Sample records for uranium fill material

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, J. S.; Goldstein, S. J.; Paviet, P.

    Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less

  2. A record of uranium-series transport at Nopal I, Sierra Pena Blanca, Mexico: Implications for natural uranium deposits and radioactive waste repositories

    DOE PAGES

    Denton, J. S.; Goldstein, S. J.; Paviet, P.; ...

    2016-04-10

    Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less

  3. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, Charles W.

    1998-01-01

    A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

  4. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, C.W.

    1998-11-03

    A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

  5. Characterization of low concentration uranium glass working materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppich, G. R.; Wimpenny, J. B.; Leever, M. E.

    A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient formore » methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.« less

  6. Nickel container of highly-enriched uranium bodies and sodium

    DOEpatents

    Zinn, Walter H.

    1976-01-01

    A fuel element comprises highly a enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel.

  7. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  8. Interlaboratory comparison program for nondestructive assay of prototype uranium reference materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trahey, N.M.; Smith, M.M.; Voeks, A.M.

    The US Department of Energy (DOE), New Brunswick Laboratory (NBS), designed and administered an interlaboratory comparison program based on the measurement of NBL-produced prototype uranium nondestructive assay (NDA) reference materials for scrap and waste. The objectives of the program were to evaluate the reliability of NDA techniques as applied to nuclear safeguards materials control and accountability needs and to investigate the feasibility of providing practical NDA scrap and waste reference materials for use throughout the nuclear safeguards community. Fourteen facilities representing seven DOE contractors, four US Nuclear Regulatory Commission (NRC) licensees, one EURATOM Laboratory, and NBL, participated in this program.more » Three stable, well-characterized uranium reference materials were developed and certified for this program. Synthetic calcined ash, cellulose fiber, and ion-exchange resin simulate selected uranium scrap and waste forms which are often encountered in fabrication and recovery operations. The synthetic calcined ash represents an intermediate density inorganic matrix while the cellulose fiber and ion-exchange resin are representative of low-density organic matrices. The materials, containing from 0 to 13% uranium enriched at 93% /sup 235/U, were sealed in specially selected containers. Nineteen prototype reference samples, plus three empty containers, one to accompany each set, was circulated to the participants between August 1979 and May 1984. Triplicate measurements for /sup 235/U on each of the 19 filled containers were required. In addition, participants could opt to perform modular configuration measurements using containers from Sets IIA and IIB to simulate non-homogeneously dispersed uranium in waste containers. All data were reported to NBL for evaluation.« less

  9. Uranium distribution in pseudowollastonite slag from a phosphorus furnace

    USGS Publications Warehouse

    Young, Edward; Altschuler, Zalman S.

    1956-01-01

    Silicate slag from the Victor Chemical Company phosphorus furnace at Tarpon Springs, Fla., has been found to consist essentially of pseudowollastonite, α-CaSiO3. The first-formed crystals are euhedral laths which form a mesh making up most of the slag. As the slag continues to solidify, its composition changes slightly and more equant, subhedral crystals of pseudowollastonite are deposited within the framework of the earlier material. Finally, anherdral masses of fibrous, poorly crystallized material are deposited in the remaining pore spaces which are not always completely filled. Spherules of iron phosphide, Fe2P, occur very sparsely in the slag as inclusions from the immiscible iron phosphide melt. Uranium content increases in the later crystal products of the slag, and by heavy-liquid fractionation it has been possible to segregate partially the phases and to obtain a fourfold concentration of uranium in 5 percent of the material and a twofold concentration in 30 percent of the material. Nuclear-emulsion studies indicate that the last phases of the silicate slag are actually eight times as radioactive as the early phases. In addition, the iron phosphide spherules are comparably enriches in uranium.

  10. Experimental studies on metallic fuel relocation in a single-pin core structure of a sodium-cooled fast reactor

    DOE PAGES

    Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig; ...

    2017-07-10

    Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less

  11. Experimental studies on metallic fuel relocation in a single-pin core structure of a sodium-cooled fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig

    Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less

  12. Experience of on-site disposal of production uranium-graphite nuclear reactor.

    PubMed

    Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G

    2018-04-01

    The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  14. APPARATUS FOR CHARGING A RECEPTACLE WITH A DENSE SUBLIMATE FORM OF URANIUM CHLORIDE

    DOEpatents

    Davidson, P.H.

    1959-08-18

    An apparatus for filling a tubular storage receptacle with a dense massive form of uranium chloride is described. The apparatus includes an evacuated housing divided into a vaporizing chamber and a portion adapted to receive the receptacle. A nozzle conducts vaporized uranium chloride from the chamber to the interior of the receptacle. The nozzle is withdrawable to progressively deposit the uranium chloride under controlled conditions to produce a dense sublimate which fills the receptacle.

  15. Successful remediation of four uranium calibration pits at Technical Area II, Sandia National Laboratories, Albuquerque, New Mexico, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, R.; Wade, M.; Tharp, T.

    1994-12-31

    The first remediation of an Environmental Restoration (ER) Project site at Sandia National Laboratories (SNL) was successfully conducted in May and June 1994 at Technical Area II. The removal action involved four Uranium Calibration Pits (UCPs) filled with radioactive or hazardous materials. The concrete culvert pits were used to test and calibrate borehole radiometric logging tools for uranium exploration. The removal action consisted of excavating and containerizing the pit contents and contaminated soil beneath the culverts, removing the four culverts, and backfilling the excavation. Each UCP removal had unique complexities. Sixty 208-L drums of solid radioactive waste and eight 208-Lmore » drums of liquid hazardous waste were generated during the VCM. Two of the concrete culverts will be disposed as radioactive waste and two as solid waste. Uranium-238 was detected in UCP-2 ore material at 746 pci/g, and at 59 pci/g in UCP-1 silica sand. UCP-4 was empty; sludge from UCP-3 contained 122 mg/L (ppm) chromium.« less

  16. Origin of the Mariano Lake uranium deposit, McKinley County, New Mexico

    USGS Publications Warehouse

    Fishman, Neil S.; Reynolds, Richard L.

    1982-01-01

    The Mariano Lake uranium deposit, hosted by the Brushy Basin Member of the Jurassic Morrison Formation, occurs in the trough of an east-west trending syncline at the western end of the Smith Lake-Mariano Lake group of uranium deposits near Crownpoint, New Mexico. The orebody, which contains abundant amorphous organic material, is situated on the reduced side of a regional reduction-oxidation (redox) interface. The presence of amorphous organic material suggests the orebody may represent a tabular (primary) deposit, whereas the close proximity of the orebody to the redox interface is suggestive that uranium was secondarily redistributed by oxidative processes from pre-existing tabular orebodies. Uranium contents correlate positively with both organic carbon and vanadium contents. Petrographic evidence and scanning electron microscope-energy dispersive analyses point to uranium residence in the epigentically introduced amorphous organic material, which coats detrital grains and fills voids. Uranium mineralization was preceded by the following diagenetic alterations: precipitation of pyrite (d34S values ranging from-11.0 to-38.2 per mil); precipitation of mixed-layer smectite-illite clays; partial dissolution of some of the detrital feldspar population; and precipitation of quartz and adularia overgrowths. Alterations associated with uranium mineralization include emplacement of amorphous organic material (possibly uranium bearing); destruction of detrital iron-titanium oxide grains; coprecipitation of chlorite and microcrystalline quartz, and precipitation of pyrite and marcasite (d34S values for these sulfides ranging from -29.4 to -41.6 per mil). After mineralization, calcite, dolomite, barite, and kaolinite precipitated, and authigenic iron disulfides were replaced by ferric oxides and hydroxides. Geochemical data (primarily the positive correlation of uranium content to both organic carbon and vanadium contents) and petrographic observations (epigentically introduced amorphous organic matter and uranium residence in this organic matter) indicate that the Mariano Lake orebody is a tabular-type uranium deposit. Oxidative processes have not noticeably redistributed and reconcentrated primary uranium in the immediate vicinity of the deposit nor have they greatly modified geochemical characteristics in the ore. Preservation of the Mariano Lake deposit may not only be related to its position along the synclinal trough, where oxidative destruction of the orebody has been inhibited by stagnation of oxidizing ground waters by the structure, but also due to the deflection of ground waters (resulting from low orebody porosity) around the orebody.

  17. Detection of tiny amounts of fissile materials in large-sized containers with radioactive waste

    NASA Astrophysics Data System (ADS)

    Batyaev, V. F.; Skliarov, S. V.

    2018-01-01

    The paper is devoted to non-destructive control of tiny amounts of fissile materials in large-sized containers filled with radioactive waste (RAW). The aim of this work is to model an active neutron interrogation facility for detection of fissile ma-terials inside NZK type containers with RAW and determine the minimal detectable mass of U-235 as a function of various param-eters: matrix type, nonuniformity of container filling, neutron gen-erator parameters (flux, pulse frequency, pulse duration), meas-urement time. As a result the dependence of minimal detectable mass on fissile materials location inside container is shown. Nonu-niformity of the thermal neutron flux inside a container is the main reason of the space-heterogeneity of minimal detectable mass in-side a large-sized container. Our experiments with tiny amounts of uranium-235 (<1 g) confirm the detection of fissile materials in NZK containers by using active neutron interrogation technique.

  18. HANDBOOK: SUB-SLAB DEPRESSURIZATION FOR LOW PERMEABILITY FILL MATERIAL DESIGN AND INSTALLATION OF A HOME RADON REDUCTION SYSTEM

    EPA Science Inventory

    Radon, a radioactive gas, comes from the natural decay of uranium. It moves to the earth's surface through tiny openings and cracks in soil and rocks. In outdoor air, radon is diluted to such low concentrations that it is usually nothing to worry about. However, radon can accumul...

  19. Discrimination of high-Z materials in concrete-filled containers using muon scattering tomography

    NASA Astrophysics Data System (ADS)

    Frazão, L.; Velthuis, J.; Thomay, C.; Steer, C.

    2016-07-01

    An analysis method of identifying materials using muon scattering tomography is presented, which uses previous knowledge of the position of high-Z objects inside a container and distinguishes them from similar materials. In particular, simulations were performed in order to distinguish a block of Uranium from blocks of Lead and Tungsten of the same size, inside a concrete-filled drum. The results show that, knowing the shape and position from previous analysis, it is possible to distinguish 5 × 5 × 5 cm3 blocks of these materials with about 4h of muon exposure, down to 2 × 2 × 2 cm3 blocks with 70h of data using multivariate analysis (MVA). MVA uses several variables, but it does not benefit the discrimination over a simpler method using only the scatter angles. This indicates that the majority of discrimination is provided by the angular information. Momentum information is shown to provide no benefits in material discrimination.

  20. High strength and density tungsten-uranium alloys

    DOEpatents

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  1. Compatibility tests of materials for a lithium-cooled space power reactor concept

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.

    1973-01-01

    Materials for a lithium-cooled space power reactor concept must be chemically compatible for up to 50,000 hr at high temperature. Capsule tests at 1040 C (1900 F) were made of material combinations of prime interest: T-111 in direct contact with uranium mononitride (UN), Un in vacuum separated from T-111 by tungsten wire, UN with various oxygen impurity levels enclosed in tungsten wire lithium-filled T-111 capsules, and TZM and lithium together in T-111 capsules. All combinations were compatible for over 2800 hr except for T-111 in direct contact with UN.

  2. NEUTRON COUNTER

    DOEpatents

    Curtis, C.D.; Carlson, R.L.; Tubinis, M.P.

    1958-07-29

    An ionization chamber instrument is described for cylindrical electrodes with an ionizing gag filling the channber. The inner electrode is held in place by a hermetic insulating seal at one end of the outer electrode, the other end of the outer electrode being closed by a gas filling tube. The outer surface of the inner electrode is coated with an active material which is responsive to neutron bombardment, such as uranium235 or boron-10, to produce ionizing radiations in the gas. The transverse cross sectional area of the inner electrode is small in relation to that of the channber whereby substantially all of the radiations are directed toward the outer electrode.

  3. The Gas Hills uranium district and some probable controls for ore deposition

    USGS Publications Warehouse

    Zeller, Howard Davis

    1957-01-01

    Uranium deposits occur in the upper coarse-grained facies of the Wind River formation of Eocene age in the Gas Hills district of the southern part of the Wind River Basin. Some of the principal deposits lie below the water table in the unoxidized zone and consist of uraninite and coffinite occurring as interstitial fillings in irregular blanket-like bodies. In the near-surface deposits that lie above the water table, the common yellow uranium minerals consist of uranium phosphates, silicates, and hydrous oxides. The black unoxidized uraninite -coffinite ores show enrichment of molybdenum, arsenic, and selenium when compared to the barren sandstone. Probable geologic controls for ore deposits include: 1) permeable sediments that allowed passage of ore-bearing solutions; 2) numerous faults that acted as impermeable barriers impounding the ore -bearing solutions; 3) locally abundant pyrite, carbonaceous material, and natuial gas containing hydrogen sulfide that might provide a favorable environment for precipitation of uranium. Field and laboratory evidence indicate that the uranium deposits in the Gas Hills district are very young and related to the post-Miocene to Pleistocene regional tilting to the south associated with the collapse of the Granite Mountains fault block. This may have stopped or reversed ground water movement from a northward (basinward) direction and alkaline ground water rich in carbonate could have carried the uranium into the favorable environment that induced precipitation.

  4. Final Scientific/Technical Report – DE-FG02-06ER64172 – Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center – Subproject to Co-PI Eric E. Roden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric E. Roden

    2009-03-17

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-fundedmore » co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2. Area 2 is a shallow pathway for migration of contaminated groundwater to seeps in the upper reach of Bear Creek at ORNL, mainly through a ca. 1 m thick layer of gravel located 4-5 m below the ground surface. The gravel layer is sandwiched between an overlying layer of disturbed fill material, and 2-3 m of undisturbed shale saprolite derived from the underlying Nolichucky Shale bedrock. The fill was put in place when contaminated soils were excavated and replaced by native saprolite from an uncontaminated area within Bear Creek Valley; the gravel layer was presumably installed prior to addition of the fill in order to provide a stable surface for the operation of heavy machinery. The undisturbed saprolite is highly weathered bedrock that has unconsolidated character but retains much of the bedding and fracture structure of the parent rock (shale with interbedded limestone). Hydrological tracer studies conducted during the Scheibe et al. field project indicate that the gravel layer receives input of uranium from both upstream sources and from diffusive mass transfer out of highly contaminated fill and saprolite materials above and below the gravel layer. This research sought to examine biogeochemical processes likely to take place in the less conductive materials above and below the gravel during the in situ ethanol biostimulation experiment conducted at Area 2 during 2005-2006. The in situ experiment in turn examined the hypothesis that injection of electron donor into this layer would induce formation of a redox barrier in the less conductive materials, resulting in decreased mass transfer of uranium out these materials and attendant declines in groundwater U(VI) concentration. Our research was directed toward the following three major objectives relevant to formation of this redox barrier: (1) elucidate the kinetics and mechanisms of reduction of solid-phase Fe(III) and U(VI) in Area 2 sediments; (2) evaluate the potential for long-term sustained U(IV) reductive immobilization in Area 2 sediments; (3) numerically simulate the suite of hydrobiogeochemical processes occurring in experimental systems so as to facilitate modeling of in situ U(IV) immobilization at the field-scale.« less

  5. Measurement of thermal diffusivity of depleted uranium metal microspheres

    NASA Astrophysics Data System (ADS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  6. Control and distribution of uranium in coral reefs during diagenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gvirtzman, G.; Friedman, G.M.; Miller, D.S.

    1973-12-01

    The concentration of about 2 ppM of uranium in the aragonitic skeletons of modern scleractinian corals which we studied is a constant value, regardless of occurrence, anatomy, or taxonomy. The presence of cement of aragonite or high- magnesian calcite usually raises the concentration of bulk samples to about 3 ppM. Modern corals may contain up to 50% of cementing minerals. Organisms, such as corals and coralline algae, while secreting their skeleton, discriminate against the uptake of uranium, whereas the uptake of uranium by mineral cements is less restrained. Aragonite cement contains about 3.6 ppM and highmagnesian calcite cement 2.6 ppMmore » uranium. During leaching by freshwater, the aragonite of the skeletons of corals dissolves out. This creates hollow molds which fill with drusy low-magnesian calcite. In emergent reefs from the shores of the Red Sea which display the ellects of progressive diagenesis this calcite is enriched in uranium (3.9 ppM) beyond that found in marine cements. Second-generation calcite, which fills original voids in the corals from the emergent reefs, contains a lower level of uranium concent ration (1.3 ppM). The level of concentration of uranium in low-magnesian calcite of diagenetically altered corals is a function of the availability of uranium in meteoric waters. In aragonite as well as in high- and low-magnesian calcite uranium replaces calcium or occupies lattice vacancies in the crystal lattice. (auth)« less

  7. Irradiation behavior of the interaction product of U-Mo fuel particle dispersion in an Al matrix

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hofman, G. L.

    2012-06-01

    Irradiation performance of U-Mo fuel particles dispersed in Al matrix is stable in terms of fuel swelling and is suitable for the conversion of research and test reactors from highly enriched uranium (HEU) to low enriched uranium (LEU). However, tests of the fuel at high temperatures and high burnups revealed obstacles caused by the interaction layers forming between the fuel particle and matrix. In some cases, fission gas filled pores grow and interconnect in the interdiffusion layer resulting in fuel plate failure. Postirradiation observations are made to examine the behavior of the interdiffusion layers. The interdiffusion layers show a fluid-like behavior characteristic of amorphous materials. In the amorphous interdiffusion layers, fission gas diffusivity is high and the material viscosity is low so that the fission gas pores readily form and grow. Based on the observations, a pore formation mechanism is proposed and potential remedies to suppress the pore growth are also introduced.

  8. Soliton microdynamics of the generation of new-type nonlinear surface vibrations, dissociation, and surfing diffusion in diatomic crystals of the uranium nitride type

    NASA Astrophysics Data System (ADS)

    Dubovsky, O. A.; Semenov, V. A.; Orlov, A. V.; Sudarev, V. V.

    2014-09-01

    The microdynamics of large-amplitude nonlinear vibrations of uranium nitride diatomic lattices has been investigated using the computer simulation and neutron scattering methods at temperatures T = 600-2500°C near the thresholds of the dissociation and destruction of the reactor fuel materials. It has been found using the computer simulation that, in the spectral gap between the frequency bands of acoustic and optical phonons in crystals with an open surface, there are resonances of new-type harmonic surface vibrations and a gap-filling band of their genetic successors, i.e., nonlinear surface vibrations. Experimental measurements of the slow neutron scattering spectra of uranium nitride on the DIN-2PI neutron spectrometer have revealed resonances and bands of these surface vibrations in the spectral gap, as well as higher optical vibration overtones. It has been shown that the solitons and bisolitons initiate the formation and collapse of dynamic pores with the generation of surface vibrations at the boundaries of the cavities, evaporation of atoms and atomic clusters, formation of cracks, and destruction of the material. It has been demonstrated that the mass transfer of nitrogen in cracks and along grain boundaries can occur through the revealed microdynamics mechanism of the surfing diffusion of light nitrogen atoms at large-amplitude soliton waves propagating in the stabilizing sublattice of heavy uranium atoms and in the nitrogen sublattice.

  9. Uranium deposits in the Eureka Gulch area, Central City district, Gilpin County, Colorado

    USGS Publications Warehouse

    Sims, P.K.; Osterwald, F.W.; Tooker, E.W.

    1954-01-01

    The Eureka Gulch area of the Central City district, Gilpin County, Colo., was mined for ores of gold, silver, copper, lead, and zinc; but there has been little mining activity in the area since World War I. Between 1951 and 1953 nine radioactive mine dumps were discovered in the area by the U.S. Geological Survey and by prospectors. the importance of the discoveries has not been determined as all but one of the mines are inaccessible, but the distribution, quantity, and grade of the radioactive materials found on the mine dumps indicate that the area is worth of additional exploration as a possible source of uranium ore. The uranium ans other metals are in and near steeply dipping mesothermal veins of Laramide age intrusive rocks. Pitchblende is present in at least four veins, and metatorbernite, associated at places with kosolite, is found along two veins for a linear distance of about 700 feet. The pitchblends and metatorbernite appear to be mutually exclusive and seem to occur in different veins. Colloform grains of pitchblende were deposited in the vein essentially contemporaneously with pyrite. The pitchblende is earlier in the sequence of deposition than galena and sphalerite. The metatorbernite replaces altered biotite-quartz-plagioclase gneiss and altered amphibolite, and to a lesser extent forms coatings on fractures in these rocks adjacent to the veins; the kasolite fills vugs in highly altered material and in altered wall rocks. Much of the pitchblende found on the dumps has been partly leached subsequent to mining and is out of equilibrium. Selected samples of metatorbernite-bearing rock from one mine dump contain as much as 6.11 percent uranium. The pitchblende is a primary vein mineral deposited from uranium-bearing hydrothermal solutions. The metatorbernite probably formed by oxidation, solution, and transportation of uranium from primary pitchblende, but it may be a primary mineral deposited directly from fluids of different composition from these that deposited pitchblende.

  10. A Methodology for Characterizing Potential Uranium Transport in Deep Geological Disposal Sites

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Reimus, P. W.

    2013-12-01

    In order to make safe and reasonable decisions about radioactive waste disposal in deep geologic sites, it is important to understand the fate and potential transport of long half-life transuranic radionuclides over a wide range of time and distance scales. The objective of this study was to evaluate and demonstrate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments involving uranium, as well as other actinides, have already been conducted. Working on this system provides a unique opportunity to compare lab experimental results with field-scale observations. Drilled rock cores and weathered fracture fill material (FFM) from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption/desorption and column breakthrough experiments. Uranium solutions were made by adding uranium to a synthetic Grimsel groundwater that matched the natural water chemistry found in the GTS groundwater. Batch and breakthrough experiments were conducted using solutions between pH 6.9 and 9.0. All column experiments were conducted using syringe pumps at low flow rate (<0.3 ml h-1) in small columns containing 5 g of material with pore volumes of 2-3 ml. These small columns allow rapid and economical evaluation of sorption/desorption behavior under flowing conditions (and in duplicate or triplicate). Solutions were switched to uranium-free synthetic Grimsel groundwater after equilibration in batch experiments or after near-steady uranium breakthrough occurred in column experiments. The measurement of uranium concentrations as a function of time under these conditions allowed interrogation of desorption rates which we believe control uranium fate and transport over long time and distance scales. Uranium transport was conservative and matched tritium breakthrough for pH 9.0; however, retardation increased when pH was reduced to 7.9 and 6.9. We are currently evaluating uranium adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, mineralogy, bentonite colloids and other actinides (e.g., Am). Figure 1. Uranium breakthrough results for (a) 6.5 μM U, (b) U-free solution, (c) flow rate increased from 0.3 to 0.6 mL h-1, (d) pH increased from 6.8 to 7.2, and (e) pH increased from 7.2 to 8.8.

  11. Uranophane at Silver Cliff mine, Lusk, Wyoming

    USGS Publications Warehouse

    Wilmarth, Verl R.; Johnson, D.H.

    1954-01-01

    The uranium deposit at the Silver Cliff mine near Lusk, Wyo., consists primarily of uranophane which occurs as fracture fillings and small replacement pockets in faulted and fractured calcareous sandstone of Cambrian (?) age. The country rock in the vicinity of the mine is schist of pre-Cambrian age intruded by pegmatite dikes and is unconformably overlain by almost horizontal sandstone of Cambrian(?) age. The mine is on the southern end of the Lusk Dome, a local structure probably related to the Hartville uplift. In the immediate vicinity of the mine, the dome is cut by the Silver Cliff fault, a north-trending high-angle reverse fault about 1,200 feet in length with a stratigraphic throw of 70 feet. Uranophane, metatorbernite, pitchblende, calcite, native silver, native copper, chalcocite, azurite, malachite, chrysocolla, and cuprite have been deposited in fractured sandstone. The fault was probably mineralized throughout its length, but because of erosion, the mineralized zone is discontinuous. The principal ore body is about 800 feet long. The width and depth of the mineralized zone are not accurately known but are at least 20 feet and 60 feet respectively. The uranium content of material sampled in the mine ranges from 0.001 to 0.23 percent uranium, whereas dump samples range from 0.076 to 3.39 percent uranium.

  12. U-Pb ages of uraniferous opals and implications for the history of beryllium, fluorine, and uranium mineralization at Spor Mountain, Utah

    USGS Publications Warehouse

    Ludwig, K. R.; Lindsey, D.A.; Zielinski, R.A.; Simmons, K.R.

    1980-01-01

    The U-Pb isotope systematics of uraniferous opals from Spor Mountain, Utah, were investigated to determine the suitability of such material for geochronologic purposes, and to estimate the timing of uranium and associated beryllium and fluorine mineralization. The results indicate that uraniferous opals can approximate a closed system for uranium and uranium daughters, so that dating samples as young as ???1 m.y. should be possible. In addition, the expected lack of initial 230Th and 231Pa in opals permits valuable information on the initial 234U/238U to be obtained on suitable samples of ???10 m.y. age. The oldest 207Pb/235U apparent age observed, 20.8 ?? 1 m.y., was that of the opal-fluorite core of a nodule from a beryllium deposit in the Spor Mountain Formation. This age is indistinguishable from that of fission-track and K-Ar ages from the host rhyolite, and links the mineralization to the first episode of alkali rhyolite magmatism and related hydrothermal activity at Spor Mountain. Successively younger ages of 13 m.y. and 8-9 m.y. on concentric outer zones of the same nodule indicate that opal formed either episodically or continuously for over 10 m.y. Several samples of both fracture-filling and massive-nodule opal associated with beryllium deposits gave 207Pb/235U apparent ages of 13-16 m.y., which may reflect a restricted period of mineralization or perhaps an averaging of 21- and <13-m.y. periods of opal growth. Several samples of fracture-filling opal in volcanic rocks as young as 6 m.y. gave 207Pb/235U ages of 3.4-4.8 m.y. These ages may reflect hot-spring activity after the last major eruption of alkali rhyolite. ?? 1980.

  13. Method of preparation of uranium nitride

    DOEpatents

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  14. Radiation shielding materials and containers incorporating same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  15. Radiation Shielding Materials and Containers Incorporating Same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  16. DIRECT INGOT PROCESS FOR PRODUCING URANIUM

    DOEpatents

    Leaders, W.M.; Knecht, W.S.

    1960-11-15

    A process is given in which uranium tetrafluoride is reduced to the metal with magnesium and in the same step the uranium metal formed is cast into an ingot. For this purpose a mold is arranged under and connected with the reaction bomb, and both are filled with the reaction mixture. The entire mixture is first heated to just below reaction temperature, and thereafter heating is restricted to the mixture in the mold. The reaction starts in the mold whereby heat is released which brings the rest of the mixture to reaction temperature. Pure uranium metal settles in the mold while the magnesium fluoride slag floats on top of it. After cooling, the uranium is separated from the slag by mechanical means.

  17. Micro-PIXE characterisation of uranium occurrence in the coal zones and the mudstones of the Springbok Flats Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Nxumalo, V.; Kramers, J.; Mongwaketsi, N.; Przybyłowicz, W. J.

    2017-08-01

    Uranium occurrence and characterisation in the coal samples of the upper coal zones of the Vryheid Formation and mudstones of the Volksrust Formation was investigated using micro-PIXE (Proton-Induced X-ray Emission) and proton backscattering spectrometry (BS) in conjunction with the nuclear microprobe. Two styles of uranium mineralisation in the Springbok Flats Basin were found: syngenetic mineralisation in which uranium occurs organically bound with coal matrix, with no discrete uranium minerals formed, and epigenetic mineralisation in which uranium occurs in veins that are filled with coffinite with botryoidal texture in the mudstones of the Volksrust Formation, overlying the coal zones. Micro-PIXE analysis made it possible to map out trace elements (including uranium) associated with the coals at low levels of detection, which other techniques such as SEM-EDS and ore microscopy failed. This information will help in better understanding of the best extraction methods to be employed to recover uranium from the coals of the Springbok Flats Basin.

  18. 76 FR 41308 - Strata Energy, Inc., Ross In Situ Recovery Uranium Project, Crook County, WY; Notice of Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ..., Inc., Ross In Situ Recovery Uranium Project, Crook County, WY; Notice of Materials License Application...-4737, or by e-mail to [email protected] . The Ross In Situ Recovery Uranium Project License... source and byproduct materials license at its Ross In Situ Recovery Uranium Project site located in Crook...

  19. Uranium nitride fuel fabrication for SP-100 reactors

    NASA Technical Reports Server (NTRS)

    Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.

    1987-01-01

    Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.

  20. Uranium nitride fuel fabrication for SP-100 reactors

    NASA Astrophysics Data System (ADS)

    Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.

    Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.

  1. Natural radionuclides in the rocks of the Valle del Cervo Pluton in Piedmont.

    PubMed

    Sesana, Lucia; Fumagalli, Marco; Carnevale, Mauro; Polla, Giancarla; Facchini, Ugo; Colombo, Annita; Tunesi, Annalisa; De Capitani, Luisa; Rusconi, Rosella

    2006-01-01

    Monitoring of the gamma radiation in Valle del Cervo Pluton was performed by determining U and Th contents in the main rock types cropping out over the entire area and pertaining to the granitic complex, syenitic complex and monzonitic complex. In particular, syenitic rocks were largely used as building and ornamental materials (e.g. Sienite della Balma). All the samples are fresh and do not present joints or fractures filled with U minerals. In the crushed samples the activity of uranium varies from 346 to 764 Bq/kg. Concentration of thorium varies from 202 to 478 Bq/kg. For all the analysed rocks uranium activity is higher than thorium one. The lowest value of radioactive concentration is referred to rocks of the granitic complex. The most active rocks are syenites. The data confirm the high activities of Valle del Cervo rock types, strongly connected with high K content of the source magma (geochemical signature); on the contrary, the activity seems to be not related to the location of the samples.

  2. Nuclear reactor target assemblies, nuclear reactor configurations, and methods for producing isotopes, modifying materials within target material, and/or characterizing material within a target material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, James J.; Wall, Donald; Wittman, Richard S.

    Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a targetmore » material.« less

  3. Bacterial leaching of waste uranium materials.

    PubMed

    Barbic, F F; Bracilović, D M; Krajincanić, B V; Lucić, J L

    1976-01-01

    The effect of ferrobacteria and thiobacteria on the leaching of waste uranium materials from which 70-80% of uranium was previously leached by classical chemical hydrometallurgical procedure has been investigated. The bacteria used are found in the ore and the mine water of Zletovska River locality, Yugoslavia. Parameters of biological leaching were examined in the laboratory. Leaching conditions were changed with the aim of increasing the amount of uranium leached. The effect of pyrite added to the waste materials before the beginning of leaching has also been examined. Uranium leaching is directly proportional to the composition and number of ferrobacteria and thiobacteria, and increased by almost twice the value obtained from the same starting materials without using bacteria. Increased sulphuric acid concentrations stimulate considerably the rate of leaching. Uranium leaching is increased up to 20% while sulphuric acid consumption is simultaneously decreased by the addition of pyrite. Uranium concentrations in starting waste materials used for leaching were extremely low (0.0278 and 0.372% U) but about 60% recovery of uranium was obtained, with relatively low consumption of sulphuric acid.

  4. PRODUCTION OF PURIFIED URANIUM

    DOEpatents

    Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

    1960-01-26

    A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

  5. 77 FR 60482 - Regulatory Guide 5.67, Material Control and Accounting for Uranium Enrichment Facilities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Accounting for Uranium Enrichment Facilities Authorized To Produce Special Nuclear Material of Low Strategic... Accounting for Uranium Enrichment Facilities Authorized to Produce Special Nuclear Material of Low Strategic... INFORMATION CONTACT: Glenn Tuttle, Office of Nuclear Material Safety and Safeguards, Division of Fuel Cycle...

  6. Development of Novel Sorbents for Uranium Extraction from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recentmore » research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.« less

  7. Comparison of high-density carbon implosions in unlined uranium versus gold hohlraums

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard; Meezan, Nathan; Tommasini, Riccardo; Khan, Shahab; MacKinnon, Andrew; Berzak Hopkins, Laura; Divol, Laurent; Lepape, Sebastien; Moore, Alastair; Schneider, Marilyn; Pak, Arthur; Nikroo, Abbas; Landen, Otto

    2016-10-01

    In Inertial Confinement Fusion (ICF) implosions, laser energy is converted to x-ray radiation in hohlraums with High-Z walls. At radiation temperatures near 300 eV relevant for ICF experiments, the radiative losses in heating the wall are lower for U than for Au hohlraums. Furthermore, the intensity of the ``M-band'' x-rays with photon energies h ν >1.8 keV is lower for uranium, allowing for reduced capsule dopant concentrations employed to minimize inner ablator preheat and hence keep favorable fuel/ablator interface Atwood numbers. This in turn improves the ablator rocket efficiency and reduces the risk of polluting the hot-spot with emissive dopant material. The first uranium vacuum hohlraum experiments on the National Ignition Facility (NIF) with undoped high-density carbon (HDC, or diamond) capsules have demonstrated 30% lower ``M-band'' intensity relative to Au, resulting in lower inflight ablator thickness due to reduced preheat. In addition, fusion neutron yields are 2x higher in U than in Au hohlraums for D2-gas filled capsule implosions at ICF relevant velocities of 380 +/-20 km/s. These results have led the NIF ICF implosions to routinely employ U hohlraums. Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. Progress report on the Happy Jack mine, Which Canyon area, San Juan county, Utah

    USGS Publications Warehouse

    Trites, Albert F.; Chew, Randall T.

    1954-01-01

    The Happy Jack mine is in the White Canyon area, San Juan county, Utah. Production is from high-grade uranium deposits in the Shinarump conglomerate of the Triassic age. In this area the Shinarump beds range from about 16 to 40 feet in thickness and the lower part of these beds fills an east-trending channel this is note than 750 feet wide and 10 feet deep. The Shinarump conglomerate consists of beds of coarse- to fine-grained quartzose sandstone, conglomerate, siltstone, and claystone. Carbonized wood is abundant in these beds, and in the field it was classified as mineral charcoal and coal. Intra-Shinarump channels, cross-stratification, current lineation, and slumping and compaction structures have been recognized in the mine. Steeply dipping fractures have dominant trends in four directions -- N 65°W, N 60°E, N 85°E, and due north. Uranium occurs as bedded deposits, as replacement bodies in accumulations of "trash", and as replacements of larger fragments of wood. An "ore shoot" is formed where the three types of uranium deposits occur together; these ore shoots appear to be elongate masses with sharp boundaries. Uranium minerals include uraninite, sooty pitchblende(?), and the sulfate--betazippeite, johannite, and uranopilite. Associated with the uraninite are the sulfide minerals covellite, bornite, chalcopyritw, and pyrite. Galena and sphalerite have been found in close association with uranium minerals. The gaunge minerals include: limonite and hematite present in most of the sandstone beds throughout the deposit, jarosite that impregnates much of the sandstone in the outer parts of the mine workings, gypsum that fills many of the fractures, and barite that impregnates the sandstone in at least one part of the mine. Secondary copper minerals, mainly copper sulfates, occur throughout the mine, but most abundant near the adits in the outermost 30 feet of the workings. The minerals comprising the bulk of the country rock include quartz, feldspar, and clay minerals. The amount of uranium minerals deposited in a sandstone bed is believed to have been determined by the position of the bed in the channel, the permeability of the sandstone in the bed, and the amount of carbonized wood and plant remains within the bed. The beds considered most favorable for uranium deposition contain an abundance of claystone and siltstone both as matrix filling and as fragments and pebbles. Suggested exploration guides from uranium ore bodies include the following: (1) interbedded siltstone lenses, (2) claystone and siltstone cement and pabbles, (3) concentrations of "trash", (4) covelllite and bornite, (5) chalcopyrite, and (6) carbonized wood.

  9. Illicit Trafficking of Natural Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from anmore » operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.« less

  10. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  11. METHOD FOR PURIFYING URANIUM

    DOEpatents

    Knighton, J.B.; Feder, H.M.

    1960-04-26

    A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

  12. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariani, Menik, E-mail: menikariani@gmail.com; Satya, Octavianus Cakra; Monado, Fiber

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactorsmore » with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on “Region-8” and “Region-10” core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).« less

  13. 10 CFR 51.60 - Environmental report-materials licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...

  14. 10 CFR 51.60 - Environmental report-materials licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...

  15. 10 CFR 51.60 - Environmental report-materials licenses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...

  16. 10 CFR 51.60 - Environmental report-materials licenses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...

  17. 10 CFR 51.60 - Environmental report-materials licenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...

  18. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...

  19. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...

  20. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...

  1. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...

  2. Case Study of Urban Residential Remediation and Restoration in Port Hope, Canada - 13250

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geddes, Brian; DeJong, John; Owen, Michael

    2013-07-01

    The Canadian Municipality of Port Hope, Ontario, is located some 100 km east of Toronto and has been the location of radium and/or uranium refining since the 1930's. Historically, these activities involved materials containing radium-226, uranium, arsenic and other contaminants generated by the refining process. In years past, properties and sites in Port Hope became contaminated from spillage during transportation, unrecorded, un-monitored or unauthorized diversion of contaminated fill and materials, wind and water erosion and spread from residue storage areas. Residential properties in Port Hope impacted by radioactive materials are being addressed by the Canadian federal government under programs administeredmore » by the Low-Level Radioactive Waste Management Office (LLRWMO) and the Port Hope Area Initiative Management Office (PHAIMO). Issues that currently arise at these properties are addressed by the LLRWMO's Interim Waste Management Program (IWM). In the future, these sites will be included in the PHAIMO's Small Scale Sites (SSS) remedial program. The LLRWMO has recently completed a remediation and restoration program at a residential property in Port Hope that has provided learnings that will be applicable to the PHAIMO's upcoming SSS remedial effort. The work scope at this property involved remediating contaminated refinery materials that had been re-used in the original construction of the residence. Following removal of the contaminated materials, the property was restored for continued residential use. This kind of property represents a relatively small, but potentially challenging subset of the portfolio of sites that will eventually be addressed by the SSS program. (authors)« less

  3. New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-06-22

    Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amendedmore » with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.« less

  4. Preliminary report on geophysics of the Verde River headwaters region, Arizona

    USGS Publications Warehouse

    Langenheim, V.E.; Duval, J.S.; Wirt, Laurie; DeWitt, Ed

    2000-01-01

    This report summarizes the acquisition, data processing, and preliminary interpretation of a high-resolution aeromagnetic and radiometric survey near the confluence of the Big and Little Chino basins in the headwaters of the Verde River, Arizona. The goal of the aeromagnetic study is to improve understanding of the geologic framework as it affects groundwater flow, particularly in relation to the occurrence of springs in the upper Verde River headwaters region. Radiometric data were also collected to map surficial rocks and soils, thus aiding geologic mapping of the basin fill. Additional gravity data were collected to enhance existing coverage. Both aeromagnetic and gravity data indicate a large gradient along the Big Chino fault, a fault with Quaternary movement. Filtered aeromagnetic data show other possible faults within the basin fill and areas where volcanic rocks are shallowly buried. Gravity lows associated with Big Chino and Williamson Valleys indicate potentially significant accumulations of low-density basin fill. The absence of a gravity low associated with Little Chino Valley indicates that high-density rocks are shallow. The radiometric maps show higher radioactivity associated with the Tertiary latites and with the sediments derived from them. The surficial materials on the eastern side of the Big Chino Valley are significantly lower in radioactivity and reflect the materials derived from the limestone and basalt east of the valley. The dividing line between the low radioactivity materials to the east and the higher radioactiviy materials to the west coincides approximately with the major drainage system of the valley, locally known as Big Chino Wash. This feature is remarkably straight and is approximately parallel to the Big Chino Fault. The uranium map shows large areas with concentrations greater than 5 ppm eU, and we expect that these areas will have a significantly higher risk potential for indoor radon.

  5. 75 FR 62153 - Notice of the Nuclear Regulatory Commission Issuance of Materials License SUA-1596 for Uranium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... Commission Issuance of Materials License SUA-1596 for Uranium One Americas, Inc. Moore Ranch In Situ Recovery..., Inc. (Uranium One) for its Moore Ranch uranium in situ recovery (ISR) facility in Campbell County... discussed in detail were the applicant's proposal as described in its license application to conduct in situ...

  6. METHOD OF OPERATING A CALUTRON

    DOEpatents

    Davidson, P.H.

    1960-01-12

    A method of operating an electromagnetic isotope separator of the calutron class is reported whereby uranium tetrachloride is produced at a controlled rate within the source rather than betng introduced therein as was formerly practiced. This is accomplished by placing a uranium-bearing material, such as uranium metal, uranium trichloride, or uranium carbide in the charge receptacle of the calutron, heating this material to about to produce uranium tetrachloride vapor at a rate controlled by the chlorine gas flow into the source. The vapor is subsequently ionized by an electric arc and mass separated by conventional calutron methods.

  7. METHOD OF SEPARATING ISOTOPES OF URANIUM IN A CALUTRON

    DOEpatents

    Jenkins, F.A.

    1958-05-01

    Mass separation devices of the calutron type and the use of uranium hexachloride as a charge material in the calutron ion source are described. The method for using this material in a mass separator includes heating the uranium hexachloride to a temperature in the range of 60 to 100 d C in a vacuum and thereby forming a vapor of the material. The vaporized uranium hexachloride is then ionized in a vapor ionizing device for subsequent mass separation processing.

  8. Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature

    PubMed Central

    Wiechert, Alexander I.; Das, Sadananda; Yiacoumi, Sotira

    2017-01-01

    Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uranium adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1−L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. This model may be used for predicting uranium uptake by other amidoxime materials. PMID:29113060

  9. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    PubMed

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.

  10. 10 CFR 40.67 - Requirement for advance notice for importation of natural uranium from countries that are not...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore residue...

  11. 10 CFR 40.67 - Requirement for advance notice for importation of natural uranium from countries that are not...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore residue...

  12. 10 CFR 40.67 - Requirement for advance notice for importation of natural uranium from countries that are not...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore residue...

  13. 10 CFR 40.67 - Requirement for advance notice for importation of natural uranium from countries that are not...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore residue...

  14. Successful Coupling of a Bis-Amidoxime Uranophile with a Hydrophilic Backbone for Selective Uranium Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piechowicz, Marek; Abney, Carter W.; Thacker, Nathan C.

    The amidoxime group (-RNH2NOH) has long been used to extract uranium from seawater on account of its high affinity toward uranium. The development of tunable sorbent materials for uranium sequestration remains a research priority as well as a significant challenge. Herein, we report the design, synthesis, and uranium sorption properties of bis-amidoxime-functionalized polymeric materials (BAP 1–3). Bifunctional amidoxime monomers were copolymerized with an acrylamide cross-linker to obtain bis-amidoxime incorporation as high as 2 mmol g–1 after five synthetic steps. The resulting sorbents were able to uptake nearly 600 mg of uranium per gram of polymer after 37 days of contactmore » with a seawater simulant containing 8 ppm uranium. Moreover, the polymeric materials exhibited low vanadium uptake with a maximum capacity of 128 mg of vanadium per gram of polymer. This computationally predicted and experimentally realized selectivity of uranium over vanadium, nearly 5 to 1 w/w, is one of the highest reported to date and represents an advancement in the rational design of sorbent materials with high uptake capacity and selectivity.« less

  15. 40 CFR 192.10 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of Land and Buildings Contaminated with Residual Radioactive Materials from Inactive Uranium Processing... radioactive materials at which all or substantially all of the uranium was produced for sale to any Federal...

  16. 40 CFR 192.10 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of Land and Buildings Contaminated with Residual Radioactive Materials from Inactive Uranium Processing... radioactive materials at which all or substantially all of the uranium was produced for sale to any Federal...

