Method for fabricating uranium foils and uranium alloy foils
Hofman, Gerard L [Downers Grove, IL; Meyer, Mitchell K [Idaho Falls, ID; Knighton, Gaven C [Moore, ID; Clark, Curtis R [Idaho Falls, ID
2006-09-05
A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.
Method of fabricating a uranium-bearing foil
Gooch, Jackie G [Seymour, TN; DeMint, Amy L [Kingston, TN
2012-04-24
Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelis, A.; Brown, M. A.; Wiedmeyer, S.
2014-02-18
Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO 4 2- from the fission products, since most of the interfering anions (e.g., CO 3 2-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retainmore » and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.« less
Progress in Chile in the development of the fission {sup 99}Mo production using modified CINTICHEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrader, R.; Klein, J.; Medel, J.
2008-07-15
Fission {sup 99}Mo will be produced in Chile irradiating low-enriched uranium (LEU) foil in a MTR research reactor. For the purpose of developing the capability to fabricate the target, which is done of uranium foil enclosed in swaged concentric aluminum tubes, dummy targets are being fabricated using 130 {mu}m copper foil instead of the uranium foil, wrapped in a 14{mu}m nickel fission-recoil barrier. Dummy targets using several dimensions of copper foil have been assembled; however, the emphasis is being set in targets fabricated using the dimensions of the LEU foil that KAERI will provide, i.e. 50 mm x 100mm xmore » 0.130 mm. The assembling of target using the last dimensions has not been free of difficulties. Neutronic calculations and preliminary thermal and fluid analyses were performed to estimate the fission products activity and the heat removal capability for a 13 grams LEU-foil annular target, which will be irradiated in the RECH-1 research reactor at the level power of 5 MW during 48 hours. In a fume hood, Cintichem processing of natural uranium shavings with the addition of different carriers were performed, obtaining recovery over 90% of the added Mo carrier. Expertise has been gained in (a) foil dissolution process in a dissolver locally designed, (b) in Mo precipitation process, and (c) preparation of the purification columns with AgC, C and HZrO. Additionally, the irradiated target cutting machine with an innovative design was finally assembled. (author)« less
Wiencek, Thomas C.; Matos, James E.; Hofman, Gerard L.
1997-01-01
A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.
Wiencek, Thomas C [Orland Park, IL; Matos, James E [Oak Park, IL; Hofman, Gerard L [Downers Grove, IL
2000-12-12
A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.
Crystallographic texture of straight-rolled ?-uranium foils via neutron and X-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einhorn, J. R.; Steiner, M. A.; Vogel, S. C.
The texture of recrystallized straight-rolled ?-uranium foils, a component in prospective irradiation target designs for medical isotope production, has been measured by neutron diffraction, as well as X-ray diffraction using both Cu and Mo sources. Variations in the penetration depth of neutron and X-ray radiation allow for determination of both the bulk and surface textures. The bulk ?-uranium foil texture is similar to the warm straight-rolled plate texture, with the addition of a notable splitting of the (001) poles along the transverse direction. The surface texture of the foils is similar to the bulk, with an additional (001) texture componentmore » that is oriented between the rolling and normal directions. Differences between the surface and bulk textures are expected to arise from shear forces during the rolling process and the influence that distinct strain histories have on subsequent texture evolution during recrystallization.« less
Crystallographic texture of straight-rolled ?-uranium foils via neutron and X-ray diffraction
Einhorn, J. R.; Steiner, M. A.; Vogel, S. C.; ...
2017-05-25
The texture of recrystallized straight-rolled ?-uranium foils, a component in prospective irradiation target designs for medical isotope production, has been measured by neutron diffraction, as well as X-ray diffraction using both Cu and Mo sources. Variations in the penetration depth of neutron and X-ray radiation allow for determination of both the bulk and surface textures. The bulk ?-uranium foil texture is similar to the warm straight-rolled plate texture, with the addition of a notable splitting of the (001) poles along the transverse direction. The surface texture of the foils is similar to the bulk, with an additional (001) texture componentmore » that is oriented between the rolling and normal directions. Differences between the surface and bulk textures are expected to arise from shear forces during the rolling process and the influence that distinct strain histories have on subsequent texture evolution during recrystallization.« less
Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulthess, Jason
2014-09-01
Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.
Wiencek, T.C.; Matos, J.E.; Hofman, G.L.
