct elution from a 68 Ge/ 68 Ga generator into a lyophilized radiopharmaceutical kit in 1 step without manipulation. The aim of this phase 1 study was to assess the safety and biodistribution of 68 Ga-THP-PSMA. Methods: Cohort A comprised 8 patients who had proven prostate cancer and were scheduled to undergo prostatectomy; they had Gleason scores of 7-10 and a mean prostate-specific antigen level of 7.8 μg/L (range, 5.4-10.6 μg/L). They underwent PET/CT after the administration of 68 Ga-THP-PSMA. All patients proceeded to prostatectomy (7 with pelvic nodal dissection). Dosimetry from multi-time-point PET imaging was performed with OLINDA/EXM. Cohort B comprised 6 patients who had positive 68 Ga-HBED-PSMA-11 PET/CT scanning results and underwent comparative 68 Ga-THP-PSMA scanning. All patients were monitored for adverse events. Results: No adverse events occurred. In cohort A, 6 of 8 patients had focal uptake in the prostate (at 2 h: average SUV max , 5.1; range, 2.4-9.2) and correlative 3+ staining of prostatectomy specimens on PSMA immunohistochemistry. The 2 68 Ga-THP-PSMA scans with negative results had only 1+/2+ staining. The mean effective dose was 2.07E-02 mSv/MBq. In cohort B, 68 Ga-THP-PSMA had lower physiologic background uptake than 68 Ga-HBED-PSMA-11 (in the parotid glands, the mean SUV max for 68 Ga-THP-PSMA was 3.6 [compared with 19.2 for 68 Ga-HBED-PSMA-11]; the respective corresponding values in the liver were 2.7 and 6.3, and those in the spleen were 2.7 and 10.5; P < 0.001 for all). In 5 of 6 patients, there was concordance in the number of metastases identified with 68 Ga-HBED-PSMA-11 and 68 Ga-THP-PSMA. Thirteen of 15 nodal abnormalities were subcentimeter. In 22 malignant lesions, the tumor-to-liver contrast with 68 Ga-THP-PSMA was similar to that with 68 Ga-HBED-PSMA (4.7 and 5.4, respectively; P = 0.15), despite a higher SUV max for 68 Ga-HBED-PSMA than for 68 Ga-THP-PSMA (30.3 and 10.7, respectively; P < 0.01). Conclusion: 68 Ga-THP-PSMA is safe and has a favorable biodistribution for clinical imaging. Observed focal uptake in the prostate was localized to PSMA-expressing malignant tissue on histopathology. Metastatic PSMA-avid foci were also visualized with 68 Ga-THP-PSMA PET. Single-step production from a Good Manufacturing Practice cold kit may enable rapid adoption. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance.
Kuzyakov, Yakov; Xu, Xingliang
2013-05-01
Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 (15)N-labelling studies that investigated (15)N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on K(m) (Michaelis constant) and V(max) (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower K(m) values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (V(max)) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
The baseline serum value of α-amylase is a significant predictor of distance running performance.
Lippi, Giuseppe; Salvagno, Gian Luca; Danese, Elisa; Tarperi, Cantor; La Torre, Antonio; Guidi, Gian Cesare; Schena, Federico
2015-02-01
This study was planned to investigate whether serum α-amylase concentration may be associated with running performance, physiological characteristics and other clinical chemistry analytes in a large sample of recreational athletes undergoing distance running. Forty-three amateur runners successfully concluded a 21.1 km half-marathon at 75%-85% of their maximal oxygen uptake (VO2max). Blood was drawn during warm up and 15 min after conclusion of the run. After correction for body weight change, significant post-run increases were observed for serum values of alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, bilirubin, creatine kinase (CK), iron, lactate dehydrogenase (LDH), triglycerides, urea and uric acid, whereas the values of body weight, glomerular filtration rate, total and low density lipoprotein-cholesterol were significantly decreased. The concentration of serum α-amylase was unchanged. In univariate analysis, significant associations with running performance were found for gender, VO2max, training regimen and pre-run serum values of α-amylase, CK, glucose, high density lipoprotein-cholesterol, LDH, urea and uric acid. In multivariate analysis, only VO2max (p=0.042) and baseline α-amylase (p=0.021) remained significant predictors of running performance. The combination of these two variables predicted 71% of variance in running performance. The baseline concentration of serum α-amylase was positively correlated with variation of serum glucose during the trial (r=0.345; p=0.025) and negatively with capillary blood lactate at the end of the run (r=-0.352; p=0.021). We showed that the baseline serum α-amylase concentration significantly and independently predicts distance running performance in recreational runners.
Long-term effect of epoetin alfa on clinical and biochemical markers in friedreich ataxia.
