Recovering and recycling uranium used for production of molybdenum-99
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, Sean Douglas; May, Iain; Copping, Roy
A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated targetmore » suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, Sean Douglas; May, Iain; Copping, Roy
A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted tomore » concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.« less
Development of Crystallizer for Advanced Aqueous Reprocessing Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadahiro Washiya; Atsuhiro Shibata; Toshiaki Kikuchi
2006-07-01
Crystallization is one of the remarkable technologies for future fuel reprocessing process that has safety and economical advantages. Japan Atomic Energy Agency (JAEA) (former Japan Nuclear Cycle Development Institute), Mitsubishi Material Corporation and Saitama University have been developing the crystallization process. In previous study, we carried out experimental studies with uranium, MOX and spent fuel conditions, and flowsheet analysis was considered. In association with these studies, an innovative continuous crystallizer and its system was developed to ensure high process performance. From the design study, an annular type continuous crystallizer was selected as the most promising design, and performance was confirmedmore » by small-scale test and engineering scale demonstration at uranium crystallization conditions. In this paper, the design study and the demonstration test results are described. (authors)« less
PRODUCTION OF PURIFIED URANIUM
Burris, L. Jr.; Knighton, J.B.; Feder, H.M.
1960-01-26
A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.
Price, T.D.; Jeung, N.M.
1958-06-17
An improved precipitation method is described for the recovery of uranium from aqueous solutions. After removal of all but small amounts of Ni or Cu, and after complexing any iron present, the uranium is separated as the peroxide by adding H/sub 2/O/sub 2/. The improvement lies in the fact that the addition of H/sub 2/O/sub 2/ and consequent precipitation are carried out at a temperature below the freezing; point of the solution, so that minute crystals of solvent are present as seed crystals for the precipitation.
METHOD OF PROCESSING MONAZITE SAND
Calkins, G.D.
1957-10-29
A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.
PREPARATION OF REFRACTORY OXIDE CRYSTALS
Grimes, W.R.; Shaffer, J.H.; Watson, G.M.
1962-11-13
A method is given for preparing uranium dioxide, thorium oxide, and beryllium oxide in the form of enlarged individual crystals. The surface of a fused alkali metal halide melt containing dissolved uranium, thorium, or beryllium values is contacted with a water-vapor-bearing inert gas stream at a rate of 5 to 10 cubic centimeters per minute per square centimeter of melt surface area. Growth of individual crystals is obtained by prolonged contact. Beryllium oxide-coated uranium dioxide crystals are prepared by disposing uranium dioxide crystals 5 to 20 microns in diameter in a beryllium-containing melt and contacting the melt with a water-vapor-bearing inert gas stream in the same manner. (AEC)
Subcellular distribution of uranium in the roots of Spirodela punctata and surface interactions
NASA Astrophysics Data System (ADS)
Nie, Xiaoqin; Dong, Faqin; Liu, Ning; Liu, Mingxue; Zhang, Dong; Kang, Wu; Sun, Shiyong; Zhang, Wei; Yang, Jie
2015-08-01
The subcellular distribution of uranium in roots of Spirodela punctata (duckweed) and the process of surface interaction were studied upon exposure to U (0, 5-200 mg/L) at pH 5. The concentration of uranium in each subcelluar fraction increased significantly with increasing solution U level, after 200 mg/L uranium solution treatment 120 h, the proportion of uranium concentration approximate as 8:2:1 in the cell wall organelle and cytosol fractions of roots of S. punctata. OM SEM and EDS showed after 5-200 mg/L U treatment 4-24 h, some intracellular fluid released from the root cells, after 100 mg/L U treatment 48 h, the particles including 35% Fe (wt%) and other organic matters such as EPS released from the cells, most of the uranium bound onto the root surface and contacted with phosphorus ligands and formed as nano-scales U-P lamellar crystal, similar crystal has been found in the cell wall and organelle fractions after 50 mg/L U treatment 120 h. FTIR and XPS analyses result indicates the uranium changed the band position and shapes of phosphate group, and the region of characteristic peak belongs to U(VI) and U(IV) were also observed.
Biogenic formation and growth of uraninite (UO₂).
Lee, Seung Yeop; Baik, Min Hoon; Choi, Jong Won
2010-11-15
Biogenic UO₂ (uraninite) nanocrystals may be formed as a product of a microbial reduction process in uranium-enriched environments near the Earth's surface. We investigated the size, nanometer-scale structure, and aggregation state of UO₂ formed by iron-reducing bacterium, Shewanella putrefaciens CN32, from a uranium-rich solution. Characterization of biogenic UO₂ precipitates by high-resolution transmission electron microscopy (HRTEM) revealed that the UO₂ nanoparticles formed were highly aggregated by organic polymers. Nearly all of the nanocrystals were networked in more or less 100 nm diameter spherical aggregates that displayed some concentric UO₂ accumulation with heterogeneity. Interestingly, pure UO₂ nanocrystals were piled on one another at several positions via UO₂-UO₂ interactions, which seem to be intimately related to a specific step in the process of growing large single crystals. In the process, calcium that was easily complexed with aqueous uranium(VI) appeared not to be combined with bioreduced uranium(IV), probably due to its lower binding energy. However, when phosphate was added to the system, calcium was found to be easily associated with uranium(IV), forming a new uranium phase, ningyoite. These results will extend the limited knowledge of microbial uraniferous mineralization and may provide new insights into the fate of aqueous uranium complexes.
Oxidation and crystal field effects in uranium
NASA Astrophysics Data System (ADS)
Tobin, J. G.; Yu, S.-W.; Booth, C. H.; Tyliszczak, T.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Bagus, P. S.
2015-07-01
An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (U O2) , uranium trioxide (U O3) , and uranium tetrafluoride (U F4) . A discussion of the role of nonspherical perturbations, i.e., crystal or ligand field effects, will be presented.
Zheng, Xin-Yan; Wang, Xiao-Yu; Shen, Yang-Hao; Lu, Xia; Wang, Tie-Shan
2017-05-01
Biosorption of heavy metal elements including radionuclides by microorganisms is a promising and effective method for the remediation of the contaminated places. The responses of live Saccharomyces cerevisiae in the toxic uranium solutions during the biosorption process and the mechanism of uranium biomineralization by cells were investigated in the present study. A novel experimental phenomenon that uranium concentrations have negative correlation with pH values and positive correlation with phosphate concentrations in the supernatant was observed, indicating that hydrogen ions, phosphate ions and uranyl ions were involved in the chernikovite precipitation actively. During the biosorption process, live cells desorb deposited uranium within the equilibrium state of biosorption system was reached and the phosphorus concentration increased gradually in the supernatant. These metabolic detoxification behaviours could significantly alleviate uranium toxicity and protect the survival of the cells better in the environment. The results of microscopic and spectroscopic analysis demonstrated that the precipitate on the cell surface was a type of uranium-phosphate compound in the form of a scale-like substance, and S. cerevisiae could transform the uranium precipitate into crystalline state-tetragonal chernikovite [H 2 (UO 2 ) 2 (PO 4 ) 2 ·8H 2 O]. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lead and uranium group abundances in cosmic rays
NASA Technical Reports Server (NTRS)
Yadav, J. S.; Perelygin, V. P.
1985-01-01
The importance of Lead and Uranium group abundances in cosmic rays is discussed in understanding their evolution and propagation. The electronic detectors can provide good charge resolution but poor data statistics. The plastic detectors can provide somewhat better statistics but charge resolution deteriorates. The extraterrestrial crystals can provide good statistics but with poor charge resolution. Recent studies of extraterrestrial crystals regarding their calibration to accelerated uranium ion beam and track etch kinetics are discussed. It is hoped that a charge resolution of two charge units can be achieved provided an additional parameter is taken into account. The prospects to study abundances of Lead group, Uranium group and superheavy element in extraterrestrial crystals are discussed, and usefulness of these studies in the light of studies with electronic and plastic detectors is assessed.
Exploratory Solid-State Synthesis of Uranium Chalcogenides and Mixed Anion Uranium Chalcogenides
NASA Astrophysics Data System (ADS)
Ward, Matthew David
Several uranium chalcogenides and mixed anion uranium chalcogenides have been synthesized by solid-state synthetic methods. Structural determinations were carried out via single-crystal X-ray diffraction. Some of these compounds have been further characterized by magnetic measurements, optical properties measurements, Raman spectroscopy, resistivity measurements, XANES and XPS. Eight compounds of the composition MU8Q17 were synthesized and characterized by single-crystal X-ray diffraction. All of these compounds crystallize in the CrU8S17 structure type. XANES measurements indicate that ScU8S17 contains Sc3+ and must be charge balanced with some amount of U 3+. Two compounds of the composition ATiU3Te9 crystallize as black rectangular plates. From single-crystal magnetic measurements, CsTiU 3Te9 is consistent with antiferromagnetic coupling between magnetic U atoms. The uranium chalcogenide compounds NiUS3 and Cr4US 8 were synthesized from reaction of the elements in various fluxes. NiUS3 crystallizes in the GdFeO3 structure type. Cr 4US8 crystallizes in the orthorhombic space group D - Pnma and its structure is related to that of Li4UF 8. The compounds Rh2U6S15, Cs 2Ti2U6Se15, and Cs2Cr 2U6Se15 crystallize as black prisms in the cubic space group O-Im3m. Magnetic measurements on Cs 2Cr2U6Se15 give a value for the Weiss temperature, θWeiss, of 57.59 K, indicative of ferromagnetic coupling. Black plates of CsScU(Se2)Se3 were synthesized from the reaction of the elements in a CsCl flux. CsScU(Se2)Se 3 crystallizes in the orthorhombic space group D- Cmcm . Magnetic susceptibility measurements on CsScU(Se2)Se 3 indicate three regions of magnetic response. The uranium double salt Cs5[U2(μ-S 2)2Cl8]I crystallizes as red plates. Cs 5[U2(μ-S2)2Cl 8]I displays optical anisotropy with band gap energies of 1.99 eV and 2.08 eV along the [001] and [100] polarizations. The uranium oxychalcogenides U7O2Se12 and Na2Ba2(UO2)S4 were synthesized by intentional oxygen contamination. The structure of U7O 2Se12 is related to the previously reported U7Q 12. Na2Ba2(UO2)S4 contains isolated uranyl polyhedra in which each uranium atom may be assigned an oxidation state of +6. The four uranium(IV) chlorophosphates, UCl4(POCl3), [U2Cl9][PCl4], UCl3(PO2Cl 2), and U2Cl8(POCl3) were synthesized in an effort to synthesize new novel uranyl sulfides. All are unstable, but UCl4(POCl3) is the thermodynamically favorable phase.
Molecular and electronic structure of terminal and alkali metal-capped uranium(V) nitride complexes
King, David M.; Cleaves, Peter A.; Wooles, Ashley J.; Gardner, Benedict M.; Chilton, Nicholas F.; Tuna, Floriana; Lewis, William; McInnes, Eric J. L.; Liddle, Stephen T.
2016-01-01
Determining the electronic structure of actinide complexes is intrinsically challenging because inter-electronic repulsion, crystal field, and spin–orbit coupling effects can be of similar magnitude. Moreover, such efforts have been hampered by the lack of structurally analogous families of complexes to study. Here we report an improved method to U≡N triple bonds, and assemble a family of uranium(V) nitrides. Along with an isoelectronic oxo, we quantify the electronic structure of this 5f1 family by magnetometry, optical and electron paramagnetic resonance (EPR) spectroscopies and modelling. Thus, we define the relative importance of the spin–orbit and crystal field interactions, and explain the experimentally observed different ground states. We find optical absorption linewidths give a potential tool to identify spin–orbit coupled states, and show measurement of UV···UV super-exchange coupling in dimers by EPR. We show that observed slow magnetic relaxation occurs via two-phonon processes, with no obvious correlation to the crystal field. PMID:27996007
NASA Astrophysics Data System (ADS)
Stange, Gary Michael
Medical radioisotopes are used in tens of millions of procedures every year to detect and image a wide variety of maladies and conditions in the human body. The most widely-used diagnostic radioisotope is technetium-99m, a metastable isomer of technetium-99 that is generated by the radioactive decay of molybdenum-99. For a number of reasons, the supply of molybdenum-99 has become unreliable and the techniques used to produce it have become unattractive. This has spurred the investigation of new technologies that avoid the use of highly enriched uranium to produce molybdenum-99 in the United States, where approximately half of the demand originates. The first goal of this research is to develop a critical nuclear reactor design powered by solid, discrete pins of low enriched uranium. Analyses of single-pin heat transfer and whole-core neutronics are performed to determine the required specifications. Molybdenum-99 is produced directly in the fuel of this reactor and then extracted through a series of chemical processing steps. After this extraction, the fuel is left in an aqueous state. The second goal of this research is to describe a process by which the uranium may be recovered from this spent fuel solution and reconstituted into the original fuel form. Fuel recovery is achieved through a crystallization step that generates solid uranyl nitrate hexahydrate while leaving the majority of fission products and transuranic isotopes in solution. This report provides background information on molybdenum-99 production and crystallization chemistry. The previously unknown thermal conductivity of the fuel material is measured. Following this is a description of the modeling and calculations used to develop a reactor concept. The operational characteristics of the reactor core model are analyzed and reported. Uranyl nitrate crystallization experiments have also been conducted, and the results of this work are presented here. Finally, a process flow scheme for uranium recovery is examined, in part qualitatively and in part quantitatively, based upon the preceding data garnered through literature review, modeling, and experimentation. The sum of this research is meant to allow for a complete understanding of the process flow, from the beginning of one production cycle to the beginning of another.
Flowsheet Analysis of U-Pu Co-Crystallization Process as a New Reprocessing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shunji Homma; Jun-ichi Ishii; Jiro Koga
2006-07-01
A new fuel reprocessing system by U-Pu co-crystallization process is proposed and examined by flowsheet analysis. This reprocessing system is based on the fact that hexavalent plutonium in nitric acid solution is co-crystallized with uranyl nitrate, whereas it is not crystallized when uranyl nitrate does not exist in the solution. The system consists of five steps: dissolution of spent fuel, plutonium oxidation, U-Pu co-crystallization as a co-decontamination, re-dissolution of the crystals, and U re-crystallization as a U-Pu separation. The system requires a recycling of the mother liquor from the U-Pu co-crystallization step and the appropriate recycle ratio is determined bymore » flowsheet analysis such that the satisfactory decontamination is achieved. Further flowsheet study using four different compositions of LWR spent fuels demonstrates that the constant ratio of plutonium to uranium in mother liquor from the re-crystallization step is achieved for every composition by controlling the temperature. It is also demonstrated by comparing to the Purex process that the size of the plant based on the proposed system is significantly reduced. (authors)« less
Allen, S; Barlow, S; Halasyamani, P S; Mosselmans, J F; O'Hare, D; Walker, S M; Walton, R I
2000-08-21
A new hybrid organic-inorganic mixed-valent uranium oxyfluoride, (C6N2H14)2(U3O4F12), UFO-17, has been synthesized under hydrothermal conditions using uranium dioxide as the uranium source, hydrofluoric acid as mineralizer, and 1,4-diazabicyclo[2.2.2]octane as template. The single-crystal X-ray structure was determined. Crystals of UFO-17 belonged to the orthorhombic space group Cmcm (no. 63), with a = 14.2660(15) A, b = 24.5130(10) A, c = 7.201(2) A, and Z = 4. The structure reveals parallel uranium-containing chains of two types: one type is composed of edge-sharing UO2F5 units; the other has a backbone of edge-sharing UF8 units, each sharing an edge with a pendant UO2F5 unit. Bond-valence calculations suggest the UF8 groups contain UIV, while the UO2F5 groups contain UVI. EXAFS data give results consistent with the single-crystal X-ray structure determination, while comparison of the uranium LIII-edge XANES of UFO-17 with that of related UIV and UVI compounds supports the oxidation-state assignment. Variable-temperature magnetic susceptibility measurements on UFO-17 and a range of related hybrid organic-inorganic uranium(IV) and uranium(VI) fluorides and oxyfluorides further support the formulation of UFO-17 as a mixed-valent UIV/UVI compound.
Production of extreme-purity aluminum and silicon by fractional crystallization processing
NASA Astrophysics Data System (ADS)
Dawless, R. K.; Troup, R. L.; Meier, D. L.; Rohatgi, A.
1988-06-01
Large scale fractional crystallization is used commercially at Alcoa to produce extreme purity aluminum (99.999+% Al). The primary market is sputtering targets used to make interconnects for integrated circuits. For some applications the impurities uranium and thorium are reduced to less than 1 ppbw to avoid "soft errors" associated with α particle emission. The crystallization process achieves segregation coefficients which are close to theoretical at normal yields, and this, coupled with the scale of the units, allows practical production of this material. The silicon purification process involves crystallization of Si from molten aluminum alloys containing about 30% silicon. The crystallites from this process are further treated to remove residual Al and an extreme purity ingot is obtained. This material is considered suitable for single crystal or ribbon type photovoltaic cells and for certain IC applications, including highly doped substrates used for epitaxial growth. In production of both extreme purity Al and Si, impurities are rejected to the remaining melt as the crystals form and some separation is achieved by draining this downgraded melt from the unit. Purification of this downgrade by crystallization has also been demonstrated for both systems and is important for achieving high recoveries.
Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach.
Lu, Bing-Qing; Li, Mi; Zhang, Xiao-Wen; Huang, Chun-Mei; Wu, Xiao-Yan; Fang, Qi
2018-02-05
Immobilization of uranium into magnetite (Fe 3 O 4 ), which was generated from metallic iron by electrochemical method, was proposed to rapidly remove uranium from aqueous solution. The effects of electrochemical parameters such as electrode materials, voltage, electrode gap, reaction time and pH value on the crystallization of Fe 3 O 4 and uranium removal efficiencies were investigated. More than 90% uranium in the solution was precipitated with Fe 3 O 4 under laboratory conditions when uranium concentration range from 0.5mg/L to 10mg/L. The Fe 3 O 4 crystallization mechanism and immobilization of uranium was proved by XPS, XRD, TEM, FTIR and VSM methods. The results indicated that the cationic (including Fe 2+ , Fe 3+ and U(VI)) migrate to cathode side under the electric field and the uranium was incorporated or adsorbed by Fe 3 O 4 which was generated at cathode while the pH ranges between 2-7. The uranium-containing precipitate of Fe 3 O 4 can exist stably at the acid concentration below 60g/L. Furthermore, the precipitate may be used as valuable resources for uranium or iron recycling, which resulted in no secondary pollution in the removal of uranium from aqueous solution. Copyright © 2017. Published by Elsevier B.V.
Incorporation of Uranium into Hematite during Crystallization from Ferrihydrite
2014-01-01
Ferrihydrite was exposed to U(VI)-containing cement leachate (pH 10.5) and aged to induce crystallization of hematite. A combination of chemical extractions, TEM, and XAS techniques provided the first evidence that adsorbed U(VI) (≈3000 ppm) was incorporated into hematite during ferrihydrite aggregation and the early stages of crystallization, with continued uptake occurring during hematite ripening. Analysis of EXAFS and XANES data indicated that the U(VI) was incorporated into a distorted, octahedrally coordinated site replacing Fe(III). Fitting of the EXAFS showed the uranyl bonds lengthened from 1.81 to 1.87 Å, in contrast to previous studies that have suggested that the uranyl bond is lost altogether upon incorporation into hematite. The results of this study both provide a new mechanistic understanding of uranium incorporation into hematite and define the nature of the bonding environment of uranium within the mineral structure. Immobilization of U(VI) by incorporation into hematite has clear and important implications for limiting uranium migration in natural and engineered environments. PMID:24580024
Uranium distribution in pseudowollastonite slag from a phosphorus furnace
Young, Edward; Altschuler, Zalman S.
1956-01-01
Silicate slag from the Victor Chemical Company phosphorus furnace at Tarpon Springs, Fla., has been found to consist essentially of pseudowollastonite, α-CaSiO3. The first-formed crystals are euhedral laths which form a mesh making up most of the slag. As the slag continues to solidify, its composition changes slightly and more equant, subhedral crystals of pseudowollastonite are deposited within the framework of the earlier material. Finally, anherdral masses of fibrous, poorly crystallized material are deposited in the remaining pore spaces which are not always completely filled. Spherules of iron phosphide, Fe2P, occur very sparsely in the slag as inclusions from the immiscible iron phosphide melt. Uranium content increases in the later crystal products of the slag, and by heavy-liquid fractionation it has been possible to segregate partially the phases and to obtain a fourfold concentration of uranium in 5 percent of the material and a twofold concentration in 30 percent of the material. Nuclear-emulsion studies indicate that the last phases of the silicate slag are actually eight times as radioactive as the early phases. In addition, the iron phosphide spherules are comparably enriches in uranium.
Actual and Idealized Crystal Field Parameterizations for the Uranium Ions in UF 4
NASA Astrophysics Data System (ADS)
Gajek, Z.; Mulak, J.; Krupa, J. C.
1993-12-01
The crystal field parameters for the actual coordination symmetries of the uranium ions in UF 4, C2 and C1, and for their idealizations to D2, C2 v , D4, D4 d , and the Archimedean antiprism point symmetries are given. They have been calculated by means of both the perturbative ab initio model and the angular overlap model and are referenced to the recent results fitted by Carnall's group. The equivalency of some different sets of parameters has been verified with the standardization procedure. The adequacy of several idealized approaches has been tested by comparison of the corresponding splitting patterns of the 3H 4 ground state. Our results support the parameterization given by Carnall. Furthermore, the parameterization of the crystal field potential and the splitting diagram for the symmetryless uranium ion U( C1) are given. Having at our disposal the crystal field splittings for the two kinds of uranium ions in UF 4, U( C2) and U( C1), we calculate the model plots of the paramagnetic susceptibility χ( T) and the magnetic entropy associated with the Schottky anomaly Δ S( T) for UF 4.
In-line assay monitor for uranium hexafluoride
Wallace, Steven A.
1981-01-01
An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.
[Biosorption of Radionuclide Uranium by Deinococcus radiodurans].
Yang, Jie; Dong, Fa-qin; Dai, Qun-wei; Liu, Ming-xue; Nie, Xiao-qin; Zhang, Dong; Ma, Jia-lin; Zhou, Xian
2015-04-01
As a biological adsorbent, Living Deinococcus radiodurans was used for removing radionuclide uranium in the aqueous solution. The effect factors on biosorption of radionuclide uranium were researched in the present paper, including solution pH values and initial uranium concentration. Meanwhile, the biosorption mechanism was researched by the method of FTIR and SEM/EDS. The results show that the optimum conditions for biosorption are as follows: pH = 5, co = 100 mg · L(-1) and the maximum biosorption capacity is up to 240 mgU · g(-1). According to the SEM results and EDXS analysis, it is indicated that the cell surface is attached by lots of sheet uranium crystals, and the main biosorpiton way of uranium is the ion exchange or surface complexation. Comparing FTIR spectra and FTIR fitting spectra before and after biosorption, we can find that the whole spectra has a certain change, particularly active groups (such as amide groups of the protein, hydroxy, carboxyl and phosphate group) are involved in the biosorption process. Then, there is a new peak at 906 cm(-1) and it is a stretching vibration peak of UO2(2+). Obviously, it is possible that as an anti radiation microorganism, Deinococcus radiodurans could be used for removing radionuclide uranium in radiation environment.
Hydrothermal Synthesis and Crystal Structures of Actinide Compounds
NASA Astrophysics Data System (ADS)
Runde, Wolfgang; Neu, Mary P.
Since the 1950s actinides have been used to benefit industry, science, health, and national security. The largest industrial application, electricity generation from uranium and thorium fuels, is growing worldwide. Thus, more actinides are being mined, produced, used and processed than ever before. The future of nuclear energy hinges on how these increasing amounts of actinides are contained in each stage of the fuel cycle, including disposition. In addition, uranium and plutonium were built up during the Cold War between the United States and the Former Soviet Union for defense purposes and nuclear energy. These stockpiles have been significantly reduced in the last decade.
Shen, Yanghao; Zheng, Xinyan; Wang, Xiaoyu; Wang, Tieshan
2018-05-01
Microorganisms play a significant role in uranium(VI) biogeochemistry and influence U(VI) transformation through biomineralization. In the present work, the process of uranium mineralization was investigated by Saccharomyces cerevisiae. The toxicity experiments showed that the viability of cell was not significantly affected by 100 mg L -1 U(VI) under 4 days of exposure time. The batch experiments showed that the phosphate concentration and pH value increased over time during U(VI) adsorption. Meanwhile, thermodynamic calculations demonstrated that the adsorption system was supersaturated with respect to UO 2 HPO 4 . The X-ray powder diffraction spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analyses indicated that the U(VI) was first attached onto the cell surface and reacted with hydroxyl, carboxyl, and phosphate groups through electrostatic interactions and complexation. As the immobilization of U(VI) transformed it from the ionic to the amorphous state, lamellar uranium precipitate was formed on the cell surface. With the prolongation of time, the amorphous uranium compound disappeared, and there were some crystalline substances observed extracellularly, which were well-characterized as tetragonal-chernikovite. Furthermore, the size of chernikovite was regulated at nano-level by cells, and the perfect crystal was formed finally. These findings provided an understanding of the non-reductive transformation process of U(VI) from the amorphous to crystalline state within microbe systems, which would be beneficial for the U(VI) treatment and reuse of nuclides and heavy metals.
Luminescence and Excitation Spectra of U 3+ doped RbY 2 Cl 7 Single Crystals
Karbowiak, M.; Murdoch, K.; Drożdżyński, J.; ...
1996-08-01
Uranium(3+) doped single crystals of RbY 2 Cl 7 with a uranium concentration of 0.05% and 0.2% were grown by the Bridgman-Stockbarger method using RbU 2 Cl 7 as the doping substance. Polished plates of ca. 5 mm in diameter were used for measurements of luminescence and excitation spectra. And since the U 3+ ions occupy two somewhat different site symmetries, a splitting of all observed f-f bands was observed. Furthermore, the analysis of the spectra enabled definitively an assignment of 22 crystal field bands for both site symmetries as well as the total crystal field splitting of the groundmore » level, equal to 473 cm -1 and 567 cm -1 for the first and second site symmetry, respectively.« less
Crystal grain growth at the α -uranium phase transformation in praseodymium
NASA Astrophysics Data System (ADS)
Cunningham, Nicholas C.; Velisavljevic, Nenad; Vohra, Yogesh K.
2005-01-01
Structural phase transformations under pressure are examined in praseodymium metal for the range 0-40GPa at ambient temperature. Pressure was generated with a diamond-anvil cell, and data were collected using high-resolution synchrotron x-ray diffraction and the image plate technique. The structural sequence double hexagonal close packed (dhcp)→face centered cubic (fcc)→distorted-fcc (d-fcc)→ α -uranium (α-U) is observed with increasing pressure. Rietveld refinement of all crystallographic phases provided confirmation of the hR24 structure for the d-fcc phase while the previously reported monoclinic phase between the d-fcc and the α-U phase was not confirmed. We observe dramatic crystal grain growth during the volume collapse concurrent with the symmetry-lowering transition to the α-U structure. No preferred orientation axis is observed, and the formation process for these large grains is expected to be via a nucleation and growth mechanism. An analogous effect in rare earth metal cerium suggests that the grain growth during transformation to the α-U structure is a common occurrence in f -electron metals at high pressures.
NASA Astrophysics Data System (ADS)
Lecomte, Andreï; Cathelineau, Michel; Deloule, Etienne; Brouand, Marc; Peiffert, Chantal; Loukola-Ruskeeniemi, Kirsti; Pohjolainen, Esa; Lahtinen, Hannu
2014-04-01
In the central part of the Fennoscandian Shield, the Talvivaara Ni-Zn-Cu-Co deposit, hosted by Palaeoproterozoic metamorphosed black schists, contains low uranium concentrations ranging from 10 to 30 ppm. The Talvivaara black schists were deposited 2.0-1.9 Ga ago and underwent subsequent metamorphism during the 1.9-1.79 Ga Svecofennian orogeny. Anhedral uraninite crystals rimmed by bitumen constitute the main host of uranium. U-Pb secondary ion mass spectrometry dating indicates that uraninite crystals were formed between 1,878 ± 17 and 1,871 ± 43 Ma, during peak metamorphism. Rare earth element patterns and high Th content (average 6.38 wt%) in disseminated uraninite crystals indicate that U was concentrated during high temperature metamorphism (>400 °C). The formation of bitumen rims around uraninite may be explained by two distinct scenarios: (a) a transport of U coincident with the migration of hydrocarbons or (b) post-metamorphic formation of bitumen rims, through radiolytic polymerization of gaseous hydrocarbons at the contact with uraninite.
Gui, Daxiang; Dai, Xing; Zheng, Tao; Wang, Xiangxiang; Silver, Mark A; Chen, Lanhua; Zhang, Chao; Diwu, Juan; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao
2018-02-05
The first heterobimetallic uranium(IV)/vanadium(III) phosphite compound, Na 2 UV 2 (HPO 3 ) 6 (denoted as UVP), was synthesized via an in situ redox-active hydrothermal reaction. It exhibits superior hydrolytic and antioxidant stability compared to the majority of structures containing low-valent uranium or vanadium, further elucidated by first-principles simulations, and therefore shows potential applications in nuclear waste management.
METHOD OF ELECTROPLATING ON URANIUM
Rebol, E.W.; Wehrmann, R.F.
1959-04-28
This patent relates to a preparation of metallic uranium surfaces for receiving coatings, particularly in order to secure adherent electroplated coatings upon uranium metal. In accordance with the invention the uranium surface is pretreated by degreasing in trichloroethylene, followed by immersion in 25 to 50% nitric acid for several minutes, and then rinsed with running water, prior to pickling in trichloroacetic acid. The last treatment is best accomplished by making the uranium the anode in an aqueous solution of 50 per cent by weight trichloroacetic acid until work-distorted crystals or oxide present on the metal surface have been removed and the basic crystalline structure of the base metal has been exposed. Following these initial steps the metallic uranium is rinsed in dilute nitric acid and then electroplated with nickel. Adnerent firmly-bonded coatings of nickel are obtained.
Wu, Amanda S.; Brown, Donald W.; Clausen, Bjørn; ...
2017-03-01
Uranium-niobium alloys can exist with significantly different microstructures and mechanical properties, heavily influenced by thermomechanical processing history and impurities. In this study, the influence of Ti and other impurities is studied on uranium-14 at.% niobium additively manufactured using laser powder bed fusion. In two different metallic impurity levels were investigated and a Nb equivalent (Nbeq) composition is defined to represent the impurities. Furthermore, in-situ neutron diffraction during compression loading shows that increased Nbeq promotes the formation of γ°-tetragonal phase at the expense of α''-monoclinic phase, resulting in 2 × higher yield strength than water quenched α'' and a strain inducedmore » transformation to α'' with superelastic strains to 4.5%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Amanda S.; Brown, Donald W.; Clausen, Bjørn
Uranium-niobium alloys can exist with significantly different microstructures and mechanical properties, heavily influenced by thermomechanical processing history and impurities. In this study, the influence of Ti and other impurities is studied on uranium-14 at.% niobium additively manufactured using laser powder bed fusion. In two different metallic impurity levels were investigated and a Nb equivalent (Nbeq) composition is defined to represent the impurities. Furthermore, in-situ neutron diffraction during compression loading shows that increased Nbeq promotes the formation of γ°-tetragonal phase at the expense of α''-monoclinic phase, resulting in 2 × higher yield strength than water quenched α'' and a strain inducedmore » transformation to α'' with superelastic strains to 4.5%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.
2013-12-01
The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.
Surface degradation of uranium tetrafluoride
Tobin, J. G.; Duffin, A. M.; Yu, S. -W.; ...
2017-05-01
A detailed analysis of a single crystal of uranium tetrafluoride has been carried out. The techniques include x-ray absorption spectroscopy, as well as x-ray photoelectron spectroscopy and x-ray emission spectroscopy. Evidence will be presented for the presence of a uranyl species, possibly UO 2F 2, as a product of, or participant in the surface degradation.
Absorption spectra analysis of hydrated uranium(III) complex chlorides
NASA Astrophysics Data System (ADS)
Karbowiak, M.; Gajek, Z.; Drożdżyński, J.
2000-11-01
Absorption spectra of powdered samples of hydrated uranium(III) complex chlorides of the formulas NH 4UCl 4 · 4H 2O and CsUCl 4 · 3H 2O have been recorded at 4.2 K in the 4000-26 000 cm -1 range. The analysis of the spectra enabled the determination of crystal-field parameters and assignment of 83 and 77 crystal-field levels for the tetrahydrate and trihydrate, respectively. The energies of the levels were computed by applying a simplified angular overlap model as well as a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions. Ab initio calculations have enabled the application of a simplified parameterization and the determination of the starting values of the AOM parameters. The received results have proved that the AOM approach can quite well predict both the structure of the ground multiplet and the positions of the crystal-field levels in the 17 000-25 000 cm -1 range, usually obscured by strong f-d bands.
Method for converting uranium oxides to uranium metal
Duerksen, Walter K.
1988-01-01
A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.
Horton, James A.; Hayden, Jr., Howard W.
1995-01-01
An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.
Horton, J.A.; Hayden, H.W. Jr.
1995-05-30
An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brackx, E., E-mail: Emmanuelle.brackx@cea.fr; Laval, J.P.; Dugne, O.
2015-01-15
In the context of research on U/minor actinides for nuclear fuel reprocessing in the transmutation process, developments are first studied with surrogates containing uranium and lanthanides to facilitate testing. The tests consist of precipitating and calcining a hydrazinium uranium/cerium oxalate. The structure of this oxalate had not been previously determined, but was necessary to validate the physicochemical mechanisms involved. The present study, firstly demonstrates the structural similarity of the U/Ce oxalate phase (N{sub 2}H{sub 5},H){sub 2.9}U{sub 1.1}Ce{sub 0.9}(C{sub 2}O{sub 4}){sub 5}·10H{sub 2}O, synthesized using a vortex precipitator for continuous synthesis of actinide oxalates, with previously known oxalates, crystallizing in P6{submore » 3}/mmc symmetry, obtained by more classical methods. This fast precipitation process induces massive nucleation of fine powders. Their structural and microstructural determination confirms that the raw and dried phases belong to the same structural family as (NH{sub 4}){sub 2}U{sub 2}(C{sub 2}O{sub 4}){sub 5}·0.7H{sub 2}O whose structure was described by Chapelet-Arab in P6{sub 3}/mmc symmetry, using single crystal data. However, they present an extended disorder inside the tunnels of the structure, even after drying at 100 °C, between water and hydrazinium ions. This disorder is directly related to the fast vortex method. This structure determination can be used as a basis for further semi-quantitative analysis on the U/minor actinides products formed under various experimental conditions. - Highlights: • Uranium cerium oxalate precipitate characterization by X-ray powder diffraction. • Morphology characterization by SEM analysis. • Structure determination by unit cell Rietveld refinement.« less
Crystal Growth and Characterization of THO2 and UxTh1-xO2
2013-03-01
bulk actinide crystals would open up new possibilities for the detection of weapons of mass destruction, the study of the effect of aging on...way of growing bulk actinide materials of optical quality. These refractory oxide single crystals offer potential applications in thorium nuclear...fuel technology, wide-band-gap uranium-based direct-conversion solid state neutron detectors, and understanding how actinide fuels age with time. ThO2
AOM reconciling of crystal field parameters for UCl 3, UBr 3, UI 3 series
NASA Astrophysics Data System (ADS)
Gajek, Z.; Mulak, J.
1990-07-01
Available inelastic neutron scattering interpretations of crystal field effect in the uranium trihalides have been verified in terms of Angular Overlap Model. For UCl 3 a good reconciling of both INS and optical interpretations of crystal field effect has been obtained. On the contrary, the parameterizations for UBr 3 and UI 3 were found to be highly artificial and suggestion is given to experimentalists to reinterpret their INS spectra.
On the nature of the phase transition in uranium dioxide
NASA Astrophysics Data System (ADS)
Gofryk, K.; Mast, D.; Antonio, D.; Shrestha, K.; Andersson, D.; Stanek, C.; Jaime, M.