1997-03-25
A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havrilla, George Joseph; Gonzalez, Jhanis
2015-06-10
The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elementalmore » composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.« less
Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, Greg W.; Meinhardt, Kerry D.; Joshi, Vineet V.
2015-03-01
The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce amore » uniform, 25 μm thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is that plating can be performed under conditions that would greatly reduce the quantity of intermetallics that form at the interface between the zirconium and U-10Mo; unlike roll bonding, the molten salt plating approach would allow for complete coverage of the U-10Mo foil with zirconium. When utilizing the experimental parameters developed for zirconium plating onto molybdenum, a uranium fluoride reaction product was formed at the Zr/U-10Mo interface. By controlling the initial plating potential, the uranium fluoride could be prevented; however, the targeted zirconium thickness (25 ±12.5 μm) could not be achieved while maintaining 100% coverage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Margaret A.; Bess, John D.; Briggs, J. Blair
2015-03-01
Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil whenmore » it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one NaI scintillator and the other foil on the other NaI detector and the activities measured simultaneously. The activation of a particular foil was compared to that of the normalization foil by dividing the count rate for each foil by that of the normalization foil. To correct for the differing efficiencies of the two NaI detectors, the normalization foil was counted in Detector 1 simultaneously with the foil at position x in Detector 2, and then the normalization foil was counted simultaneously in Detector 2 with the foil from position x in Counter 1. The activity of the foil from position x was divided by the activity of the normalization foil counted simultaneously. This resulted in obtaining two values of the ratio that were then averaged. This procedure essentially removed the effect of the differing efficiencies of the two NaI detectors. Differing efficiencies of 10% resulted in errors in the ratios measured to less than 1%. The background counting rates obatined with the foils used for the measurements on the NaI detectors before their irradiation measurement were subtracted from all count rates. The results of the cadmium ratio measurements are given in Table 1.3-1 and Figure 1.3-1. “No correction has been made for self shielding in the foils” (Reference 3).« less
Application of Optical Imaging Techniques for Quantification of pH and O2 Dynamicsin Porous Media
NASA Astrophysics Data System (ADS)
Li, B.; Seliman, A. F.; Pales, A. R.; Liang, W.; Sams, A.; Darnault, C. J. G.; DeVol, T. A.
2016-12-01
Understanding the spatial and temporal distribution of physical and chemical parameters (e.g. pH, O2) is imperative to characterize the behavior of contaminants in a natural environment. The objectives of this research are to calibrate pH and O2 sensor foils, to develop a dual pH/O2 sensor foil, and to apply them into flow and transport experiments, in order to understand the physical and chemical parameters that control contaminant fate and transport in an unsaturated sandy porous medium. In addition, demonstration of a sensor foil that quantifies aqueous uranium concentration will be presented. Optical imaging techniques will be conducted with 2D tanks to investigate the influence of microbial exudates and plant roots on pH and O2 parameters and radionuclides transport. As a non-invasive method, the optical imaging technique utilizes optical chemical sensor films and either a digital camera or a spectrometer to capture the changes with high temporal and spatial resolutions. Sensor foils are made for different parameters by applying dyes to generate favorable fluorescence that is proportional to the parameter of interest. Preliminary results suggested that this method could detect pH ranging from 4.5 to 7.5. The result from uranium foil test with different concentrations in the range of 2 to 8 ppm indicated that a higher concentration of uranium resulted in a greater color intensity.
NEUTRONIC REACTOR FUEL ELEMENT
Horning, W.A.; Lanning, D.D.; Donahue, D.J.
1959-10-01
A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakan Ozaltun; Pavel Medvedev
The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate frommore » RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.« less
Neutron-rich isotope production using the uranium carbide multi-foil SPES target prototype
NASA Astrophysics Data System (ADS)
Scarpa, D.; Biasetto, L.; Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Carturan, S.; Prete, G.; Zanonato, P.; Stracener, D. W.
2011-03-01
In the framework of the R&D program for the SPES (Selective Production of Exotic Species) project of the Istituto Nazionale di Fisica Nucleare (INFN), production yields of neutron-rich isotopes have been measured at the Holifield Radioactive Ion Beam Facility (HRIBF, Oak Ridge National Laboratory, USA). This experiment makes use of the multi-foil SPES target prototype composed of 7 uranium carbide discs, with excess of graphite (ratio C/ U = 4 . 77 isotopes of medium mass (between 72 and 141amu), produced via proton-induced fission of uranium using a 40MeV proton beam, have been collected and analyzed for the target heated at 2000 ° C target temperature.