Saccà, Francesco; Puorro, Giorgia; Marsili, Angela; Antenora, Antonella; Pane, Chiara; Casali, Carlo; Marcotulli, Christian; Defazio, Giovanni; Liuzzi, Daniele; Tatillo, Chiara; Cambriglia, Donata Maria; Schiano di Cola, Giuseppe; Giuliani, Luigi; Guardasole, Vincenzo; Salzano, Andrea; Ruvolo, Antonio; De Rosa, Anna; Cittadini, Antonio; De Michele, Giuseppe; Filla, Alessandro
2016-05-01
Friedreich ataxia is an autosomal recessive disease with no available therapy. Clinical trials with erythropoietin in Friedreich ataxia patients have yielded conflicting results, and the long-term effect of the drug remains unknown. We designed a double-blind, placebo-controlled, multicenter trial to test the efficacy of epoetin alfa on 56 patients with Friedreich ataxia. The primary endpoint of the study was the effect of epoetin alfa on peak oxygen uptake (VO2 max) at the cardiopulmonary exercise test. Secondary endpoints were frataxin levels in peripheral blood mononuclear cells, improvement in echocardiography findings, vascular reactivity, neurological progression, upper limb dexterity, safety, and quality of life. Epoetin alfa or placebo (1:1 ratio) was administered subcutaneously at a dose of 1200 IU/Kg of body weight every 12 weeks for 48 weeks. A total of 56 patients were randomized; 27 completed the study in the active treatment group, and 26 completed the study in the placebo group[KG1]. VO2 max was not modified after treatment (0.01 [-0.04 to 0.05]; P = .749), as well as most of the secondary endpoint measures, including frataxin. The 9-hole peg test showed a significant amelioration in the treatment group (-17.24 sec. [-31.5 to -3.0]; P = .018). The treatment was safe and well tolerated. Although results are not in favor of an effect of epoetin alfa in Friedreich ataxia, this is the largest trial testing its effect. It is still possible that epoetin alfa may show some symptomatic effect on upper-limb performance. This study provides class I evidence that erythropoietin does not ameliorate VO2 max in patients with Friedreich ataxia. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Ventilation and oxygen uptake during escape from a civil aircraft.
Ross, J A; Watt, S J; Henderson, G D; Vant, J H
1990-01-01
To help develop a specification for equipment providing personal respiratory protection in the event of aircraft fire a study was carried out to quantify ventilation and oxygen consumption during escape from a Trident aircraft. Data were gathered using the P.K. Morgan 'Oxylog' apparatus after its response time to rapid changes in inspired to expired oxygen concentration difference was assessed using a bench test. The 'Oxylog' had a lag time of 30-32 s and a 5-95% response typified by a half time of 20 s. The data gathered were corrected in the light of these findings. Fourteen male subjects aged 17-38 years were studied under two conditions. Four mass evacuations each involving 40 people; a total of nine subjects escaping from the front rank over eight seats being monitored. Six evacuations each involving only two people escaping from the rear of the cabin; a total of 11 subjects escaping over 14 seats being monitored. Escape was made over the seat backs, down an escape chute to a position 12 m from the base of the chute. Resting minute ventilation (mean 16.7 1 STPD) and oxygen consumption (mean 0.41 min-1 STPD) were similar before both evacuations. There were no significant differences between the two conditions either during, or up to 180 s after escape. Ventilation and oxygen consumption were greatest in the recovery period. The highest oxygen consumption seen was 2.08 l min-1 and maximum minute ventilation was 641. Mean total oxygen consumption for the escape and a 150 s recovery period was 2.41 l (s.d. 0.64, max. 3.11) for the mass evacuation and 2.97 l (s.d. 0.68, max. 4.09) for the two person evacuation. The mean total amount of gas inhaled during the same time period was 89.3 l (s.d. 25.6, max. 121.3) for the mass evacuation and 99.01 (s.d. 26.2, max. 137.3) for the other. These was no correlation between ventilation or oxygen consumption and either escape time, body weight, height or age.