Uranium dioxide (UO2) is by far the most studied actinide material as it is a primary fuel used in light water nuclear reactors. Its thermal and magnetic properties remain, however, a puzzle resulting from strong couplings between magnetism and lattice vibrations. UO2 crystalizes in the face-centered-cubic fluorite structure and is a Mott-Hubbard insulator with well-localized uranium 5 f-electrons. In addition, below 30 K, a long range antiferromagnetic ordering of the electric-quadrupole of the uranium moments is observed, forming complex non-collinear 3-k magnetic structure. This transition is accompanied by Jahn-Teller distortion of oxygen atoms. It is believed that the first order nature of the transition results from the competition between the exchange interaction and the Jahn-Teller distortion. Here we present results of our extensive thermodynamic investigations on well-characterized and oriented single crystals of UO2+x (x = 0, 0.033, 0.04, and 0.11). By focusing on the transition region under applied magnetic field we are able to study the interplay between different competing interactions (structural, magnetic, and electrical), its dynamics, and relationship to the oxygen content. We will discuss implications of these results. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.
Process for electrolytically preparing uranium metal
Haas, Paul A.
1989-01-01
A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.
Process for electrolytically preparing uranium metal
Haas, Paul A.
1989-08-01
A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.
Uranium: A Dentist's perspective
Toor, R. S. S.; Brar, G. S.
2012-01-01
Uranium is a naturally occurring radionuclide found in granite and other mineral deposits. In its natural state, it consists of three isotopes (U-234, U-235 and U-238). On an average, 1% – 2% of ingested uranium is absorbed in the gastrointestinal tract in adults. The absorbed uranium rapidly enters the bloodstream and forms a diffusible ionic uranyl hydrogen carbonate complex (UO2HCO3+) which is in equilibrium with a nondiffusible uranyl albumin complex. In the skeleton, the uranyl ion replaces calcium in the hydroxyapatite complex of the bone crystal. Although in North India, there is a risk of radiological toxicity from orally ingested natural uranium, the principal health effects are chemical toxicity. The skeleton and kidney are the primary sites of uranium accumulation. Acute high dose of uranyl nitrate delays tooth eruption, and mandibular growth and development, probably due to its effect on target cells. Based on all previous research and recommendations, the role of a dentist is to educate the masses about the adverse effects of uranium on the overall as well as the dental health. The authors recommended that apart from the discontinuation of the addition of uranium to porcelain, the Public community water supplies must also comply with the Environmental Protection Agency (EPA) standards of uranium levels being not more than 30 ppb (parts per billion). PMID:24478959
Process for electroslag refining of uranium and uranium alloys
Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.
1975-07-22
A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)
High pressure elasticity and thermal properties of depleted uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, M. K., E-mail: mjacobsen@lanl.gov; Velisavljevic, N., E-mail: nenad@lanl.gov
2016-04-28
Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties ofmore » depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.« less
NASA Astrophysics Data System (ADS)
Long, Zhong; Zeng, Rongguang; Hu, Yin; Liu, Jing; Wang, Wenyuan; Zhao, Yawen; Luo, Zhipeng; Bai, Bin; Wang, Xiaofang; Liu, Kezhao
2018-06-01
Oxide formation on surface of nitrogen-rich uranium nitride film/particles was investigated using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), aberration-corrected transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with electron energy-loss spectroscopy (EELS). XPS and AES studies indicated that the oxidized layer on UN2-x film is ternary compound uranium oxynitride (UNxOy) in 5-10 nm thickness. TEM/HAADF-STEM and EELS studies revealed the UNxOy crystallizes in the FCC CaF2-type structure with the lattice parameter close to the CaF2-type UN2-x matrix. The work can provide further information to the oxidation mechanism of uranium nitride.
High pressure elasticity and thermal properties of depleted uranium
Jacobsen, M. K.; Velisavljevic, N.
2016-04-28
Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. Lastly, this work presents the first high pressure studies of the elasticity and thermalmore » properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.« less
SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY
Clark, H.M.; Duffey, D.
1958-06-17
A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.
PREVENTION OF SCALE FORMATION IN URANIUM SOLVENT EXTRACTOR
Delaplaine, J.W.
1957-11-01
A method for preventing the formation of scale in uranium solvent extraction apparatus is presented. The scale, consisting chiefly of precipitated silica and the sulfates uf calcium and lead, may be prevented by a combination of measures, chiefly by prior heating and agitation to crystallize and remove silica, and by a maintenance of uranyl nitrate concentration in the feed and extractant above certain levels to increase the solubility of the calcium and lead sulfates.
NASA Astrophysics Data System (ADS)
Serezhkin, V. N.; Vologzhanina, A. V.; Pushkin, D. V.; Astashkina, D. A.; Savchenkov, A. V.; Serezhkina, L. B.
2017-09-01
The reaction of aqueous solutions of uranyl perchlorate with selected organic amides was studied in the dark and under the sunlight. The complexes [UVIO2(C3H7NO)5](ClO4)2 ( I) and [UIV(C3H8N2O)4(H2O)4](ClO4)4 ( II), where C3H7NO is N,N-dimethylformamide ( Dmfa) and C3H8N2O is N,N-dimethylcarbamide ( a-Dmur), were studied by X-ray diffraction. Complex II and the complex UIV( s-Dmur)4(H2O)4(ClO4)4 ( III), where s-Dmur is N,N'-dimethylcarbamide, were studied by IR spectroscopy. Crystals I and II are composed of mononuclear [UO2( Dmfa)5]2+ and [U( Dmur)4(H2O)4]4+ groups as uranium-containing structural units belonging to the crystal-chemical groups AM 7 1 ( A = UVI, M 1 = O2- and Dmfa) and AM 8 1 ( A = UIV, M 1 = Dmur and H2O) of uranium complexes, respectively. The mononuclear uranium- containing complexes in the crystals of U(IV) and U(VI) perchlorates were found to obey the 14 neighbors rule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorover, Jon; Mueller, Karl; O'Day, Peggy Anne
2016-06-30
Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from themore » same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General... uranium or thorium processing site or active processing site means: (1) Any uranium or thorium processing... an Agreement State, for the production at a site of any uranium or thorium derived from ore— (i) Was...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General... uranium or thorium processing site or active processing site means: (1) Any uranium or thorium processing... an Agreement State, for the production at a site of any uranium or thorium derived from ore— (i) Was...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General... uranium or thorium processing site or active processing site means: (1) Any uranium or thorium processing... an Agreement State, for the production at a site of any uranium or thorium derived from ore— (i) Was...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washiya, Tadahiro; Komaki, Jun; Funasaka, Hideyuki
Japan Atomic Energy Agency (JAEA) has been developing the new aqueous reprocessing system named 'NEXT' (New Extraction system for TRU recovery)1-2, which provides many advantages as waste volume reduction, cost savings by advanced components and simplification of process operation. Advanced head-end systems in the 'NEXT' process consist of fuel disassembly system, fuel shearing system and continuous dissolver system. We developed reliable fuel disassembly system with innovative procedure, and short-length shearing system and continuous dissolver system can be provided highly concentrated dissolution to adapt to the uranium crystallization process. We have carried out experimental studies, and fabrication of engineering-scale test devicesmore » to confirm the systems performance. In this paper, research and development of advanced head-end systems are described. (authors)« less
16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...
16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
NASA Astrophysics Data System (ADS)
Freyss, Michel
2010-01-01
Point defects and volatile impurities (helium, xenon, oxygen) in uranium monocarbide UC are studied by first-principles calculations. Preliminarily, bulk properties of UC and of two other uranium carbide phases, UC2 and U2C3 , are calculated in order to compare them to experimental data and to get confidence in the use of the generalized gradient approximation for this class of compounds. The subsequent study of different types of point defects shows that the carbon sublattice best accommodates the defects. The perturbation of the crystal structure induced by the defects is weak and the interaction between defects is found short range. Interstitial carbon dumbbells possibly play an important role in the diffusion of carbon atoms. The most favorable location of diluted helium, xenon, and oxygen impurities in the UC crystal lattice is then determined. The rare-gas atoms occupy preferably a uranium substitution site or a uranium site in a U-C bivacancy. But their incorporation in UC is, however, not energetically favorable, especially for xenon, suggesting their propensity to diffuse in the material and/or form bubbles. On the other hand, oxygen atoms are very favorably incorporated as diluted atoms in the UC lattice, confirming the easy oxidation of UC. The oxygen atoms preferably occupy a carbon substitution site or the carbon site of a U-C bivacancy. Our results are compared to available experimental data on UC and to similar studies by first-principles calculations for other carbides and nitrides with the rock-salt structure.
Predicting equilibrium uranium isotope fractionation in crystals and solution
NASA Astrophysics Data System (ADS)
Schauble, E. A.
2015-12-01
Despite the rapidly growing interest in using 238U/235U measurements as a proxy for changes in oxygen abundance in surface and near-surface environments, the present theoretical understanding of uranium isotope fractionation is limited to a few simple gas-phase molecules and analogues of dissolved species (e.g., 1,2,3). Understanding uranium isotope fractionation behavior in more complicated species, such as crystals and adsorption complexes, will help in the design and interpretation of experiments and field studies, and may suggest other uses for 38U/235U measurements. In this study, a recently developed first-principles method for estimating the nuclear volume component of field shift fractionation in crystals and complex molecular species (4) is combined with mass-dependent fractionation theory to predict equilibrium 38U/235U fractionations in aqueous and crystalline uranium compounds, including uraninite (UO2). The nuclear field shift effect, caused by the interaction of electrons with the finite volume of the positive charge distribution in uranium nuclei, is estimated using Density Functional Theory and the Projector Augmented Wave method (DFT-PAW). Tests against relativistic electronic structure calculations and Mössbauer isomer shift data indicate that the DFT-PAW method is reasonably accurate, while being much better suited to models of complex and crystalline species. Initial results confirm previous predictions that the nuclear volume effect overwhelms mass depdendent fractionation in U(VI)-U(IV) exchange reactions, leading to higher 238U/235U in U(IV) species (i.e., for UO2 xtal vs. UO22+aq, ln αNV ≈ +1.8‰ , ln αMD ≈ -0.8‰, ln αTotal ≈ +1.0‰ at 25ºC). UO2 and U(H2O)94+, are within ~0.4‰ of each other, while U(VI) species appear to be more variable. This suggests that speciation is likely to significantly affect natural uranium isotope fractionations, in addition to oxidation state. Tentatively, it appears that uranyl-type (UO22+-bearing) structures will tend to have higher 238U/235U than uranate-type structures that lack strong U=O bonds. References: 1. Bigeleisen (1996) JACS 118:3676; 2. Schauble (2006) Eos 87:V21B-0570; 3. Abe et al. (2008) J Chem Phys 128:144309, 129:164309, & Abe et al. (2010) J Chem Phys 133:044309; 4. Schauble (2013) PNAS 110:17714.
Bottom-up construction of a superstructure in a porous uranium-organic crystal
NASA Astrophysics Data System (ADS)
Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.; Gómez-Gualdrón, Diego A.; Howarth, Ashlee J.; Mehdi, B. Layla; Dohnalkova, Alice; Browning, Nigel D.; O'Keeffe, Michael; Farha, Omar K.
2017-05-01
Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation of colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.
PROCESS FOR THE RECOVERY OF URANIUM
Morris, G.O.
1955-06-21
This patent relates to a process for the recovery of uranium from impure uranium tetrafluoride. The process consists essentially of the steps of dissolving the impure uranium tetrafluoride in excess dilute sulfuric acid in the presence of excess hydrogen peroxide, precipitating ammonium uranate from the solution so formed by adding an excess of aqueous ammonia, dissolving the precipitate in sulfuric acid and adding hydrogen peroxide to precipitate uranium peroxdde.
In situ ligand synthesis with the UO{sub 2}{sup 2+} cation under hydrothermal conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frisch, Mark; Cahill, Christopher L.; Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC
A novel uranium (VI) coordination polymer, (UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(C{sub 5}H{sub 6}NO{sub 3}){sub 2} (1), has been prepared under the hydrothermal reaction of uranium nitrate hexahydrate and L-pyroglutamic acid. Compound 1 (monoclinic, C2/c, a=22.541(6) A, b=5.7428(15) A, c=15.815(4) A, {beta}=119.112(4){sup o}, Z=4, R{sub 1}=0.0237, wR{sub 2}=0.0367) consists of uranium pentagonal bipyramids linked via L-pyroglutamate and oxalate anions to form an overall two-dimensional (2D) structure. With the absence of oxalic acid within the starting materials, the oxalate anions are hypothesized to form in situ whereby decarboxylation of L-pyroglutamic acid occurs followed by coupling of CO{sub 2} to form the oxalatemore » linkages as observed in the crystal structure. Addition of copper (II) to this system appears to promote oxalate formation in that synthetic moolooite (Cu(C{sub 2}O{sub 4}).nH{sub 2}O; 0{<=}n{<=}1) and a known uranyl oxalate [(UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(OH){sub 2}(H{sub 2}O){sub 2}.H{sub 2}O], co-crystallize in significant quantity. Compound 1 exhibits the characteristic uranyl emission spectrum upon either direct uranyl excitation or ligand excitation, the latter of which shows an increase in relative intensity. This subsequent increase in the intensity indicates an energy transfer from the ligand to the uranyl cations thus illustrating an example of the antenna effect in the solid state. - Graphical abstract: A novel homometallic coordination polymer (UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(C{sub 5}H{sub 6}NO{sub 3}){sub 2}, in the uranium-L-pyroglutamic acid system has been synthesized under hydrothermal conditions. The title compound consists of uranium pentagonal bipyramids bridged through both L-pyroglutamate and oxalate linkages to produce a 3D crystal structure. The oxalate anions are theorized to result from decarboxylation of L-pyroglutamic acid followed by subsequent coupling of CO{sub 2}.« less
Tomczuk, Zygmunt; Miller, William E.; Wolson, Raymond D.; Gay, Eddie C.
1991-01-01
An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.
Control and distribution of uranium in coral reefs during diagenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gvirtzman, G.; Friedman, G.M.; Miller, D.S.
1973-12-01
The concentration of about 2 ppM of uranium in the aragonitic skeletons of modern scleractinian corals which we studied is a constant value, regardless of occurrence, anatomy, or taxonomy. The presence of cement of aragonite or high- magnesian calcite usually raises the concentration of bulk samples to about 3 ppM. Modern corals may contain up to 50% of cementing minerals. Organisms, such as corals and coralline algae, while secreting their skeleton, discriminate against the uptake of uranium, whereas the uptake of uranium by mineral cements is less restrained. Aragonite cement contains about 3.6 ppM and highmagnesian calcite cement 2.6 ppMmore » uranium. During leaching by freshwater, the aragonite of the skeletons of corals dissolves out. This creates hollow molds which fill with drusy low-magnesian calcite. In emergent reefs from the shores of the Red Sea which display the ellects of progressive diagenesis this calcite is enriched in uranium (3.9 ppM) beyond that found in marine cements. Second-generation calcite, which fills original voids in the corals from the emergent reefs, contains a lower level of uranium concent ration (1.3 ppM). The level of concentration of uranium in low-magnesian calcite of diagenetically altered corals is a function of the availability of uranium in meteoric waters. In aragonite as well as in high- and low-magnesian calcite uranium replaces calcium or occupies lattice vacancies in the crystal lattice. (auth)« less
URANIUM LEACHING AND RECOVERY PROCESS
McClaine, L.A.
1959-08-18
A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.
Yeager, J.H.
1958-08-12
In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.
PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE
Ellis, A.S.; Mooney, R.B.
1953-08-25
This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... DEPARTMENT OF ENERGY Reimbursement for Costs of Remedial Action at Active Uranium and Thorium...) acceptance of claims in FY 2011 from eligible active uranium and thorium processing site licensees for... incurred by licensees at active uranium and thorium processing sites to remediate byproduct material...
Mineral and energy resources of the BLM Roswell Resource Area, east-central New Mexico
Bartsch-Winkler, Susan B.
1992-01-01
The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and associated gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-valley-type (MVT) lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called "Pecos diamonds" and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, COa, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, dinosaur remains, and clays. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver- tellurium veins, and thorium-rare earth veins. Museum-quality quartz crystals in Lincoln County were formed in association with intrusive rocks in the Lincoln County porphyry belt. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and minor silver, uranium occurrences, as well as important industrial commodities, including caliche, limestone and dolomite, and aggregate (sand). Quaternary basalt contains sub-ore-grade uranium, scoria, and clay deposits.
Mineral and energy resources of the Roswell Resource Area, East-Central New Mexico
Bartsch-Winkler, Susan B.; Donatich, Alessandro J.
1995-01-01
The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari Basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-Valley-type lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called 'Pecos diamonds' and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, carbon dioxide, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, and clay. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum-group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver-tellurium veins, and thorium-rare-earth veins. Museum-quality quartz crystals are associated with Tertiary intrusive rocks. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and occurrences of silver and uranium. Important industrial commodities include caliche, limestone and dolomite, and aggregate. Quaternary basalt contains sub-ore-grade uranium, scoria, and clay deposits.
Radioactive deposits in California
Walker, George W.; Lovering, Tom G.
1954-01-01
Reconnaissance examination by Government geologists of many areas, mine properties, and prospects in California during the period between 1948 and 1953 has confirmed the presence of radioactive materials in place at more than 40 localities. Abnormal radioactivity at these localities is due to concentrations of primary and secondary uranium minerals, to radon gas, radium (?), and to thorium minerals. Of the known occurrences only three were thought to contain uranium oxide (uranitite or pitchblende), 4 contained uranium-bearing columbate, tantalate, or titanate minerals, 12 contained secondary uranium minerals, such as autunite, carnotite, and torbernite, one contained radon gas, 7 contained thorium minerals, and, at the remaining 16 localities, the source of the anomalous radiation was not positively determined. The occurrences in which uranium oxide has been tentatively identified include the Rathgeb mine (Calaveras County), the Yerih group of claims (San Bernardino County), and the Rainbow claim (Madera County). Occurrences of secondary uranium minerals are largely confined to the arid desert regions of south-eastern California including deposits in San Bernardino, Kern, Inyo, and Imperial Counties. Uranium-bearing columbate, tantalate, or titanate minerals have been reported from pegmatite and granitic rock in southeastern and eastern California. Thorium minerals have been found in vein deposits in eastern San Bernardino County and from pegmatites and granitic rocks in various parts of southeastern California; placer concentrations of thorium minerals are known from nearly all areas in the State that are underlain, in part, by plutonic crystalline rocks. The primary uranium minerals occur principally as minute accessory crystals in pegmatite or granitic rock, or with base-metal sulfide minerals in veins. Thorium minerals also occur as accessory crystals in pegmatite or granitic rock, in placer deposits derived from such rock, and, at Mountain Pass, in veins containing rare earths. Secondary uranium minerals have been found as fracture coatings and as disseminations in various types of wall rock, although they are largely confined to areas of Tertiary volcanic rocks. Probably the uranium in the uraniferous deposits in California is related genetically to felsic crystalline rocks and felsic volcanic rocks; the present distribution of the secondary uranium minerals has been controlled, in part, by circulating ground waters and probably, in part, by magmatic waters related to the Tertiary volcanic activity. The thorium minerals are genetically related to the intrusion of pegmatite and plutonic crystalline rocks. None of the known deposits of radioactive minerals in California contain marketable reserves of uranium or thorium ore under economic conditions existing in 1952. With a favorable local market small lots of uranium ore may be available in the following places: the Rosamund prospect, the Rafferty and Chilson properties, the Lucky Star claim, and the Yerih group. The commercial production of thorium minerals will be possible, in the near future, only if these minerals can be recovered cheaply as a byproduct either from the mining of rare earths minerals at Mountain Pass or as a byproduct of placer mining for gold.
Bottom-up construction of a superstructure in a porous uranium-organic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.
Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation ofmore » colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.« less
Uranium series, volcanic rocks
Vazquez, Jorge A.
2014-01-01
Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).
Magnetic susceptibility and spin-lattice interactions in U1-xPuxO2 single crystals
NASA Astrophysics Data System (ADS)
Kolberg, D.; Wastin, F.; Rebizant, J.; Boulet, P.; Lander, G. H.; Schoenes, J.
2002-12-01
Single crystals of mixed uranium-plutonium dioxides have been grown by means of a chemical vapor transport reaction and characterized by x-ray diffraction on bulk and powdered single crystals. Magnetization and susceptibility data were taken using a commercial superconducting quantum interference device. Characteristic ordering temperatures have been determined as well as paramagnetic Curie temperatures and effective magnetic moments. Departures of the reciprocal susceptibility as a function of temperature from linearity have been treated in detail based on a model of vibronic interactions introduced to explain the gross features of susceptibility measurements on thorium-diluted UO2 [Sasaki and Obata, J. Phys. Soc. Jpn. 28, 1157 (1970)]. The influence of spin-lattice interactions causes a certain shape of the observed 1/χ vs T curves from which we are able to suggest different mechanisms for the interactions as a function of the constituent’s concentrations. From our susceptibility measurements characteristic parameters have been calculated using a model of tetragonal vibrational modes of the oxygen cage surrounding each uranium ion. These include specific coupling parameters G, mode characteristic temperatures Tω, and molecular-field constants λ.
Reductive stripping process for the recovery of uranium from wet-process phosphoric acid
Hurst, Fred J.; Crouse, David J.
1984-01-01
A reductive stripping flow sheet for recovery of uranium from wet-process phosphoric acid is described. Uranium is stripped from a uranium-loaded organic phase by a redox reaction converting the uranyl to uranous ion. The uranous ion is reoxidized to the uranyl oxidation state to form an aqueous feed solution highly concentrated in uranium. Processing of this feed through a second solvent extraction cycle requires far less stripping reagent as compared to a flow sheet which does not include the reductive stripping reaction.
Release behavior of uranium in uranium mill tailings under environmental conditions.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan
2017-05-01
Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.
1982-06-29
The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.
Carter, J.M.; Larson, C.E.
1958-10-01
A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.
Separation of uranium from (Th,U)O.sub.2 solid solutions
Chiotti, Premo; Jha, Mahesh Chandra
1976-09-28
Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets.
Leggett, Christina J.; Parker, Bernard F.; Teat, Simon J.; ...
2016-01-14
A “bare” V 5+ complex with glutaroimide-dioxime (H 3L), a ligand for uranium recovery from seawater, was synthesized from aqueous solution as Na[V(L) 2]2H 2O and the structure determined by x-ray diffraction. It is the first non-oxo V(v) complex that has been directly synthesized in and crystallized from aqueous solution.
JPRS Report, Science & Technology Japan.
1989-07-11
Kimura , honorary professor, Tokyo University, as the leader) to design research for the recovery of rare metals and the annihilation of radioactivity...et al.; JOURNAL OF THE JAPANESE ASSOCIATION OF CRYSTAL GROWTH, 10 Jul 88] 39 Optical Absorption of Ti:Al203 Single Crystal [Shigeyuki Kimura ...IGENSH1RY0KU SANGYO SHIMBUN, 26 Jan 89] 132 Atomic Lasers for Uranium Enrichment Tested IGENSHIRYOKU SANGYO SHIMBUN, 2 Feb 89] 133 NUCLEAR ENGINEERING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Christina J.; Parker, Bernard F.; Teat, Simon J.
A “bare” V 5+ complex with glutaroimide-dioxime (H 3L), a ligand for uranium recovery from seawater, was synthesized from aqueous solution as Na[V(L) 2]2H 2O and the structure determined by x-ray diffraction. It is the first non-oxo V(v) complex that has been directly synthesized in and crystallized from aqueous solution.
Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes
Beltrami, Denis; Cote, Gérard; Mokhtari, Hamid; ...
2014-11-17
Between 1951 and 1991, we developed about 17 processes to recover uranium from wet phosphoric acid (WPA), but the viability of these processes was subject to the variation of the uranium price market. Nowadays, uranium from WPA appears to be attractive due to the increase of the global uranium demand resulting from the emergence of developing countries. Moreover, the increasing demand provides impetus for a new look at the applicable technology with a view to improvements as well as altogether new approaches. This paper gives an overview on extraction processes developed in the past to recover uranium from wet phosphoricmore » acid (WPA) as well as the physicochemistry involved in these processes. Recent advances concerning the development of new extraction systems are also reported and discussed.« less
NASA Astrophysics Data System (ADS)
Dubovsky, O. A.; Semenov, V. A.; Orlov, A. V.; Sudarev, V. V.
2014-09-01
The microdynamics of large-amplitude nonlinear vibrations of uranium nitride diatomic lattices has been investigated using the computer simulation and neutron scattering methods at temperatures T = 600-2500°C near the thresholds of the dissociation and destruction of the reactor fuel materials. It has been found using the computer simulation that, in the spectral gap between the frequency bands of acoustic and optical phonons in crystals with an open surface, there are resonances of new-type harmonic surface vibrations and a gap-filling band of their genetic successors, i.e., nonlinear surface vibrations. Experimental measurements of the slow neutron scattering spectra of uranium nitride on the DIN-2PI neutron spectrometer have revealed resonances and bands of these surface vibrations in the spectral gap, as well as higher optical vibration overtones. It has been shown that the solitons and bisolitons initiate the formation and collapse of dynamic pores with the generation of surface vibrations at the boundaries of the cavities, evaporation of atoms and atomic clusters, formation of cracks, and destruction of the material. It has been demonstrated that the mass transfer of nitrogen in cracks and along grain boundaries can occur through the revealed microdynamics mechanism of the surfing diffusion of light nitrogen atoms at large-amplitude soliton waves propagating in the stabilizing sublattice of heavy uranium atoms and in the nitrogen sublattice.
PROCESS OF PREPARING URANIUM CARBIDE
Miller, W.E.; Stethers, H.L.; Johnson, T.R.
1964-03-24
A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fincke, J.R.; Swank, W.D.; Haggard, D.C.
This paper describes the experimental demonstration of a process for the direct plasma reduction of depleted uranium hexafluoride to uranium metal. The process exploits the large departures from equilibrium that can be achieved in the rapid supersonic expansion of a totally dissociated and partially ionized mixture of UF{sub 6}, Ar, He, and H{sub 2}. The process is based on the rapid condensation of subcooled uranium vapor and the relatively slow rate of back reaction between metallic uranium and HF to F{sub 2} to reform stable fluorides. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogenmore » which persists throughout the expansion process. Atomic hydrogen shifts the equilibrium composition by inhibiting the reformation of uranium-fluorine compounds. This process has the potential to reduce the cost of reducing UF{sub 6} to uranium metal with the added benefit of being a virtually waste free process. The dry HF produced is a commodity which has industrial value.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Chongzheng
2016-10-17
Many consider further development of nuclear power to be essential for sustained development of society; however, the fuel forms currently used are expensive to recycle. In this project, we sought to create the knowledge and knowhow that are needed to produce nanocomposite materials by directly depositing uranium nanoclusters on networks of carbon- based nanomaterials. The objectives of the proposed work were to (1) determine the control of uranium nanocluster surface chemistry on nanocomposite formation, (2) determine the control of carbon nanomaterial surface chemistry on nanocomposite formation, and (3) develop protocols for synthesizing uranium-carbon nanomaterials. After examining a wide variety ofmore » synthetic methods, we show that synthesizing graphene-supported UO 2 nanocrystals in polar ethylene glycol compounds by polyol reduction under boiling reflux can enable the use of an inexpensive graphene precursor graphene oxide in the production of uranium-carbon nanocomposites in a one-pot process. We further show that triethylene glycol is the most suitable solvent for producing nanometer-sized UO 2 crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-supported UO 2 nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO 2 nanocrystals synthesized by polyol reduction can be readily stored in alcohols, preventing oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO nanocrystals for further investigation and development under ambient conditions.« less
Quadrupolar Kondo effect in uranium heavy-electron materials?
NASA Technical Reports Server (NTRS)
Cox, D. L.
1987-01-01
The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U) ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resistivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data in the heavy-electron superconductor UBe13 may be understood. Structural phase transitions at unprecedented low temperatures may occur in U-based heavy-electron materials.
Galvanic cell for processing of used nuclear fuel
Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.
2017-02-07
A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.
Electrochemical fluorination for processing of used nuclear fuel
Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.
2016-07-05
A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.
SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS
Grinstead, R.R.
1959-01-20
A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.
SOLVENT EXTRACTION PROCESS FOR URANIUM FROM CHLORIDE SOLUTIONS
Blake, C.A. Jr.; Brown, K.B.; Horner, D.E.
1960-05-24
An improvement was made in a uranium extraction process wherein the organic extractant is a phosphine oxide. An aqueous solution containing phosphate ions or sulfate ions together with uranium is provided with a source of chloride ions during the extraction step. The presence of the chloride ions enables a phosphine oxide to extract uranium in the presence of strong uranium- complexing ions such as phosphate or sulfate ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, H.W.; Andersen, R.A.; Zalkin, A.
1979-05-01
Reaction of sodium (hexamethyldisilyl)amide with thorium tetrachloride or uranium tetrachloride yields chlorotris-((hexamethyldisilyl)amido)thorium(IV) or -uranium(IV), respectively. The chloroamides of thorium or uranium react with dimethylmagnesium or methyllithium yielding the methyl derivatives MeTh(N(SiMe/sub 3/)/sub 2/)/sub 3/ or MeU(N(SiMe/sub 3/)/sub 2/)/sub 3/, respectively. The chloro compounds yield BH/sub 4/M(N(SiMe/sub 3/)/sub 2/)/sub 3/ upon reaction with lithium tetrahydroborate, where M is thorium or uranium. Infrared spectra of the tetrahydroborate derivatives suggest that BH/sub 4/ is bonded in a tridentate fashion in both compounds, the metal atoms being six-coordinate. Single-crystal X-ray analysis of the thorium borohydride confirms the infrared result. The white BH/sub 4/Th(N(Si(CH/sub 3/))/submore » 2/)/sub 3/ crystals are rhombohedral with cell dimensions a/sub r/ = 11.137 A and ..cap alpha../sub r/ = 113.61/sup 0/; the triply primitive hexagonal cell has a/sub h/ = 18.640 (3) A c/sub h/ = 8.604 (1) A, V = 2489 A/sup 3/, Z = 3, and D/sub x/ = 1.40 g/cm/sup 3/, space group R3m. The structure was refined by full-matrix least squares to a conventional R factor of 0.031 for 1014 data. The Th atom is on a threefold axis 2.32 A from three nitrogen atoms and 2.61 A from the boron atom, a distance which represents a triple bridge bond between Th and B. The three (dimethylsilyl)amide ligands are disordered by a mirror plane parallel to the threefold axis. CH/sub 3/Th(N(Si(CH/sub 3/)/sub 3/)/sub 2/)/sub 3/ is isomorphous with BH/sub 4/Th(N(Si(CH/sub 3/)/sub 3/)/sub 2/)/sub 3/ with cell dimensions a/sub h/ = 18.68 (1) A and c/sub h/ = 8.537 (6) A. The diffraction data yielded integral'' = 12.16 +- 0.33 e for the imaginary scattering term for Th with Cu K..cap alpha.. radiation.« less
Simulated fissioning of uranium and testing of the fission-track dating method
McGee, V.E.; Johnson, N.M.; Naeser, C.W.
1985-01-01
A computer program (FTD-SIM) faithfully simulates the fissioning of 238U with time and 235U with neutron dose. The simulation is based on first principles of physics where the fissioning of 238U with the flux of time is described by Ns = ??f 238Ut and the fissioning of 235U with the fluence of neutrons is described by Ni = ??235U??. The Poisson law is used to set the stochastic variation of fissioning within the uranium population. The life history of a given crystal can thus be traced under an infinite variety of age and irradiation conditions. A single dating attempt or up to 500 dating attempts on a given crystal population can be simulated by specifying the age of the crystal population, the size and variation in the areas to be counted, the amount and distribution of uranium, the neutron dose to be used and its variation, and the desired ratio of 238U to 235U. A variety of probability distributions can be applied to uranium and counting-area. The Price and Walker age equation is used to estimate age. The output of FTD-SIM includes the tabulated results of each individual dating attempt (sample) on demand and/or the summary statistics and histograms for multiple dating attempts (samples) including the sampling age. An analysis of the results from FTD-SIM shows that: (1) The external detector method is intrinsically more precise than the population method. (2) For the external detector method a correlation between spontaneous track count, Ns, and induced track count, Ni, results when the population of grains has a stochastic uranium content and/or when the counting areas between grains are stochastic. For the population method no correlation can exist. (3) In the external detector method the sampling distribution of age is independent of the number of grains counted. In the population method the sampling distribution of age is highly dependent on the number of grains counted. (4) Grains with zero-track counts, either in Ns or Ni, are in integral part of fissioning theory and under certain circumstances must be included in any estimate of age. (5) In estimating standard error of age the standard error of Ns and Ni and ?? must be accurately estimated and propagated through the age equation. Several statistical models are presently available to do so. ?? 1985.
Investigation of molybdate melts as an alternative method of reprocessing used nuclear fuel
Hames, Amber L.; Tkac, Peter; Paulenova, Alena; ...
2017-01-17
Here, an investigation of molybdate melts containing sodium molybdate (Na 2MoO 4) and molybdenum trioxide (MoO 3) to achieve the separation of uranium from fission products by crystallization has been performed. The separation is based on the difference in solubility of the fission product metal oxides compared to the uranium oxide or molybdate in the molybdate melt. The molybdate melt dissolves uranium dioxide at high temperatures, and upon cooling, uranium precipitates as uranium dioxide or molybdate, whereas the fission product metals remain soluble in the melt. Small-scale experiments using gram quantities of uranium dioxide have been performed to investigate themore » feasibility of UO 2 purification from the fission products. The composition of the uranium precipitate as well as data for partitioning of several fission product surrogates between the uranium precipitate and molybdate melt for various melt compositions are presented and discussed. The fission products Cs, Sr, Ru and Rh all displayed very large distribution ratios. The fission products Zr, Pd, and the lanthanides also displayed good distribution ratios (D > 10). A melt consisting of 20 wt% MoO 3-50 wt% Na 2MoO 4-30 wt% UO 2 heated to 1313 K and cooled to 1123 K for the physical separation of the UO 2 product from the melt, and washed once with Na 2MoO 4 displays optimum conditions for separation of the UO 2 from the fission products.« less
Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.
Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon
2011-07-01
The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.
Phase transformations and equation of state of praseodymium metal to 103 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesnut, Gary N.; Vohra, Yogesh K.
2000-08-01
Pressure-induced structural phase transformations in a trivalent rare-earth metal praseodymium (Pr) were studied at room temperature in a diamond anvil cell to 103 GPa by energy dispersive x-ray diffraction using a synchrotron source. Our x-ray diffraction studies document the following crystal structure sequence: dhcp{yields}fcc{yields}distorted fcc(hR24 type){yields}monoclinic(C2/m){yields}{alpha}-uranium with increasing pressure. We measure a 16.7% volume collapse at the transition to the {alpha}-uranium phase at 20 GPa. The high-pressure {alpha}-uranium phase in Pr was found to be stable to the highest pressure of 103 GPa, which corresponds to a volume compression V/V{sub 0}=0.407. (c) 2000 The American Physical Society.
An anisotropic elastoplasticity model implemented in FLAG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Miles Allen; Canfield, Thomas R.
2017-10-12
Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the materialmore » will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.« less
Aftermath of Uranium Ore Processing on Floodplains: Lasting Effects of Uranium on Soil and Microbes
NASA Astrophysics Data System (ADS)
Tang, H.; Boye, K.; Bargar, J.; Fendorf, S. E.
2016-12-01
A former uranium ore processing site located between the Wind River and the Little Wind River near the city of Riverton, Wyoming, has generated a uranium plume in the groundwater within the floodplain. Uranium is toxic and poses a threat to human health. Thus, controlling and containing the spread of uranium will benefit the human population. The primary source of uranium was removed from the processing site, but a uranium plume still exists in the groundwater. Uranium in its reduced form is relatively insoluble in water and therefore is retained in organic rich, anoxic layers in the subsurface. However, with the aid of microbes uranium becomes soluble in water which could expose people and the environment to this toxin, if it enters the groundwater and ultimately the river. In order to better understand the mechanisms controlling uranium behavior in the floodplains, we examined sediments from three sediment cores (soil surface to aquifer). We determined the soil elemental concentrations and measured microbial activity through the use of several instruments (e.g. Elemental Analyzer, X-ray Fluorescence, MicroResp System). Through the data collected, we aim to obtain a better understanding of how the interaction of geochemical factors and microbial metabolism affect uranium mobility. This knowledge will inform models used to predict uranium behavior in response to land use or climate change in floodplain environments.