Efficient rolling texture predictions and texture-sensitive properties of α-uranium foils
Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; ...
2017-01-01
Here, finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favorsmore » one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a final recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of the thermal expansion and elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.« less
Efficient rolling texture predictions and texture-sensitive properties of α-uranium foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.
Here, finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favorsmore » one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a final recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of the thermal expansion and elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.« less
NASA Astrophysics Data System (ADS)
Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; Knezevic, Marko; Garlea, Elena; Agnew, Sean R.
2017-11-01
Finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold straight-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favors one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold straight-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of thermal expansion and the elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummins, Dustin Ray; Vogel, Sven C.; Hollis, Kendall Jon
2016-10-18
This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffractionmore » data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to the process and analysis can be made, and neutron diffraction can become a viable and efficient technique for gamma/alpha phase composition determination for nuclear fuels.« less
Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
James A. Smith; Barry H. Rabin; Mathieu Perton
2012-07-01
The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process.more » Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.« less
Laser shockwave technique for characterization of nuclear fuel plate interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perton, M.; Levesque, D.; Monchalin, J.-P.
2013-01-25
The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process.more » Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.« less
Temperature dependence of yields from multi-foil SPES target
NASA Astrophysics Data System (ADS)
Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Andrighetto, A.; Carturan, S.; Prete, G.; Zanonato, P.; Stracener, D. W.
2011-10-01
The temperature dependence of neutron-rich isotope yields was studied within the framework of the HRIBF-SPES Radioactive Ion Beams (RIB) project. On-line release measurements of fission fragments from a uranium carbide target at ensuremath 1600 {}^{circ}C , ensuremath 1800 {}^{circ}C and ensuremath 2000 {}^{circ}C were performed at ORNL (USA). The fission reactions were induced by a 40MeV proton beam accelerated into a uranium carbide target coupled to a plasma ion source. The experiments allowed for tests of performance of the SPES multi-foil target prototype loaded with seven UC2/graphite discs (ratio C/ U = 4 with density about 4g/cm3.
Fission fragment assisted reactor concept for space propulsion: Foil reactor
NASA Technical Reports Server (NTRS)
Wright, Steven A.
1991-01-01
The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures.
ANL progress on the cooperation with CNEA for the Mo-99 production : base-side digestion process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelis, A. V.; Quigley, K. J.; Aase, S. B.
2004-01-01
Conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) targets for the Mo-99 production requires certain modifications of the target design, the digestion and the purification processes. ANL is assisting the Argentine Comision Nacional de Energia Atomica (CNEA) to overcome all the concerns caused by the conversion to LEU foil targets. A new digester with stirring system has been successfully applied for the digestion of the low burn-up U foil targets in KMnO4 alkaline media. In this paper, we report the progress on the development of the digestion procedure with stirring focusing on the minimization of the liquid radioactive waste.
Hybrid Interferometric/Dispersive Atomic Spectroscopy For Nuclear Materials Analysis
NASA Astrophysics Data System (ADS)
Morgan, Phyllis K.
Laser-induced breakdown spectroscopy (LIBS) is an optical emission spectroscopy technique that holds promise for detection and rapid analysis of elements relevant for nuclear safeguards and nonproliferation, including the measurement of isotope ratios. One important application of LIBS is the measurement of uranium enrichment (235U/238U), which requires high spectral resolution (e.g., 25 pm for the 424.437 nm U II line). Measuring uranium enrichment is important in nuclear nonproliferation and safeguards because the uranium highly enriched in the 235U isotope can be used to construct nuclear weapons. High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. A hybrid interferometric/dispersive spectrometer prototype, which consists of an inexpensive, compact Fabry-Perot etalon integrated with a low to moderate resolution Czerny-Turner spectrometer, was assembled for making high-resolution measurements of nuclear materials in a laboratory setting. To more fully take advantage of this low-cost, compact hybrid spectrometer, a mathematical reconstruction technique was developed to accurately reconstruct relative line strengths from complex spectral patterns with high resolution. Measurement of the mercury 313.1555/313.1844 nm doublet from a mercury-argon lamp yielded a spectral line intensity ratio of 0.682, which agrees well with an independent measurement by an echelle spectrometer and previously reported values. The hybrid instrument was used in LIBS measurements and achieved the resolution needed for isotopic selectivity of LIBS of uranium in ambient air. The samples used were a natural uranium foil (0.7% of 235U) and a uranium foil highly enriched in 235U to 93%. Both samples were provided by the Penn State University's Breazeale Nuclear Reactor. The enrichment of the uranium foils was verified using a high-purity germanium detector and dedicated software for multi-group spectral analysis. Uranium spectral line widths of ˜10 pm were measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium at that wavelength. The 424.167 nm isotope shift (˜6 pm), limited by spectral broadening, was only partially resolved but still discernible. This instrument and reconstruction method could enable the design of significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting nuclear safeguards, treaty verification, nuclear forensics, and a variety of other spectroscopic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregoire, D.C.; Goltz, D.M.; Chakrabarti, C.L.