An, P; Borecki, I B; Rankinen, T; Pérusse, L; Leon, A S; Skinner, J S; Wilmore, J H; Bouchard, C; Rao, D C
2003-10-01
Major gene effects on exercise heart rate (HR) and blood pressure (BP) measured at 50 W and 80 % maximal oxygen uptake (VO (2)max) were assessed in 99 White families in the HERITAGE Family Study. Exercise HR and BP were measured both before and after 20 weeks of endurance training. The baseline phenotypes were adjusted for the effects of age and BMI, whereas the training responses (post-training minus baseline) were adjusted for the effects of age, BMI and the corresponding baseline values, within four sex-by-generation groups. Baseline exercise HR at 50 W was under the influence of a major recessive gene and a multifactorial component, which accounted for 30 % and 27 % of the variance, respectively. The training response was found to be under the influence of a major dominant gene, which accounted for 27 % of the variance. These significant major gene effects were independent of the effects of cigarette smoking, baseline VO (2)max, and the resting HR levels. No significant interactions were found between genotype and age, sex, or BMI. No major gene effect was found for exercise BP. Instead, we found the baseline exercise BP at 50 W and 80 % VO (2)max and the training response at 50 W were solely influenced by multifactorial effects, which accounted for about 50 %, 40 % and 20 % of the variance, respectively. No familial resemblance was found for training responses in exercise HR or BP at 80 % VO (2)max. Segregation analysis also was carried out for exercise HR in Whites pooled with a small sample of Blacks in HERITAGE. Similar major effects were found, but the transmission from parents to offspring did not follow Mendelian expectations, suggesting sample heterogeneity. In conclusion, submaximal exercise HR at baseline and in response to endurance training was influenced by putative major genes, with no evidence of interactions with sex, age or BMI, in contrast to a multifactorial etiology for exercise BP.
Apple F-Box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response.
An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin
2016-01-01
MAX2 (MORE AXILLARY GROWTH2) is involved in diverse physiological processes, including photomorphogenesis, the abiotic stress response, as well as karrikin and strigolactone signaling-mediated shoot branching. In this study, MdMAX2, an F-box protein that is a homolog of Arabidopsis MAX2, was identified and characterized. Overexpression of MdMAX2 in apple calli enhanced the accumulation of anthocyanin. Ectopic expression of MdMAX2 in Arabidopsis exhibited photomorphogenesis phenotypes, including increased anthocyanin content and decreased hypocotyl length. Further study indicated that MdMAX2 might promote plant photomorphogenesis by affecting the auxin signaling as well as other plant hormones. Transcripts of MdMAX2 were noticeably up-regulated in response to NaCl and Mannitol treatments. Moreover, compared with the wild-type, the MdMAX2 -overexpressing apple calli and Arabidopsis exhibited increased tolerance to salt and drought stresses. Taken together, these results suggest that MdMAX2 plays a positive regulatory role in plant photomorphogenesis and stress response.
Cheng, Lin; Zhang, Jianping; Wang, Yujie; Xu, Xiaoli; Zhang, Yongping; Zhang, Yingjian; Liu, Guangyu; Cheng, Jingyi
2017-08-01
This study was designed to evaluate the utility of textural features for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC). Sixty-one consecutive patients with locally advanced breast cancer underwent 18 F-FDG PET/CT scanning at baseline and after the second course of NAC. Changes to imaging parameters [maximum standardized uptake value (SUV max ), metabolic tumor volume (MTV), total lesion glycolysis (TLG)] and textural features (entropy, coarseness, skewness) between the 2 scans were measured by two independent radiologists. Pathological responses were reviewed by one pathologist, and the significance of the predictive value of each parameter was analyzed using a Chi-squared test. Receiver operating characteristic curve analysis was used to compare the area under the curve (AUC) for each parameter. pCR was observed more often in patients with HER2-positive tumors (22 patients) than in patients with HER2-negative tumors (5 patients) (71.0 vs. 16.7%, p < 0.001). ∆ %SUV max , ∆ %entropy and ∆ %coarseness were significantly useful for differentiating pCR from non-pCR in the HER2-negative group, and the AUCs for these parameters were 0.928, 0.808 and 0.800, respectively (p = 0.003, 0.032 and 0.037). In the HER2-positive group, ∆ %SUV max and ∆ %skewness were moderately useful for predicting pCR, and the respective AUCs were 0.747 and 0.758 (p = 0.033 and 0.026). Although there was no significant difference in the AUCs between groups for these parameters, an additional 3/22 patients in the HER2-positive group with pCR were identified when ∆ %skewness and ∆ %SUV max were considered together (p = 0.031). The absolute values for each parameter before NAC and after 2 cycles cannot predict pCR in our patients. Neither ∆ %MTV nor ∆ %TLG was efficiently predictive of pCR in any group. The early changes in the textural features of 18 F-FDG PET images after two cycles of NAC are predictive of pCR in both HER2-negative and HER2-positive patients; this evidence warrants confirmation by further research.
Regular endurance training in adolescents impacts atrial and ventricular size and function.