10 CFR 765.11 - Reimbursable costs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium processing site licensees shall not exceed $6.25, as adjusted for inflation, multiplied by the... remedial action incurred at all active uranium processing sites shall not exceed $350 million. This...
10 CFR 765.11 - Reimbursable costs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium processing site licensees shall not exceed $6.25, as adjusted for inflation, multiplied by the... remedial action incurred at all active uranium processing sites shall not exceed $350 million. This...
10 CFR 765.11 - Reimbursable costs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium processing site licensees shall not exceed $6.25, as adjusted for inflation, multiplied by the... remedial action incurred at all active uranium processing sites shall not exceed $350 million. This...
10 CFR 765.11 - Reimbursable costs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium processing site licensees shall not exceed $6.25, as adjusted for inflation, multiplied by the... remedial action incurred at all active uranium processing sites shall not exceed $350 million. This...
10 CFR 765.11 - Reimbursable costs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium processing site licensees shall not exceed $6.25, as adjusted for inflation, multiplied by the... remedial action incurred at all active uranium processing sites shall not exceed $350 million. This...
Method of preparing uranium nitride or uranium carbonitride bodies
Wilhelm, Harley A.; McClusky, James K.
1976-04-27
Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U.sub.3 O.sub.8 and carbon by varying the weight ratio of carbon to U.sub.3 O.sub.8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhicheng; Rao, Linfeng; Abney, Carter W.
Adsorbents developed for the recovery of uranium from seawater display poor selectivity over other transition metals present in the ocean, with vanadium particularly problematic. To improve selectivity, an indispensable step is the positive identification of metal binding environments following actual seawater deployment. In this work we apply x-ray absorption fine structure (XAFS) spectroscopy to directly investigate the vanadium binding environment on seawater-deployed polyamidoxime adsorbents. Comparison of the x-ray absorption near edge spectra (XANES) reveal marked similarities to recently a reported non-oxido vanadium (V) structure formed upon binding with cyclic imidedioxime, a byproduct of generating amidoxime functionalities. Density functional theory (DFT)more » calculations provided a series of putative vanadium binding environments for both vanadium (IV) and vanadium (V) oxidation states, and with both amidoxime and cyclic imidedioxime. Fits of the extended XAFS (EXAFS) data confirmed vanadium (V) is bound exclusively by the cyclic imidedioxime moiety in a 1:2 metal:ligand fashion, though a modest structural distortion is also observed compared to crystal structure data and computationally optimized geometries which is attributed to morphology effects from the polymer graft chain and the absence of crystal packing interactions. These results demonstrate that improved selectivity for uranium over vanadium can be achieved by suppressing the formation of cyclic imidedioxime during preparation of polyamidoxime adsorbents for seawater uranium recovery.« less
Fission track dating of kimberlitic zircons
NASA Astrophysics Data System (ADS)
Haggerty, Stephen E.; Raber, Ellen; Naeser, Charles W.
1983-04-01
The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ± 6.5 m.y.), Orapa (87.4 ± 5.7 and 92.4 ± 6.1 m.y.), Nzega (51.1 ± 3.8 m.y.), Koffiefontein (90.0 ± 8.2 m.y.), and Val do Queve (133.4 ± 11.5 m.y.). In addition we report the first radiometric ages (707.9 ± 59.6 and 705.5 ± 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption.
Fission track dating of kimberlitic zircons
Haggerty, S.E.; Raber, E.; Naeser, C.W.
1983-01-01
The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ?? 6.5 m.y.), Orapa (87.4 ?? 5.7 and 92.4 ?? 6.1 m.y.), Nzega (51.1 ?? 3.8 m.y.), Koffiefontein (90.0 ?? 8.2 m.y.), and Val do Queve (133.4 ?? 11.5 m.y.). In addition we report the first radiometric ages (707.9 ?? 59.6 and 705.5 ?? 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. ?? 1983.
NASA Astrophysics Data System (ADS)
Plionis, A. A.; Peterson, D. S.; Tandon, L.; LaMont, S. P.
2010-03-01
Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid non-distructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.
PROCESS FOR UTILIZING ORGANIC ORTHOPHOSPHATE EXTRACTANTS
Grinstead, R.R.
1958-11-11
A process is presented for recovering uranium from its ores, the steps comprising producing the uranium in solution in the trivalent state, extracting the uranium from solution in an lmmiscible organic solvent extract phase which lncludes mono and dialkyl orthophosphorlc acid esters having a varying number of carbon atoms on the alkyl substituent, amd recovering the uranium from tbe extract phase.
Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines.
Mkandawire, Martin
2013-11-01
The discharges of uranium and associated radionuclides as well as heavy metals and metalloids from waste and tailing dumps in abandoned uranium mining and processing sites pose contamination risks to surface and groundwater. Although many more are being planned for nuclear energy purposes, most of the abandoned uranium mines are a legacy of uranium production that fuelled arms race during the cold war of the last century. Since the end of cold war, there have been efforts to rehabilitate the mining sites, initially, using classical remediation techniques based on high chemical and civil engineering. Recently, bioremediation technology has been sought as alternatives to the classical approach due to reasons, which include: (a) high demand of sites requiring remediation; (b) the economic implication of running and maintaining the facilities due to high energy and work force demand; and (c) the pattern and characteristics of contaminant discharges in most of the former uranium mining and processing sites prevents the use of classical methods. This review discusses risks of uranium contamination from abandoned uranium mines from the biogeochemical point of view and the potential and limitation of uranium bioremediation technique as alternative to classical approach in abandoned uranium mining and processing sites.
10 CFR 765.2 - Scope and applicability.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...
10 CFR 765.2 - Scope and applicability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...
10 CFR 765.2 - Scope and applicability.
Code of Federal Regulations, 2013 CFR
2013-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...
10 CFR 765.2 - Scope and applicability.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...
10 CFR 765.2 - Scope and applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...
PROCESS FOR PRODUCTION OF URANIUM HEXAFLUORIDE
Fowler, R.D.
1958-11-01
A process is described for the manufacture of uranium bexafluoride which consists in contacting an oxide of uranium simultaneously with elemental carbon and elemental fluorine at an elevated temperature, using a proportion of the carbon to the oxide about 50% in excess of that theoretically required to combine with f the oxygen as C0/.sub 2/. The process has the advantage that the uranium oxide is reduced by tbe carbon aad converted to the hexafluoride in a single operation.
Pyroprocessing of Fast Flux Test Facility Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.R. Westphal; G.L. Fredrickson; G.G. Galbreth
Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.« less
Pyroprocessing of fast flux test facility nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.
Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)« less
Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.
1957-12-01
A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.
Surface horizontal logging for uranium and its decay products at a Superfund site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadeken, L.L.; Madigan, W.P.
1995-12-31
The United States Department of Energy (DOE) is now responsible for the environmental restoration and management of a number of sites where nuclear activities occurred during the Cold War. The DOE sponsored an Expedited Site Characterization performed by Ames Laboratory at the St. Louis (Missouri) Airport Site (SLAPS) during August--September, 1994. Uranium processing occurred at SLAPS during the Cold War and there is now significant residual radioactive contamination. Surveys associated the highest radioactivity levels at SLAPS with the ``barium cake`` (AJ-4) waste areas. This paper reports on continuous gamma ray spectroscopy measurements to identify the emitting, isotopes and to quantifymore » the amount of radioactivity present for each. An oilfield wireline gamma ray spectrometry sonde (the Compensated Spectral Natural Gamma instrument) was adapted to perform horizontal measurements with the detector section 3 ft above the soil surface. The CSNG detector is a 2-in.-diameter by 12-in.-long sodium iodide crystal. The spectrometry data are processed by a weighted-least-squares algorithm that incorporates whole spectrum responses for the radioisotopes of interest. The radioactivities are reported in pCi/g units for each isotope, and a depth-of-emission estimate is found by Compton-downscattering spectral shape analysis.« less
FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE
Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.
1962-06-26
A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... DEPARTMENT OF ENERGY Update on Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of Energy. ACTION: Notice of the Title X claims during fiscal... at active uranium and thorium processing sites to remediate byproduct material generated as an...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... State-licensed uranium recovery site, either conventional, heap leach, or in situ recovery. DATES... types of new uranium recovery facilities (conventional mills, heap leach facilities, and in situ... from the ground for processing at a mill. Rather, the ore is processed in-situ with the resulting...
NASA Astrophysics Data System (ADS)
McLean, W.; Colmenares, C. A.; Smith, R. L.; Somorjai, G. A.
1982-01-01
The adsorption of O2, CO, and CO2 on the thorium (111) crystal face and on polycrystalline α-uranium has been investigated by x-ray photoelectron spectroscopy, Auger electron spectroscopy (AES), and secondary-ion mass spectroscopy (SIMS) at 300 K. Oxygen adsorption on both metals resulted in the formation of the metal dioxide. CO and CO2 adsorption on Th(111) produced species derived from atomic carbon and oxygen; the presence of molecular CO was also detected. Only atomic carbon and oxygen were observed on uranium. Elemental depth profiles by AES and SIMS indicated that the carbon produced by the dissociation of CO or CO2 diffused into the bulk of the metals to form a carbide, while the oxygen remained on their surfaces as an oxide.
Crystallographic and magnetic structure of UCu{sub 1.5}Sn{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwanto, A.; Robinson, R.A.; Nakotte, H.
1996-04-01
We report on the crystallographic and magnetic structures of the antiferromagnet UCu{sub 1.5}Sn{sub 2}, as determined by x-ray and neutron powder diffraction. It crystallizes in the tetragonal CaBe{sub 2}Ge{sub 2} structure type, with space group P/4nmm, and we find no site disorder between two different Sn2{ital c} sites, in contrast with a previous report. UCu{sub 1.5}Sn{sub 2} orders antiferromagnetically with a N{acute e}el temperature of about 110 K. This is unusually high among uranium intermetallics. The uranium moments align along the {ital c} axis in a collinear arrangement but alternating along the {ital c} axis. The low-temperature uranium moment ismore » 2.01{mu}{sub {ital B}}. {copyright} {ital 1996 American Institute of Physics.}« less
40 CFR 471.70 - Applicability; description of the uranium forming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... uranium forming subcategory. 471.70 Section 471.70 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Uranium Forming Subcategory § 471.70 Applicability; description of the uranium forming... introductions of pollutants into publicly owned treatment works from the process operations of the uranium...
40 CFR 471.70 - Applicability; description of the uranium forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... uranium forming subcategory. 471.70 Section 471.70 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Uranium Forming Subcategory § 471.70 Applicability; description of the uranium forming... introductions of pollutants into publicly owned treatment works from the process operations of the uranium...
Thorium and uranium variations in Apollo 17 basalts, and K-U systematics
NASA Technical Reports Server (NTRS)
Laul, J. C.; Fruchter, J. S.
1976-01-01
It is found that Apollo 11 low-K and in particular Apollo 17 mare basalts show a wide range of Th/U ratios unlike other rocks; such variations cannot be explained by near surface crystal fractionation. A two-stage fractional crystallization-partial melting model involving a clinopyroxene cumulate as the major phase can explain the variations in Th/U ratios. Due to the Sm-Nd systematics constraint, several source cumulates are invoked to explain the observed Th/U continuum.
Growth of High Purity Oxygen-Free Silicon by Cold Crucible Techniques.
1982-06-01
Liquid Metals (A Review). High Temp.-High Pressures 2(6), 583-586, 1970. 1971 Knights, C.F. and Perkins, R. Levitation Melting of Uranium Mono- Carbide . J...content - typically I PPM or less. c) The crystals grown exhibited a high level of carbon contamination (2-30 PPM ) which we believe, is caused by the...grown from melts confined in the cold crucible exhibit an unusually low oxygen content - typically 1 PPM or less. c.) The crystals grown exhibited a
PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS
Moore, R.H.
1962-10-01
A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)
RECOVERY OF URANIUM FROM PITCHBLENDE
Ruehle, A.E.
1958-06-24
The decontamination of uranium from molybdenum is described. When acid solutions containing uranyl nitrate are contacted with ether for the purpose of extracting the uranium values, complex molybdenum compounds are coextracted with the uranium and also again back-extracted from the ether with the uranium. This invention provides a process for extracting uranium in which coextraction of molybdenum is avoided. It has been found that polyhydric alcohols form complexes with molybdenum which are preferentially water-soluble are taken up by the ether extractant to only a very minor degree. The preferred embodiment of the process uses mannitol, sorbitol or a mixture of the two as the complexing agent.
A thermal desorption spectroscopy study of hydrogen trapping in polycrystalline α-uranium
Lillard, R. S.; Forsyth, R. T.
2015-03-14
The kinetics of hydrogen desorption from polycrystalline α-uranium (α-U) was examined using thermal desorption spectroscopy (TDS). The goal was to identify the major trap sites for hydrogen and their associated trap energies. In polycrystalline α-U six TDS adsorption peaks were observed at temperatures of 521 K, 556 K, 607 K, 681 K, 793 K and 905 K. In addition, the desorption was determined to be second order based on peak shape. The position of the first three peaks was consistent with desorption from UH3. To identify the trap site corresponding to the high temperature peaks the data were compared tomore » a plastically deformed sample and a high purity single crystal sample. The plastically deformed sample allowed the identification of trapping at dislocations while the single crystal sample allow for the identification of high angle boundaries and impurities. Thus, with respect to the desorption energy associated with each peak, values between 12.9 and 26.5 kJ/mole were measured.« less
NASA Astrophysics Data System (ADS)
Peiffert, Chantal; Cuney, Michel; Nguyen-Trung, Chinh
1994-06-01
The solubility of uranium was investigated in both carbonated aqueous fluid and granitic melt in equilibrium in the system haplogranite-uranium oxide-H 2O-Na 2CO 3 (0.5-1 molal) at 720-770°C, 2 kbar, andƒo 2 fixed by Ni-NiO, Fe 3O 4-Fe 2O 3, and Cu 2O-CuO buffers. As complete solid solution exists between UO 2.00 and UO 2.25 (i.e., 75 mol% UO 2 + 25 mol% UO 3), three distinct uranium oxides: UO (2.01 ± 0.01), UO (2.1.0 ± 0.02), and UO (2.25 ± 0.02) were, respectively, obtained at equilibrium, under the three ƒo 2 conditions cited above. Thus, the percentage of U (VI) in uranium oxide increased with increasing log ƒo 2. The thermal decomposition of Na 2CO 3 to CO 2 and Na 2O led to the decrease of the sodium carbonate concentration from 0.5-1 molal to ~10 -2 molal in all aqueous fluids and to the dissolution of Na in the silicate melts. Crystal-free silicate glasses with four agpaitic coefficients, α = ( (Na+K)/Al) = 1.1, 1.3, 1.5, and 1.7 were obtained. The uranium solubility in 10 -2 m aqueous carbonated fluid ((8.1 ± 0.1) ≤ quench pH ≤ (8.9 ± 0.1)) was in the range 1-17 ppm and increased linearly with increasing ƒo 2 according to the expression: log (U) (ppm) = 0.09 ·log ƒo 2 (bar) + 1.47 . This equation is valid for the temperature range 720-770°C and 2 kbar. U(IV) carbonate possibly were major species in aqueous solutions under reducing conditions (Ni-NiO buffer) whereas U(VI) carbonate complexes dominated under higher oxidation conditions (Fe 3O 4-Fe 2O 3, Cu 2O-CuO buffers). The uranium content in silicate glasses varied in a large range (10 2-2 × 10 5 ppm) and log (U) (ppm) increases linearly with both ƒo 2, and α in the range 1.1-1.5 according to the equation log (U) (ppm) = 0.04 log ƒo 2 (bar) + 3.80α -1.34 . This equation is valid for (1)ƒ o 2 ranging from Ni-NiO to Cu 2O-CuO, and (2) the temperature range 720-770°C at 2 kbar. The effect of ƒo 2 on the uranium solubility in silicate melt slightly decreased with increasing α from 1.1 to 1.5. For α in the range 1.5-1.7, the effect of both ƒo 2 and agpaicity index on the uranium solubility was considerably reduced. The temperature variation in the range 720-770°C had no significant effect on the uranium solubility in either aqueous fluid or silicate melt. The partition coefficient (D fluid/melt) of uranium was in the range 10 -4.0-10 -1.5 and depended on both ƒo 2 and α according to the equation log D fluid/melt = 0.05 log ƒo 2 (bar) - 3.78α + 2.84 . The validity conditions of this equation are similar to those of the preceding one. Results obtained in the present study could be used to predict the geochemical behaviour of uranium during magma fractionation and to further understanding of the formation of uranium ore deposits related to partial melting or fractional crystallization of felsic magmas. The genesis of the Kvanefjeld (Ilimaussaq, Greenland) uranium deposit is discussed.
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
Development of practical decontamination process for the removal of uranium from gravel.
Kim, Ilgook; Kim, Gye-Nam; Kim, Seung-Soo; Choi, Jong-Won
2018-01-01
In this study, a practical decontamination process was developed to remove uranium from gravel using a soil washing method. The effects of critical parameters including particle size, H 2 SO 4 concentration, temperature, and reaction time on uranium removal were evaluated. The optimal condition for two-stage washing of gravel was found to be particle size of 1-2 mm, 1.0 M H 2 SO 4 , temperature of 60°C, and reaction time of 3 h, which satisfied the required uranium concentration for self-disposal. Furthermore, most of the extracted uranium was removed from the waste solution by precipitation, implying that the treated solution can be reused as washing solution. These results clearly demonstrated that our proposed process can be indeed a practical technique to decontaminate uranium-polluted gravel.
PROCESSES OF RECOVERING URANIUM FROM A CALUTRON
Baird, D.O.; Zumwalt, L.R.
1958-07-15
An improved process is described for recovering the residue of a uranium compound which has been subjected to treatment in a calutron, from the parts of the calutron disposed in the source region upon which the residue is deposited. The process may be utilized when the uranium compound adheres to a surface containing metals of the group consisting of copper, iron, chromium, and nickel. The steps comprise washing the surface with an aqueous acidic oxidizing solvent for the uranium whereby there is obtained an acidic aqueous Solution containing uranium as uranyl ions and metals of said group as impurities, treating the acidic solution with sodium acetate in the presenee of added sodium nitrate to precipitate the uranium as sodium uranyl acetate away from the impurities in the solution, and separating the sodium uranyl acetate from the solution.
PROCESS FOR REMOVING NOBLE METALS FROM URANIUM
Knighton, J.B.
1961-01-31
A pyrometallurgical method is given for purifying uranium containing ruthenium and palladium. The uranium is disintegrated and oxidized by exposure to air and then the ruthenium and palladium are extracted from the uranium with molten zinc.
PREPARATION OF URANIUM-ALUMINUM ALLOYS
Moore, R.H.
1962-09-01
A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)
PROCESS FOR PREPARING URANIUM METAL
Prescott, C.H. Jr.; Reynolds, F.L.
1959-01-13
A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.
Electrolytic process for preparing uranium metal
Haas, Paul A.
1990-01-01
An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.
Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes
NASA Astrophysics Data System (ADS)
Johnson, R. H.; Morrison, S.; Morris, S.; Tigar, A.; Dam, W. L.; Dayvault, J.
2015-12-01
At many U.S. Department of Energy Office of Legacy Management sites, 100 year natural flushing was selected as a remedial option for groundwater uranium plumes. However, current data indicate that natural flushing is not occurring as quickly as expected and solid-phase and aqueous uranium concentrations are persistent. At the Grand Junction, Colorado office site, column testing was completed on core collected below an area where uranium mill tailings have been removed. The total uranium concentration in this core was 13.2 mg/kg and the column was flushed with laboratory-created water with no uranium and chemistry similar to the nearby Gunnison River. The core was flushed for a total of 91 pore volumes producing a maximum effluent uranium concentration of 6,110 μg/L at 2.1 pore volumes and a minimum uranium concentration of 36.2 μg/L at the final pore volume. These results indicate complex geochemical reactions at small pore volumes and a long tailing affect at greater pore volumes. Stop flow data indicate the occurrence of non-equilibrium processes that create uranium concentration rebound. These data confirm the potential for plume persistence, which is occurring at the field scale. 1D reactive transport modeling was completed using PHREEQC (geochemical model) and calibrated to the column test data manually and using PEST (inverse modeling calibration routine). Processes of sorption, dual porosity with diffusion, mineral dissolution, dispersion, and cation exchange were evaluated separately and in combination. The calibration results indicate that sorption and dual porosity are major processes in explaining the column test data. These processes are also supported by fission track photographs that show solid-phase uranium residing in less mobile pore spaces. These procedures provide valuable information on plume persistence and secondary source processes that may be used to better inform and evaluate remedial strategies, including natural flushing.
URANIUM RECOVERY AND PURIFICATION PROCESS AND PRODUCTION OF HIGH PURITY URANIUM TETRAFLUORIDE
Bailes, R.H.; Long, R.S.; Grinstead, R.R.
1957-09-17
A process is described wherein an anionic exchange technique is employed to separate uramium from a large variety of impurities. Very efficient and economical purification of contamimated uranium can be achieved by treatment of the contaminated uranium to produce a solution containing a high concentration of chloride. Under these conditions the uranium exists as an aniomic chloride complex. Then the uranium chloride complex is adsorbed from the solution on an aniomic exchange resin, whereby a portion of the impurities remain in the solution and others are retained with the uramium by the resin. The adsorbed impurities are then removed by washing the resin with pure concentrated hydrochloric acid, after which operation the uranium is eluted with pure water yielding an acidic uranyl chloride solution of high purity.
Ackerman, John P.; Miller, William E.
1989-01-01
An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.
Ackerman, J.P.; Miller, W.E.
1987-11-05
An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.
Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.
2012-07-31
Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed tomore » mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.« less
Applied technology for mine waste water decontamination in the uranium ores extraction from Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bejenaru, C.; Filip, G.; Vacariu, V.T.
1996-12-31
The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less
Behavior of Colorado Plateau uranium minerals during oxidation
Garrels, Robert Minard; Christ, C.L.
1956-01-01
Uranium occurs as U(VI) and U(IV) in minerals of the Colorado Plateau ores. The number of species containing U(VI) is large, but only two U(IV) minerals are known from the Plateau: uraninite, and oxide, and coffinite, a hydroxy-silicate. These oxidize to yield U(VI) before reacting significantly with other mineral constituents. Crystal-structure analysis has shown that U(VI) invariable occurs as uranyl ion, UO2+2. Uranyl ion may form complex carbonate or sulfate ions with resulting soluble compounds, but only in the absence of quinquevalent vanadium, arsenic, or phosphorous. In the presence of these elements in the +5 valence state, the uranyl ion is fixed in insoluble layer compounds formed by union of uranyl ion with orthovanadate, orthophosphate, or orthoarsenate. Under favorable conditions UO2+2 may react to form the relatively insoluble rutherfordine, UO2CO3, or hydrated uranyl hydroxides. These are rarely found on the Colorado Plateau as opposed to their excellent development in other uraniferous areas, a condition which is apparently related to the semiarid climate and low water table of the Plateau. Uranium may also be fixed as uranyl silicate, but little is known about minerals of this kind. In the present study emphasis has been placed on a detailing of the chemical and crystal structural changes which occur in the oxidation paragenetic sequence.
40 CFR 421.326 - Pretreatment standards for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... uranium processed in the refinery Chromium (total) 27.14 11.00 Copper 93.88 44.74 Nickel 40.34 27.14... uranium processed in the refinery Chromium (total) 1.689 0.685 Copper 5.844 2.785 Nickel 2.511 1.689... per million pounds) of uranium processed in the refinery Chromium (total) 2.357 0.955 Copper 8.152 3...
40 CFR 421.326 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... uranium processed in the refinery Chromium (total) 27.14 11.00 Copper 93.88 44.74 Nickel 40.34 27.14... uranium processed in the refinery Chromium (total) 1.689 0.685 Copper 5.844 2.785 Nickel 2.511 1.689... per million pounds) of uranium processed in the refinery Chromium (total) 2.357 0.955 Copper 8.152 3...
U(IV) chalcogenolates synthesized via oxidation of uranium metal by dichalcogenides.
Gaunt, Andrew J; Scott, Brian L; Neu, Mary P
2006-09-04
Treatment of uranium metal with dichalcogenides in the presence of a catalytic amount of iodine in pyridine affords molecular U(IV) chalcogenolates that do not require stabilizing ancillary ligands. Oxidation of U(0) by PhEEPh yields monomeric seven-coordinate U(EPh)4(py)3 (E = S(1), Se(2)). The dimeric eight-coordinate complexes [U(EPh)2(mu2-EPh)2(CH3CN)2]2 (E = S(3), Se(4)) are obtained by crystallization from solutions of 1 and 2 dissolved in acetonitrile. Oxidation of U(0) by pySSpy and crystallization from thf yields nine-coordinate U(Spy)4(thf) (5). Incorporation of elemental selenium into the oxidation of U(0) by PhSeSePh results in the isolation of [U(py)2(SePh)(mu3-Se)(mu2-SePh)]4.4py (6), a tetrameric cluster in which each U(IV) ion is eight-coordinate and the U4Se4 core forms a distorted cube. The compounds were analyzed spectroscopically and the single-crystal X-ray structures of 1 and 3-6 were determined. The isolation of 1-6 represents six new examples of actinide chalcogenolates and allows insight into the nature of "hard" actinide ion-"soft" chalcogen donor interactions.
SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM
Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.
1962-11-13
A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)
PROCESS OF ELECTROPLATING METALS WITH ALUMINUM
Schickner, W.C.
1960-04-26
A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Robert C.; Szecsody, James; Rigali, Mark J.
We have performed an initial evaluation and testing program to assess the effectiveness of a hydroxyapatite (Ca10(PO4)6(OH)2) permeable reactive barrier and source area treatment to decrease uranium mobility at the Department of Energy (DOE) former Old Rifle uranium mill processing site in Rifle, western Colorado. Uranium ore was processed at the site from the 1940s to the 1970s. The mill facilities at the site as well as the uranium mill tailings previously stored there have all been removed. Groundwater in the alluvial aquifer beneath the site still contains elevated concentrations of uranium, and is currently used for field tests tomore » study uranium behavior in groundwater and investigate potential uranium remediation technologies. The technology investigated in this work is based on in situ formation of apatite in sediment to create a subsurface apatite PRB and also for source area treatment. The process is based on injecting a solution containing calcium citrate and sodium into the subsurface for constructing the PRB within the uranium plume. As the indigenous sediment micro-organisms biodegrade the injected citrate, the calcium is released and reacts with the phosphate to form hydroxyapatite (precipitate). This paper reports on proof-of-principle column tests with Old Rifle sediment and synthetic groundwater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camper, Larry W.; Michalak, Paul; Cohen, Stephen
Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly andmore » the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)« less
10 CFR 765.20 - Procedures for submitting reimbursement claims.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 765.20 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... reimbursement ceiling for any active uranium or thorium processing site; (5) Any revision in the per dry short ton limit on reimbursement for all active uranium processing sites; and (6) Any other relevant...
10 CFR 765.20 - Procedures for submitting reimbursement claims.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 765.20 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... reimbursement ceiling for any active uranium or thorium processing site; (5) Any revision in the per dry short ton limit on reimbursement for all active uranium processing sites; and (6) Any other relevant...
10 CFR 765.20 - Procedures for submitting reimbursement claims.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 765.20 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... reimbursement ceiling for any active uranium or thorium processing site; (5) Any revision in the per dry short ton limit on reimbursement for all active uranium processing sites; and (6) Any other relevant...
10 CFR 765.20 - Procedures for submitting reimbursement claims.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 765.20 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... reimbursement ceiling for any active uranium or thorium processing site; (5) Any revision in the per dry short ton limit on reimbursement for all active uranium processing sites; and (6) Any other relevant...
Uranium speciation in Fernald soils. Progress report, January 1--May 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, D.E.; Conradson, S.D.; Tait, C.D.
1992-05-31
This report details progress made from January 1 to May 31, 1992 in this analytical support task to determine the speciation of uranium in contaminated soil samples from the Fernald Environmental Management Project site under the auspices of the Uranium in Soils Integrated Demonstration funded through the US DOE`s Office of Technology Development. The authors` efforts have focused on characterization of soil samples collected by S.Y. Lee (Oak Ridge National Laboratory) from five locales at the Fernald site. These were chosen to sample a broad range of uranium source terms. On the basis of x-ray absorption spectroscopy data, they havemore » determined that the majority of uranium (> 80--90%) exists in the hexavalent oxidation state for all samples examined. This is a beneficial finding from the perspective of remediation, because U(VI) species are more soluble in general than uranium species in other oxidation states. Optical luminescence data from many of the samples show the characteristic structured yellow-green emission from the uranyl (UO{sub 2}{sup 2+}) moiety. The luminescence data also suggest that much of the uranium in these soils is present as well-crystallized UO{sub 2}{sup 2+} species. Some clear spectroscopic distinctions have been noted for several samples that illustrate significant differences in the speciation (1) from site to site, (2) within different horizons at the same site, and (3) within different size fractions of the soils in the same horizon at the same site. This marked heterogeneity in uranyl speciation suggests that several soil washing strategies may be necessary to reduce the total uranium concentrations within these soils to regulatory limits.« less
Potassium and magnesium succinatouranilates – Synthesis and crystal structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, S.A., E-mail: serg.alex.novikov@gmail.com; Grigoriev, M.S.; Serezhkina, L.B.
2017-04-15
Single crystal X-ray diffraction has been applied to determine the structures of two new uranyl coordination polymers: K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}] [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), where C{sub 4}H{sub 4}O{sub 4}{sup 2-} is succinate anion. Crystals of 1 and 2 contain polymeric complex anions [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} with the same A{sub 2}Q{sup 02}{sub 3} crystallochemical formula (A=UO{sub 2}{sup 2+}, Q{sup 02}=C{sub 4}O{sub 4}H{sub 4}{sup 2-}), and have layered (1) or chain (2) structure. It has been found, that conformation of succinate ionsmore » is one of the factors, which affects the structure of [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} anions. IR spectra of these new compounds are in good agreement with crystallographic data. Topological analysis of the uranium dicarboxylates with A{sub 2}Q{sup 02}{sub 3} crystallochemical formula has shown the presence of five isomers which differ from each other in coordination sequences and / or dimensionality. - Graphical abstract: Crystal structures of two new uranium(VI) coordination polymers with succinate linkers, namely K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}][(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), were determined by single-crystal XRD. Crystals of studied compounds are based on 2D or 1D structural units with the same composition and crystallochemical formula. Topological isomerism in A{sub 2}Q{sup 02}{sub 3} crystallochemical group and conformations of succinate anions in uranyl complexes are under discussion. - Highlights: • Two new uranium coordination polymers were synthesized. • Their structural units have the same composition and crystallochemical formula. • In spite the same composition and CCF dimensionality of units is different. • Structural features of uranyl CPs are affected by linker conformations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuchot, L.; Ginocchio, A. et al.
1959-10-31
As uranium ores, like most other ores, are not definite substances which can be treated directly for the production of the metal, the ores must be concentrated. The common physical processes used for all ores, such as sieving, gravimetric separation, flotation, electromagnetic separation, and electrostatic separation, are applicable to the beneficiation of uranium. The radioactivity of uranium ores has led to a radiometric method for the concentration. This method is described in detail. As an example, the preconcentration of Forez ores is discussed. (J.S.R.)
Kaufman, D.
1958-04-15
A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.
TERNARY ALLOY-CONTAINING PLUTONIUM
Waber, J.T.
1960-02-23
Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.
Some observations on rutherfordine
Clark, Joan R.; Christ, C.L.
1956-01-01
The optical properties of rutherfordine, UO2CO3, previously determined on microscopic crystals, have been redetermined on considerably larger crystals; and the relations among the indices of refraction, the morphology, and the crystal structure have been examined. Rutherfordine is orthorhombic, biaxial positive, with α = 1.715, β = 1.730, γ = 1.795, 2V = 53° (calc.); X = b, Y = c (elongation, Z = a. The crystal structure of UO2CO 3 consists of layers of carbonate groups parallel to (010) with linear (O-U-O) ions normal to the layers. The indices β and γ correspond to vibration directions parallel to layers; the unexpectedly large difference in value between β and γ is ascribed to the optical anisotropy of the uranium-oxygen bonding in the layer. Indexed X-ray powder data are given.
Raoultella sp. SM1, a novel iron-reducing and uranium-precipitating strain.
Sklodowska, Aleksandra; Mielnicki, Sebastian; Drewniak, Lukasz
2018-03-01
The main aim of this study was the characterisation of novel Raoutella isolate, an iron-reducing and uranium-precipitating strain, originating from microbial mats occurring in the sediments of a closed down uranium mine in Kowary (SW Poland). Characterisation was done in the context of its potential role in the functioning of these mats and the possibility to use them in uranium removal/recovery processes. In our experiment, we observed the biological precipitation of iron and uranium's secondary minerals containing oxygen, potassium, sodium and phosphor, which were identified as ningyoite-like minerals. The isolated strain, Raoultella sp. SM1, was also able to dissimilatory reduce iron (III) and uranium (VI) in the presence of citrate as an electron donor. Our studies allowed us to characterise a new strain which may be used as a model microorganism in the study of Fe and U respiratory processes and which may be useful in the bioremediation of uranium-contaminated waters and sediments. During this process, uranium may be immobilised in ningyoite-like minerals and can then be recovered in nano/micro-particle form, which may be easily transformed to uraninite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metastable electronic states in uranium tetrafluoride
Miskowiec, Andrew J.
2018-04-03
Here, the DFT+ U approach, where U is the Hubbard-like on-site Coulomb interaction, has successfully been used to improve the description of transition metal oxides and other highly correlated systems, including actinides. The secret of the DFT+ U approach is the breaking of d or f shell orbital degeneracy and adding an additional energetic penalty to non-integer occupation of orbitals. A prototypical test case, UO 2, benefits from the + U approach whereby the bare LDA method predicts UO 2 to be a ferromagnetic metal, whereas LDA+ U correctly predicts UO 2 to be insulating. However, the concavity of themore » energetic penalty in the DFT+ U approach can lead to a number of convergent “metastable” electronic configurations residing above the ground state. Uranium tetrafluoride (UF 4) represents a more complex analogy to UO 2 in that the crystal field has lower symmetry and the unit cell contains two symmetrically distinct U atoms. We explore the metastable states in UF 4 using several different methods of selecting initial orbital occupations. Two methods, a “pre-relaxation” method wherein an initial set of orbital eigenvectors is selected via the self-consistency procedure and a crystal rotation method wherein the x, y, z axes are brought into alignment with the crystal field, are explored. We show that in the case of UF 4, which has non-collinearity between its crystal axes and the U atoms' crystal field potentials, the orbital occupation matrices are much more complex and should be analyzed using a novel approach. In addition to demonstrating a complex landscape of metastable electronic states, UF 4 also shows significant hybridization in U–F bonding, which involves non-trivial contributions from s, p, d, and f orbitals.« less
Metastable electronic states in uranium tetrafluoride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskowiec, Andrew J.
Here, the DFT+ U approach, where U is the Hubbard-like on-site Coulomb interaction, has successfully been used to improve the description of transition metal oxides and other highly correlated systems, including actinides. The secret of the DFT+ U approach is the breaking of d or f shell orbital degeneracy and adding an additional energetic penalty to non-integer occupation of orbitals. A prototypical test case, UO 2, benefits from the + U approach whereby the bare LDA method predicts UO 2 to be a ferromagnetic metal, whereas LDA+ U correctly predicts UO 2 to be insulating. However, the concavity of themore » energetic penalty in the DFT+ U approach can lead to a number of convergent “metastable” electronic configurations residing above the ground state. Uranium tetrafluoride (UF 4) represents a more complex analogy to UO 2 in that the crystal field has lower symmetry and the unit cell contains two symmetrically distinct U atoms. We explore the metastable states in UF 4 using several different methods of selecting initial orbital occupations. Two methods, a “pre-relaxation” method wherein an initial set of orbital eigenvectors is selected via the self-consistency procedure and a crystal rotation method wherein the x, y, z axes are brought into alignment with the crystal field, are explored. We show that in the case of UF 4, which has non-collinearity between its crystal axes and the U atoms' crystal field potentials, the orbital occupation matrices are much more complex and should be analyzed using a novel approach. In addition to demonstrating a complex landscape of metastable electronic states, UF 4 also shows significant hybridization in U–F bonding, which involves non-trivial contributions from s, p, d, and f orbitals.« less
Synthesis and X-ray diffraction study of new uranyl malonate and oxalate complexes with carbamide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedkov, Ya. A.; Serezhkina, L. B., E-mail: Lserezh@samsu.ru; Grigor’ev, M. S.