  17. Materials for the Recovery of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abney, Carter W.; Mayes, Richard T.; Saito, Tomonori

    More than 1000× uranium exists in the oceans than exists in terrestrial ores. With nuclear power generation expected to increase over the coming decades, access to this unconventional reserve is a matter of energy security. With origins in the mid-1950’s, materials have been developed for the selective recovery of seawater uranium for more than six decades, with a renewed interest in particular since 2010. This review comprehensively surveys materials developed from 2000 – 2016 for recovery of seawater uranium, in particular including recent developments in inorganic materials, polymer adsorbents and related research pertaining to amidoxime, and nanostructured materials such asmore » metal-organic frameworks, porous-organic polymers, and mesoporous carbons. In conclusion, challenges of performing reliable and reproducible uranium adsorption studies are also discussed, as well as the standardization of parameters necessary to ensure valid comparisons between different adsorbents.« less

  18. Materials for the Recovery of Uranium from Seawater

    DOE PAGES

    Abney, Carter W.; Mayes, Richard T.; Saito, Tomonori; ...

    2017-11-22

    More than 1000× uranium exists in the oceans than exists in terrestrial ores. With nuclear power generation expected to increase over the coming decades, access to this unconventional reserve is a matter of energy security. With origins in the mid-1950’s, materials have been developed for the selective recovery of seawater uranium for more than six decades, with a renewed interest in particular since 2010. This review comprehensively surveys materials developed from 2000 – 2016 for recovery of seawater uranium, in particular including recent developments in inorganic materials, polymer adsorbents and related research pertaining to amidoxime, and nanostructured materials such asmore » metal-organic frameworks, porous-organic polymers, and mesoporous carbons. In conclusion, challenges of performing reliable and reproducible uranium adsorption studies are also discussed, as well as the standardization of parameters necessary to ensure valid comparisons between different adsorbents.« less

  19. PROCESS FOR PRODUCING URANIUM TETRAFLUORIDE

    DOEpatents

    Harvey, B.G.

    1954-09-14

    >This patent relates to improvements in the method for producing uranium tetrafluoride by treating an aqueous solutlon of a uranyl salt at an elevated temperature with a reducing agent effective in acld solutlon in the presence of hydrofluoric acid. Uranium tetrafluoride produced this way frequentiy contains impurities in the raw material serving as the source of uranium. Uranium tetrafluoride much less contaminated with impurities than when prepared by the above method can be prepared from materials containing such impurities by first adding a small proportion of reducing agent so as to cause a small fraction, for example 1 to 5% of the uranium tetrafluoride to be precipitated, rejecting such precipitate, and then precipitating and recovering the remainder of the uranium tetrafluoride.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haywood, F.F.; Dickson, H.W.; Cottrell, W.D.

    A radiological survey was made of the former Bridgeport Brass Special Metals Extrusion Plant in Adrian, Michigan, now owned by General Motors Corporation. This plant was operated to extrude uranium metal which was used in the fabrication of reactor fuel for the Hanford, Washington, and Savannah River, South Carolina, plants. Activities at the Adrian plant included preparation of material for extrusion, abrasive sawing, storing, packaging, and shipping. When the original contract was concluded, most of the equipment was dismantled and salvaged. The current property owner cleaned much of the building and conducted his own radiological survey. The results of themore » General Motors survey indicated that the area originally involved in the uranium handling and processing operation was within tolerances under the provision of guidelines applicable at the time the facility was decommissioned. A comprehensive survey was conducted in that area by a team of health physicists from the Oak Ridge National Laboratory (ORNL). The results of this survey tend to confirm the findings of the General Motors report, except that some floor areas were contaminated in excess of applicable guidelines and some off-gas ducts which had been used in the cutting area were found to be contaminated with uranium. These ducts were removed, the floor areas were cleaned, and a subsequent resurvey of the plant was made. An additional survey of a portion of the facility was conducted by ORNL health physicists after learning that service pits had existed beneath the extrusion units. Sometime after extrusion operations ceased, these pits were filled with sand and covered over at the existing floor level with concrete. Results of this survey revealed concentrations of /sup 238/U up to 21,000 pCi/g of residue, scale, and other miscellaneous materials collected from the bottom of service pits, service manholes, and holding tanks.« less

  1. Localization of uranium minerals in channel sediments at the base of the Shinarump conglomerate, Monument Valley, Arizona

    USGS Publications Warehouse

    Witkind, I.J.

    1954-01-01

    formation (Permian) to the Salt Wash member of the Morrison formation (Jurassic), The dominant structural element of the area is the Monument upwarp, a arge asymmetrical anticline whose northern end is near the junction of the Green and Colorado Rivers in Utah, and whose southern end disappears near Kayenta, Ariz. Asymmetrical anticlines with steeply dipping east flanks and gently dipping west flanks are superimposed on the upwarp. These subsidiary structures trend north. The uranium ore bodies are localized in conglomeratic sandstone of the Upper Triassic Shinarump conglomerate that fills channels scoured in the underlying Lower and Middle (?) Triassic Moenkopi formation. These channels range from relatively narrow and shallow ones 15 feet wide and 10 feet deep to much broader and deeper ones 2,300 feet wide and 70 feet deep. Two types of channels can be distinguished-r-a short-type less than 2 miles Iong 5 and a long-type traceable for distances greater than 2 miles Plant matter in the form of trees, branches,'and twigs was deposited with Shinarump sediments in the channels. It is suggested that when the Shinarump conglomerate was invaded by mineralizing solutions the uranium ore was deposited primarily in localities formerly occupied by the plant material. Further, it is suggested that the short channels are more likely to have ore accumulations than long channels.

  2. Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature

    DOE PAGES

    Ladshaw, Austin P.; Wiechert, Alexander I.; Das, Sadananda; ...

    2017-11-04

    Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uraniummore » adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1–L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. Here, this model may be used for predicting uranium uptake by other amidoxime materials.« less

  3. Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladshaw, Austin P.; Wiechert, Alexander I.; Das, Sadananda

    Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uraniummore » adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1–L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. Here, this model may be used for predicting uranium uptake by other amidoxime materials.« less

  4. 10 CFR 40.65 - Effluent monitoring reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Effluent monitoring reporting requirements. 40.65 Section 40.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Records, Reports... possess and use source material in uranium milling, in production of uranium hexafluoride, or in a uranium...

  5. Uranium content and leachable fraction of fluorspars

    USGS Publications Warehouse

    Landa, E.R.; Councell, T.B.

    2000-01-01

    Much attention in the radiological health community has recently focused on the management and regulation of naturally occurring radioactive materials. Although uranium-bearing minerals are present in a variety of fluorspar deposits, their potential consideration as naturally occurring radioactive materials has received only limited recognition. The uranium content of 28 samples of acid- and cryolite-grade (>97% CaF2) fluorspar from the National Defense Stockpile was found to range from 120 to 24,200 ??g kg-1, with a mean of 2,145 ??g kg-1. As a point of comparison, the average concentration of uranium in the upper crust of the earth is about 2,500 ??g kg-1. Leachability of this uranium was assessed by means of the Toxicity Characteristic Leaching Procedure (TCLP). The TCLP extractable fraction ranged from 1 to 98%, with a mean of 24% of the total uranium. The typically low concentrations of uranium seen in these materials probably reflects the removal of uranium-bearing mineral phases during the beneficiation of the crude fluorspar ore to achieve industrial specifications. Future NORM studies should examine crude fluorspar ores and flotation tailings.

  6. Process for producing an aggregate suitable for inclusion into a radiation shielding product

    DOEpatents

    Lessing, Paul A.; Kong, Peter C.

    2000-01-01

    The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.

  7. Evaluation of Permeable Reactive Barrier Performance

    DTIC Science & Technology

    2002-12-09

    and-fill operation, where the trench was initially stabilized using guar gum and subsequently broken down by circulating an enzyme through the trench...80 Peerless Reactive cell placed within gravel-filled capture trench, guar gum used during installation Uranium Mill Tailings Site...Regulatory Issues 5.3.1 Biostat. The use of guar gum (a natural food thickener) as a reactive medium or as a support for trench excavation, is gaining

  8. Uranium favorability of tertiary rocks in the Badger Flats, Elkhorn Thrust Area, Park and Teller Counties, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, P.; Mickle, D.G.

    1976-10-01

    Uranium potential of Tertiary rocks in the Badger Flats--Elkhorn Thrust area of central Colorado is closely related to a widespread late Eocene erosion surface. Most uranium deposits in the area are in the Eocene Echo Park Alluvium and Oligocene Tallahassee Creek Conglomerate, which were deposited in paleodrainage channels on or above this surface. Arkosic detritus within the channels and overlying tuffaceous sedimentary rocks of the Antero and Florissant Formations of Oligocene age and silicic tuffs within the volcanic units provide abundant sources of uranium that could be concentrated in the channels where carbonaceous debris facilitates a reducing environment. Anomalous soil,more » water, and stream-sediment samples near the Elkhorn Thrust and in Antero basin overlie buried channels or are offset from them along structural trends; therefore, uranium-bearing ground water may have moved upward from buried uranium deposits along faults. The area covered by rocks younger than the late Eocene erosion surface, specifically the trends of mapped or inferred paleochannels filled with Echo Park Alluvium and Tallahassee Creek Conglomerate, and the Antero Formation are favorable for the occurrence of uranium deposits.« less

  9. 16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  10. Analysis of radon reduction and ventilation systems in uranium mines in China.

    PubMed

    Hu, Peng-hua; Li, Xian-jie

    2012-09-01

    Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3-5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.

  11. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  12. Tags to Track Illicit Uranium and Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haire, M. Jonathan; Forsberg, Charles W.

    2007-07-01

    With the expansion of nuclear power, it is essential to avoid nuclear materials from falling into the hands of rogue nations, terrorists, and other opportunists. This paper examines the idea of detection and attribution tags for nuclear materials. For a detection tag, it is proposed to add small amounts [about one part per billion (ppb)] of {sup 232}U to enriched uranium to brighten its radioactive signature. Enriched uranium would then be as detectable as plutonium and thus increase the likelihood of intercepting illicit enriched uranium. The use of rare earth oxide elements is proposed as a new type of 'attribution'more » tag for uranium and thorium from mills, uranium and plutonium fuels, and other nuclear materials. Rare earth oxides are chosen because they are chemically compatible with the fuel cycle, can survive high-temperature processing operations in fuel fabrication, and can be chosen to have minimal neutronic impact within the nuclear reactor core. The mixture of rare earths and/or rare earth isotopes provides a unique 'bar code' for each tag. If illicit nuclear materials are recovered, the attribution tag can identify the source and lot of nuclear material, and thus help police reduce the possible number of suspects in the diversion of nuclear materials based on who had access. (authors)« less

  13. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    NASA Astrophysics Data System (ADS)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated the concentration of radioactive elements in the sample. The highest concentration of thorium and uranium has been found in the clayey raw material. Their value was respectively from 8 to 12 mg/kg for thorium and from 2.3 to 3.5 mg/kg for uranium. In carbonate sediments the content of thorium was at the level from 0.5 to 2.1 mg/kg and uranium from 0.5-2.2 mg/kg. From a group of the siliceous raw materials the diatomite had a highest concentrations of radioactive elements where the content of thorium was from 1.5 to 1.8 mg/kg and uranium from 1.3 to 1.7 mg/kg.

  14. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...

  15. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...

  16. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...

  17. Development of solid materials for UF 6 sampling: FY16 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Nicholas; Savina, Joseph; Hebden, Andrew

    2016-10-31

    A handheld implementation of the ABACC-developed Cristallini method, which captures uranium hexafluoride samples as an inert salt, was organized in FY17 and succeeded in demonstrating the handheld sampler concept with reactive hexafluoride gases. The Cristallini method relies on the use of a hydrated substrate to react the incoming hexafluoride resulting in the formation of a stable uranyl fluoride salt. The Cristallini method has been demonstrated as a facility modification installed near the sampling tap of a gas centrifuge enrichment plant. While very successful in reducing the hazards of uranium hexafluoride sample, the method still takes a considerable amount of timemore » and can only be used in facilities where the apparatus has been installed; this arrangement generally prohibits the sampling of filled cylinders that have already exited the facility and have been deposited in the on-site tank storage yard. The handheld unit under development will allow the use of the Cristallini method at facilities that have not been converted as well as tanks in the storage yard. The handheld system utilizes an active vacuum system, rather than a passive vacuum system in the facility setup, to drive the uranium hexafluoride onto the adsorbing media. The handheld unit will be battery operated for fully autonomous operation and will include onboard pressure sensing and flushing capability. To date, the system concept of operations was demonstrated with tungsten hexafluoride that showed the active vacuum pump with multiple cartridges of adsorbing media was viable. Concurrently, the hardened prototype system was developed and tested; removable sample cartridges were developed (the only non-COTS component to date); and preparations were made for uranium tests and a domestic field test.« less

  18. 77 FR 39899 - Technical Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ..., Nuclear material, Oil and gas exploration--well logging, Reporting and recordkeeping requirements... recordkeeping requirements, Source material, Uranium. 10 CFR Part 50 Antitrust, Classified information, Criminal... measures, Special nuclear material, Uranium enrichment by gaseous diffusion. 10 CFR Part 81 Administrative...

  19. BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.

    2003-02-27

    Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials atmore » a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.« less

  20. Rapid Radiochemical Method for Isotopic Uranium in Building ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Uranium-234, uranium-235, and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of uranium-234, uranium-235, and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  1. 78 FR 17450 - Notice of Issuance of Materials License Renewal, Operating License SUA-1341, Uranium One USA, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... License Renewal, Operating License SUA-1341, Uranium One USA, Inc., Willow Creek Uranium In Situ Recovery.... SUA- 1341 to Uranium One USA, Inc. (Uranium One) for its Willow Creek Uranium In Situ Recovery (ISR) Project in Johnson and Campbell Counties, Wyoming. ADDRESSES: Please refer to Docket ID NRC-2009-0036 when...

  2. Assay for uranium and determination of disequilibrium by means of in situ high resolution gamma-ray spectrometry

    USGS Publications Warehouse

    Tanner, Allan B.; Moxham, Robert M.; Senftle, F.E.

    1977-01-01

    Two sealed sondes, using germanium gamma-ray detectors cooled by melting propane, have been field tested to depths of 79 m in water-filled boreholes at the Pawnee Uranium Mine in Bee Co., Texas. When, used as total-count devices, the sondes are comparable in logging speed and counting rate with conventional scintillation detectors for locating zones of high radioactivity. When used with a multichannel analyzer, the sondes are detectors with such high resolution that individual lines from the complex spectra of the uranium and thorium series can be distinguished. Gamma rays from each group of the uranium series can be measured in ore zones permitting determination of the state of equilibrium at each measurement point. Series of 10-minute spectra taken at 0.3- to 0.5-m intervals in several holes showed zones where maxima from the uranium group and from the 222Rn group were displaced relative to each other. Apparent excesses of 230Th at some locations suggest that uranium-group concentrations at those locations were severalfold greater some tens of kiloyears, ago. At the current state of development a 10-minute count yields a sensitivity of about 80 ppm U308. Data reduction could in practice be accomplished in about 5 minutes. The result is practically unaffected by disequilibrium or radon contamination. In comparison with core assay, high-resolution spectrometry samples a larger volume; avoids problems due to incomplete core recovery, loss of friable material to drilling fluids, and errors in depth and marking; and permits use of less expensive drilling methods. Because gamma rays from the radionuclides are accumulated simultaneously, it also avoids the problems inherent in trying to correlate logs made in separate runs with different equipment. Continuous-motion delayed-gamma activation by a 163-?g 252Cf neutron source attached to the sonde yielded poor sensitivity. A better neutron-activation method, in which the sonde is moved in steps so as to place the detector at the previous activation point, could not be evaluated because of equipment failure.

  3. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    DOEpatents

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  4. 75 FR 76050 - Notice of the Nuclear Regulatory Commission Consent to Indirect Change of Control and Issuance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Ranch in situ recovery (ISR) project in Johnson and Campbell Counties, Wyoming. The project is currently in operating status, but is not producing uranium at this time. Materials License SUA-1569 authorizes Uranium One Americas, Inc., to possess uranium and byproduct material at its Moore Ranch ISR Project in...

  5. Validation of reference materials for uranium radiochronometry in the frame of nuclear forensic investigations

    DOE PAGES

    Varga, Z.; Mayer, K.; Bonamici, C. E.; ...

    2015-05-11

    The results of a joint effort by expert nuclear forensic laboratories in the area of age dating of uranium, i.e. the elapsed time since the last chemical purification of the material are presented and discussed. Completely separated uranium materials of known production date were distributed among the laboratories, and the samples were dated according to routine laboratory procedures by the measurement of the ²²⁰Th/²³⁴U ratio. The measurement results were in good agreement with the known production date showing that the concept for preparing uranium age dating reference material based on complete separation is valid. Detailed knowledge of the laboratory proceduresmore » used for uranium age dating allows the identification of possible improvements in the current protocols and the development of improved practice in the future. The availability of age dating reference materials as well as the evolvement of the age dating best-practice protocol will increase the relevance and applicability of age dating as part of the tool-kit available for nuclear forensic investigations.« less

  6. Validation of reference materials for uranium radiochronometry in the frame of nuclear forensic investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, Z.; Mayer, K.; Bonamici, C. E.

    The results of a joint effort by expert nuclear forensic laboratories in the area of age dating of uranium, i.e. the elapsed time since the last chemical purification of the material are presented and discussed. Completely separated uranium materials of known production date were distributed among the laboratories, and the samples were dated according to routine laboratory procedures by the measurement of the ²²⁰Th/²³⁴U ratio. The measurement results were in good agreement with the known production date showing that the concept for preparing uranium age dating reference material based on complete separation is valid. Detailed knowledge of the laboratory proceduresmore » used for uranium age dating allows the identification of possible improvements in the current protocols and the development of improved practice in the future. The availability of age dating reference materials as well as the evolvement of the age dating best-practice protocol will increase the relevance and applicability of age dating as part of the tool-kit available for nuclear forensic investigations.« less

  7. 77 FR 26149 - Access Authorization Fees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... Regulatory Affairs of OMB. List of Subjects 10 CFR Part 11 Hazardous materials--transportation... licensees for work performed under the Material Access Authorization Program (MAAP) and the Information... assigned duties which require access to special nuclear material (plutonium, uranium-233, and uranium...

  8. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it ismore » shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.« less

  9. Detection of thermal-induced prompt fission neutrons of highly-enriched uranium: A position sensitive technique

    NASA Astrophysics Data System (ADS)

    Tartaglione, A.; Di Lorenzo, F.; Mayer, R. E.

    2009-07-01

    Cargo interrogation in search for special nuclear materials like highly-enriched uranium or 239Pu is a first priority issue of international borders security. In this work we present a thermal-pulsed neutron-based approach to a technique which combines the time-of-flight method and demonstrates a capability to detect small quantities of highly-enriched uranium shielded with high or low Z materials providing, in addition, a manner to know the approximate position of the searched material.

  10. 10 CFR 71.22 - General license: Fissile material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...

  11. 10 CFR 71.22 - General license: Fissile material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...

  12. 10 CFR 71.22 - General license: Fissile material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...

  13. 10 CFR 71.22 - General license: Fissile material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...

  14. 10 CFR 71.22 - General license: Fissile material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...

  15. Innovative Elution Processes for Recovering Uranium and Transition Metals from Amidoxime-based Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wai, Chien M.

    Amidoxime-based polymer fibers are considered one of the most promising materials for sequestering uranium from seawater. The high-surface-area polymer fibers containing amidoxime and carboxylate groups synthesized by Oak Ridge National Lab (ORNL-AF1) show very high uranium adsorption capacities known in the literature. Effective elution of uranium and repeated use of the adsorbent are important factors affecting the cost of producing uranium from seawater using this material. Traditional acid leaching of uranium followed by KOH conditioning of the fiber causes chemical changes and physical damage to the ORNL-AF1 adsorbent. Two alkaline solution leaching methods were developed by this project, one usesmore » a highly concentrated (3 M) potassium bicarbonate solution at pH 8.3 and 40 °C; the other uses a mixture of sodium carbonate and hydrogen peroxide at pH 10.4. Both elution methods do not require KOH conditioning prior to reusing the fiber adsorbent. The conditions of eluting uranium from the amidoxime-based adsorbent using these alkaline solutions are confirmed by thermodynamic calculations. The bicarbonate elution method is selective for uranium recovery compared to other elution methods and causes no chemical change to the fiber material based on FTIR spectroscopy« less

  16. Nanostructured Metal Oxide Sorbents for the Collection and Recovery of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Warner, Cynthia L.; Mackie, Katherine E.

    2016-02-07

    The ability to collect uranium from seawater offers the potential for a long-term green fuel supply for nuclear energy. However, extraction of uranium, and other trace minerals, is challenging due to the high ionic strength and low mineral concentrations in seawater. Herein we evaluate the use of nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Chemical affinity, chemical adsorption capacity and kinetics of preferred sorbent materials were evaluated. High surface area manganese and iron oxide nanomaterials showed excellent performance for uranium collection from seawater. Inexpensive nontoxic carbonate solutions were demonstrated to be an effective andmore » environmental benign method of stripping the uranium from the metal oxide sorbents. Various formats for the utilization of the nanostructured metals oxide sorbent materials are discussed including traditional and nontraditional methods such as magnetic separation. Keywords: Uranium, nano, manganese, iron, sorbent, seawater, magnetic, separations, nuclear energy« less

  17. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and special nuclear material in the accounting records are based on measured values; (3) A measurement... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for uranium... Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  18. 46 CFR 148.04-1 - Radioactive material, Low Specific Activity (LSA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Radioactive material, Low Specific Activity (LSA). 148... § 148.04-1 Radioactive material, Low Specific Activity (LSA). (a) Authorized materials are limited to: (1) Uranium or thorium ores and physical or chemical concentrates of such ores; (2) Uranium metal...

  19. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  20. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  1. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  2. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mujaini, M., E-mail: madihah@uniten.edu.my; Chankow, N.; Yusoff, M. Z.

    2016-01-22

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detectormore » or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.« less

  3. Actinide metal processing

    DOEpatents

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  4. Actinide metal processing

    DOEpatents

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  5. RECOVERY OF URANIUM VALUES FROM URANIUM BEARING RAW MATERIALS

    DOEpatents

    Michal, E.J.; Porter, R.R.

    1959-06-16

    Uranium leaching from ground uranium-bearing raw materials using MnO/sub 2/ in H/sub 2/SO/sub 4/ is described. The MnO/sub 2/ oxidizes U to the leachable hexavalent state. The MnO/sub 2/ does not replace Fe normally added, because the Fe complexes P and catalyzes the MnO/sub 2/ reaction. Three examples of continuous processes are given, but batch operation is also possible. The use of MnO/sub 2/ makes possible recovery of very low U values. (T.R.H.)

  6. Structural changes in amber due to uranium mineralization.

    PubMed

    Havelcová, Martina; Machovič, Vladimír; Mizera, Jiří; Sýkorová, Ivana; René, Miloš; Borecká, Lenka; Lapčák, Ladislav; Bičáková, Olga; Janeček, Oldřich; Dvořák, Zdeněk

    2016-07-01

    The presence of uranium, with a bulk mass fraction of about 1.5 wt% and radiolytic alterations are a feature of Cenomanian amber from Křižany, at the northeastern edge of the North Bohemian Cretaceous uranium ore district. Pores and microcracks in the amber were filled with a mineral admixture, mainly in the form of Zr-Y-REE enriched uraninite. As a result of radiolytic alterations due to the presence of uranium, structural changes were observed in the Křižany amber in comparison with a reference amber from Nové Strašecí in central Bohemia; this was of similar age and botanical origin but did not contain elevated levels of uranium. Structural changes involved an increase in aromaticity due to dehydroaromatization of aliphatic cyclic hydrocarbons, loss of oxygen functional groups, an increase in the degree of polymerization, crosslinking of CC bonds, formation of a three-dimensional hydrocarbon network in the bulk organic matrix, and carbonization of the organic matrix around the uraninite infill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.

    PubMed

    Brown, Steven H; Chambers, Douglas B

    2017-07-01

    All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.

  8. Isotopic Analysis of Uranium in NIST SRM Glass by Femtosecond Laser Ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffin, Andrew M.; Hart, Garret L.; Hanlen, Richard C.

    We employed femtosecond Laser Ablation Multicollector Inductively Coupled Mass Spectrometry for the 11 determination of uranium isotope ratios in a series of standard reference material glasses (NIST 610, 612, 614, and 12 616). This uranium concentration in this series of SRM glasses is a combination of isotopically natural uranium in 13 the materials used to make the glass matrix and isotopically depleted uranium added to increase the uranium 14 elemental concentration across the series. Results for NIST 610 are in excellent agreement with literature values. 15 However, other than atom percent 235U, little information is available for the remaining glasses.more » We present atom 16 percent and isotope ratios for 234U, 235U, 236U, and 238U for all four glasses. Our results show deviations from the 17 certificate values for the atom percent 235U, indicating the need for further examination of the uranium isotopes in 18 NIST 610-616. Our results are fully consistent with a two isotopic component mixing between the depleted 19 uranium spike and natural uranium in the bulk glass.« less

  9. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    DOEpatents

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  10. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  11. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, A.J.; Dykes, N.L.

    1982-08-10

    A brazing material is described for joining graphite structures that can be used up to 2800/sup 0/C. The brazing material is formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600/sup 0/C with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800/sup 0/C so as to provide a brazed joint consisting essentially of hafnium carbide. The resulting brazed joint is chemically and thermally compatible with the graphite structures.

  12. Interim Report on Mixing During the Casting of LEU-10Mo Plates in the Triple Plate Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikin, Jr., Robert M.

    LEU-10%Mo castings are commonly produced by down blending unalloyed HEU with a DU-12.7%Mo master-alloy. This work uses process modeling to provide insight into the mixing of the unalloyed uranium and U-Mo master alloy during melting and mold filling of a triple plate casting. Two different sets of situations are considered: (1) mixing during mold filling from a compositionally stratified crucible and (2) convective mixing of a compositionally stratified crucible during mold heating. The mold filling simulations are performed on the original Y-12 triple plate mold and the horizontal triple plate mold.

  13. Special nuclear material simulation device

    DOEpatents

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  14. 10 CFR 70.23a - Hearing required for uranium enrichment facility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...

  15. 10 CFR 70.23a - Hearing required for uranium enrichment facility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...

  16. 10 CFR 70.23a - Hearing required for uranium enrichment facility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...

  17. 10 CFR 70.23a - Hearing required for uranium enrichment facility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...

  18. 10 CFR 70.23a - Hearing required for uranium enrichment facility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...

  19. 76 FR 67765 - Notice of Availability of Uranium Enrichment Fuel Cycle Facility's Inspection Reports Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... Uranium Enrichment Fuel Cycle Facility's Inspection Reports Regarding Louisiana Energy Services, National..., Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety... Commission. Brian W. Smith, Chief, Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards...

  20. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Excepted packages for articles containing natural....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...

  1. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Excepted packages for articles containing natural....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...

  2. Reconnaissance of uranium and copper deposits in parts of New Mexico, Colorado, Utah, Idaho, and Wyoming

    USGS Publications Warehouse

    Gott, Garland B.; Erickson, Ralph L.

    1952-01-01

    Because of the common association of uranium and copper in several of the commercial uranium deposits in the Colorado Plateau Province, a reconnaissance was made of several known deposits of copper disseminated through sandstone to determine whether they might be a source of uranium. In order to obtain more information regarding the relationship between copper, uranium and carbonaceous materials, some of the uraniferious asphaltrite deposits in the Shinarump conglomerate along the west flank of the San Rafael Swell were also investigated briefly. During this reconnaissance 18 deposits were examined in New Mexico, eight in Utah, two in Idaho, and one each in Wyoming and Colorado. No uranium deposits of commercial grade are associated with the copper deposits that were examined. The uraniferous asphaltites in the Shinarump conglomerate of Triassic age on the west flank of the San Rafael Swell, however, are promising from the standpoint of commercial uranium production. Spectrographic analyses of crude oil, asphalt, and bituminous shales show a rather consistent suite of trace metals including vanadium, nickel, copper, cobalt, chromium, lead zinc, and molybdenum. The similarity of the metal assemblage, including uranium of the San Rafael Swell asphaltites, to the metal assemblage in crude oil and other bituminous materials suggests that these metals were concentrated in the asphaltites from petroleum. However, the hypothesis that uranium minerals were already present before the hydrocarbons were introduced and that some sort of replacement or uranium minerals by carbon compounds was effected after the petroleum migrated into the uranium deposit should not be disregarded. The widespread association of uranium with asphaltic material suggests that it also may have been concentrated by some agency connected with the formation of petroleum. The problem of the association of uranium and other trace metals with hydrocarbons should be studied further both in the field and in the laboratory.

  3. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus

    2014-11-01

    A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES

    DOEpatents

    Hamilton, N.E.

    1957-12-01

    A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

  5. Preparation of new nano magnetic material Fe3O4@g-C3N4 and good adsorption performance on uranium ion

    NASA Astrophysics Data System (ADS)

    Long, Wei; Liu, Huijun; Yan, Xueming; Fu, Li

    2018-03-01

    A new nano magnetic material Fe3O4@g-C3N4 was prepared by deposition reduction method, which performed good adsorption performance to uranium ion. Characterization results showed that the g-C3N4 particles were wrapped around the nano magnetic Fe3O4 particles, and the textural properties of this material was improved, so the adsorption performance to uranium ion was good. Adsorption experiments of this material demonstrated that the optimum pH value was 10, the optimum mass of adsorbent was 6.5 mg and the optimum adsorption time was 150 min in the initial concentration of 140 mg/L uranium ion solution system, and the maximum adsorption capacity was up to 352.1 mg/g and the maximum adsorption rate was more than 90%.

  6. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beals, D; Charles Shick, C

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less

  7. Qualification and initial characterization of a high-purity 233U spike for use in uranium analyses

    DOE PAGES

    Mathew, K. J.; Canaan, R. D.; Hexel, C.; ...

    2015-08-20

    Several high-purity 233U items potentially useful as isotope dilution mass spectrometry standards for safeguards, non-proliferation, and nuclear forensics measurements are identified and rescued from downblending. By preserving the supply of 233U materials of different pedigree for use as source materials for certified reference materials (CRMs), it is ensured that the safeguards community has high quality uranium isotopic standards required for calibration of the analytical instruments. One of the items identified as a source material for a high-purity CRM is characterized for the uranium isotope-amount ratios using thermal ionization mass spectrometry (TIMS). Additional verification measurements on this material using quadrupole inductivelymore » coupled plasma mass spectrometry (ICPMS) are also performed. As a result, the comparison of the ICPMS uranium isotope-amount ratios with the TIMS data, with much smaller uncertainties, validated the ICPMS measurement practices. ICPMS is proposed for the initial screening of the purity of items in the rescue campaign.« less

  8. Injection of Emulsified Vegetable Oil for Long-Term Bioreduction of Uranium

    NASA Astrophysics Data System (ADS)

    Brooks, S. C.; Watson, D. B.; Schadt, C. W.; Jardine, P. M.; Gihring, T. M.; Zhang, G.; Mehlhorn, T.; Lowe, K.; Phillips, J.; Earles, J.; Wu, W.; Criddle, C. S.; Kemner, K. M.; Boyanov, M.

    2011-12-01

    In situ bioremediation of a uranium and nitrate-contaminated aquifer with the slow-release electron donor, emulsified vegetable oil (EVO), was tested at the US DOE Subsurface Biogeochemical Research Program (SBR) Integrated Field Research Challenge (IFRC) site, in Oak Ridge, TN. The EVO injection took place in Area 2 of the IFRC located about 300 m downgradient of the former S-3 disposal ponds. Liquid wastes, disposed in the ponds from 1951 to 1983, were primarily composed of nitric acid, plating wastes containing various metals (Cr, Ni) radionuclides (U, Tc), inorganics (nitrate, sulfate) and organic contaminants (tetrachloroethylene, acetone). Prior pond closure in 1987, large volumes of waste fluids migrated into the subsurface, down Bear Creek Valley and into Bear Creek. Contaminants detected at Area 2 were transported through a high permeability gravelly fill that is considered a preferred transport pathway for U to Bear Creek. Groundwater in the gravelly fill is contaminated with U (1-3 mg/L), sulfate (95-130 mg/L), and nitrate (20-40 mg/L) and 500 mg/kg or higher U has been detected on the solid phase of the fill material. The objective of this study is to investigate the feasibility and long-term sustainability of U(VI) reduction and immobilization, and nitrate degradation in the high permeability, high flow gravel fill using EVO as the electron donor. A one-time EVO injection was conducted over a 2 hour period in the highly permeable gravel (hydraulic conductivity 0.08 cm/sec) in the well instrumented IFRC Area 2 field plot. Extensive monitoring of geochemical parameters, dissolved gases and microbial populations were conducted during the test. A bromide tracer test was conducted prior to the injection of the EVO to assess transport pathways and rates. Geochemical analysis of site groundwater demonstrated the sequential bioreduction of oxygen, nitrate, Mn(IV), Fe(III) and sulfate. Transient accumulation of acetate was observed as an intermediate in the oil degradation. Reduction and removal of U and nitrate from groundwater was observed in all wells in hydraulic connection to the injection wells after 2-4 weeks. U concentrations in groundwater were reduced to below 30 ppb (US EPA drinking water standard) at some well locations and nitrate was reduced to below detectable levels. Rebound of U in groundwater was observed together with the rebound of sulfate concentrations as the EVO was consumed. The flux of U and nitrate contamination from groundwater to the surface water receptor (Bear Creek) was significantly reduced by the EVO injection over a one year period. Uranium (VI) reduction to U(IV) in the field tests was confirmed by X-ray absorption near-edge spectroscopy (XANES) analysis. The reduced U(IV) was determined by X-ray absorption fine structure (XAFS) to be in an Fe-U complex, not uraninite. The activities of major Fe(III)- and sulfate-reducing bacteria with U(VI)-reducing capability as well as methanogens was stimulated after injection of the oil.

  9. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    DOEpatents

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  10. 76 FR 30696 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... DEPARTMENT OF ENERGY Reimbursement for Costs of Remedial Action at Active Uranium and Thorium...) acceptance of claims in FY 2011 from eligible active uranium and thorium processing site licensees for... incurred by licensees at active uranium and thorium processing sites to remediate byproduct material...

  11. 26 CFR 1.993-3 - Definition of export property.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Application of 50 percent test. The 50 percent test described in subparagraph (1) of this paragraph is applied... uranium concentrates (known in the industry as “yellow cake”), and nuclear fuel materials derived from the refining of uranium ore and uranium concentrates, or produced in a nuclear reaction, including— (a) Uranium...

  12. 26 CFR 1.993-3 - Definition of export property.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Application of 50 percent test. The 50 percent test described in subparagraph (1) of this paragraph is applied... uranium concentrates (known in the industry as “yellow cake”), and nuclear fuel materials derived from the refining of uranium ore and uranium concentrates, or produced in a nuclear reaction, including— (a) Uranium...

  13. 76 FR 64107 - Uranium From Russia; Scheduling of an Expedited Five-Year Review Concerning the Suspended...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-539-C; Third Review] Uranium From Russia; Scheduling of an Expedited Five-Year Review Concerning the Suspended Investigation on Uranium From Russia... on uranium from Russia would be likely to lead to continuation or recurrence of material injury...

  14. Depleted Uranium | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-01-12

    Depleted uranium is the material left after most of the highly radioactive uranium-235 is removed from uranium ore for nuclear power and weapons. DU is used for tank armor, armor-piercing bullets and as weights to help balance aircraft. DU is both a toxic chemical and radiation health hazard when inside the body.

  15. 78 FR 20146 - Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming AGENCY: Nuclear... to Source Materials License SUA-1598 for continued uranium production operations and in-situ recovery... identified in NUREG-1910, ``Generic Environmental Impact Statement for In-Situ Leach Uranium Milling...

  16. 78 FR 19330 - Supplemental Environmental Impact Statement for the Ross In-Situ Uranium Recovery Project in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... Ross In-Situ Uranium Recovery Project in Crook County, Wyoming AGENCY: Nuclear Regulatory Commission... Commission (NRC) for a new source materials license for the proposed Ross In-Situ Uranium Recovery (ISR... SEIS is Supplement 5 to NUREG-1910, ``Generic Environmental Impact Statement for In-Situ Leach Uranium...

  17. US Transuranium and Uranium Registries case study on accidental exposure to uranium hexafluoride.

    PubMed

    Avtandilashvili, Maia; Puncher, Matthew; McComish, Stacey L; Tolmachev, Sergei Y

    2015-03-01

    The United States Transuranium and Uranium Registries' (USTUR) whole-body donor (Case 1031) was exposed to an acute inhalation of uranium hexafluoride (UF6) produced from an explosion at a uranium processing plant 65 years prior to his death. The USTUR measurements of tissue samples collected at the autopsy indicated long-term retention of inhaled slightly enriched uranium material (0.85% (235)U) in the deep lungs and thoracic lymph nodes. In the present study, the authors combined the tissue measurement results with historical bioassay data, and analysed them with International Commission on Radiological Protection (ICRP) respiratory tract models and the ICRP Publication 69 systemic model for uranium using maximum likelihood and Bayesian statistical methods. The purpose of the analysis was to estimate intakes and model parameter values that best describe the data, and evaluate their effect on dose assessment. The maximum likelihood analysis, which used the ICRP Publication 66 human respiratory tract model, resulted in a point estimate of 79 mg of uranium for the occupational intake composed of 86% soluble, type F material and 14% insoluble, type S material. For the Bayesian approach, the authors applied the Markov Chain Monte Carlo method, but this time used the revised human respiratory tract model, which is currently being used by ICRP to calculate new dose coefficients for workers. The Bayesian analysis estimated that the mean uranium intake was 160 mg, and calculated the case-specific lung dissolution parameters with their associated uncertainties. The parameters were consistent with the inhaled uranium material being predominantly soluble with a small but significant insoluble component. The 95% posterior range of the rapid dissolution fraction (the fraction of deposited material that is absorbed to blood rapidly) was 0.12 to 0.91 with a median of 0.37. The remaining fraction was absorbed slowly, with a 95% range of 0.000 22 d(-1) to 0.000 36 d(-1) and a median of 0.000 31 d(-1). The effective dose per unit intake calculated using the dissolution parameters derived from the maximum likelihood and the Bayesian analyses was higher than the current ICRP dose coefficient for type F uranium by a factor of 2 or 7, respectively; the higher value of the latter was due to use of the revised respiratory tract model. The dissolution parameter values obtained here may be more appropriate to use for radiation protection purposes when individuals are exposed to a UF6 mixture that contains an insoluble uranium component.

  18. Ages and stable-isotope compositions of secondary calcite and opal in drill cores from Tertiary volcanic rocks of the Yucca Mountain area, Nevada

    USGS Publications Warehouse

    Szabo, B. J.; Kyser, T.K.

    1990-01-01

    Stable-isotope compositions of fracture- and cavity-filling calcite from the unsaturated zone of three drill cores at Yucca Mountain Tertiary volcanic complex indicate that the water from which the minerals precipitated was probably meteoric in origin. A decrease in 18O in the calcite with depth is interpreted as being due to the increase in temperature in drill holes corresponding to an estimated average geothermal gradient of 34?? per kilometer. A few of the calcite samples and all of the opal samples yielded uranium-series ages older than 400 000 yr, although most of the calcite samples yielded ages between 26 000 and 310 000 yr. The stable-isotope and uranium-series dates from precipitated calcite and opal of this reconnaissance study suggest a complex history of fluid movement through the volcanic pile, and episodes of fracture filling predominantly from meteoric water during at least the past 400 000 yr. -Authors

  19. Performance testing accountability measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay)more » measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.« less

  20. Temperature Measurements of High-Z Plasma Exiting the Laser Entrance Hole of Ignition Scale Depleted Uranium Hohlraums

    NASA Astrophysics Data System (ADS)

    Parrilla, Nicholas; Ralph, Joe; Bachmann, Ben; Goyon, Clement; Dewald, Eduard

    2017-10-01

    The temperature profile from the Laser Entrance Hole to 3.5 mm from the exit point was measured for plasma with high atomic number (high-Z) of Depleted Uranium ignition scale hohlraums. Each hohlraum was filled with 0.6 mg/cc He as part of the high foot CH campaign. Temperature of the flowing plasma is measured by fitting the velocity distribution to a Maxwellian and considering the Planckian spectral distributions with and without a 42 um Ge filter. The two spectra are then compared to determine the temperature of the high-Z plasma.

  1. PROCESS OF PURIFYING URANIUM

    DOEpatents

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  2. First-Principles Integrated Adsorption Modeling for Selective Capture of Uranium from Seawater by Polyamidoxime Sorbent Materials.

    PubMed

    Ladshaw, Austin P; Ivanov, Alexander S; Das, Sadananda; Bryantsev, Vyacheslav S; Tsouris, Costas; Yiacoumi, Sotira

    2018-04-18

    Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material's relatively poor selectivity of uranium over its main competitor vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Therefore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.

  3. Reactive transport modeling at uranium in situ recovery sites: uncertainties in uranium sorption on iron hydroxides

    USGS Publications Warehouse

    Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.

  4. 10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Amount of liability insurance required for uranium... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...

  5. 10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Amount of liability insurance required for uranium... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...

  6. 10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Amount of liability insurance required for uranium... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...

  7. 10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Amount of liability insurance required for uranium... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...

  8. Determination of uranium and thorium in materials associated with real time electronic solar neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fassett, J. D.; Kelly, W. R.

    1992-07-01

    The application of isotope dilution thermal ionization mass spectrometry to the determination of both uranium and thorium in four different target materials used or proposed for electronic neutrino detectors is described. Isotope dilution analysis is done using highly enriched 233U and 230Th separated isotopes. Sensitivity of the technique is such that sub-picogram amounts of material are readily measured. The overall limit to measurement is caused by contamination of these elements during the measurement process. Uranium is more easily measured than thorium because both the instrumental sensitivity is higher and contamination is better controlled. The materials analyzed were light and heavy water, pseudocumene, and mineral oil.

  9. Sorption Modeling of Strontium, Plutonium, Uranium and Neptunium Adsorption on Monosodium Titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.F.

    2003-10-30

    We examined the ability of various equilibrium isotherms to replicate the available data for the adsorption of strontium (Sr), plutonium (Pu), uranium (U) and neptunium (Np) on monosodium titanate (MST) during the treatment of simulated and actual Savannah River Site high-level waste. The analysis considered 29 isotherm models from the literature. As part of this study, we developed a general method for selecting the best isotherm models. The selection criteria for rating the isotherms considered the relative error in predicting the experimental data, the complexity of the mathematical expressions, the thermodynamic validity of the expressions, and statistical significance for themore » expressions. The Fowler Guggenheim-Jovanovic Freundlich (FG-JF), the Fowler Guggenheim-Langmuir Freundlich (FG-LF) and the Dubinin-Astashov (DA) models each reliably predicted the actinide and strontium adsorption on MST. The first two models describe the adsorption process by single layer formation and later al interactions between adsorbed sorbates while the Dubinin-Astashov model assumes volume filling of micropores (by osmotic pressure difference). These two mechanisms include mutually exclusive assumptions. However, we can not determine which model best represents the various adsorption mechanisms on MST. Based on our analysis, the DA model predicted the data well. The DA model assumes that an initial sorption layer forms after which networking begins in the pore spaces, filling the volume by a second mechanism. If this mechanism occurs in MST, as the experimental data suggests, then we expect all the empty and closed spaces of MST to contain actinides and strontium when saturated. Prior microstructure analyses determined that the MST surface is best described as heterogeneous (i.e., a semi-crystalline outer layer on an amorphous core) or composite material for adsorption. Therefore, we expect the empty spaces (of nanometer size) between the crystalline units in the fibrous material to provide sorption area for the actinides and strontium. Since each of the three models work reliably, we recommend use of the computationally simplest model as the primary tool until future work can differentiate between the two mechanisms. The Dubinin-Astashov model possesses a simpler mathematical form with fewer parameters and operations.« less

  10. HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoulas, V; Charles Goergen, C; Ronald Oprea, R

    2008-06-05

    The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the productmore » throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project.« less

  11. Influence of uranium hydride oxidation on uranium metal behaviour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, N.; Hambley, D.; Clarke, S.A.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, ifmore » sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)« less

  12. IRIS Assessment Plan for Uranium (Scoping and Problem Formulation Materials)

    EPA Science Inventory

    In January 2018, EPA released the IRIS Assessment Plan for Uranium (Oral Reference Dose) (Scoping and Problem Formulation Materials). An IRIS Assessment Plan (IAP) communicates to the public the plan for assessing each individual chemical and includes summary informatio...