Rundqvist, Louise; Engvall, Jan; Faresjö, Maria; Carlsson, Emma; Blomstrand, Peter
2017-06-01
The aims of the study were to explore the effects of long-term endurance exercise on atrial and ventricular size and function in adolescents and to examine whether these changes are related to maximal oxygen uptake (VO2max). Twenty-seven long-term endurance-trained adolescents aged 13-19 years were individually matched by age and gender with 27 controls. All participants, 22 girls and 32 boys, underwent an echocardiographic examination at rest, including standard and colour tissue Doppler investigation. VO2max was assessed during treadmill exercise. All heart dimensions indexed for body size were larger in the physically active group compared with controls: left ventricular end-diastolic volume 60 vs. 50 mL/m2 (P <0.001), left atrial volume 27 vs. 19 mL/m2 (P < 0.001), and right ventricular (RV) and right atrial area 15 vs. 13 and 9 vs. 7 cm2/m2, respectively (P <0.001 for both). There were strong associations between the size of the cardiac chambers and VO2max. Further, we found improved systolic function in the active group compared with controls: left ventricular ejection fraction 61 vs. 59% (P= 0.036), tricuspid annular plane systolic excursion 12 vs. 10 mm/m2 (P= 0.008), and RV early peak systolic velocity s' 11 vs. 10 cm/s (P = 0.031). Cardiac remodelling to long-term endurance exercise in adolescents is manifested by an increase in atrial as well as ventricular dimensions. The physically active group also demonstrated functional remodelling with an increase in TAPSE and systolic RV wall velocity. These findings have practical implications when assessing cardiac enlargement and function in physically active youngsters. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisse, N; Jeraj, R
Purpose: [F-18]FLT PET is a tool for assessing health of bone marrow by evaluating its proliferative activity. This study establishes a baseline quantitative characterization of healthy marrow proliferation to aid in diagnosis of hematological disease. Methods: 31 patients (20 male, 11 female, 41–76 years) being treated for solid cancers with no history of hematological disease, osseous metastatic disease, or radiation therapy received pre-treatment FLT PET/CT scans. Total bone marrow was isolated from whole body FLT PET images by manually removing organs and applying a standardize uptake value (SUV) threshold of 1.0. Because adult marrow is concentrated in the axial skeleton,more » quantitative total bone marrow analysis (QTBMA) was used to isolate marrow in the lumbar spine, thoracic spine, sacrum, and pelvis for analysis. SUV mean, SUV max, and SUV CV were used to quantify bone marrow proliferation. Correlations were explored between SUV and patient characteristics including age, weight, height, and BMI using the Spearman coefficient (ρ). Results: The population-averaged whole-skeleton SUV mean, SUV max, and SUV CV were 3.0±0.6, 18.4±5.7, and 0.6±0.1, respectively. Uptake values in the axial skeleton were similar to the whole-skeleton demonstrated by SUV mean in the thoracic spine (3.6±0.6), lumbar spine (3.3±0.5), sacrum (3.0±0.6), and pelvis regions (2.8±0.5). Whole-skeleton SUV max correlated with patient weight (ρ=0.47, p<0.01) and BMI (ρ=0.60, p<0.01), suggesting marrow activity is related to the body's burden. SUV measures in the thoracic spine, lumbar spine, sacrum, and pelvis were negatively correlated with age (ρ:−0.41 to −0.46, p≤0.02). These negative correlations reflect the fact that active marrow in the adult skeleton is localized in the axial skeleton and decreases with age. Conclusions: Normal bone marrow characterizations were determined using FLT PET. These results provide a baseline characterization against which proliferative activity of abnormal marrow can be compared.« less
Physiological profiles of Hong Kong élite soccer players.
Chin, M K; Lo, Y S; Li, C T; So, C H
1992-01-01
Most physiological profiles of élite soccer players originate from Western Europe and North America. Unfortunately, there is a scarcity of descriptive data on the physical characteristics of Asian soccer players. Therefore, the purpose of this study was to evaluate the physiological profiles of élite soccer players in Hong Kong. It was conducted in conjunction with the selection of the Hong Kong team before the 1990 Beijing Asian Games. In all, 24 professional soccer players were selected from a pool of 180 players as subjects for the study. The following means(s.d.) were observed: height 173.4(4.6) cm; weight 67.7(5.0) kg; body fat 7.3(3.0)%; forced vital capacity (FVC) 5.1(0.6) l; maximum oxygen uptake (VO2max) 59.1(4.9) ml kg-1 min-1; anaerobic threshold (AT 80.0(7.2)% of VO2max; alactic power index 13.5(2.4) W kg-1; lactic work index 298(27) J kg-1; peak isokinetic dominant knee extensor and flexor strengths 2.72(0.36) Nm kg-1 and 1.65(0.20) Nm kg-1. On average the physique of Hong Kong soccer players appeared to be smaller and lighter than those found in Europe, which may be one of the key factors that contribute to the lack of success of Hong Kong soccer teams in international competition. PMID:1490221
Nałecz, K A; Kamińska, J; Nałecz, M J; Azzi, A
1992-08-15
The pyruvate carrier, of molecular mass 34 kDa, was purified from mitochondria isolated from rat liver, rat brain, and bovine heart, by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate. Its activity after reconstitution in phosphatidylcholine vesicles was measured either as uptake of [1-14C]pyruvate or as exchange with different 2-oxoacids. All preparations exhibited similar apparent Km values for pyruvate, but somewhat different V(max) values. The ability to exchange different anions of physiological significance, including branched-chain 2-oxoacids, confirmed the known substrate specificity described for the pyruvate carrier in mitochondria. The sensitivity of pyruvate transport toward phenylglyoxal suggested an important role of arginyl residues in the transport activity, while a role of lysyl and histidyl residues was not confirmed.