2016-05-15
Two new malonate-containing uranyl complexes with carbamide of the formulas [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 2}] (I) and [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 3}] (II), where Urea is carbamide, and one uranyl oxalate complex of the formula [UO{sub 2}(C{sub 2}O{sub 4})(Urea){sub 3}] (III) were synthesized, and their crystals were studied by X-ray diffraction. The main structural units in crystals I are the electroneutral chains [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 2}]{sub ∞} belonging to the crystal-chemical group AT{sup 11}M{sub 2}{sup 1} (A = UO{sub 2}{sup 2+}, T{sup 11} = C{sub 3}H{sub 2}O{sub 4}{sup 2-}, M{sup 1} = Urea) of uranyl complexes.more » Crystals II and III are composed of the molecular complexes [UO{sub 2}(L)(Urea){sub 3}], where L = C{sub 3}H{sub 2}O{sub 4}{sup 2-} or C{sub 2}O{sub 4}{sup 2-}, belonging to the crystal-chemical group AB{sup 01}M{sub 3}{sup 1} (A = UO{sub 2}{sup 2+}, B{sup 01} = C{sub 3}H{sub 2}O{sub 4}{sup 2-} or C{sub 2}O{sub 4}{sup 2-}, M{sup 1} = Urea). The characteristic features of the packing of the uranium-containing complexes are discussed in terms of molecular Voronoi–Dirichlet polyhedra. The effect of the Urea: U ratio on the structure of uranium-containing structural units is considered.« less
Process for removing carbon from uranium
Powell, George L.; Holcombe, Jr., Cressie E.
1976-01-01
Carbon contamination is removed from uranium and uranium alloys by heating in inert atmosphere to 700.degree.-1900.degree.C in effective contact with yttrium to cause carbon in the uranium to react with the yttrium. The yttrium is either in direct contact with the contaminated uranium or in indirect contact by means of an intermediate transport medium.
PRODUCTION OF URANIUM TETRACHLORIDE
Calkins, V.P.
1958-12-16
A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Gerald C.
1975-10-01
The oxygen-to-metal atom ratio, or O/M, of solid solution uranium- plutonium oxide reactor fuel is a measure of the concentration of crystal defects in the oxide which affect many fuel properties, particularly, fuel oxygen potential. Fabrication of a high-temperature oxygen electrode, employing an electro-active tip of oxygen-deficient solid-state electrolyte, intended to confirm gaseous oxygen potentials is described. Uranium oxide and plutonium oxide O/M reference materials were prepared by in situ oxidation of high purity metals in the thermobalance. A solid solution uranium-plutonium oxide O/M reference material was prepared by alloying the uranium and plutonium metals in a yttrium oxide cruciblemore » at 1200°C and oxidizing with moist He at 250°C. The individual and solid solution oxides were isothermally equilibrated with controlled oxygen potentials between 800 and 1300°C and the equilibrated O/ M ratios calculated with corrections for impurities and buoyancy effects. Use of a reference oxygen potential of -100 kcal/mol to produce an O/M of 2.000 is confirmed by these results. However, because of the lengthy equilibration times required for all oxides, use of the O/M reference materials rather than a reference oxygen potential is recommended for O/M analysis methods calibrations.« less
Continuous process electrorefiner
Herceg, Joseph E [Naperville, IL; Saiveau, James G [Hickory Hills, IL; Krajtl, Lubomir [Woodridge, IL
2006-08-29
A new device is provided for the electrorefining of uranium in spent metallic nuclear fuels by the separation of unreacted zirconium, noble metal fission products, transuranic elements, and uranium from spent fuel rods. The process comprises an electrorefiner cell. The cell includes a drum-shaped cathode horizontally immersed about half-way into an electrolyte salt bath. A conveyor belt comprising segmented perforated metal plates transports spent fuel into the salt bath. The anode comprises the conveyor belt, the containment vessel, and the spent fuel. Uranium and transuranic elements such as plutonium (Pu) are oxidized at the anode, and, subsequently, the uranium is reduced to uranium metal at the cathode. A mechanical cutter above the surface of the salt bath removes the deposited uranium metal from the cathode.
Method for fabricating laminated uranium composites
Chapman, L.R.
1983-08-03
The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.
Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL
2009-12-29
This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.
Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe
2013-09-15
Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae. Copyright © 2013 Elsevier B.V. All rights reserved.
McVey, W.H.; Reas, W.H.
1959-03-10
The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.
Material Problems for High-Temperature, High-Power Space Energy-Conversion Systems.
1984-05-01
M. Takahashi, S. Nanamaku, and M. Kimura , "The growth of ferroelectric single crystal Sr 2 Mb2 0 7 by means of F.Z. technique," J. of Crystal Growth...Holsbeke, "Preparation and characterization of high purity vanadium by EBFZM," J. of Less Common Metals, Vol. 39, 7-16 (1975). 18. S. Takai and H. Kimura ... uranium system from room temperature to 900 0C. The composition of maximum hardness increased from 40 atomic percent (a/o) zirconium at room ’ 69
Angular overlap model analysis of the D 2d crystal field effect in uranium (4+) compounds
NASA Astrophysics Data System (ADS)
Gajek, Z.; Hubert, S.; Krupa, J. C.
1988-12-01
Recent interpretations of the D 2d crystal field of U 4+ in β-ThCl 4, α, β-ThBr 4, ThSiO 4 and UCl 4 are discussed in terms of the simplified one-, two- and three-parameter versions of the Angular Overlap Model which are shown to be a handy tool in a trial interpretation of the effect. The variation of the CF parameters with a small D 2 distortion of the coordination is well reproduced by the model.
PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES
Hamilton, N.E.
1957-12-01
A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.
PROCESS FOR SEGREGATING URANIUM FROM PLUTONIUM AND FISSION-PRODUCT CONTAMINATION
Ellison, C.V.; Runion, T.C.
1961-06-27
An aqueous nitric acid solution containing uranium, plutonium, and fission product values is contacted with an organic extractant comprised of a trialkyl phosphate and an organic diluent. The relative amounts of trialkyl phosphate and uranium values are controlled to achieve a concentration of uranium values in the organic extractant of at least 0.35 moles uranium per mole of trialkyl phosphate, thereby preferentially extracting uranium values into the organic extractant.
PROCESSES OF CHLORINATION OF URANIUM OXIDES
Rosenfeld, S.
1958-09-16
An improvement is described in the process fur making UCl/sub 4/ from uranium oxide and carbon tetrachloride. In that process, oxides of uranium are contacted with carbon tetrachloride vapor at an elevated temperature. It has been fuund that the reaction product and yield are improved if the uranlum oxide charge is disposed in flat trays in the reaction zone, to a depth of not more than 1/2 centimeter.
High strength uranium-tungsten alloy process
Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.
1990-01-01
Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.
Process for continuous production of metallic uranium and uranium alloys
Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.
1995-06-06
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.
Process for continuous production of metallic uranium and uranium alloys
Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.
1995-01-01
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.
Separation of uranium from technetium in recovery of spent nuclear fuel
NASA Astrophysics Data System (ADS)
Friedman, H. A.
1984-06-01
A method for decontaminating uranium product from the Purex 5 process is described. Hydrazine is added to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO2(2+)) uranium and heptavalent technetius (TcO4-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H2O2O4), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.
NASA Astrophysics Data System (ADS)
Wu, Liping; Lin, Xiaoyan; Zhou, Xingbao; Luo, Xuegang
2016-10-01
A novel dual functional microsphere adsorbent of alginate/carboxymethyl cellulose sodium composite loaded with calcium and aluminum (SA/CMC-Ca-Al) is prepared by an injection device to remove fluoride and uranium, respectively, from fluoro-uranium mixed aqueous solution. Batch experiments are performed at different conditions: pH, temperature, initial concentration and contact time. The results show that the maximum adsorption amount for fluoride is 35.98 mg/g at pH 2.0, 298.15 K concentration 100 mg/L, while that for uranium is 101.76 mg/g at pH 4.0, 298.15 K concentration 100 mg/L. Both of the adsorption process could be well described by Langmuir model. The adsorption kinetic data is fitted well with pseudo-first-order model for uranium and pseudo-second-order model for fluoride. Thermodynamic parameters are also evaluated, indicating that the adsorption of uranium on SA/CMC-Ca-Al is a spontaneous and exothermic process, while the removal of fluoride is non-spontaneous and endothermic process. The mechanism of modification and adsorption process on SA/CMC-Ca-Al is characterized by FT-IR, SEM, EDX and XPS. The results show that Ca (II) and Al (III) are loaded on SA/CMC through ion-exchange of sodium of SA/CMC. The coordination reaction and ion-exchange happen during the adsorption process between SA/CMC-Ca-Al and uranium, fluoride. Results suggest that the SA/CMC-Ca-Al adsorbent has a great potential in removing uranium and fluoride from aqueous solution.
Method of fabricating a uranium-bearing foil
Gooch, Jackie G [Seymour, TN; DeMint, Amy L [Kingston, TN
2012-04-24
Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.
Willit, James L [Ratavia, IL
2007-09-11
An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.
Willit, James L [Batavia, IL
2010-09-21
An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium enrichment. 540.316 Section 540.316 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, D.; Landsberger, S.; Buchholz, B.
1995-09-01
Recent experimental results on testing and modification of the Cintichem process to allow substitution of low enriched uranium (LEU) for high enriched uranium (HEU) targets are presented in this report. The main focus is on {sup 99}Mo recovery and purification by its precipitation with {alpha}-benzoin oxime. Parameters that were studied include concentrations of nitric and sulfuric acids, partial neutralization of the acids, molybdenum and uranium concentrations, and the ratio of {alpha}-benzoin oxime to molybdenum. Decontamination factors for uranium, neptunium, and various fission products were measured. Experiments with tracer levels of irradiated LEU were conducted for testing the {sup 99}Mo recoverymore » and purification during each step of the Cintichem process. Improving the process with additional processing steps was also attempted. The results indicate that the conversion of molybdenum chemical processing from HEU to LEU targets is possible.« less
PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS
Carter, J.M.; Kamen, M.D.
1958-10-14
A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, L.G.; Cellini, R.F.
1959-01-01
The thermal decomposition of some intermediate compounds in the metallurgy of uranium such as uranium peroxide, ammonium uranate, ammonium uranium pentafluoride, uranium tetrafluoride, and UO/sub 2/, were studied using Chevenard's thermobalance. Some data on the pyrolysis of synthetic mixtures of intermediate compounds which may appear during the industrial processing are given. Thermogravimetric methods of control are suggested for use in uranium metallurgy. (tr-auth)
Method of separating and recovering uranium and related cations from spent Purex-type systems
Mailen, J.C.; Tallent, O.K.
1987-02-25
A process for separating uranium and related cations from a spent Purex-type solvent extraction system which contains degradation complexes of tributylphosphate wherein the system is subjected to an ion-exchange process prior to a sodium carbonate scrubbing step. A further embodiment comprises recovery of the separated uranium and related cations. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Megan E.; Bowers, Delbert L.; Vandegrift, George F.
2015-09-01
During FY 2012 and 2013, a process was developed to convert the SHINE Target Solution (STS) of irradiated uranyl sulfate (140 g U/L) to uranyl nitrate. This process is necessary so that the uranium solution can be processed by the UREX (Uranium Extraction) separation process, which will remove impurities from the uranium so that it can be recycled. The uranyl sulfate solution must contain <0.02 M SO 4 2- so that the uranium will be extractable into the UREXsolvent. In addition, it is desired that the barium content be below 0.0007 M, as this is the limit in the Resourcemore » Conservation and Recovery Act (RCRA).« less
Knighton, J.B.; Feder, H.M.
1960-04-26
A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.
Urinary excretion of uranium in adult inhabitants of the Czech Republic.
Malátová, Irena; Bečková, Věra; Kotík, Lukáš
2016-02-01
The main aim of this study was to determine and evaluate urinary excretion of uranium in the general public of the Czech Republic. This value should serve as a baseline for distinguishing possible increase in uranium content in population living near legacy sites of mining and processing uranium ores and also to help to distinguish the proportion of the uranium content in urine among uranium miners resulting from inhaled dust. The geometric mean of the uranium concentration in urine of 74 inhabitants of the Czech Republic was 0.091 mBq/L (7.4 ng/L) with the 95% confidence interval 0.071-0.12 mBq/L (5.7-9.6 ng/L) respectively. The geometric mean of the daily excretion was 0.15 mBq/d (12.4 ng/d) with the 95% confidence interval 0.12-0.20 mBq/d (9.5-16.1 ng/d) respectively. Despite the legacy of uranium mines and plants processing uranium ore in the Czech Republic, the levels of uranium in urine and therefore, also human body content of uranium, is similar to other countries, esp. Germany, Slovenia and USA. Significant difference in the daily urinary excretion of uranium was found between individuals using public supply and private water wells as a source of drinking water. Age dependence of daily urinary excretion of uranium was not found. Mean values and their range are comparable to other countries, esp. Germany, Slovenia and USA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spectroscopic studies of uranium species for environmental decontamination applications
NASA Astrophysics Data System (ADS)
Eng, Charlotte
After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by the steel corrosion products or (b) in areas where the dissolved uranium/iron species, the products generated by the dissolution power of citric acid, was not properly rinsed away.
PREPARATION OF URANIUM HEXAFLUORIDE
Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.
1959-10-01
A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.
Novel calibration for LA-ICP-MS-based fission-track thermochronology
NASA Astrophysics Data System (ADS)
Soares, C. J.; Guedes, S.; Hadler, J. C.; Mertz-Kraus, R.; Zack, T.; Iunes, P. J.
2014-01-01
We present a novel age-equation calibration for fission-track age determinations by laser ablation inductively coupled plasma mass spectrometry. This new calibration incorporates the efficiency factor of an internal surface, [ ηq]is, which is obtained by measuring the projected fission-track length, allowing the determination of FT ages directly using the recommended spontaneous fission decay constant. Also, the uranium concentrations in apatite samples are determined using a Durango (Dur-2, 7.44 μg/g U) crystal and a Mud Tank (MT-7, 6.88 μg/g U) crystal as uranium reference materials. The use of matrix-matched reference materials allows a reduction in the uncertainty of the uranium measurements to those related to counting statistics, which are ca. 1 % taking into account that no extra source of uncertainty has to be considered. The equations as well as the matrix-matched reference materials are evaluated using well-dated samples from Durango, Fish Canyon Tuff, and Limberg as unknown samples. The results compare well with their respective published ages determined through other dating methods. Additionally, the results agree with traditional fission-track ages using both the zeta approach and the absolute approach, suggesting that the calibration presented in this work can be robustly applied in geological context. Furthermore, considering that fission-track ages can be determined without an age standard sample, the fission-track thermochronology approach presented here is assumed to be a valuable dating tool.
In situ ligand synthesis with the UO22+ cation under hydrothermal conditions
NASA Astrophysics Data System (ADS)
Frisch, Mark; Cahill, Christopher L.
2007-09-01
A novel uranium (VI) coordination polymer, (UO 2) 2(C 2O 4)(C 5H 6NO 3) 2 ( 1), has been prepared under the hydrothermal reaction of uranium nitrate hexahydrate and L-pyroglutamic acid. Compound 1 (monoclinic, C2/ c, a=22.541(6) Å, b=5.7428(15) Å, c=15.815(4) Å, β=119.112(4)°, Z=4, R1=0.0237, w R2=0.0367) consists of uranium pentagonal bipyramids linked via L-pyroglutamate and oxalate anions to form an overall two-dimensional (2D) structure. With the absence of oxalic acid within the starting materials, the oxalate anions are hypothesized to form in situ whereby decarboxylation of L-pyroglutamic acid occurs followed by coupling of CO 2 to form the oxalate linkages as observed in the crystal structure. Addition of copper (II) to this system appears to promote oxalate formation in that synthetic moolooite (Cu(C 2O 4)· nH 2O; 0⩽ n⩽1) and a known uranyl oxalate [(UO 2) 2(C 2O 4)(OH) 2(H 2O) 2·H 2O], co-crystallize in significant quantity. Compound 1 exhibits the characteristic uranyl emission spectrum upon either direct uranyl excitation or ligand excitation, the latter of which shows an increase in relative intensity. This subsequent increase in the intensity indicates an energy transfer from the ligand to the uranyl cations thus illustrating an example of the antenna effect in the solid state.
RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS
Gens, T.A.
1962-07-10
An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)
PROCESSES OF RECLAIMING URANIUM FROM SOLUTIONS
Zumwalt, L.R.
1959-02-10
A process is described for reclaiming residual enriched uranium from calutron wash solutions containing Fe, Cr, Cu, Ni, and Mn as impurities. The solution is adjusted to a pH of between 2 and 4 and is contacted with a metallic reducing agent, such as iron or zinc, in order to reduce the copper to metal and thereby remove it from the solution. At the same time the uranium present is reduced to the uranous state The solution is then contacted with a precipitate of zinc hydroxide or barium carbonate in order to precipitate and carry uranium, iron, and chromium away from the nickel and manganese ions in the solution. The uranium is then recovered fronm this precipitate.
URANIUM RECOVERY FROM COMPOSITE UF$sub 4$ REDUCTION BOMB WASTES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, E R; Doyle, R L; Coleman, J R
1954-01-28
A number of techniques have been investigated on a laboratory-scale for separating uranium from fluorides during the recovery of uranium from UF4 reduction bomb wastes (C-oxide) by an HCl leach - NH4OH precipitation process. Among these are included adsorption of fluorides from filtered leach liquors, fractional precipitation of fluorides and uranium, complexing of fluorides into forms soluble in slightly acid solutions, and fluoride volatilization from the uranium concentrate. Solubility studies of CaF2 and MgF2 in aqueous hydrochloric acid at various acidities and temperatures were also conducted. A description of the production-scale processing of C-oxide in the FMPC scrap plant hasmore » been included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett; ...
2016-06-16
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
Separation of uranium from technetium in recovery of spent nuclear fuel
Friedman, H.A.
1984-06-13
A method for decontaminating uranium product from the Purex 5 process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO/sub 2//sup 2 +/) uranium and heptavalent technetium (TcO/sub 4/-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H/sub 2/C/sub 2/O/sub 4/), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.
Separation of uranium from technetium in recovery of spent nuclear fuel
Friedman, Horace A.
1985-01-01
A method for decontaminating uranium product from the Purex process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO.sub.2.sup.2+) uranium and heptavalent technetium (TcO.sub.4 -). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H.sub.2 C.sub.2 O.sub.4), and the Tc-oxalate complex is readily separated from the uranium by solvent extraction with 30 vol. % tributyl phosphate in n-dodecane.
URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM
Vogler, S.; Beederman, M.
1961-05-01
A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.
McMillan, T.S.
1957-10-29
A process for the fluorination of uranium metal is described. It is known that uranium will react with liquid chlorine trifluoride but the reaction proceeds at a slow rate. However, a mixture of a halogen trifluoride together with hydrogen fluoride reacts with uranium at a significantly faster rate than does a halogen trifluoride alone. Bromine trifluoride is suitable for use in the process, but chlorine trifluoride is preferred. Particularly suitable is a mixture of ClF/sub 3/ and HF having a mole ratio (moles
NASA Astrophysics Data System (ADS)
Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua; Möller, Angela; zur Loye, Hans-Conrad
2016-04-01
Two new uranium(IV) fluorides, Na3.13Mg1.43U6F30 (1) and Na2.50Mn1.75U6F30 (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF9 and MF6 (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F6 octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site. Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 μB for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV-vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed.
A roadmap to uranium ionic liquids: anti-crystal engineering.
Yaprak, Damla; Spielberg, Eike T; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena
2014-05-19
In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO2(2+) unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A roadmap to uranium ionic liquids: Anti-crystal engineering
Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; ...
2014-04-15
In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C 4mim) cation. As dithiocarbamate ligands binding to the UO 2 2+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand withmore » the aim to establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.« less
Uranium redox transition pathways in acetate-amended sediments
Bargar, John R.; Williams, Kenneth H.; Campbell, Kate M.; Long, Philip E.; Stubbs, Joanne E.; Suvorova, Elenal I.; Lezama-Pacheco, Juan S.; Alessi, Daniel S.; Stylo, Malgorzata; Webb, Samuel M.; Davis, James A.; Giammar, Daniel E.; Blue, Lisa Y.; Bernier-Latmani, Rizlan
2013-01-01
Redox transitions of uranium [from U(VI) to U(IV)] in low-temperature sediments govern the mobility of uranium in the environment and the accumulation of uranium in ore bodies, and inform our understanding of Earth’s geochemical history. The molecular-scale mechanistic pathways of these transitions determine the U(IV) products formed, thus influencing uranium isotope fractionation, reoxidation, and transport in sediments. Studies that improve our understanding of these pathways have the potential to substantially advance process understanding across a number of earth sciences disciplines. Detailed mechanistic information regarding uranium redox transitions in field sediments is largely nonexistent, owing to the difficulty of directly observing molecular-scale processes in the subsurface and the compositional/physical complexity of subsurface systems. Here, we present results from an in situ study of uranium redox transitions occurring in aquifer sediments under sulfate-reducing conditions. Based on molecular-scale spectroscopic, pore-scale geochemical, and macroscale aqueous evidence, we propose a biotic–abiotic transition pathway in which biomass-hosted mackinawite (FeS) is an electron source to reduce U(VI) to U(IV), which subsequently reacts with biomass to produce monomeric U(IV) species. A species resembling nanoscale uraninite is also present, implying the operation of at least two redox transition pathways. The presence of multiple pathways in low-temperature sediments unifies apparently contrasting prior observations and helps to explain sustained uranium reduction under disparate biogeochemical conditions. These findings have direct implications for our understanding of uranium bioremediation, ore formation, and global geochemical processes.
Theoretical prediction of the structural properties of uranium chalcogenides under high pressure
NASA Astrophysics Data System (ADS)
Kapoor, Shilpa; Yaduvanshi, Namrata; Singh, Sadhna
2018-05-01
Uranium chalcogenides crystallize in rock salt structure at normal condition and transform to Cesium Chloride structure at high pressure. We have investigated the transition pressure and volume drop of USe and UTe using three body potential model (TBIP). Present model includes long range Columbic, three body interaction forces and short range overlap forces operative up to next nearest neighbors. We have reported the phase transition pressure, relative volume collapses, the thermo physical properties such as molecular force constant (f), infrared absorption frequency (v0), Debye temperature (θD) and Gruneisen parameter (γ) of present chalcogenides and found that our results in general good agreement with experimental and other theoretical data.
Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.
1958-12-23
A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.
Potential Aquifer Vulnerability in Regions Down-Gradient from ...
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of these uranium ores is a process of contacting the uranium mineral deposit with leaching (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality impacts from: 1) potential excursions of leaching solutions away from the injection zone into down-dip, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies
Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.
1959-02-10
A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.
Crystal structure and physical properties of a novel Kondo antiferromagnet: U3Ru4Al12
NASA Astrophysics Data System (ADS)
Pasturel, M; Tougait, O; Potel, M; Roisnel, T; Wochowski, K; Noël, H; Troć, R
2009-03-01
A novel ternary compound U3Ru4Al12 has been identified in the U-Ru-Al ternary diagram. Single-crystal x-ray diffraction indicates a hexagonal Gd3Ru4Al12-type structure for this uranium-based intermetallic. While this structure type usually induces geometrically a spin-glass behaviour, an antiferromagnetic ordering is observed at TN = 8.4 K in the present case. The reduced effective magnetic moment of U atoms (μeff = 2.6 µB) can be explained by Kondo-like interactions and crystal field effects that have been identified by a logarithmic temperature dependence of the electrical resistivity, negative values of the magnetoresistivity and particular shape of the Seebeck coefficient.
CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS
Clifford, W.E.
1962-05-29
A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)
PROCESS FOR SEPARATING URANIUM FISSION PRODUCTS
Spedding, F.H.; Butler, T.A.; Johns, I.B.
1959-03-10
The removal of fission products such as strontium, barium, cesium, rubidium, or iodine from neutronirradiated uranium is described. Uranium halide or elemental halogen is added to melted irradiated uranium to convert the fission products to either more volatile compositions which vaporize from the melt or to higher melting point compositions which separate as solids.
Reductive stripping process for uranium recovery from organic extracts
Hurst, F.J. Jr.
1983-06-16
In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H/sub 3/PO/sub 4/ is available from the evaporator stage of the process.
Reductive stripping process for uranium recovery from organic extracts
Hurst, Jr., Fred J.
1985-01-01
In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H.sub.3 PO.sub.4 is available from the evaporator stage of the process.
Krajkó, Judit; Varga, Zsolt; Wallenius, Maria; Mayer, Klaus; Konings, Rudy
The applicability and limitations of sulphur isotope ratio as a nuclear forensic signature have been studied. The typically applied leaching methods in uranium mining processes were simulated for five uranium ore samples and the n ( 34 S)/ n ( 32 S) ratios were measured. The sulphur isotope ratio variation during uranium ore concentrate (UOC) production was also followed using two real-life sample sets obtained from industrial UOC production facilities. Once the major source of sulphur is revealed, its appropriate application for origin assessment can be established. Our results confirm the previous assumption that process reagents have a significant effect on the n ( 34 S)/ n ( 32 S) ratio, thus the sulphur isotope ratio is in most cases a process-related signature.
NASA Astrophysics Data System (ADS)
Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.
2017-01-01
The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.
METHOD OF RECOVERING URANIUM COMPOUNDS
Poirier, R.H.
1957-10-29
S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.
Investigations for the Recycle of Pyroprocessed Uranium
NASA Astrophysics Data System (ADS)
Westphal, B. R.; Price, J. C.; Chambers, E. E.; Patterson, M. N.
Given the renewed interest in uranium from the pyroprocessing of used nuclear fuel in a molten salt system, the two biggest hurdles for marketing the uranium are radiation levels and transuranic content. A radiation level as low as possible is desired so that handling operations can be performed directly with the uranium. The transuranic content of the uranium will affect the subsequent waste streams generated and, thus also should be minimized. Although the pyroprocessing technology was originally developed without regard to radiation and transuranic levels, adaptations to the process have been considered. Process conditions have been varied during the distillation and casting cycles of the process with increasing temperature showing the largest effect on the reduction of radiation levels. Transuranic levels can be reduced significantly by incorporating a pre-step in the salt distillation operation to remove a majority of the salt prior to distillation.
NASA Astrophysics Data System (ADS)
Hunt, R. D.; Silva, G. W. C. M.; Lindemer, T. B.; Anderson, K. K.; Collins, J. L.
2012-08-01
The US Department of Energy continues to use the internal gelation process in its preparation of tristructural isotropic coated fuel particles. The focus of this work is to develop uranium fuel kernels with adequately dispersed silicon carbide (SiC) nanoparticles, high crush strengths, uniform particle diameter, and good sphericity. During irradiation to high burnup, the SiC in the uranium kernels will serve as getters for excess oxygen and help control the oxygen potential in order to minimize the potential for kernel migration. The hardness of SiC required modifications to the gelation system that was used to make uranium kernels. Suitable processing conditions and potential equipment changes were identified so that the SiC could be homogeneously dispersed in gel spheres. Finally, dilute hydrogen rather than argon should be used to sinter the uranium kernels with SiC.
Hypertension and hematologic parameters in a community near a uranium processing facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Sara E., E-mail: swagner@uga.edu; Burch, James B.; South Carolina Statewide Cancer Prevention and Control Program, Columbia, SC
Background: Environmental uranium exposure originating as a byproduct of uranium processing can impact human health. The Fernald Feed Materials Production Center functioned as a uranium processing facility from 1951 to 1989, and potential health effects among residents living near this plant were investigated via the Fernald Medical Monitoring Program (FMMP). Methods: Data from 8216 adult FMMP participants were used to test the hypothesis that elevated uranium exposure was associated with indicators of hypertension or changes in hematologic parameters at entry into the program. A cumulative uranium exposure estimate, developed by FMMP investigators, was used to classify exposure. Systolic and diastolicmore » blood pressure and physician diagnoses were used to assess hypertension; and red blood cells, platelets, and white blood cell differential counts were used to characterize hematology. The relationship between uranium exposure and hypertension or hematologic parameters was evaluated using generalized linear models and quantile regression for continuous outcomes, and logistic regression or ordinal logistic regression for categorical outcomes, after adjustment for potential confounding factors. Results: Of 8216 adult FMMP participants 4187 (51%) had low cumulative uranium exposure, 1273 (15%) had moderate exposure, and 2756 (34%) were in the high (>0.50 Sievert) cumulative lifetime uranium exposure category. Participants with elevated uranium exposure had decreased white blood cell and lymphocyte counts and increased eosinophil counts. Female participants with higher uranium exposures had elevated systolic blood pressure compared to women with lower exposures. However, no exposure-related changes were observed in diastolic blood pressure or hypertension diagnoses among female or male participants. Conclusions: Results from this investigation suggest that residents in the vicinity of the Fernald plant with elevated exposure to uranium primarily via inhalation exhibited decreases in white blood cell counts, and small, though statistically significant, gender-specific alterations in systolic blood pressure at entry into the FMMP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors andmore » associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Horng-Bin; Kuo, Li-Jung; Wai, Chien M.
2015-11-30
High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3-H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure inmore » real seawater. The Na 2CO 3-H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater.« less
NASA Astrophysics Data System (ADS)
Roycroft, S. J.; Noel, V.; Boye, K.; Besancon, C.; Weaver, K. L.; Johnson, R. H.; Dam, W. L.; Fendorf, S. E.; Bargar, J.
2016-12-01
Uranium contaminated groundwater in Riverton, Wyoming persists despite anticipated natural attenuation outside of a former uranium ore processing facility. The inability of natural flushing to dilute the uranium below the regulatory threshold indicates that sediments act as secondary sources likely (re)supplying uranium to groundwater. Throughout the contaminated floodplain, uranium rich-evaporites are readily abundant in the upper 2 m of sediments and are spatially coincident with the location of the plume, which suggests a likely link between evaporites and increased uranium levels. Knowledge of where and how uranium is stored within evaporite-associated sediments is required to understand processes controlling the mobility of uranium. We expect that flooding and seasonal changes in hydrologic conditions will affect U phase partitioning, and thus largely control U mobility. The primary questions we are addressing in this project are: What is the relative abundance of uranium incorporated in various mineral complexes throughout the evaporite sediments? How do the factors of depth, location, and seasonality influence the relative incorporation, mobility and speciation of uranium?We have systematically sampled from two soil columns over three dates in Riverton. The sampling dates span before and after a significant flooding event, providing insight into the flood's impact on local uranium mobility. Sequential chemical extractions are used to decipher the reactivity of uranium and approximate U operationally defined within reactants targeting carbonate, silicate, organic, and metal oxide bound or water and exchangeable phases. Extractions throughout the entirety of the sediment cores provide a high-resolution vertical profile of the distribution of uranium in various extracted phases. Throughout the profile, the majority (50-60%) of uranium is bound within carbonate-targeted extracts, a direct effect of the carbonate-rich evaporite sediments. The sum of our analyses provide a dynamic model of uranium incorporation within evaporite sediments holding implications for the fate of uranium throughout contaminated sites across the Colorado River Basin.
ALKALINE CARBONATE LEACHING PROCESS FOR URANIUM EXTRACTION
Thunaes, A.; Brown, E.A.; Rabbitts, A.T.
1957-11-12
A process for the leaching of uranium from high carbonate ores is presented. According to the process, the ore is leached at a temperature of about 200 deg C and a pressure of about 200 p.s.i.g. with a solution containing alkali carbonate, alkali permanganate, and bicarbonate ion, the bicarbonate ion functionlng to prevent premature formation of alkali hydroxide and consequent precipitation of a diuranate. After the leaching is complete, the uranium present is recovered by precipitation with NaOH.
Bruce, F.R.
1962-07-24
A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)
Process for alloying uranium and niobium
Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.
1991-01-01
Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.
DIRECT INGOT PROCESS FOR PRODUCING URANIUM
Leaders, W.M.; Knecht, W.S.
1960-11-15
A process is given in which uranium tetrafluoride is reduced to the metal with magnesium and in the same step the uranium metal formed is cast into an ingot. For this purpose a mold is arranged under and connected with the reaction bomb, and both are filled with the reaction mixture. The entire mixture is first heated to just below reaction temperature, and thereafter heating is restricted to the mixture in the mold. The reaction starts in the mold whereby heat is released which brings the rest of the mixture to reaction temperature. Pure uranium metal settles in the mold while the magnesium fluoride slag floats on top of it. After cooling, the uranium is separated from the slag by mechanical means.
Miller, William E [Naperville, IL; Gay, Eddie C [Park Forest, IL; Tomczuk, Zygmunt [Homer Glen, IL
2006-03-14
A improved device and process for recycling spent nuclear fuels, in particular uranium metal, that facilitates the refinement and recovery of uranium metal from spent metallic nuclear fuels. The electrorefiner device comprises two anodes in predetermined spatial relation to a cathode. The anodese have separate current and voltage controls. A much higher voltage than normal for the electrorefining process is applied to the second anode, thereby facilitating oxidization of uranium (III), U.sup.+, to uranium (IV), U.sup.+4. The current path from the second anode to the cathode is physically shorter than the similar current path from the second anode to the spent nuclear fuel contained in a first anode shaped as a basket. The resulting U.sup.+4 oxidizes and solubilizes rough uranium deposited on the surface of the cathode. A softer uranium metal surface is left on the cathode and is more readily removed by a scraper.
RECOVERY OF URANIUM AND THORIUM FROM AQUEOUS SOLUTIONS
Calkins, G.D.
1958-06-10
>A process is described for the recovery of uranium and thorium from monazite sand, which is frequently processed by treating it with a hot sodium hydroxide solution whereby a precipitate forms consisting mainly of oxides or hydroxides of the rare earths, thorium and uranium. The precipitate is dissolved in mineral acid, and the acid solution is then neutralized to a pH value of between 5.2 and 6.2 whereby both the uranium and thorium precipitate as the hydroxides, while substantially all the rare earth metal values present remain in the solution. The uranium and thoriunn can then be separated by dissolving the precipitate in a solution containing a mixture of alkali carbonate and alkali bicarbonate: and contacting the carbonate solution with a strong-base anion exchange resin whereby the uranium values are adsorbed on the resin while the thorium remains in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amber Wright; Edward Mausolf; Keri Campbell
2010-05-01
Acetohydroxamic acid (AHA) is an organic ligand planned for use in the Uranium Extraction (UREX) process. It reduces neptunium and plutonium, and the resultant hydrophilic complexes are separated from uranium by extraction with tributyl phosphate (TBP) in a hydrocarbon diluent. AHA undergoes hydrolysis to acetic acid which will impede the recycling of nitric acid. During recent discussions of the UREX process, it has been proposed to replace AHA by formohydroxamic acid (FHA). FHA will undergo hydrolysis to formic acid which is volatile, thus allowing the recycling of nitric acid. The reported reduction potentials of AHA and pertechnetate (TcO{sub 4}{sup -})more » indicated that it may be possible for AHA to reduce technetium, altering its fate in the fuel cycle. At UNLV, it has been demonstrated that TcO{sub 4}{sup -} undergoes reductive nitrosylation by AHA under a variety of conditions. The resulting divalent technetium is complexed by AHA to form the pseudo-octahedral trans-aquonitrosyl (diacetohydroxamic)-technetium(II) complex ([Tc{sup II}(NO)(AHA){sub 2}H{sub 2}O]{sup +}). In this paper, we are reporting the synthesis of FHA and its complex formation with technetium along with the characterization of FHA crystals achieved by NMR and IR spectroscopy. Two experiments were conducted to investigate the complexation of FHA with Tc and the results were compared with previous data on AHA. The first experiment involved the elution of Tc from a Reillex HP anion exchange resin, and the second one monitored the complexation of technetium with FHA by UV-visible spectrophotometry.« less
A phase-field simulation of uranium dendrite growth on the cathode in the electrorefining process
NASA Astrophysics Data System (ADS)
Shibuta, Yasushi; Unoura, Seiji; Sato, Takumi; Shibata, Hiroki; Kurata, Masaki; Suzuki, Toshio
2011-07-01
The uranium dendrite growth on the cathode during the pyroprocessing of uranium is investigated using a novel phase-field model, in which electrodeposition of uranium and zirconium from the molten-salt is taken into account. The threshold concentration of zirconium in the molten salt demarcating the dendritic and planar growth is then estimated as a function of the current density. Moreover, the growth process of both the dendritic and planar electrodeposits has been demonstrated by way of varying the mobility of the phase field, which consists of the effect of attachment kinetics and diffusion.
VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES
Hanley, W.R.
1959-01-01
A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.
FUSED SALT PROCESS FOR RECOVERY OF VALUES FROM USED NUCLEAR REACTOR FUELS
Moore, R.H.
1960-08-01
A process is given for recovering plutonium from a neutron-irradiated uranium mass (oxide or alloy) by dissolving the mass in an about equimolar alkali metalaluminum double chloride, adding aluminum metal to the mixture obtained at a temperature of between 260 and 860 deg C, and separating a uranium-containing metal phase and a plutonium-chloride- and fission-product chloridecontaining salt phase. Dissolution can be expedited by passing carbon tetrachloride vapors through the double salt. Separation without reduction of plutonium from neutron- bombarded uranium and that of cerium from uranium are also discussed.
Preparation and crystal structure of U3Fe2C5: An original uranium-iron carbide
NASA Astrophysics Data System (ADS)
Henriques, M. S.; Paixão, J. A.; Henriques, M. S. C.; Gonçalves, A. P.
2015-09-01
The U3Fe2C5 compound was prepared from the elements by arc-melting, followed by an heat-treatment in an induction furnace, at 1250 °C for 1 h and 1300 °C for 2 h. The crystal structure of this phase was determined by direct methods from single crystal X-ray diffraction data. U3Fe2C5 crystallizes in an original tetragonal crystal structure, with space group I4/mmm, a = 3.4980(3) Å and c = 19.8380(15) Å as lattice constants and two formula units per cell. This new type structure is characterized by the simultaneous presence of isolated and pairs of carbon atoms, the interatomic distances in the pairs being similar to a typical carbon-carbon double bond length found in a molecule. U3Fe2C5 is closely related to UC and UFeC2, and can be seen as build from two (distorted) UFeC2 unit cells and a UC layer.
Biogeochemical Processes Regulating the Mobility of Uranium in Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belli, Keaton M.; Taillefert, Martial
This book chapters reviews the latest knowledge on the biogeochemical processes regulating the mobility of uranium in sediments. It contains both data from the literature and new data from the authors.
Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.
Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T
2016-12-01
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. Published by Elsevier Ltd.
Zablotska, Lydia B; Lane, Rachel S D; Frost, Stanley E
2013-01-01
Objectives Uranium processing workers are exposed to uranium and radium compounds from the ore dust and to γ-ray radiation, but less to radon decay products (RDP), typical of the uranium miners. We examined the risks of these exposures in a cohort of workers from Port Hope radium and uranium refinery and processing plant. Design A retrospective cohort study with carefully documented exposures, which allowed separation of those with primary exposures to radium and uranium. Settings Port Hope, Ontario, Canada, uranium processors with no mining experience. Participants 3000 male and female workers first employed (1932–1980) and followed for mortality (1950–1999) and cancer incidence (1969–1999). Outcome measures Cohort mortality and incidence were compared with the general Canadian population. Poisson regression was used to evaluate the association between cumulative RDP exposures and γ-ray doses and causes of death and cancers potentially related to radium and uranium processing. Results Overall, workers had lower mortality and cancer incidence compared with the general Canadian population. In analyses restricted to men (n=2645), the person-year weighted mean cumulative RDP exposure was 15.9 working level months (WLM) and the mean cumulative whole-body γ-ray dose was 134.4 millisieverts. We observed small, non-statistically significant increases in radiation risks of mortality and incidence of lung cancer due to RDP exposures (excess relative risks/100 WLM=0.21, 95% CI <−0.45 to 1.59 and 0.77, 95% CI <−0.19 to 3.39, respectively), with similar risks for those exposed to radium and uranium. All other causes of death and cancer incidence were not significantly associated with RDP exposures or γ-ray doses or a combination of both. Conclusions In one of the largest cohort studies of workers exposed to radium, uranium and γ-ray doses, no significant radiation-associated risks were observed for any cancer site or cause of death. Continued follow-up and pooling with other cohorts of workers exposed to by-products of radium and uranium processing could provide valuable insight into occupational risks and suspected differences in risk with uranium miners. PMID:23449746
Baldwin, W.H.; Higgins, C.E.
1958-12-16
A process is described for recovering uranium values from acidic aqueous solutions containing hexavalent uranium by contacting the solution with an organic solution comprised of a substantially water-immiscible organlc diluent and an organic phosphate to extract the uranlum values into the organic phase. Carbon tetrachloride and a petroleum hydrocarbon fraction, such as kerosene, are sultable diluents to be used in combination with organlc phosphates such as dibutyl butylphosphonate, trlbutyl phosphine oxide, and tributyl phosphate.
Grossmann, Kay; Arnold, Thuro; Steudtner, Robin; Weiss, Stefan; Bernhard, Gert
2009-08-01
Low-temperature alteration reactions on uranium phases may lead to the mobilization of uranium and thereby poses a potential threat to humans living close to uranium-contaminated sites. In this study, the surface alteration of uraninite (UO(2)) and uranium tetrachloride (UCl(4)) in air atmosphere was studied by confocal laser scanning microscopy (CLSM) and laser-induced fluorescence spectroscopy using an excitation wavelength of 408 nm. It was found that within minutes the oxidation state on the surface of the uraninite and the uranium tetrachloride changed. During the surface alteration process U(IV) atoms on the uraninite and uranium tetrachloride surface became stepwise oxidized by a one-electron step at first to U(V) and then further to U(VI). These observed changes in the oxidation states of the uraninite surface were microscopically visualized and spectroscopically identified on the basis of their fluorescence emission signal. A fluorescence signal in the wavelength range of 415-475 nm was indicative for metastable uranium(V), and a fluorescence signal in the range of 480-560 nm was identified as uranium(VI). In addition, the oxidation process of tetravalent uranium in aqueous solution at pH 0.3 was visualized by CLSM and U(V) was fluorescence spectroscopically identified. The combination of microscopy and fluorescence spectroscopy provided a very convincing visualization of the brief presence of U(V) as a metastable reaction intermediate and of the simultaneous coexistence of the three states U(IV), U(V), and U(VI). These results have a significant importance for fundamental uranium redox chemistry and should contribute to a better understanding of the geochemical behavior of uranium in nature.
Tapia-Rodriguez, Aida; Luna-Velasco, Antonia; Field, Jim A; Sierra-Alvarez, Reyes
2010-04-01
Uranium has been responsible for extensive contamination of groundwater due to releases from mill tailings and other uranium processing waste. Past evidence has confirmed that certain bacteria can enzymatically reduce soluble hexavalent uranium (U(VI)) to insoluble tetravalent uranium (U(IV)) under anaerobic conditions in the presence of appropriate electron donors. This paper focuses on the evaluation of anaerobic granular sludge as a source of inoculum for the bioremediation of uranium in water. Batch experiments were performed with several methanogenic anaerobic granular sludge samples and different electron donors. Abiotic controls consisting of heat-killed inoculum and non-inoculated treatments confirmed the biological removal process. In this study, unadapted anaerobic granular sludge immediately reduced U(VI), suggesting an intrinsic capacity of the sludge to support this process. The high biodiversity of anaerobic granular sludge most likely accounts for the presence of specific microorganisms capable of reducing U(VI). Oxidation by O(2) was shown to resolubilize the uranium. This observation combined with X-ray diffraction evidence of uraninite confirmed that the removal during anaerobic treatment was due to reductive precipitation. The anaerobic removal activity could be sustained after several respikes of U(VI). The U(VI) removal was feasible without addition of electron donors, indicating that the decay of endogenous biomass substrates was contributing electron equivalents to the process. Addition of electron donors, such as H(2) stimulated the removal of U(VI) to varying degrees. The stimulation was greater in sludge samples with lower endogenous substrate levels. The present work reveals the potential application of anaerobic granular sludge for continuous bioremediation schemes to treat uranium-contaminated water. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Improved detector for the measurement of gamma radiation
NASA Astrophysics Data System (ADS)
Zelt, F. B.
1985-07-01
The present invention lies in the field of gamma ray spectrometry of geologic deposits and other materials, such as building materials (cement, asphalt, etc.) More specifically, the invention is an improved device for the gamma ray spetcrometery of gelogical deposits as a tool for petroleum exploration, geologic research and monitoring of radio-active materials such as in uranium mill tailings and the like. Improvement consists in enlarging the area of the receptor face and without any necessarily substantial increase in the volume of the receptor crystal over the current cylindrical shapes. The invention also provides, as a corollary of the increase in area receptor crystal face, a reduction in the weight of the amount of material necessary to provide effective shielding of the crystal from atmospheric radiation and radiation from deposits not under examination. The area of the receptor crystal face is increased by forming the crystal as a truncated cone with the shielding shaped as a hollow frustrum of a cone. A photomultiplier device is secured to the smaller face of the crystal. The improved detector shape can also be used in scintillometers which measure total gamma radiation.
40 CFR 192.00 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...
40 CFR 192.10 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of Land and Buildings Contaminated with Residual Radioactive Materials from Inactive Uranium Processing... radioactive materials at which all or substantially all of the uranium was produced for sale to any Federal...
40 CFR 192.00 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...
40 CFR 192.10 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of Land and Buildings Contaminated with Residual Radioactive Materials from Inactive Uranium Processing... radioactive materials at which all or substantially all of the uranium was produced for sale to any Federal...
40 CFR 192.00 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...
40 CFR 192.00 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...
Process for reducing beta activity in uranium
Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward
1986-10-07
This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.
Process for reducing beta activity in uranium
Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward
1986-01-01
This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.
Process for reducing beta activity in uranium
Briggs, G.G.; Kato, T.R.; Schonegg, E.
1985-04-11
This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, John P.
1992-01-01
A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
High loading uranium fuel plate
Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.
1990-01-01
Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.
Hyde, E.K.; Katzin, L.I.; Wolf, M.J.
1959-07-14
The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.
Safeguards on uranium ore concentrate? the impact of modern mining and milling process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, Stephen
2013-07-01
Increased purity in uranium ore concentrate not only raises the question as to whether Safeguards should be applied to the entirety of uranium conversion facilities, but also as to whether some degree of coverage should be moved back to uranium ore concentrate production at uranium mining and milling facilities. This paper looks at uranium ore concentrate production across the globe and explores the extent to which increased purity is evident and the underlying reasons. Potential issues this increase in purity raises for IAEA's strategy on the Starting Point of Safeguards are also discussed.
ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE
Lofthouse, E.
1954-08-31
This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladd-Lively, Jennifer L
2014-01-01
The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less
The synthesis and crystal structure of α-Ca 3UO 6
NASA Astrophysics Data System (ADS)
Holc, J.; Golic̆, L.
1983-07-01
Single crystals of α-Ca 3UO 6 were grown from a UO 3CaCl 2CaO melt by the slow cooling method from 950°C. The crystal structure was determined by means of X-ray diffraction with R = 0.032 and Rw = 0.019. The structure of α-Ca 3UO 6 is of Mg 3TeO 6 type. α-Ca 3UO 6 is rhombohedral with a = 6.729 (1)Å, α = 90.30 (1)°, Z = 2, Dc = 4.955 g/cm 3, Dm = 4.79 g/cm 3, space group R overline3. Uranium and calcium atoms are six-coordinated. At 1200°C rhombohedral α-Ca 3UO 6 irreversibly transforms to monoclinic β-Ca 3UO 6.
Strong crystal field effect in ? - optical absorption study
NASA Astrophysics Data System (ADS)
Gajek, Z.; Krupa, J. C.
1998-12-01
=-1 Results of optical absorption measurements in polarized light on tetravalent neptunium diluted in a 0953-8984/10/50/021/img6 single crystal are reported. The recorded spectra are complex, pointing to the presence of an 0953-8984/10/50/021/img7 impurity. The electronic transitions assigned to the 0953-8984/10/50/021/img8 ion are interpreted in terms of the usual model, following the actual understanding of the neptunium electronic structure and independent theoretical predictions. R.m.s. deviations of the order of 0953-8984/10/50/021/img9 have been obtained for 42 levels fitted with 11 free parameters. The crystal field effect resulting from the fitting is considerably larger than that observed for the uranium ion in the same host.
Uniaxial ferromagnetism of local uranium moments in hexagonal UBeGe
NASA Astrophysics Data System (ADS)
Gumeniuk, Roman; Yaresko, Alexander N.; Schnelle, Walter; Nicklas, Michael; Kvashnina, Kristina O.; Hennig, Christoph; Grin, Yuri; Leithe-Jasper, Andreas
2018-05-01
The new intermetallic uranium beryllium germanide UBeGe and its thorium analogon ThBeGe crystallize with the hexagonal ZrBeSi type of structure. Studies of magnetic, thermal, and transport properties were performed on polycrystalline samples between 1.8 and 750K. UBeGe is a uniaxial ferromagnet and there are indications for two magnetic transitions at TC(1 )≈160 K and TC(2 )≈150 K . The high paramagnetic effective moment μeff≈3.1 μB , x-ray absorption near-edge spectroscopy (XANES, 17-300 K), as well as theoretical DFT calculations indicate localized U 5 f2 states in UBeGe. ThBeGe is a diamagnetic metallic material with low density of states at the Fermi level.
PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM
Wheelwright, E.J.
1959-02-17
A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechelynck, Ph.
1958-07-15
After an examination of the different processes for the treatment of uranium minerals, it is concluded that the extraction of uranium by ion exchange is not applicable to hydrochloric acid solutions of phosphates. A sulfuric or phosphoric solution can be used. For solvent extraction of uranium, sulfuric or phosphoric solutions are the best, but hydrochloric solutions can be used. The cost of the solvents used would determine the cost of the operation. It is necessary, in the case of liquid-liquid extraction, to filter or decant the solution before extraction. (tr-auth)
PROCESS FOR PRODUCING URANIUM TETRAFLUORIDE
Harvey, B.G.
1954-09-14
>This patent relates to improvements in the method for producing uranium tetrafluoride by treating an aqueous solutlon of a uranyl salt at an elevated temperature with a reducing agent effective in acld solutlon in the presence of hydrofluoric acid. Uranium tetrafluoride produced this way frequentiy contains impurities in the raw material serving as the source of uranium. Uranium tetrafluoride much less contaminated with impurities than when prepared by the above method can be prepared from materials containing such impurities by first adding a small proportion of reducing agent so as to cause a small fraction, for example 1 to 5% of the uranium tetrafluoride to be precipitated, rejecting such precipitate, and then precipitating and recovering the remainder of the uranium tetrafluoride.
FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING
Roake, W.E.
1958-08-19
A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The
Steindler, M.J.
1962-07-24
A process was developed for separating uranium hexafluoride from plutonium hexafluoride by the selective reduction of the plutonium hexafluoride to the tetrafluoride with sulfur tetrafluoride at 50 to 120 deg C, cooling the mixture to --60 to -100 deg C, and volatilizing nonreacted sulfur tetrafluoride and sulfur hexafluoride formed at that temperature. The uranium hexafluoride is volatilized at room temperature away from the solid plutonium tetrafluoride. (AEC)
Lukens, Wayne W.; Speldrich, Manfred; Yang, Ping; ...
2016-05-31
The electronic structures of 4f 3/5f 3 Cp" 3M and Cp" 3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(III) and uranium(III) tris-cyclopentadienylmore » complexes and their isocyanide adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. As a result, while interaction with the isocyanide π*-orbitals lowers the energies of the 5f xz2 and 5f yz2-orbitals, spin–orbit coupling greatly reduces the population of 5f xz2 and 5f yz2 in the ground state.« less
Spedding, F.H.; Butler, T.A.
1962-05-15
A process is given for separating fission products from uranium by extracting the former into molten aluminum. Phase isolation can be accomplished by selectively hydriding the uranium at between 200 and 300 deg C and separating the hydride powder from coarse particles of fissionproduct-containing aluminum. (AEC)
40 CFR 421.326 - Pretreatment standards for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Uranium Subcategory... wastewater pollutants in secondary uranium process wastewater introduced into a POTW shall not exceed the following values: (a) Refinery sump filtrate. PSNS for the Secondary Uranium Subcategory Pollutant or...
40 CFR 421.326 - Pretreatment standards for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Uranium Subcategory... wastewater pollutants in secondary uranium process wastewater introduced into a POTW shall not exceed the following values: (a) Refinery sump filtrate. PSNS for the Secondary Uranium Subcategory Pollutant or...
40 CFR 421.326 - Pretreatment standards for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Uranium Subcategory... wastewater pollutants in secondary uranium process wastewater introduced into a POTW shall not exceed the following values: (a) Refinery sump filtrate. PSNS for the Secondary Uranium Subcategory Pollutant or...
Dupoly process for treatment of depleted uranium and production of beneficial end products
Kalb, Paul D.; Adams, Jay W.; Lageraaen, Paul R.; Cooley, Carl R.
2000-02-29
The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.
Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; ...
2016-12-27
The interactions of two extremely halophilic archaea with uranium were investigated in this paper at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, themore » involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Finally, our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bader, Miriam; Müller, Katharina; Foerstendorf, Harald
The interactions of two extremely halophilic archaea with uranium were investigated in this paper at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, themore » involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Finally, our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.« less
Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Drobot, Björn; Schmidt, Matthias; Musat, Niculina; Swanson, Juliet S; Reed, Donald T; Stumpf, Thorsten; Cherkouk, Andrea
2017-04-05
The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization. Copyright © 2016. Published by Elsevier B.V.
A METHOD OF PREPARING URANIUM DIOXIDE
Scott, F.A.; Mudge, L.K.
1963-12-17
A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)
Post, V E A; Vassolo, S I; Tiberghien, C; Baranyikwa, D; Miburo, D
2017-12-31
The potential use of groundwater for potable water supply can be severely compromised by natural contaminants such as uranium. The environmental mobility of uranium depends on a suite of factors including aquifer lithology, redox conditions, complexing agents, and hydrological processes. Uranium concentrations of up to 734μg/L are found in groundwater in northern Burundi, and the objective of the present study was to identify the causes for these elevated concentrations. Based on a comprehensive data set of groundwater chemistry, geology, and hydrological measurements, it was found that the highest dissolved uranium concentrations in groundwater occur near the shores of Lake Tshohoha South and other smaller lakes nearby. A model is proposed in which weathering and evapotranspiration during groundwater recharge, flow and discharge exert the dominant controls on the groundwater chemical composition. Results of PHREEQC simulations quantitatively confirm this conceptual model and show that uranium mobilization followed by evapo-concentration is the most likely explanation for the high dissolved uranium concentrations observed. The uranium source is the granitic sand, which was found to have a mean elemental uranium content of 14ppm, but the exact mobilization process could not be established. Uranium concentrations may further be controlled by adsorption, especially where calcium-uranyl‑carbonate complexes are present. Water and uranium mass balance calculations for Lake Tshohoha South are consistent with the inferred fluxes and show that high‑uranium groundwater represents only a minor fraction of the overall water input to the lake. These findings highlight that the evaporation effects that cause radionuclide concentrations to rise to harmful levels in groundwater discharge areas are not only confined to arid regions, and that this should be considered when selecting suitable locations for water supply wells. Copyright © 2017 Elsevier B.V. All rights reserved.
10 CFR 765.21 - Procedures for processing reimbursement claims.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Procedures for processing reimbursement claims. 765.21 Section 765.21 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... uranium or thorium processing site licensees for approved costs of remedial action will be made...
10 CFR 765.21 - Procedures for processing reimbursement claims.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Procedures for processing reimbursement claims. 765.21 Section 765.21 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... uranium or thorium processing site licensees for approved costs of remedial action will be made...
10 CFR 765.21 - Procedures for processing reimbursement claims.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Procedures for processing reimbursement claims. 765.21 Section 765.21 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... uranium or thorium processing site licensees for approved costs of remedial action will be made...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.
2003-02-27
Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials atmore » a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.« less
Coffinberry, A.S.; Schonfeld, F.W.
1959-09-01
Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.
Rainey, R.H.; Moore, J.G.
1962-08-14
A liquid-liquid extraction process was developed for recovering thorium and uranium values from a neutron irradiated thorium composition. They are separated from a solvent extraction system comprising a first end extraction stage for introducing an aqueous feed containing thorium and uranium into the system consisting of a plurality of intermediate extractiorr stages and a second end extractron stage for introducing an aqueous immiscible selective organic solvent for thorium and uranium in countercurrent contact therein with the aqueous feed. A nitrate iondeficient aqueous feed solution containing thorium and uranium was introduced into the first end extraction stage in countercurrent contact with the organic solvent entering the system from the second end extraction stage while intro ducing an aqueous solution of salting nitric acid into any one of the intermediate extraction stages of the system. The resultant thorium and uranium-laden organic solvent was removed at a point preceding the first end extraction stage of the system. (AEC)
Heat-induced redistribution of surface oxide in uranium
NASA Astrophysics Data System (ADS)
Swissa, Eli; Shamir, Noah; Mintz, Moshe H.; Bloch, Joseph
1990-09-01
The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450°C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800°C. The activation energy obtained was Ea = 15.4 ± 1.9 kcal/mole and the pre-exponential factor, D0 = 1.1 × 10 -8cm2/ s. An internal oxidation mechanism is proposed to explain the results.
Absorption of Thermal Neutrons in Uranium
DOE R&D Accomplishments Database
Creutz, E. C.; Wilson, R. R.; Wigner, E. P.
1941-09-26
A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.
Process for producing an aggregate suitable for inclusion into a radiation shielding product
Lessing, Paul A.; Kong, Peter C.
2000-01-01
The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.
Uranium lines in the spectra of peculiar A stars - A search for recent r-process events
NASA Technical Reports Server (NTRS)
Cowley, C. R.; Adelman, S. J.
1975-01-01
Uranium wavelengths in the spectra of Ap stars are studied to see if they give any indication of a recent r-process event. It is concluded that there is no credible evidence for an admixture of uranium-235 in these stars, which would imply such an event. The evidence, though negative, is badly confused by blending of lines, and a final judgement must wait for an observational clarification of the situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shusterman, Jennifer A.
We are measuring freshly separated uranium samples using modern list mode (event-by-event) electronics with high resolution HPGe detectors to study the in-growth behaviors of uranium daughters’ gamma-rays. These data will show how we can use gamma-ray spectroscopy to determine the separation date for processed uranium. With this knowledge, one can obtain proper uranium isotope ratios using standard safeguards accountability software such as U-235 or MGAU.
ELECTROCHEMICAL DECONTAMINATION AND RECOVERY OF URANIUM VALUES
McLaren, J.A.; Goode, J.H.
1958-05-13
An electrochemical process is described for separating uranium from fission products. The method comprises subjecting the mass of uranium to anodic dissolution in an electrolytic cell containing aqueous alkali bicarbonate solution as its electrolyte, thereby promoting a settling from the solution of a solid sludge from about the electrodes and separating the resulting electrolyte solution containing the anodically dissolved uranium from the sludge which contains the rare earth fission products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillet, H.
1959-02-01
A description is given of direct fluorination of preconcentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by lime to obtain either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial productmore » in a diffusion plant. (auth)« less
Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads.
Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng
2013-12-01
Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH(0), ΔS(0) and ΔG(0) were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The environments of the known uranium occurences in South Australia arc described, and the relation of uranium mineralization with sodic granitic rocks is emphasized. The problems in designing equipment for radiometric prospecting are reviewed. The fabrication and properties of BeO, UO/sub 2/, ThO/sub 2/, and mixed oxides are discussed. The use of pulsing in a uranium extraction pilot plant ion exchange column is described. The wetting of metals by liquid metals is reviewed with emphasis on liquid sodium. The geological nature, extent, and future prospects of minerals with atomic energy applications, occurring in New South Wales are outlined. The developmentmore » of a process for uranium recovery from Mary Kathleen ores is described. Techniques and processes involved in locating, mining, and concentrating davidite-type ores at Radium Hill, South Australia are described. The uranium deposits of the Northern Territory, Australia, are classified and described. The flotation behavior of the simple oxide minerals, uraninite and the colloform variety is discussed. The Port Pirie Treatment Plant for uranium recovery from refractory Radium Hill concentrates is described. The plant utilizes the sulfuric acid-ion exchange process. The uranium deposits of Queensland are described. the details of the production of uranium ore concentrates at Rum jungle near Darwin, Australia, are given. A brief account of the use of neutron diffraction analysis in crystallography is given, and the neutron spectrometers installed on the High Flux Australian Research Reactor are described. (T.R.H.)« less
NASA Astrophysics Data System (ADS)
Krawczynski, M.; McLean, N.
2017-12-01
One of the most accurate and useful ways of determining the age of rocks that formed more than about 500,000 years ago is uranium-lead (U-Pb) geochronology. Earth scientists use U-Pb geochronology to put together the geologic history of entire regions and of specific events, like the mass extinction of all non-avian dinosaurs about 66 million years ago or the catastrophic eruptions of supervolcanoes like the one currently centered at Yellowstone. The mineral zircon is often utilized because it is abundant, durable, and readily incorporates uranium into its crystal structure. But it excludes thorium, whose isotope 230Th is part of the naturally occurring isotopic decay chain from 238U to 206Pb. Calculating a date from the relative abundances of 206Pb and 238U therefore requires a correction for the missing 230Th. Existing experimental and observational constraints on the way U and Th behave when zircon crystallizes from a melt are not known precisely enough, and thus currently the uncertainty in dates introduced by they `Th correction' is one of the largest sources of systematic error in determining dates. Here we present preliminary results on our study of actinide partitioning between zircon and melt. Experiments have been conducted to grow zircon from melts doped with U and Th that mimic natural magmas at a range of temperatures, and compositions. Synthetic zircons are separated from their coexisting glass and using high precision and high-spatial-resolution techniques, the abundance and distribution of U and Th in each phase is determined. These preliminary experiments are the beginning of a study that will result in precise determination of the zircon/melt uranium and thorium partition coefficients under a wide variety of naturally occurring conditions. This data will be fit to a multidimensional surface using maximum likelihood regression techniques, so that the ratio of partition coefficients can be calculated for any set of known parameters. The results of this study will reduce the largest source of uncertainty in dating young zircons and improve the accuracy of U-Pb dates, improving our ability to tell time during geologic processes. The attainment of more accurate timing of the geologic timescale is important to geologists of all disciplines, from paleontology to planetary cosmochemistry to geobiology.
40 CFR 421.324 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Uranium... Uranium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of uranium processed in the refinery Chromium (total) 27.14 11.00...
40 CFR 421.324 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Uranium... Uranium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of uranium processed in the refinery Chromium (total) 27.14 11.00...
40 CFR 421.324 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Uranium... Uranium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of uranium processed in the refinery Chromium (total) 27.14 11.00...
METHOD OF SEPARATING URANIUM SUSPENSIONS
Wigner, E.P.; McAdams, W.A.
1958-08-26
A process is presented for separating colloidally dissed uranium oxides from the heavy water medium in upwhich they are contained. The method consists in treating such dispersions with hydrogen peroxide, thereby converting the uranium to non-colloidal UO/sub 4/, and separating the UO/sub 4/ sfter its rapid settling.
Conversion of depleted uranium hexafluoride to a solid uranium compound
Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip
2001-01-01
A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.
NASA Astrophysics Data System (ADS)
Dillard, J. G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H. J.
1984-09-01
The adsorption of methyl iodide on uranium and on uranium dioxide has been studied at 25 °C. Surfaces of the substrates were characterized before and after adsorption by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The XPS binding energy results indicate that CH 3I adsorption on uranium yields a carbide-type carbon, UC, and uranium iodide, UI 3. On uranium dioxide the carbon electron binding energy measurements are consistent with the formation of a hydrocarbon, —CH 3-type moiety. The interpretation of XPS and AES spectral features for CH 3I adsorption on uranium suggest that a complex dissociative adsorption reaction takes place. Adsorption of CH 3I on UO 2 occurs via a dissociative process. Saturation coverage occurs on uranium at approximately two langmuir (1 L = 10 -6 Torr s) exposure whereas saturation coverage on uranium dioxide is found at about five langmuir.
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, J.P.
1992-03-17
A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel
NASA Astrophysics Data System (ADS)
Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.
2015-09-01
For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.
Sauer, Nancy N.; Watkin, John G.
1992-01-01
A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.
Sauer, N.N.; Watkin, J.G.
1992-03-24
A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.
Kesler, R.D.; Rabb, D.D.
1959-07-28
An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.
DUPoly process for treatment of depleted uranium and production of beneficial end products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalb, P.D.; Adams, J.W.; Lageraaen, P.R.
2000-02-29
The present invention provides a process of encapsulating depleted uranium by forming a homogeneous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships,more » missiles, armor or projectiles.« less
Mironov, Vladislav P; Matusevich, Janna L; Kudrjashov, Vladimir P; Boulyga, Sergei F; Becker, J Sabine
2002-12-01
This work presents experimental results on the distribution of irradiated reactor uranium from fallout after the accident at Chernobyl Nuclear Power Plant (NPP) in comparison to natural uranium distribution in different soil types. Oxidation processes and vertical migration of irradiated uranium in soils typical of the 30 km relocation area around Chernobyl NPP were studied using 236U as the tracer for irradiated reactor uranium and inductively coupled plasma mass spectrometry as the analytical method for uranium isotope ratio measurements. Measurements of natural uranium yielded significant variations of its concentration in upper soil layers from 2 x 10(-7) g g(-1) to 3.4 x 10(-6) g g(-1). Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 5 x 10(-12) g g(-1) to 2 x 10(-6) g g(-1) depending on the distance from Chernobyl NPP. In the majority of investigated soil profiles 78% to 97% of irradiated "Chernobyl" uranium is still contained in the upper 0-10 cm soil layers. The physical and chemical characteristics of the soil do not have any significant influence on processes of fuel particle destruction. Results obtained using carbonate leaching of 236U confirmed that more than 60% of irradiated "Chernobyl" uranium is still in a tetravalent form, ie. it is included in the fuel matrix (non-oxidized fuel UO2). The average value of the destruction rate of fuel particles determined for the Western radioactive trace (k = 0.030 +/- 0.005 yr(-1)) and for the Northern radioactive trace (k = 0.035 + 0.009 yr(-1)) coincide within experimental errors. Use of leaching of fission products in comparison to leaching of uranium for study of the destruction rate of fuel particles yielded poor coincidence due to the fact that use of fission products does not take into account differences in the chemical properties of fission products and fuel matrix (uranium).
The roles of organic matter in the formation of uranium deposits in sedimentary rocks
Spirakis, C.S.
1996-01-01
Because reduced uranium species have a much smaller solubility than oxidized uranium species and because of the strong association of organic matter (a powerful reductant) with many uranium ores, reduction has long been considered to be the precipitation mechanism for many types of uranium deposits. Organic matter may also be involved in the alterations in and around tabular uranium deposits, including dolomite precipitation, formation of silicified layers, iron-titanium oxide destruction, dissolution of quartz grains, and precipitation of clay minerals. The diagenetic processes that produced these alterations also consumed organic matter. Consequently, those tabular deposits that underwent the more advanced stages of diagenesis, including methanogenesis and organic acid generation, display the greatest range of alterations and contain the smallest amount of organic matter. Because of certain similarities between tabular uranium deposits and Precambrian unconformity-related deposits, some of the same processes might have been involved in the genesis of Precambrian unconformity-related deposits. Hydrologic studies place important constraints on genetic models of various types of uranium deposits. In roll-front deposits, oxidized waters carried uranium to reductants (organic matter and pyrite derived from sulfate reduction by organic matter). After these reductants were oxidized at any point in the host sandstone, uranium minerals were reoxidized and transported further down the flow path to react with additional reductants. In this manner, the uranium ore migrated through the sandstone at a rate slower than the mineralizing ground water. In the case of tabular uranium deposits, the recharge of surface water into the ground water during flooding of lakes carried soluble humic material to the water table or to an interface where humate precipitated in tabular layers. These humate layers then established the chemical conditions for mineralization and related alterations. In the case of Precambrian unconformity-related deposits, free thermal convection in the thick sandstones overlying the basement rocks carried uranium to concentrations of organic matter in the basement rocks.
Uranium speciation in acid waste-weathered sediments: The role of aging and phosphate amendments
Perdrial, Nicolas; Vázquez-Ortega, Angélica; Wang, Guohui; ...
2017-12-05
Uranium speciation and lability are strongly coupled to mineral transformations in silicate sediments, particularly for sediments subjected to weathering in acidic, high-level radioactive waste, as occurred at the Department of Energy's Hanford (WA) site. Here, uncontaminated Hanford sediments were reacted for 365 days with acidic (pH 3), uranium-bearing waste solutions, with and without phosphate in batch experiments, prior to detailed characterizations using electron microscopy, x-ray diffraction and x-ray absorption spectroscopy. In PO 4-reactant free systems, uranium speciation was controlled initially by precipitation of compreignacite [K 2(UO 2) 6O 4(OH) 6·8H 2O]- and becquerelite [Ca(UO 2) 6O 4(OH) 6·8H 2O]-like species.more » Subsequent further removal of uranium coincided with that of Si and accumulation of boltwoodite, [(K, Na)(UO 2) 2O 4(HSiO 4) 2•0.5(H 2O)]-like species of uranium at 180 and 365 days. When present, PO 4 exerted a direct and strong control over U speciation. Furthermore, the detection of meta-ankoleite, [K 2(UO 2) 2O 4(PO 4) 2·6H 2O] at all reaction times when U was present emphasizes the importance of dissolved phosphate as a control on U speciation. Here, meta-ankoleite appears well crystallized and when it occurs as the principal product of sediment weathering, its low solubility is expected to limit dissolved U(VI) concentrations in groundwater. Although boltwoodite solubility is also low, it is formed more slowly (and only when PO 4 is absent), after initial precipitation of more soluble, less crystalline uranyl hydroxides. In the context of Hanford crib waste our results suggest that with PO 4 present, nearly all uranium would have precipitated in the upper soil.« less
Uranium speciation in acid waste-weathered sediments: The role of aging and phosphate amendments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perdrial, Nicolas; Vázquez-Ortega, Angélica; Wang, Guohui
Uranium speciation and lability are strongly coupled to mineral transformations in silicate sediments, particularly for sediments subjected to weathering in acidic, high-level radioactive waste, as occurred at the Department of Energy's Hanford (WA) site. In this study, uncontaminated Hanford sediments were reacted for 365 days with acidic (pH 3), uranium-bearing waste solutions, with and without phosphate in batch experiments, prior to detailed characterizations using electron microscopy, x-ray diffraction and x-ray absorption spectroscopy. In PO(4)(-)reactant free systems, uranium speciation was controlled initially by precipitation of compreignacite [K-2(UO2)(6)O-4(OH)(6)center dot 8H(2)O]-and becquerelite [Ca(UO2)(6)O-4(OH)(6)center dot 8H(2)O]-like species. Subsequent further removal of uranium coincided withmore » that of Si and accumulation of boltwoodite, [(K, Na)(UO2)(2)O-4(HSiO4)(2)center dot 0.5(H2O)]-like species of uranium at 180 and 365 days. When present, PO4 exerted a direct and strong control over U speciation. The detection of meta-ankoleite, [K-2(UO2)(2)O-4(PO4)(2)center dot 6H(2)O] at all reaction times when U was present emphasizes the importance of dissolved phosphate as a control on U speciation. Here, meta-ankoleite appears well crystallized and when it occurs as the principal product of sediment weathering, its low solubility is expected to limit dissolved U(VI) concentrations in groundwater. Although boltwoodite solubility is also low, it is formed more slowly (and only when PO4 is absent), after initial precipitation of more soluble, less crystalline uranyl hydroxides. In the context of Hanford crib waste our results suggest that with PO4 present, nearly all uranium would have precipitated in the upper soil.« less
Uranium speciation in acid waste-weathered sediments: The role of aging and phosphate amendments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perdrial, Nicolas; Vázquez-Ortega, Angélica; Wang, Guohui
Uranium speciation and lability are strongly coupled to mineral transformations in silicate sediments, particularly for sediments subjected to weathering in acidic, high-level radioactive waste, as occurred at the Department of Energy's Hanford (WA) site. Here, uncontaminated Hanford sediments were reacted for 365 days with acidic (pH 3), uranium-bearing waste solutions, with and without phosphate in batch experiments, prior to detailed characterizations using electron microscopy, x-ray diffraction and x-ray absorption spectroscopy. In PO 4-reactant free systems, uranium speciation was controlled initially by precipitation of compreignacite [K 2(UO 2) 6O 4(OH) 6·8H 2O]- and becquerelite [Ca(UO 2) 6O 4(OH) 6·8H 2O]-like species.more » Subsequent further removal of uranium coincided with that of Si and accumulation of boltwoodite, [(K, Na)(UO 2) 2O 4(HSiO 4) 2•0.5(H 2O)]-like species of uranium at 180 and 365 days. When present, PO 4 exerted a direct and strong control over U speciation. Furthermore, the detection of meta-ankoleite, [K 2(UO 2) 2O 4(PO 4) 2·6H 2O] at all reaction times when U was present emphasizes the importance of dissolved phosphate as a control on U speciation. Here, meta-ankoleite appears well crystallized and when it occurs as the principal product of sediment weathering, its low solubility is expected to limit dissolved U(VI) concentrations in groundwater. Although boltwoodite solubility is also low, it is formed more slowly (and only when PO 4 is absent), after initial precipitation of more soluble, less crystalline uranyl hydroxides. In the context of Hanford crib waste our results suggest that with PO 4 present, nearly all uranium would have precipitated in the upper soil.« less
40 CFR 471.73 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... Uranium Forming Subcategory § 471.73 New source performance standards (NSPS). Any new source subject to... in the uranium forming process wastewater shall not exceed the following values: (a) Extrusion spent... monthly average mg/off-kg (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium...