  13. 40 CFR 192.00 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...

  14. 40 CFR 192.00 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...

  15. 40 CFR 192.00 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...

  16. Federal Guidance Report No. 8: Guidance for the Control of Radiation Hazards in Uranium Mining

    EPA Pesticide Factsheets

    This report contains background material used in the development of guidance concerning radiation protection in the mining of uranium ore, and seeks to provide guidance for long-term radiation protection in uranium mining.

  17. 40 CFR 192.00 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...

  18. Application of the 226Ra– 230Th– 234U and 227Ac– 231Pa– 235U radiochronometers to uranium certified reference materials

    DOE PAGES

    Rolison, John M.; Treinen, Kerri C.; McHugh, Kelly C.; ...

    2017-11-06

    Uranium certified reference materials (CRM) issued by New Brunswick Laboratory were subjected to dating using four independent uranium-series radiochronometers. In all cases, there was acceptable agreement between the model ages calculated using the 231Pa– 235U, 230Th– 234U, 227Ac– 235U or 226Ra– 234U radiochronometers and either the certified 230Th– 234U model date (CRM 125-A and CRM U630), or the known purification date (CRM U050 and CRM U100). Finally, the agreement between the four independent radiochronometers establishes these uranium certified reference materials as ideal informal standards for validating dating techniques utilized in nuclear forensic investigations in the absence of standards with certifiedmore » model ages for multiple radiochronometers.« less

  19. Application of the 226Ra– 230Th– 234U and 227Ac– 231Pa– 235U radiochronometers to uranium certified reference materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolison, John M.; Treinen, Kerri C.; McHugh, Kelly C.

    Uranium certified reference materials (CRM) issued by New Brunswick Laboratory were subjected to dating using four independent uranium-series radiochronometers. In all cases, there was acceptable agreement between the model ages calculated using the 231Pa– 235U, 230Th– 234U, 227Ac– 235U or 226Ra– 234U radiochronometers and either the certified 230Th– 234U model date (CRM 125-A and CRM U630), or the known purification date (CRM U050 and CRM U100). Finally, the agreement between the four independent radiochronometers establishes these uranium certified reference materials as ideal informal standards for validating dating techniques utilized in nuclear forensic investigations in the absence of standards with certifiedmore » model ages for multiple radiochronometers.« less

  20. Ground-water quality and geochemistry, Carson Desert, western Nevada

    USGS Publications Warehouse

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  1. The Feed Materials Program of the Manhattan Project: A Foundational Component of the Nuclear Weapons Complex

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2014-12-01

    The feed materials program of the Manhattan Project was responsible for procuring uranium-bearing ores and materials and processing them into forms suitable for use as source materials for the Project's uranium-enrichment factories and plutonium-producing reactors. This aspect of the Manhattan Project has tended to be overlooked in comparison with the Project's more dramatic accomplishments, but was absolutely vital to the success of those endeavors: without appropriate raw materials and the means to process them, nuclear weapons and much of the subsequent cold war would never have come to pass. Drawing from information available in Manhattan Engineer District Documents, this paper examines the sources and processing of uranium-bearing materials used in making the first nuclear weapons and how the feed materials program became a central foundational component of the postwar nuclear weapons complex.

  2. Rapid Method for Sodium Hydroxide Fusion of Concrete and ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  3. Evaluation of residual uranium contamination in the dirt floor of an abandoned metal rolling mill.

    PubMed

    Glassford, Eric; Spitz, Henry; Lobaugh, Megan; Spitler, Grant; Succop, Paul; Rice, Carol

    2013-02-01

    A single, large, bulk sample of uranium-contaminated material from the dirt floor of an abandoned metal rolling mill was separated into different types and sizes of aliquots to simulate samples that would be collected during site remediation. The facility rolled approximately 11,000 tons of hot-forged ingots of uranium metal approximately 60 y ago, and it has not been used since that time. Thirty small mass (≈ 0.7 g) and 15 large mass (≈ 70 g) samples were prepared from the heterogeneously contaminated bulk material to determine how measurements of the uranium contamination vary with sample size. Aliquots of bulk material were also resuspended in an exposure chamber to produce six samples of respirable particles that were obtained using a cascade impactor. Samples of removable surface contamination were collected by wiping 100 cm of the interior surfaces of the exposure chamber with 47-mm-diameter fiber filters. Uranium contamination in each of the samples was measured directly using high-resolution gamma ray spectrometry. As expected, results for isotopic uranium (i.e., U and U) measured with the large-mass and small-mass samples are significantly different (p < 0.001), and the coefficient of variation (COV) for the small-mass samples was greater than for the large-mass samples. The uranium isotopic concentrations measured in the air and on the wipe samples were not significantly different and were also not significantly different (p > 0.05) from results for the large- or small-mass samples. Large-mass samples are more reliable for characterizing heterogeneously distributed radiological contamination than small-mass samples since they exhibit the least variation compared to the mean. Thus, samples should be sufficiently large in mass to insure that the results are truly representative of the heterogeneously distributed uranium contamination present at the facility. Monitoring exposure of workers and the public as a result of uranium contamination resuspended during site remediation should be evaluated using samples of sufficient size and type to accommodate the heterogeneous distribution of uranium in the bulk material.

  4. Preparation of uranium compounds

    DOEpatents

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  5. IRIS Assessment Plan for Uranium (Scoping and Problem Formulation Materials)

    EPA Science Inventory

    In January 2018, EPA released the IRIS Assessment Plan for Uranium (Oral Reference Dose) (Scoping and Problem Formulation Materials). An IRIS Assessment Plan , or IAP communicates to the public the plan for assessing each individual chemical and includes summary informat...

  6. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  7. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, Vladimir

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  8. Igneous activity and related ore deposits in the western and southern Tushar Mountains, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Steven, Thomas A.

    1984-01-01

    PART A: Igneous activity in the Marysvale volcanic field of western Utah can be separated into many episodes of extrusion, intrusion, and hydrothermal activity. The rocks of the western Tushar Mountains, near the western part of the volcanic field, include intermediate-composition, calc-alkalic volcanic rocks erupted from scattered volcanoes in Oligocene through earliest Miocene time and related monzonitic intrusions emplaced 24-23 m.y. ago. Beginning 22-21 m.y. ago and extending through much of the later Cenozoic, a bimodal basalt-rhyolite assemblage was erupted widely throughout the volcanic field. Only volcanic and intrusive rocks belonging to the rhyolitic end member of this bimodal assemblage are present in the western Tushar Mountains; most of these rocks either fill the Mount Belknap caldera (19 m.y. old) or are part of the rhyolite of Gillies Hill (9---8 m.y. old). Episodic hydrothermal activity altered and mineralized rocks at many places in the western Tushar Mountains during Miocene time. The earliest activity took place in and adjacent to monzonitic calcalkalic intrusions emplaced in the vicinity of Indian Creek and Cork Ridge. These rocks were widely propylitized, and gold-bearing quartz-pyrite-carbonate veins formed in local fractures. Hydrothermal activity associated with the Mount Belknap caldera mobilized and redeposited uranium contained in the caldera-fill rocks and formed primary concentrations of lithophile elements (including molybdenum and uranium) in the vicinity of intrusive bodies. Hydrothermal activity associated with the rhyolite of Gillies Hill altered and mineralized rocks at several places along the fault zone that marks the western margin of the Tushar Mountains; the zoned alunite and gold deposits at Sheep Rock, the gold deposit at the Sunday Mine, and an alunite deposit near Indian Creek were thus produced. Resetting of isotopic ages suggests that another center of hydrothermally altered rocks associated with a buried pluton about 16 m.y. old may exist near Indian Creek just west of the Mount Belknap caldera. Geophysical evidence confirms the probability of a buried pluton near Indian Creek, and also indicates that another buried pluton probably exists beneath the 9-m.y.-old mineralized area at Sheep Rock. The mineral potential of the different hydrothermal systems, and the types of minerals deposited probably vary considerably from one period of mineralization to another and from one depth environment to another within a given system. PART B: The Big John caldera, on the western flank of the Tushar Mountains in the Marysvale volcanic field in west-central Utah, formed 23-22 m.y. ago in response to ash-flow eruptions of the Delano Peak Tuff Member of the Bullion Canyon Volcanics. These eruptions were near the end of the period of Oligocene-early Miocene calc-alkalic igneous activity that built a broad volcanic plateau in this part of Utah. About 22 m.y. ago, the composition of rocks erupted changed to a bimodal assemblage of mafic and silicic volcanics that was erupted episodically through the remainder of Cenozoic time. The alkali rhyolites are uranium rich in part, and are associated with all the known uranium deposits in the Marysvale volcanic field. The Big John caldera was a broad drained basin whose floor was covered by a layer of stream gravels when ash flows from the western source area of the Mount Belknap Volcanics filled the caldera with the Joe Lott Tuff Member about 19 m.y. ago. Devitrified and zeolitized rocks in the caldera fill have lost one-quarter to one-half of the uranium contained in the original magma. This mobilized uranium probably moved into the hydrologic regime, and some may have been redeposited in stream gravels underlying the Joe Lott within the caldera, or in gravels filling the original drainage channel that extended south from the caldera.

  9. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false General license for custody and long-term care of uranium or thorium byproduct materials disposal sites. 40.28 Section 40.28 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL General Licenses § 40.28 General license for custody and...

  10. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia

    DOE PAGES

    Keegan, Elizabeth; Kristo, Michael J.; Colella, Michael; ...

    2014-04-13

    In early 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. While searching the laboratory, they discovered a small glass jar labelled “Gamma Source” and containing a green powder. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterize and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive rangemore » of parameters were measured, the key ‘nuclear forensic signatures’ used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine.« less

  11. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia.

    PubMed

    Keegan, Elizabeth; Kristo, Michael J; Colella, Michael; Robel, Martin; Williams, Ross; Lindvall, Rachel; Eppich, Gary; Roberts, Sarah; Borg, Lars; Gaffney, Amy; Plaue, Jonathan; Wong, Henri; Davis, Joel; Loi, Elaine; Reinhard, Mark; Hutcheon, Ian

    2014-07-01

    Early in 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. During the search of the laboratory, a small glass jar labelled "Gamma Source" and containing a green powder was discovered. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterise and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive range of parameters were measured, the key 'nuclear forensic signatures' used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keegan, Elizabeth; Kristo, Michael J.; Colella, Michael

    In early 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. While searching the laboratory, they discovered a small glass jar labelled “Gamma Source” and containing a green powder. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterize and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive rangemore » of parameters were measured, the key ‘nuclear forensic signatures’ used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine.« less

  13. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinelli, R; Hamilton, T; Brown, T

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multimore » Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.« less

  14. Oxidation and Hydration of U 3O 8 Materials Following Controlled Exposure to Temperature and Humidity

    DOE PAGES

    Tamasi, Alison L.; Boland, Kevin S.; Czerwinski, Kenneth; ...

    2015-03-18

    Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In our study, a high-purity α-U 3O 8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2–3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. We measured signatures from the α-U 3O 8 samplemore » indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. Finally, the absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production.« less

  15. Oxidation and Hydration of U 3 O 8 Materials Following Controlled Exposure to Temperature and Humidity

    DOE PAGES

    Tamasi, Alison L.; Boland, Kevin S.; Czerwinski, Kenneth; ...

    2015-03-18

    Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In our study, a high-purity α-U 3O 8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2–3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. We measured signatures from the α-U 3O 8 samplemore » indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. Finally, the absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production. LA-UR-15-21495.« less

  16. Effects of hydrated lime on radionuclides stabilization of Hanford tank residual waste.

    PubMed

    Wang, Guohui; Um, Wooyong; Cantrell, Kirk J; Snyder, Michelle M V; Bowden, Mark E; Triplett, Mark B; Buck, Edgar C

    2017-10-01

    Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and hydrated lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or hydrated lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + hydrated lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid phases that could control the solubility of uranium. The results indicate that addition of hydrated lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO 4 ) or similar phase, whereas no significant stabilization effect of grout or hydrated lime was observed on Tc leachability. The result implies that hydrated lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns. Published by Elsevier Ltd.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppich, Gary R.; Williams, Ross W.; Gaffney, Amy M.

    Here, age dating of nuclear material can provide insight into source and suspected use in nuclear forensic investigations. We report here a method for the determination of the date of most recent chemical purification for uranium materials using the 235U- 231Pa chronometer. Protactinium is separated from uranium and neptunium matrices using anion exchange resin, followed by sorption of Pa to an SiO 2 medium. The concentration of 231Pa is measured by isotope dilution mass spectrometry using 233Pa spikes prepared from an aliquot of 237Np and calibrated in-house using the rock standard Table Mountain Latite and the uranium isotopic standard U100.more » Combined uncertainties of age dates using this method are 1.5 to 3.5 %, an improvement over alpha spectrometry measurement methods. Model ages of five uranium standard reference materials are presented; all standards have concordant 235U- 231Pa and 234U- 230Th model ages.« less

  18. Carbon-free induction furnace

    DOEpatents

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  19. Non-carbon induction furnace

    DOEpatents

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  20. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and othermore » environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.« less

  1. Establishing the traceability of a uranyl nitrate solution to a standard reference material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, C.H.; Clark, J.P.

    1978-01-01

    A uranyl nitrate solution for use as a Working Calibration and Test Material (WCTM) was characterized, using a statistically designed procedure to document traceability to National Bureau of Standards Reference Material (SPM-960). A Reference Calibration and Test Material (PCTM) was prepared from SRM-960 uranium metal to approximate the acid and uranium concentration of the WCTM. This solution was used in the characterization procedure. Details of preparing, handling, and packaging these solutions are covered. Two outside laboratories, each having measurement expertise using a different analytical method, were selected to measure both solutions according to the procedure for characterizing the WCTM. Twomore » different methods were also used for the in-house characterization work. All analytical results were tested for statistical agreement before the WCTM concentration and limit of error values were calculated. A concentration value was determined with a relative limit of error (RLE) of approximately 0.03% which was better than the target RLE of 0.08%. The use of this working material eliminates the expense of using SRMs to fulfill traceability requirements for uranium measurements on this type material. Several years' supply of uranyl nitrate solution with NBS traceability was produced. The cost of this material was less than 10% of an equal quantity of SRM-960 uranium metal.« less

  2. Uranium in Holocene valley-fill sediments, and uranium, radon, and helium in waters, Lake Tahoe-Carson Range area, Nevada and California, U.S.A.

    USGS Publications Warehouse

    Otton, J.K.; Zielinski, R.A.; Been, J.M.

    1989-01-01

    Uraniferous Holocene sediments occur in the Carson Range of Nevada and California, U.S.A., between Lake Tahoe and Carson Valley. The hosts for the uranium include peat and interbedded organic-rich sand, silt, and mud that underly valley floors, fens, and marshes along stream valleys between the crest of the range and the edge of Lake Tahoe. The known uranium accumulations extend along the Carson Range from the area just southeast of South Lake Tahoe northward to the area just east of Carson City; however, they almost certainly continue beyond the study area to the north, west, and south. Due to the young age of the accumulations, uranium in them is in gross disequilibrium with its highly radioactive daughter products. These accumulations have thus escaped discovery with radiation detection equipment in the past. The uranium content of these sediments approaches 0.6 percent; however, the average is in the range of 300-500 ppm. Waters associated with these sediments locally contain as much as 177 ppb uranium. Modest levels of helium and radon also occur in these waters. Uraniferous waters are clearly entering the private and public water supply systems in some parts of the study area; however, it is not known how much uranium is reaching users of these water supplies. Many of the waters sampled in the study area exceed the published health effects guidance level of the Environmental Protection Agency. Regulatory standards for uranium in waters have not been published, however. Much uranium is stored in the sediments along these stream valleys. Estimates for a marsh and a fen along one drainage are 24,000 and 15,000 kg, respectively. The potential effects of man-induced environmental changes on the uranium are uncertain. Laboratory studies of uraniferous sediment rich in organic matter may allow us to evaluate the potential of liberating uranium from such sediments and creating transient increases in the level of uranium moving in water in the natural environment. ?? 1989 Springer-Verlag New York Inc.

  3. CAN HANDLING FIXTURES

    DOEpatents

    Kelman, Ler.R.; Yaggee, F.L.

    1958-08-01

    A sleeveless cauning apparatus is described for bonding and canning uranium fuel elements under the surface of a liquid bonding alloy. The can is supported on a pedestal by vertical pegs, and an adjustable collar is placed around the upper, open end of the can, which preferably is flared to assure accurate centering in the fixture and to guide the uranium slug into the can. The fixture with a can in place is then immersed in a liquid aluminum-silicon alloy and the can becomes filled with the liquid alloy. The slug is inserted by a slug guide located vertically above the can opening. The slug settles by gravity into the can, after which a cap is emplaced. A quenching tool lifts the capped can out of the bath by means of a slot provided for it in the pedestal. This apparatus provides a simple means of canning the slug without danger of injury to the uranium metal or the aluminum can.

  4. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  5. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul; Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintainingmore » the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.« less

  6. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  7. 75 FR 44817 - Notice of Availability of Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services, National... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and...

  8. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer

    PubMed Central

    Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D.; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi

    2016-01-01

    The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1−x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories. PMID:26948389

  9. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer.

    PubMed

    Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi

    2016-03-07

    The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1-x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories.

  10. 40 CFR 190.10 - Standards for normal operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for the Uranium Fuel Cycle § 190.10 Standards for normal operations. Operations covered by this... radioactive materials, radon and its daughters excepted, to the general environment from uranium fuel cycle... the general environment from the entire uranium fuel cycle, per gigawatt-year of electrical energy...

  11. ALPHA SPECTROMETRIC EVALUATION OF SRM-995 AS A POTENTIAL URANIUM/THORIUM DOUBLE TRACER SYSTEM FOR AGE-DATING URANIUM MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beals, D.

    2011-12-06

    Uranium-233 (t{sub 1/2} {approx} 1.59E5 years) is an artificial, fissile isotope of uranium that has significant importance in nuclear forensics. The isotope provides a unique signature in determining the origin and provenance of uranium-bearing materials and is valuable as a mass spectrometric tracer. Alpha spectrometry was employed in the critical evaluation of a {sup 233}U standard reference material (SRM-995) as a dual tracer system based on the in-growth of {sup 229}Th (t{sub 1/2} {approx} 7.34E3 years) for {approx}35 years following radiochemical purification. Preliminary investigations focused on the isotopic analysis of standards and unmodified fractions of SRM-995; all samples were separatedmore » and purified using a multi-column anion-exchange scheme. The {sup 229}Th/{sup 233}U atom ratio for SRM-995 was found to be 1.598E-4 ({+-} 4.50%) using recovery-corrected radiochemical methods. Using the Bateman equations and relevant half-lives, this ratio reflects a material that was purified {approx} 36.8 years prior to this analysis. The calculated age is discussed in contrast with both the date of certification and the recorded date of last purification.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppich, G.; Kips, R.; Lindvall, R.

    The CUP-2 uranium ore concentrate (UOC) standard reference material, a powder, was produced at the Blind River uranium refinery of Eldorado Resources Ltd. in Canada in 1986. This material was produced as part of a joint effort by the Canadian Certified Reference Materials Project and the Canadian Uranium Producers Metallurgical Committee to develop a certified reference material for uranium concentration and the concentration of several impurity constituents. This standard was developed to satisfy the requirements of the UOC mining and milling industry, and was characterized with this purpose in mind. To produce CUP-2, approximately 25 kg of UOC derived frommore » the Blind River uranium refinery was blended, homogenized, and assessed for homogeneity by X-ray fluorescence (XRF) analysis. The homogenized material was then packaged into bottles, containing 50 g of material each, and distributed for analysis to laboratories in 1986. The CUP-2 UOC standard was characterized by an interlaboratory analysis program involving eight member laboratories, six commercial laboratories, and three additional volunteer laboratories. Each laboratory provided five replicate results on up to 17 analytes, including total uranium concentration, and moisture content. The selection of analytical technique was left to each participating laboratory. Uranium was reported on an “as-received” basis; all other analytes (besides moisture content) were reported on a “dry-weight” basis. A bottle of 25g of CUP-2 UOC standard as described above was purchased by LLNL and characterized by the LLNL Nuclear Forensics Group. Non-destructive and destructive analytical techniques were applied to the UOC sample. Information obtained from short-term techniques such as photography, gamma spectrometry, and scanning electron microscopy were used to guide the performance of longer-term techniques such as ICP-MS. Some techniques, such as XRF and ICP-MS, provided complementary types of data. The results indicate that the CUP-2 standard has a natural isotopic ratio, and does not appear to have been isotopically enriched or depleted in any way, and was not contaminated by a source of uranium with a non-natural isotopic composition. Furthermore, the lack of 233U and 236U above the instrumental detection limit indicates that this sample was not exposed to a neutron flux, which would have generated one or both of these isotopes in measurable concentrations.« less

  13. Uranium carbide fission target R&D for RIA - an update

    NASA Astrophysics Data System (ADS)

    Greene, J. P.; Levand, A.; Nolen, J.; Burtseva, T.

    2004-12-01

    For the Rare Isotope Accelerator (RIA) facility, ISOL targets employing refractory compounds of uranium are being developed to produce radioactive ions for post-acceleration. The availability of refractory uranium compounds in forms that have good thermal conductivity, relatively high density, and adequate release properties for short-lived isotopes remains an important issue. Investigations using commercially obtained uranium carbide material and prepared into targets involving various binder materials have been carried out at ANL. Thin sample pellets have been produced for measurements of thermal conductivity using a new method based on electron bombardment with the thermal radiation observed using a two-color optical pyrometer and performed on samples as a function of grain size, pressing pressure and sintering temperature. Manufacture of uranium carbide powder has now been achieved at ANL. Simulations have been carried out on the thermal behavior of the secondary target assembly incorporating various heat shield configurations.

  14. High temperature fuel/emitter system for advanced thermionic fuel elements

    NASA Astrophysics Data System (ADS)

    Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny

    1997-01-01

    Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B&W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock & Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B&W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.

  15. Detection of uranium using laser-induced breakdown spectroscopy.

    PubMed

    Chinni, Rosemarie C; Cremers, David A; Radziemski, Leon J; Bostian, Melissa; Navarro-Northrup, Claudia

    2009-11-01

    The goal of this work is a detailed study of uranium detection by laser-induced breakdown spectroscopy (LIBS) for application to activities associated with environmental surveillance and detecting weapons of mass destruction (WMD). The study was used to assist development of LIBS instruments for standoff detection of bulk radiological and nuclear materials and these materials distributed as contaminants on surfaces. Uranium spectra were analyzed under a variety of different conditions at room pressure, reduced pressures, and in an argon atmosphere. All spectra displayed a high apparent background due to the high density of uranium lines. Time decay curves of selected uranium lines were monitored and compared to other elements in an attempt to maximize detection capabilities for each species in the complicated uranium spectrum. A survey of the LIBS uranium spectra was conducted and relative emission line strengths were determined over the range of 260 to 800 nm. These spectra provide a guide for selection of the strongest LIBS analytical lines for uranium detection in different spectral regions. A detection limit for uranium in soil of 0.26% w/w was obtained at close range and 0.5% w/w was achieved at a distance of 30 m. Surface detection limits were substrate dependent and ranged from 13 to 150 microg/cm2. Double-pulse experiments (both collinear and orthogonal arrangements) were shown to enhance the uranium signal in some cases. Based on the results of this work, a short critique is given of the applicability of LIBS for the detection of uranium residues on surfaces for environmental monitoring and WMD surveillance.

  16. 10 CFR 765.2 - Scope and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...

  17. 10 CFR 765.2 - Scope and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...

  18. 10 CFR 765.2 - Scope and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...

  19. 10 CFR 765.2 - Scope and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...

  20. 78 FR 75579 - Low Enriched Uranium From France

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... From France Determination On the basis of the record \\1\\ developed in the subject five-year review, the... uranium from France would be likely to lead to continuation or recurrence of material injury to an... Commission are contained in USITC Publication 4436 (December 2013), entitled Low Enriched Uranium from France...

  1. 10 CFR 765.2 - Scope and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...

  2. Preliminary Report on the White Canyon Area, San Juan County, Utah

    USGS Publications Warehouse

    Benson, William Edward Barnes; Trites, A.F.; Beroni, E.P.; Feeger, J.A.

    1952-01-01

    The White Canyon area in San Juan County, Utah, contains known deposits of copper-uranium ore and is currently being mapped and studied by the Geological Survey. To date, approximately 75 square miles, or about 20 percent of the area, has been mapped on a scale 1 inch=1 mile. The White Canyon area is underlain by more than 2,000 feet of sedimentary rocks, Carboniferous to Jurassic(?) in age. The area is on the flank of the Elk Ridge anticline, and the strata have a regional dip of 1 deg to 2 deg SW. The Shinarump conglomerate of Late Triassic age is the principal ore-bearing formation. The Shinarump consists of lenticular beds of sandstone, conglomeratic sandstone, clay, and siltstone, and ranges in thickness from a feather edge to as much as 75 feet. Locally the sandstones contain silicified and carbonized wood and fragments of charcoal. These vegetal remains are especially common in channel-fill deposits. Jointing is prominent in the western part of the area, and apparently affects all formations. Adjacent to the joints some of the redbeds in the sequence are bleached. Deposits of copper-uranium minerals have been found in the Moenkopi, Shinarump, and Chinle formations, but the only production of ore has been from the Shinarump conglomerate. The largest concentration of these minerals is in the lower third of the Shinarump, and the deposits seem to be controlled in part by ancient channel fills and in part by fractures. Locally precipitation of the copper and uranium minerals apparently has been aided by charcoal and clays. Visible uranium minerals include both hard and soft pitchblende and secondary hydrosulfates, phosphates, and silicates. In addition, unidentified uranium compounds are present in carbonized wood and charcoal, and in veinlets of hydrocarbons. Base-metal sulfides have been identified in all prospects that extend beyond the oxidized zone. Secondary copper minerals in the oxidized zone include the hydrous sulfates and carbonates, and possibly chrysocolla. The principal gangue minerals are quartz, clay minerals, chlorite, oxides of iron and manganese, alunite, calcite, gypsum, pyrite, allophane, gibbsite, opal, and chalcedony. The origin of the copper-uranium ores has not been determined, but the association of many deposits with fractures, the mineralogic assemblage, and a lead-uranium age determination of 50 to 60 million years for the pitchblende in the Happy Jack mine favor the hypothesis that the ores are of hydrothermal origin and were deposited in early Tertiary time. Criteria believed to be the most useful in prospecting for new deposits are (1) visible uranium minerals; (2) visible copper minerals; (3) alunite; (4) hydrocarbons; and (5) bleaching of the underlying Moenkopi formation.

  3. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.

    PubMed

    Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon

    2011-07-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.

  4. Loading blended, low-enriched uranium fuel in browns ferry units 2 and 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C.; Eichenberg, T.; Haun, J.

    2006-07-01

    This paper summarizes fuel and cycle design results for the Tennessee Valley Authority (TVA) / Dept. of Energy (DOE) program to burn blended, low-enriched uranium (BLEU) material in the Browns Ferry Nuclear Units 2 and 3. The BLEU material typically has about 60 times the allowed limit of U-236 in what would be defined as commercial, i.e., virgin, uranium. U-236 in particular is a strong neutron absorber. Also included is a comparison of cycles using commercial uranium versus BLEU to determine the impact on key core design parameters of the high U-236 content in the BLEU. Finally, there is amore » short discussion of the economic advantages of BLEU fuel. (authors)« less

  5. Routine inspection effort required for verification of a nuclear material production cutoff convention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, D.; Fainberg, A.; Sanborn, J.

    On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced aftermore » entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.« less

  6. National Uranium Resource Evaluation: Marfa Quadrangle, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, C D; Duex, T W; Wilbert, W P

    1982-09-01

    The uranium favorability of the Marfa 1/sup 0/ by 2/sup 0/ Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiarymore » Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable.« less

  7. Source Correlated Prompt Neutron Activation Analysis for Material Identification and Localization

    NASA Astrophysics Data System (ADS)

    Canion, Bonnie; McConchie, Seth; Landsberger, Sheldon

    2017-07-01

    This paper investigates the energy spectrum of photon signatures from an associated particle imaging deuterium tritium (API-DT) neutron generator interrogating shielded uranium. The goal is to investigate if signatures within the energy spectrum could be used to indirectly characterize shielded uranium when the neutron signature is attenuated. By utilizing the correlated neutron cone associated with each pixel of the API-DT neutron generator, certain materials can be identified and located via source correlated spectrometry of prompt neutron activation gamma rays. An investigation is done to determine if fission neutrons induce a significant enough signature within the prompt neutron-induced gamma-ray energy spectrum in shielding material to be useful for indirect nuclear material characterization. The signature deriving from the induced fission neutrons interacting with the shielding material was slightly elevated in polyethylene-shielding depleted uranium (DU), but was more evident in some characteristic peaks from the aluminum shielding surrounding DU.

  8. Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution

    DOEpatents

    Tomczuk, Zygmunt; Miller, William E.; Wolson, Raymond D.; Gay, Eddie C.

    1991-01-01

    An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

  9. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...

  10. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...

  11. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...

  12. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...

  13. The Nopal 1 Uranium Deposit: an Overview

    NASA Astrophysics Data System (ADS)

    Calas, G.; Allard, T.; Galoisy, L.

    2007-05-01

    The Nopal 1 natural analogue is located in the Pena Blanca uranium district, about 50 kms north of Chihuahua City, Mexico. The deposit is hosted in tertiary ignimbritic ash-flow tuffs, dated at 44 Ma (Nopal and Colorados formations), and overlying the Pozos conglomerate formation and a sequence of Cretaceous carbonate rocks. The deposit is exposed at the ground surface and consists of a near vertical zone extending over about 100 m with a diameter of 40 m. An interesting characteristic is that the primary mineralization has been exposed above the water table, as a result of the uplift of the Sierra Pena Blanca, and subsequently oxidized with a remobilization of hexavalent uranium. The primary mineralization has been explained by various genetic models. It is associated to an extensive hydrothermal alteration of the volcanic tuffs, locally associated to pyrite and preserved by an intense silicification. Several kaolinite parageneses occur in fissure fillings and feldspar pseudomorphs, within the mineralized breccia pipe and the barren surrounding rhyolitic tuffs. Smectites are mainly developed in the underlying weakly welded tuffs. Several radiation-induced defect centers have been found in these kaolinites providing a unique picture of the dynamics of uranium mobilization (see Allard et al., this session). Another evidence of this mobilization is given by the spectroscopy of uranium-bearing opals, which show characteristic fluorescence spectra of uranyl groups sorbed at the surface of silica. By comparison with the other uranium deposits of the Sierra Pena Blanca and the nearby Sierra de Gomez, the Nopal 1 deposit is original, as it is one of the few deposits hving retained a reduced uranium mineralization.

  14. Design options for improved performance with high-density carbon ablators and low-gas fill hohlraum targets

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L.; Divol, L.; Lepape, S.; Meezan, N. B.; Dewald, E.; Ho, D.; Khan, S.; Pak, A.; Ralph, J.; Ross, J. S.

    2016-10-01

    Recent simulation-based and experimental work using high-density carbon ablators in unlined uranium hohlraums with 0.3 mg/cc helium fill have demonstrated round implosions with minimal evolution of Legendre moment P2 during burn. To extend this promising work, design studies have been performed to explore potential performance improvements with larger capsules, while maintaining similar case-to-capsule target ratios. We present here the results of these design studies, which will motivate a series of upcoming experiments at the National Ignition Facility. Prepared by LLNL under Contract DE-AC52-07NA27344.

  15. Occurrences of uranium-bearing minerals in the St. Kevin District, Lake County, Colorado

    USGS Publications Warehouse

    Pierson, C.T.; Singewald, Q.D.

    1953-01-01

    None of the uranium occurrences are of commercial importance. They are for the most part in non-glaciated terrane, which has been subjected to a very long period of weathering.  Thus, chemical leaching within the zone of weathering may have greatly reduced the uranium content of material near the surface, and occurrences of even small quantities of secondary uranium minerals might be related to stronger, primary concentrations at depth.

  16. Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles.

    PubMed

    Preetha, Chandrika Ravindran; Gladis, Joseph Mary; Rao, Talasila Prasada; Venkateswaran, Gopala

    2006-05-01

    Major quantities of uranium find use as nuclear fuel in nuclear power reactors. In view of the extreme toxicity of uranium and consequent stringent limits fixed by WHO and various national governments, it is essential to remove uranium from nuclear power reactor effluents before discharge into environment. Ion imprinted polymer (IIP) materials have traditionally been used for the recovery of uranium from dilute aqueous solutions prior to detection or from seawater. We now describe the use of IIP materials for selective removal of uranium from a typical synthetic nuclear power reactor effluent. The IIP materials were prepared for uranyl ion (imprint ion) by forming binary salicylaldoxime (SALO) or 4-vinylpyridine (VP) or ternary SALO-VP complexes in 2-methoxyethanol (porogen) and copolymerizing in the presence of styrene (monomer), divinylbenzene (cross-linking monomer), and 2,2'-azobisisobutyronitrile (initiator). The resulting materials were then ground and sieved to obtain unleached polymer particles. Leached IIP particles were obtained by leaching the imprint ions with 6.0 M HCl. Control polymer particles were also prepared analogously without the imprint ion. The IIP particles obtained with ternary complex alone gave quantitative removal of uranyl ion in the pH range 3.5-5.0 with as low as 0.08 g. The retention capacity of uranyl IIP particles was found to be 98.50 mg/g of polymer. The present study successfully demonstrates the feasibility of removing uranyl ions selectively in the range 5 microg - 300 mg present in 500 mL of synthetic nuclear power reactor effluent containing a host of other inorganic species.

  17. 10 CFR 40.33 - Issuance of a license for a uranium enrichment facility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Issuance of a license for a uranium enrichment facility. 40.33 Section 40.33 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL License Applications § 40.33 Issuance of a license for a uranium enrichment facility. (a) The Commission...

  18. Rapid Method for Sodium Hydroxide Fusion of Asphalt ...

    EPA Pesticide Factsheets

    Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 Rapid method developed for analysis of Americium-241 (241Am), plutonium-238 (238Pu), plutonium-239 (239Pu), radium-226 (226Ra), strontium-90 (90Sr), uranium-234 (234U), uranium-235 (235U) and uranium-238 (238U) in asphalt roofing material samples

  19. 78 FR 21352 - Update on Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... DEPARTMENT OF ENERGY Update on Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of Energy. ACTION: Notice of the Title X claims during fiscal... at active uranium and thorium processing sites to remediate byproduct material generated as an...

  20. 40 CFR Table A to Subpart D of... - Table A to Subpart D of Part 192

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic... Combined radium-226 and radium-228 5 Gross alpha-particle activity (excluding radon and uranium) 15 ...

  1. 40 CFR Table A to Subpart D of... - Table A to Subpart D of Part 192

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic... Combined radium-226 and radium-228 5 Gross alpha-particle activity (excluding radon and uranium) 15 ...

  2. 10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... enrichment facilities. 140.13b Section 140.13b Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...

  3. 77 FR 14001 - Continuation of Suspended Antidumping Duty Investigation: Uranium From the Russian Federation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... (``Russia'') would likely lead to continuation or recurrence of material injury to an industry in the United... the Suspension Agreement on uranium from Russia. DATES: Effective Date: March 8, 2012. FOR FURTHER.... 731-TA-539-C (Third Review), Uranium from Russia Russia; Institution of a Five-Year Review Concerning...

  4. Elevated Uranium in Aquifers of the Jacobsville Sandstone

    NASA Astrophysics Data System (ADS)

    Sherman, H.; Gierke, J.

    2003-12-01

    The EPA has announced a new standard for uranium in drinking water of 30 parts per billion (ppb). This maximum contaminant level (MCL) takes effect for community water supplies December 2003. The EPA's ruling has heightened awareness among residential well owners that uranium in drinking water may increase the risk of kidney disease and cancer and has created a need for a quantified, scientific understanding of the occurrence and distribution of uranium isotopes in aquifers. The authors are investigating the occurrence of elevated uranium in northern Michigan aquifers of the Middle Proterozoic Jacobsville sandstone, a red to mottled sequence of sandstones, conglomerates, siltstones and shales deposited as basin fill in the 1.1 Ga Midcontinent rift. Approximately 25% of 300 well water samples tested for isotopic uranium have concentrations above the MCL. Elevated uranium occurrences are distributed throughout the Jacobsville sandstone aquifers stretching across Michigan's Upper Peninsula. However, there is significant variation in well water uranium concentrations (from 0.01 to 190 ppb) and neighboring wells do not necessarily have similar concentrations. The authors are investigating hydrogeologic controls on ground water uranium concentrations in the Jacobsville sandstone, e.g. variations in lithology, mineralogy, groundwater residence time and geochemistry. Approximately 2000' of Jacobsville core from the Amoco St. Amour well was examined in conjunction with the spectral gamma ray log run in the borehole. Spikes in equivalent uranium (eU) concentration from the log are frequently associated with clay and heavy mineral layers in the sandstone core. The lithology and mineralogy of these layers will be determined by analysis of thin sections and x-ray diffraction. A portable spectrometer, model GRS-2000/BL, will be used on the sandstone cliffs along Lake Superior to characterize depositional and lithologic facies of the Jacobsville sandstone in terms of concentrations and ratios of eU, eTh and K. Equipped with borehole accessories, the spectrometer will be used to log residential drinking wells to determine a relationship between the uranium concentration of well water and the eU concentration in the sandstone. Tritium/helium-3 dating will be used to determine whether ground water uranium concentrations increase with residence time. PHREEQCI will be used to model dominate aqueous species of uranium and saturation indices of uranium minerals.

  5. The preparation of uranium-adsorbed silica particles as a reference material for the fission track analysis

    NASA Astrophysics Data System (ADS)

    Park, Y. J.; Lee, M. H.; Pyo, H. Y.; Kim, H. A.; Sohn, S. C.; Jee, K. Y.; Kim, W. H.

    2005-06-01

    Uranium-adsorbed silica particles were prepared as a reference material for the fission track analysis (FTA) of swipe samples. A modified instrumental setup for particle generation, based on a commercial vibrating orifice aerosol generator to produce various sizes of droplets from a SiO 2 solution, is described. The droplets were transferred into a weak acidic solution bath to produce spherical solid silica particles. The classification of the silica particles in the range from 5 to 20 μm was carried out by the gravitational sedimentation method. The size distribution and morphology of the classified silica particles were investigated by scanning electron microscopy. The physicochemical properties of the classified silica particles such as the surface area, pore size and pore volume were measured. After an adsorption of 5% 235U on the silica particles in a solution adjusted to pH 4.5, the uranium-adsorbed silica particles were calcined up to 950 °C in a furnace to fix the uranium strongly onto the silica particles. The various sizes of uranium-adsorbed silica particles were applied to the FTA for use as a reference material.

  6. Germanium and uranium in coalified wood bom upper Devonian black shale

    USGS Publications Warehouse

    Breger, I.A.; Schopf, J.M.

    1955-01-01

    Microscopic study of black, vitreous, carbonaceous material occurring in the Chattanooga shale in Tennessee and in the Cleveland member of the Ohio shale in Ohio has revealed coalified woody plant tissue. Some samples have shown sufficient detail to be identified with the genus Cauixylon. Similar material has been reported in the literature as "bituminous" or "asphaltic" stringers. Spectrographic analyses of the ash from the coalified wood have shown unusually high percentages of germanium, uranium, vanadium, and nickel. The inverse relationship between uranium and germanium in the ash and the ash content of various samples shows an association of these elements with the organic constituents of the coal. On the basis of geochemical considerations, it seems most probable that the wood or coalified wood was germanium-bearing at the time logs or woody fragmenta were floated into the basins of deposition of the Chattanooga shale and the Cleveland member of the Ohio shale. Once within the marine environment, the material probably absorbed uranium with the formation of organo-uranium compounds such as exist in coals. It is suggested that a more systematic search for germaniferous coals in the vicinity of the Chattanooga shale and the Cleveland member of the Ohio shale might be rewarding. ?? 1955.

  7. New Fiber Materials with Sorption Capacity at 5.0 g-U/kg Adsorbent under Marine Testing Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Tomonori; Brown, S.; Das, Sadananda

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) has focused on assuring that nuclear fuel resources are available in the United States for a long term. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. Extraction of the uranium resource in seawater can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uraniummore » recovery from seawater. The goal is to develop advanced adsorbents to make the seawater uranium recovery technology a cost competitive, viable technology. Under this program, Oak Ridge National Laboratory (ORNL) has developed several novel adsorbents, which enhanced the uranium capacity 4-5 times from the state-of-the art Japanese adsorbents. Uranium exists uniformly at a concentration of ~3.3 ppb in seawater. Because of the vast volume of the oceans, the total estimated amount of uranium in seawater is approximately 1000 times larger than its amount in terrestrial resources. However, due to the low concentration, a significant challenge remains for making the extraction of uranium from seawater a commercially viable alternative technology. The biggest challenge for this technology to overcome to efficiently reduce the extraction cost is to develop adsorbents with increased uranium adsorption capacity. Two major approaches were investigated for synthesizing novel adsorbents with enhanced uranium adsorption capacity. One method utilized conventional radiation induced graft polymerization (RIGP) to synthesize adsorbents on high-surface area trunk fibers and the other method utilized a chemical grafting technique, atom-transfer radical polymerization (ATRP). Both approaches have shown promising uranium extraction capacities: RIGP adsorbent achieved 5.00 ± 0.15 g U/kg-ads., while ATRP adsorbent achieved 6.56 ± 0.33 g U/kg-ads., after 56 days of seawater exposure. These achieved values are the highest adsorption capacities ever reported for uranium extraction from seawater. The study successfully demonstrated new fiber materials with sorption capacity at 5.0 g-U/kg adsorbent under marine testing conditions. Further optimization, investigation of other new materials as well as deepening our understanding will develop adsorbents that have even higher uranium adsorption capacity, increased selectivity, and faster kinetics.« less

  8. Controlled low strength materials (CLSM), reported by ACI Committee 229

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendran, N.

    1997-07-01

    Controlled low-strength material (CLSM) is a self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. Many terms are currently used to describe this material including flowable fill, unshrinkable fill, controlled density fill, flowable mortar, flowable fly ash, fly ash slurry, plastic soil-cement, soil-cement slurry, K-Krete and other various names. This report contains information on applications, material properties, mix proportioning, construction and quality-control procedures. This report`s intent is to provide basic information on CLSM technology, with emphasis on CLSM material characteristics and advantages over conventional compacted fill. Applications include backfills, structural fills, insulating and isolation fills, pavementmore » bases, conduit bedding, erosion control, void filling, and radioactive waste management.« less

  9. Surface Functionalized Nanostructured Ceramic Sorbents for the Effective Collection and Recovery of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Pittman, Jonathan W.; Warner, Marvin G.

    2016-05-02

    The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructuredmore » silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.« less

  10. Checking the possibility of controlling fuel element by X-ray computerized tomography

    NASA Astrophysics Data System (ADS)

    Trinh, V. B.; Zhong, Y.; Osipov, S. P.; Batranin, A. V.