Graphite furnace atomic absorption spectrometry (GFAAS) is an insensitive technique for determination of uranium. Experiments were conducted using electrothermal vaporization inductively coupled plasma mass spectrometry to investigate the atomization and vaporization of atomic and molecular uranium species in the graphite furnace. ETV-ICP-MS signals for uranium were observed at temperatures well below the appearance temperature of uranium atoms suggesting the vaporization of molecular uranium oxide at temperatures below 2000{degrees}C. Examination of individual uranium ETV-ICP-MS signals reveals the vaporization of uranium carbide at temperatures above 2600{degrees}C. Chemical modifiers such as 0.2% HF and 0.1% CHF{sub 3} in the argon carrier gas, weremore » ineffective in preventing the formation of uranium carbide at 2700{degrees}C. Vaporization of uranium from a tungsten surface using tungsten foil inserted into the graphite tube prevented the formation of uranium carbide and eliminated the ETV-ICP-MS signal suppression caused by a sodium chloride matrix.« less
The measurement of radiation exposure of astronauts by radiochemical techniques
NASA Technical Reports Server (NTRS)
Brodzinski, R. L.
1971-01-01
Gamma analyses of the neutron-activated fecal samples from the Apollo 12 and 13 missions were completed, and the data are being evaluated. Samples of the exposed Apollo 12 solar wind composition foil and blank foils were obtained for analysis of the Po-2/0 (Pb-210, Rn-222) content. It is expected that the determination of the Po-210 content of these foils will yield the concentration of radon atoms incident on the foil while exposed to the lunar atmosphere, and this indirectly will permit an estimate of the average uranium concentration of the lunar surface. Proposals to measure the cosmic-ray intensity and energy spectra inside and outside of late Apollo and Project Skylab spacecraft by exposing and subsequently analyzing pure metal foils, and to measure the elemental mass balance in Project Skylab astronauts by instrumental neutron activation analysis of the intake and excreta are summarized.
2 x 2 Polyethylene Reflected and Moderated Highly Enriched Uranium System with Rhenium
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Nichole Ellis; Jesson Hutchinson; John D. Bess
2010-09-01
The 2 × 2 array HEU-Re experiment was performed on the Planet universal critical assembly machine on November 4th, 2003 at the Los Alamos Critical Experiments Facility (LACEF) at Los Alamos National Laboratory (LANL). For this experiment, there were 10 ½ units, each full unit containing four HEU foils and two rhenium foils. The top unit contained only two HEU foils and two rhenium foils. A total of 42 HEU foils were used for this experiment. Rhenium is a desirable cladding material for space nuclear power applications. This experiment consisted of HEU foils interleaved with rhenium foils and is moderatedmore » and reflected by polyethylene plates. A unit consisted of a polyethylene plate, which has a recess for rhenium foils, and four HEU foils in a single layer in the top recess of each polyethylene plate. The Planet universal criticality assembly machine has been previously used in experiments containing HEU foils interspersed with SiO2 (HEU-MET-THERM-001), Al (HEU-MET-THERM-008), MgO (HEU-MET-THERM-009), Gd foils (HEU-MET-THERM-010), 2 × 2 × 26 Al (HEU-MET-THERM-012), Fe (HEU-MET-THERM-013 and HEU-MET-THERM-015), 2 × 2 × 23 SiO2 (HEU-MET-THERM-014), 2 × 2 × 11 hastalloy plates (HEU-MET-THERM-016), and concrete (HEU-MET-THERM-018). The 2 × 2 array of HEU-Re is considered acceptable for use as a benchmark critical experiment.« less
LANL Experience Rolling Zr-Clad LEU-10Mo Foils for AFIP-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammon, Duncan L.; Clarke, Kester D.; Alexander, David J.