FDG-PET Assessment of the Effect of Head and Neck Radiotherapy on Parotid Gland Glucose Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Michael C.; Turkington, Timothy G.; Department of Biomedical Engineering, Duke University Medical Center, Duke University, Durham, NC
Purpose: Functional imaging with [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) provides the opportunity to define the physiology of the major salivary glands before and after radiation therapy. The goal of this retrospective study was to identify the radiation dose-response relationship of parotid gland glucose metabolism in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Forty-nine adults with HNSCC were identified who had curative intent intensity-modulated radiation therapy (IMRT) and FDG-PET imaging before and after treatment. Using a graphical user interface, contours were delineated for the parotid glands on axial CT slices while all authors were blinded tomore » paired PET slices. Average and maximal standard uptake values (SUV) were measured within these anatomic regions. Changes in SUV and volume after radiation therapy were correlated with parotid gland dose-volume histograms from IMRT plans. Results: The average parotid gland volume was 30.7 mL and contracted 3.9 {+-} 1.9% with every increase of 10 Gy in mean dose (p = 0.04). However, within the first 3 months after treatment, there was a uniform reduction of 16.5% {+-} 7.3% regardless of dose. The average SUV{sub mean} of the glands was 1.63 {+-} 0.48 pretreatment and declined by 5.2% {+-} 2.5% for every increase of 10 Gy in mean dose (p = 0.04). The average SUV{sub max} was 4.07 {+-} 2.85 pretreatment and decreased in a sigmoid manner with mean dose. A threshold of 32 Gy for mean dose existed, after which SUV{sub max} declined rapidly. Conclusion: Radiation dose responses of the parotid glands can be measured by integrated CT/FDG-PET scans. Retrospective analysis showed sigmoidal declines in the maximum metabolism but linear declines in the average metabolism of the glands with dose. Future studies should correlate this decline in FDG uptake with saliva production to improve treatment planning.« less
Kim, Jun-Woo; Price, Neil M
2017-10-01
Thalassiosira oceanica (CCMP 1005) was grown over a range of copper concentrations at saturating and subsaturating irradiance to test the hypothesis that Cu and light were interacting essential resources. Growth was a hyperbolic function of irradiance in Cu-replete medium (263 fmol Cu' · L -1 ) with maximum rates achieved at 200 μmol photons · m -2 · s -1 . Lowering the Cu concentration at this irradiance to 30.8 fmol Cu' · L -1 decreased cellular Cu quota by 7-fold and reduced growth rate by 50%. Copper-deficient cells had significantly slower (P < 0.0001) rates of maximum, relative photosynthetic electron transport (rETR max ) than Cu-sufficient cells, consistent with the role of Cu in photosynthesis in this diatom. In low-Cu medium (30.8 fmol Cu' · L -1 ), growth rate was best described as a positive, linear function of irradiance and reached the maximum value measured in Cu-replete cells when irradiance increased to 400 μmol photons · m -2 · s -1 . Thus, at high light, low-Cu concentration was no longer limiting to growth: Cu concentration and light interacted strongly to affect growth rate of T. oceanica (P < 0.0001). Relative ETR max and Cu quota of cells grown at low Cu also increased at 400 μmol photons · m -2 · s -1 to levels measured in Cu-replete cells. Steady-state uptake rates of Cu-deficient and sufficient cells were light-dependent, suggesting that faster growth of T. oceanica under high light and low Cu was a result of light-stimulated Cu uptake. © 2017 Phycological Society of America.