    2017-08-01

    The article considers the possibility of checking fuel elements by X-ray computerized tomography. The checking tasks are based on the detection of particles of active material, evaluation of the heterogeneity of the distribution of uranium salts and the detection of clusters of uranium particles. First of all, scheme of scanning improve the performance and quality of the resulting three-dimensional images of the internal structure is determined. Further, the possibility of detecting clusters of uranium particles having the size of 1 mm3 and measuring the coordinates of clusters of uranium particles in the middle layer with the accuracy of within a voxel size (for the considered experiments of about 80 μm) is experimentally proved in the main part. The problem of estimating the heterogeneity of the distribution of the active material in the middle layer and the detection of particles of active material with a nominal diameter of 0.1 mm in the “blank” is solved.

  11. 10 CFR 40.67 - Requirement for advance notice for importation of natural uranium from countries that are not...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Requirement for advance notice for importation of natural uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. 40.67 Section 40.67 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL...

  12. Letter Report: Looking Ahead at Nuclear Fuel Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Stephen Herring

    2013-09-01

    The future of nuclear energy and its ability to fulfill part of the world’s energy needs for centuries to come depend on a reliable input of nuclear fuel, either thorium or uranium. Obviously, the present nuclear fuel cycle is completely dependent on uranium. Future thorium cycles will also depend on 235U or fissile isotopes separated from used fuel to breed 232Th into fissile 233U. This letter report discusses several emerging areas of scientific understanding and technology development that will clarify and enable assured supplies of uranium and thorium well into the future. At the most fundamental level, the nuclear energymore » community needs to appreciate the origins of uranium and thorium and the processes of planetary accretion by which those materials have coalesced to form the earth and other planets. Secondly, the studies of geophysics and geochemistry are increasing understanding of the processes by which uranium and thorium are concentrated in various locations in the earth’s crust. Thirdly, the study of neutrinos and particularly geoneutrinos (neutrinos emitted by radioactive materials within the earth) has given an indication of the overall global inventories of uranium and thorium, though little indication for those materials’ locations. Crustal temperature measurements have also given hints of the vertical distribution of radioactive heat sources, primarily 238U and 232Th, within the continental crust. Finally, the evolving technologies for laser isotope separation are indicating methods for reducing the energy input to uranium enrichment but also for tailoring the isotopic vectors of fuels, burnable poisons and structural materials, thereby adding another tool for dealing with long-term waste management.« less

  13. 40 CFR 192.34 - Effective date.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...

  14. 40 CFR 192.34 - Effective date.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...

  15. Particle detection systems and methods

    DOEpatents

    Morris, Christopher L.; Makela, Mark F.

    2010-05-11

    Techniques, apparatus and systems for detecting particles such as muons and neutrons. In one implementation, a particle detection system employs a plurality of drift cells, which can be for example sealed gas-filled drift tubes, arranged on sides of a volume to be scanned to track incoming and outgoing charged particles, such as cosmic ray-produced muons. The drift cells can include a neutron sensitive medium to enable concurrent counting of neutrons. The system can selectively detect devices or materials, such as iron, lead, gold, uranium, plutonium, and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can concurrently detect any unshielded neutron sources occupying the volume from neutrons emitted therefrom. If necessary, the drift cells can be used to also detect gamma rays. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  16. Cubic and Rhombohedral Heterobimetallic Networks Constructed from Uranium, Transition Metals, and Phosphonoacetate. New Methods for Constructing Porous Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsobrook, Andera N.; Hauser, B. G.; Hupp, Joseph T.

    2010-11-01

    Four heterobimetallic U(VI)/M(II) (M = Mn, Co, Cd) carboxyphosphonates have been synthesized. M 2[(UO 2) 6(PO 3CH 2CO 2) 3O 3(OH)(H 2O) 2]·16H 2O (M = Mn(II), Co(II), and Cd(II)) adopt cubic three-dimensional network structures with large cavities approximately 16 Å in diameter that are filled with co-crystallized water molecules. [Cd 3(UO 2) 6(PO 3CH 2CO 2) 6(H 2O) 13]·6H 2 O forms a rhombohedral channel structure with hydrated Cd(II) within the channels. The cubic compound (Co) displays differential gas absorption with a surface area for CO 2 uptake of 40 m 2 g -1 at 273 K, and nomore » uptake of N 2 at 77 K.« less

  17. Lead (Pb) Hohlraum: Target for Inertial Fusion Energy

    PubMed Central

    Ross, J. S.; Amendt, P.; Atherton, L. J.; Dunne, M.; Glenzer, S. H.; Lindl, J. D.; Meeker, D.; Moses, E. I.; Nikroo, A.; Wallace, R.

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction. PMID:23486285

  18. Lead (Pb) hohlraum: target for inertial fusion energy.

    PubMed

    Ross, J S; Amendt, P; Atherton, L J; Dunne, M; Glenzer, S H; Lindl, J D; Meeker, D; Moses, E I; Nikroo, A; Wallace, R

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction.

  19. Shield materials recommended for space power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kaszubinski, L. J.

    1973-01-01

    Lithium hydride is recommended for neutron attenuation and depleted uranium is recommended for gamma ray attenuation. For minimum shield weights these materials must be arranged in alternate layers to attenuate the secondary gamma rays efficiently. In the regions of the shield near the reactor, where excessive fissioning occurs in the uranium, a tungsten alloy is used instead. Alloys of uranium such as either the U-0.5Ti or U-8Mo are available to accommodate structural requirements. The zone-cooled casting process is recommended for lithium hydride fabrication. Internal honeycomb reinforcement to control cracks in the lithium hydride is recommended.

  20. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOEpatents

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  1. Uranium Glass: A Glowing Alternative to Conventional Sources of Radioactivity

    ERIC Educational Resources Information Center

    Boot, Roeland

    2017-01-01

    There is a relatively simple way of using radioactive material in classroom experiments: uranium glass, which provides teachers with a suitable substance. By using the right computer software and a radiation sensor, it can be demonstrated that uranium glass emits radiation at a greater rate than the background radiation and with the aid of UV…

  2. A physical model for evaluating uranium nitride specific heat

    NASA Astrophysics Data System (ADS)

    Baranov, V. G.; Devyatko, Yu. N.; Tenishev, A. V.; Khlunov, A. V.; Khomyakov, O. V.

    2013-03-01

    Nitride fuel is one of perspective materials for the nuclear industry. But unlike the oxide and carbide uranium and mixed uranium-plutonium fuel, the nitride fuel is less studied. The present article is devoted to the development of a model for calculating UN specific heat on the basis of phonon spectrum data within the solid state theory.

  3. Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Mary Ann; Richards, Andrew Walter; Holby, Edward F.

    2016-12-20

    Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13, and the fourth generation model is now complete. Additional high-resolution experiments will be run to further test the model.

  4. METHOD OF IMPREGNATING A POROUS MATERIAL

    DOEpatents

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  5. A Record of Uranium-Series Transport in Fractured, Unsaturated Tuff at Nopal I, Sierra Peña Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Denton, J.; Goldstein, S. J.; Paviet, P.; Nunn, A. J.; Amato, R. S.; Hinrichs, K. A.

    2015-12-01

    In this study we utilize U-series disequilibria measurements to investigate mineral fluid interactions and the role fractures play in the geochemical evolution of an analogue for a high level nuclear waste repository, the Nopal I uranium ore deposit. Samples of fracture-fill materials have been collected from a vertical drill core and surface fractures. High uranium concentrations in these materials (12-7700 ppm) indicate U mobility and transport from the deposit in the past. U concentrations generally decrease with horizontal distance away from the ore deposit but show no trend with depth. Isotopic activity ratios indicate a complicated geochemical evolution in terms of the timing and extent of actinide mobility, possibly due to changing environmental (redox) conditions over the history of the deposit. 234U/238U activity ratios are generally distinct from secular equilibrium and indicate some degree of open system U behavior during the past 1.2 Ma. However, calculated closed system 238U-234U-230Th model ages are generally >313 ka and >183 ka for the surface fracture and drill core samples respectively, suggesting closed system behavior for U and Th over this most recent time period. Whole rock isochrons drawn for the drill core samples show that at two of three depths fractures have remained closed with respect to U and Th mobility for >200 ka. However, open system behavior for U in the last 350 ka is suggested at 67 m depth. 231Pa/235U activity ratios within error of unity suggest closed system behavior for U and Pa for at least the past 185 ka. 226Ra/230Th activity ratios are typically <1 (0.7-1.2), suggesting recent (<8 ka) radium loss and mobility due to ongoing fluid flow in the fractures. Overall, the mainly closed system behavior of U-Th-Pa over the past ~200 ka provides one indicator of the geochemical immobility of these actinides over long time-scales for potential nuclear waste repositories sited in fractured, unsaturated tuff.

  6. Computed tomography assessment of the efficiency of different techniques for removal of root canal filling material.

    PubMed

    Dall'Agnol, Cristina; Hartmann, Mateus Silveira Martins; Barletta, Fernando Branco

    2008-01-01

    This study evaluated the efficiency of different techniques for removal of filling material from root canals, using computed tomography (CT). Sixty mesial roots from extracted human mandibular molars were used. Root canals were filled and, after 6 months, the teeth were randomly assigned to 3 groups, according to the root-filling removal technique: Group A - hand instrumentation with K-type files; Group B - reciprocating instrumentation with engine-driven K-type files; and Group C rotary instrumentation with engine-driven ProTaper system. CT scans were used to assess the volume of filling material inside the root canals before and after the removal procedure. In both moments, the area of filling material was outlined by an experienced radiologist and the volume of filling material was automatically calculated by the CT software program. Based on the volume of initial and residual filling material of each specimen, the percentage of filling material removed from the root canals by the different techniques was calculated. Data were analyzed statistically by ANOVA and chi-square test for linear trend (?=0.05). No statistically significant difference (p=0.36) was found among the groups regarding the percent means of removed filling material. The analysis of the association between the percentage of filling material removal (high or low) and the proposed techniques by chi-square test showed statistically significant difference (p=0.015), as most cases in group B (reciprocating technique) presented less than 50% of filling material removed (low percent removal). In conclusion, none of the techniques evaluated in this study was effective in providing complete removal of filling material from the root canals.

  7. SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS

    DOEpatents

    Grinstead, R.R.

    1959-01-20

    A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.

  8. Optimization of ISOCS Parameters for Quantitative Non-Destructive Analysis of Uranium in Bulk Form

    NASA Astrophysics Data System (ADS)

    Kutniy, D.; Vanzha, S.; Mikhaylov, V.; Belkin, F.

    2011-12-01

    Quantitative calculation of the isotopic masses of fissionable U and Pu is important for forensic analysis of nuclear materials. γ-spectrometry is the most commonly applied tool for qualitative detection and analysis of key radionuclides in nuclear materials. Relative isotopic measurement of U and Pu may be obtained from γ-spectra through application of special software such as MGAU (Multi-Group Analysis for Uranium, LLNL) or FRAM (Fixed-Energy Response Function Analysis with Multiple Efficiency, LANL). If the concentration of U/Pu in the matrix is unknown, however, isotopic masses cannot be calculated. At present, active neutron interrogation is the only practical alternative for non-destructive quantification of fissionable isotopes of U and Pu. An active well coincidence counter (AWCC), an alternative for analyses of uranium materials, has the following disadvantages: 1) The detection of small quantities (≤100 g) of 235U is not possible in many models; 2) Representative standards that capture the geometry, density and chemical composition of the analyzed unknown are required for precise analysis; and 3) Specimen size is severely restricted by the size of the measuring chamber. These problems may be addressed using modified γ-spectrometry techniques based on a coaxial HPGe-detector and ISOCS software (In Situ Object Counting System software, Canberra). We present data testing a new gamma-spectrometry method uniting actinide detection with commonly utilized software, modified for application in determining the masses of the fissionable isotopes in unknown samples of nuclear materials. The ISOCS software, widely used in radiation monitoring, calculates the detector efficiency curve in a specified geometry and range of photon energies. In describing the geometry of the source-detector, it is necessary to clearly describe the distance between the source and the detector, the material and the thickness of the walls of the container, as well as material, density and chemical composition of the matrix of the specimen. Obviously, not all parameters can be characterized when measuring samples of unknown composition or uranium in bulk form. Because of this, and especially for uranium materials, the IAEA developed an ISOCS optimization procedure. The target values for the optimization are Μmatrixfixed, the matrix mass determined by weighing with a known mass container, and Εfixed, the 235U enrichment, determined by MGAU. Target values are fitted by varying the matrix density (ρ), and the concentration of uranium in the matrix of the unknown (w). For each (ρi, wi), an efficiency curve is generated, and the masses of uranium isotopes, Μ235Ui and Μ238Ui, determined using spectral activity data and known specific activities for U. Finally, fitted parameters are obtained for Μmatrixi = Μmatrixfixed ± 1σ, Εi = Εfixed ± 1σ, as well as important parameters (ρi, wi, Μ235Ui, Μ238Ui, ΜUi). We examined multiple forms of uranium (powdered, pressed, and scrap UO2 and U3O8) to test this method for its utility in accurately identifying the mass and enrichment of uranium materials, and will present the results of this research.

  9. Hunting a Black Swan: Policy Options for America’s Police in Preventing Radiological/Nuclear Terrorism

    DTIC Science & Technology

    2012-09-01

    patrol vehicles. The Department’s Counter-Terror Operations Unit serves as the program coordinator and as the archetypical NIMS Type I Team. The...is defined by Title I of the Atomic Energy Act of 1954 as plutonium, uranium-233, or uranium enriched in the isotopes uranium-233 or uranium...end of World War II. Radioactive Materials—materials that contain radioactive atoms . Radioactive atoms are unstable; that is, they have too much

  10. ALD coating of nuclear fuel actinides materials

    DOEpatents

    Yacout, A. M.; Pellin, Michael J.; Yun, Di; Billone, Mike

    2017-09-05

    The invention provides a method of forming a nuclear fuel pellet of a uranium containing fuel alternative to UO.sub.2, with the steps of obtaining a fuel form in a powdered state; coating the fuel form in a powdered state with at least one layer of a material; and sintering the powdered fuel form into a fuel pellet. Also provided is a sintered nuclear fuel pellet of a uranium containing fuel alternative to UO.sub.2, wherein the pellet is made from particles of fuel, wherein the particles of fuel are particles of a uranium containing moiety, and wherein the fuel particles are coated with at least one layer between about 1 nm to about 4 nm thick of a material using atomic layer deposition, and wherein the at least one layer of the material substantially surrounds each interfacial grain barrier after the powdered fuel form has been sintered.

  11. 40 CFR 192.33 - Corrective action programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...

  12. 40 CFR 192.33 - Corrective action programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...

  13. Comparative evaluation of low cost materials as constructed wetland filling media

    NASA Astrophysics Data System (ADS)

    Pinho, Henrique J. O.; Vaz, Mafalda M.; Mateus, Dina M. R.

    2017-11-01

    Three waste materials from civil construction activities were assessed as low cost alternative filling materials used in Constructed Wetlands (CW). CW are green processes for wastewater treatment, whose design includes an appropriate selection of vegetation and filling material. The sustainability of such processes may be incremented using recovered wastes as filling materials. The abilities of the materials to support plant growth and to contribute to pollutants removal from wastewater were assessed and compared to expanded clay, a filling usually used in CW design. Statistical analysis, using one-way ANOVA and Welch's ANOVA, demonstrate that limestone fragments are a better choice of filling material than brick fragments and basalt gravel.

  14. Alternative Anodes for the Electrolytic Reduction of Uranium Dioxide

    NASA Astrophysics Data System (ADS)

    Merwin, Augustus

    Reprocessing of spent nuclear fuel is an essential step in closing the nuclear fuel cycle. In order to consume current stockpiles, ceramic uranium dioxide spent nuclear fuel will be subjected to an electrolytic reduction process. The current reduction process employs a platinum anode and a stainless steel alloy 316 cathode in a molten salt bath consisting of LiCl-2wt% Li 2O and occurs at 700°C. A major shortcoming of the existing process is the degradation of the platinum anode under the severely oxidizing conditions encountered during electrolytic reduction. This work investigates alternative anode materials for the electrolytic reduction of uranium oxide. The high temperature and extreme oxidizing conditions encountered in these studies necessitated a unique set of design constraints on the system. Thus, a customized experimental apparatus was designed and constructed. The electrochemical experiments were performed in an electrochemical reactor placed inside a furnace. This entire setup was housed inside a glove box, in order to maintain an inert atmosphere. This study investigates alternative anode materials through accelerated corrosion testing. Surface morphology was studied using scanning electron microscopy. Surface chemistry was characterized using energy dispersive spectroscopy and Raman spectroscopy. Electrochemical behavior of candidate materials was evaluated using potentiodynamic polarization characteristics. After narrowing the number of candidate electrode materials, ferrous stainless steel alloy 316, nickel based Inconel 718 and elemental tungsten were chosen for further investigation. Of these materials only tungsten was found to be sufficiently stable at the anodic potential required for electrolysis of uranium dioxide in molten salt. The tungsten anode and stainless steel alloy 316 cathode electrode system was studied at the required reduction potential for UO2 with varying lithium oxide concentrations. Electrochemical impedance spectroscopy showed mixed (kinetic and diffusion) control and an overall low impedance due to extreme corrosion. It was observed that tungsten is sufficiently stable in LiCl - 2wt% Li 2O at 700°C at the required anodic potential for the reduction of uranium oxide. This study identifies tungsten to be a superior anode material to platinum for the electrolytic reduction of uranium oxide, both in terms of superior corrosion behavior and reduced cost, and thus recommends that tungsten be further investigated as an alternative anode for the electrolytic reduction of uranium dioxide.

  15. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Zhang, Wenzheng; Wu, Kai; Li, Shanpeng; Peng, Ping'an; Qin, Yan

    2010-09-01

    The oil source rocks of the Chang 7 member of the Yanchang Formation in the Erdos Basin were deposited during maximum lake extension during the Late Triassic and show a remarkable positive uranium anomaly, with an average uranium content as high as 51.1 μg/g. Uranium is enriched together with organic matter and elements such as Fe, S, Cu, V and Mo in the rocks. The detailed biological markers determined in the Chang 7 member indicate that the lake water column was oxidizing during deposition of the Chang 7 member. However, redox indicators for sediments such as S 2- content, V/Sc and V/(V + Ni) ratios demonstrate that it was a typical anoxic diagenetic setting. The contrasted redox conditions between the water column and the sediment with a very high content of organic matter provided favorable physical and chemical conditions for syngenetic uranium enrichment in the oil source rocks of the Chang 7 member. Possible uranium sources may be the extensive U-rich volcanic ash that resulted from contemporaneous volcanic eruption and uranium material transported by hydrothermal conduits into the basin. The uranium from terrestrial clastics was unlike because uranium concentration was not higher in the margin area of basin where the terrestrial material input was high. As indicated by correlative analysis, the oil source rocks of the Chang 7 member show high gamma-ray values for radioactive well log data that reflect a positive uranium anomaly and are characterized by high resistance, low electric potential and low density. As a result, well log data can be used to identify positive uranium anomalies and spatial distribution of the oil source rocks in the Erdos Basin. The estimation of the total uranium reserves in the Chang 7 member attain 0.8 × 10 8 t.

  16. First-Principles Integrated Adsorption Modeling for Selective Capture of Uranium from Seawater by Polyamidoxime Sorbent Materials

    DOE PAGES

    Ladshaw, Austin P.; Ivanov, Alexander S.; Das, Sadananda; ...

    2018-03-27

    Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material’s relatively poor selectivity of uranium over its main competitormore » vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Furthermore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.« less

  17. First-Principles Integrated Adsorption Modeling for Selective Capture of Uranium from Seawater by Polyamidoxime Sorbent Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladshaw, Austin P.; Ivanov, Alexander S.; Das, Sadananda

    Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material’s relatively poor selectivity of uranium over its main competitormore » vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Furthermore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.« less

  18. A graphene oxide/amidoxime hydrogel for enhanced uranium capture

    PubMed Central

    Wang, Feihong; Li, Hongpeng; Liu, Qi; Li, Zhanshuang; Li, Rumin; Zhang, Hongsen; Liu, Lianhe; Emelchenko, G. A.; Wang, Jun

    2016-01-01

    The efficient development of selective materials for the recovery of uranium from nuclear waste and seawater is necessary for their potential application in nuclear fuel and the mitigation of nuclear pollution. In this work, a graphene oxide/amidoxime hydrogel (AGH) exhibits a promising adsorption performance for uranium from various aqueous solutions, including simulated seawater. We show high adsorption capacities (Qm = 398.4 mg g−1) and high % removals at ppm or ppb levels in aqueous solutions for uranium species. In the presence of high concentrations of competitive ions such as Mg2+, Ca2+, Ba2+ and Sr2+, AGH displays an enhanced selectivity for uranium. For low uranium concentrations in simulated seawater, AGH binds uranium efficiently and selectively. The results presented here reveal that the AGH is a potential adsorbent for remediating nuclear industrial effluent and adsorbing uranium from seawater. PMID:26758649

  19. Nuclear energy in Europe: uranium flow modeling and fuel cycle scenario trade-offs from a sustainability perspective.

    PubMed

    Tendall, Danielle M; Binder, Claudia R

    2011-03-15

    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.

  20. The aqueous geochemistry of uranium in a drainage containing uraniferous organic-rich sediments, Lake Tahoe area, Nevada, USA

    USGS Publications Warehouse

    Zielinski, R.A.; Otton, J.K.; Wanty, R.B.; Pierson, C.T.

    1988-01-01

    Anomalously uraniferous waters occur in a small (4.2 km2) drainage in the west-central Carson Range, Nevada, on the eastern side of Lake Tahoe. The waters transport uranium from local U-rich soils and bedrock to organic-rich valley-fill sediments where it is concentrated, but weakly bound. The dissolved U and the U that is potentially available from coexisting sediments pose a threat to the quality of drinking water that is taken from the drainage. The U concentration in samples of 6 stream, 11 spring and 7 near-surface waters ranged from 0.1 V). Possible precipitation of U(IV) minerals is predicted under the more reducing conditions that are particularly likely in near-surface waters, but the inhibitory effects of sluggish kinetics or organic complexing are not considered. These combined results suggest that a process such as adsorption or ion exchange, rather than mineral saturation, is the most probable mechanism for uranium fixation in the sediments. -Authors

  1. PRODUCTION OF URANIUM AND THORIUM COMPOUNDS

    DOEpatents

    Arden, T.V.; Burstall, F.H.; Linstead, R.P.; Wells, R.A.

    1955-12-27

    Compounds of Th and U are extracted with an organic solvent in the presence of an adsorbent substance which has greater retentivity for impurities present than for the uranium and/or thorium. The preferred adsorbent material is noted as being cellulose. The uranium and thoriumcontaining substances treated are preferably in the form of dissolved nitrates, and the preferred organic solvent is diethyl ether.

  2. Germanium and uranium in coalified wood from Upper Devonian black shale

    USGS Publications Warehouse

    Breger, Irving A.; Schopf, James M.

    1954-01-01

    Microscopic study of black, vitreous, carbonaceous material occurring in the Chattanooga shale in Tennessee and in the Cleveland member of the Ohio shale in Ohio has revealed coalified woody plant tissue. Some samples have shown sufficient detail to be identified with the genus Callixylon. Similar material has been reported in the literature as "bituminous" or "asphaltic" stringers. Spectrographic analyses of the ash from the coalified wood have shown unusually high percentages of germanium, uranium, vanadium, and nickel. The inverse relationship between uranium and germanium in the ash and the ash content of various samples shows an association of these elements with the organic constituents of the coal. On the basis of geochemical considerations, it seems most probable that the wood or coalified wood was germanium-bearing at the time logs or woody fragments were floated into the basins of deposition of the Chattanooga shale and the Cleveland member of the Ohio shale. Once within the marine environment, the material probably absorbed uranium with the formation of organo-uranium compounds such as have been found to exist in coals. It is suggested that a more systematic search for germaniferous coals in the vicinity of the Chattanooga shale and the Cleveland member of the Ohio shale might be rewarding.

  3. Preparation, certification and validation of a stable solid spike of uranium and plutonium coated with a cellulose derivative for the measurement of uranium and plutonium content in dissolved nuclear fuel by isotope dilution mass spectrometry.

    PubMed

    Surugaya, Naoki; Hiyama, Toshiaki; Verbruggen, André; Wellum, Roger

    2008-02-01

    A stable solid spike for the measurement of uranium and plutonium content in nitric acid solutions of spent nuclear fuel by isotope dilution mass spectrometry has been prepared at the European Commission Institute for Reference Materials and Measurements in Belgium. The spike contains about 50 mg of uranium with a 19.838% (235)U enrichment and 2 mg of plutonium with a 97.766% (239)Pu abundance in each individual ampoule. The dried materials were covered with a thin film of cellulose acetate butyrate as a protective organic stabilizer to resist shocks encountered during transportation and to eliminate flaking-off during long-term storage. It was found that the cellulose acetate butyrate has good characteristics, maintaining a thin film for a long time, but readily dissolving on heating with nitric acid solution. The solid spike containing cellulose acetate butyrate was certified as a reference material with certified quantities: (235)U and (239)Pu amounts and uranium and plutonium amount ratios, and was validated by analyzing spent fuel dissolver solutions of the Tokai reprocessing plant in Japan. This paper describes the preparation, certification and validation of the solid spike coated with a cellulose derivative.

  4. Oxygen potential of uranium--plutonium oxide as determined by controlled- atmosphere thermogravimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Gerald C.

    1975-10-01

    The oxygen-to-metal atom ratio, or O/M, of solid solution uranium- plutonium oxide reactor fuel is a measure of the concentration of crystal defects in the oxide which affect many fuel properties, particularly, fuel oxygen potential. Fabrication of a high-temperature oxygen electrode, employing an electro-active tip of oxygen-deficient solid-state electrolyte, intended to confirm gaseous oxygen potentials is described. Uranium oxide and plutonium oxide O/M reference materials were prepared by in situ oxidation of high purity metals in the thermobalance. A solid solution uranium-plutonium oxide O/M reference material was prepared by alloying the uranium and plutonium metals in a yttrium oxide cruciblemore » at 1200°C and oxidizing with moist He at 250°C. The individual and solid solution oxides were isothermally equilibrated with controlled oxygen potentials between 800 and 1300°C and the equilibrated O/ M ratios calculated with corrections for impurities and buoyancy effects. Use of a reference oxygen potential of -100 kcal/mol to produce an O/M of 2.000 is confirmed by these results. However, because of the lengthy equilibration times required for all oxides, use of the O/M reference materials rather than a reference oxygen potential is recommended for O/M analysis methods calibrations.« less

  5. A literature review of interaction of oxidized uranium species and uranium complexes with soluble organic matter

    USGS Publications Warehouse

    Jennings, Joan K.; Leventhal, J.S.

    1978-01-01

    Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.

  6. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, A.

    1985-10-25

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  7. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  8. High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1979-01-01

    An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.

  9. Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein

    DOEpatents

    Sease, J.D.; Harrington, F.E.

    1973-12-11

    Elongated single- and multi-region fuel elements are prepared by replacing within a cladding container a coarse fraction of fuel material which includes plutonium and uranium in the appropriate regions of the fuel element and then infiltrating with vibration a fine-sized fraction of uranium-containing microspheres throughout all interstices in the coarse material in a single loading. The fine, rigid material defines a thin annular layer between the coarse fraction and the cladding to reduce adverse mechanical and chemical interactions. (Official Gazette)

  10. Uranium daughter growth must not be neglected when adjusting plutonium materials for assay and isotopic contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, S.F.; Spall, W.D.; Abernathey, R.M.

    1976-11-01

    Relationships are provided to compute the decreasing plutonium content and changing isotopic distribution of plutonium materials for the radioactive decay of /sup 238/Pu, /sup 239/Pu, /sup 240/Pu and /sup 242/Pu to long-lived uranium daughters and of /sup 241/Pu to /sup 241/Am. This computation is important to the use of plutonium reference materials to calibrate destructive and nondestructive methods for assay and isotopic measurements, as well as to accountability inventory calculations.

  11. Mobilization of radionuclides from uranium mill tailings and related waste materials in anaerobic environments

    USGS Publications Warehouse

    Landa, E.R.

    2003-01-01

    Specific extraction studies in our laboratory have shown that iron and manganese oxide- and alkaline earth sulfate minerals are important hosts of radium in uranium mill tailings. Iron- and sulfate-reducing bacteria may enhance the release of radium (and its analog barium) from uranium mill tailings, oil field pipe scale [a major technologically enhanced naturally occurring radioactive material (TENORM) waste], and jarosite (a common mineral in sulfuric acid processed-tailings). These research findings are reviewed and discussed in the context of nuclear waste forms (such as barium sulfate matrices), radioactive waste management practices, and geochemical environments in the Earth's surficial and shallow subsurface regions.

  12. Uranium from German Nuclear Power Projects of the 1940s— A Nuclear Forensic Investigation

    PubMed Central

    Mayer, Klaus; Wallenius, Maria; Lützenkirchen, Klaus; Horta, Joan; Nicholl, Adrian; Rasmussen, Gert; van Belle, Pieter; Varga, Zsolt; Buda, Razvan; Erdmann, Nicole; Kratz, Jens-Volker; Trautmann, Norbert; Fifield, L Keith; Tims, Stephen G; Fröhlich, Michaela B; Steier, Peter

    2015-01-01

    Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel.3b,d, 4 Through measurement of the 230Th/234U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the 87Sr/86Sr ratio were measured. The results provide evidence that the uranium was mined in the Czech Republic. Trace amounts of 236U and 239Pu were detected at the level of their natural abundance, which indicates that the uranium fuel was not exposed to any major neutron fluence. PMID:26501922

  13. Colorimetric detection of uranium in water

    DOEpatents

    DeVol, Timothy A [Clemson, SC; Hixon, Amy E [Piedmont, SC; DiPrete, David P [Evans, GA

    2012-03-13

    Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

  14. PHYSICAL BENEFICATION OF LOW-GRADE URANIUM ORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, J.N.

    1958-07-30

    Investigations are presented of methods for the physi cal beneficiation of low-grade and other uranium ores. The investlgations which have been in progress since September 1952 cover work done on a variety of natural ores, as well as a certain amount of basic research on mixtures of synthetic or high-grade natural uranium minerais with various gangues. Methods of beneficlation investigated include flotation, wet and dry attroftioning, magnetic separation. electresiatie separation, and misceilaneous minor methods. A rapid, routine method oicolorimeiric determlnation of uranium was also developed in order to facilitaie analyzing of low-grade materials for uranium. This proeedure is presenied inmore » condensed form. (auth)« less

  15. Method of fabricating a uranium-bearing foil

    DOEpatents

    Gooch, Jackie G [Seymour, TN; DeMint, Amy L [Kingston, TN

    2012-04-24

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  16. Effect of tank geometry on its average performance

    NASA Astrophysics Data System (ADS)

    Orlov, Aleksey A.; Tsimbalyuk, Alexandr F.; Malyugin, Roman V.; Leontieva, Daria A.; Kotelnikova, Alexandra A.

    2018-03-01

    The mathematical model of non-stationary filling of vertical submerged tanks with gaseous uranium hexafluoride is presented in the paper. There are calculations of the average productivity, heat exchange area, and filling time of various volumes tanks with smooth inner walls depending on their "height : radius" ratio as well as the average productivity, degree, and filling time of horizontal ribbing tank with volume 6.10-2 m3 with change central hole diameter of the ribs. It has been shown that the growth of "height / radius" ratio in tanks with smooth inner walls up to the limiting values allows significantly increasing tank average productivity and reducing its filling time. Growth of H/R ratio of tank with volume 1.0 m3 to the limiting values (in comparison with the standard tank having H/R equal 3.49) augments tank productivity by 23.5 % and the heat exchange area by 20%. Besides, we have demonstrated that maximum average productivity and a minimum filling time are reached for the tank with volume 6.10-2 m3 having central hole diameter of horizontal ribs 6.4.10-2 m.

  17. Potential impact of seawater uranium extraction on marine life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jiyeon; Jeters, Robert T.; Kuo, Li-Jung

    A variety of adsorbent materials have been developed to extract uranium from seawater as an alternative traditional terrestrial mining. A large-scale deployment of these adsorbents would be necessary to recover useful quantities of uranium and this raises a number of concerns regarding potential impacts on the surrounding marine environment. Two concerns are whether or not the adsorbent materials are toxic and any potentially harmful effects that may result from depleting uranium or vanadium (also highly concentrated by the adsorbents) from the local environment. To test the potential toxicity of the adsorbent with or without bound metals, Microtox assays were usedmore » to test both direct contact toxicity and the toxicity of any leachate in the seawater. The Microtox assay was chosen because it the detection of non-specific mechanisms of toxicity. Toxicity was not observed with leachates from any of 68 adsorbent materials that were tested, but direct contact with some adsorbents at very high adsorbent con-centrations exhibited toxicity. These concentrations are, however, very unlikely to be seen in the actual marine deployment. Adsor-bents that accumulated uranium and trace metals were also tested for toxicity, and no toxic effect was observed. Biofouling on the adsorbents and in columns or flumes containing the adsorbents also indicates that the adsorbents are not toxic and that there may not be an obvious deleterious effect resulting from removing uranium and vanadium from seawater. An extensive literature search was also performed to examine the potential impact of uranium and vanadium extraction from seawater on marine life using the Pacific Northwest National Laboratory’s (PNNL’s) document analysis tool, IN-SPIRE™. Although other potential environmental effects must also be considered, results from both the Microtox assay and the literature search provide preliminary evidence that uranium extraction from seawater could be performed with minimal impact on marine fauna.« less

  18. Deploying Nuclear Detection Systems: A Proposed Strategy for Combating Nuclear Terrorism

    DTIC Science & Technology

    2007-07-01

    lower cost than other gamma radiation detectors (if increased count rate is all one is looking for). Low cost makes plastic scintillation detectors...material, particularly enriched uranium and plutonium, the basic fuel for nuclear bombs. • Measures to strengthen international institutions to... uranium to specifications required for a nuclear weapon.1 This illicit shipment of centrifuges was part of an international nuclear materials

  19. Production and Evaluation of 236gNp and Reference Materials for Naturally Occurring Radioactive Materials

    NASA Astrophysics Data System (ADS)

    Larijani, Cyrus Kouroush

    This thesis is based on the development of a radiochemical separation scheme capable of separating both 236gNp and 236Pu from a uranium target of natural isotopic composition ( 1 g uranium) and 200 MBq of fission decay products. The isobaric distribution of fission residues produced following the bombardment of a natural uranium target with a beam of 25 MeV protons has been evaluated. Decay analysis of thirteen isobarically distinct fission residues were carried out using high-resolution gamma-ray spectrometry at the UK National Physical Laboratory. Stoichiometric abundances were calculated via the determination of absolute activity concentrations associated with the longest-lived members of each isobaric chain. This technique was validated by computational modelling of likely sequential decay processes through an isobaric decay chain. The results were largely in agreement with previously published values for neutron bombardments on natural uranium at energies of 14 MeV. Higher relative yields of products with mass numbers A 110-130 were found, consistent with the increasing yield of these radionuclides as the bombarding energy is increased. Using literature values for the production cross-section for fusion of protons with uranium targets, it is estimated that an upper limit of approximately 250 Bq of activity from the 236Np ground state was produced in this experiment. Using a radiochemical separation scheme, Np and Pu fractions were separated from the produced fission decay products, with analyses of the target-based final reaction products made using Inductively Couple Plasma Mass Spectrometry (ICP-MS) and high-resolution alpha and gamma-ray spectrometry. In a separate research theme, reliable measurement of Naturally Occurring Radioactive Materials is of significance in order to comply with environmental regulations and for radiological protection purposes. The thesis describes the standardisation of three reference materials, namely Sand, Tuff and TiO2 which can serve as quality control materials to achieve traceability, method validation and instrument calibration. The sample preparation, material characterization via gamma, alpha and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the assignment of values for both the 4n Thorium and 4n + 2 Uranium decay series are presented.

  20. Pyrochlore-rich titanate ceramics for the immobilization of plutonium: redox effects on phase equilibria in cerium- and thorium- substituted analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J; Ebbinghaus, B

    2000-05-25

    Three compositions representing plutonium-free analogs of a proposed Ca-Ti-Gd-Hf-U-PU oxide ceramic for the immobilization of plutonium were equilibrated at 1 atm, 1350 C over a range of oxygen fugacities between air and that equivalent to the iron-wuestite buffer. The cerium analog replaces Pu on a mole-per-mole basic with Ce; the thorium analog replaces Pu with Th. A third material has 10 wt% Al{sub 2}O{sub 3} added to the cerium analog to encourage the formation of a Hf-analog of, CaHfTi{sub 2}O{sub 7}, zirconolite, which is referred to as hafnolite. The predominant phase produced in each formulation under all conditions is pyrochlore,more » A{sub 2}T{sub 2}O{sub 7}, where the T site is filled by Ti, and Ca, the lanthanides, Hf, U and Pu are accommodated on the A-site. Other lanthanide and uranium-bearing phases encountered include brannerite (UTi{sub 2}O{sub 6}), hafnolite (CaHfTi{sub 2}O{sub 7}), perovskite (CaTiO{sub 3}) and a calcium-lanthanide aluminotitanate with nominal stoichiometry (Ca,Ln)Ti{sub 2}Al{sub 9}O{sub 19}, where Ln is a lanthanide. The phase compositions show progressive shifts with decreasing oxygen fugacity. All of the phases observed have previously been identified in titanate-based high-level radioactive waste ceramics and demonstrate the flexibility of these ceramics to variations in processing parameters. The main variation is an increase in the uranium concentrations of pyrochlore and brannerite which must be accommodated by variations in modal abundance. Pyrochlore compositions are consistent with existing spectroscopic data suggesting that uranium is predominantly pentavalent in samples synthesized in air. A simple model based on ideal stoichiometry suggests the U{sup +4}/{Sigma}U varies linearly with log fO{sub 2} and that all of the uranium is quadravalent at the iron-wuestite buffer.« less

  1. EVALUATION OF AUSTRALIAN RUM JUNGLE URANIUM CONCENTRATE FOR USE AS NLO REFINERY FEED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collopy, T.J.; Huntington, C.W.; Blum, J.F.

    1956-01-20

    A laboratory evaluation of Australian Rum Jungle uranium concentrate showed that the uracium can be satisfactorily extracted by 33.5% TBP-kerosene from an aqueous acid slurry of the material, and that impurities in the aqueous uranyl nitrate product obtained by re-extraetion from the organic phase approach NL0 tolerance specifications. The uranium values in the organic product were not completely re-extracted at room temperatare (l0th stage organic, 1.6 g/l U); however, it was assumed that reextraction will be complete under pulse column conditions (150 deg F). The results of the Pilot Plant evaluation of Rum Jungle uranium concentrate (Lot No. 1) indicatedmore » that this material can be processed employing NLO refinery conditions. The aqueous uranyl nitrate product from the test met all impurity specifications except those for manganese and nickel. The high chloride content of this lot of concentrate will mske blending necessary in order to meet NLO feed material specifications. The blending will alan lessen the tendencies toward metallic contamination of the OK liquor observed in these tests. (auth)« less

  2. Sandstone type uranium deposits in the Ordos Basin, Northwest China: A case study and an overview

    NASA Astrophysics Data System (ADS)

    Akhtar, Shamim; Yang, Xiaoyong; Pirajno, Franco

    2017-09-01

    This paper provides a comprehensive review on studies of sandstone type uranium deposits in the Ordos Basin, Northwest China. As the second largest sedimentary basin, the Ordos Basin has great potential for targeting sandstone type U mineralization. The newly found and explored Dongsheng and Diantou sandstone type uranium deposits are hosted in the Middle Jurassic Zhilou Formation. A large number of investigations have been conducted to trace the source rock compositions and relationship between lithic subarkose sandstone host rock and uranium mineralization. An optical microscopy study reveals two types of alteration associated with the U mineralization: chloritization and sericitization. Some unusual mineral structures, with compositional similarity to coffinite, have been identified in a secondary pyrite by SEM These mineral phases are proposed to be of bacterial origin, following high resolution mapping of uranium minerals and trace element determinations in situ. Moreover, geochemical studies of REE and trace elements constrained the mechanism of uranium enrichment, displaying LREE enrichment relative to HREE. Trace elements such as Pb, Mo and Ba have a direct relationship with uranium enrichment and can be used as index for mineralization. The source of uranium ore forming fluids and related geological processes have been studied using H, O and C isotope systematics of fluid inclusions in quartz veins and the calcite cement of sandstone rocks hosting U mineralization. Both H and O isotopic compositions of fluid inclusions reveal that ore forming fluids are a mixture of meteoric water and magmatic water. The C and S isotopes of the cementing material of sandstone suggest organic origin and bacterial sulfate reduction (BSR), providing an important clue for U mineralization. Discussion of the ore genesis shows that the greenish gray sandstone plays a crucial role during processes leading to uranium mineralization. Consequently, an oxidation-reduction model for sandstone-type uranium deposit is proposed, which can elucidate the source of uranium in the deposits of the Ordos Basin, based on the role of organic materials and sulfate reducing bacteria. We discuss the mechanism of uranium deposition responsible for the genesis of these large sandstone type uranium deposits in this unique sedimentary basin.

  3. TECHNICAL REPORT ON TECHNOLOGICALLY ENHANCED NATURALLY OCCURRING RADIOACTIVE MATERIALS FROM URANIUM MINING, VOLUME II: INVESTIGATION OF POTENTIAL HEALTH, GEOGRAPHIC, AND ENVIRONMENTAL ISSUES OF ABANDONED URANIUM MINES

    EPA Science Inventory

    Volume II investigates the potential radiogenic risks from abandoned uranium mines and evaluates which may pose the greatest hazards to members of the public and to the environment. The intent of this report is to identify who may be most likely to be exposed to wastes at small a...

  4. 10 CFR Appendix F to Part 110 - Illustrative List of Laser-Based Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...

  5. 10 CFR Appendix F to Part 110 - Illustrative List of Laser-Based Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...

  6. 10 CFR Appendix F to Part 110 - Illustrative List of Laser-Based Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...

  7. 10 CFR Appendix F to Part 110 - Illustrative List of Laser-Based Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...

  8. 10 CFR Appendix F to Part 110 - Illustrative List of Laser-Based Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...

  9. Soft-Templating Synthesis of Mesoporous Silica-Based Materials for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Gunathilake, Chamila Asanka

    Dissertation research is mainly focus on: 1) the development of mesoporous silica materials with organic pendant and bridging groups (isocyanurate, amidoxime, benzene) and incorporated metal (aluminum, zirconium, calcium, and magnesium) species for high temperature carbon dioxide (CO2) sorption, 2) phosphorous-hydroxy functionalized mesoporous silica materials for water treatment, and 3) amidoxime-modified ordered mesoporous silica materials for uranium sorption under seawater conditions. The goal is to design composite materials for environmental applications with desired porosity, surface area, and functionality by selecting proper metal oxide precursors, organosilanes, tetraethylorthosilicate, (TEOS), and block copolymer templates and by adjusting synthesis conditions. The first part of dissertation presents experimental studies on the merge of aluminum, zirconium, calcium, and magnesium oxides with mesoporous silica materials containing organic pendant (amidoxime) and bridging groups (isocyanurate, benzene) to obtain composite sorbents for CO2 sorption at ambient (0-25 °C) and elevated (60-120 °C) temperatures. These studies indicate that the aforementioned composite sorbents are fairly good for CO2 capture at 25 °C via physisorption mechanism and show a remarkably high affinity toward CO2 chemisorption at 60-120 °C. The second part of dissertation is devoted to silica-based materials with organic functionalities for removal of heavy metal ions such as lead from contaminated water and for recovery of metal ions such as uranium from seawater. First, ordered mesoporous organosilica (OMO) materials with diethylphosphatoethyl and hydroxyphosphatoethyl surface groups were examined for Pb2+ adsorption and showed unprecedented adsorption capacities up to 272 mg/g and 202 mg/g, respectively However, the amidoxime-modified OMO materials were explored for uranium extraction under seawater conditions and showed remarkable capacities reaching 57 mg of uranium per gram of adsorbent.