40 CFR 471.73 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... Uranium Forming Subcategory § 471.73 New source performance standards (NSPS). Any new source subject to... in the uranium forming process wastewater shall not exceed the following values: (a) Extrusion spent... monthly average mg/off-kg (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium...
40 CFR 471.73 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... Uranium Forming Subcategory § 471.73 New source performance standards (NSPS). Any new source subject to... in the uranium forming process wastewater shall not exceed the following values: (a) Extrusion spent... monthly average mg/off-kg (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium...
Newton, A S
1950-12-05
Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.
Effects of Uranium Oxides on Some of the Algae Native to Eglin Air Force Base, Florida.
1982-06-01
Chlorella , and Selenastrum were not identified from the collections after microscopic examination. 4. MOBILITY OF DEPLETED URANIUM BY DISSOLUTION IN NATURAL...processes. A similar finding nas been previously reported for Chlorella regularis (Sakaguchi, Horikoshi, and Nakajima, 1978). In addition, uranium
PROCESS FOR PRODUCING URANIUM HEXAFLUORIDE
Fowler, R.D.
1957-10-22
A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ convented to UF/sub 6/ by reaction with a fluorinating agent. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reaction chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. The oven is then swept clean of hydrogen and the water vapor formed by means of nitrogen and then while continuing to maintain the temperature between 400 and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion to uranium tetrafluoride, the temperature of the reaction chamber is lowered to ahout 400 deg C, and elemental fluorine is used as the fluorinating agent for the conversion of UF/sub 4/ into UF/sub 6/. The fluorine gas is passed into the chamber, and the UF/sub 6/ formed passes out and is delivered to a condenser.
Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; ...
2015-11-30
High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3 H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposuremore » in real seawater. The Na 2CO 3 H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.« less
Lu-Fritts, Pai-Yue; Kottyan, Leah C.; James, Judith A.; Xie, Changchung; Buckholz, Jeanette M.; Pinney, Susan M.; Harley, John B.
2014-01-01
Objective Explore the hypothesis that cases of SLE will be found more frequently in community members with high prior uranium exposure in the Fernald Community Cohort (FCC). Methods A nested case control study was performed. The FCC is a volunteer population that lived near a uranium ore processing plant in Fernald, Ohio, USA during plant operation and members were monitored for 18 years. Uranium plant workers were excluded. SLE cases were identified using American College of Rheumatology classification criteria, laboratory testing, and medical record review. Each case was matched to four age-, race-, and sex-matched controls. Sera from potential cases and controls were screened for autoantibodies. Cumulative uranium particulate exposure was calculated using a dosimetry model. Logistic regression with covariates was used to calculate odds ratios (OR) with 95% confidence intervals (CI). Results The FCC includes 4,187 individuals with background uranium exposure, 1,273 with moderate exposure, and 2,756 with higher exposure. SLE was confirmed in 23 of 31 individuals with a lupus ICD9 code, and in 2 of 43 other individuals prescribed hydroxychloroquine. The female:male ratio was 5.25:1. Of the 25 SLE cases, 12 were in the higher exposure group. SLE was associated with higher uranium exposure (OR 3.92, 95% CI 1.131-13.588, p = 0.031). Conclusion High uranium exposure is associated with SLE relative to matched controls in this sample of uranium exposed individuals. Potential explanations for this relationship include possible autoimmune or estrogen effects of uranium, somatic mutation, epigenetic effects, or effects of some other unidentified accompanying exposure. PMID:25103365
Separation of uranium from technetium in recovery of spent nuclear fuel
Pruett, D.J.; McTaggart, D.R.
1983-08-31
Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc/sup +7/ therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.
METHOD OF JACKETING URANIUM BODIES
Maloney, J.O.; Haines, E.B.; Tepe, J.B.
1958-08-26
An improved process is presented for providing uranium slugs with thin walled aluminum jackets. Since aluminum has a slightiy higher coefficient of thermal expansion than does uraaium, both uranium slugs and aluminum cans are heated to an elevated temperature of about 180 C, and the slug are inserted in the cans at that temperature. During the subsequent cooling of the assembly, the aluminum contracts more than does the uranium and a tight shrink fit is thus assured.
REMOVAL OF URANIUM FROM ORGANIC LIQUIDS
Vavalides, S.P.
1959-08-25
A process is described for recovering small quantities of uranium from organic liquids such as hydrocarbon oils. halogen-substituted hydrocarbons, and alcohols. The organic liquid is contacted with a comminuted alkaline earth hydroxide, calcium hydroxide particularly, and the resulting uranium-bearing solid is separated from the liquid by filtration. Uranium may then be recovered from the solid by means of dissolution in nitric acid and conventional extraction with an organic solvent such as tributyl phosphate.
2000-03-01
against enemy munitions. Depleted uranium is a low- level radioactive heavy metal , and concerns have surfaced about whether exposure to it could be a...radioactive heavy metal , the potential for health effects are twofold: effects from radiation and effects from chemical toxicity. Two recent expert...depleted uranium safety training. Background Depleted uranium (DU), a low-level radioactive heavy metal , is a by- product of the process used to
Separation of uranium from technetium in recovery of spent nuclear fuel
Pruett, David J.; McTaggart, Donald R.
1984-01-01
Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc.sup.+7 therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung
Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10-3 M) in seawater. In real seawater experiments, the bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent. Usingmore » the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung
Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO 3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10 -3 M) in seawater. The bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent, in real seawatermore » experiments. Furthermore, by using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less
Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung; ...
2017-05-02
Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO 3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10 -3 M) in seawater. The bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent, in real seawatermore » experiments. Furthermore, by using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less
Nuclear and chemical safety analysis: Purex Plant 1970 thorium campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boldt, A.L.; Oberg, G.C.
The purpose of this document is to discuss the flowsheet and the related processing equipment with respect to nuclear and chemical safety. The analyses presented are based on equipment utilization and revised piping as outlined in the design criteria. Processing of thorium and uranium-233 in the Purex Plant can be accomplished within currently accepted levels of risk with respect to chemical and nuclear safety if minor instrumentation changes are made. Uranium-233 processing is limited to a rate of about 670 grams per hour by equipment capacities and criticality safety considerations. The major criticality prevention problems result from the potential accumulationmore » of uranium-233 in a solvent phase in E-H4 (ICU concentrator), TK-J1 (IUC receiver), and TK-J21 (2AF pump tank). The same potential problems exist in TK-J5 (3AF pump tank) and TK-N1 (3BU receiver), but the probabilities of reaching a critical condition are not as great. In order to prevent the excessive accumulation of uranium-233 in any of these vessels by an extraction mechanism, it is necessary to maintain the uranium-233 and salting agent concentrations below the point at which a critical concentration of uranium-233 could be reached in a solvent phase.« less
Amin, Maisa M; Elaassy, Ibrahim E; El-Feky, Mohamed G; Sallam, Abdel Sattar M; Talaat, Mona S; Kawady, Nilly A
2014-08-01
Bioleaching, like Biotechnology uses microorganisms to extract metals from their ore materials, whereas microbial activity has an appreciable effect on the dissolution of toxic metals and radionuclides. Bioleaching of uranium was carried out with isolated fungi from uraniferous sedimentary rocks from Southwestern Sinai, Egypt. Eight fungal species were isolated from different grades of uraniferous samples. The bio-dissolution experiments showed that Aspergillus niger and Aspergillus terreus exhibited the highest leaching efficiencies of uranium from the studied samples. Through monitoring the bio-dissolution process, the uranium grade and mineralogic constituents of the ore material proved to play an important role in the bioleaching process. The tested samples asserted that the optimum conditions of uranium leaching are: 7 days incubation time, 3% pulp density, 30 °C incubation temperature and pH 3. Both fungi produced the organic acids, namely; oxalic, acetic, citric, formic, malonic, galic and ascorbic in the culture filtrate, indicating an important role in the bioleaching processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Griffiths, Trevor R.; Volkovich, Vladimir A.
An extensive review of the literature on the high temperature reactions (both in melts and in the solid state) of uranium oxides (UO 2, U 3O 8 and UO 3) resulting in the formation of insoluble alkali metal (Li to Cs) uranates is presented. Their uranate(VI) and uranate(V) compounds are examined, together with mixed and oxygen-deficient uranates. The reactions of uranium oxides with carbonates, oxides, per- and superoxides, chlorides, sulfates, nitrates and nitrites under both oxidising and non-oxidising conditions are critically examined and systematised, and the established compositions of a range of uranate(VI) and (V) compounds formed are discussed. Alkali metal uranates(VI) are examined in detail and their structural, physical, thermodynamic and spectroscopic properties considered. Chemical properties of alkali metal uranates(VI), including various methods for their reduction, are also reported. Errors in the current theoretical treatment of uranate(VI) spectra are identified and the need to develop routes for the preparation of single crystals is stressed.
NASA Astrophysics Data System (ADS)
Alnour, I. A.; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Elias, M. S.
2017-01-01
Amang or tin tailing is processed into concentrated ores and other economical valuable minerals such as monazite, zircon, xenotime, ilmenite etc. Besides that, the tailings from these ores may have a significant potential source of radiation exposure to amang plants' workers. This study was conducted to determine the elemental concentration of uranium and thorium in mineral samples collected from five amang tailing factories. The concentration of uranium and thorium was carried out by using instrumental neutron activation analysis (INAA) relative technique. The concentration of uranium and thorium in ppm obtained in this study are as follows: raw (189-1064) and (622-4965); monazite (1076-1988) and (3467-33578); xenotime 4053 and 5540; zircon (309-3090) and (387-6339); ilmenite (104-583) and (88-1205); rutile (212-889) and (44-1119); pyrite (7-43) and (9-132); and waste (5-338) and (9-1218) respectively. The analysis results shows that the monazite, xenotime and zircon have high content of uranium and thorium, whereas ilmenite, rutile, pyrite and waste have lower concentration compare with raw materials after tailing process. The highest values of uranium and thorium concentrations (4053 ± 428 ppm and 33578 ± 873 ppm, respectively) were observed in xenotime and monazite; whereas the lowest value was 5.48 ± 0.86 ppm of uranium recorded in waste (sand) and 9 ± 0.32 ppm of thorium for waste (sand) and pyrite.
Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.
Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong
2016-09-30
To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method. Copyright © 2016 Elsevier B.V. All rights reserved.
Sharma, Sunita; Singh, Bikram; Thulasidas, S K; Kulkarni, Madhuri J; Natarajan, V; Manchanda, Vijay K
2016-01-01
Sorption capacity of four plants (Funaria hygrometrica, Musa acuminata, Brassica juncea and Helianthus annuus) extracts/fractions for uranium, a radionuclide was investigated by EDXRF and tracer studies. The maximum sorption capacity, i.e., 100% (complete sorption) was observed in case of Musa acuminata extract and fractions. Carbohydrate, proteins, phenolics and flavonoids contents in the active fraction (having maximum sorption capacity) were also determined. Further purification of the most active fraction provided three pure molecules, mannitol, sorbitol and oxo-linked potassium oxalate. The characterization of isolated molecules was achieved by using FTIR, NMR, GC-MS, MS-MS, and by single crystal-XRD analysis. Of three molecules, oxo-linked potassium oxalate was observed to have 100% sorption activity. Possible binding mechanism of active molecule with the uranyl cation has been purposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mllett, Paul; McDeavitt, Sean; Deo, Chaitanya
This proposal will investigate the stability of bimodal pore size distributions in metallic uranium and uranium-zirconium alloys during sintering and re-sintering annealing treatments. The project will utilize both computational and experimental approaches. The computational approach includes both Molecular Dynamics simulations to determine the self-diffusion coefficients in pure U and U-Zr alloys in single crystals, grain boundaries, and free surfaces, as well as calculations of grain boundary and free surface interfacial energies. Phase-field simulations using MOOSE will be conducted to study pore and grain structure evolution in microstructures with bimodal pore size distributions. Experiments will also be performed to validate themore » simulations, and measure the time-dependent densification of bimodal porous compacts.« less
METHOD OF OPERATING NUCLEAR REACTORS
Untermyer, S.
1958-10-14
A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-31
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0143] Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion Plant in Lea County, New Mexico AGENCY: Nuclear Regulatory... U.S. Nuclear Regulatory Commission (NRC or the Commission) has published the Final Environmental...
NASA Astrophysics Data System (ADS)
Knight, Travis W.; Anghaie, Samim
2002-11-01
Optimization of powder processing techniques were sought for the fabrication of single-phase, solid-solution mixed uranium/refractory metal carbide nuclear fuels - namely (U, Zr, Nb)C. These advanced, ultra-high temperature nuclear fuels have great potential for improved performance over graphite matrix, dispersed fuels tested in the Rover/NERVA program of the 1960s and early 1970s. Hypostoichiometric fuel samples with carbon-to-metal ratios of 0.98, uranium metal mole fractions of 5% and 10%, and porosities less than 5% were fabricated. These qualities should provide for the longest life and highest performance capability for these fuels. Study and optimization of processing methods were necessary to provide the quality assurance of samples for meaningful testing and assessment of performance for nuclear thermal propulsion applications. The processing parameters and benefits of enhanced sintering by uranium carbide liquid-phase sintering were established for the rapid and effective consolidation and formation of a solid-solution mixed carbide nuclear fuel.
A unified picture of the crystal structures of metals
NASA Astrophysics Data System (ADS)
Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.
1995-04-01
THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.
Ruehle, A.E.; Stevenson, J.W.
1957-11-12
An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan
2011-01-24
Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitancemore » of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of initial cell concentration and flow rate on U(VI) reduction.« less
Process for recovering niobium from uranium-niobium alloys
Wallace, Steven A.; Creech, Edward T.; Northcutt, Walter G.
1983-01-01
Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Uranium Subcategory § 421.323 Effluent limitations guidelines representing the degree of effluent... Limitations for the Secondary Uranium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of uranium processed in the refinery...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Uranium Subcategory § 421.323 Effluent limitations guidelines representing the degree of effluent... Limitations for the Secondary Uranium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of uranium processed in the refinery...
40 CFR 471.75 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORY Uranium Forming Subcategory § 471.75 Pretreatment standards for new sources (PSNS). Except as... standards for new sources (PSNS). The mass of wastewater pollutants in uranium forming process wastewater... (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium 0.013 0.005 Copper 0.044...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Uranium Subcategory § 421.323 Effluent limitations guidelines representing the degree of effluent... Limitations for the Secondary Uranium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of uranium processed in the refinery...
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORY Secondary Uranium Subcategory § 421.322 Effluent limitations guidelines representing the degree of... filtrate. BPT Limitations for the Secondary Uranium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of uranium processed in the...
40 CFR 471.75 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORY Uranium Forming Subcategory § 471.75 Pretreatment standards for new sources (PSNS). Except as... standards for new sources (PSNS). The mass of wastewater pollutants in uranium forming process wastewater... (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium 0.013 0.005 Copper 0.044...
40 CFR 471.75 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORY Uranium Forming Subcategory § 471.75 Pretreatment standards for new sources (PSNS). Except as... standards for new sources (PSNS). The mass of wastewater pollutants in uranium forming process wastewater... (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium 0.013 0.005 Copper 0.044...
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORY Secondary Uranium Subcategory § 421.322 Effluent limitations guidelines representing the degree of... filtrate. BPT Limitations for the Secondary Uranium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of uranium processed in the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORY Secondary Uranium Subcategory § 421.322 Effluent limitations guidelines representing the degree of... filtrate. BPT Limitations for the Secondary Uranium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of uranium processed in the...
Process for recovering niobium from uranium-niobium alloys
Wallace, S.A.; Creech, E.T.; Northcutt, W.G.
1982-09-27
Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.
Mixed uranium dicarbide and uranium dioxide microspheres and process of making same
Stinton, David P.
1983-01-01
Nuclear fuel microspheres are made by sintering microspheres containing uranium dioxide and uncombined carbon in a 1 mole percent carbon monoxide/99 mole percent argon atmosphere at 1550.degree. C. and then sintering the microspheres in a 3 mole percent carbon monoxide/97 mole percent argon atmosphere at the same temperature.
NASA Astrophysics Data System (ADS)
Lindemer, T. B.; Voit, S. L.; Silva, C. M.; Besmann, T. M.; Hunt, R. D.
2014-05-01
The US Department of Energy is developing a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with uranium nitride (UN) kernels with diameters near 825 μm. This effort explores factors involved in the conversion of uranium oxide-carbon microspheres into UN kernels. An analysis of previous studies with sufficient experimental details is provided. Thermodynamic calculations were made to predict pressures of carbon monoxide and other relevant gases for several reactions that can be involved in the conversion of uranium oxides and carbides into UN. Uranium oxide-carbon microspheres were heated in a microbalance with an attached mass spectrometer to determine details of calcining and carbothermic conversion in argon, nitrogen, and vacuum. A model was derived from experiments on the vacuum conversion to uranium oxide-carbide kernels. UN-containing kernels were fabricated using this vacuum conversion as part of the overall process. Carbonitride kernels of ∼89% of theoretical density were produced along with several observations concerning the different stages of the process.
Comparative analysis of uranium bioassociation with halophilic bacteria and archaea
Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Schmidt, Matthias; Simmons, Karen; Swanson, Juliet S.; Reed, Donald T.; Stumpf, Thorsten
2018-01-01
Rock salt represents a potential host rock formation for the final disposal of radioactive waste. The interactions between indigenous microorganisms and radionuclides, e.g. uranium, need to be investigated to better predict the influence of microorganisms on the safety assessment of the repository. Hence, the association process of uranium with two microorganisms isolated from rock salt was comparatively studied. Brachybacterium sp. G1, which was isolated from the German salt dome Gorleben, and Halobacterium noricense DSM15987T, were selected as examples of a moderately halophilic bacterium and an extremely halophilic archaeon, respectively. The microorganisms exhibited completely different association behaviors with uranium. While a pure biosorption process took place with Brachybacterium sp. G1 cells, a multistage association process occurred with the archaeon. In addition to batch experiments, in situ attenuated total reflection Fourier-transform infrared spectroscopy was applied to characterize the U(VI) interaction process. Biosorption was identified as the dominating process for Brachybacterium sp. G1 with this method. Carboxylic functionalities are the dominant interacting groups for the bacterium, whereas phosphoryl groups are also involved in U(VI) association by the archaeon H. noricense. PMID:29329319
The role of uranium-arene bonding in H2O reduction catalysis
NASA Astrophysics Data System (ADS)
Halter, Dominik P.; Heinemann, Frank W.; Maron, Laurent; Meyer, Karsten
2018-03-01
The reactivity of uranium compounds towards small molecules typically occurs through stoichiometric rather than catalytic processes. Examples of uranium catalysts reacting with water are particularly scarce, because stable uranyl groups form that preclude the recovery of the uranium compound. Recently, however, an arene-anchored, electron-rich uranium complex has been shown to facilitate the electrocatalytic formation of H2 from H2O. Here, we present the precise role of uranium-arene δ bonding in intermediates of the catalytic cycle, as well as details of the atypical two-electron oxidative addition of H2O to the trivalent uranium catalyst. Both aspects were explored by synthesizing mid- and high-valent uranium-oxo intermediates and by performing comparative studies with a structurally related complex that cannot engage in δ bonding. The redox activity of the arene anchor and a covalent δ-bonding interaction with the uranium ion during H2 formation were supported by density functional theory analysis. Detailed insight into this catalytic system may inspire the design of ligands for new uranium catalysts.
PROCESS OF EXTRACTING URANIUM AND RADIUM FROM ORES
Sawyer, C.W.; Handley, R.W.
1959-07-14
A process is presented for extracting uranium and radium values from a uranium ore which comprises leaching the ore with a ferric chloride solution at an elevated temperature of above 50 deg C and at a pH less than 4; separating the ore residue from the leaching solution by filtration; precipitating the excess ferric iron present at a pH of less than 5 by adding CaCO/sub 3/ to the filtrate; separating the precipitate by filtration; precipitating the uranium present in the filtrate at a Ph less than 6 by adding BaCO/sub 3/ to the filtrate; separating the precipitate by filtration; and precipitating the radium present in the filtrate by adding H/sub 2/SO/sub 4/ to the filtrate.
Calkins, G.D.; Bohlmann, E.G.
1957-12-01
A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.
NASA Astrophysics Data System (ADS)
Ballouard, C.; Poujol, M.; Mercadier, J.; Deloule, E.; Boulvais, P.; Baele, J. M.; Cuney, M.; Cathelineau, M.
2018-06-01
In the French Armorican Variscan belt, most of the economically significant hydrothermal U deposits are spatially associated with peraluminous leucogranites emplaced along the south Armorican shear zone (SASZ), a dextral lithospheric scale wrench fault that recorded ductile deformation from ca. 315 to 300 Ma. In the Pontivy-Rostrenen complex, a composite intrusion, the U mineralization is spatially associated with brittle structures related to deformation along the SASZ. In contrast to monzogranite and quartz monzodiorite (3 < U < 9 ppm; Th/U > 3), the leucogranite samples are characterized by highly variable U contents ( 3 to 27 ppm) and Th/U ratios ( 0.1 to 5) suggesting that the crystallization of magmatic uranium oxide in the more evolved facies was followed by uranium oxide leaching during hydrothermal alteration and/or surface weathering. U-Pb dating of uranium oxides from the deposits reveals that they mostly formed between ca. 300 and 270 Ma. In monzogranite and quartz monzodiorite, apatite grains display magmatic textures and provide U-Pb ages of ca. 315 Ma reflecting the time of emplacement of the intrusions. In contrast, apatite grains from the leucogranite display textural, geochemical, and geochronological evidences for interaction with U-rich oxidized hydrothermal fluids contemporaneously with U mineralizing events. From 300 to 270 Ma, infiltration of surface-derived oxidized fluids leached magmatic uranium oxide from fertile leucogranite and formed U deposits. This phenomenon was sustained by brittle deformation and by the persistence of thermal anomalies associated with U-rich granitic bodies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sari Izumo; Hideo Usui; Mitsuo Tachibana
Evaluation models for determining the manpower needs for dismantling various types of equipment in uranium refining and conversion plant (URCP) have been developed. The models are widely applicable to other uranium handling facilities. Additionally, a simplified model was developed for easily and accurately calculating the manpower needs for dismantling dry conversion process-related equipment (DP equipment). It is important to evaluate beforehand project management data such as manpower needs to prepare an optimized decommissioning plan and implement effective dismantling activity. The Japan Atomic Energy Agency (JAEA) has developed the project management data evaluation system for dismantling activities (PRODIA code), which canmore » generate project management data using evaluation models. For preparing an optimized decommissioning plan, these evaluation models should be established based on the type of nuclear facility and actual dismantling data. In URCP, the dry conversion process of reprocessed uranium and others was operated until 1999, and the equipment related to the main process was dismantled from 2008 to 2011. Actual data such as manpower for dismantling were collected during the dismantling activities, and evaluation models were developed using the collected actual data on the basis of equipment classification considering the characteristics of uranium handling facility. (authors)« less
Recovery of uranium from seawater by immobilized tannin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, T.; Nakajima, A.
1987-06-01
Tannin compounds having multiple adjacent hydroxy groups have an extremely high affinity for uranium. To prevent the leaching of tannins into water and to improve the adsorbing characteristics of these compounds, the authors tried to immobilize tannins. The immobilized tannin has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. The immobilized tannin can recover uranium from natural seawater with high efficiency. About 2530 ..mu..g uranium is adsorbed per gram of this adsorbent within 22 h. Depending on the concentration in seawater, an enrichment ofmore » up to 766,000-fold within the adsorbent is possible. Almost all uranium adsorbed is easily desorbed with a very dilute acid. Thus, the immobilized tannin can be used repeatedly in the adsorption-desorption process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, B.; Roney, K.; Gong, B.
Techniques were developed to measure properties at sub-grain scales using depleted Uranium Oxide (d-UO2) samples heat-treated to obtain different grain sizes and oxygen stoichiometries, through three main tasks: 1) sample processing and characterization, 2) microscale and conventional testing and 3) modeling. Grain size and crystallography were characterized using Scanning Electron Microscopy (SEM), in conjunction with Electron Backscattering Diffraction (EBSD) and Electron Channeling Contrast Imaging (ECCI). Grains were then carefully selected based on their crystallographic orientations to perform ex-situ micromechanical tests with samples machined via Focused Ion Beam (FIB), with emphasis on micro-cantilever bending. These experiments were performed under controlled atmospheres,more » to insure stoichiometry control, at temperatures up to 700 °C and allowed measurements involving elastic (effective Young’s modulus), plastic (critical resolved shear stresses) and creep (creep strain rates) behavior. Conventional compression experiments were performed simultaneously to compare with the ex-situ measurements and study potential size effects. Modeling was implemented using anisotropic elasticity and inelastic constitutive relations for plasticity and creep based on kinematics and kinetics of dislocation glide that account for the effects of crystal orientation, and stress. The models will be calibrated and validated using the experimental data. This project provided insight on correlations among stoichiometry, crystallography and mechanical behavior in advanced oxide fuels, provided valuable experimental data to validate and calibrate mesoscale fuel performance codes and also a framework to measure sub-grain scale mechanical properties that should be suitable for use with irradiated samples due to small volumes required. The goals and metrics of the ongoing study of thermo-mechanical behavior in depleted uranium dioxide (d-UO 2) outlined in this project have been concluded successfully, resulting in: 1) the successful fabrication, processing, and characterization of large-grained samples with various orientations (up to and including single crystals) having stoichiometric and hyper-stoichiometric O/U ratios; 2) formulation, calibration, and validation of a crystal plasticity constitutive model to describe the creep deformation of UO 2 at the sub-grain length scale (single crystal level) at intermediate temperatures; 3) the successful calibration of a crystal plasticity constitutive model to describe the elasto-plastic deformation of microcantilever beams, also at moderate temperatures. Samples were prepared from natural uranium oxide powder of production-quality provided by Areva. The powder was pressed in a die to a pressure of 100 MPa to produce green pellets with no sintering aids, lubricants, or any other additives. The green pellets were then heated up to 1700 °C under ultra-high purity argon atmosphere (~1 ppm O2). The atmosphere was then changed to 79% Argon, 21% O 2 and the temperature was held at 1700 °C for 2 hours to sinter the pellets under oxidative conditions [1] that are known to increase grain growth kinetics in UO 2 [2]. Samples were then cooled down under Ar-4%H2 atmosphere to reduce the samples back to stoichiometric UO 2. For macro-scale procedures, testing of UO 2 samples with large grains was performed at 1200 °C using a modified load frame capable of applying dead-weight loads to ensure constant stress conditions, while displacement of the sample produced by the applied load was measured with high precision micrometers to obtain strains. Stress steps were used during testing and the strains were monitored to measured creep strain rates under steady state for each level of stress used, so that stress exponents could be obtained. The results of the mechanical testing, along with sample geometry and crystal orientation of the grains in the samples, as well as post-test sample characterization were used to formulate a viscoplastic model to account for steady state (stage II) creep behavior, along with basic assumptions from crystal plasticity and kinematic constraints due to testing fixtures. In the micro-scale, testing of microcantilever beams at temperatures ranging from 25 to 570 °C was performed in-situ with a scanning electron microscope with a special attachment to apply load and measure displacement while the samples were at temperature. The load-displacement curves obtained showed linear behavior before fracture for all temperatures attempted except 570 °C, where clear deviations from non-linearity were observed before fracture. These deviations were consistently observed for all samples tested for a given orientation. A viscoplastic model was used to account for the presence of inelastic strain, along with basic assumptions from crystal plasticity and beam theory. These models were kept as simple as possible, and results from tests performed in a set of samples with a given crystal orientation were used to calibrate the material constants for the model, while results from a different sample set were then used for validation, thus satisfying the conditions of all main tasks within the parameters of this project. Details of these efforts are outlined in this report.« less
PROCESS OF DISSOLVING ZIRCONIUM ALLOYS
Shor, R.S.; Vogler, S.
1958-01-21
A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.
The Main Factors of Uranium Accumulation in the Ishim Plain Saline Lakes (Western Siberia)
NASA Astrophysics Data System (ADS)
Vladimirov, A. G.; Krivonogov, S. K.; Karpov, A. V.; Nikolaeva, I. V.; Razvorotneva, L. I.; Kolpakova, M. N.; Moroz, E. N.
2018-04-01
Hydrochemical analysis of the high-salinity lakes in the Ishim Plain (>250-300 g/L) located at the border with the Northern Kazakhstan uranium ore province is performed. The studies have shown that the main factor of concentration and redistribution of uranium in the lake basins of the Ishim Plain are the processes of intense salt deflation causing sanding of lakes and uranium depletion in the near-surface layer of the bottom deposits. The correlation between the hydroxide forms of uranium binding in the bottom lacustrine deposits of the Ishim Plain and the coffinite composition of the Semizbai deposit makes it possible to consider this province to be promising for the discovery of hydromineral uranium deposits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Purpose. 765.1 Section 765.1 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General § 765.1... costs of remedial action at active uranium or thorium processing sites as specified by Subtitle A of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Purpose. 765.1 Section 765.1 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General § 765.1... costs of remedial action at active uranium or thorium processing sites as specified by Subtitle A of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Purpose. 765.1 Section 765.1 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General § 765.1... costs of remedial action at active uranium or thorium processing sites as specified by Subtitle A of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Purpose. 765.1 Section 765.1 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General § 765.1... costs of remedial action at active uranium or thorium processing sites as specified by Subtitle A of...
RECOVERY OF URANIUM BY AROMATIC DITHIOCARBAMATE COMPLEXING
Neville, O.K.
1959-08-11
A selective complexing organic solvent extraction process is presented for the separation of uranium values from an aqueous nitric acid solution of neutron irradiated thorium. The process comprises contacting the solution with an organic aromatic dithiccarbamaie and recovering the resulting urancdithiccarbamate complex with an organic solvent such as ethyl acetate.
Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus.
Zhao, Changsong; Liu, Jun; Tu, Hong; Li, Feize; Li, Xiyang; Yang, Jijun; Liao, Jiali; Yang, Yuanyou; Liu, Ning; Sun, Qun
2016-12-01
Uranium(VI) biosorption from aqueous solutions was investigated in batch studies by using fungus Pleurotus ostreatus biomass. The optimal biosorption conditions were examined by investigating the reaction time, biomass dosage, pH, temperature, and uranium initial concentration. The interaction between fungus biomass and uranium was confirmed using Fourier transformed infrared (FT-IR), scanning electronic microscopy energy dispersive X-ray (SEM-EDX), and X-ray photoelectron spectroscopy (XPS) analysis. Results exhibited that the maximum biosorption capacity of uranium on P. ostreatus was 19.95 ± 1.17 mg/g at pH 4.0. Carboxylic, amine, as well as hydroxyl groups were involved in uranium biosorption according to FT-IR analysis. The pseudo-second-order model properly evaluated the U(VI) biosorption on fungus P. ostreatus biomass. The Langmuir equation provided better fitting in comparison with Freundlich isotherm models. The obtained thermodynamic parameters suggested that biosorption is feasible, endothermic, and spontaneous. SEM-EDX and XPS were additionally conducted to comprehend the biosorption process that could be described as a complex process involving several mechanisms of physical adsorption, chemisorptions, and ion exchange. Results obtained from this work indicated that fungus P. ostreatus biomass can be used as potential biosorbent to eliminate uranium or other radionuclides from aqueous solutions.
Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3.
Li, Xiaolong; Ding, Congcong; Liao, Jiali; Du, Liang; Sun, Qun; Yang, Jijun; Yang, Yuanyou; Zhang, Dong; Tang, Jun; Liu, Ning
2016-03-01
The biosorption mechanisms of uranium on an aerobic bacterial strain Streptomyces sporoverrucosus dwc-3, isolated from a potential disposal site for (ultra-)low uraniferous radioactive waste in Southwest China, were evaluated by using transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). Approximately 60% of total uranium at an initial concentration of 10mg/L uranium nitrate solution could be absorbed on 100mg S. sporoverrucosus dwc-3 with an adsorption capacity of more than 3.0mg/g (wet weight) after 12hr at room temperature at pH3.0. The dynamic biosorption process of S. sporoverrucosus dwc-3 for uranyl ions was well described by a pseudo second-order model. S. sporoverrucosus dwc-3 could accumulate uranium on cell walls and within the cell, as revealed by SEM and TEM analysis as well as EDX spectra. XPS and FT-IR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of the cells. Additionally, PIXE and EPBS results confirmed that ion exchange also contributed to the adsorption process of uranium. Copyright © 2015. Published by Elsevier B.V.
SELECTIVE SEPARATION OF URANIUM FROM FERRITIC STAINLESS STEELS
Beaver, R.J.; Cherubini, J.H.
1963-05-14
A process is described for separating uranium from a nuclear fuel element comprising a uranium-containing core and a ferritic stainless steel clad by heating said element in a non-carburizing atmosphere at a temperature in the range 850-1050 un. Concent 85% C, rapidly cooling the heated element through the temperature range 815 un. Concent 85% to 650 EC to avoid annealing said steel, and then contacting the cooled element with an aqueous solution of nitric acid to selectively dissolve the uranium. (AEC)
METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS
Piper, R.D.
1962-09-01
A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)
ALLOY COATINGS AND METHOD OF APPLYING
Eubank, L.D.; Boller, E.R.
1958-08-26
A method for providing uranium articles with a pro tective coating by a single dip coating process is presented. The uranium article is dipped into a molten zinc bath containing a small percentage of aluminum. The resultant product is a uranium article covered with a thin undercoat consisting of a uranium-aluminum alloy with a small amount of zinc, and an outer layer consisting of zinc and aluminum. The article may be used as is, or aluminum sheathing may then be bonded to the aluminum zinc outer layer.
METHOD OF SEPARATING ISOTOPES OF URANIUM IN A CALUTRON
Jenkins, F.A.
1958-05-01
Mass separation devices of the calutron type and the use of uranium hexachloride as a charge material in the calutron ion source are described. The method for using this material in a mass separator includes heating the uranium hexachloride to a temperature in the range of 60 to 100 d C in a vacuum and thereby forming a vapor of the material. The vaporized uranium hexachloride is then ionized in a vapor ionizing device for subsequent mass separation processing.
Method of increasing the deterrent to proliferation of nuclear fuels
Rampolla, Donald S.
1982-01-01
A process of recycling protactinium-231 to enhance the utilization of radioactively hot uranium-232 in nuclear fuel for the purpose of making both fresh and spent fuel more resistant to proliferation. The uranium-232 may be obtained by the irradiation of protactinium-231 which is normally found in the spent fuel rods of a thorium base nuclear reactor. The production of protactinium-231 and uranium-232 would be made possible by the use of the thorium uranium-233 fuel cycle in power reactors.