2015-05-29
The cleaning, canning, rolling and final trimming of Low Enriched Uranium-10 wt. pct. Molybdenum (LEU-10Mo) foils for ATR (Advanced Test Reactor) fuel plates to be used in the AFIP-7 (ATR Full Size Plate In Center Flux Trap Position) experiments are summarized. Six Zr-clad foils were produced from two LEU-10Mo castings supplied to Los Alamos National Laboratory (LANL) by Y-12 National Security Complex. Details of cleaning and canning procedures are provided. Hot- and cold-rolling results are presented, including rolling schedules, images of foils in-process, metallography and local compositions of regions of interest, and details of final foil dimensions and process yield.more » This report was compiled from the slides for the presentation of the same name given by Duncan Hammon on May 12, 2011 at the AFIP-7 Lessons Learned meeting in Salt Lake City, UT, with Los Alamos National Laboratory document number LA-UR 11-02898.« less
DYNAMIC PROPERTIES OF SHOCK LOADED THIN URANIUM FOILS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, D. L.; Kelly, A. M.; Alexander, D. J.
A series of spall experiments has been completed with thin depleted uranium targets, nominally 0.1 mm thick. The first set of uranium spall targets was cut and ground to final thickness from electro-refined, high-purity, cast uranium. The second set was rolled to final thickness from low purity uranium. The impactors for these experiments were laser-launched 0.05-mm thick copper flyers, 3 mm in diameter. Laser energies were varied to yield a range of flyer impact velocities. This resulted in varying degrees of damage to the uranium spall targets, from deformation to complete spall or separation at the higher velocities. Dynamic measurementsmore » of the uranium target free surface velocities were obtained with dual velocity interferometers. Uranium targets were recovered and sectioned after testing. Free surface velocity profiles were similar for the two types of uranium, but spall strengths (estimated from the magnitude of the pull-back signal) are higher for the high-purity cast uranium. Velocity profiles and microstructural evidence of spall from the sectioned uranium targets are presented.« less
NASA Technical Reports Server (NTRS)
Grisaffe, Salvatore J.; Caves, Robert M.
1964-01-01
An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.
Neutron-induced fission cross section measurements for uranium isotopes 236U and 234U at LANSCE
NASA Astrophysics Data System (ADS)
Laptev, A. B.; Tovesson, F.; Hill, T. S.
2013-04-01
A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans from sub-thermal up to 200 MeV by combining two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR). The time-of-flight method is implemented to measure the incident neutron energy. A parallel-plate fission ionization chamber was used as a fission fragment detector. The event rate ratio between the investigated foil and a standard 235U foil is converted into a fission cross section ratio. In addition to previously measured data new measurements include 236U data which is being analyzed, and 234U data acquired in the 2011-2012 LANSCE run cycle. The new data complete the full suite of Uranium isotopes which were investigated with this experimental approach. Obtained data are presented in comparison with existing evaluations and previous data.
Nondestructive assay of EBR-II blanket elements using resonance transmission analysis
NASA Astrophysics Data System (ADS)
Klann, Raymond Todd
1998-10-01
Resonance transmission analysis utilizing a filtered reactor beam was examined as a means of determining the 239Pu content in Experimental Breeder Reactor - II depleted uranium blanket elements. The technique uses cadmium and gadolinium filters along with a 239Pu fission chamber to isolate the 0.3 eV resonance in 239Pu. In the energy range of this resonance (0.1 eV to 0.5 eV), the total microscopic cross-section of 239Pu is significantly greater than the cross- sections of 238U and 235U. This large difference allows small changes in the 239Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and 239Pu foils indicate a significant change in response based on the 239Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of 239Pu up to approximately two weight percent.