  10. Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Dolan; M. J. Marcath; M. Flaska

    2014-02-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.

  11. 4. VIEW OF ROOM 103 IN 1980. SIX OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF ROOM 103 IN 1980. SIX OF THE NINE URANIUM NITRATE STORAGE TANKS ARE SHOWN. HIGHLY ENRICHED URANIUM WAS INTRODUCED INTO THE BUILDING IN THE SUMMER OF 1965 AND THE FIRST EXPERIMENTS WERE PERFORMED IN SEPTEMBER OF 1965. EXPERIMENTS WERE PERFORMED ON ENRICHED URANIUM METAL AND SOLUTION, PLUTONIUM METAL, LOW ENRICHED URANIUM OXIDE, AND SEVERAL SPECIAL APPLICATIONS. AFTER 1983, EXPERIMENTS WERE CONDUCTED PRIMARILY WITH URANYL NITRATE SOLUTIONS, AND DID NOT INVOLVE SOLID MATERIALS. - Rocky Flats Plant, Critical Mass Laboratory, Intersection of Central Avenue & 86 Drive, Golden, Jefferson County, CO

  12. NUCLEAR REACTOR FUEL ELEMENT AND METHOD OF MANUFACTURE

    DOEpatents

    Brooks, H.

    1960-04-26

    A description is given for a fuel element comprising a body of uranium metal or an uranium compound dispersed in a matrix material made from magnesium, calcium, or barium and a stainless steel jacket enclosing the body.

  13. Theoretical analysis of uranium-doped thorium dioxide: Introduction of a thoria force field with explicit polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shields, A. E.; Ruiz Hernandez, S. E.; Leeuw, N. H. de, E-mail: DeLeeuwN@Cardiff.ac.uk

    2015-08-15

    Thorium dioxide is used industrially in high temperature applications, but more insight is needed into the behavior of the material as part of a mixed-oxide (MOX) nuclear fuel, incorporating uranium. We have developed a new interatomic potential model including polarizability via a shell model, and commensurate with a prominent existing UO{sub 2} potential, to conduct configurational analyses and to investigate the thermophysical properties of uranium-doped ThO{sub 2}. Using the GULP and Site Occupancy Disorder (SOD) computational codes, we have analyzed the distribution of low concentrations of uranium in the bulk material, where we have not observed the formation of uraniummore » clusters or the dominance of a single preferred configuration. We have calculated thermophysical properties of pure thorium dioxide and Th{sub (1−x)}U{sub x}O{sub 2} which generated values in very good agreement with experimental data.« less

  14. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  15. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt.

    PubMed

    Amin, Maisa M; Elaassy, Ibrahim E; El-Feky, Mohamed G; Sallam, Abdel Sattar M; Talaat, Mona S; Kawady, Nilly A

    2014-08-01

    Bioleaching, like Biotechnology uses microorganisms to extract metals from their ore materials, whereas microbial activity has an appreciable effect on the dissolution of toxic metals and radionuclides. Bioleaching of uranium was carried out with isolated fungi from uraniferous sedimentary rocks from Southwestern Sinai, Egypt. Eight fungal species were isolated from different grades of uraniferous samples. The bio-dissolution experiments showed that Aspergillus niger and Aspergillus terreus exhibited the highest leaching efficiencies of uranium from the studied samples. Through monitoring the bio-dissolution process, the uranium grade and mineralogic constituents of the ore material proved to play an important role in the bioleaching process. The tested samples asserted that the optimum conditions of uranium leaching are: 7 days incubation time, 3% pulp density, 30 °C incubation temperature and pH 3. Both fungi produced the organic acids, namely; oxalic, acetic, citric, formic, malonic, galic and ascorbic in the culture filtrate, indicating an important role in the bioleaching processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Uranium from German Nuclear Power Projects of the 1940s--A Nuclear Forensic Investigation.

    PubMed

    Mayer, Klaus; Wallenius, Maria; Lützenkirchen, Klaus; Horta, Joan; Nicholl, Adrian; Rasmussen, Gert; van Belle, Pieter; Varga, Zsolt; Buda, Razvan; Erdmann, Nicole; Kratz, Jens-Volker; Trautmann, Norbert; Fifield, L Keith; Tims, Stephen G; Fröhlich, Michaela B; Steier, Peter

    2015-11-02

    Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel. Through measurement of the (230)Th/(234)U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the (87)Sr/(86)Sr ratio were measured. The results provide evidence that the uranium was mined in the Czech Republic. Trace amounts of (236)U and (239)Pu were detected at the level of their natural abundance, which indicates that the uranium fuel was not exposed to any major neutron fluence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    USGS Publications Warehouse

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  18. Apparatus to recover tritium from tritiated molecules

    DOEpatents

    Swansiger, William A.

    1988-01-01

    An apparatus for recovering tritium from tritiated compounds is provided, including a preheater for heating tritiated water and other co-injected tritiated compounds to temperatures of about 600.degree. C. and a reactor charged with a mixture of uranium and uranium dioxide for receiving the preheated mixture. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide.

  19. Developing uranium dicarbide-graphite porous materials for the SPES project

    NASA Astrophysics Data System (ADS)

    Biasetto, L.; Zanonato, P.; Carturan, S.; Di Bernardo, P.; Colombo, P.; Andrighetto, A.; Prete, G.

    2010-09-01

    Uranium carbide dispersed in graphite was produced under vacuum by means of carbothermic reduction of different uranium oxides (UO 2, U 3O 8 and UO 3), using graphite as the source of carbon. The thermal process was monitored by mass spectrometry and the gas evolution confirmed the reduction of the U 3O 8 and UO 3 oxides to UO 2 before the carbothermic reaction, that started to occur at T > 1000 °C. XRD analysis confirmed the formation of α-UC 2 and of a minor amount of UC. The morphology of the produced uranium carbide was not affected by the oxides employed as the source of uranium.

  20. In Situ NDA Conformation Measurements Performed at Auxiliary Charcoal Bed and Other Main Charcoal Beds After Uranium Removal from Molten Salt Reactor Experiment ACB at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haghighi, M. H.; Kring, C. T.; McGehee, J. T.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). The MSRE was run by Oak Ridge National Laboratory (ORNL) to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503. The reactor was operated from June 1965 tomore » December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed to cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. Beginning in 1987, it was discovered that gaseous uranium (U-233/U-232) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 had been generated when radiolysis in the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine. Some of the free fluorine combined with uranium fluorides (UF4) in the salt to produce UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE. One of the systems that UF6 migrated into due to this process was the offgas system which is vented to the MSRE main charcoal beds and MSRE auxiliary charcoal bed (ACB). Recently, the majority of the uranium laden-charcoal material residing within the ACB was safely and successfully removed using the uranium deposit removal system and equipment. After removal a series of NDA measurements was performed to determine the amount of uranium material remaining in the ACB, the amount of uranium material removed from the ACB, and the amount of uranium material remaining in the uranium removal equipment due to removal activities.« less

  1. The synthesis, characterization and application of iron oxide nanocrystals in magnetic separations for arsenic and uranium removal

    NASA Astrophysics Data System (ADS)

    Mayo, John Thomas

    Arsenic and uranium in the environment are hazardous to human health and require better methods for detection and remediation. Nanocrystalline iron oxides offer a number of advantages as sorbents for water purification and environmental remediation. First, highly uniform and crystalline iron oxide nanocrystals (nMAG) were prepared using thermal decomposition of iron salts in organic solutions; for the applications of interest in this thesis, a central challenge was the adaptation of these conventional synthetic methods to the needs of low infrastructure and economically disadvantaged settings. We show here that it is possible to form highly uniform and magnetically responsive nanomaterials using starting reagents and equipment that are readily available and economical. The products of this approach, termed the 'Kitchen Synthesis', are of comparable quality and effectiveness to laboratory materials. The narrow size distributions of the iron oxides produced in the laboratory synthesis made it possible to study the size-dependence of the magnetic separation efficiency of nanocrystals; generally as the diameter of particles increased they could be removed under lower applied magnetic fields. In this work we take advantage of this size-dependence to use magnetic separation as a tool to separate broadly distributed populations of magnetic materials. Such work makes it possible to use these materials in multiplexed separation and sensing schemes. With the synthesis and magnetic separation studies of these materials completed, it was possible to optimize their applications in water purification and environmental remediation. These materials removed both uranium and arsenic from contaminated samples, and had remarkably high sorption capacities --- up to 12 wt% for arsenic and 30 wt% for uranium. The contaminated nMAG is removed from the drinking water by either retention in a sand column, filter, or by magnetic separation. The uranium adsorption process was also utilized for the enhanced detection of uranium in environmental matrices. By relying on alpha-particle detection in well-formed and dense nMAG films, it was possible to improve soil detection of uranium by more than ten-thousand-fold. Central for this work was a detailed understanding of the chemistry at the iron oxide interface, and the role of the organic coatings in mediating the sorption process.

  2. Distribution of uranium in the Bisbee district, Cochise County, Arizona

    USGS Publications Warehouse

    Wallace, Stewart R.

    1956-01-01

    The Bisbee district has been an important source of copper for many years, and substantial amounts of lead and zinc ore and minor amounts of manganese ore have been mined during certain periods. The copper deposits occur both as low-grade disseminated ore in the Sacramento Hill stock and as massive sulfide (and secondary oxide and carbonate) replacement bodies in Paleozoic limestones that are intruded by the stock and related igneous bodies. The lead-zinc production has come almost entirely from limestone replacement bodies. The disseminated ore exhibits no anomalous radioactivity, and samples from the Lavender pit contain from 0.002 to less than 0.001 percent equivalent uranium. The limestone replacement ores are distinctly radioactive and stoping areas can be readily distinguished from from unmineralized ground on the basis of radioactivity alone. The equivalent uranium content of the copper replacement ores ranges from 0.002 to 0.014 percent and averages about 0.005 percent; the lead-zinc replacement ores average more than 0.007 percent equivalent uranium. Most of the uranium in the copper ores of the district is retained in the smelter slag of a residual concentrate; the slag contains about 0.009 percent equivalent uranium. Uranium carried off each day by acid mine drainage is roughly equal to 1 percent of that being added to the slag dump. Although the total amount of uranium in the district is large, no minable concentrations of ore-grade material are known; samples of relatively high-grade material represent only small fractions of tons at any one locality.

  3. JACKETED FUEL ELEMENT

    DOEpatents

    Wigner, E.P.; Szilard, L.; Creutz, E.C.

    1959-02-01

    These fuel elements are comprised of a homogeneous metallic uranium body completely enclosed and sealed in an aluminum cover. The uranium body and aluminum cover are bonded together by a layer of zinc located between them. The bonding layer serves to improve transfer of heat, provides an additional protection against corrosion of the uranium by the coolant, and also localizes any possible corrosion by preventing travel of corrosive material along the surface of the fuel element.

  4. Reconnaissance for radioactive materials in northeastern United States during 1952

    USGS Publications Warehouse

    McKeown, Francis A.; Klemic, Harry

    1953-01-01

    Reconnaissance for radioactive materials was made in parts of Maine, New York, New Jersey, and Pennsylvania. The primary objective was to examine the iron ore deposits and associated rocks in the Adirondack Mountains of New York and the Highlands of New Jersey. In addition, several deposits known or reported to contain radioactive minerals were examined to delimit their extent. Most of the deposits examined are not significant as possible sources of radioactive elements and the data pertaining to them are summarized in table form. Deposits that do warrant more description than can be given in table form are: Benson Mines, St. Lawrence County, N. Y.; Rutgers mine, Clinton County, N. Y.; Mineville Mines, Essex County, N. Y.l Canfield phosphate mine, Morris County, N. J.; Mullgan quarry, Hunterdon County, N. J.; and the Chestnut Hill-Marble Mountain area, Pennsylvania and New Jersey. The Old Bed in the Mineville district is the only deposit that may be economically significant. Apatite from Old Bed ore contains as much as 4.9 percent total rare earth. 0.04 percent thorium, and 0.018 percent uranium. Magnetite ore at the Rutgers mine contains radioactive zircon and apatite. Radioactivity measurements of outcrops and dump material show that the ore contains from 0.005 to 0.010 percent equivalent uranium. One sample of lean magnetite ore contains 0.006 percent equivalent uranium. Garnet-rich zones in the Benson Mines magnetite deposit contain as much as 0.017 equivalent uranium. Most of the rock and ore, however, contains about 0.005 percent equivalent uranium. Available data indicate that the garnet-rich zones are enriched in radioactive allanite. A shear zone in the Kittatinny limestone of Cambrian age at the Mulligan quarry contains uraniferous material. Radioactivity anomalies elsewhere in the quarry and in adjacent fields indicate that there may be other uraniferous shear zones. Assays of samples and measurements of outcrop radioactivity indicate that the uranium content of these zones is low; samples contain from 0.008 to 0.068 percent equivalent uranium. The anomalies, however, may indicate greater concentrations of uranium below surficial leached zones. The Chestnut Hill-Marble Mountain area contains radioactivity anomalies for about 2 miles along the strike of the contact of pre-Cambrian Pickering gneiss and Franklin limestone formations. In places this contact is injected with pegmatite, which probably was the source of the radioelements. The most favorable area for further study is at Marble Mountain, where a nearly continuous anomaly extends for about 1500 feet. Samples from part of this area contain as much as 0.044 percent equivalent uranium and 0.005 percent uranium. Radioactive hematite and florencite, in which thorium may have substituted for cerium, are the only radioactive minerals observed in the Marble Mountain area.

  5. Rapid and efficient uranium(VI) capture by phytic acid/polyaniline/FeOOH composites.

    PubMed

    Wei, Xintao; Liu, Qi; Zhang, Hongsen; Liu, Jingyuan; Chen, Rongrong; Li, Rumin; Li, Zhangshuang; Liu, Peili; Wang, Jun

    2018-02-01

    Uranium plays an indispensable role in nuclear energy, but there are limited land resources to meet the ever growing demand; therefore, a need exists to develop efficient materials for capturing uranium from water. Herein, we synthesize a promising adsorbent of phytic acid/polyaniline/FeOOH composites (PA/PANI/FeOOH) by oxidative polymerization. Phytic acid, acting asa gelator and dopant, plays an important role in the formation of polyaniline (PANI). The PA/PANI/FeOOH exhibites high adsorption capacity (q m =555.8mgg -1 , T=298K), rapid adsorption rate (within 5min), excellent selectivity and cyclic stability. In addition, the results show that the adsorption isotherm is well fitted to the Langmuir isotherm model, and the adsorption kinetics agree with a pseudo-second order model. XPS analysis indicates that the removal of uranium is mainly attributed to abundant amine and imine groups on the surface of PA/PANI/FeOOH. Importantly, the removal of uranium from low concentrations of simulated seawater is highly efficient with a removal rate exceeding 92%. From our study, superior adsorption capacities, along with a low-cost, environmentally friendly and facile synthesis, reveal PA/PANI/FeOOH asa promising material for uranium capture. Copyright © 2017. Published by Elsevier Inc.

  6. Surface Cleaning Techniques: Ultra-Trace ICP-MS Sample Preparation and Assay of HDPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overman, Nicole R.; Hoppe, Eric W.; Addleman, Raymond S.

    2013-06-01

    The world’s most sensitive radiation detection and assay systems depend upon ultra-low background (ULB) materials to reduce unwanted radiological backgrounds. Herein, we evaluate methods to clean HDPE, a material of interest to ULB systems and the means to provide rapid assay of surface and bulk contamination. ULB level material and ultra-trace level detection of actinide elements is difficult to attain, due to the introduction of contamination from sample preparation equipment such as pipette tips, sample vials, forceps, etc. and airborne particulate. To date, literature available on the cleaning of such polymeric materials and equipment for ULB applications and ultra-trace analysesmore » is limited. For these reasons, a study has been performed to identify an effective way to remove surface contamination from polymers in an effort to provide improved instrumental detection limits. Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was utilized to assess the effectiveness of a variety of leachate solutions for removal of inorganic uranium and thorium surface contamination from polymers, specifically high density polyethylene (HDPE). HDPE leaching procedures were tested to optimize contaminant removal of thorium and uranium. Calibration curves for thorium and uranium ranged from 15 ppq (fg/mL) to 1 ppt (pg/mL). Detection limits were calculated at 6 ppq for uranium and 7 ppq for thorium. Results showed the most effective leaching reagent to be clean 6 M nitric acid for 72 hour exposures. Contamination levels for uranium and thorium found in the leachate solutions were significant for ultralow level radiation detection applications.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Bliss, Mary; Farmer, Orville T.

    Ultra low-background radiation measurements are essential to several large-scale physics investigations, such as those involving neutrinoless double-beta decay, dark matter detection (such as SuperCDMS), and solar neutrino detection. There is a need for electrically and thermally insulating dielectric materials with extremely low-background radioactivity for detector construction. This need is best met with plastics. Most currently available structural plastics have milliBecquerel-per-kilogram total intrinsic radioactivity. Modern low-level detection systems require a large variety of plastics with low microBecquerel-per-kilogram levels. However, the assay of polymer materials for extremely low levels of radioactive elements, uranium and thorium in particular, presents new challenges. It ismore » only recently that any certified reference materials (CRMs) for toxic metals such as lead or cadmium in plastics have become available. However, there are no CRMs for uranium or thorium in thermoplastics. This paper discusses our assessment of the use of laser ablation (LA) for sampling and inductively coupled plasma mass spectrometry (ICP-MS) for analysis of polyethylene (PE) samples, with an emphasis on uranium determination. Using a CRM for lead in PE, we examine LA and ICP-MS parameters that determine whether the total atom efficiencies for uranium and lead are similar, and explore methods to use the lead content in a plastic as part of the process of estimating or determining the uranium content by LA-ICP-MS.« less

  8. Investigation of residual anode material after electrorefining uranium in molten chloride salt

    NASA Astrophysics Data System (ADS)

    Rose, M. A.; Williamson, M. A.; Willit, J.

    2015-12-01

    A buildup of material at uranium anodes during uranium electrorefining in molten chloride salts has been observed. Potentiodynamic testing has been conducted using a three electrode cell, with a uranium working electrode in both LiCl/KCl eutectic and LiCl each containing ∼5 mol% UCl3. The anodic current response was observed at 50° intervals between 450 °C and 650 °C in the eutectic salt. These tests revealed a buildup of material at the anode in LiCl/KCl salt, which was sampled at room temperature, and analyzed using ICP-MS, XRD and SEM techniques. Examination of the analytical data, current response curves and published phase diagrams has established that as the uranium anode dissolves, the U3+ ion concentration in the diffusion layer surrounding the electrode rises precipitously to levels, which may at low temperatures exceed the solubility limit for UCl3 or in the case of the eutectic salt for K2UCl5. The reduction in current response observed at low temperature in eutectic salt is eliminated at 650 °C, where K2UCl5 is absent due to its congruent melting and only simple concentration polarization effects are seen. In LiCl similar concentration effects are seen though significantly longer time at applied potential is required to effect a reduction in the current response as compared to the eutectic salt.

  9. Highly Enriched Uranium Metal Cylinders Surrounded by Various Reflector Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard Jones; J. Blair Briggs; Leland Monteirth

    A series of experiments was performed at Los Alamos Scientific Laboratory in 1958 to determine critical masses of cylinders of Oralloy (Oy) reflected by a number of materials. The experiments were all performed on the Comet Universal Critical Assembly Machine, and consisted of discs of highly enriched uranium (93.3 wt.% 235U) reflected by half-inch and one-inch-thick cylindrical shells of various reflector materials. The experiments were performed by members of Group N-2, particularly K. W. Gallup, G. E. Hansen, H. C. Paxton, and R. H. White. This experiment was intended to ascertain critical masses for criticality safety purposes, as well asmore » to compare neutron transport cross sections to those obtained from danger coefficient measurements with the Topsy Oralloy-Tuballoy reflected and Godiva unreflected critical assemblies. The reflector materials examined in this series of experiments are as follows: magnesium, titanium, aluminum, graphite, mild steel, nickel, copper, cobalt, molybdenum, natural uranium, tungsten, beryllium, aluminum oxide, molybdenum carbide, and polythene (polyethylene). Also included are two special configurations of composite beryllium and iron reflectors. Analyses were performed in which uncertainty associated with six different parameters was evaluated; namely, extrapolation to the uranium critical mass, uranium density, 235U enrichment, reflector density, reflector thickness, and reflector impurities. In addition to the idealizations made by the experimenters (removal of the platen and diaphragm), two simplifications were also made to the benchmark models that resulted in a small bias and additional uncertainty. First of all, since impurities in core and reflector materials are only estimated, they are not included in the benchmark models. Secondly, the room, support structure, and other possible surrounding equipment were not included in the model. Bias values that result from these two simplifications were determined and associated uncertainty in the bias values were included in the overall uncertainty in benchmark keff values. Bias values were very small, ranging from 0.0004 ?k low to 0.0007 ?k low. Overall uncertainties range from ? 0.0018 to ? 0.0030. Major contributors to the overall uncertainty include uncertainty in the extrapolation to the uranium critical mass and the uranium density. Results are summarized in Figure 1. Figure 1. Experimental, Benchmark-Model, and MCNP/KENO Calculated Results The 32 configurations described and evaluated under ICSBEP Identifier HEU-MET-FAST-084 are judged to be acceptable for use as criticality safety benchmark experiments and should be valuable integral benchmarks for nuclear data testing of the various reflector materials. Details of the benchmark models, uncertainty analyses, and final results are given in this paper.« less

  10. The Uranium from Seawater Program at the Pacific Northwest National Laboratory: Overview of Marine Testing, Adsorbent Characterization, Adsorbent Durability, Adsorbent Toxicity, and Deployment Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li-Jung; Janke, Chris J.

    The Pacific Northwest National Laboratory’s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 ± 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 ± 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage« less

  11. APPARATUS FOR SHEATHING RODS

    DOEpatents

    Ford, W.K.; Wyatt, M.; Plail, S.

    1961-08-01

    An arrangement is described for sealing a solid body of nuclear fuel, such as a uranium metal rod, into a closelyfitting thin metallic sheath with an internal atmosphere of inert gas. The sheathing process consists of subjecting the sheath, loaded with the nuclear fuel body, to the sequential operations of evacuation, gas-filling, drawing (to entrap inert gas and secure close contact between sheath and body), and sealing. (AEC)

  12. Geology and preliminary dating of the hominid-bearing sedimentary fill of the Sima de los Huesos Chamber, Cueva Mayor of the Sierra de Atapuerca, Burgos, Spain.

    PubMed

    Bischoff, J L; Fitzpatrick, J A; León, L; Arsuagà, J L; Falgueres, C; Bahain, J J; Bullen, T

    1997-01-01

    Sediments of the Sima de los Huesos vary greatly over distances of a few meters. This is typical of interior cave facies, and caused by cycles of cut and fill. Mud breccias containing human bones, grading upwards to mud containing bear bones, fill an irregular surface cut into basal marks and sands. The lack of Bedding and the chaotic abundance of fragile speleothem clasts in the fossiliferous muds suggests that the deposit was originally a subterranean pond facies, and that after emplacement of the human remains, underwent vigorous post-depositional rotation and collapse and brecciation, caused by underlying bedrock dissolution and undermining. The fossiliferous deposits are capped by flowstone and guano-bearing muds which lack large-mammal fossils. U-series and radiocarbon dating indicates the capping flowstones formed from about 68 ka to about 25 ka. U-series analyses of speleothem clasts among the human fossils indicate that all are at, or close to, isotopic equilibrium (> 350 ka). The distribution of U-series dates for 25 bear bones (154 +/- 66 ka) and for 16 human bones (148 +/- 34 ka) is similar and rather broad. Because the human bones seem to be stratigraphically older than chose of the bears, the results would indicate that most of the bones have been accumulating uranium irregularly with time. Electron spin resonance (ESR) analyses of six selected bear bones indicates dates of 189 +/- 28 ka, for which each is cordant with their corresponding U-series date (181 +/- 41 ka). Combined ESR and U-series dates for these samples yielded 200 +/- 4 ka. Such agreement is highly suggestive that uranium uptake in these bones was close to the early-uptake (EU) model, and the dates are essentially correct. Another three selected samples yielded combined ESR U-series dates of 320 +/- 4 ka with a modeled intermediate-mode of uranium uptake. The dating results, therefore, seem to provide a firm minimum age of about 200 ka for the human entry: and suggestive evidence of entry before 320 ka.

  13. Geology and preliminary dating of the hominid-bearing sedimentary fill of the Sima de los Huesos Chamber, Cueva Mayor of the Sierra de Atapuerca, Burgos, Spain

    USGS Publications Warehouse

    Bischoff, J.L.; Fitzpatrick, J.A.; Leon, L.; Arsuaga, J.L.; Falgueres, Christophe; Bahain, J.-J.; Bullen, T.

    1997-01-01

    Sediments of the Sima de los Huesos vary greatly over distances of a few meters. This is typical of interior cave facies, and caused by cycles of cut and fill. Mud breccias containing human bones, grading upwards to mud containing bear bones, fill an irregular surface cut into basal marls and sands. The lack of bedding and the chaotic abundance of fragile speleothem clasts in the fossiliferous muds suggests that the deposit was originally a subterranean pond facies, and that after emplacement of the human remains, underwent vigorous post-depositional rotation and collapse and brecciation, caused by underlying bedrock dissolution and undermining. The fossiliferous deposits are capped by flowstone and guano-bearing muds which lack large-mammal fossils. U-series and radiocarbon dating indicates the capping flowstones formed from about 68 ka to about 25 ka. U-series analyses of speleothem clasts among the human fossils indicate that all are at, or close to, isotopic equilibrium (>350 ka). The distribution of U-series dates for 25 bear bones (154??66ka) and for 16 human bones (148??34 ka) is similar and rather broad. Because the human bones seem to be stratigraphically older than those of the bears, the results would indicate that most of the bones have been accumulating uranium irregularly with time. Electron spin resonance (ESR) analyses of six selected bear bones indicates dates of 189??28 ka, for which each is concordant with their corresponding U-series date (181??41 ka). Combined ESR and U-series dates for these samples yielded 200??4 ka. Such agreement is highly suggestive that uranium uptake in these bones was close to the early-uptake (EU) model, and the dates are essentially correct. Another three selected samples yielded combined ESR-U-series dates of 320??4 ka with a modeled intermediate-mode of uranium uptake. The dating results, therefore, seem to provide a firm minimum age of about 200 ka for the human entry; and suggestive evidence of entry before 320 ka. ?? 1997 Academic Press Limited.

  14. Digging to the top (soil)

    USDA-ARS?s Scientific Manuscript database

    Urban construction removes soil from one site and deposits it at another site as fill material. The purpose of this study was to document characteristics of fill material 20 years after it was deposited, and determine carbon storage in fill and buried soil. The fill material, 0.5 to 0.9 m thick, con...

  15. Physicochemical characterization of Capstone depleted uranium aerosols III: morphologic and chemical oxide analyses.

    PubMed

    Krupka, Kenneth M; Parkhurst, Mary Ann; Gold, Kenneth; Arey, Bruce W; Jenson, Evan D; Guilmette, Raymond A

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.

  16. Certification of the Uranium Isotopic Ratios in Nbl Crm 112-A, Uranium Assay Standard (Invited)

    NASA Astrophysics Data System (ADS)

    Mathew, K. J.; Mason, P.; Narayanan, U.

    2010-12-01

    Isotopic reference materials are needed to validate measurement procedures and to calibrate multi-collector ion counting detector systems. New Brunswick Laboratory (NBL) provides a suite of certified isotopic and assay standards for the US and international nuclear safeguards community. NBL Certified Reference Material (CRM) 112-A Uranium Metal Assay Standard with a consensus value of 137.88 for the 238U/235U ratio [National Bureau of Standards -- NBS, currently named National Institute for Standards and Technology, Standard Reference Material (SRM) 960 had been renamed CRM 112-A] is commonly used as a natural uranium isotopic reference material within the earth science community. We have completed the analytical work for characterizing the isotopic composition of NBL CRM 112-A Uranium Assay Standard and NBL CRM 145 (uranyl nitrate solution prepared from CRM 112-A). The 235U/238U isotopic ratios were characterized using the total evaporation (TE) and the modified total evaporation (MTE) methods. The 234U/238U isotope ratios were characterized using a conventional analysis technique and verified using the ratios measured in the MTE analytical technique. The analysis plan for the characterization work was developed such that isotopic ratios that are traceable to NBL CRM U030-A are obtained. NBL is preparing a certificate of Analysis and will issue a certificate for Uranium Assay and Isotopics. The results of the CRM 112-A certification measurements will be discussed. These results will be compared with the average values from Richter et al (2010). A comparison of the precision and accuracy of the measurement methods (TE, MTE and Conventional) employed in the certification will be presented. The uncertainties in the 235U/238U and 234U/238U ratios, calculated according to the Guide to the Expression of Uncertainty in Measurements (GUM) and the dominant contributors to the combined standard uncertainty will be discussed.

  17. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2009-12-09

    Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008...gave additional urgency to the program. Pakistan produced fissile material for its nuclear weapons using gas-centrifuge-based uranium enrichment...technology, which it mastered by the mid-1980s. Highly-enriched uranium (HEU) is one of two types of fissile material used in nuclear weapons; the other

  18. quantifying and Predicting Reactive Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter C. Burns, Department of Civil Engineering and Geological Sciences, University of Notre Dame

    2009-12-04

    This project was led by Dr. Jiamin Wan at Lawrence Berkeley National Laboratory. Peter Burns provided expertise in uranium mineralogy and in identification of uranium minerals in test materials. Dr. Wan conducted column tests regarding uranium transport at LBNL, and samples of the resulting columns were sent to Dr. Burns for analysis. Samples were analyzed for uranium mineralogy by X-ray powder diffraction and by scanning electron microscopy, and results were provided to Dr. Wan for inclusion in the modeling effort. Full details of the project can be found in Dr. Wan's final reports for the associated effort at LBNL.

  19. Floquet Topological Insulators in Uranium Compounds

    NASA Astrophysics Data System (ADS)

    Pi, Shu-Ting; Savrasov, Sergey

    2014-03-01

    A major issue regarding the Uranium based nuclear fuels is to conduct the heat from the core area to its outer area. Unfortunately, those materials are notorious for their extremely low thermal conductivity due to the phonon-dominated-heat-transport properties in insulating states. Although metallic Uranium compounds are helpful in increasing the thermal conductivity, their low melting point still make those efforts in vain. In this report, we will figure out potential Uranium based Floquet topological insulators where the insulating bulk states accompanied with metallic surface states is achieved by applying periodic electrical fields which makes the coexistence of both benefits possible.

  20. The Military Significance of Small Uranium Enrichment Facilities Fed with Low-Enrichment Uranium (Redacted)

    DTIC Science & Technology

    1969-12-01

    a five-year supply of enriched uranium for reactor fuel . Nevertheless, it seems clear that some foreign enrichment developments are approaching a...produc- tion of fissile material could powerfully influence the assessment of risks and benefits of a nuclear weapons development program . Since... program is likely to include the production of its own relatively pure fissile plutonium. This would involve more rapid cycling and reprocessing of fuel

  1. SINTERING METAL OXIDES

    DOEpatents

    Roake, W.E.

    1960-09-13

    A process is given for producing uranium dioxide material of great density by preparing a compacted mixture of uranium dioxide and from 1 to 3 wt.% of calcium hydride, heating the mixture to at least 675 deg C for decomposition of the hydride and then for sintering, preferably in a vacuum, at from 1550 to 2000 deg C. Calcium metal is formed, some uranium is reduced by the calcium to the metal and a product of high density is obtained.

  2. Separation and Depleted Uranium Fragments from Gun Test Catchment. Volume 2. Catchment System and Separations Methods

    DTIC Science & Technology

    1993-12-30

    projectile fragments from target materials, principally sand. Phase I activities included (1) literature review of separations technology , (2) site visits, (3...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for v possible...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for possible

  3. Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach.

    PubMed

    Lu, Bing-Qing; Li, Mi; Zhang, Xiao-Wen; Huang, Chun-Mei; Wu, Xiao-Yan; Fang, Qi

    2018-02-05

    Immobilization of uranium into magnetite (Fe 3 O 4 ), which was generated from metallic iron by electrochemical method, was proposed to rapidly remove uranium from aqueous solution. The effects of electrochemical parameters such as electrode materials, voltage, electrode gap, reaction time and pH value on the crystallization of Fe 3 O 4 and uranium removal efficiencies were investigated. More than 90% uranium in the solution was precipitated with Fe 3 O 4 under laboratory conditions when uranium concentration range from 0.5mg/L to 10mg/L. The Fe 3 O 4 crystallization mechanism and immobilization of uranium was proved by XPS, XRD, TEM, FTIR and VSM methods. The results indicated that the cationic (including Fe 2+ , Fe 3+ and U(VI)) migrate to cathode side under the electric field and the uranium was incorporated or adsorbed by Fe 3 O 4 which was generated at cathode while the pH ranges between 2-7. The uranium-containing precipitate of Fe 3 O 4 can exist stably at the acid concentration below 60g/L. Furthermore, the precipitate may be used as valuable resources for uranium or iron recycling, which resulted in no secondary pollution in the removal of uranium from aqueous solution. Copyright © 2017. Published by Elsevier B.V.

  4. Simulations of Multi-Gamma Coincidences From Neutron-Induced Fission in Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Kane, Steven; Gozani, Tsahi; King, Michael J.; Kwong, John; Brown, Craig; Gary, Charles; Firestone, Murray I.; Nikkel, James A.; McKinsey, Daniel N.

    2013-04-01

    A study is presented on the detection of illicit special nuclear materials (SNM) in cargo containers using a conceptual neutron-based inspection system with xenon-doped liquefied argon (LAr(Xe)) scintillation detectors for coincidence gamma-ray detection. For robustness, the system is envisioned to exploit all fission signatures, namely both prompt and delayed neutron and gamma emissions from fission reactions induced in SNM. However, this paper focuses exclusively on the analysis of the prompt gamma ray emissions. The inspection system probes a container using neutrons produced either by (d, D) or (d, T) in pulsed form or from an associated particle neutron generator to exploit the associated particle imaging (API) technique, thereby achieving background reduction and imaging. Simulated signal and background estimates were obtained in MCNPX (2.7) for a 2 kg sphere of enriched uranium positioned at the center of a 1m × 1m × 1m container, which is filled uniformly with wood or iron cargos at 0.1 g/cc or 0.4 g/cc. Detection time estimates are reported assuming probabilities of detection of 95% and false alarm of 0.5%.

  5. Physico-mechanical characteristics of commercially available bulk-fill composites.

    PubMed

    Leprince, Julian G; Palin, William M; Vanacker, Julie; Sabbagh, Joseph; Devaux, Jacques; Leloup, Gaetane

    2014-08-01

    Bulk-fill composites have emerged, arguably, as a new "class" of resin-based composites, which are claimed to enable restoration in thick layers, up to 4mm. The objective of this work was to compare, under optimal curing conditions, the physico-mechanical properties of most currently available bulk-fill composites to those of two conventional composite materials chosen as references, one highly filled and one flowable "nano-hybrid" composite. Tetric EvoCeram Bulk Fill (Ivoclar-Vivadent), Venus Bulk Fill (Heraeus-Kulzer), SDR (Dentsply), X-tra Fil (VOCO), X-tra Base (VOCO), Sonic Fill (Kerr), Filtek Bulk Fill (3M-Espe), Xenius (GC) were compared to the two reference materials. The materials were light-cured for 40s in a 2mm×2mm×25mm Teflon mould. Degree of conversion was measured by Raman spectroscopy, Elastic modulus and flexural strength were evaluated by three point bending, surface hardness using Vickers microindentation before and after 24h ethanol storage, and filler weight content by thermogravimetric analysis. The ratio of surface hardness before and after ethanol storage was considered as an evaluation of polymer softening. Data were analyzed by one-way ANOVA and post hoc Tukey's test (p=0.05). The mechanical properties of the bulk-fill composites were mostly lower compared with the conventional high viscosity material, and, at best, comparable to the conventional flowable composite. Linear correlations of the mechanical properties investigated were poor with degree of conversion (0.090.8). Softening in ethanol revealed differences in polymer network density between material types. The reduction of time and improvement of convenience associated with bulk-fill materials is a clear advantage of this particular material class. However, a compromise with mechanical properties compared with more conventional commercially-available nano-hybrid materials was demonstrated by the present work. Given the lower mechanical properties of most bulk-fill materials compared to a highly filled nano-hybrid composite, their use for restorations under high occlusal load is subject to caution. Further, the swelling behaviour of some of the bulk-fill materials may be a reason for concern, which highlights the critical requirement for a veneering material, not only to improve aesthetic quality of the translucent material, but to reduce the impact of degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Biocompatibility of root-end filling materials: recent update

    PubMed Central

    Gupta, Saurabh Kumar; Newaskar, Vilas

    2013-01-01

    The purpose of a root-end filling is to establish a seal between the root canal space and the periradicular tissues. As root-end filling materials come into contact with periradicular tissues, knowledge of the tissue response is crucial. Almost every available dental restorative material has been suggested as the root-end material of choice at a certain point in the past. This literature review on root-end filling materials will evaluate and comparatively analyse the biocompatibility and tissue response to these products, with primary focus on newly introduced materials. PMID:24010077

  7. 230Th-234U Model-Ages of Some Uranium Standard Reference Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R W; Gaffney, A M; Kristo, M J

    The 'age' of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to its source. To the extent that the sample obeys the standard rules of radiochronometry, then the production ages of even very recent material can be determined using the {sup 230}Th-{sup 234}U chronometer. These standard rules may be summarized as (a) the daughter/parent ratio at time=zero must be known, and (b) there has been no daughter/parent fractionation since production. For most samples of uranium, the 'ages' determined using this chronometer are semantically 'model-ages' because (a) some assumptionmore » of the initial {sup 230}Th content in the sample is required and (b) closed-system behavior is assumed. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for samples where both rules are met. The U isotopic standards have known purification and production dates, and closed-system behavior in the solid form (U{sub 3}O{sub 8}) may be assumed with confidence. We present here {sup 230}Th-{sup 234}U model-ages for several of these standards, determined by isotope dilution mass spectrometry using a multicollector ICP-MS, and compare these ages with their known production history.« less

  8. Products of in Situ Corrosion of Depleted Uranium Ammunition in Bosnia and Herzegovina Soils.

    PubMed

    Wang, Yuheng; von Gunten, Konstantin; Bartova, Barbora; Meisser, Nicolas; Astner, Markus; Burger, Mario; Bernier-Latmani, Rizlan

    2016-11-15

    Hundreds of tons of depleted uranium (DU) ammunition were used in previous armed conflicts in Iraq, Bosnia and Herzegovina, and Serbia/Kosovo. The majority (>90%) of DU penetrators miss their target and, if left in the environment, corrode in these postconflict zones. Thus, the best way to understand the fate of bulk DU material in the environment is to characterize the corrosion products of intact DU penetrators under field conditions for extended periods of time. However, such studies are scarce. To fill this knowledge gap, we characterized corrosion products formed from two intact DU penetrators that remained in soils in Bosnia and Herzegovina for over seven years. We used a combination of X-ray powder diffraction, electron microscopy, and X-ray absorption spectroscopy. The results show that metaschoepite (UO 3 (H 2 O) 2 ) was a main component of the two DU corrosion products. Moreover, studtite ((UO 2 )O 2 (H 2 O) 2 ·2(H 2 O)) and becquerelite (Ca(UO 2 ) 6 O 4 (OH) 6 ·8(H 2 O)) were also identified in the corrosion products. Their formation through transformation of metaschoepite was a result of the geochemical conditions under which the penetrators corroded. Moreover, we propose that the transformation of metaschoepite to becquerelite or studtite in the DU corrosion products would decrease the potential for mobilization of U from corroded DU penetrators exposed to similar environments in postconflict areas.

  9. Depleted uranium: an overview of its properties and health effects.

    PubMed

    Shawky, S

    2002-01-01

    There has been much debate about the use of depleted uranium in the Gulf War and its health effects on United States and European war veterans. However, studies on the impact of this radioactive substance on the residents of the surrounding Gulf region are far from adequate. Depleted uranium introduces large quantities of radioactive material that is hazardous to biological organisms, continues to decay for millennia and is able to travel tens of kilometres in air. If depleted uranium were used in the Gulf War, its impact on the health of people in the area would have been considerable. This review of depleted uranium--its origin, properties, uses and effects on the human environment and health--aims to trigger further research on this subject.

  10. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    PubMed

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The application of waste fly ash and construction-waste in cement filling material in goaf

    NASA Astrophysics Data System (ADS)

    Chen, W. X.; Xiao, F. K.; Guan, X. H.; Cheng, Y.; Shi, X. P.; Liu, S. M.; Wang, W. W.

    2018-01-01

    As the process of urbanization accelerated, resulting in a large number of abandoned fly ash and construction waste, which have occupied the farmland and polluted the environment. In this paper, a large number of construction waste and abandoned fly ash are mixed into the filling material in goaf, the best formula of the filling material which containing a large amount of abandoned fly ash and construction waste is obtained, and the performance of the filling material is analyzed. The experimental results show that the cost of filling material is very low while the performance is very good, which have a good prospect in goaf.

  12. Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities

    DOE PAGES

    Dewji, Shaheen A.; Croft, Stephen; Hertel, Nolan E.

    2016-12-16

    Under the policies proposed by recent International Atomic Energy Agency (IAEA) circulars and policy papers, implementation of safeguards exists when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed in previous work to develop and validate gamma-ray nondestructive assay monitoring systemsmore » in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO 2(NO 3) 2) solution exiting solvent extraction was identified as a key measurement point (KMP). Passive nondestructive assay techniques using high resolution gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely manner. Building upon the aforementioned previous validation work on detector sensitivity to varying concentrations of uranyl nitrate via a series of dilution measurements, this work investigates detector response parameter sensitivities to gamma-ray signatures of uranyl nitrate. The full energy peak efficiency of a detection system is dependent upon the sample, geometry, absorption, and intrinsic efficiency parameters. Perturbation of these parameters translates into corresponding variations of the 185.7 keV peak area of the 235U in uranyl nitrate. Such perturbations in the assayed signature impact the quality or versatility of the safeguards conclusions drawn. Given the potentially high throughput of uranyl nitrate in NUCPs, the ability to assay 1 SQ of material requires uncertainty «1%. Accounting for material self-shielding properties, pipe thickness, and source-detector orientation is instrumental in determining the robustness of gamma-ray detection in the process monitoring of uranyl nitrate in NUCPs. Monte Carlo models and ray-tracing models were employed to determine the sensitivity of the detected 185.7 keV photon to self-shielding properties, pipe thickness, and source-detector geometry. Considering the implementation of the detection of 1 SQ, diversion of 1 SQ becomes essentially undetectable given the systematic uncertainty, in addition to considerations such as propagating uncertainties due to pipe offset/position, as well as minor variations in pipe thickness. Consequently, pipe thickness was the most sensitive variable in affecting full energy efficiency of the 185.7 keV signature peak with up to 8% variation in efficiency for ±0.5 mm changes in Schedule 40 304L stainless steel piping. Furthermore, computation of the attenuation correction factor of the uranyl nitrate solution [CF(AT) (i.e. εsample)] using Parker's method using with the approximation for the geometrical factor κ≈π/4 was validated through experimental, Monte Carlo and ray-tracing calculations for a uranyl nitrate filled transfer pipe segment. Furthermore, quantifying sensitivity in detector position, as well as voiding effects due to bubbly flow or laminar flow with an air gap in the uranyl nitrate becomes increasingly important as considerations from (static) design-scale measurements translate into (dynamic) field operations tests.« less

  13. Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewji, Shaheen A.; Croft, Stephen; Hertel, Nolan E.