Uranium Fate and Transport Modeling, Guterl Specialty Steel Site, New York - 13545
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Bill; Tandon, Vikas
2013-07-01
The Former Guterl Specialty Steel Corporation Site (Guterl Site) is located 32 kilometers (20 miles) northeast of Buffalo, New York, in Lockport, Niagara County, New York. Between 1948 and 1952, up to 15,875 metric tons (35 million pounds) of natural uranium metal (U) were processed at the former Guterl Specialty Steel Corporation site in Lockport, New York. The resulting dust, thermal scale, mill shavings and associated land disposal contaminated both the facility and on-site soils. Uranium subsequently impacted groundwater and a fully developed plume exists below the site. Uranium transport from the site involves legacy on-site pickling fluid handling, themore » leaching of uranium from soil to groundwater, and the groundwater transport of dissolved uranium to the Erie Canal. Groundwater fate and transport modeling was performed to assess the transfer of dissolved uranium from the contaminated soils and buildings to groundwater and subsequently to the nearby Erie Canal. The modeling provides a tool to determine if the uranium contamination could potentially affect human receptors in the vicinity of the site. Groundwater underlying the site and in the surrounding area generally flows southeasterly towards the Erie Canal; locally, groundwater is not used as a drinking water resource. The risk to human health was evaluated outside the Guterl Site boundary from the possibility of impacted groundwater discharging to and mixing with the Erie Canal waters. This condition was evaluated because canal water is infrequently used as an emergency water supply for the City of Lockport via an intake located approximately 122 meters (m) (400 feet [ft]) southeast of the Guterl Site. Modeling was performed to assess whether mixing of groundwater with surface water in the Erie Canal could result in levels of uranium exceeding the U.S. Environmental Protection Agency (USEPA) established drinking water standard for total uranium; the Maximum Concentration Limit (MCL). Geotechnical test data indicate that the major portion of uranium in the soil will adsorb or remain bound to soil, yet leaching to groundwater appears as an on-site source. Soil leaching was modeled using low adsorption factors to replicate worst-case conditions where the uranium leaches to the groundwater. Results indicate that even after several decades, which is the period of time since uranium was processed at the Guterl Site, leaching from soil does not fully account for the currently observed levels of groundwater contamination. Modeling results suggest that there were historic releases of uranium from processing operations directly to the shallow fractured rock and possibly other geochemical conditions that have produced the current groundwater contamination. Groundwater data collected at the site between 1997 and 2011 do not indicate an increasing level of uranium in the main plume, thus the uranium adsorbed to the soil is in equilibrium with the groundwater geochemistry and transport conditions. Consequently, increases in the overall plume concentration or size are not expected. Groundwater flowing through fractures under the Guterl Site transports dissolved uranium from the site to the Erie Canal, where the groundwater has been observed to seep from the northern canal wall at some locations. The seeps discharge uranium at concentrations near or below the MCL to the Erie Canal. Conservative mixing calculations were performed using two worst-case assumptions: 1) the seeps were calculated as contiguous discharges from the Erie Canal wall and 2) the uranium concentration of the seepage is 274 micrograms per liter (μg/L) of uranium, which is the highest on-site uranium concentration in groundwater and nearly ten-fold the actual seep concentrations. The results indicate that uranium concentrations in the seep water would have to be more than 200 times greater than the highest observed on-site groundwater concentrations (or nearly 55,000 μg/L) to potentially exceed the drinking water standard (the MCL) for total uranium in the Erie Canal. (authors)« less
TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM
Foote, F.G.
1960-08-01
Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.
SOLVENT EXTRACTION OF URANIUM VALUES
Feder, H.M.; Ader, M.; Ross, L.E.
1959-02-01
A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.
ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS
Kennedy, R.H.
1959-11-24
A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.
Low-temperature specific heat of uranium germanides
NASA Astrophysics Data System (ADS)
Pikul, A.; Troć, R.; Czopnik, A.; Noël, H.
2014-06-01
We report measurements of the specific heat down to the lowest temperature of 2 K for the paramagnetic binaries U5Ge4 (Ti5Ga4-type) and UGe (ThIn-type) as well as for the ferromagnetic binaries U3Ge5-x (x=0.2) and UGe2-x (x=0.3) (with TC=94 and 47 K) having defect crystal structures of the AlB2- and ThSi2-type, respectively. The obtained data were compared to those of other uranium germanides which have been earlier studied: UGe2 (ZrGa2) and UGe3 (Cu3Au). Among all these germanides, only UGe exhibits enhanced electronic specific heat coefficient, γ(0), equal to 137 mJ/molUK2. This value can be compared to that derived for the most known spin fluctuator, UAl2 (143 mJ/molUK2). The other uranium germanides have less enhanced γ(0) values (27-65 mJ/molUK2). The lowest value of about 20 mJ/molUK2 was reported earlier for the typical temperature independent paramagnet UGe3. For the ferromagnetic new phase UGe2-x the inferred magnetic entropy, Sm, reaches at the Curie temperature, TC, a value of R ln 2 which corresponds to a doublet ground state of the uranium ion in this deficit digermanide.
Sandstone type uranium deposits in the Ordos Basin, Northwest China: A case study and an overview
NASA Astrophysics Data System (ADS)
Akhtar, Shamim; Yang, Xiaoyong; Pirajno, Franco
2017-09-01
This paper provides a comprehensive review on studies of sandstone type uranium deposits in the Ordos Basin, Northwest China. As the second largest sedimentary basin, the Ordos Basin has great potential for targeting sandstone type U mineralization. The newly found and explored Dongsheng and Diantou sandstone type uranium deposits are hosted in the Middle Jurassic Zhilou Formation. A large number of investigations have been conducted to trace the source rock compositions and relationship between lithic subarkose sandstone host rock and uranium mineralization. An optical microscopy study reveals two types of alteration associated with the U mineralization: chloritization and sericitization. Some unusual mineral structures, with compositional similarity to coffinite, have been identified in a secondary pyrite by SEM These mineral phases are proposed to be of bacterial origin, following high resolution mapping of uranium minerals and trace element determinations in situ. Moreover, geochemical studies of REE and trace elements constrained the mechanism of uranium enrichment, displaying LREE enrichment relative to HREE. Trace elements such as Pb, Mo and Ba have a direct relationship with uranium enrichment and can be used as index for mineralization. The source of uranium ore forming fluids and related geological processes have been studied using H, O and C isotope systematics of fluid inclusions in quartz veins and the calcite cement of sandstone rocks hosting U mineralization. Both H and O isotopic compositions of fluid inclusions reveal that ore forming fluids are a mixture of meteoric water and magmatic water. The C and S isotopes of the cementing material of sandstone suggest organic origin and bacterial sulfate reduction (BSR), providing an important clue for U mineralization. Discussion of the ore genesis shows that the greenish gray sandstone plays a crucial role during processes leading to uranium mineralization. Consequently, an oxidation-reduction model for sandstone-type uranium deposit is proposed, which can elucidate the source of uranium in the deposits of the Ordos Basin, based on the role of organic materials and sulfate reducing bacteria. We discuss the mechanism of uranium deposition responsible for the genesis of these large sandstone type uranium deposits in this unique sedimentary basin.
Health effects of uranium: new research findings.
Brugge, Doug; Buchner, Virginia
2011-01-01
Recent plans for a nuclear renaissance in both established and emerging economies have prompted increased interest in uranium mining. With the potential for more uranium mining worldwide and a growth in the literature on the toxicology and epidemiology of uranium and uranium mining, we found it timely to review the current state of knowledge. Here, we present a review of the health effects of uranium mining, with an emphasis on newer findings (2005-2011). Uranium mining can contaminate air, water, and soil. The chemical toxicity of the metal constitutes the primary environmental health hazard, with the radioactivity of uranium a secondary concern. The update of the toxicologic evidence on uranium adds to the established findings regarding nephrotoxicity, genotoxicity, and developmental defects. Additional novel toxicologic findings, including some at the molecular level, are now emerging that raise the biological plausibility of adverse effects on the brain, on reproduction, including estrogenic effects, on gene expression, and on uranium metabolism. Historically, most epidemiology on uranium mining has focused on mine workers and radon exposure. Although that situation is still overwhelmingly true, a smaller emerging literature has begun to form around environmental exposure in residential areas near uranium mining and processing facilities. We present and critique such studies. Clearly, more epidemiologic research is needed to contribute to causal inference. As much damage is irreversible, and possibly cumulative, present efforts must be vigorous to limit environmental uranium contamination and exposure.
Colorimetric detection of uranium in water
DeVol, Timothy A [Clemson, SC; Hixon, Amy E [Piedmont, SC; DiPrete, David P [Evans, GA
2012-03-13
Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.
Stevenson, J.W.; Werkema, R.G.
1959-07-28
The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.
Time-dependent water dynamics in hydrated uranyl fluoride
Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; ...
2015-09-15
In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translationalmore » diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.« less
Computer simulation of structural modifications induced by highly energetic ions in uranium dioxide
NASA Astrophysics Data System (ADS)
Sasajima, Y.; Osada, T.; Ishikawa, N.; Iwase, A.
2013-11-01
The structural modification caused by the high-energy-ion irradiation of single-crystalline uranium dioxide was simulated by the molecular dynamics method. As the initial condition, high kinetic energy was supplied to the individual atoms within a cylindrical region of nanometer-order radius located in the center of the specimen. The potential proposed by Basak et al. [C.B. Basak, A.K. Sengupta, H.S. Kamath, J. Alloys Compd. 360 (2003) 210-216] was utilized to calculate interaction between atoms. The supplied kinetic energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it dissipated in the specimen. The amorphous track radius Ra was determined as a function of the effective stopping power gSe, i.e., the kinetic energy of atoms per unit length created by ion irradiation (Se: electronic stopping power, g: energy transfer ratio from stopping power to lattice vibration energy). It was found that the relationship between Ra and gSe follows the relation Ra2=aln(gS)+b. Compared to the case of Si and β-cristobalite single crystals, it was harder to produce amorphous track because of the long range interaction between U atoms.
Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)
DOE Office of Scientific and Technical Information (OSTI.GOV)
PLYS, M.G.
2000-10-10
The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3)more » Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method against experimental data, (4) Application of the method to plausibly explain operational experience, and (5) Application of the method to present process steps to demonstrate process safety and margin. Essentially, the logic above is used to demonstrate that runaway reactions cannot occur during normal SNF Project process steps, and to illustrate the depth of the technical basis for such a conclusion. Some off-normal conditions are identified here that could potentially lead to runaway reactions. However, this document is not intended to provide an exhaustive analysis of such cases. In summary, this report provides a ''toolkit'' of models and approaches for analysis of pyrophoricity safety issues at Hanford, and the technical basis for the recommended approaches. A summary of recommended methods appears in Section 9.0.« less
Process for recovering uranium
MacWood, G. E.; Wilder, C. D.; Altman, D.
1959-03-24
A process useful in recovering uranium from deposits on stainless steel liner surfaces of calutrons is presented. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickel, copper, and iron is treated with an excess of ammonium hydroxide to precipitnte the uranium, iron, and chromium and convert the nickel and copper to soluble ammonio complexions. The precipitated material is removed, dried and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/ sub 4/, UCl/sub 5/, FeCl/sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temperature of about 500 to 400 deg C.
PROCESS FOR RECOVERING URANIUM
MacWood, G.E.; Wilder, C.D.; Altman, D.
1959-03-24
A process is described for recovering uranium from deposits on stainless steel liner surfaces of calutrons. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickels copper, and iron is treated with excess of ammonium hydroxide to precipitatc the uranium, irons and chromium and convert thc nickel and copper to soluble ammonia complexions. The precipitated material is removed, dried, and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/sub 4/, UCl/sub 5/, FeCl/ sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temprrature of about 300 to400 deg C.
Kilner, S.B.
1959-12-29
A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.
Hyman, H.H.; Dreher, J.L.
1959-07-01
The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.
PROCESS OF RECOVERING URANIUM FROM ITS ORES
Galvanek, P. Jr.
1959-02-24
A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.
Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction
Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.
1995-01-01
A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.
High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry
Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew; ...
2017-05-09
Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less
High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew
Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szescody, James E.; Moore, Robert C.; Rigali, Mark J.
The Old Rifle Site is a former vanadium and uranium ore-processing facility located adjacent to the Colorado River and approximately 0.3 miles east of the city of Rifle, CO. The former processing facilities have been removed and the site uranium mill tailings are interned at a disposal cell north of the city of Rifle. However, some low level remnant uranium contamination still exists at the Old Rifle site. In 2002, the United States Nuclear Regulatory Commission (US NRC) concurred with United States Department of Energy (US DOE) on a groundwater compliance strategy of natural flushing with institutional controls to decreasemore » contaminant concentrations in the aquifer. In addition to active monitoring of contaminant concentrations, the site is also used for DOE Legacy Management (LM) and other DOE-funded small-scale field tests of remediation technologies. The purpose of this laboratory scale study was to evaluate the effectiveness of a hydroxyapatite (Ca 10(PO 4) 6(OH) 2) permeable reactive barrier and source area treatment in Old Rifle sediments. Phosphate treatment impact was evaluated by comparing uranium leaching and surface phase changes in untreated to PO 4-treated sediments. The impact of the amount of phosphate precipitation in the sediment on uranium mobility was evaluated with three different phosphate loadings. A range of flow velocity and uranium concentration conditions (i.e., uranium flux through the phosphate-treated sediment) was also evaluated to quantify the uranium uptake mass and rate by the phosphate precipitate.« less
PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION
Warf, J.C.
1958-08-19
A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.
PROCESS FOR THE CONCENTRATION OF ORES CONTAINING GOLD AND URANIUM
Gaudin, A.M.; Dasher, J.
1958-06-10
ABS>A process is described for concentrating certain low grade uranium and gold bearing ores, in which the gangue is mainly quartz. The production of the concentrate is accomplished by subjecting the crushed ore to a froth floatation process using a fatty acid as a collector in conjunction with a potassium amyl xanthate collector. Pine oil is used as the frothing agent.
Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies.
Parab, Harshala; Joshi, Shreeram; Shenoy, Niyoti; Verma, Rakesh; Lali, Arvind; Sudersanan, M
2005-07-01
Basic aspects of uranium adsorption by coir pith have been investigated by batch equilibration. The influence of different experimental parameters such as final solution pH, adsorbent dosage, sorption time, temperature and various concentrations of uranium on uptake were evaluated. Maximum uranium adsorption was observed in the pH range 4.0-6.0. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium. The equilibrium data fitted well to both the equilibrium models in the studied concentration range of uranium (200-800 mg/l) and temperatures (305-336 K). The coir pith exhibited the highest uptake capacity for uranium at 317 K, at the final solution pH value of 4.3 and at the initial uranium concentration of 800 mg/l. The kinetics of the adsorption process followed a second-order adsorption. The adsorbent used proved to be suitable for removal of uranium from aqueous solutions. 0.2 N HCl was effective in uranium desorption. The results indicated that the naturally abundant coir pith of otherwise nuisance value exhibited considerable potential for application in removal of uranium from aqueous solution.
Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A
2008-09-01
Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0115] Regulatory Guide 8.24, Revision 2, Health Physics..., ``Health Physics Surveys During Enriched Uranium-235 Processing and Fuel Fabrication'' was issued with a... specifically with the following aspects of an acceptable occupational health physics program that are closely...
PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS
Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.
1962-08-14
A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)
Code of Federal Regulations, 2010 CFR
2010-01-01
... designed or prepared electrochemical reduction cells to reduce uranium from one valence state to another for uranium enrichment using the chemical exchange process. The cell materials in contact with process solutions must be corrosion resistant to concentrated hydrochloric acid solutions. The cell cathodic...
Performance Indicators for Uranium Bioremediation in the Subsurface: Basis and Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Philip E.; Yabusaki, Steven B.
2006-12-29
The purpose of this letter report is to identify performance indicators for in situ engineered bioremediation of subsurface uranium (U) contamination. This report focuses on in situ treatment of groundwater by biostimulation of extant in situ microbial populations (see http://128.3.7.51/NABIR/generalinfo/primers_guides/03_NABIR_primer.pdf for background information on bioremediation of metals and radionuclides). The treatment process involves amendment of the subsurface with an electron donor such as acetate, lactate, ethanol or other organic compound such that in situ microorganisms mediate the reduction of U(VI) to U(IV). U(VI) precipitates as uraninite or other insoluble U phase. Uranium is thus immobilized in place by such processesmore » and is subject to reoxidation that may remobilize the reduced uranium. Related processes include augmenting the extant subsurface microbial populations, addition of electron acceptors, and introduction of chemically reducing materials such as zero-valent Fe. While metrics for such processes may be similar to those for in situ biostimulation, these related processes are not directly in the scope of this letter report.« less
NASA Astrophysics Data System (ADS)
Brown, L. D.; Abdulaziz, R.; Jervis, R.; Bharath, V. J.; Atwood, R. C.; Reinhard, C.; Connor, L. D.; Simons, S. J. R.; Inman, D.; Brett, D. J. L.; Shearing, P. R.
2015-09-01
The electrochemical reduction of uranium dioxide to metallic uranium has been investigated in lithium chloride-potassium chloride eutectic molten salt. Laboratory based electrochemical studies have been coupled with in situ energy dispersive X-ray diffraction, for the first time, to deduce the reduction pathway. No intermediate phases were identified using the X-ray diffraction before, during or after electroreduction to form α-uranium. This suggests that the electrochemical reduction occurs via a single, 4-electron-step, process. The rate of formation of α-uranium is seen to decrease during electrolysis and could be a result of a build-up of oxygen anions in the molten salt. Slow transport of O2- ions away from the UO2 working electrode could impede the electrochemical reduction.
FLUORIDE VOLATILITY PROCESS FOR THE RECOVERY OF URANIUM
Katz, J.J.; Hyman, H.H.; Sheft, I.
1958-04-15
The separation and recovery of uraniunn from contaminants introduced by neutron irradiation by a halogenation and volatilization method are described. The irradiated uranium is dissolved in bromine trifluoride in the liquid phase. The uranium is converted to the BrF/sub 3/ soluble urmium hexafluoride compound whereas the fluorides of certain contaminating elements are insoluble in liquid BrF/sub 3/, and the reaction rate of the BrF/sub 3/ with certain other solid uranium contamirnnts is sufficiently slower than the reaction rate with uranium that substantial portions of these contaminating elements will remain as solids. These solids are then separated from the solution by a distillation, filtration, or centrifugation step. The uranium hexafluoride is then separated from the balance of the impurities and solvent by one or more distillations.
ELECTRODEPOSITION OF NICKEL ON URANIUM
Gray, A.G.
1958-08-26
A method is described for preparing uranium objects prior to nickel electroplating. The process consiats in treating the surface of the uranium with molten ferric chloride hexahydrate, at a slightiy elevated temperature. This treatment etches the metal surface providing a structure suitable for the application of adherent electrodeposits and at the same time plates the surface with a thin protective film of iron.
FABRICATION OF URANIUM-ALUMINUM ALLOYS
Saller, H.A.
1959-12-15
A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.
PROCESS FOR CONTINUOUSLY SEPARATING IRRADIATION PRODUCTS OF THORIUM
Hatch, L.P.; Miles, F.T.; Sheehan, T.V.; Wiswall, R.H.; Heus, R.J.
1959-07-01
A method is presented for separating uranium-233 and protactinium from thorium-232 containing compositions which comprises irradiating finely divided particles of said thorium with a neutron flux to form uranium-233 and protactinium, heating the neutron-irradiated composition in a fluorine and hydrogen atmosphere to form volatile fluorides of uranium and protactinium and thereafter separating said volatile fluorides from the thorium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kremer, M.
1959-03-01
The resin-in-pulp process is a technical variant of the recovery process of uranium in dilute solution by means of ion exchange resins. An anion resin, XE 123, of a welldefined grain size is placed in direct contact with the pulp produced by sulfuric acid attack on ore with a low uranium content. This process is of particular value in the treatment of pulps that cannot be filtered or decanted, such as those obtained with ore from Brosses. The preparation of the pulp, the elution of the uranium, and its fixation, as well as the various factors encountered in these operations,more » are discussed. (auth)« less
PREPARATION OF HIGH PURITY UF$sub 4$
Magner, J.E.; Long, R.S.; Ellis, D.A.; Grinstead, R.R.
1962-04-17
S>A process for preparing very highly pure uranous tetrafluoride from impure uranium laden solvent extraction strip solutions, ion exchange process and resin-inpulp process eluate solutions which are at least 8M in hydrochloric acid is described. The process first comprises treating any of the above-mentioned solutions with a reducing agent to reduce the uranium to the + 4 oxidation state, and then contacting the reduced solution with an extractant phase comprising about 10 to 70% of tri-butyl phosphate in an organic solvent-diluent selected from benzene, ethyl-benzene, chlorobenzene, xylene, kerosene, or the like. The uranium is extracted into the extractant phase and is subsequently precipitated by treating the extractant with an aqueous fluoride solution. The highly pure uranous tetrafluoride precipitate is separated from the phases and recovered for subsequent utilization. (AEC)
Measures of the environmental footprint of the front end of the nuclear fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Schneider; B. Carlsen; E. Tavrides
2013-11-01
Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle (FEFC) have focused primarily on energy consumption and CO2 emissions. Results have varied widely. This work builds upon reports from operating facilities and other primary data sources to build a database of front end environmental impacts. This work also addresses land transformation and water withdrawals associated with the processes of the FEFC. These processes include uranium extraction, conversion, enrichment, fuel fabrication, depleted uranium disposition, and transportation. To allow summing the impacts across processes, all impacts were normalized per tonne of natural uranium mined as wellmore » as per MWh(e) of electricity produced, a more conventional unit for measuring environmental impacts that facilitates comparison with other studies. This conversion was based on mass balances and process efficiencies associated with the current once-through LWR fuel cycle. Total energy input is calculated at 8.7 x 10- 3 GJ(e)/MWh(e) of electricity and 5.9 x 10- 3 GJ(t)/MWh(e) of thermal energy. It is dominated by the energy required for uranium extraction, conversion to fluoride compound for subsequent enrichment, and enrichment. An estimate of the carbon footprint is made from the direct energy consumption at 1.7 kg CO2/MWh(e). Water use is likewise dominated by requirements of uranium extraction, totaling 154 L/MWh(e). Land use is calculated at 8 x 10- 3 m2/MWh(e), over 90% of which is due to uranium extraction. Quantified impacts are limited to those resulting from activities performed within the FEFC process facilities (i.e. within the plant gates). Energy embodied in material inputs such as process chemicals and fuel cladding is identified but not explicitly quantified in this study. Inclusion of indirect energy associated with embodied energy as well as construction and decommissioning of facilities could increase the FEFC energy intensity estimate by a factor of up to 2.« less
Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin
2017-12-19
A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH < 3.0, and the following iron-electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.
PROCESS FOR PRODUCTION OF URANIUM
Crawford, J.W.C.
1959-09-29
A process is described for the production of uranium by the autothermic reduction of an anhydrous uranium halide with an alkaline earth metal, preferably magnesium One feature is the initial reduction step which is brought about by locally bringing to reaction temperature a portion of a mixture of the reactants in an open reaction vessel having in contact with the mixture a lining of substantial thickness composed of calcium fluoride. The lining is prepared by coating the interior surface with a plastic mixture of calcium fluoride and water and subsequently heating the coating in situ until at last the exposed surface is substantially anhydrous.
β-decay Rates for Exotic Nuclei and r-process Nucleosynthesis up to Thorium and Uranium
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Shibagaki, Shota; Yoshida, Takashi; Kajino, Toshitaka; Otsuka, Takaharu
2018-06-01
Beta-decay rates for exotic nuclei with neutron magic number of N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard finite-range-droplet model, are used to study r-process nucleosynthesis in core-collapse supernova (CCSN) explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. The position of the third peak is found to be shifted toward a higher mass region in both CCSN explosions and neutron star mergers. We find that thorium and uranium elements are produced more with the shorter shell-model half-lives and their abundances come close to the observed values in CCSN explosions. In the case of binary neutron star mergers, thorium and uranium are produced consistently with the observed values independent of the half-lives.
PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES
Wahl, A.C.
1957-11-12
A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.
Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan
This presentation includes slides on Project Goals; Heavy Water Production Monitoring: A New Challenge for the IAEA; Noninvasive Measurements in SFAI Cell; Large Scatter in Literature Values; Large Scatter in Literature Values; Highest Precision Sound Speed Data Available: New Standard in H/D; ~400 pts of data; Noninvasive Measurements in SFAI Cell; New funding from NA241 SGTech; Uranium Solution Monitoring: Inspired by IAEA Challenge in Kazakhstan; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; and finally a summary.
RECOVERY OF URANIUM FROM CARBONATE LEACH LIQUORS
Wilson, H.F.
1958-07-01
An improved process is described for the recovery of uranium from vanadifrous ores. In the prior art such ores have been digested with alkali carbonate solutions at a pH of less than 10 and then contacted with a strong base anion exchange resin to separate uranium from vanadium. It has been found that if the exchamge resin feed solution has its pH adjusted to the range 10.8 to 11.8, that vanadium adsorption on the resin is markedly decreased and the separation of uranium from the vanadium is thereby improved.
RECOVERY OF URANIUM VALUES FROM URANIUM BEARING RAW MATERIALS
Michal, E.J.; Porter, R.R.
1959-06-16
Uranium leaching from ground uranium-bearing raw materials using MnO/sub 2/ in H/sub 2/SO/sub 4/ is described. The MnO/sub 2/ oxidizes U to the leachable hexavalent state. The MnO/sub 2/ does not replace Fe normally added, because the Fe complexes P and catalyzes the MnO/sub 2/ reaction. Three examples of continuous processes are given, but batch operation is also possible. The use of MnO/sub 2/ makes possible recovery of very low U values. (T.R.H.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobecky, Patricia A; Taillefert, Martial
This final technical report describes results and findings from a research project to examine the role of microbial phosphohydrolase enzymes in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of the radionuclide uranium through the production of insoluble uranium phosphate minerals. The research project investigated the microbial mechanisms and the physical and chemical processes promoting uranium biomineralization and sequestration in oxygenated subsurface soils. Uranium biomineralization under aerobic conditions can provide a secondary biobarrier strategy to immobilize radionuclides should the metal precipitates formed by microbial dissimilatory mechanisms remobilize due to a change in redox state.
NASA Astrophysics Data System (ADS)
Chernyshev, I. V.; Golubev, V. N.; Chugaev, A. V.
2017-11-01
The enrichment of lead isotopic composition of nonuranium minerals, in the first place galena in 206Pb and 207Pb, as compared to common lead is a remarkable feature of uranium deposits. The study of such lead isotopic composition anomalous in 206Pb and 207Pb in uranium minerals provides an opportunity for not only identification of superimposed processes resulting in transformation of uranium ores during deposit history but also calculation of age of these processes under certain model assumptions. Galena from the Chauli deposit in the Chatkal-Qurama district, Uzbekistan, a typical representative of hydrothermal uranium deposits associated with domains of Phanerozoic continental volcanism, has been examined with the highprecision (±0.02%) MC-ICP-MS method. Twenty microsamples of galena were taken from polished sections. Six of them are galena hosted in carbonate adjacent to pitchblende spherulites or filling thin veinlets (approximately 60 μm) cutting pitchblende. Isotopically anomalous lead with 206Pb/204Pb and 207Pb/204Pb values reaching 20.462 and 15.743, respectively, has been found in these six microsamples in contrast to another fourteen in which the Pb-Pb characteristics are consistent with common lead. On the basis of these data and with account for the 292 ± 2 Ma age for the Chauli deposit, the age of epigenetic transformation of uranium ores of this deposit has been estimated. During this process, radiogenic lead partly lost from pitchblende was captured into galena. The obtained date is 170 Ma. In the Chatkal-Qurama district, these epigenetic processes are apparently caused by the interaction of uranium minerals with activated underground water under tectonic activity and relief transformation, which took place from the post-Permian (i.e., after the Chauli formation) to the Jurassic period.
Biosorption of uranium by Pseudomonas aeruginosa strain CSU: Characterization and comparison studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, M.Z.C.; Norman, J.M.; Faison, B.D.
1996-07-20
Pseudomonas aeruginosa strain CSU, a nongenetically engineered bacterial strain known to bind dissolved hexavalent uranium (as UO{sub 2}{sup 2+} and/or its cationic hydroxo complexes) was characterized with respect to its sorptive activity. The uranium biosorption equilibrium could be described by the Langmuir isotherm. The rate of uranium adsorption increased following permeabilization of the outer and/or cytoplasmic membrane by organic solvents such as acetone. P. aeruginosa CSU biomass was significantly more sorptive toward uranium than certain novel, patented biosorbents derived from algal or fungal biomass sources. P. aeruginosa CSU biomass was also competitive with commercial cation-exchange resins, particularly in the presencemore » of dissolved transition metals. Uranium binding by P. aeruginosa CSU was clearly pH dependent. Uranium loading capacity increased with increasing pH under acidic conditions, presumably as a function of uranium speciation and due to the H{sup +} competition at some binding sites. Nevertheless, preliminary evidence suggests that this microorganism is also capable of binding anionic hexavalent uranium complexes. Ferric iron was a strong inhibitor of uranium binding to P. aeruginosa CSU biomass, and the presence of uranium also decreased the Fe{sup 3+} loading when the biomass was not saturated with Fe{sup 3+}. Thus, a two-state process in which iron and uranium are removed in consecutive steps was proposed for efficient use of the biomass as a biosorbent in uranium removal from mine wastewater, especially acidic leachates.« less
Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cols, H.; Cristini, P.; Marques, R.
1997-08-01
The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing highmore » enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.« less
Wang, Tieshan; Zheng, Xinyan; Wang, Xiaoyu; Lu, Xia; Shen, Yanghao
2017-02-01
Uranium adsorption mechanisms of live and heat-killed Saccharomyces cerevisiae in different pH values and biomass concentrations were studied under environmentally relevant conditions. Compared with live cells, the adsorption capacity of heat-killed cells is almost one order of magnitude higher in low biomass concentration and highly acidic pH conditions. To explore the mesoscopic surface interactions between uranium and cells, the characteristic of uranium deposition was investigated by SEM-EDX, XPS and FTIR. Biosorption process of live cells was considered to be metabolism-dependent. Under stimulation by uranyl ions, live cells could gradually release phosphorus and reduce uranium from U(VI) to U(IV) to alleviate uranium toxicity. The uranyl-phosphate complexes were formed in scale-like shapes on cell surface. The metabolic detoxification mechanisms such as reduction and "self-protection" are of significance to the migration of radionuclides. In the metabolism-independent biosorption process of heat-killed cells: the cells cytomembrane was damaged by autoclaving which led to the free diffusion of phosphorous from intracellular, and the rough surface and nano-holes indicated that the dead cells provided larger contact area to precipitate U(VI) as spherical nano-particles. The high biosorption capacity of heat-killed cells makes it become a suitable biological adsorbent for uranium removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE
Reinhart, G.M.; Collopy, T.J.
1962-11-13
A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)
Niedrach, L.W.; Glamm, A.C.
1959-09-01
An electrolytic process of refining or decontaminating uranium is presented. The impure uranium is made the anode of an electrolytic cell. The molten salt electrolyte of this cell comprises a uranium halide such as UF/sub 4/ or UCl/sub 3/ and an alkaline earth metal halide such as CaCl/sub 2/, BaF/sub 2/, or BaCl/sub 2/. The cathode of the cell is a metal such as Mn, Cr, Co, Fe, or Ni which forms a low melting eutectic with U. The cell is operated at a temperature below the melting point of U. In operation the electrodeposited uranium becomes alloyed with the metal of the cathode, and the low melting alloy thus formed drips from the cathode.
Developing uranium dicarbide-graphite porous materials for the SPES project
NASA Astrophysics Data System (ADS)
Biasetto, L.; Zanonato, P.; Carturan, S.; Di Bernardo, P.; Colombo, P.; Andrighetto, A.; Prete, G.
2010-09-01
Uranium carbide dispersed in graphite was produced under vacuum by means of carbothermic reduction of different uranium oxides (UO 2, U 3O 8 and UO 3), using graphite as the source of carbon. The thermal process was monitored by mass spectrometry and the gas evolution confirmed the reduction of the U 3O 8 and UO 3 oxides to UO 2 before the carbothermic reaction, that started to occur at T > 1000 °C. XRD analysis confirmed the formation of α-UC 2 and of a minor amount of UC. The morphology of the produced uranium carbide was not affected by the oxides employed as the source of uranium.
Fate of Uranium During Transport Across the Groundwater-Surface Water Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaffe, Peter R.; Kaplan, Daniel I.
Discharge of contaminated groundwater to surface waters is of concern at many DOE facilities. For example, at F-Area and TNX-Area on the Savannah River Site, contaminated groundwater, including uranium, is already discharging into natural wetlands. It is at this interface where contaminants come into contact with the biosphere. These this research addressed a critical knowledge gap focusing on the geochemistry of uranium (or for that matter, any redox-active contaminant) in wetland systems. Understanding the interactions between hydrological, microbial, and chemical processes will make it possible to provide a more accurate conceptual and quantitative understanding of radionuclide fate and transport undermore » these unique conditions. Understanding these processes will permit better long-term management and the necessary technical justification for invoking Monitored Natural Attenuation of contaminated wetland areas. Specifically, this research did provide new insights on how plant-induced alterations to the sediment biogeochemical processes affect the key uranium reducing microorganisms, the uranium reduction, its spatial distribution, the speciation of the immobilized uranium, and its long-term stability. This was achieved by conducting laboratory mesocosm wetland experiments as well as field measurements at the SRNL. Results have shown that uranium can be immobilized in wetland systems. To a degree some of the soluble U(VI) was reduced to insoluble U(IV), but the majority of the immobilized U was incorporated into iron oxyhydroxides that precipitated onto the root surfaces of wetland plants. This U was immobilized mostly as U(VI). Because it was immobilized in its oxidized form, results showed that dry spells, resulting in the lowering of the water table and the exposure of the U to oxic conditions, did not result in U remobilization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.
2006-08-01
This report establishes the technical bases for using a ''slow uptake'' instead of a ''moderate uptake'' transportability class for americium-241 (241Am) for the K Basin Sludge Treatment Project (STP) dose consequence analysis. Slow uptake classes are used for most uranium and plutonium oxides. A moderate uptake class has been used in prior STP analyses for 241Am based on the properties of separated 241Am and its associated oxide. However, when 241Am exists as an ingrown progeny (and as a small mass fraction) within plutonium mixtures, it is appropriate to assign transportability factors of the predominant plutonium mixtures (typically slow) to themore » Am241. It is argued that the transportability factor for 241Am in sludge likewise should be slow because it exists as a small mass fraction as the ingrown progeny within the uranium oxide in sludge. In this report, the transportability class assignment for 241Am is underpinned with radiochemical characterization data on K Basin sludge and with studies conducted with other irradiated fuel exposed to elevated temperatures and conditions similar to the STP. Key findings and conclusions from evaluation of the characterization data and published literature are summarized here. Plutonium and 241Am make up very small fractions of the uranium within the K Basin sludge matrix. Plutonium is present at about 1 atom per 500 atoms of uranium and 241Am at about 1 atom per 19000 of uranium. Plutonium and americium are found to remain with uranium in the solid phase in all of the {approx}60 samples taken and analyzed from various sources of K Basin sludge. The uranium-specific concentrations of plutonium and americium also remain approximately constant over a uranium concentration range (in the dry sludge solids) from 0.2 to 94 wt%, a factor of {approx}460. This invariability demonstrates that 241Am does not partition from the uranium or plutonium fraction for any characterized sludge matrix. Most of the K Basin sludge characterization data is derived spent nuclear fuel corroded within the K Basins at 10-15?C. The STP process will place water-laden sludges from the K Basin in process vessels at {approx}150-180 C. Therefore, published studies with other irradiated (uranium oxide) fuel were examined. From these studies, the affinity of plutonium and americium for uranium in irradiated UO2 also was demonstrated at hydrothermal conditions (150 C anoxic liquid water) approaching those proposed for the STP process and even for hydrothermal conditions outside of the STP operating envelope (e.g., 150 C oxic and 100 C oxic and anoxic liquid water). In summary, by demonstrating that the chemical and physical behavior of 241Am in the sludge matrix is similar to that of the predominant species (uranium and for the plutonium from which it originates), a technical basis is provided for using the slow uptake transportability factor for 241Am that is currently used for plutonium and uranium oxides. The change from moderate to slow uptake for 241Am could reduce the overall analyzed dose consequences for the STP by more than 30%.« less
PRECIPITATION OF ZIRCONIUM AND FLUORIDE IONS FROM SOLUTIONS
Newby, B.J.