Robergs, R A; Quintana, R; Parker, D L; Frankel, C C
1998-06-01
We used multiple regression analyses to determine the relationships between the decrement in sea level (SL, 760 Torr) VO2max during hypobaric hypoxia (HH) and variables that could alter or be related to the decrement in VO2max. HH conditions consisted of 682 Torr, 632 Torr, and 566 Torr, and the measured independent variables were SL-VO2max, SL lactate threshold (SL-LT), the change in hemoglobin saturation at VO2max between 760 and 566 Torr (delta SaO2max), lean body mass (LBM), and gender. Male (N = 14) and female (N = 14) subjects of varied fitness, training status, and residential altitude (1,640-2,460 m) completed cycle ergometry tests of VO2max at each HH condition under randomized and single-blinded conditions. VO2max decreased significantly from 760 Torr after 682 Torr (approximately 915 m) (3.5 +/- 0.9 to 3.4 +/- 0.8 L.min-1, P = 0.0003). Across all HH conditions, the slope of the relative decrement in VO2max (%VO2max) during HH was -9.2%/100 mm Hg (-8.1%/1000 m) with an initial decrease from 100% estimated to occur below 705 Torr (610 m). Step-wise multiple regression revealed that SL-VO2max, SL-LT, delta SaO2max, LBM, and gender each significantly combined to account for 89.03% of the variance in the decrement in VO2max (760-566 Torr) (P < 0.001). Individuals who have a combination of a large SL-VO2max, a small SL-LT (VO2, L.min-1), greater reductions in delta SaO2max, a large LBM, and are male have the greatest decrement in VO2max during HH. The unique variance explanation afforded by SL-LT, LBM, and gender suggests that issues pertaining to oxygen diffusion within skeletal muscle may add to the explanation of between subjects variability in the decrement in VO2max during HH.
Arjomandi, Mehrdad; Zeng, Siyang; Geerts, Jeroen; Stiner, Rachel K; Bos, Bruce; van Koeverden, Ian; Keene, Jason; Elicker, Brett; Blanc, Paul D; Gold, Warren M
2018-01-01
Exposure to secondhand smoke (SHS) is associated with occult obstructive lung disease as evident by abnormal airflow indices representing small airway disease despite having preserved spirometry (normal forced expiratory volume in 1 s-to-forced vital capacity ratio, FEV 1 /FVC). The significance of lung volumes that reflect air trapping in the presence of preserved spirometry is unclear. To investigate whether lung volumes representing air trapping could determine susceptibility to respiratory morbidity in people with SHS exposure but without spirometric chronic obstructive pulmonary disease, we examined a cohort of 256 subjects with prolonged occupational SHS exposure and preserved spirometry. We elicited symptom prevalence by structured questionnaires, examined functional capacity (maximum oxygen uptake, VO 2max ) by exercise testing, and estimated associations of those outcomes with air trapping (plethysmography-measured residual volume-to-total lung capacity ratio, RV/TLC), and progressive air trapping with exertion (increase in fraction of tidal breathing that is flow limited on expiration during exercise (per cent of expiratory flow limitation, %EFL)). RV/TLC was within the predicted normal limits, but was highly variable spanning 22%±13% and 16%±8% across the increments of FEV 1 /FVC and FEV 1 , respectively. Respiratory complaints were prevalent (50.4%) with the most common symptom being ≥2 episodes of cough per year (44.5%). Higher RV/TLC was associated with higher OR of reporting respiratory symptoms (n=256; r 2 =0.03; p=0.011) and lower VO 2max (n=179; r 2 =0.47; p=0.013), and %EFL was negatively associated with VO 2max (n=32; r 2 =0.40; p=0.017). In those at risk for obstruction due to SHS exposure but with preserved spirometry, higher RV/TLC identifies a subgroup with increased respiratory symptoms and lower exercise capacity.
Criterion Related Validity of Karate Specific Aerobic Test (KSAT).
Chaabene, Helmi; Hachana, Younes; Franchini, Emerson; Tabben, Montassar; Mkaouer, Bessem; Negra, Yassine; Hammami, Mehrez; Chamari, Karim
2015-09-01
Karate is one the most popular combat sports in the world. Physical fitness assessment on a regular manner is important for monitoring the effectiveness of the training program and the readiness of karatekas to compete. The aim of this research was to examine the criterion related to validity of the karate specific aerobic test (KSAT) as an indicator of aerobic level of karate practitioners. Cardiorespiratory responses, aerobic performance level through both treadmill laboratory test and YoYo intermittent recovery test level 1 (YoYoIRTL1) as well as time to exhaustion in the KSAT test (TE'KSAT) were determined in a total of fifteen healthy international karatekas (i.e. karate practitioners) (means ± SD: age: 22.2 ± 4.3 years; height: 176.4 ± 7.5 cm; body mass: 70.3 ± 9.7 kg and body fat: 13.2 ± 6%). Peak heart rate obtained from KSAT represented ~99% of maximal heart rate registered during the treadmill test showing that KSAT imposes high physiological demands. There was no significant correlation between KSAT's TE and relative (mL/min kg) treadmill maximal oxygen uptake (r = 0.14; P = 0.69; [small]). On the other hand, there was a significant relationship between KSAT's TE and the velocity associated with VO2max (vVO2max) (r = 0.67; P = 0.03; [large]) as well as the velocity at VO2 corresponding to the second ventilatory threshold (vVO2 VAT) (r = 0.64; P = 0.04; [large]). Moreover, significant relationship was found between TE's KSAT and both the total distance covered and parameters of intermittent endurance measured through YoYoIRTL1. The KSAT has not proved to have indirect criterion related validity as no significant correlations have been found between TE's KSAT and treadmill VO2max. Nevertheless, as correlated to other aerobic fitness variables, KSAT can be considered as an indicator of karate specific endurance. The establishment of the criterion related validity of the KSAT requires further investigation.