    Under the policies proposed by recent International Atomic Energy Agency (IAEA) circulars and policy papers, implementation of safeguards exists when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed in previous work to develop and validate gamma-ray nondestructive assay monitoring systemsmore » in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO 2(NO 3) 2) solution exiting solvent extraction was identified as a key measurement point (KMP). Passive nondestructive assay techniques using high resolution gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely manner. Building upon the aforementioned previous validation work on detector sensitivity to varying concentrations of uranyl nitrate via a series of dilution measurements, this work investigates detector response parameter sensitivities to gamma-ray signatures of uranyl nitrate. The full energy peak efficiency of a detection system is dependent upon the sample, geometry, absorption, and intrinsic efficiency parameters. Perturbation of these parameters translates into corresponding variations of the 185.7 keV peak area of the 235U in uranyl nitrate. Such perturbations in the assayed signature impact the quality or versatility of the safeguards conclusions drawn. Given the potentially high throughput of uranyl nitrate in NUCPs, the ability to assay 1 SQ of material requires uncertainty «1%. Accounting for material self-shielding properties, pipe thickness, and source-detector orientation is instrumental in determining the robustness of gamma-ray detection in the process monitoring of uranyl nitrate in NUCPs. Monte Carlo models and ray-tracing models were employed to determine the sensitivity of the detected 185.7 keV photon to self-shielding properties, pipe thickness, and source-detector geometry. Considering the implementation of the detection of 1 SQ, diversion of 1 SQ becomes essentially undetectable given the systematic uncertainty, in addition to considerations such as propagating uncertainties due to pipe offset/position, as well as minor variations in pipe thickness. Consequently, pipe thickness was the most sensitive variable in affecting full energy efficiency of the 185.7 keV signature peak with up to 8% variation in efficiency for ±0.5 mm changes in Schedule 40 304L stainless steel piping. Furthermore, computation of the attenuation correction factor of the uranyl nitrate solution [CF(AT) (i.e. εsample)] using Parker's method using with the approximation for the geometrical factor κ≈π/4 was validated through experimental, Monte Carlo and ray-tracing calculations for a uranyl nitrate filled transfer pipe segment. Furthermore, quantifying sensitivity in detector position, as well as voiding effects due to bubbly flow or laminar flow with an air gap in the uranyl nitrate becomes increasingly important as considerations from (static) design-scale measurements translate into (dynamic) field operations tests.« less

  14. Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities

    NASA Astrophysics Data System (ADS)

    Dewji, S. A.; Croft, S.; Hertel, N. E.

    2017-03-01

    Under the policies proposed by recent International Atomic Energy Agency (IAEA) circulars and policy papers, implementation of safeguards exists when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed in previous work to develop and validate gamma-ray nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO2(NO3)2) solution exiting solvent extraction was identified as a key measurement point (KMP). Passive nondestructive assay techniques using high resolution gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely manner. Building upon the aforementioned previous validation work on detector sensitivity to varying concentrations of uranyl nitrate via a series of dilution measurements, this work investigates detector response parameter sensitivities to gamma-ray signatures of uranyl nitrate. The full energy peak efficiency of a detection system is dependent upon the sample, geometry, absorption, and intrinsic efficiency parameters. Perturbation of these parameters translates into corresponding variations of the 185.7 keV peak area of the 235U in uranyl nitrate. Such perturbations in the assayed signature impact the quality or versatility of the safeguards conclusions drawn. Given the potentially high throughput of uranyl nitrate in NUCPs, the ability to assay 1 SQ of material requires uncertainty «1%. Accounting for material self-shielding properties, pipe thickness, and source-detector orientation is instrumental in determining the robustness of gamma-ray detection in the process monitoring of uranyl nitrate in NUCPs. Monte Carlo models and ray-tracing models were employed to determine the sensitivity of the detected 185.7 keV photon to self-shielding properties, pipe thickness, and source-detector geometry. Considering the implementation of the detection of 1 SQ, diversion of 1 SQ becomes essentially undetectable given the systematic uncertainty, in addition to considerations such as propagating uncertainties due to pipe offset/position, as well as minor variations in pipe thickness. Consequently, pipe thickness was the most sensitive variable in affecting full energy efficiency of the 185.7 keV signature peak with up to 8% variation in efficiency for ±0.5 mm changes in Schedule 40 304L stainless steel piping. Furthermore, computation of the attenuation correction factor of the uranyl nitrate solution [CF(AT) (i.e. εsample)] using Parker's method using with the approximation for the geometrical factor κ≈π/4 was validated through experimental, Monte Carlo and ray-tracing calculations for a uranyl nitrate filled transfer pipe segment. Quantifying sensitivity in detector position, as well as voiding effects due to bubbly flow or laminar flow with an air gap in the uranyl nitrate becomes increasingly important as considerations from (static) design-scale measurements translate into (dynamic) field operations tests.

  15. Aerial gamma ray and magnetic survey: Powder River II Project, Newcastle Quadrangle, Wyoming. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    Thick Phanerozoic sediments (greater than 17,000 ft) fill the northwest trending Powder River Basin which is the dominant tectonic structure in the Newcastle quadrangle. Lower Tertiary sediments comprise more than 85% of exposed units at the surface of the Basin. A small portion of the Black Hills Uplift occupies the eastern edge of the quadrangle. Residual magnetics clearly reflect the great depth to crystalline Precambrian basement in the Basin. The Basin/Uplift boundary is not readily observed in the magnetic data. Economic uranium deposits of roll-type configuration are present in the southwest within the Monument Hill-Box Creek District in fluvial sandstonesmore » of the Paleocene Fort Union Formation. Numerous small claims and prospects are found in the Pumpkin Buttes-Turnercrest District in the northwest. Interpretation of the radiometric data resulted in 86 statistical uranium anomalies listed for this quadrangle. Most anomalies are in the eastern-central portion of the map within Tertiary Fort Union and Wasatch Formations. However, several lie in the known uranium districts in the southwest and northwest.« less

  16. Investigations into the Effect of Current Velocity on Amidoxime-Based Polymeric Uranium Adsorbent Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.

    2015-12-01

    The Fuel Resources Program at the U.S. Department of Energy’s (DOE), Office of Nuclear Energy (DOE-NE) is developing adsorbent technology to extract uranium from seawater. This technology is being developed to provide a sustainable and economically viable supply of uranium fuel for nuclear reactors (DOE, 2010). Among the key environmental variables to understand for adsorbent deployment in the coastal ocean is what effect flow-rates or linear velocity has on uranium adsorption capacity. The goal is to find a flow conditions that optimize uranium adsorption capacity in the shortest exposure time. Understanding these criteria will be critical in choosing a locationmore » for deployment of a marine adsorbent farm. The objective of this study was to identify at what linear velocity the adsorption kinetics for uranium extraction starts to drop off due to limitations in mass transport of uranium to the surface of the adsorbent fibers. Two independent laboratory-based experimental approaches using flow-through columns and recirculating flumes for adsorbent exposure were used to assess the effect of flow-rate (linear velocity) on the kinetic uptake of uranium on amidoxime-based polymeric adsorbent material. Time series observations over a 56 day period were conducted with flow-through columns over a 35-fold range in linear velocity from 0.29 to 10.2 cm/s, while the flume study was conducted over a narrower 11-fold range, from 0.48 to 5.52 cm/s. These ranges were specifically chosen to focus on the lower end of oceanic currents and expand above and below the linear velocity of ~ 2.5 cm/s adopted for marine testing of adsorbent material at PNNL.« less

  17. Redox bias in loss of ignition moisture measurement for relatively pure plutonium-bearing oxide materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eller, P. G.; Stakebake, J. L.; Cooper, T. D.

    2001-01-01

    This paper evaluates potential analytical bias in application of the Loss on Ignition (LOI) technique for moisture measurement to relatively pure (plutonium assay of 80 wt.% or higher) oxides containing uranium that have been stabilized according to stabilization and storage standard DOE-STD-3013-2000 (STD-3013). An immediate application is to Rocky Flats (RF) materials derived from highgrade metal hydriding separations subsequently treated by multiple calcination cycles. Specifically evaluated are weight changes due to oxidatiodreduction of multivalent impurity oxides that could mask true moisture equivalent content measurement. Process knowledge and characterization of materials representing complex-wide materials to be stabilized and packaged according tomore » STD-3013, and particularly for the immediate RF target stream, indicate that oxides of uranium, iron and gallium are the only potential multivalent constituents expected to be present above 0.5 wt.%. The evaluation shows that of these constituents, with few exceptions, only uranium oxides can be present at a sufficient level to produce weight gain biases significant with respect to the LO1 stability test. In general, these formerly high-value, high-actinide content materials are reliably identifiable by process knowledge and measurement. Si&icant bias also requires that UO1 components remain largely unoxidized after calcination and are largely converted to U30s clsning LO1 testing at only slightly higher temperatures. Based on wellestablished literature, it is judged unlikely that this set of conditions will be realized in practice. We conclude that it is very likely that LO1 weight gain bias will be small for the immediate target RF oxide materials containing greater than 80 wt.% plutonium plus a much smaller uranium content. Recommended tests are in progress to confum these expectations and to provide a more authoritative basis for bounding LO1 oxidatiodreduction biases. LO1 bias evaluation is more difficult for lower purity materials and for fuel-type uranium-plutonium oxides. However, even in these cases testing may show that bias effects are manageable.« less

  18. Rapid extraction and assay of uranium from environmental surface samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Christopher A.; Chouyyok, Wilaiwan; Speakman, Robert J.

    Extraction methods enabling faster removal and concentration of uranium compounds for improved trace and low-level assay are demonstrated for standard surface sampling material in support of nuclear safeguards efforts, health monitoring, and other nuclear analysis applications. A key problem with the existing surface sampling swipes is the requirement for complete digestion of sample and sampling matrix. This is a time-consuming and labour-intensive process that limits laboratory throughput, elevates costs, and increases background levels. Various extraction methods are explored for their potential to quickly and efficiently remove different chemical forms of uranium from standard surface sampling material. A combination of carbonatemore » and peroxide solutions is shown to give the most rapid and complete form of uranyl compound extraction and dissolution. This rapid extraction process is demonstrated to be compatible with standard inductive coupled plasma mass spectrometry methods for uranium isotopic assay as well as screening techniques such as x-ray fluorescence. The general approach described has application beyond uranium to other analytes of nuclear forensic interest (e.g., rare earth elements and plutonium) as well as heavy metals for environmental and industrial hygiene monitoring.« less

  19. Uranium and organic matters: use of pyrolysis-gas chromatography, carbon, hydrogen, and uranium contents to characterize the organic matter from sandstone-type deposits

    USGS Publications Warehouse

    Leventhal, Joel S.

    1979-01-01

    Organic matter seems to play an important role in the genesis of uranium deposits in sandstones in the western United States. Organic materials associated with ore from the Texas coastal plain, Tertiary basins of Wyoming, Grants mineral belt of New Mexico, and the Uravan mineral belt of Utah and Colorado vary widely in physical appearance and chemical composition. Partial characterization of organic materials is achieved by chemical analyses to determine atomic hydrogen-to-carbon (H/C) ratios and by gas chromatographic analyses to determine the molecular fragments evolved during stepwise pyrolysis. From the pyrolysis experiments the organic materials can be classified and grouped: (a) lignites from Texas and Wyoming and (b) hydrogen poor materials, from Grants and Uravan mineral belts and Wyoming; (c) naphthalene-containing materials from Grants mineral belt and Wyoming; and (d) complex and aromatic materials from Uravan, Grants and Wyoming. The organic materials analyzed have atomic H/C ratios that range from approximately 0.3 to at least 1.5. The samples with higher H/C ratios yield pyrolysis products that contain as many as 30 carbon atoms per molecule. Samples with low H/C ratios are commonly more uraniferous and yield mostly methane and low-molecular-weight gases during pyrolysis.

  20. A novel benzimidazole-functionalized 2-D COF material: synthesis and application as a selective solid-phase extractant for separation of uranium.

    PubMed

    Li, Juan; Yang, Xiaodan; Bai, Chiyao; Tian, Yin; Li, Bo; Zhang, Shuang; Yang, Xiaoyu; Ding, Songdong; Xia, Chuanqin; Tan, Xinyu; Ma, Lijian; Li, Shoujian

    2015-01-01

    A novel COF-based material (COF-COOH) containing large amounts of carboxylic groups was prepared for the first time by using a simple and effective one-step synthetic method, in which the cheap and commercially available raw materials, trimesoyl chloride and p-phenylenediamine, were used. The as-synthesized COF-COOH was modified with previously synthesized 2-(2,4-dihydroxyphenyl)-benzimidazole (HBI) by "grafting to" method, and a new solid-phase extractant (COF-HBI) with highly efficient sorption performance for uranium(VI) was consequently obtained. A series of characterizations demonstrated that COF-COOH and COF-HBI exhibited great thermostabilities and irradiation stabilities. Sorption behavior of the COF-based materials toward U(VI) was compared in simulated nuclear industrial effluent containing UO2(2+) and 11 undesired ions, and the UO2(2+) sorption amount of COF-HBI was 81 mg g(-1), accounting for approximately 58% of the total sorption amount, which was much higher than the sorption selectivity of COF-COOH to UO2(2+) (39%). Batch sorption experiment results indicated that the uranium(VI) sorption on COF-HBI was a pH dependent, rapid (sorption equilibrium was reached in 30 min), endothermic and spontaneous process. In the most favorable conditions, the equilibrium sorption capacity of the adsorbent for uranium could reach 211 mg g(-1). Copyright © 2014 Elsevier Inc. All rights reserved.

  1. THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.

    2011-07-17

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies requiredmore » to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.« less

  2. Laboratory-scale uranium RF plasma confinement experiments

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.

  3. Clinical and laboratory evaluation of microstructural changes in the physical, mechanical and chemical properties of dental filling materials under the influence of an electromagnetic field.

    PubMed

    Moiseeva, Natalia S; Kunin, Anatoly A

    2018-03-01

    Restorative filling materials used for dental caries prevention and treatment consist of various components including monomers or oligomers, which play a significant role in forming the main structure of these materials, as well as in characterising their physical, mechanical and chemical properties. The necessity for the development and improvement of structural characteristics of polymeric dental filling materials intended for caries prevention and their life duration increase served as the initiating factor of our research. According to the research purpose and challenges, we studied the changes in the physical, mechanical and chemical properties of composite filling materials with and without electromagnetic field influence. The investigations in vivo include the study of microstructural features of polymeric filling materials by scanning electron microscopy (SEM) and the investigations in vitro include the study of sealed and extracted human teeth chips by using X-ray spectral analysis. We also evaluated the changes in the strength characteristics of dental filling materials with and without electromagnetic field influence. The analysis of the obtained data indicates the presence of structural changes in polymeric dental filling materials, including the material microstructure condensation confirmed by the SEM results, an increase in the strength and adhesion characteristics and certain regularities of the chemical elemental composition concentration change in the area of hard tooth tissue and dental filling material. These scientific data will provide tooth caries prevention and promote the increase of treatment quality.

  4. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, L A; Williams, R W; Glover, S E

    2012-03-16

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metalmore » bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.« less

  5. Anomalous Lead Isotopic Composition of Galena and Age of Altered Uranium Minerals: a Case study of Chauli Deposits, Chatkal-Qurama District, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Chernyshev, I. V.; Golubev, V. N.; Chugaev, A. V.

    2017-11-01

    The enrichment of lead isotopic composition of nonuranium minerals, in the first place galena in 206Pb and 207Pb, as compared to common lead is a remarkable feature of uranium deposits. The study of such lead isotopic composition anomalous in 206Pb and 207Pb in uranium minerals provides an opportunity for not only identification of superimposed processes resulting in transformation of uranium ores during deposit history but also calculation of age of these processes under certain model assumptions. Galena from the Chauli deposit in the Chatkal-Qurama district, Uzbekistan, a typical representative of hydrothermal uranium deposits associated with domains of Phanerozoic continental volcanism, has been examined with the highprecision (±0.02%) MC-ICP-MS method. Twenty microsamples of galena were taken from polished sections. Six of them are galena hosted in carbonate adjacent to pitchblende spherulites or filling thin veinlets (approximately 60 μm) cutting pitchblende. Isotopically anomalous lead with 206Pb/204Pb and 207Pb/204Pb values reaching 20.462 and 15.743, respectively, has been found in these six microsamples in contrast to another fourteen in which the Pb-Pb characteristics are consistent with common lead. On the basis of these data and with account for the 292 ± 2 Ma age for the Chauli deposit, the age of epigenetic transformation of uranium ores of this deposit has been estimated. During this process, radiogenic lead partly lost from pitchblende was captured into galena. The obtained date is 170 Ma. In the Chatkal-Qurama district, these epigenetic processes are apparently caused by the interaction of uranium minerals with activated underground water under tectonic activity and relief transformation, which took place from the post-Permian (i.e., after the Chauli formation) to the Jurassic period.

  6. On Line Enrichment Monitor (OLEM) UF 6 Tests for 1.5" Sch40 SS Pipe, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March-Leuba, José A.; Garner, Jim; Younkin, Jim

    As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants while working within budgetary constraints. The “Model Safeguards Approach for Gas Centrifuge Enrichment Plants” (GCEPs) developed by the IAEA Division of Concepts and Planning in June 2006, defines the three primary Safeguards objectives to be the timely detection of: 1) diversion of significant quantities of natural (NU), depleted (DU) or low-enriched uranium (LEU) from declared plant flow, 2) facility misuse to produce undeclared LEU product from undeclared feed, and 3) facility misuse tomore » produce enrichments higher than the declared maximum, in particular, highly enriched uranium (HEU). The ability to continuously and independently (i.e. with a minimum of information from the facility operator) monitor not only the uranium mass balance but also the 235U mass balance in the facility could help support all three verification objectives described above. Two key capabilities required to achieve an independent and accurate material balance are 1) continuous, unattended monitoring of in-process UF 6 and 2) monitoring of cylinders entering and leaving the facility. The continuous monitoring of in-process UF 6 would rely on a combination of load-cell monitoring of the cylinders at the feed and withdrawal stations, online monitoring of gas enrichment, and a high-accuracy net weight measurement of the cylinder contents. The Online Enrichment Monitor (OLEM) is the instrument that would continuously measure the time-dependent relative uranium enrichment, E(t), in weight percent 235U, of the gas filling or being withdrawn from the cylinders. The OLEM design concept combines gamma-ray spectrometry using a collimated NaI(Tl) detector with gas pressure and temperature data to calculate the enrichment of the UF 6 gas within the unit header pipe as a function of time. The OLEM components have been tested on ORNL UF 6 flow loop. Data were collected at five different enrichment levels (0.71%, 2.97%, 4.62%, 6.0%, and 93.7%) at several pressure conditions. The test data were collected in the standard OLEM N.4242 file format for each of the conditions with a 10-minute sampling period and then averaged over the span of constant pressures. Analysis of the collected data has provided enrichment constants that can be used for 1.5” stainless steel schedule 40 pipe measurement sites. The enrichment constant is consistent among all the wide range of enrichment levels and pressures used.« less

  7. PEROXIDE PROCESS FOR SEPARATION OF RADIOACTIVE MATERIALS

    DOEpatents

    Seaborg, G.T.; Perlman, I.

    1958-09-16

    reduced state, from hexavalent uranium. It consists in treating an aqueous solution containing such uranium and plutonium ions with sulfate ions in order to form a soluble uranium sulfate complex and then treating the solution with a soluble thorium compound and a soluble peroxide compound in order to ferm a thorium peroxide carrier precipitate which carries down with it the plutonium peroxide present. During this treatment the pH of the solution must be maintained between 2 and 3.

  8. LIGHT WATER MODERATED NEUTRONIC REACTOR

    DOEpatents

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  9. Source identification of uranium-containing materials at mine legacy sites in Portugal.

    PubMed

    Keatley, A C; Martin, P G; Hallam, K R; Payton, O D; Awbery, R; Carvalho, F P; Oliveira, J M; Silva, L; Malta, M; Scott, T B

    2018-03-01

    Whilst prior nuclear forensic studies have focused on identifying signatures to distinguish between different uranium deposit types, this paper focuses on providing a scientific basis for source identification of materials from different uranium mine sites within a single region, which can then be potentially used within nuclear forensics. A number of different tools, including gamma spectrometry, alpha spectrometry, mineralogy and major and minor elemental analysis, have been utilised to determine the provenance of uranium mineral samples collected at eight mine sites, located within three different uranium provinces, in Portugal. A radiation survey was initially conducted by foot and/or unmanned aerial vehicle at each site to assist sample collection. The results from each mine site were then compared to determine if individual mine sites could be distinguished based on characteristic elemental and isotopic signatures. Gamma and alpha spectrometry were used to differentiate between samples from different sites and also give an indication of past milling and mining activities. Ore samples from the different mine sites were found to be very similar in terms of gangue and uranium mineralogy. However, rarer minerals or specific impurity elements, such as calcium and copper, did permit some separation of the sites examined. In addition, classification rates using linear discriminant analysis were comparable to those in the literature. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  10. Recovery of tritium from tritiated molecules

    DOEpatents

    Swansiger, William A.

    1987-01-01

    A method of recovering tritium from tritiated compounds comprises the steps of heating tritiated water and other co-injected tritiated compounds in a preheater to temperatures of about 600.degree. C. The mixture is injected into a reactor charged with a mixture of uranium and uranium dioxide. The injected mixture undergoes highly exothermic reactions with the uranium causing reaction temperatures to occur in excess of the melting point of uranium, and complete decomposition of the tritiated compounds to remove tritium therefrom. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. Apparatus used to carry out the method of the invention is also disclosed.

  11. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.« less

  12. Pyroprocessing of fast flux test facility nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)« less

  13. Factors controlling localization of uranium deposits in the Dakota Sandstone, Gallup and Ambrosia Lake mining districts, McKinley County, New Mexico

    USGS Publications Warehouse

    Pierson, Charles Thomas; Green, Morris W.

    1977-01-01

    Geologic studies were made at all of the uranium mines and prospects in the Dakota Sandstone of Early(?) and Late Cretaceous age in the Gallup mining district, McKinley County, New Mexico. Dakota mines in the adjacent Ambrosia Lake mining district were visited briefly for comparative purposes. Mines in the eastern part of the Gallup district, and in the Ambrosia Lake district, are on the Chaco slope of the southern San Juan Basin in strata which dip gently northward toward the central part of the basin. Mines in the western part of the Gallup district are along the Gallup hogback (Nutria monocline) in strata which dip steeply westward into the Gallup sag. Geologic factors which controlled formation of the uranium deposits in the Dakota Sandstone are: (1) a source of uranium, believed to be uranium deposits of the underlying Morrison Formation of Late Jurassic age; (2) the accessibility to the Dakota of uranium-bearing solutions from the Morrison; (3) the presence in the Dakota of permeable sandstone beds overlain by impermeable carbonaceous shale beds; and (4) the occurrence within the permeable Dakota sandstone beds of carbonaceous reducing material as bedding-plane laminae, or as pockets of carbonaceous trash. Most of the Dakota uranium deposits are found in the lower part of the formation in marginal-marine distributary-channel sandstones which were deposited in the backshore environment. However, the Hogback no. 4 (Hyde) Mine (Gallup district) occurs in sandy paludal shale of the backshore environment, and another deposit, the Silver Spur (Ambrosia Lake district), is found in what is interpreted to be a massive beach or barrier-bar sandstone of the foreshore environment in the upper part of the Dakota. The sedimentary depositional environment most favorable for the accumulation of uranium is that of backshore areas lateral to main distributary channels, where levee, splay, and some distributary-channel sandstones intertongue with gray carbonaceous shales and siltstones of the well-drained swamp environment. Deposits of black carbonaceous shale which were formed in the poorly drained swamp deposits of the interfluve area are not favorable host rocks for uranium. The depositional energy levels of the various environments in which the sandstone and shale beds of the Dakota were deposited govern the relative favorability of the strata as uranium host rocks. In the report area, uranium usually occurs in carbonaceous sandstone deposited under low- to medium-energy fluvial conditions within distributary channels. A prerequisite, however, is that such sandstone be overlain by impermeable carbonaceous shale beds. Low- to medium-energy fluvial conditions result in the deposition of sandstone beds having detrital carbonaceous material distributed in laminae or in trash pockets on bedding planes. The carbonaceous laminae and trash pockets provide the necessary reductant to cause precipitation of uranium from solution. High-energy fluvial conditions result in the deposition of sandstones having little or no carbonaceous material included to provide a reductant. Very low energy swampy conditions result in carbonaceous shale deposits, which are generally barren of uranium because of their relative impermeability to migrating uranium-bearing solutions.

  14. The effectiveness of manual and mechanical instrumentation for the retreatment of three different root canal filling materials.

    PubMed

    Somma, Francesco; Cammarota, Giuseppe; Plotino, Gianluca; Grande, Nicola M; Pameijer, Cornelis H

    2008-04-01

    The aim of this study was to compare the effectiveness of the Mtwo R (Sweden & Martina, Padova, Italy), ProTaper retreatment files (Dentsply-Maillefer, Ballaigues, Switzerland), and a Hedström manual technique in the removal of three different filling materials (gutta-percha, Resilon [Resilon Research LLC, Madison, CT], and EndoRez [Ultradent Products Inc, South Jordan, UT]) during retreatment. Ninety single-rooted straight premolars were instrumented and randomly divided into 9 groups of 10 teeth each (n = 10) with regards to filling material and instrument used. For all roots, the following data were recorded: procedural errors, time of retreatment, apically extruded material, canal wall cleanliness through optical stereomicroscopy (OSM), and scanning electron microscopy (SEM). A linear regression analysis and three logistic regression analyses were performed to assess the level of significance set at p = 0.05. The results indicated that the overall regression models were statistically significant. The Mtwo R, ProTaper retreatment files, and Resilon filling material had a positive impact in reducing the time for retreatment. Both ProTaper retreatment files and Mtwo R showed a greater extrusion of debris. For both OSM and SEM logistic regression models, the root canal apical third had the greatest impact on the score values. EndoRez filling material resulted in cleaner root canal walls using OSM analysis, whereas Resilon filling material and both engine-driven NiTi rotary techniques resulted in less clean root canal walls according to SEM analysis. In conclusion, all instruments left remnants of filling material and debris on the root canal walls irrespective of the root filling material used. Both the engine-driven NiTi rotary systems proved to be safe and fast devices for the removal of endodontic filling material.

  15. Radiological Modeling for Determination of Derived Concentration Levels of an Area with Uranium Residual Material - 13533

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Sanchez, Danyl

    As a result of a pilot project developed at the old Spanish 'Junta de Energia Nuclear' to extract uranium from ores, tailings materials were generated. Most of these residual materials were sent back to different uranium mines, but a small amount of it was mixed with conventional building materials and deposited near the old plant until the surrounding ground was flattened. The affected land is included in an area under institutional control and used as recreational area. At the time of processing, uranium isotopes were separated but other radionuclides of the uranium decay series as Th-230, Ra-226 and daughters remainmore » in the residue. Recently, the analyses of samples taken at different ground's depths confirmed their presence. This paper presents the methodology used to calculate the derived concentration level to ensure that the reference dose level of 0.1 mSv y-1 used as radiological criteria. In this study, a radiological impact assessment was performed modeling the area as recreational scenario. The modelization study was carried out with the code RESRAD considering as exposure pathways, external irradiation, inadvertent ingestion of soil, inhalation of resuspended particles, and inhalation of radon (Rn-222). As result was concluded that, if the concentration of Ra-226 in the first 15 cm of soil is lower than, 0.34 Bq g{sup -1}, the dose would not exceed the reference dose. Applying this value as a derived concentration level and comparing with the results of measurements on the ground, some areas with a concentration of activity slightly higher than latter were found. In these zones the remediation proposal has been to cover with a layer of 15 cm of clean material. This action represents a reduction of 85% of the dose and ensures compliance with the reference dose. (authors)« less

  16. Determination of elemental impurities and U and O isotopic compositions with a view to identify the geographical and industrial origins of uranium ore concentrates

    NASA Astrophysics Data System (ADS)

    Salaun, A.; Hubert, A.; Pointurier, F.; Aupiais, J.; Pili, E.; Richon, P.; Fauré, A.; Diallo, S.

    2012-12-01

    First events of illicit trafficking of nuclear and radiological materials occurred 50 years ago. Nuclear forensics expertise are aiming at determining the use of seized material, its industrial history and provenance (geographical area, place of production or processing), at assisting in the identification and dismantling of illicit trafficking networks. This information is also valuable in the context of inspections of declared facilities to verify the consistency of operator's declaration. Several characteristics can be used to determine the origin of uranium ore concentrates such as trace elemental impurity patterns (Keegan et al., 2008 ; Varga et al., 2010a, 2010b) or uranium, oxygen and lead isotopic compositions (Tamborini et al., 2002a, 2002b ; Wallenius et al., 2006; Varga et al., 2009). We developed analytical procedures for measuring the isotopic compositions of uranium (234U/238U and 235U/238U) and oxygen (18O/16O) and levels of elemental impurities (e.g. REE, Th) from very small amounts of uranium ore concentrates (or yellow cakes). Micrometer particles and few milligrams of material are used for oxygen isotope measurements and REE determination, respectively. Reference materials were analyzed by mass spectrometry (TIMS, SF-ICP-MS and SIMS) to validate testing protocols. Finally, materials of unknown origin were analyzed to highlight significant differences and determine whether these differences allow identifying the origin of these ore concentrates. References: Keegan, E., et al. (2008). Applied Geochemistry 23, 765-777. Tamborini, G., et al. (2002a). Analytical Chemistry 74, 6098-6101. Tamborini, G., et al. (2002b). Microchimica Acta 139, 185-188. Varga, Z., et al. (2009). Analytical Chemistry 81, 8327-8334. Varga, Z., et al. (2010a). Talanta 80, 1744-1749. Varga, Z., et al. (2010b). Radiochimica Acta 98, 771-778 Wallenius, M., et al. (2006). Forensic Science International 156, 55-62.

  17. Bioengineered Chimeric Spider Silk-Uranium Binding Proteins

    PubMed Central

    Krishnaji, Sreevidhya Tarakkad; Kaplan, David L.

    2014-01-01

    Heavy metals constitute a source of environmental pollution. Here, novel functional hybrid biomaterials for specific interactions with heavy metals are designed by bioengineering consensus sequence repeats from spider silk of Nephila clavipes with repeats of a uranium peptide recognition motif from a mutated 33-residue of calmodulin protein from Paramecium tetraurelia. The self-assembly features of the silk to control nanoscale organic/inorganic material interfaces provides new biomaterials for uranium recovery. With subsequent enzymatic digestion of the silk to concentrate the sequestered metals, options can be envisaged to use these new chimeric protein systems in environmental engineering, including to remediate environments contaminated by uranium. PMID:23212989

  18. Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2007-01-01

    The analysis of impurities in uranium matrices is performed in a variety of fields, e.g. for quality control in the production stream converting uranium ores to fuels, as element signatures in nuclear forensics and safeguards, and for non-proliferation control. We have investigated the capabilities of time-of-flight ICP-MS for the analysis of impurities in uranium matrices using a matrix-matched method. The method was applied to the New Brunswick Laboratory CRM 124(1-7) series. For the seven certified reference materials, an overall precision and accuracy of approximately 5% and 14%, respectively, were obtained for 18 analyzed elements.

  19. Dupoly process for treatment of depleted uranium and production of beneficial end products

    DOEpatents

    Kalb, Paul D.; Adams, Jay W.; Lageraaen, Paul R.; Cooley, Carl R.

    2000-02-29

    The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

  20. Development of a Water Soluble Foam Packaging Material

    DTIC Science & Technology

    1975-01-01

    Material, Expanded Polystyrene , Looae-Fill Bulk and standard properties were established. Additional investigations conducted on the loose-fill samples...mechanical properties when tested as described in Federal Specification PPP-O-1683; Cushioning Material, Expanded Polystyrene , Loose-Fill Bulk. The following

  1. Optimization of Uranium-Doped Americium Oxide Synthesis for Space Application.

    PubMed

    Vigier, Jean-François; Freis, Daniel; Pöml, Philipp; Prieur, Damien; Lajarge, Patrick; Gardeur, Sébastien; Guiot, Antony; Bouëxière, Daniel; Konings, Rudy J M

    2018-04-16

    Americium 241 is a potential alternative to plutonium 238 as an energy source for missions into deep space or to the dark side of planetary bodies. In order to use the 241 Am isotope for radioisotope thermoelectric generator or radioisotope heating unit (RHU) production, americium materials need to be developed. This study focuses on the stabilization of a cubic americium oxide phase using uranium as the dopant. After optimization of the material preparation, (Am 0.80 U 0.12 Np 0.06 Pu 0.02 )O 1.8 has been successfully synthesized to prepare a 2.96 g pellet containing 2.13 g of 241 Am for fabrication of a small scale RHU prototype. Compared to the use of pure americium oxide, the use of uranium-doped americium oxide leads to a number of improvements from a material properties and safety point of view, such as good behavior under sintering conditions or under alpha self-irradiation. The mixed oxide is a good host for neptunium (i.e., the 241 Am daughter element), and it has improved safety against radioactive material dispersion in the case of accidental conditions.

  2. Reactor Physics Measurements and Benchmark Specifications for Oak Ridge Highly Enriched Uranium Sphere (ORSphere)

    DOE PAGES

    Marshall, Margaret A.

    2014-11-04

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an effort to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with themore » GODIVA I experiments. Additionally, various material reactivity worths, the surface material worth coefficient, the delayed neutron fraction, the prompt neutron decay constant, relative fission density, and relative neutron importance were all measured. The critical assembly, material reactivity worths, the surface material worth coefficient, and the delayed neutron fraction were all evaluated as benchmark experiment measurements. The reactor physics measurements are the focus of this paper; although for clarity the critical assembly benchmark specifications are briefly discussed.« less

  3. Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, J.S.; Skinner, D.L.; Rader, L.F.

    1957-01-01

    Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.

  4. The Robinson and Weatherly uraniferous pyrobitumen deposits near Placerville, San Miguel County, Colorado

    USGS Publications Warehouse

    Wilmarth, V.R.; Vickers, R.C.

    1953-01-01

    Uranium deposits that contain uraniferous pyrobitumen of possible hydrothermal origin occur at the Weatherly and Robinson properties near Placerville, San Miguel County, Colo. These deposits were mined for copper, silver, and gold more than 50 years ago and were developed for uranium in 1950. The Robinson property, half a mile east of Placerville, consists of the White Spar, New Discovery Lode, and Barbara Jo claims. The rocks in this area are nearly horizontal sandstones, shales, limestones, and conglomerates of the Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. These rocks have been faulted extensively and intruded by a Tertiary (?) andesite porphyry dike. Uranium-bearing pyrobitumen associated with tennantite, tetrahedrite, galena, sphalerite, chalcopyrite, bornite, azurite, malachite, calcite, barite, and quartz occurs in a lenticular body as much as 40 feet long and 6 feet wide along a northwest-trending, steeply dipping normal fault. The uranium content of eleven samples from the uranium deposit ranges from 0.001 to 0.045 percent uranium and averages about 0.02 percent uranium. The Weatherly property, about a mile northwest of Placerville, consists of the Black King claims nos. 1, 4, and 5. The rocks in this area include the complexly faulted Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. Uranium-bearing pyrobitumen arid uranophane occur, along a northwest-trending, steeply dipping normal fault and in the sedimentary rocks on the hanging wall of the fault. Lens-shaped deposits in the fault zone are as much as 6 feet long and 2 feet wide and contain as much as 9 percent uranium; whereas channel samples across the fault zone contain from 0.001 to 0.014 percent uranium. Tetrahedrite, chalcopyrite, galena, sphalerite, fuchsite, malachite, azurite, erythrite, bornite, and molybdite in a gangue of pyrite, calcite, barite, and quartz are associated with the uraniferous material. In the sedimentary rocks on the hanging wall, uranium-bearing pyrobitumen occurs in replacement lenses as much as,8 inches wide and 6 feet long, and in nodules as much as 6 inches in diameter for approximately 100 feet away from the fault. Pyrite and calcite are closely associated with the uraniferous material in the sedimentary rocks. Samples from the replacement bodies contain from 0. 007 to 1.4 percent uranium.

  5. Gap Fill Materials Using Cyclodextrin Derivatives in ArF Lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi; Hashimoto, Keisuke

    2007-11-01

    High planarizing gap fill materials based on β-cyclodextrin in ArF photoresist under-layer materials have been developed for fast etching in CF4 gas. Gap fill materials used in the via-first dual damascene process need to have high etch rates to prevent crowning or fencing on top of the trench after etching and a small thickness bias between the dense and blanket areas to minimize issues observed during trench lithography by narrowing the process latitude. Cyclodextrin is a circular oligomer with a nanoscale porous structure that has a high number of oxygen atoms, as calculated using the Ohnishi parameter, providing high etch rates. Additionally, since gap fill materials using cyclodextrin derivatives have low viscosities and molecular weights, they are expected to exhibit excellent flow properties and minimal thermal shrinkage during baking. In this paper, we describe the composition and basic film properties of gap fill materials; planarization in the via-first dual damascene process and etch rates in CF4 gas compared with dextrin with α-glycoside bonds in polysaccharide, poly(2-hydroxypropyl methacrylate) and poly(4-hydroxystyrene). The β-cyclodextrin used in this study was obtained by esterifying the hydroxyl groups of dextrin resulting in improved wettability on via substrates and solubility in photoresist solvents such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and ethyl lactate. Gap fill materials using cyclodextrin derivatives showed good planarization and via filling performance without observing voids in via holes. In addition to superior via filling performance, the etch rate of gap fill materials using β-cyclodextrin derivatives was 2.8-2.9 times higher than that of an ArF photoresist, evaluated under CF4 gas conditions by reactive ion etching. These results were attributed to the combination of both nanoscale porous structures and a high density of oxygen atoms in our gap fill materials using cyclodextrin derivatives. The cyclodextrin derivatives may be applicable as a new type of sacrificial material under the photoresist in ArF lithography.

  6. TOF-SIMS for Rapid Nuclear Forensics Evaluation of Uranium Oxide Particles

    DTIC Science & Technology

    2011-03-01

    Fraction U-238 nU U metal CRM 112-A NBL Metal Assay and Isotopic .000052458 .0072017 --- .9927458 nUO2 UO2 --- NBL Commercial material...0 .992745 dU U metal CRM 115 NBL Uranium Assay .0000076 .0020291 .0000322 .9979311 dUO2 UO2 --- IBI Labs Commercial material --- .002- .0035...U500* U3O8 CRM U500 NBL Isotopic .005181 .49696 .000755 .49711 U900* U3O8 CRM U900 NBL Isotopic .007777 .90196 .003327 .08693 *Sample

  7. Geology of the Midnite uranium mine, Stevens County, Washington; a preliminary report

    USGS Publications Warehouse

    Nash, J. Thomas; Lehrman, Norman J.

    1975-01-01

    The Midnite mine is one of only two mines in the United States currently producing uranium from discordant deposits in crystalline host rocks. Ore bodies are in metamorphosed steeply dipping Precambrian pelitic and calcareous rocks of a roof pendant adjacent to a Cretaceous(?) porphyritic quartz monzonite pluton. Production during 14 years, of operation has been about 8 million pounds of U3O8 from oxidized and reduced ores averaging 0.23 percent U3O8. Uranium deposits are generally tabular in form and dimensions range up to 380 m long, 210 m wide, and 50 m thick. Deposits are bounded on at least one side by unmineralized intrusive ribs of granitic rock, and thickest mineralized zones invariably occur at depressions in the intrusive contact. Upper limits of some deposits are nearly horizontal, and upper elevations of adjacent mineralized zones separated by ribs of granite are similar. Near surface ore is predominantly autunite, but ore at depth consists of pitchblende and coffinite with abundant pyrite and marcasite. Uranium minerals occur as .disseminations along foliation, replacements, and stockwork fracture-fillings. No stratigraphic controls on ore deposition are recognized. Rather, mineralized zones cut across lithologic boundaries if permeability is adequate. Most ore is in muscovite schist and mica phyllite, but important deposits occur in calc-silicate hornfels. Amphibolite sills and mid-Tertiary dacite dikes locally, carry ore where intensely fractured. High content of iron and sulfur, contained chiefly in FeS2, appear to be an important feature of favorable host rocks. Geometry of deposits, structural, and geochemical features suggest that uranium minerals were deposited over a span of time from late Cretaceous to late Tertiary. Ore occurs in but is not offset by a shear zone that displaces mid-Tertiary rocks.. Economic zones of uranium are interpreted to have been secondarily enriched in late Tertiary time by downward and lateral migration of uranium into permeable zones where deposition was influenced by ground water controls and minerals that could reduce or neutralize uranium-bearing solutions.

  8. Uranium Conversion & Enrichment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U 3O 8 yellowcake into UF 6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  9. Volatile fluoride process for separating plutonium from other materials

    DOEpatents

    Spedding, F. H.; Newton, A. S.

    1959-04-14

    The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

  10. VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS

    DOEpatents

    Spedding, F.H.; Newton, A.S.

    1959-04-14

    The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

  11. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    DOEpatents

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  12. Sedimentology of the lower part of the Upper Triassic Chinle Formation and its relationship to uranium deposits, White Canyon area, southeastern Utah

    USGS Publications Warehouse

    Dubiel, Russell F.

    1983-01-01

    Closely spaced measured stratigraphic sections of the lower part of the Late Triassic Chinle Formation in the White Canyon area of southeastern Utah depict a fluvial-deltaic-lacustrine depositional sequence that hosts uranium deposits in basal fluvial sandstones. The basal Shinarump Member consists of predominantly trough-crossbedded, coarse-grained sandstone and minor gray, carbonaceous mudstone and is interpreted as a valley-fill sequence overlain by deposits of a braided stream system. The overlying Monitor Butte Member is composed of cyclic- and foreset-bedded siltstone, sandstone, and mudstone and is interpreted as a succession of low-energy fluvial, deltaic and orqanicrich, lacustrine-marsh sediments. The overlying Moss Back Member is composed of a laterally extensive, coarse- to medium-grained, conglomeratic sandstone and is interpreted as a braided-stream system that flowed north to northwest. The entire sequence was deposited in response to changes in local base level associated with a large lake that lay to the west. Isopachs of lithofacies indicate distinct lacustrine basins and a correspondence between these facies and modern structural synclines. Facies changes and coincidence of isopach thicks suggest that structural synclines were active in the Late Triassic and influenced the pattern of sediment distribution within the basins. Uranium mineralization appears to be related to certain low-energy depositional environments in that uranium is localized in fluvial sandstones that lie beneath organic-rich lacustrine-marsh mudstones and carbonaceous delta-front sediments. The reducing environment preserved in these facies may have played an important role in the localization of uranium.

  13. Vapor core propulsion reactors

    NASA Technical Reports Server (NTRS)

    Diaz, Nils J.

    1991-01-01

    Many research issues were addressed. For example, it became obvious that uranium tetrafluoride (UF4) is a most preferred fuel over uranium hexafluoride (UF6). UF4 has a very attractive vaporization point (1 atm at 1800 K). Materials compatible with UF4 were looked at, like tungsten, molybdenum, rhenium, carbon. It was found that in the molten state, UF4 and uranium attacked most everything, but in the vapor state they are not that bad. Compatible materials were identified for both the liquid and vapor states. A series of analyses were established to determine how the cavity should be designed. A series of experiments were performed to determine the properties of the fluid, including enhancement of the electrical conductivity of the system. CFD's and experimental programs are available that deal with most of the major issues.