1963-06-11
A process is given for removing zirconium and fluorine ions from aqueous solutions also containing uranium(VI). The precipitation is carried out with sodium formate, and the uranium remains in solution. (AEC)
Uranium isotopes fingerprint biotic reduction.
Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan
2015-05-05
Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.
Lyon, W.L.
1962-04-17
A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)
The measurement of U(VI) and Np(IV) mass transfer in a single stage centrifugal contactor
NASA Astrophysics Data System (ADS)
May, I.; Birkett, E. J.; Denniss, I. S.; Gaubert, E. T.; Jobson, M.
2000-07-01
BNFL currently operates two reprocessing plants for the conversion of spent nuclear fuel into uranium and plutonium products for fabrication into uranium oxide and mixed uranium and plutonium oxide (MOX) fuels. To safeguard the future commercial viability of this process, BNFL is developing novel single cycle flowsheets that can be operated in conjunction with intensified centrifugal contactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...
Code of Federal Regulations, 2014 CFR
2014-01-01
... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...
Code of Federal Regulations, 2013 CFR
2013-01-01
... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...
Code of Federal Regulations, 2012 CFR
2012-01-01
... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...
Code of Federal Regulations, 2010 CFR
2010-01-01
... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold F. McFarlane; Terry Todd
2013-11-01
Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore.more » Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor fuels have been irradiated for different purposes, but the vast majority of commercial fuel is uranium oxide clad in zirconium alloy tubing. As a result, commercial reprocessing plants have relatively narrow technical requirements for used nuclear that is accepted for processing.« less
NASA Astrophysics Data System (ADS)
Kalashnyk, N.; Perry, D. L.; Massuyeau, F.; Faulques, E.
2017-12-01
Several optical microprobe experiments of the anhydrous uranium carbonate—rutherfordine—are presented in this work and compared to periodic density functional theory results. Rutherfordine is the simplest uranyl carbonate and constitutes an ideal model system for the study of the rich uranium carbonate family relevant for environmental sustainability. Micro-Raman, micro-reflectance, and micro-photoluminescence (PL) spectroscopy studies have been carried out in situ on native, micrometer-sized crystals. The sensitivity of these techniques is sufficient to analyze minute amounts of samples in natural environments without using x-ray analysis. In addition, very intense micro-PL and micro-reflectance spectra that were not reported before add new results on the ground and excited states of this mineral. The optical gap value determined experimentally is found at about 2.6-2.8 eV. Optimized geometry, band structure, and phonon spectra have been calculated. The main vibrational lines are identified and predicted by this theoretical study. This work is pertinent for optical spectroscopy, for identification of uranyl species in various environmental settings, and for nuclear forensic analysis.
Oyola, Yatsandra; Janke, Christopher J.; Dai, Sheng
2016-02-29
The ocean contains uranium with an approximate concentration of 3.34 ppb, which can serve as an incredible supply source to sustain nuclear energy in the United States. Unfortunately, technology currently available to recover uranium from seawater is not efficient enough and mining uranium on land is still more economical. For this study, we have developed polymer-based adsorbents with high uranium adsorption capacities by grafting amidoxime onto high-surface-area polyethylene (PE) fibers. Various process conditions have been screened, in combination with developing a rapid testing protocol (<24 h), to optimize the process. These adsorbents are synthesized through radiation-induced grafting of acrylonitrile (AN)more » and methacrylic acid (MAA) onto PE fibers, followed by the conversion of nitriles to amidoximes and basic conditioning. In addition, the uranium adsorption capacity, measured in units of g U/kg ads, is greatly increased by reducing the diameter of the PE fiber or changing its morphology. An increase in the surface area of the PE polymer fiber allows for more grafting sites that are positioned in more-accessible locations, thereby increasing access to grafted molecules that would normally be located in the interior of a fiber with a larger diameter. Polymer fibers with hollow morphologies are able to adsorb beyond 1 order of magnitude more uranium from simulated seawater than current commercially available adsorbents. Finally, several high-surface-area fibers were tested in natural seawater and were able to extract 5–7 times more uranium than any adsorbent reported to date.« less
NASA Astrophysics Data System (ADS)
Kalashnyk, Anna
2015-04-01
During exploration works we discovered the spatial association and proximity time formation of kimberlite dykes (ages are 1,815 and 1,900 Ga for phlogopite) and major industrial uranium deposits in carbonate-sodium metasomatites (age of the main uranium ore of an albititic formation is 1,85-1,70 Ga according to U-Pb method) in Kirovogradsky, Krivorozhsky and Alekseevsko-Lysogorskiy uranium ore regions of the Ukrainian Shield (UkrSh) [1]. In kimberlites of Kirovogradsky ore region uranium content reaches 18-20 g/t. Carbon dioxide is a major component in the formation of hydrothermal uranium deposits and the formation of the sodium in the process of generating the spectrum of alkaline ultrabasic magmas in the range from picritic to kimberlite and this is the connection between these disparate geochemical processes. For industrial uranium deposits in carbonate-sodium metasomatitics of the Kirovogradsky and Krivorozhsky uranium ore regions are characteristic of uranyl carbonate introduction of uranium, which causes correlation between CO2 content and U in range of "poor - ordinary - rich" uranium ore. In productive areas of uranium-ore fields of the Kirovogradsky ore region for phlogopite-carbonate veinlets of uranium ore albitites deep δ13C values (from -7.9 to -6.9o/oo) are characteristic. Isotope-geochemical investigation of albitites from Novokonstantynovskoe, Dokuchaevskoe, Partyzanskoe uranium deposits allowed obtaining direct evidence of the involvement of mantle material during formation of uranium albitites in Kirovogradsky ore region [2]. Petrological characteristics of kimberlites from uranium ore regions of the UkrSh (presence of nodules of dunite and harzburgite garnet in kimberlites, diamonds of peridotite paragenesis, chemical composition of indicator minerals of kimberlite, in particular Gruzskoy areas pyropes (Cr2O3 = 6,1-7,1%, MgO = 19,33-20,01%, CaO = 4,14-4,38 %, the content of knorringite component of most grains > 50mol%), chromites (Cr2O3 = 45,32-62,17%, MgO = 7,3-12,5%) allow us to estimate the depth of generation of kimberlite magmas more than 170-200 km. Ilmenites show two groups according to MgO, Cr2O3 and TiO2 content. Reconstructions of the mantle sections show also two intervals of pressures divided at 4.5 GPa, the upper part is highly metasomatized This high degree metasomatism is determined for almost all mantle columns. It is suggested that large-scale of uranium-bearing mantle fluids may be associated with the ancient degasation during the subduction which is highly enriched in U component . Analysis of the reasons for the marked association kimberlitic dykes and major industrial uranium deposits in carbonate-sodium metasomatic in the UkrSh led to the conclusion that hydrothermal uranium deposits are confined to the supply mantle fluid systems of mantle fault zones exercising brings sodium carbonate solutions enriched uranium from mantle sources. References: 1. Kalashnik A.A. New prognostic-evaluation criteria in technology prognosis of forming industrial endogenous uranium deposits of the Ukrainian Shield, 2014. Scientific proceedings of UkrSGRI, № 2, p. 27-54 (in Russian) 2. Stepanjuk L.M., Bondarenko S.V., Somka V.O. and other, 2012. Source of uranium and uranium-bearing sodium albitites for example of Dokuchaievskogo field of the Ingulsky megablock of the UkrSh: Abstracts of scientific conference "Theoretical issues and research practice metasomatic rocks and ores" (Kyiv, 14-16 March 2012), IGMOF, p.78-80. (in Ukrainian)
Uranium in groundwater--Fertilizers versus geogenic sources.
Liesch, Tanja; Hinrichsen, Sören; Goldscheider, Nico
2015-12-01
Due to its radiological and toxicological properties even at low concentration levels, uranium is increasingly recognized as relevant contaminant in drinking water from aquifers. Uranium originates from different sources, including natural or geogenic, mining and industrial activities, and fertilizers in agriculture. The goal of this study was to obtain insights into the origin of uranium in groundwater while differentiating between geogenic sources and fertilizers. A literature review concerning the sources and geochemical processes affecting the occurrence and distribution of uranium in the lithosphere, pedosphere and hydrosphere provided the background for the evaluation of data on uranium in groundwater at regional scale. The state of Baden-Württemberg, Germany, was selected for this study, because of its hydrogeological and land-use diversity, and for reasons of data availability. Uranium and other parameters from N=1935 groundwater monitoring sites were analyzed statistically and geospatially. Results show that (i) 1.6% of all water samples exceed the German legal limit for drinking water (10 μg/L); (ii) The range and spatial distribution of uranium and occasional peak values seem to be related to geogenic sources; (iii) There is a clear relation between agricultural land-use and low-level uranium concentrations, indicating that fertilizers generate a measurable but low background of uranium in groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.
Caulobacter crescentus as a Whole-Cell Uranium Biosensor▿ †
Hillson, Nathan J.; Hu, Ping; Andersen, Gary L.; Shapiro, Lucy
2007-01-01
We engineered a strain of the bacterium Caulobacter crescentus to fluoresce in the presence of micromolar levels of uranium at ambient temperatures when it is exposed to a hand-held UV lamp. Previous microarray experiments revealed that several Caulobacter genes are significantly upregulated in response to uranium but not in response to other heavy metals. We designated one of these genes urcA (for uranium response in caulobacter). We constructed a reporter that utilizes the urcA promoter to produce a UV-excitable green fluorescent protein in the presence of the uranyl cation, a soluble form of uranium. This reporter is specific for uranium and has little cross specificity for nitrate (<400 μM), lead (<150 μM), cadmium (<48 μM), or chromium (<41.6 μM). The uranium reporter construct was effective for discriminating contaminated groundwater samples (4.2 μM uranium) from uncontaminated groundwater samples (<0.1 μM uranium) collected at the Oak Ridge Field Research Center. In contrast to other uranium detection methodologies, the Caulobacter reporter strain can provide on-demand usability in the field; it requires minimal sample processing and no equipment other than a hand-held UV lamp, and it may be sprayed directly on soil, groundwater, or industrial surfaces. PMID:17905881
Origin of the Mariano Lake uranium deposit, McKinley County, New Mexico
Fishman, Neil S.; Reynolds, Richard L.
1982-01-01
The Mariano Lake uranium deposit, hosted by the Brushy Basin Member of the Jurassic Morrison Formation, occurs in the trough of an east-west trending syncline at the western end of the Smith Lake-Mariano Lake group of uranium deposits near Crownpoint, New Mexico. The orebody, which contains abundant amorphous organic material, is situated on the reduced side of a regional reduction-oxidation (redox) interface. The presence of amorphous organic material suggests the orebody may represent a tabular (primary) deposit, whereas the close proximity of the orebody to the redox interface is suggestive that uranium was secondarily redistributed by oxidative processes from pre-existing tabular orebodies. Uranium contents correlate positively with both organic carbon and vanadium contents. Petrographic evidence and scanning electron microscope-energy dispersive analyses point to uranium residence in the epigentically introduced amorphous organic material, which coats detrital grains and fills voids. Uranium mineralization was preceded by the following diagenetic alterations: precipitation of pyrite (d34S values ranging from-11.0 to-38.2 per mil); precipitation of mixed-layer smectite-illite clays; partial dissolution of some of the detrital feldspar population; and precipitation of quartz and adularia overgrowths. Alterations associated with uranium mineralization include emplacement of amorphous organic material (possibly uranium bearing); destruction of detrital iron-titanium oxide grains; coprecipitation of chlorite and microcrystalline quartz, and precipitation of pyrite and marcasite (d34S values for these sulfides ranging from -29.4 to -41.6 per mil). After mineralization, calcite, dolomite, barite, and kaolinite precipitated, and authigenic iron disulfides were replaced by ferric oxides and hydroxides. Geochemical data (primarily the positive correlation of uranium content to both organic carbon and vanadium contents) and petrographic observations (epigentically introduced amorphous organic matter and uranium residence in this organic matter) indicate that the Mariano Lake orebody is a tabular-type uranium deposit. Oxidative processes have not noticeably redistributed and reconcentrated primary uranium in the immediate vicinity of the deposit nor have they greatly modified geochemical characteristics in the ore. Preservation of the Mariano Lake deposit may not only be related to its position along the synclinal trough, where oxidative destruction of the orebody has been inhibited by stagnation of oxidizing ground waters by the structure, but also due to the deflection of ground waters (resulting from low orebody porosity) around the orebody.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isselhardt, Brett H.
2011-09-01
Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/ 238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser inmore » a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.« less
Effect of pH and Pressure on Uranium Removal from Drinking Water Using NF/RO Membranes.
Schulte-Herbrüggen, Helfrid M A; Semião, Andrea J C; Chaurand, Perrine; Graham, Margaret C
2016-06-07
Groundwater is becoming an increasingly important drinking water source. However, the use of groundwater for potable purposes can lead to chronic human exposure to geogenic contaminants, for example, uranium. Nanofiltration (NF) and reverse osmosis (RO) processes are used for drinking water purification, and it is important to understand how contaminants interact with membranes since accumulation of contaminants to the membrane surface can lead to fouling, performance decline and possible breakthrough of contaminants. During the current study laboratory experiments were conducted using NF (TFC-SR2) and RO (BW30) membranes to establish the behavior of uranium across pH (3-10) and pressure (5-15 bar) ranges. The results showed that important determinants of uranium-membrane sorption interactions were (i) the uranium speciation (uranium species valence and size in relation to membrane surface charge and pore size) and (ii) concentration polarization, depending on the pH values. The results show that it is important to monitor sorption of uranium to membranes, which is controlled by pH and concentration polarization, and, if necessary, adjust those parameters controlling uranium sorption.
Biosorption characteristics of Uranium (VI) from aqueous solution by pollen pini.
Wang, Feihong; Tan, Lichao; Liu, Qi; Li, Rumin; Li, Zhanshuang; Zhang, Hongsen; Hu, Songxia; Liu, Lianhe; Wang, Jun
2015-12-01
Uranium biosorption from aqueous solutions by pollen pini (Pinus massoniana pollen) was studied in a bath system. The biosorbent was characterized by Fourier-transform infrared spectroscopy and scanning electron microscope. The influences of pH, contact time and initial uranium concentration at room temperature were investigated and the experimental curves were obtained. The pollen pini exhibited the highest uranium sorption capacity at pH 5.0 after 2 h contact. At pH 2.5 pollen pini also exhibited a good uranium loading capacity (>15%). Therefore biosorption characteristics of uranium from aqueous solution onto pollen pini were examined at pH 2.5 as well. The kinetics followed a pseudo-second-order rate equation and adsorption process was well fitted with the Freundlich isotherm at both pH. The adsorption of uranium by the biosorbent was confirmed by energy dispersive spectroscopy. The present study suggested that pollen pini could be a suitable biosorbent for biosorption uranium (VI) from aqueous solution in a fast, low cost and convenient approach. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synthesis and an X-ray diffraction study of Rb{sub 2}[(UO{sub 2}){sub 2}(C{sub 2}O{sub 4}){sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serezhkina, L. B., E-mail: Lserezh@ssu.samara.ru; Peresypkina, E. V.; Neklyudova, N. A.
2010-09-15
The synthesis and X-ray diffraction study of compound Rb{sub 2}[(UO{sub 2}){sub 2}(C{sub 2}O{sub 4}){sub 3}], which crystallizes in the monoclinic crystal system, are performed. The unit cell parameters are as follows: a = 7.9996(6) A, b = 8.8259(8) A, c = 11.3220(7) A, {beta} = 105.394(2){sup o}, and V = 770.7(1) A{sup 3}; space group P2{sub 1}/n, Z = 2, and R{sub 1} = 0.0271. [(UO{sub 2}){sub 2}(C{sub 2}O{sub 4}){sub 3}]{sup 2-} layers belonging to the AK{sub 0.5}{sup 02}T{sup 11} crystal chemical group of uranyl complexes (A = UO{sub 2}{sup 2+}, K{sup 02} = C{sub 2}O{sub 4}{sup 2-}, and T{supmore » 11} = C{sub 2}O{sub 4}{sup 2-}) are uranium-containing structural units of the crystals. The layers are connected with outer-sphere rubidium cations by electrostatic interactions.« less
Maria, Leonor; Santos, Isabel C; Santos, Isabel
2018-05-23
The reaction of [UI3(thf)4] with the sodium or lithium salts of hydrobis(2-mercapto-1-methylimidazolyl)borate ligands ([H(R)B(timMe)2]-) in a 1 : 2 ratio, in tetrahydrofuran, gave the U(iii) complexes [UI{κ3-H,S,S'-H(R)B(timMe)2}2(thf)2] (R = H (1), Ph (2)) in good yields. Crystals of [UI{κ3-H,S,S'-H(Ph)B(timMe)2}2(thf)2] (2) were obtained by recrystallization from a tetrahydrofuran/acetonitrile solution, and the ion-separated uranium complex [U{κ3-H,S,S'-H(Ph)B(timMe)2}2(CH3CN)3][I] (3-I) was obtained by dissolution of 2 in acetonitrile followed by recrystallization. One-electron oxidation of 2 with AgBPh4 or I2 resulted in the formation of the cationic U(iv) complexes [U{κ3-H,S,S'-H(Ph)B(timMe)2}3][X] (X = BPh4 (6-BPh4), I (6-I)), due to a ligand redistribution process. These complexes are the first examples of homoleptic poly(azolyl)borate U(iv) complexes. Treatment of complex 2 with azobenzene led to the isolation of crystals of the U(iv) compound [UI{κ3-H(Ph)B(timMe)2}2(κ2-timMe)] (7). Treatment of 2 with pyridine-N oxide (pyNO) led to the formation of the uranyl complex [UO2{κ2-S,S'-H(Ph)B(timMe)2}2] (8) and of complex 6-I, while from the reaction of [U{κ3-H(Ph)B(timMe)2}2(thf)3][BPh4] (5) with pyNO, the oxo-bridged U(iv) complex [{U{κ3-H(Ph)B(timMe)2}2(pyNO)}2(μ-O)][BPh4]2 (9) was also obtained. In the U(iii) and U(iv) complexes, the bis(azolyl)borate ligands bind to the uranium center in a κ3-H,S,S' coordination mode, while in the U(vi) complex the ligands bind to the metal in a κ2-S,S' mode. The presence of UH-B interactions in the solid-state, for the nine-coordinate complexes 1, 2, 3, 6 and 7 and for the eight-coordinate complex 9, was supported by IR spectroscopy and/or X-ray diffraction analysis.
NASA Astrophysics Data System (ADS)
Niihara, Takafumi; Kaiden, Hiroshi; Misawa, Keiji; Sekine, Toshimori; Mikouchi, Takashi
2012-08-01
Shock-recovery and annealing experiments on basalt-baddeleyite mixtures were undertaken to evaluate shock effects on U-Pb isotopic systematics of baddeleyite. Shock pressures up to 57 GPa caused fracturing of constituent phases, mosaicism of olivine, maskelynitization of plagioclase, and melting, but the phase transition from monoclinic baddeleyite structure to high-pressure/temperature polymorphs of ZrO2 was not confirmed. The U-Pb isotopic systems of the shock-loaded baddeleyite did not show a large-scale isotopic disturbance. The samples shock-recovered from 47 GPa were then employed for annealing experiments at 1000 or 1300 °C, indicating that the basalt-baddeleyite mixture was almost totally melted except olivine and baddeleyite. Fine-grained euhedral zircon crystallized from the melt was observed around the relict baddeleyite in the sample annealed at 1300 °C for 1 h. The U-Pb isotopic systems of baddeleyite showed isotopic disturbances: many data points for the samples annealed at 1000 °C plotted above the concordia. Both radiogenic lead loss/uranium gain and radiogenic lead gain/uranium loss were observed in the baddeleyite annealed at 1300 °C. Complete radiogenic lead loss due to shock metamorphism and subsequent annealing was not observed in the shock-loaded/annealed baddeleyites studied here. These results confirm that the U-Pb isotopic systematics of baddeleyite are durable for shock metamorphism. Since shergottites still preserve Fe-Mg and/or Ca zonings in major constituent phases (i.e. pyroxene and olivine), the shock effects observed in Martian baddeleyites seem to be less intense compared to that under the present experimental conditions. An implication is that the U-Pb systems of baddeleyite in shergottites will provide crystallization ages of Martian magmatic rocks.
Clavier, Nicolas; Hingant, Nina; Rivenet, Murielle; Obbade, Saïd; Dacheux, Nicolas; Barré, Nicole; Abraham, Francis
2010-02-15
A complete Th(1-x)U(x)(C(2)O(4))(2).2H(2)O solid solution was prepared by mild hydrothermal synthesis from a mixture of hydrochloric solutions containing cations and oxalic acid. The crystal structure has been solved from twinned single crystals for x = 0, 0.5, and 1 with monoclinic symmetry, space group C2/c, leading to unit cell parameters of a approximately 10.5 A, b approximately 8.5 A, and c approximately 9.6 A. The crystal structure consists of a two-dimensional arrangement of actinide centers connected through bis-bidentate oxalate ions forming squares. The actinide metal is coordinated by eight oxygen atoms from four oxalate entities and two water oxygen atoms forming a bicapped square antiprism. The connection between the layers is assumed by hydrogen bonds between the water molecules and the oxygen of oxalate of an adjacent layer. Under these conditions, the unit cell contains two independent oxalate ions. From high-temperature mu-Raman and X-ray diffraction studies, the compounds were found to undergo a transition to an orthorhombic form (space group Ccca). The major differences in the structural arrangement concern the symmetry of uranium, which decreases from C2 to D2, leading to a unique oxalate group. Consequently, the nu(s)(C-O) double band observed in the Raman spectra recorded at room temperature turned into a singlet. This transformation was then used to make the phase transition temperature more precise as a function of the uranium content of the sample.
Precipitation and Dissolution of Uranyl Phosphates in a Microfluidic Pore Structure
NASA Astrophysics Data System (ADS)
Werth, C. J.; Fanizza, M.; Strathmann, T.; Finneran, K.; Oostrom, M.; Zhang, C.; Wietsma, T. W.; Hess, N. J.
2011-12-01
The abiotic precipitation of uranium (U(VI)) was evaluated in a microfluidic pore structure (i.e. micromodel) to assess the efficacy of using a phosphate amendment to immobilize uranium in groundwater and mitigate the risk of this contaminant to potential down-gradient receptor sites. U(VI) was mixed transverse to the direction of flow with hydrogen phosphate (HPO42-), in the presence or absence of calcium (Ca2+) or sulfate (SO42-), in order to identify precipitation rates, the morphology and types of minerals formed, and the stability of these minerals to dissolution with and without bicarbonate (HCO3-) present. Raman backscattering spectroscopy and micro X-ray diffraction (μ-XRD) results both showed that the only mineral precipitated was chernikovite (also known as hydrogen uranyl phosphate; UO2HPO4), even though the formation of other minerals were thermodynamically favored depending on the experimental conditions. Precipitation and dissolution rates varied with influent conditions. Relative to when only U(VI) and HPO42- were present, precipitation rates were 2.3 times slower when SO42- was present, and 1.4 times faster when Ca2+ was present. These rates were inversely related to the size of crystals formed during precipitation. Dissolution rates for chernikovite increased with increasing HCO3- concentrations, consistent with formation of uranyl carbonate complexes in aqueous solution, and they were the fastest for chernikovite formed in the presence of SO42-, and slowest for the chernikovite formed in the presence of Ca2+. These rates are related to the ratios of mineral-water interfacial area to mineral volume. Fluorescent tracer studies and laser confocal microscopy images showed that densely aggregated precipitates blocked pores and reduced permeability. The results suggest that changes in the solute conditions evaluated affect precipitation rates, crystal morphology, and crystal stability, but not mineral type.
Symposium on the reprocessing of irradiated fuels. Book 2, Session IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1958-12-31
Book two of this conference has a single-focused session IV entitled Nonaqueous Processing, with 8 papers. The session deals with fluoride volatility processes and pyrometallurgical or pyrochemical processes. The latter involves either an oxide drossing or molten metal extraction or fused salt extraction technique and results in only partial decontamination. Fluoride volatility processes appear to be especially favorable for recovery of enriched uranium and decontamination factors of 10/sup 7/ to 10/sup 8/ would be achieved by simpler means than those employed in solvent extraction. Data from lab research on the BrF/sub 3/ process and the ClF/sub 3/ process are givenmore » and discussed and pilot plant experience is described, all in connection with natural uranium or slightly enriched uranium processing. Fluoride volatility processes for enriched or high alloy fuels are described step by step. The economic and engineering considerations of both types of nonaqueous processing are treated separately and as fully as present knowledge allows. A comprehensive review of the chemistry of pyrometallurgical processes is included.« less
Accumulation of uranium by immobilized persimmon tannin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, Takashi; Nakajima, Akira
1994-01-01
We have discovered that the extracted juice of unripe astringent persimmon fruit, designated as kakishibu or shibuol, has an extremely high affinity for uranium. To develop efficient adsorbents for uranium, we tried to immobilize kakishibu (persimmon tannin) with various aldehydes and mineral acids. Persimmon tannin immobilized with glutaraldehyde can accumulate 1.71 g (14 mEq U) of uranium per gram of the adsorbent. The uranium accumulating capacity of this adsorbent is several times greater than that of commercially available chelating resins (2-3 mEq/g). Immobilized persimmon tannin has the most favorable features for uranium recovery; high selective adsorption ability, rapid adsorption rate,more » and applicability in both column and batch systems. The uranium retained on immobilized persimmon tannin can be quantitatively and easily eluted with a very dilute acid, and the adsorbent can thus be easily recycled in the adsorption-desorption process. Immobilized persimmon tannin also has a high affinity for thorium. 23 refs., 13 figs., 7 tabs.« less
Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits
NASA Astrophysics Data System (ADS)
Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas
2017-06-01
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.
Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits
Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas
2017-01-01
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment. PMID:28569759
Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits
Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; ...
2017-06-01
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotopemore » signatures, consistent with largely biotic reduction of U (VI) to U (IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.« less
Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits.
Bhattacharyya, Amrita; Campbell, Kate M; Kelly, Shelly D; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas
2017-06-01
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI) ) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238 U-enriched isotope signatures, consistent with largely biotic reduction of U (VI) to U (IV) . This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.
Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotopemore » signatures, consistent with largely biotic reduction of U (VI) to U (IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.« less
Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits
Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas
2017-01-01
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV)to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.
Efficient rolling texture predictions and texture-sensitive properties of α-uranium foils
Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; ...
2017-01-01
Here, finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favorsmore » one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a final recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of the thermal expansion and elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.« less
Efficient rolling texture predictions and texture-sensitive properties of α-uranium foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.
Here, finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favorsmore » one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a final recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of the thermal expansion and elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.« less
NASA Astrophysics Data System (ADS)
Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; Knezevic, Marko; Garlea, Elena; Agnew, Sean R.
2017-11-01
Finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold straight-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favors one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold straight-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of thermal expansion and the elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPAmore » ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.« less
SEPARATION PROCESS FOR THORIUM SALTS
Bridger, G.L.; Whatley, M.E.; Shaw, K.G.
1957-12-01
A process is described for the separation of uranium, thorium, and rare earths extracted from monazite by digesting with sulfuric acid. By carefully increasing the pH of the solution, stepwise, over the range 0.8 to 5.5, a series of selective precipitations will be achieved, with the thorium values coming out at lower pH, the rare earths at intermediate pH and the uranium last. Some mixed precipitates will be obtained, and these may be treated by dissolving in HNO/sub 3/ and contacting with dibutyl phosphate, whereby thorium or uranium are taken up by the organic phase while the rare earths preferentially remain in the aqueous solution.
Resource potential for commodities in addition to Uranium in sandstone-hosted deposits: Chapter 13
Breit, George N.
2016-01-01
Sandstone-hosted deposits mined primarily for their uranium content also have been a source of vanadium and modest amounts of copper. Processing of these ores has also recovered small amounts of molybdenum, rhenium, rare earth elements, scandium, and selenium. These deposits share a generally common origin, but variations in the source of metals, composition of ore-forming solutions, and geologic history result in complex variability in deposit composition. This heterogeneity is evident regionally within the same host rock, as well as within districts. Future recovery of elements associated with uranium in these deposits will be strongly dependent on mining and ore-processing methods.
An Overview of Process Monitoring Related to the Production of Uranium Ore Concentrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGinnis, Brent
2014-04-01
Uranium ore concentrate (UOC) in various chemical forms, is a high-value commodity in the commercial nuclear market, is a potential target for illicit acquisition, by both State and non-State actors. With the global expansion of uranium production capacity, control of UOC is emerging as a potentially weak link in the nuclear supply chain. Its protection, control and management thus pose a key challenge for the international community, including States, regulatory authorities and industry. This report evaluates current process monitoring practice and makes recommendations for utilization of existing or new techniques for managing the inventory and tracking this material.
A two-dimensional, finite-difference model of the oxidation of a uranium carbide fuel pellet
NASA Astrophysics Data System (ADS)
Shepherd, James; Fairweather, Michael; Hanson, Bruce C.; Heggs, Peter J.
2015-12-01
The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used to model the heat and mass transfer processes occurring during the reaction in two dimensions and are coupled to kinetics found in the literature.
SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS
Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.
1958-10-01
A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.
FUEL ELEMENTS AND METHOD OF MAKING
Noland, R.A.; Marzano, C.
1958-08-19
A process is described of surface-impregnating bodies of metallic uranium with silicon. Silicon metal is added to or admixed with alkali metal selected from the group consisting of sodiunn, potassium, and sodiunnpotassium alloy. The uraniunn body is then immersed in the mixture obtained and the temperature is raised to between 425 and 600 deg C. The silicon is dissolved and deposits as a uranium-silicon compound on the uranium body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.
The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contractmore » to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.« less
Restructuring the Uranium Mining Industry in Romania: Actual Situation and Prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgescu, P.D.; Petrescu, S.T.; Iuhas, T.F.
2002-07-01
Uranium prospecting in Romania has started some 50 years ago, when a bilateral agreement between Romania and the former Soviet Union had been concluded and a joint Romanian-Soviet enterprise was created. The production started in 1952 by the opening of some deposits from western Transylvania (Bihor and Ciudanovita). From 1962 the production has continued only with Romanian participation on the ore deposit Avram Iancu and from 1985 on the deposits from Eastern Carpathians (Crucea and Botusana). Starting with 1978 the extracted ores have been completely processed in the Uranium Ore Processing Plant from Feldioara, Brasov. Complying with the initial stipulationsmore » of the Nuclear National Program launched at the beginning of the 1980's, the construction of a nuclear power station in Cernavoda has started in Romania, using natural uranium and heavy water (CANDU type), having five units of 650 MW installed capacity. After 1989 this initial Nuclear National Program was revised and the construction of the first unit (number 1) was finalized and put in operation in 1996. In 2001 the works at the unit number 2 were resumed, having the year 2005 as the scheduled activating date. The future of the other 3 units, being in different construction phases, hasn't been clearly decided. Taking into consideration the exhaustion degree of some ore deposits and from the prospect of exploiting other ore deposits, the uranium industry will be subject of an ample restructuring process. This process includes workings of modernization of the mines in operation and of the processing plant, increasing the profitableness, lowering of the production costs by closing out and ecological rehabilitation of some areas affected by mining works and even new openings of some uraniferous exploitations. This paper presents the actual situation and the prospects of uranium mining industry on the base of some new technical and economical strategic concepts in accordance with the actual Romanian Program for Nuclear Energetics. (authors)« less
Molybdenum isotope fractionation during acid leaching of a granitic uranium ore
NASA Astrophysics Data System (ADS)
Migeon, Valérie; Bourdon, Bernard; Pili, Eric; Fitoussi, Caroline
2018-06-01
As an attempt to prevent illicit trafficking of nuclear materials, it is critical to identify the origin and transformation of uranium materials from the nuclear fuel cycle based on chemical and isotope tracers. The potential of molybdenum (Mo) isotopes as tracers is considered in this study. We focused on leaching, the first industrial process used to release uranium from ores, which is also known to extract Mo depending on chemical conditions. Batch experiments were performed in the laboratory with pH ranging from 0.3 to 5.5 in sulfuric acid. In order to span a large range in uranium and molybdenum yields, oxidizers such as nitric acid, hydrogen peroxide and manganese dioxide were also added. An enrichment in heavy Mo isotopes is produced in the solution during leaching of a granitic uranium ore, when Mo recovery is not quantitative. At least two Mo reservoirs were identified in the ore: ∼40% as Mo oxides soluble in water or sulfuric acid, and ∼40% of Mo hosted in sulfides soluble in nitric acid or hydrogen peroxide. At pH > 1.8, adsorption and/or precipitation processes induce a decrease in Mo yields with time correlated with large Mo isotope fractionations. Quantitative models were used to evaluate the relative importance of the processes involved in Mo isotope fractionation: dissolution, adsorption, desorption, precipitation, polymerization and depolymerization. Model best fits are obtained when combining the effects of dissolution/precipitation, and adsorption/desorption onto secondary minerals. These processes are inferred to produce an equilibrium isotope fractionation, with an enrichment in heavy Mo isotopes in the liquid phase and in light isotopes in the solid phase. Quantification of Mo isotope fractionation resulting from uranium leaching is thus a promising tool to trace the origin and transformation of nuclear materials. Our observations of Mo leaching are also consistent with observations of natural Mo isotope fractionation taking place during chemical weathering in terrestrial environments where the role of secondary processes such as adsorption is significant.
Processing of irradiated, enriched uranium fuels at the Savannah River Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyder, M L; Perkins, W C; Thompson, M C
Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction withmore » dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.« less
Thermodynamic properties of UF sub 6 measured with a ballistic piston compressor
NASA Technical Reports Server (NTRS)
Sterritt, D. E.; Lalos, G. T.; Schneider, R. T.
1973-01-01
From experiments performed with a ballistic piston compressor, certain thermodynamic properties of uranium hexafluoride were investigated. Difficulties presented by the nonideal processes encountered in ballistic compressors are discussed and a computer code BCCC (Ballistic Compressor Computer Code) is developed to analyze the experimental data. The BCCC unfolds the thermodynamic properties of uranium hexafluoride from the helium-uranium hexafluoride mixture used as the test gas in the ballistic compressor. The thermodynamic properties deduced include the specific heat at constant volume, the ratio of specific heats for UF6, and the viscous coupling constant of helium-uranium hexafluoride mixtures.
SINGLE-STEP CONVERSION OF UO$sub 3$ TO UF$sub 4$
Moore, J.E.
1960-07-12
A description is given of the preparation of uranium tetrafluoride by reacting a hexavalent uranium compound with a pclysaccharide and gaseous hydrogen fluoride at an elevated temperature. Uranium trioxide and starch are combined with water to form a doughy mixture. which is extruded into pellets and dried. The pellets are then contacted with HF at a temperature from 500 to 700 deg C in a moving bed reactor to prcduce UF/sub 4/. Reduction of the hexavalent uranium to UO/sub 2/ and conversion of the UO/sub 2/ to UF/sub 4/ are accomplished simultaneously in this process.
SEPARATION OF URANIUM FROM THORIUM
Hellman, N.N.
1959-07-01
A process is presented for separating uranium from thorium wherein the ratio of thorium to uranium is between 100 to 10,000. According to the invention the thoriumuranium mixture is dissolved in nitric acid, and the solution is prepared so as to obtain the desired concentration within a critical range of from 4 to 8 N with regard to the total nitrate due to thorium nitrate, with or without nitric acid or any nitrate salting out agent. The solution is then contacted with an ether, such as diethyl ether, whereby uranium is extracted into ihe organic phase while thorium remains in the aqueous phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less
40 CFR 421.324 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
.../kg (pounds per million pounds) of uranium processed in the refinery Chromium (total) 27.14 11.00... average mg/kg (pounds per million pounds) of uranium processed in the refinery Chromium (total) 1.689 0... Chromium (total) 2.357 0.955 Copper 8.152 3.885 Nickel 3.503 2.357 Fluoride 222.900 126.700 Total suspended...
40 CFR 421.324 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
.../kg (pounds per million pounds) of uranium processed in the refinery Chromium (total) 27.14 11.00... average mg/kg (pounds per million pounds) of uranium processed in the refinery Chromium (total) 1.689 0... Chromium (total) 2.357 0.955 Copper 8.152 3.885 Nickel 3.503 2.357 Fluoride 222.900 126.700 Total suspended...
PROCESS FOR REMOVING ALUMINUM COATINGS
Flox, J.
1959-07-01
A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least