Petit-Eisenmann, Hélène; Epailly, Eric; Velten, Michel; Radojevic, Jelena; Eisenmann, Bernard; Kremer, Hélène; Kindo, Michel
2016-12-01
The impact of prosthesis-patient mismatch (PPM) after aortic valve replacement (AVR) for aortic stenosis on exercise capacity remains controversial. The aim of this study was to analyze the long-term impact of PPM after mechanical AVR on maximal oxygen uptake (VO 2max ). The study included 75 patients who had undergone isolated mechanical AVR for aortic stenosis with normal left ventricular (LV) function between 1994 and 2012. Their functional capacity was evaluated on average 4.6 years after AVR by exercise testing, including measurement of their VO 2max , and by determining their New York Heart Association functional class and Short Form-36 score. Two groups were defined by measuring the patients' indexed effective orifice area (iEOA) by transthoracic echocardiography: a PPM group (iEOA < 0.85 cm 2 /m 2 ) and a no-PPM group (iEOA ≥ 0.85 cm 2 /m 2 ). PPM was present in 37.0% of the patients. The percentage of the predicted VO 2max achieved was significantly lower in the PPM group (86.7 ± 19.5% vs 97.5 ± 23.0% in the no-PPM group; P = 0.04). Compared with the no-PPM group, the PPM group contained fewer patients in New York Heart Association functional class I and their mean Short Form-36 physical component summary score was significantly lower. The mean transvalvular gradient was significantly higher in the PPM group than in the no-PPM group (P < 0.001). Systolic and diastolic function and LV mass had normalized in both groups. PPM is associated in the long term with moderate but significant impairment of functional capacity, despite optimal LV reverse remodelling and normalization of LV systolic and diastolic function. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Responsive measures to prehabilitation in patients undergoing bowel resection surgery.
Kim, Do Jun; Mayo, Nancy E; Carli, Franco; Montgomery, David L; Zavorsky, Gerald S
2009-02-01
Surgical patients often show physiological and metabolic distress, muscle weakness, and long hospital stays. Physical conditioning might help recovery. We attempted to identify the most responsive measure of aerobic fitness from a four-week pre-surgical aerobic exercise program (prehabilitation) in patients undergoing major bowel resection. Twenty-one subjects randomized two to one (exercise: control) scheduled for colorectal surgery. Fourteen subjects [Body Mass Index (BMI) = 27 +/- 6 kg/m(2); maximal oxygen uptake (VO(2max)) = 22 +/- 10 ml/kg/min] underwent 3.8 +/- 1.2 weeks (27 +/- 8 sessions) of progressive, structured pre-surgical aerobic exercise training at 40 to 65% of heart rate reserve (%HRR). Peak power output was the only maximal measure that was responsive to training [26 +/- 27%, Effects Size (ES) = 0.24; Standardized Response Mean (SRM) = 1.05; p < 0.05]. For the submaximal measures, heart rate and oxygen uptake during submaximal exercise was most responsive to training (decrease by 13% +/- 15%, ES = -0.24; SRM = -0.57; and 7% +/- 6%, ES = -0.40; SRM -0.97; p < 0.05) at an exercise intensity of 76 +/- 47 W. There was no change to maximal or submaximal measures in the control group. The distance walked over six minutes improved in both groups (by approximately 30 m), but the effect size and t-statistic were higher in the exercise group. Heart rate and oxygen uptake during submaximal exercise, and peak power output are the most responsive measures to four weeks of prehabilitation in subjects with low initial fitness.
Diagnostic Ability of FDG-PET/CT in the Detection of Malignant Pleural Effusion.