  14. On the atomic-number similarity of the binding energies of electrons in filled shells of elements of the periodic table

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpov, V. Ya.; Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru

    An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electronsmore » in an arbitrary atom.« less

  15. U.S. Nuclear Cooperation with India: Issues for Congress

    DTIC Science & Technology

    2010-09-30

    to supply uranium,” The Hindu, January 25, 2009; Kazakhstan might start uranium exports to India in 2009,” Panorama , February 6, 2009. “Chennai Daily...93-485 amended Section 123 d. to include agreements that covered reactors producing more than 5 MW thermal or special nuclear material connected

  16. 49 CFR 173.417 - Authorized fissile materials packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for export and import shipments. (2) A residual “heel” of enriched solid uranium hexafluoride may be... “Heel” in a Specification 7A Cylinder) Maximum cylinder diameter Centimeters Inches Cylinder volume Liters Cubic feet Maximum Uranium 235-enrichment (weight)percent Maximum “Heel” weight per cylinder UF6...

  17. 49 CFR 173.417 - Authorized fissile materials packages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for export and import shipments. (2) A residual “heel” of enriched solid uranium hexafluoride may be... “Heel” in a Specification 7A Cylinder) Maximum cylinder diameter Centimeters Inches Cylinder volume Liters Cubic feet Maximum Uranium 235-enrichment (weight)percent Maximum “Heel” weight per cylinder UF6...

  18. 78 FR 23312 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico..., Division of Fuel Cycle Safety, and Safeguards Office of Nuclear Material Safety, and Safeguards. [FR Doc...

  19. Efficacy of xylene and passive ultrasonic irrigation on remaining root filling material during retreatment of anatomically complex teeth.

    PubMed

    Cavenago, B C; Ordinola-Zapata, R; Duarte, M A H; del Carpio-Perochena, A E; Villas-Bôas, M H; Marciano, M A; Bramante, C M; Moraes, I G

    2014-11-01

    To evaluate the volume of remaining filling material in the mesial root canals of mandibular molars after root canal retreatment with different procedures performed sequentially. The mesial root canals of 12 human first mandibular molars were instrumented using the BioRace system until a size 25, .06 taper instrument. The mesial roots were filled with gutta-percha and AH-Plus using a vertical compaction technique. The specimens were scanned using microcomputed tomography with a voxel size of 16.8 μm before and after the retreatment procedures. To remove the filling material, the root canals were enlarged until the size 40, .04 taper instrument. The second step was to irrigate the root canals with xylene in the attempt to clean the root canals with paper points. In the third step, the passive ultrasonic irrigation technique (PUI) was performed using 2.5% sodium hypochlorite. The initial and residual filling material volume (mm(3) ) after each step was evaluated from the 0.5 to 6.5 mm level. The obtained data were expressed in terms of percentage of residual filling material. Statistical analysis was performed using the Friedman test (P < 0.05). All specimens had residual filling materials after all retreatment procedures. Passive ultrasonic irrigation enhanced the elimination of residual filling material in comparison with the mechanical stage at the 0.5-2.5 mm and 4.5-6.5 mm levels (P < 0.05). No significant difference was found between xylene and PUI methods. Filling materials were not completely removed by any of the retreatment procedures. The use of xylene and PUI after mechanical instrumentation enhanced removal of materials during endodontic retreatment of anatomically complex teeth. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Effectiveness of rotary or manual techniques for removing a 6-year-old filling material.

    PubMed

    Duarte, Marco Antônio Hungaro; Só, Marcus Vinícius Reis; Cimadon, Vanessa Buffon; Zucatto, Cristiane; Vier-Pelisser, Fabiana Vieira; Kuga, Milton Carlos

    2010-01-01

    The aim of this study was to evaluate the effectiveness of manual and rotary instrumentation techniques for removing root fillings after different storage times. Twenty-four canals from palatal roots of human maxillary molars were instrumented and filled with gutta-percha and zinc-oxide eugenol-based sealer (Endofill) , and were stored in saline for 6 years. Non-aged control specimens were treated in the same manner and stored for 1 week. All canals were retreated using hand files or ProTaper Universal NiTi rotary system. Radiographs were taken to determine the amount of remaining material in the canals. The roots were vertically split, the halves were examined with a clinical microscope and the obtained images were digitized. The images were evaluated with AutoCAD software and the percentage of residual material was calculated. Data were analyzed with two-way ANOVA and Tukey's test at 5% significance level. There was no statistically significant differences (p>0.05) between the manual and rotary techniques for filling material removal regardless the ageing effect on endodontic sealers. When only the age of the filling material was analyzed microscopically, non-aged fillings that remained on the middle third of the canals presented a higher percentage of material remaining (p<0.05) compared to the aged sealers and to the other thirds of the roots. The apical third showed a higher percentage of residual filling material in both radiographic and microscopic analysis when compared to the other root thirds. In conclusion, all canals presented residual filling material after endodontic retreatment procedures. Microscopic analysis was more effective than radiographs for detection of residual filling material.

  1. Newly recognized hosts for uranium in the Hanford Site vadose zone

    USGS Publications Warehouse

    Stubbs, J.E.; Veblen, L.A.; Elbert, D.C.; Zachara, J.M.; Davis, J.A.; Veblen, D.R.

    2009-01-01

    Uranium contaminated sediments from the U.S. Department of Energy's Hanford Site have been investigated using electron microscopy. Six classes of solid hosts for uranium were identified. Preliminary sediment characterization was carried out using optical petrography, and electron microprobe analysis (EMPA) was used to locate materials that host uranium. All of the hosts are fine-grained and intergrown with other materials at spatial scales smaller than the analytical volume of the electron microprobe. A focused ion beam (FIB) was used to prepare electron-transparent specimens of each host for the transmission electron microscope (TEM). The hosts were identified as: (1) metatorbernite [Cu(UO2)2(PO4)2??8H2O]; (2) coatings on sediment clasts comprised mainly of phyllosilicates; (3) an amorphous zirconium (oxyhydr)oxide found in clast coatings; (4) amorphous and poorly crystalline materials that line voids within basalt lithic fragments; (5) amorphous palagonite surrounding fragments of basaltic glass; and (6) Fe- and Mn-oxides. These findings demonstrate the effectiveness of combining EMPA, FIB, and TEM to identify solid-phase contaminant hosts. Furthermore, they highlight the complexity of U geochemistry in the Hanford vadose zone, and illustrate the importance of microscopic transport in controlling the fate of contaminant metals in the environment. ?? 2008 Elsevier Ltd.

  2. Study of Chemical Changes in Uranium Oxyfluoride Particles Progress Report March - October 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kips, R; Kristo, M; Hutcheon, I

    2009-11-22

    Nuclear forensics relies on the analysis of certain sample characteristics to determine the origin and history of a nuclear material. In the specific case of uranium enrichment facilities, it is the release of trace amounts of uranium hexafluoride (UF{sub 6}) gas - used for the enrichment of uranium - that leaves a process-characteristic fingerprint. When UF{sub 6} gas interacts with atmospheric moisture, uranium oxyfluoride particles or particle agglomerates are formed with sizes ranging from several microns down to a few tens of nanometers. These particles are routinely collected by safeguards organizations, such as the International Atomic Energy Agency (IAEA), allowingmore » them to verify whether a facility is compliant with its declarations. Spectrometric analysis of uranium particles from UF{sub 6} hydrolysis has revealed the presence of both particles that contain fluorine, and particles that do not. It is therefore assumed that uranium oxyfluoride is unstable, and decomposes to form uranium oxide. Understanding the rate of fluorine loss in uranium oxyfluoride particles, and the parameters that control it, may therefore contribute to placing boundaries on the particle's exposure time in the environment. Expressly for the purpose of this study, we prepared a set of uranium oxyfluoride particles at the Institute for Reference Materials and Measurements (EU-JRC-IRMM) from a static release of UF{sub 6} in a humid atmosphere. The majority of the samples was stored in controlled temperature, humidity and lighting conditions. Single particles were characterized by a suite of micro-analytical techniques, including NanoSIMS, micro-Raman spectrometry (MRS), scanning (SEM) and transmission (TEM) electron microscopy, energy-dispersive X-ray spectrometry (EDX) and focused ion beam (FIB). The small particle size was found to be the main analytical challenge. The relative amount of fluorine, as well as the particle chemical composition and morphology were determined at different stages in the ageing process, and immediately after preparation. This report summarizes our most recent findings for each of the analytical techniques listed above, and provides an outlook on what remains to be resolved. Additional spectroscopic and mass spectrometric measurements were carried out at Pacific Northwest National Laboratory, but are not included in this summary.« less

  3. Comparison of hardness of three temporary filling materials cured by two light-curing devices.

    PubMed

    Bodrumlu, E; Koçak, M M; Hazar Bodrumlu, E; Ozcan, S; Koçak, S

    2014-01-01

    Polymerization ability of light-curing devices can affect the light-cured material hardness. The purpose of the present study was to evaluate and compare the hardness of three temporary filling materials that had been light-cured by either a light emitting diode (LED) or a halogen light-curing unit. The temporary filling materials, First Fill, Voco Clip and Bioplic, were placed in wells in a Teflon plate. The 24 specimens of each material were divided into two groups (N.=12/group) for photo-activation by either of the two light-curing units. The LED or halogen device was applied for 40s to the top surface of each specimen. A Knoop hardness test was performed on the top and bottom surface of each specimen, with five measurements per specimen. The highest hardness values for both the LED and halogen treated groups were observed for First Fill and the lowest values were for Voco Clip in top and bottom surfaces. The hardness obtained for the three materials with the halogen unit were significantly higher than the values obtained with the LED unit in both surfaces (P<0.05). First Fill light-cured temporary material exhibited the highest hardness values on the top and bottom surfaces than Voco Clip and Bioplic temporary materials. The hardness of light-cured temporary filling materials can be affected by the type of light-curing unit.

  4. Thermal conductivity and emissivity measurements of uranium carbides

    NASA Astrophysics Data System (ADS)

    Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Zanonato, P.; Tusseau-Nenez, S.

    2015-10-01

    Thermal conductivity and emissivity measurements on different types of uranium carbide are presented, in the context of the ActiLab Work Package in ENSAR, a project within the 7th Framework Program of the European Commission. Two specific techniques were used to carry out the measurements, both taking place in a laboratory dedicated to the research and development of materials for the SPES (Selective Production of Exotic Species) target. In the case of thermal conductivity, estimation of the dependence of this property on temperature was obtained using the inverse parameter estimation method, taking as a reference temperature and emissivity measurements. Emissivity at different temperatures was obtained for several types of uranium carbide using a dual frequency infrared pyrometer. Differences between the analyzed materials are discussed according to their compositional and microstructural properties. The obtainment of this type of information can help to carefully design materials to be capable of working under extreme conditions in next-generation ISOL (Isotope Separation On-Line) facilities for the generation of radioactive ion beams.

  5. Encapsulation of thermal energy storage media

    DOEpatents

    Goswami, Dharendra Yogi; Stefanakos, Elias K.; Jotshi, Chand K.; Dhau, Jaspreet

    2018-01-30

    In one embodiment, a method for fabricating a ceramic phase change material capsule includes forming a hollow ceramic capsule body having a filling hole, filling the ceramic capsule body with one or more phase change materials via the filling hole, and closing and sealing the filling hole.

  6. Method to planarize three-dimensional structures to enable conformal electrodes

    DOEpatents

    Nikolic, Rebecca J; Conway, Adam M; Graff, Robert T; Reinhardt, Catherine; Voss, Lars F; Shao, Qinghui

    2012-11-20

    Methods for fabricating three-dimensional PIN structures having conformal electrodes are provided, as well as the structures themselves. The structures include a first layer and an array of pillars with cavity regions between the pillars. A first end of each pillar is in contact with the first layer. A segment is formed on the second end of each pillar. The cavity regions are filled with a fill material, which may be a functional material such as a neutron sensitive material. The fill material covers each segment. A portion of the fill material is etched back to produce an exposed portion of the segment. A first electrode is deposited onto the fill material and each exposed segment, thereby forming a conductive layer that provides a common contact to each the exposed segment. A second electrode is deposited onto the first layer.

  7. K-Rb Laser Pump Lamp

    DTIC Science & Technology

    1975-11-01

    for K-Rb Lamps With Xenon and Argon Figure 25 Specimen for Protective Coating Evaluation 65 Figure 26 Specimen Coated With Fused Tin- Aluminide After...through hot titanium and copper purifiers to maia.in low levels (a few ppm) of oxygen, nitrogen and water vapor. The box also contains an integral...case with titanium , zirconium, thorium, and other common reactive metals. 15 - -’-- .--󈨑CP>4 -_ A thin strip of uranium is inserted into the fill

  8. TOPICAL REVIEW Recent developments in inorganically filled carbon nanotubes: successes and challenges

    NASA Astrophysics Data System (ADS)

    Gautam, Ujjal K.; Costa, Pedro M. F. J.; Bando, Yoshio; Fang, Xiaosheng; Li, Liang; Imura, Masataka; Golberg, Dmitri

    2010-10-01

    Carbon nanotubes (CNTs) are a unique class of nanomaterials that can be imagined as rolled graphene sheets. The inner hollow of a CNT provides an extremely small, one-dimensional space for storage of materials. In the last decade, enormous effort has been spent to produce filled CNTs that combine the properties of both the host CNT and the guest filling material. CNTs filled with various inorganic materials such as metals, alloys, semiconductors and insulators have been obtained using different synthesis approaches including capillary filling and chemical vapor deposition. Recently, several potential applications have emerged for these materials, such as the measurement of temperature at the nanoscale, nano-spot welding, and the storage and delivery of extremely small quantities of materials. A clear distinction between this class of materials and other nanostructures is the existence of an enormous interfacial area between the CNT and the filling matter. Theoretical investigations have shown that the lattice mismatch and strong exchange interaction of CNTs with the guest material across the interface should result in reordering of the guest crystal structure and passivation of the surface dangling bonds and thus yielding new and interesting physical properties. Despite preliminary successes, there remain many challenges in realizing applications of CNTs filled with inorganic materials, such as a comprehensive understanding of their growth and physical properties and control of their structural parameters. In this article, we overview research on filled CNT nanomaterials with special emphasis on recent progress and key achievements. We also discuss the future scope and the key challenges emerging out of a decade of intensive research on these fascinating materials.

  9. Variable dimensionality in the uranium fluoride/2-methyl-piperazine system: Synthesis and structures of UFO-5, -6, and -7; Zero-, one-, and two-dimensional materials with unprecedented topologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, R.J.; Halasyamani, P.S.; Bee, J.S.

    Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-,more » and two-dimensional materials.« less

  10. Exploration for uranium deposits in the Atkinson Mesa area, Montrose County, Colorado

    USGS Publications Warehouse

    Brew, Daniel Allen

    1954-01-01

    The U.S. Geological Survey explored the Atkinson Mesa area for uranium- and vanadium-bearing deposits from July 2, 1951, to June 18, 1953, with 397 diamond-drill holes that totaled 261,251 feet. Sedimentary rocks of Mesozoic age are exposed in the Atkinson Mesa area. They are: the Brushy Basin member of the Upper Jurassic Morrison formation, the Lower Cretaceous Burro Canyon formation, and the Upper and Lower Cretaceous Dakota sandstone. All of the large uranium-vanadium deposits discovered by Geological Survey drilling are in a series of sandstone lenses in the upper part of the Salt Wash member of the Jurassic Morrison formation. The deposits are mainly tabular and blanket-like, but some elongate pod-shaped masses, locally called "rolls" may be present. The mineralized material consists of sandstone impregnated with a uranium mineral which is probably coffinite, spme carnotite, and vanadium minerals, thought to be mainly corvusite and montroseite. In addition,, some mudstone and carbonaceous material is similarly impregnated. Near masses of mineralized material the sandstone is light gray or light brown, is generally over 40 feet thick, and usually contains some carbonaceous material and abundant disseminated pyrite or limonite stain. Similarly, the mudstone in contact with the ore-bearing sandstone near bodies of mineralized rock is commonly blue gray, as compared to its dominant red color away from ore deposits. Presence and degree of these features are useful guides in exploring for new deposits.

  11. Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Campbell, Keri R.; Wozniak, Nicholas R.; Colgan, James P.; Judge, Elizabeth J.; Barefield, James E.; Kilcrease, David P.; Wilkerson, Marianne P.; Czerwinski, Ken R.; Clegg, Samuel M.

    2017-08-01

    Nuclear forensics goals for characterizing samples of interest include qualitative and quantitative analysis of major and trace elements, isotopic analysis, phase identification, and physical analysis. These samples may include uranium oxides UO2, U3O8, and UO3, which play an important role in the front end of the nuclear fuel cycle, from mining to fuel fabrication. The focus of this study is to compare the ratios of the intensities of uranium and oxygen emission lines which can be used to distinguish between different uranium oxide materials using Laser-Induced Breakdown Spectroscopy (LIBS). Measurements at varying laser powers were made under an argon atmosphere at 585 Torr to ensure the oxygen emission intensity was originating from the sample, and not from the atmosphere. Fifteen uranium emission lines were used to compare experimental results with theoretical calculations in order to determine the plasma conditions. Using a laser energy of 26 mJ, the uranium lines 591.539 and 682.692 nm provide the highest degree of discrimination between the uranium oxides. The study presented here suggests that LIBS is useful for discriminating uranium oxide phases, UO2, U3O8, and UO3.

  12. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNamara, Bruce K.; O’Hara, Matthew J.; Casella, Andrew M.

    2016-07-01

    Abstract: We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other uranium compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within the chamber to a highly predictable degree. We demonstrate the preparation of uranium deposits that range between ~0.01 and 470±34 ng∙cm-2. The data suggest the method can be extended to creating depositions at the sub-picogram∙cm-2 level. Additionally, the isotopic composition of the deposits can be customized by selection of the uranium source materials. Wemore » demonstrate a layering technique whereby two uranium solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit of UF6 that bears an isotopic signature that is a composite of the two uranium sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics.« less

  13. High frequency EMI sensing for estimating depleted uranium radiation levels in soil

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; Barrowes, Benjamin E.; Ballard, John; Unz, Ron; Randle, Adam; Larson, Steve L.; O'Neill, Kevin A.

    2018-04-01

    This paper studies high (100 kHz up to 15 MHz) frequency electromagnetic responses (HFEMI) for DU metallic pieces and DU contaminated soils and derives a simple empirical expression from the measured HFEMI data for estimating DU contamination levels in soil. Depleted uranium (DU) is the byproduct of uranium enrichment and contains 33% less radioactive isotopes than natural uranium. There are at least thirty facilities at fourteen separate locations in the US, where munitions containing DU have been evaluated or used for training. At these sites, which vary in size, evaluation studies have been conducted with and without catch boxes. In addition, the DoD used DU at open firing ranges as large as thousands of acres (hundreds of hectares), for both artillery and aircraft training. These activities have left a legacy of DU contamination. Currently at military sites where DU munitions have been or are being used, cleanup activities mainly are done by excavating and shipping large volumes of site soil and berm materials to a hazardous material radiation disposal site. This approach is very time consuming, costly, and associated with the potential for exposure of personnel performing excavation and transportation. It also limits range use during the operation. So, there is an urgent need for technologies for rapid surveying of large areas to detect, locate, and removal of DU contaminants at test sites. Additionally, the technologies are needed to detect material at a depth of at least 30 cm as well as discriminate between DU metals and oxides from natural uranium and from other conductive metals such as natural and man-made range clutter. One of the potential technologies for estimating DU radiation levels in soils is HFEMI sensing. In this paper, HFEMI signals are collected for DU metal pieces, sodium diunarate (Na2U2 O3) and tri-uranium octoxide (U3O8). The EMI signal's sensitivity with respect to DU material composition and conditions are illustrated and analyzed. A new scheme for extracting near-surface soil's EM parameters is formulated.

  14. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, Albert J.; Dykes, Norman L.

    1984-01-01

    The present invention is directed to a brazing material for joining graphite structures that can be used at temperatures up to about 2800.degree. C. The brazing material formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600.degree. C. with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800.degree. C. so as to provide a brazed joint consisting essentially of hafnium carbide. This brazing temperature for hafnium carbide is considerably less than the eutectic temperature of hafnium carbide of about 3150.degree. C. The brazing composition also incorporates the thermosetting resin so that during the brazing operation the graphite structures may be temporarily bonded together by thermosetting the resin so that machining of the structures to final dimensions may be completed prior to the completion of the brazing operation. The resulting brazed joint is chemically and thermally compatible with the graphite structures joined thereby and also provides a joint of sufficient integrity so as to at least correspond with the strength and other properties of the graphite.

  15. Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS)

    DOE PAGES

    Manard, Benjamin T.; Wylie, E. Miller; Willson, Stephen P.

    2018-05-22

    In this paper, a portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb)more » were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). Finally, it was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.« less

  16. Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manard, Benjamin T.; Wylie, E. Miller; Willson, Stephen P.

    In this paper, a portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb)more » were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). Finally, it was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.« less

  17. Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS).

    PubMed

    Manard, Benjamin T; Wylie, E Miller; Willson, Stephen P

    2018-01-01

    A portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb) were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). It was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.

  18. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE PAGES

    Balboni, Enrica; Jones, Nina; Spano, Tyler; ...

    2016-08-31

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  19. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Enrica; Jones, Nina; Spano, Tyler

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  20. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOEpatents

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  1. DUPoly process for treatment of depleted uranium and production of beneficial end products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalb, P.D.; Adams, J.W.; Lageraaen, P.R.

    2000-02-29

    The present invention provides a process of encapsulating depleted uranium by forming a homogeneous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships,more » missiles, armor or projectiles.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, S.A.; Lotts, A.L.; Hammond, J.P.

    Uranium --molybdenum alloy rods containing from 10 to 15 wt% Mo and 1/16- in. in diameter were successfully fabricated by hot rotary swaging, followed by machining to remove the protective sheathing (Inconel with molybdenum barrier). Structurally strong rods with densities greater than 95% of theoretical were produced from both calciumreduced uranium mixed with hydrogen-reduced molybdenum and acid-cleaned, prealloyed shot when reduced in area about 55% at 1050 or 1100 deg C. Alloy homogeneity was good with prealloyed powders; however, traces of molybdenum -rich, gamma phase persisted in the elemental uranium -molybdenum material after swaging at 1100 deg C. Swagings embodyingmore » hydride uranium or oxide- contaminated prealloyed shot were unsatisfactory because of insufficient consolidation or poor interparticle bonding. (auth)« less

  3. Photocatalytic decomposition of Rhodamine B on uranium-doped mesoporous titanium dioxide

    DOE PAGES

    Liu, Yi; Becker, Blake; Burdine, Brandon; ...

    2017-04-13

    Mesoporous uranium-doped TiO 2 anatase materials were studied to determine the influence of U-doping on the photocatalytic properties for Rhodamine B (RhB) degradation. The physico-chemical properties of the samples were characterized and the results of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy demonstrate homogeneous incorporation of uranium into the anatase lattice. X-ray photoelectron spectroscopy of the doped anatase confirmed the dominance of the U 4+ species and an increasing proportion of U 6+ species as the uranium doping was increased. The absorption thresholds of the uranium-doped anatase extended into the visible light region. A synergistic effect of the bandmore » gap energy and oxidation state of the dopant contribute to an enhanced photocatalytic capability for RhB degradation by U-doped TiO 2.« less

  4. Photocatalytic decomposition of Rhodamine B on uranium-doped mesoporous titanium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi; Becker, Blake; Burdine, Brandon

    Mesoporous uranium-doped TiO 2 anatase materials were studied to determine the influence of U-doping on the photocatalytic properties for Rhodamine B (RhB) degradation. The physico-chemical properties of the samples were characterized and the results of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy demonstrate homogeneous incorporation of uranium into the anatase lattice. X-ray photoelectron spectroscopy of the doped anatase confirmed the dominance of the U 4+ species and an increasing proportion of U 6+ species as the uranium doping was increased. The absorption thresholds of the uranium-doped anatase extended into the visible light region. A synergistic effect of the bandmore » gap energy and oxidation state of the dopant contribute to an enhanced photocatalytic capability for RhB degradation by U-doped TiO 2.« less

  5. Report on {open_quotes}audit of internal controls over special nuclear materials{close_quotes}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    The Department of Energy (Department) is responsible for safeguarding a significant amount of plutonium, uranium-233 and enriched uranium - collectively referred to as special nuclear materials - stored in the United States. The Department`s office of Nonproliferation and National Security has overall management cognizance for developing policies for safeguarding these materials, while other Headquarters program offices have {open_quotes}landlord{close_quotes} responsibilities for the sites where the materials are stored, and the Department`s operations and field offices provide onsite management of contractor operations. The Department`s management and operating contractors, under the direction of the Department, safeguard and account for the special nuclear materialmore » stored at Department sites.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan E. Bland

    Montana-Dakota Utilities (MDU) and Western Research Institute (WRI) have been developing flowable fill materials formulated using ash from the Montana-Dakota Utilities R. M. Heskett Station in Mandan, North Dakota. MDU and WRI have partnered with the U.S. Department of Energy (DOE) and the North Dakota Industrial Commission (NDIC) to further the development of these materials for lignite-fired fluidized-bed combustion (FBC) facilities. The MDU controlled density fill (CDF) appears to be a viable engineering material and environmentally safe. WRI is pursuing the commercialization of the technology under the trademark Ready-Fill{trademark}. The project objectives were to: (1) assess the market in themore » Bismarck-Mandan area; (2) evaluate the geotechnical properties and environmental compatibility; and (3) construct and monitor demonstrations of the various grades of flowable fill products in full-scale demonstrations. The scope of initial phase of work entailed the following: Task I--Assess Market for MDU Flowable Fill Products; Task II--Assess Geotechnical and Environmental Properties of MDU Flowable Fill Products; and Task III--Demonstrate and Monitor MDU Flowable Fill Products in Field-Scale Demonstrations. The results of these testing and demonstration activities proved the following: (1) The market assessment indicated that a market exists in the Bismarck-Mandan area for structural construction applications, such as sub-bases for residential and commercial businesses, and excavatable fill applications, such as gas line and utility trench filling. (2) The cost of the MDU flowable fill product must be lower than the current $35-$45/cubic yard price if it is to become a common construction material. Formulations using MDU ash and lower-cost sand alternatives offer that opportunity. An estimated market of 10,000 cubic yards of MDU flowable fill products could be realized if prices could be made competitive. (3) The geotechnical properties of the MDU ash-based flowable fill can be modified to meet the needs of a range of applications from structural fill applications to excavatable applications, such as utility trench fill. (4) Environmental assessments using standard testing indicate that the environmental properties of the fill materials are compatible with numerous construction applications and do not pose a threat to either adjacent groundwater or soils. (5) WRI developed an Environmental Field Simulator (EFS) method for assessing the impact of flowable fill materials on adjacent soils and found that the zone of impact is less than a couple of inches, thereby posing no threat to adjacent soils. (6) Field-scale demonstrations of the MDU flowable fill were constructed and were successful for structural, as well as excavatable applications. Monitoring has demonstrated the geotechnical performance, environmental performance, and compatibility with common embed materials with the MDU flowable fill products. Technical and economic issues were identified that may hinder the commercial acceptance of MDU flowable fill materials, including: (1) the ability to produce a consistent product; (2) the ability to provide a product year round (cold weather retards strength development); and (3) the ability to evaluate and produce commercial quantities of MDU flowable fill using inexpensive materials.« less

  7. 10 CFR 40.66 - Requirements for advance notice of export shipments of natural uranium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Requirements for advance notice of export shipments of natural uranium. 40.66 Section 40.66 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Records, Reports, and Inspections § 40.66 Requirements for advance notice of export shipments of...

  8. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designed or prepared electrochemical reduction cells to reduce uranium from one valence state to another for uranium enrichment using the chemical exchange process. The cell materials in contact with process solutions must be corrosion resistant to concentrated hydrochloric acid solutions. The cell cathodic...

  9. 10 CFR 20.2206 - Reports of individual monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2206 Reports...) Operate a nuclear reactor designed to produce electrical or heat energy pursuant to § 50.21(b) or § 50.22... nuclear material in a quantity exceeding 5,000 grams of contained uranium-235, uranium-233, or plutonium...

  10. 10 CFR 20.2206 - Reports of individual monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2206 Reports...) Operate a nuclear reactor designed to produce electrical or heat energy pursuant to § 50.21(b) or § 50.22... nuclear material in a quantity exceeding 5,000 grams of contained uranium-235, uranium-233, or plutonium...

  11. 10 CFR 20.2206 - Reports of individual monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2206 Reports...) Operate a nuclear reactor designed to produce electrical or heat energy pursuant to § 50.21(b) or § 50.22... nuclear material in a quantity exceeding 5,000 grams of contained uranium-235, uranium-233, or plutonium...

  12. O-Pu-U (Oxygen-Plutonium-Uranium)

    NASA Astrophysics Data System (ADS)

    Materials Science International Team MSIT

    This document is part of Subvolume C4 'Non-Ferrous Metal Systems. Part 4: Selected Nuclear Materials and Engineering Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Oxygen-Plutonium-Uranium.

  13. 76 FR 69295 - Strata Energy, Inc.; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ...: Strata Energy, Inc. (Ross In Situ Recovery Uranium Project) This proceeding involves a license... byproduct materials license at its Ross In Situ Recovery Uranium Project site located in Crook County... dated December 29, 1972, published in the Federal Register, 37 FR 28,710 (1972), and the Commission's...

  14. 75 FR 13141 - Powertech (USA), Inc.; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... following proceeding: Powertech (USA) Inc. (Dewey-Burdock In Situ Uranium Recovery Facility). This Board is... Powertech (USA) Inc.'s application for a source materials license for an in situ uranium recovery facility... Commission dated December 29, 1972, published in the Federal Register, 37 FR 28,710 (1972), and the...

  15. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites.

    PubMed

    Bucuta, Stefan; Ilie, Nicoleta

    2014-11-01

    The aim of this study was to quantify the blue light that passes through different incremental thicknesses of bulk fill in comparison to conventional resin-based composites (RBCs) and to relate it to the induced mechanical properties. Seven bulk fill, five nanohybrid and two flowable RBCs were analysed. Specimens (n = 5) of three incremental thicknesses (2, 4 and 6 mm) were cured from the top for 20 s, while at the bottom, a spectrometer monitored in real time the transmitted irradiance. Micro-mechanical properties (Vickers hardness, HV, and indentation modulus, E) were measured at the top and bottom after 24 h of storage in distilled water at 37 °C. Electron microscope images were taken for assessing the filler distribution and size. Bulk fill RBCs (except SonicFill) were more translucent than conventional RBCs. Low-viscosity bulk fill materials showed the lowest mechanical properties. HV depends highly on the following parameters: material (ηp (2) = 0.952), incremental thickness (0.826), filler volume (0.747), filler weight (0.746) and transmitted irradiance (0.491). The bottom-to-top HV ratio (HVbt) was higher than 80 % in all materials in 2- and 4-mm increments (except for Premise), whereas in 6-mm increments, this is valid only in four bulk fill materials (Venus Bulk Fill, SDR, x-tra fil, Tetric EvoCeram Bulk Fill). The depth of cure is dependent on the RBC's translucency. Low-viscosity bulk fill RBCs have lower mechanical properties than all other types of analysed materials. All bulk fill RBCs (except SonicFill) are more translucent for blue light than conventional RBCs. Although bulk fill RBCs are generally more translucent, the practitioner has to follow the manufacturer's recommendations on curing technique and maximum incremental thickness.

  16. Materials and Methods for Streamlined Laboratory Analysis of Environmental Samples, FY 2016 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addleman, Raymond S.; Naes, Benjamin E.; McNamara, Bruce K.

    The International Atomic Energy Agency (IAEA) relies upon laboratory analysis of environmental samples (typically referred to as “swipes”) collected during on-site inspections of safeguarded facilities to support the detection and deterrence of undeclared activities. Unfortunately, chemical processing and assay of the samples is slow and expensive. A rapid, effective, and simple extraction process and analysis method is needed to provide certified results with improved timeliness at reduced costs (principally in the form of reduced labor), while maintaining or improving sensitivity and efficacy. To address these safeguard needs the Pacific Northwest National Laboratory (PNNL) explored and demonstrated improved methods for environmentalmore » sample (ES) analysis. Improvements for both bulk and particle analysis were explored. To facilitate continuity and adoption, the new sampling materials and processing methods will be compatible with existing IAEA protocols for ES analysis. PNNL collaborated with Oak Ridge National Laboratory (ORNL), which performed independent validation of the new bulk analysis methods and compared performance to traditional IAEA’s Network of Analytical Laboratories (NWAL) protocol. ORNL efforts are reported separately. This report describes PNNL’s FY 2016 progress, which was focused on analytical application supporting environmental monitoring of uranium enrichment plants and nuclear fuel processing. In the future the technology could be applied to other safeguard applications and analytes related to fuel manufacturing, reprocessing, etc. PNNL’s FY 2016 efforts were broken into two tasks and a summary of progress, accomplishments and highlights are provided below. Principal progress and accomplishments on Task 1, Optimize Materials and Methods for ICP-MS Environmental Sample Analysis, are listed below. • Completed initial procedure for rapid uranium extraction from ES swipes based upon carbonate-peroxide chemistry (delivered to ORNL for evaluation). • Explored improvements to carbonate-peroxide rapid uranium extraction chemistry. • Evaluated new sampling materials and methods (in collaboration with ORNL). • Demonstrated successful ES extractions from standard and novel swipes for a wide range uranium compounds of interest including UO 2F 2 and UO 2(NO 3) 2, U 3O 8 and uranium ore concentrate. • Completed initial discussions with commercial suppliers of PTFE swipe materials. • Submitted one manuscript for publication. Two additional drafts are being prepared. Principal progress and accomplishments on Task 2, Optimize Materials and Methods for Direct SIMS Environmental Sample Analysis, are listed below. • Designed a SIMS swipe sample holder that retrofits into existing equipment and provides simple, effective, and rapid mounting of ES samples for direct assay while enabling automation and laboratory integration. • Identified preferred conductive sampling materials with better performance characteristics. • Ran samples on the new PNNL NWAL equivalent Cameca 1280 SIMS system. • Obtained excellent agreement between isotopic ratios for certified materials and direct SIMS assay of very low levels of LEU and HEU UO 2F 2 particles on carbon fiber sampling material. Sample activities range from 1 to 500 CPM (uranium mass on sample is dependent upon specific isotope ratio but is frequently in the subnanogram range). • Found that the presence of the UF molecular ions, as measured by SIMS, provides chemical information about the particle that is separate from the uranium isotopics and strongly suggests that those particles originated from an UF6 enrichment activity. • Submitted one manuscript for publication. Another manuscript is in preparation.« less

  17. The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porcelli, D.; Wasserburg, G.J.; Andersson, P.S.

    The importance of colloids and organic deposits for the transport of uranium isotopes from continental source regions and through the estuarine environment was investigated in the mire-rich Kalix River drainage basin in northern Sweden and the Baltic Sea. Ultrafiltration techniques were used to separate uranium and other elements associated with colloids > 10 kD and >3 kD from {open_quotes}solute{close_quotes} uranium and provided consistent results and high recovery rates for uranium as well as for other elements from large volume samples. Uranium concentrations in 0.45 {mu}m-filtered Kalix River water samples increased by a factor of 3 from near the headwaters inmore » the Caledonides to the river mouth while major cation concentrations were relatively constant. {sup 234}U {sup 238}U ratios were high ({delta}{sup 234}U = 770-1500) throughout the basin, without showing any simple pattern, and required a supply of {sup 234}U-rich water. Throughout the Kalix River, a large fraction (30-90%) of the uranium is carried by >10 kD colloids, which is compatible with uranium complexation with humic acids. No isotopic differences were found between colloid-associated and solute uranium. Within the Baltic Sea, about half of the uranium is removed at low salinities. The proportion that is lost is equivalent to that of river-derived colloid-bound uranium, suggesting that while solute uranium behaves conservatively during estuarine mixing, colloid-bound uranium is lost due to rapid flocculation of colloidal material. The association of uranium with colloids therefore may be an important parameter in determining uranium estuarine behavior. Mire peats in the Kalix River highly concentrate uranium and are potentially a significant source of recoil {sup 234}U to the mirewaters and river waters. However, mirewater data clearly demonstrate that only small {sup 234}U/{sup 238}U shifts are generated relative to inflowing groundwater. 63 refs., 8 figs., 3 tabs.« less

  18. Comparison of efficiency of the retreatment procedure between Wave One Gold and Wave One systems by Micro-CT and confocal microscopy: an in vitro study.

    PubMed

    Canali, Lyz Cristina Furquim; Duque, Jussaro Alves; Vivan, Rodrigo Ricci; Bramante, Clovis Monteiro; Só, Marcus Vinícius Reis; Duarte, Marco Antonio Hungaro

    2018-04-19

    To compare, by Micro-CT and confocal laser scanning microscopy (CLSM), the ability of the Wave One Gold and Wave One systems to remove filling material from mesial canals of mandibular molars, effective time spent; quantity of extruded material, and percentage of sealer in the dentinal tubules after retreatment and re-obturation procedures. Ten first mandibular molars (n = 20 mesial canals) were prepared and filled with gutta-percha and Endofill sealer mixed with Rhodamine B dye using the single cone technique. After 7 days, the canals were scanned using a high-definition micro-computer tomography with 19-mm voxel size and divided into two groups (n = 10) according to the system used in retreatment: group 1, Wave One (WO), and group 2, Wave One Gold (WG). After removing filling material with the primary file of each system, the WO 40/.08 and WG 35/.06 files were used. After using each file, a new scanning was performed and the residual filling material and extruded filling material were measured. The effective time spent to remove the canal filling was measured after each instrument. After retreatment, the teeth were re-obturated with gutta-percha and AH Plus sealer mixed with fluorescein dye using the single-cone technique. The roots were sectioned at 2, 4 and 6 mm and analysed by CLSM to measure the percentage of remaining sealer and the sealer of the new root canal filling. The data were statistically compared (P < 0.05). Both systems presented a similar volume of filling material remaining in the canals after the use of the two instruments, similar residual and new material in the dentinal tubules, and similar extrusion of material (P > 0.05). When using WO 25, the operator spent significantly less effective time than when using WG 25 (P < 0.05); however, use of WG 35 and WO 40 required a similar time to remove filling material from the canals (P > 0.05). Neither of the two systems removed all the filling material. The WG system presented similar ability in removing filling and extruded material in comparison with WO system. The effective time spent was shorter for WO 25 than for WG 25. Wave One Gold can be an alternative to perform retreatment considering that in comparison with Wave One, there was no difference in filling material removal capacity and extruded materials. There was only difference in the effective time spent, in which the operator spent more time with WG 25 than with WO 25.

  19. Uraniferous opal, Virgin Valley, Nevada: conditions of formation and implications for uranium exploration

    USGS Publications Warehouse

    Zielinski, R.A.

    1982-01-01

    Uraniferous, fluorescent opal, which occurs in tuffaceous sedimentary rocks at Virgin Valley, Nevada, records the temperature and composition of uranium-rich solutions as well as the time of uranium-silica coprecipitation. Results are integrated with previous geologic and geochronologic data for the area to produce a model for uranium mobility that may be used to explore for uranium deposits in similar geologic settings. Uraniferous opal occurs as replacements of diatomite, or silicic air-fall ash layers in tuffaceous lakebeds of the Virgin Valley Formation (Miocene) of Merriam (1907). Fission-track radiography shows uranium to be homogeneously dispersed throughout the opal structure, suggesting coprecipitation of dissolved uranium and silica gel. Fluid inclusions preserved within opal replacements of diatomite have homogenization temperatures in the epithermal range and are of low salinity. Four samples of opal from one locality all have U-Pb apparent ages which suggest uraniferous opal precipitation in late Pliocene time. These ages correspond to a period of local, normal faulting, and highangle faults may have served as vertical conduits for transport of deep, thermalized ground water to shallower levels. Lateral migration of rising solutions occurred at intersections of faults with permeable strata. Silica and some uranium were dissolved from silica-rich host strata of 5-20 ppm original uranium content and reprecipitated as the solutions cooled. The model predicts that in similar geologic settings, ore-grade concentrations of uranium will occur in permeable strata that intersect high-angle faults and that contain uranium source rocks as well as efficient reductant traps for uranium. In the absence of sufficient quantities of reductant materials, uranium will be flushed from the system or will accumulate in low-grade disseminated hosts such as uraniferous opal. ?? 1982.

  20. Biological degradation of gas-filled composite materials on the base of polyethylene

    NASA Astrophysics Data System (ADS)

    Grigoreva, E. A.; Kolesnikova, N. N.; Popov, A. A.; Olkhov, A. A.

    2017-12-01

    Gas-filled composite materials based on polyethylene were obtained. It was assumed that introduction of porosity in polyethylene will improve the biodegradability of synthetic materials. The morphological and structural changes were estimated, physical and mechanical properties, stability in water and soil of these materials were determined. It is stated that filling the polymer matrix with pores increases the ability to degrade in nature.

  1. Survey Study of Trunk Materials for Direct ATRP Grafting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Tomonori; Chatterjee, Sabornie; Johnson, Joseph C.

    2015-02-01

    In previous study, we demonstrated a new method to prepare polymeric fiber adsorbents via a chemical-grafting method, namely atom-transfer radical polymerization (ATRP), and identified parameters affecting their uranium adsorption capacity. However, ATRP chemical grafting in the previous study still utilized conventional radiation-induced graft polymerization (RIGP) to introduce initiation sites on fibers. Therefore, the objective of the present study is to perform survey study of trunk fiber materials for direct ATRP chemical grafting method without RIGP for the preparation of fiber adsorbents for uranium recovery from seawater.

  2. Quadrupolar Kondo effect in uranium heavy-electron materials?

    NASA Technical Reports Server (NTRS)

    Cox, D. L.

    1987-01-01

    The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U) ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resistivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data in the heavy-electron superconductor UBe13 may be understood. Structural phase transitions at unprecedented low temperatures may occur in U-based heavy-electron materials.

  3. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  4. Physicochemical Characterization of Capstone Depleted Uranium Aerosols III: Morphologic and Chemical Oxide Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupka, Kenneth M.; Parkhurst, MaryAnn; Gold, Kenneth

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using X-ray diffraction (XRD) and particle morphologies using scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). The oxidation state of a DU aerosol is importantmore » as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles appear to have been fractured (perhaps as a result of abrasion and comminution); others were spherical, occasionally with dendritic or lobed surface structures. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small chunks of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of The Journal of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.« less

  5. Molybdenum isotope fractionation during acid leaching of a granitic uranium ore

    NASA Astrophysics Data System (ADS)

    Migeon, Valérie; Bourdon, Bernard; Pili, Eric; Fitoussi, Caroline

    2018-06-01

    As an attempt to prevent illicit trafficking of nuclear materials, it is critical to identify the origin and transformation of uranium materials from the nuclear fuel cycle based on chemical and isotope tracers. The potential of molybdenum (Mo) isotopes as tracers is considered in this study. We focused on leaching, the first industrial process used to release uranium from ores, which is also known to extract Mo depending on chemical conditions. Batch experiments were performed in the laboratory with pH ranging from 0.3 to 5.5 in sulfuric acid. In order to span a large range in uranium and molybdenum yields, oxidizers such as nitric acid, hydrogen peroxide and manganese dioxide were also added. An enrichment in heavy Mo isotopes is produced in the solution during leaching of a granitic uranium ore, when Mo recovery is not quantitative. At least two Mo reservoirs were identified in the ore: ∼40% as Mo oxides soluble in water or sulfuric acid, and ∼40% of Mo hosted in sulfides soluble in nitric acid or hydrogen peroxide. At pH > 1.8, adsorption and/or precipitation processes induce a decrease in Mo yields with time correlated with large Mo isotope fractionations. Quantitative models were used to evaluate the relative importance of the processes involved in Mo isotope fractionation: dissolution, adsorption, desorption, precipitation, polymerization and depolymerization. Model best fits are obtained when combining the effects of dissolution/precipitation, and adsorption/desorption onto secondary minerals. These processes are inferred to produce an equilibrium isotope fractionation, with an enrichment in heavy Mo isotopes in the liquid phase and in light isotopes in the solid phase. Quantification of Mo isotope fractionation resulting from uranium leaching is thus a promising tool to trace the origin and transformation of nuclear materials. Our observations of Mo leaching are also consistent with observations of natural Mo isotope fractionation taking place during chemical weathering in terrestrial environments where the role of secondary processes such as adsorption is significant.

  6. CMB-8 material balance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langner, D.; Canada, T.; Ensslin, N.

    1980-08-01

    We describe the automated nondestructive assay (NDA) system installed at the Los Alamos Scientific Laboratory (LASL) Group CMB-8 uranium recovery facility. A random driver (RD) is used to measure the /sup 235/U content of various solids while a uranium solution assay system (USAS) measures the /sup 235/U or total uranium content of solutions over a concentration range of a few ppM to 400 g/l. Both instruments are interfaced to and controlled by a single minicomputer. The measurement principles, mechanical specifications, system software description, and operational instructions are described.

  7. Evaluation of marginal adaptation of root-end filling materials using scanning electron microscopy.

    PubMed

    Oliveira, Helder Fernandes; Gonçalves Alencar, Ana Helena; Poli Figueiredo, José Antônio; Guedes, Orlando Aguirre; de Almeida Decurcio, Daniel; Estrela, Carlos

    2013-01-01

    The importance of perfect apical seal in endodontics, more specifically in periradicular surgery, is the motivation/reason for development of root-end filling materials with favorable physical, chemical and biological characteristics. The aim of this in vitro study was to evaluate the marginal adaptation of root-end filling materials using scanning electron microscopy. Twenty five human maxillary anterior teeth were prepared using a K-File #50 to 1 mm short of the apical foramen and filled with gutta-percha and Sealapex using the lateral compaction technique. The apical 3 mm of the roots were sectioned perpendicularly to the long axis of the teeth. A 3-mm-deep root-end cavity was prepared using ultrasonic tips powered by an Enac ultrasonic unit. The teeth were randomly assigned to five groups according to the materials tested including IRM, amalgam, ProRoot MTA, Super-EBA and Epiphany/Resilon. Root-end cavities were filled with the materials prepared according to the manufacturers' instructions. The root apices were carefully prepared for sputter coating and later evaluation using Scanning Electron Microscope (SEM). The images of root-end fillings were divided into four quadrants and distributed into five categories according to the level of marginal adaptation between the root-end material and the root canal walls. The Fisher exact test with Bonferroni correction was used for statistical analysis. The level of significance was set at P = 0.005. SEM images showed the presence of gaps in the root-end filling materials. No significant difference was observed between the tested materials (P > 0.005). ProRoot MTA, IRM, amalgam, Super-EBA and Epiphany/Resilon showed similar marginal adaptation as root-end filling materials.

  8. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uraniummore » and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.« less

  9. Quantitative NDA measurements of advanced reprocessing product materials containing uranium, neptunium, plutonium, and americium

    NASA Astrophysics Data System (ADS)

    Goddard, Braden

    The ability of inspection agencies and facility operators to measure powders containing several actinides is increasingly necessary as new reprocessing techniques and fuel forms are being developed. These powders are difficult to measure with nondestructive assay (NDA) techniques because neutrons emitted from induced and spontaneous fission of different nuclides are very similar. A neutron multiplicity technique based on first principle methods was developed to measure these powders by exploiting isotope-specific nuclear properties, such as the energy-dependent fission cross sections and the neutron induced fission neutron multiplicity. This technique was tested through extensive simulations using the Monte Carlo N-Particle eXtended (MCNPX) code and by one measurement campaign using the Active Well Coincidence Counter (AWCC) and two measurement campaigns using the Epithermal Neutron Multiplicity Counter (ENMC) with various (alpha,n) sources and actinide materials. Four potential applications of this first principle technique have been identified: (1) quantitative measurement of uranium, neptunium, plutonium, and americium materials; (2) quantitative measurement of mixed oxide (MOX) materials; (3) quantitative measurement of uranium materials; and (4) weapons verification in arms control agreements. This technique still has several challenges which need to be overcome, the largest of these being the challenge of having high-precision active and passive measurements to produce results with acceptably small uncertainties.

  10. Wall-rock control of cortain pitchblende deposits in Golden Gate Canyon, Jefferson County, Colorado

    USGS Publications Warehouse

    Adams, John W.; Stugard, Frederick

    1954-01-01

    Carbonate veins cutting pre-Cambrian metamorphic rocks in Golden Gate Canyon contain pitchblende and base-metal sulfides. The veins occupy extensive faults of Laramide age but normally contain pitchblende only where the cut hornblende gneiss. At the Union Pacific prospect, which was studied in detail, pitchblende, hermatite, and some ankerite formed in advance of sulfides, except possibly for minor pyrite. Base-metal sulfides and the bulk of ankerite-calcite vein-filling were deposited after the pitchblende. Chemical analyses show a high ferrous iron content in the hornblende gneiss in contrast to low ferrous iron in the adjacent biotite gneiss. It is hypothesized that ferrous iron released by alteration of hornblende was partly oxidized to hematite by the ore-bearing solutions and, contemporaneously, uranium was reduced and deposited as pitchblende. In other veins, biotite or iron sulfides may have been similarly effective in precipitating pitchblende. Apparently both the ferrous ion and the sulfide ion can serve as reducing agents and control pitchblende deposition. It is suggested that conditions particularly favorable for uranium deposition are present where uranium-bearing solutions had access to rocks rich in ferrous iron or pre-existing sulfides.

  11. Biometric approach in selecting plants for phytoaccumulation of uranium.

    PubMed

    Stojanović, Mirjana; Pezo, Lato; Lačnjevac, Časlav; Mihajlović, Marija; Petrović, Jelena; Milojković, Jelena; Stanojević, Marija

    2016-01-01

    This paper promotes the biometric classification system of plant cultivars, unique characteristics, in terms of the uranium (U) uptake, primarily in the function of the application for phytoremediation. It is known that the degree of adoption of U depends on the plant species and its morphological and physiological properties, but it is less known what impact have plants cultivars, sorts, and hybrids. Therefore, we investigated the U adoption in four cultivars of three plant species (corn, sunflower and soy bean). "Vegetation experiments were carried out in a plastic-house filled with soil (0.66 mgU) and with tailing (15.3 mgU kg(-1)) from closed uranium mine Gabrovnica-Kalna southeast of Serbia". Principal Component Analysis (PCA), Cluster Analysis (CA) and analysis of variance (ANOVA) were used for assessing the effect of different substrates cultivars, plant species and plant organs (root or shoot) on U uptake. Obtained results showed that a difference in U uptake by three investigated plant species depends not only of the type of substrate types and plant organs but also of their cultivars. Biometrics techniques provide a good opportunity for a better understanding the behavior of plants and obtaining much more useful information from the original data.

  12. The Third Temple’s Holy of Holies: Israel’s Nuclear Weapons

    DTIC Science & Technology

    1999-09-01

    explored the Negev Desert for uranium deposits on orders from the Israeli Ministry of Defense. By 1950, they found low-grade deposits near Beersheba and...capable of delivering nuclear bombs.21 French experts secretly built the Israeli reactor underground at Dimona, in the Negev desert of southern Israel...near Beersheba. Hundreds of French engineers and technicians filled Beersheba, the biggest town in the Negev . Many of the same contractors who built

  13. Rare-earth element fractionation in uranium ore and its U(VI) alteration minerals

    DOE PAGES

    Balboni, Enrica; Spano, T; Cook, N; ...

    2017-10-20

    We developed a cation exchange chromatography method employing sulfonated polysterene cation resin (DOWEX AG50-X8) in order to separate rare-earth elements (REEs) from uranium-rich materials. The chemical separation scheme is designed to reduce matrix effects and consequently yield enhanced ionization efficiencies for concentration determinations of REEs without significant fractionation using solution mode-inductively coupled plasma mass spectrometry (ICP-MS) analysis. This method was then applied to determine REE abundances in four uraninite (ideally UO 2) samples and their associated U(VI) alteration minerals. In three of the samples analyzed, the concentration of REEs for primary uraninite are higher than those for their corresponding secondarymore » uranium alteration phases. The results for U(VI) alteration minerals of two samples indicate enrichment of the light REEs (LREEs) over the heavy REEs (HREEs). This differential mobilization is attributed to differences in the mineralogical composition of the U(VI) alteration. There is a lack of fractionation of the LREEs in the uraninite alteration rind that is composed of U(VI) minerals containing Ca 2+ as the interlayer cation (uranophane and bequerelite); contrarily, U(VI) alteration minerals containing K + and Pb 2+ as interlayer cations (fourmarierite, dumontite) indicate fractionation (enrichment) of the LREEs. Our results have implications for nuclear forensic analyses since a comparison is reported between the REE abundances for the CUP-2 (processed uranium ore) certified reference material and previously determined values for uranium ore concentrate (UOC) produced from the same U deposit (Blind River/Elliott Lake, Canada). UOCs represent the most common form of interdicted nuclear material and consequently is material frequently targeted for forensic analysis. The comparison reveals similar chondrite normalized REE signatures but variable absolute abundances. Based on the results reported here, the latter may be attributed to the differing REE abundances between primary ore and associated alteration phases, and/or is related to varying fabrication processes adopted during production of UOC.« less

  14. Rare-earth element fractionation in uranium ore and its U(VI) alteration minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Enrica; Spano, T; Cook, N

    We developed a cation exchange chromatography method employing sulfonated polysterene cation resin (DOWEX AG50-X8) in order to separate rare-earth elements (REEs) from uranium-rich materials. The chemical separation scheme is designed to reduce matrix effects and consequently yield enhanced ionization efficiencies for concentration determinations of REEs without significant fractionation using solution mode-inductively coupled plasma mass spectrometry (ICP-MS) analysis. This method was then applied to determine REE abundances in four uraninite (ideally UO 2) samples and their associated U(VI) alteration minerals. In three of the samples analyzed, the concentration of REEs for primary uraninite are higher than those for their corresponding secondarymore » uranium alteration phases. The results for U(VI) alteration minerals of two samples indicate enrichment of the light REEs (LREEs) over the heavy REEs (HREEs). This differential mobilization is attributed to differences in the mineralogical composition of the U(VI) alteration. There is a lack of fractionation of the LREEs in the uraninite alteration rind that is composed of U(VI) minerals containing Ca 2+ as the interlayer cation (uranophane and bequerelite); contrarily, U(VI) alteration minerals containing K + and Pb 2+ as interlayer cations (fourmarierite, dumontite) indicate fractionation (enrichment) of the LREEs. Our results have implications for nuclear forensic analyses since a comparison is reported between the REE abundances for the CUP-2 (processed uranium ore) certified reference material and previously determined values for uranium ore concentrate (UOC) produced from the same U deposit (Blind River/Elliott Lake, Canada). UOCs represent the most common form of interdicted nuclear material and consequently is material frequently targeted for forensic analysis. The comparison reveals similar chondrite normalized REE signatures but variable absolute abundances. Based on the results reported here, the latter may be attributed to the differing REE abundances between primary ore and associated alteration phases, and/or is related to varying fabrication processes adopted during production of UOC.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; Smith, Paul Herrick; Jarvinen, Gordon D.

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that themore » following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U 3O 8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl 3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a commercially-available phosphate buffer would significantly reduce the solubility of PuCl 3 by the precipitation of PuPO 4.« less

  16. TC-99 Decontaminant from heat treated gaseous diffusion membrane -Phase I, Part B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.; Restivo, M.; Duignan, M.

    2017-11-01

    Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation or exactmore » form in the gaseous diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal or leaching desorption, which is independent of the technetium oxidation states, to perform an insitu removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste. Based on the positive results of the first part of this work1 the use of steam as a thermal decontamination agent was further explored with a second piece of used barrier material from a different location. This new series of tests included exposing more of the material surface to the flow of high temperature steam through the change in the reactor design, subjecting it to alternating periods of stream and vacuum, as well as determining if a lower temperature steam, i.e., 121°C (250°F) would be effective, too. Along with these methods, one other simpler method involving the leaching of the Tc-99 contaminated barrier material with a 1.0 M aqueous solution of ammonium carbonate, with and without sonication, was evaluated.« less

  17. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  18. 10 CFR 39.1 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...

  19. 10 CFR 39.1 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...

  20. 10 CFR 39.1 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...

  1. 10 CFR 39.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...

  2. 10 CFR 39.1 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...

  3. 10 CFR 70.60 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Certain Licensees Authorized To Possess a Critical Mass of Special Nuclear Material § 70.60 Applicability... critical mass of special nuclear material, and engaged in enriched uranium processing, fabrication of...

  4. Evaluation of Settler Tank Thermal Stability during Solidification and Disposition to ERDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, David E.; Delegard, Calvin H.; Schmidt, Andrew J.

    2015-03-30

    Ten 16-foot-long and 20-inch diameter horizontal tanks currently reside in a stacked 2×5 (high) array in the ~20,000-gallon water-filled Weasel Pit of the 105-KW Fuel Storage Basin on the US-DOE Hanford Site. These ten tanks are part of the Integrated Water Treatment System used to manage water quality in the KW Basin and are called “settler” tanks because of their application in removing particles from the KW Basin waters. Based on process knowledge, the settler tanks are estimated to contain about 124 kilograms of finely divided uranium metal, 22 kg of uranium dioxide, and another 55 kg of other radioactivemore » sludge. The Sludge Treatment Project (STP), managed by CH2MHill Plateau Remediation Company (CHPRC) is charged with managing the settler tanks and arranging for their ultimate disposal by burial in ERDF. The presence of finely divided uranium metal in the sludge is of concern because of the potential for thermal runaway reaction of the uranium metal with water and the formation of flammable hydrogen gas as a product of the uranium-water reaction. Thermal runaway can be instigated by external heating. The STP commissioned a formal Decision Support Board (DSB) to consider options and provide recommendations to manage and dispose of the settler tanks and their contents. Decision criteria included consideration of the project schedule and longer-term deactivation, decontamination, decommissioning, and demolition (D4) of the KW Basin. The DSB compared the alternatives and recommended in-situ grouting, size-reduction, and ERDF disposal as the best of six candidate options for settler tank treatment and disposal. It is important to note that most grouts contain a complement of Portland cement as the binding agent and that Portland cement curing reactions generate heat. Therefore, concern is raised that the grouting of the settler tank contents may produce heating sufficient to instigate thermal runaway reactions in the contained uranium metal sludge.« less

  5. Cleaning efficacy of reciprocal and rotary systems in the removal of root canal filling material

    PubMed Central

    Koçak, Mustafa Murat; Koçak, Sibel; Türker, Sevinç Aktemur; Sağlam, Baran Can

    2016-01-01

    Aim: The aim of this study was to compare the efficacy of hand file, nickel titanium rotary instrument, and two reciprocating instruments for removing gutta-percha and sealer from the root canals. Materials and Methods: Eighty-eight mandibular premolar teeth were used. The root canals were shaped and filled with gutta-percha and a resin-based sealer. The specimens were divided into four groups according to the technique by which the root filling material was removed: Group 1 — Wave One; Group 2 — Reciproc; Group 3 — ProTaper; and Group 4 — Gates-Glidden burs and stainless steel hand file. Then teeth were split longitudinally and photographed. The images were transferred to a computer. The ratio of remaining filling material to the root canal periphery was calculated with the aid of ImageJ software. Statistical analysis was performed using Kruskal–Wallis and Mann–Whitney tests. Results: A significant difference was found among all groups (P < 0.001). The WaveOne group demonstrated significantly less remaining filling material. The greatest amount of filling material was found in specimens where gutta-percha was removed with Gates-Glidden burs and stainless steel hand file. Conclusion: The reciprocating files were found to be significantly more effective in removing the filling material from the canal walls compared to the rotational file and hand file. PMID:27099429

  6. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation ofmore » hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.« less

  7. Method and apparatus for storing hydrogen isotopes. [stored as uranium hydride in a block of copper

    DOEpatents

    McMullen, J.W.; Wheeler, M.G.; Cullingford, H.S.; Sherman, R.H.

    1982-08-10

    An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas is stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forms at a significantly lower temperature).

  8. Measurements of natural uranium concentration and isotopic composition with permil-level precision by inductively coupled plasma-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shen, Chuan-Chou; Lin, Huei-Ting; Chu, Mei-Fei; Yu, Ein-Fen; Wang, Xianfeng; Dorale, Jeffrey A.

    2006-09-01

    A new analytical technique using inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) has been developed that produces permil-level precision in the measurement of uranium concentration ([U]) and isotopic composition (δ234U) in natural materials. A 233U-236U double spike method was used to correct for mass fractionation during analysis. To correct for ratio drifting, samples were bracketed by uranium standard measurements. A sensitivity of 6-7 × 108 cps/ppm was generated with a sample solution uptake rate of 30 μL/min. With a measurement time of 15-20 min, standards of 30-ng uranium produced a within-run precision better than 3‰ (±2 R.S.D.) for δ234U and better than 2‰ for [U]. Replicate measurements made on standards show that a between-run reproducibility of 3.5‰ for δ234U and 2‰ for [U] can be achieved. ICP-QMS data of δ234U and [U] in seawater, coral, and speleothem materials are consistent with the data measured by other ICP-MS and TIMS techniques. Advantages of the ICP-QMS method include low cost, easy maintenance, simple instrumental operation, and few sample preparation steps. Sample size requirements are small, such as 10-14 mg of coral material. The results demonstrate that this technique can be applied to natural samples with various matrices.

  9. Comparison of solvent extraction and extraction chromatography resin techniques for uranium isotopic characterization in high-level radioactive waste and barrier materials.

    PubMed

    Hurtado-Bermúdez, Santiago; Villa-Alfageme, María; Mas, José Luis; Alba, María Dolores

    2018-07-01

    The development of Deep Geological Repositories (DGP) to the storage of high-level radioactive waste (HLRW) is mainly focused in systems of multiple barriers based on the use of clays, and particularly bentonites, as natural and engineered barriers in nuclear waste isolation due to their remarkable properties. Due to the fact that uranium is the major component of HLRW, it is required to go in depth in the analysis of the chemistry of the reaction of this element within bentonites. The determination of uranium under the conditions of HLRW, including the analysis of silicate matrices before and after the uranium-bentonite reaction, was investigated. The performances of a state-of-the-art and widespread radiochemical method based on chromatographic UTEVA resins, and a well-known and traditional method based on solvent extraction with tri-n-butyl phosphate (TBP), for the analysis of uranium and thorium isotopes in solid matrices with high concentrations of uranium were analysed in detail. In the development of this comparison, both radiochemical approaches have an overall excellent performance in order to analyse uranium concentration in HLRW samples. However, due to the high uranium concentration in the samples, the chromatographic resin is not able to avoid completely the uranium contamination in the thorium fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Removal of Uranium in Drinking Water: Brimac Environmental Services, Inc. Brimac HA 216 Adsorptive Media

    EPA Science Inventory

    The Brimac HA 216 Adsorptive Media was tested for uranium (U) removal from a drinking water source (well water) at Grappone Toyota located in Bow, New Hampshire. The HA 216 media is a hydroxyapatite-based material. A pilot unit, consisting of a TIGG Corporation Cansorb® C-5 ste...

  11. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33... NUCLEAR MATERIAL Special Nuclear Material of Low Strategic Significance § 74.33 Nuclear material control... strategic significance. (a) General performance objectives. Each licensee who is authorized by this chapter...

  12. A Method to Estimate the Atomic Number and Mass Thickness of Intervening Materials in Uranium and Plutonium Gamma-Ray Spectroscopy Measurements

    NASA Astrophysics Data System (ADS)

    Streicher, Michael; Brown, Steven; Zhu, Yuefeng; Goodman, David; He, Zhong

    2016-10-01

    To accurately characterize shielded special nuclear materials (SNM) using passive gamma-ray spectroscopy measurement techniques, the effective atomic number and the thickness of shielding materials must be measured. Intervening materials between the source and detector may affect the estimated source isotopics (uranium enrichment and plutonium grade) for techniques which rely on raw count rates or photopeak ratios of gamma-ray lines separated in energy. Furthermore, knowledge of the surrounding materials can provide insight regarding the configuration of a device containing SNM. The described method was developed using spectra recorded using high energy resolution CdZnTe detectors, but can be expanded to any gamma-ray spectrometers with energy resolution of better than 1% FWHM at 662 keV. The effective atomic number, Z, and mass thickness of the intervening shielding material are identified by comparing the relative attenuation of different gamma-ray lines and estimating the proportion of Compton scattering interactions to photoelectric absorptions within the shield. While characteristic Kα x-rays can be used to identify shielding materials made of high Z elements, this method can be applied to all shielding materials. This algorithm has adequately estimated the effective atomic number for shields made of iron, aluminum, and polyethylene surrounding uranium samples using experimental data. The mass thicknesses of shielding materials have been estimated with a standard error of less than 1.3 g/cm2 for iron shields up to 2.5 cm thick. The effective atomic number was accurately estimated to 26 ± 5 for all iron thicknesses.

  13. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1986-12-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings,more » and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.« less

  14. The Use of Thorium within the Nuclear Power Industry - 13472

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Keith

    2013-07-01

    Thorium is 3 to 4 times more abundant than uranium and is widely distributed in nature as an easily exploitable resource in many countries. Unlike natural uranium, which contains ∼0.7% fissile {sup 235}U isotope, natural thorium does not contain any fissile material and is made up of the fertile {sup 232}Th isotope only. Therefore thorium and thorium-based fuel as metal, oxide or carbide, has been utilized in combination with fissile {sup 235}U or {sup 239}Pu in nuclear research and power reactors for conversion to fissile {sup 233}U, thereby enlarging fissile material resources. During the pioneering years of nuclear energy, frommore » the mid 1950's to mid 1970's, there was considerable interest worldwide to develop thorium fuels and fuel cycles in order to supplement uranium reserves. Thorium fuels and fuel cycles are particularly relevant to countries having large thorium deposits but very limited uranium reserves for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized heavy water reactors (PHWRs), liquid metal cooled fast breeder reactors (LMFBR) and molten salt breeder reactors (MSBR) were demonstrated. The initial enthusiasm for thorium fuels and fuel cycles was not sustained among the developing countries later, due to new discovery of uranium deposits and their improved availability. However, in recent times, the need for proliferation-resistance, longer fuel cycles, higher burnup, and improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles. (authors)« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, R.T.; Strand, J.R.; Reid, B.E.

    Uranium favorability of the Sangre de Cristo Formation (Pennsylvanian-Permian) in the Las Vegas basin has been evaluated. The Las Vegas basin project area, located in Colfax, Mora, and San Miguel Counties, New Mexico, comprises about 3,489 sq mi. The formation contains sedimentologic and stratigraphic characteristics that are considered favorable for uranium deposition. Field investigations consisted of section measuring, rock sampling, and ground radiometric reconnaissance. North-south and east-west cross sections of the basin were prepared from well logs and measured sections. Petrographic, chemical, and spectrographic analyses were conducted on selected samples. Stratigraphic and sedimentologic information were used to determine depositional environments.more » The most favorable potential host rocks include red to pink, coarse-grained, poorly sorted, feldspathic to arkosic lenticular sandstones with stacked sandstone thicknesses of more than 20 ft and sandstone-to-shale ratios between 1:1 and 2:1. The sandstone is interbedded with mudstone and contains carbonaceous debris and anomalous concentrations of uranium locally. Areas of maximum favorability are found in a braided-stream, alluvial-plain depositional environment in the north-central part of the Las Vegas basin. There, carbonaceous material is well preserved, probably due to rapid subsidence and burial. Furthermore, uranium favorability is highest in the lower half of the formation because carbonaceous wood and plant fragments, as well as known uranium deposits, are concentrated in this zone. Piedmont deposits in the north and east, and meander-belt, alluvial-plain deposits in the south, are not considered favorable because of the paucity of uranium deposits and a minimum of carbonaceous material.« less

  16. Nominations for the 2017 NNSA Pollution Prevention Awards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; Ballesteros Rodriguez, Sonia; Lopez, Lorraine Bonds

    In the field of nuclear forensics, one of the biggest challenges is to dissolve postdetonation debris for analysis. Debris generated after a nuclear detonation is a glassy material that is difficult to dissolve with chemicals. Traditionally, concentrated nitric acid, hydrofluoric acid, or sulfuric acid are employed during the dissolution. These acids, due to their corrosive nature, are not suitable for in-field/on-site sample preparations. Uranium oxides are commonly present in nuclear fuel processing plants and nuclear research facilities. In uranium oxides, the level of uranium isotope enrichment is a sensitive indicator for nuclear nonproliferation and is monitored closely by the Internationalmore » Atomic Energy Agency (IAEA) to ensure there is no misuse of nuclear material or technology for nuclear weapons. During an IAEA on-site inspection at a facility, environmental surface swipe samples are collected and transported to the IAEA headquarters or network of analytical laboratories for further processing. Uranium oxide particles collected on the swipe medium are typically dissolved with inorganic acids and are then analyzed for uranium isotopic compositions. To improve the responsiveness of on-site inspections, in-field detection techniques have been recently explored. However, in-field analysis is bottlenecked by time-consuming and hazardous dissolution procedures, as corrosive inorganic acids must be used. Corrosive chemicals are difficult to use in the field due to personnel safety considerations, and the transportation of such chemicals is highly regulated. It was therefore necessary to develop fast uranium oxide dissolution methods using less hazardous chemicals in support of the rapid infield detection of anomalies in declared nuclear processes.« less

  17. Application of Molecular Techniques To Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site▿ †

    PubMed Central

    Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.

    2010-01-01

    Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022

  18. In vitro evaluation of efficacy of different rotary instrument systems for gutta percha removal during root canal retreatment

    PubMed Central

    Joseph, Mercy; Malhotra, Amit; Rao, Murali; Sharma, Abhimanyu; Talwar, Sangeeta

    2016-01-01

    Background Complete removal of old filling material during root canal retreatment is fundamental for predictable cleaning and shaping of canal anatomy. Most of the retreatment methods tested in earlier studies have shown inability to achieve complete removal of root canal filling. Therefore the aim of this investigation was to assess the efficacy of three different rotary nickel titanium retreatment systems and Hedstrom files in removing filling material from root canals. Material and Methods Sixty extracted mandibular premolars were decoronated to leave 15 mm root. Specimen were hand instrumented and obturated using gutta percha and AH plus root canal sealer. After storage period of two weeks, roots were retreated with three (Protaper retreatment files, Mtwo retreatment files, NRT GPR) rotary retreatment instrument systems and Hedstroem files. Subsequently, samples were sectioned longitudinally and examined under stereomicroscope. Digital images were recorded and evaluated using Digital Image Analysing Software. The retreatment time was recorded for each tooth using a stopwatch. The area of canal and the residual filling material was recorded in mm2 and the percentage of remaining filling material on canal walls was calculated. Data was analysed using ANOVA test. Results Significantly less amount of residual filling material was present in protaper and Mtwo instrumented teeth (p < 0.05) compared to NRT GPR and Hedstrom files group. Protaper instruments also required lesser time during removal of filling material followed by Mtwo instruments, NRT GPR files and Hedstrom files. Conclusions None of the instruments were able to remove the filling material completely from root canal. Protaper universal retreatment system and Mtwo retreatment files were more efficient and faster compared to NRT GPR fles and Hedstrom files. Key words:Gutta-percha removal, nickel titanium, root canal retreatment, rotary instruments. PMID:27703601

  19. A further study on seismic response of a set of parallel rock fractures filled with viscoelastic materials

    NASA Astrophysics Data System (ADS)

    Wu, W.; Zhu, J. B.; Zhao, J.

    2013-02-01

    The purpose of this study is to further investigate the seismic response of a set of parallel rock fractures filled with viscoelastic materials, following the work by Zhu et al. Dry quartz sands are used to represent the viscoelastic materials. The split Hopkinson rock bar (SHRB) technique is modified to simulate 1-D P-wave propagation across the sand-filled parallel fractures. At first, the displacement and stress discontinuity model (DSDM) describes the seismic response of a sand-filled single fracture. The modified recursive method (MRM) then predicts the seismic response of the sand-filled parallel fractures. The SHRB tests verify the theoretical predictions by DSDM for the sand-filled single fracture and by MRM for the sand-filled parallel fractures. The filling sands cause stress discontinuity across the fractures and promote displacement discontinuity. The wave transmission coefficient for the sand-filled parallel fractures depends on wave superposition between the fractures, which is similar to the effect of fracture spacing on the wave transmission coefficient for the non-filled parallel fractures.

  20. Structural parameter effect of porous material on sound absorption performance of double-resonance material

    NASA Astrophysics Data System (ADS)

    Fan, C.; Tian, Y.; Wang, Z. Q.; Nie, J. K.; Wang, G. K.; Liu, X. S.

    2017-06-01

    In view of the noise feature and service environment of urban power substations, this paper explores the idea of compound impedance, fills some porous sound-absorption material in the first resonance cavity of the double-resonance sound-absorption material, and designs a new-type of composite acoustic board. We conduct some acoustic characterizations according to the standard test of impedance tube, and research on the influence of assembly order, the thickness and area density of the filling material, and back cavity on material sound-absorption performance. The results show that the new-type of acoustic board consisting of aluminum fibrous material as inner structure, micro-porous board as outer structure, and polyester-filled space between them, has good sound-absorption performance for low frequency and full frequency noise. When the thickness, area density of filling material and thickness of back cavity increase, the sound absorption coefficient curve peak will move toward low frequency.

  1. White sand potentially suppresses radon emission from uranium tailings

    NASA Astrophysics Data System (ADS)

    Abdel Ghany, H. A.; El Aassy, Ibrahim E.; Ibrahim, Eman M.; Gamil, S. H.

    2018-03-01

    Uranium tailings represent a huge radioactive waste contaminant, where radon emanation is considered a major health hazard. Many trials have been conducted to minimize radon exhalation rate by using different covering materials. In the present work, three covering materials, commonly available in the local environment, (kaolin, white sand and bentonite) have been used with different thickness 10, 15, and 20 mm). 238U, 232Th, 40K and the radon exhalation rate were measured by using gamma spectrometry with a Hyper Pure Germanium (HPGe) detector and solid state nuclear track detectors (CR-39). Radon exhalation rate, calculated before and after covering, ranged from 2.80 ± 0.14 to 4.20 ± 0.21 Bq m-2 h-1, and from 0.30 ± 0.01 to 4.00 ± 0.20 Bq m-2 h-1, respectively. Also, the attenuation coefficients of different covering materials and radon emanation were calculated. The obtained results demonstrate that covering of uranium tailings by kaolin, white sand and bentonite has potentially minimized both the radon exhalation rate and the corresponding internal doses.

  2. Methods and Data Used to Investigate Polonium-210 as a Source of Excess Gross-Alpha Radioactivity in Ground Water, Churchill County, Nevada

    USGS Publications Warehouse

    Seiler, Ralph L.

    2007-01-01

    Ground water is the major source of drinking water in the Carson River Basin, California and Nevada. Previous studies have shown that uranium and gross-alpha radioactivities in ground water can be greater than U.S. Environmental Protection Agency Maximum Contaminant Levels, particularly in the Carson Desert, Churchill County, Nevada. Studies also have shown that the primary source of the gross-alpha radioactivity and alpha-emitting radionuclides in ground water is the dissolution of uranium-rich granitic rocks and basin-fill sediments that have their origins in the Sierra Nevada. However, ground water sampled from some wells in the Carson Desert had gross-alpha radioactivities greater than could be accounted for by the decay of dissolved uranium. The occurrence of polonium-210 (Po-210) was hypothesized to explain the higher than expected gross-alpha radioactivities. This report documents and describes the study design, field and analytical methods, and data used to determine whether Po-210 is the source of excess gross-alpha radioactivity in ground water underlying the Carson Desert in and around Fallon, Nevada. Specifically, this report presents: 1) gross alpha and uranium radioactivities for 100 wells sampled from June to September 2001; and 2) pH, dissolved oxygen, specific conductance, and Po-210 radioactivity for 25 wells sampled in April and June 2007. Results of quality-control samples for the 2007 dataset are also presented.

  3. Dye leakage of four root end filling materials: effects of blood contamination.

    PubMed

    Torabinejad, M; Higa, R K; McKendry, D J; Pitt Ford, T R

    1994-04-01

    The purpose of this study was to compare the amount of dye leakage (in the presence versus absence of blood) in root end cavities filled with amalgam, Super EBA, IRM, and a mineral trioxide aggregate. After removing the anatomical crowns of 90 extracted human teeth, their roots were instrumented and obturated. Except for their apical 2 mm, the root surfaces were sealed with nail polish. After removal of the apical 2 to 3 mm of each root, a standardized root end cavity was prepared. Five root ends were filled with gutta-percha and no sealer, and another five root ends were filled with sticky wax. These served as positive and negative controls, respectively. The remaining 80 roots were divided into four equal groups and filled with the test materials. For each material, half of the root end cavities were dried prior to placing the filling material. The remaining half were filled after they were contaminated with blood. All 90 roots were then immediately placed in 1% methylene blue dye for 72 h. Finally, the roots were split and linear dye penetration was measured and statistically analyzed (analysis of variance). Presence or absence of blood had no significant effect on the amount of dye leakage. However, the results showed that there was a significant leakage difference between the root end filling materials (p < 0.0001). Mineral trioxide aggregate leaked significantly less than other materials tested with or without blood contamination of the root end cavities.

  4. Hybrid materials and methods for producing the same

    DOEpatents

    Luzzi, David E [Wallingford, PA; Smith, Brian W [Schelton, CT

    2003-04-08

    A hybrid material is provided which comprises a first single-walled nanotube having a lumen, and a fill molecule contained within the lumen of the single-walled nanotube. A method for producing the hybrid material is also provided wherein a single-walled nanotube is contacted with a fill molecule to cause the fill molecule to enter the lumen of the single-walled nanotube.

  5. Hybrid materials and methods for producing the same

    DOEpatents

    Luzzi, David E [Wallingford, PA; Smith, Brian W [Philadelphia, PA

    2008-02-19

    A hybrid material is provided which comprises a first single-walled nanotube having a lumen, and a fill molecule contained within the lumen of the single-walled nanotube. A method for producing the hybrid material is also provided wherein a single-walled nanotube is contacted with a fill molecule to cause the fill molecule to enter the lumen of the single-walled nanotube.

  6. Comparison of Grab, Air, and Surface Results for Radiation Site Characterization

    NASA Astrophysics Data System (ADS)

    Glassford, Eric Keith

    2011-12-01

    The use of proper sampling methods and sample types for evaluating sites believed to be contaminated with radioactive materials is necessary to avoid misrepresenting conditions at the site. This study was designed to investigate if the site characterization, based upon uranium contamination measured in different types of samples, is dependent upon the mass of the sample collected. A bulk sample of potentially contaminated interior dirt was collected from an abandoned metal processing mill that rolled uranium between 1948 and 1956. The original mill dates from 1910 and has a dirt floor. The bulk sample was a mixture of dirt, black and yellow particles of metal dust, and small fragments of natural debris. Small mass (approximately 0.75 grams (g)) and large mass (approximately 70g) grab samples were prepared from the bulk sample material to simulate collection of a "grab" type sample. Air sampling was performed by re-suspending a portion of the bulk sample material using a vibration table to simulate airborne contamination that might be present during site remediation. Additionally, samples of removable contaminated surface dust were collected on 47 mm diameter filter paper by wiping the surfaces of the exposure chamber used to resuspend the bulk material. Certified reference materials, one containing a precisely known quantity of U 3O8 and one containing a known quantity of natural uranium, were utilized to calibrate the gamma spectrometry measurement system. Non-destructive gamma spectrometry measurements were used to determine the content of uranium-235 (235U) at 185 keV and 143 keV, thorium-234 (234Th) at 63 keV, and protactinium-234m (234mPa) at 1001 keV in each sample. Measurement of natural uranium in small, 1 g samples is usually accomplished by radiochemical analysis in order to measure alpha particles emitted by 238U, 235U, and 234U. However, uranium in larger bulk samples can also be measured non-destructively using gamma spectrometry to detect the low energy photons from 234Th and 234mPa, the short-lived decay products of 238U, and 235U. Two sided t-tests and coefficient of variation were used to compare sampling types. The large grab samples had the lowest calculated coefficient of variation results for activity and atom percentage. The wipe samples had the highest calculated coefficient of variation of mean specific activity (dis/sec/g) for all three energies. The air filter samples had the highest coefficient of variation calculation for mean atom percentage, for both uranium isotopes examined. The data indicated that the large mass sample was the most effective at characterizing the rolling mill radioactive site conditions, since this would indicate which samples had the smallest variations compared to the mean. Additionally, measurement results of natural uranium in the samples indicate that the distribution of radioactive contamination at the sampling location is most likely non-homogeneous and that the size of the sample collected and analyzed must be sufficiently large to insure that the analytical results are truly representative of the activity present.

  7. Three-dimensional evaluation of effectiveness of hand and rotary instrumentation for retreatment of canals filled with different materials.

    PubMed

    Hammad, Mohammad; Qualtrough, Alison; Silikas, Nick

    2008-11-01

    The aim of this study was to measure the remaining filling volume of different obturation materials from root-filled extracted teeth by using 2 removal techniques. Eighty single-rooted teeth were collected and decoronated, and the root canal was prepared by using the ProTaper nickel-titanium rotary files. The teeth were randomly allocated into 4 groups, and each group was obturated by using a different material. Group 1 was filled with gutta-percha and TubliSeal sealer, group 2 was filled with EndoRez points and EndoRez sealer, group 3 was filled with RealSeal points and RealSeal sealer, and Group 4 was filled with a gutta-percha point and GuttaFlow sealer. Teeth were scanned with a micro-computed tomography scan, and then root fillings were removed by using ProTaper retreatment files or hand K-files. Teeth were scanned again, and volume measurements were carried out with micro-computed tomography software. Statistical analysis showed significant differences between the 2 removal techniques for gutta-percha and for both techniques between gutta-percha and the other groups. The present study showed that all tested filling materials were not completely removed during retreatment by using hand or rotary files. Gutta-percha was more efficiently removed by using hand K-files.

  8. Measurement of the Auger parameter and Wagner plot for uranium compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holliday, Kiel S.; Siekhaus, Wigbert; Nelson, Art J.

    2013-05-15

    In this study, the photoemission from the U 4f{sub 7/2} and 4d{sub 5/2} states and the U N{sub 6}O{sub 45}O{sub 45} and N{sub 67}O{sub 45}V x-ray excited Auger transitions were measured for a range of uranium compounds. The data are presented in Wagner plots and the Auger parameter is calculated to determine the utility of this technique in the analysis of uranium materials. It was demonstrated that the equal core-level shift assumption holds for uranium. It was therefore possible to quantify the relative relaxation energies, and uranium was found to have localized core-hole shielding. The position of compounds within themore » Wagner plot made it possible to infer information on bonding character and local electron density. The relative ionicity of the uranium compounds studied follows the trend UF{sub 4} > UO{sub 3} > U{sub 3}O{sub 8} > U{sub 4}O{sub 9}/U{sub 3}O{sub 7} Almost-Equal-To UO{sub 2} > URu{sub 2}Si{sub 2}.« less

  9. Investigations into Alternative Desorption Agents for Amidoxime-Based Polymeric Uranium Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.

    2015-06-01

    Amidoxime-based polymeric braid adsorbents that can extract uranium (U) from seawater are being developed to provide a sustainable supply of fuel for nuclear reactors. A critical step in the development of the technology is to develop elution procedures to selectively remove U from the adsorbents and to do so in a manner that allows the adsorbent material to be reused. This study investigates use of high concentrations of bicarbonate along with targeted chelating agents as an alternative means to the mild acid elution procedures currently in use for selectively eluting uranium from amidoxime-based polymeric adsorbents.

  10. Gamma/neutron time-correlation for special nuclear material detection – Active stimulation of highly enriched uranium

    DOE PAGES

    Paff, Marc G.; Monterial, Mateusz; Marleau, Peter; ...

    2014-06-21

    A series of simulations and experiments were undertaken to explore and evaluate the potential for a novel new technique for fissile material detection and characterization, the timecorrelated pulse-height (TCPH) method, to be used concurrent with active stimulation of potential nuclear materials. In previous work TCPH has been established as a highly sensitive method for the detection and characterization of configurations of fissile material containing Plutonium in passive measurements. By actively stimulating fission with the introduction of an external radiation source, we have shown that TCPH is also an effective method of detecting and characterizing configurations of fissile material containing Highlymore » Enriched Uranium (HEU). The TCPH method is shown to be robust in the presence of the proper choice of external radiation source. An evaluation of potential interrogation sources is presented.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less

  13. CHARACTERISTICS OF FLORIDA FILL MATERIALS AND SOILS 1990

    EPA Science Inventory

    The report gives results of laboratory work by the University of Florida in support of the Foundation Fill Data Base project of the Foundation Fill Materials Specifications Task Area of the Florida Radon Research Program (FRRP). Work included determination of radon concentrations...

  14. 76 FR 60935 - Notice of Application from ExxonMobil Corporation, Highland Uranium Mine and Millsite, To Amend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... and Extend the NRC Long-Term Surveillance Boundary With Respect to Materials License SUA-1139 AGENCY... concentration limits and to extend the NRC Long-Term Surveillance Boundary at its Highland Uranium Mine and Mill... wells and at the proposed POC well. The amendment also proposes to expand the Long-Term Surveillance...

  15. THERMAL FISSION REACTOR COMPOSITIONS AND METHOD OF FABRICATING SAME

    DOEpatents

    Blainey, A.

    1959-10-01

    A body is presented for use in a thermal fission reactor comprising a sintered compressed mass of a substance of the group consisting of uranium, thorium, and oxides and carbides of uranium and thorium, enclosed in an envelope of a sintered, compacted, heat-conductive material of the group consisting of beryllium, zirconium, and oxides and carbides of beryllium and zirconium.

  16. 75 FR 3261 - Powertech (USA) Inc.; Dewey-Burdock Project; New Source Material License Application; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... in-situ uranium recovery (ISR, also known as in-situ leach) facilities, and would require restoration... Environmental Impact Statement for In-Situ Leach Uranium Milling Facilities (ISR GEIS) that was published in... published in the Federal Register on January 05, 2010 (75 FR 467-471). The purpose of this notice of intent...

  17. Case for retrievable high-level nuclear waste disposal

    USGS Publications Warehouse

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  18. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    DTIC Science & Technology

    2010-09-01

    control group and low (300 mg load) and high dose (600 mg load) DU exposure conditions, but utilized a vehicle and three drug-treated groups ( memantine ...applied long after exposure was initiated. The minipumps were filled with drug solutions of 30 mg/ml memantine (3.6 mg/kg/day dose) and/or 10 mg/ml...riluzole (1.2 mg/kg/day dose). Besides its potential usefulness as an uncompetitive NMDA receptor antagonist, memantine also has been reported to have

  19. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    DTIC Science & Technology

    2008-09-01

    treated groups ( memantine or riluzole or a combination) for each exposure level. This design results in a 3 exposure level × 4 drug condition...concentration is greater during this period than prior to 6 months exposure. The minipumps are filled with drug solutions of 30 mg/ml memantine (3.6 mg/kg/day...and/or 10 mg/ml riluzole (1.2 mg/kg/day). Besides its potential usefulness as an uncompetitive NMDA receptor antagonist, memantine also has been

  20. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    DTIC Science & Technology

    2011-03-01

    600 mg load) DU exposure conditions, but also utilized a vehicle and three drug-treated groups ( memantine or riluzole or a combination) for each...exposure was initiated. The minipumps were filled with drug solutions of 30 mg/ml memantine (3.6 mg/kg/day dose) and/or 10 mg/ml riluzole (1.2 mg/kg...day dose). Besides its potential usefulness as an uncompetitive NMDA receptor antagonist, memantine also has been reported to have neuroprotectant

Top