Nakajima, Reiko; Abe, Koichiro; Sakai, Shuji
2015-07-01
We investigated the role of F-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) for the differential diagnosis of malignant and benign pleural effusion. We studied 36 consecutive patients with histologically proven cancer (excluding malignant mesothelioma) who underwent FDG-PET/CT for suspected malignant pleural effusion. Fourteen patients had cytologically proven malignant pleural effusion and the other 22 patients had either negative cytology or clinical follow-up, which confirmed the benign etiology. We examined the maximum standardized uptake values (SUV max) of pleural effusion and the target-to-normal tissue ratio (TNR), calculated as the ratio of the pleural effusion SUV max to the SUV mean of the normal tissues (liver, spleen, 12th thoracic vertebrae [Th12], thoracic aorta, and spinalis muscle). We also examined the size and density (in Hounsfield units) of the pleural effusion and pleural abnormalities on CT images. TNR (Th12) and increased pleural FDG uptake compared to background blood pool were significantly more frequent in cases with malignant pleural effusion (P < 0.05 for both). The cutoff TNR (Th12) value of >0.95 was the most accurate; the sensitivity, specificity, and accuracy for this value were 93%, 68%, and 75%, respectively. FDG-PET/CT can be a useful method for the differential diagnosis of malignant and benign pleural effusion.
Maximal heart rate in soccer players: measured versus age-predicted.
Nikolaidis, Pantelis T
2015-01-01
Although maximal heart rate (HR max) is widely used to assess exercise intensity in sport training, and particularly in soccer, there are limited data with regards to the use of age-based prediction equations of HR max in soccer players. The aim of this study was to compare the measured-HR max with two prediction equations (Fox-HR max = 220 - age and Tanaka-HR max = 208 - 0.7 × age) in soccer players. Adolescent (n = 162, 15.8 ± 1.5 years) and adult players (n = 158, 23.4 ± 4.6 years), all members of competitive clubs, voluntarily performed a graded exercise field test (Conconi protocol) to assess HR max . The measured-HR max (197.6 ± 9.4 bpm in total, 200.2 ± 7.9 bpm in adolescent players, and 195.0 ± 10.0 bpm in adult players) was explained by the formula HR max = 212.3 - 0.75 × age (r = -0.41, standard error of the estimate = 8.6). In the total sample, Fox-HR max overestimated measured-HR max [mean difference (95% confidence intervals) = 2.8 bpm (1.6; 3.9)], while Tanaka-HR max underestimated HR max [-3.3 bpm (-4.5; -2.2)]. In adolescents, Fox-HR max overestimated measured-HR max [4.0 bpm (2.5; 5.5)] and Tanaka-HR max underestimated HR max [- 3.2 bpm (-4.7; -1.8)]. In adults, Tanaka-HR max underestimated HR max [-5.0 bpm (-5.3; -4.7)], while there was not any difference between Fox-HR max and measured-HR max [1.6 bpm (-3.4; 0.2)]. The results of this study failed to validate two widely used prediction equations in a large sample of soccer players, indicating the need for a sport-specific equation. On the other hand, the new equation that we presented should be investigated further by future studies before being adopted by coaches and fitness trainers.
Kwee, Sandi A; Lim, John; Watanabe, Alex; Kromer-Baker, Kathleen; Coel, Marc N
2014-06-01
This study investigated the prognostic significance of metabolically active tumor volume (MATV) measurements applied to (18)F-fluorocholine PET/CT in castration-resistant prostate cancer (CRPC). (18)F-fluorocholine PET/CT imaging was performed on 30 patients with CRPC. Metastatic disease was quantified on the basis of maximum standardized uptake value (SUV(max)), MATV, and total lesion activity (TLA = MATV × mean standardized uptake value). Tumor burden indices derived from whole-body summation of PET tumor volume measurements (i.e., net MATV and net TLA) were evaluated as variables in Cox regression and Kaplan-Meier survival analyses. Net MATV ranged from 0.12 cm(3) to 1,543.9 cm(3) (median, 52.6 cm(3)). Net TLA ranged from 0.40 to 6,688.7 g (median, 225.1 g). Prostate-specific antigen level at the time of PET correlated significantly with net MATV (Pearson r = 0.65, P = 0.0001) and net TLA (r = 0.60, P = 0.0005) but not highest lesional SUV(max) of each scan. Survivors were followed for a median 23 mo (range, 6-38 mo). On Cox regression analyses, overall survival had a significant association with net MATV (P = 0.0068), net TLA (P = 0.0072), and highest lesion SUV(max) (P = 0.0173) and a borderline association with prostate-specific antigen level (P = 0.0458). Only net MATV and net TLA remained significant in univariate-adjusted survival analyses. Kaplan-Meier analysis demonstrated significant differences in survival between groups stratified by median net MATV (log-rank P = 0.0371), net TLA (log-rank P = 0.0371), and highest lesion SUV(max) (log-rank P = 0.0223). Metastatic prostate cancer detected by (18)F-fluorocholine PET/CT can be quantified on the basis of volumetric measurements of tumor metabolic activity. The prognostic value of (18)F-fluorocholine PET/CT may stem from this capacity to assess whole-body tumor burden. With further clinical validation, (18)F-fluorocholine PET-based indices of global disease activity and mortality risk could prove useful in patient-individualized treatment of CRPC. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.