Neutron-Induced Fission Cross Section Measurements for Full Suite of Uranium Isotopes
NASA Astrophysics Data System (ADS)
Laptev, Alexander; Tovesson, Fredrik; Hill, Tony
2010-11-01
A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans energies from sub-thermal energies up to 200 MeV by measuring both the Lujan Center and the Weapons Neutron Research center (WNR). Conventional parallel-plate fission ionization chambers with actinide deposited foils are used as a fission detector. The time-of-flight method is implemented to measure neutron energy. Counting rate ratio from investigated and standard U-235 foils is translated into fission cross section ratio. Different methods of normalization for measured ratio are employed, namely, using of actinide deposit thicknesses, normalization to evaluated data, etc. Finally, ratios are converted to cross sections based on the standard U-235 fission cross section data file. Preliminary data for newly investigated isotopes U-236 and U-234 will be reported. Those new data complete a full suite of Uranium isotopes, which were investigated with presented experimental approach. When analysis of the new measured data will is completed, data will be delivered to evaluators. Having data for full set of Uranium isotopes will increase theoretical modeling capabilities and make new data evaluations much more reliable.
Fission fragment driven neutron source
Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.
1976-01-01
Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.
Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, M. A.; DeHart, M. D.; Morrell, S. R.
2015-03-01
Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses,more » a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.« less
NASA Astrophysics Data System (ADS)
Wart, Megan; Simpson, Evan; Flaska, Marek
2018-01-01
Radiation detection systems used for monitoring long term waste storage need to be compact, rugged, and have low or no power requirements. By using piezoelectric materials it may be possible to create a reliable self-powered radiation detection system. To determine the feasibility of this approach, the electrical signal response of the piezoelectric materials to radiation must be characterized. To do so, an experimental geometry has been designed and a neutron source has been chosen as described in this paper, which will be used to irradiate a uranium foil for producing fission fragments. These future experiments will be aimed at finding the threshold of exposure of lead zirconate titanate (PZT) plates needed to produce and electrical signal. Based on the proposed experimental geometry the thermal neutron beam-line at the Breazeale Reactor at The Pennsylvania State University will be used as the neutron source. The uranium foil and neutron source will be able to supply a maximum flux of 1.5e5 fission fragments/second*cm2 to each of the PZT plates.
Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Devaraj, Arun; Joshi, Vineet V.
2016-08-13
The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.
Annealing of (DU-10Mo)-Zr Co-Rolled Foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacheco, Robin Montoya; Alexander, David John; Mccabe, Rodney James
2017-01-20
Producing uranium-10wt% molybdenum (DU-10Mo) foils to clad with Al first requires initial bonding of the DU-10Mo foil to zirconium (Zr) by hot rolling, followed by cold rolling to final thickness. Rolling often produces wavy (DU-10Mo)-Zr foils that should be flattened before further processing, as any distortions could affect the final alignment and bonding of the Al cladding to the Zr co-rolled surface layer; this bonding is achieved by a hot isostatic pressing (HIP) process. Distortions in the (DU-10Mo)-Zr foil may cause the fuel foil to press against the Al cladding and thus create thinner or thicker areas in the Almore » cladding layer during the HIP cycle. Post machining is difficult and risky at this stage in the process since there is a chance of hitting the DU-10Mo. Therefore, it is very important to establish a process to flatten and remove any waviness. This study was conducted to determine if a simple annealing treatment could flatten wavy foils. Using the same starting material (i.e. DU-10Mo coupons of the same thickness), five different levels of hot rolling and cold rolling, combined with five different annealing treatments, were performed to determine the effect of these processing variables on flatness, bonding of layers, annealing response, microstructure, and hardness. The same final thickness was reached in all cases. Micrographs, textures, and hardness measurements were obtained for the various processing combinations. Based on these results, it was concluded that annealing at 650°C or higher is an effective treatment to appreciably reduce foil waviness.« less
The Transuranium Elements: Early History (Nobel Lecture)
DOE R&D Accomplishments Database
McMillan, E. M.
1951-12-12
In this talk the author tells of the circumstances that led to the discovery of neptunium, the first element beyond uranium, and the partial identification of plutonium, the next one beyond that. The part of the story that lies before 1939 has already been recounted here in the Nobel lectures of Fermi and Hahn. Rather the author starts with the discovery of fission by Hahn and Strassmann. News of this momentous discovery reached Berkeley early in 1939. The staff of the Radiation Laboratory was put into a state of great excitement and several experiments of a nature designed to check and extend the announced results were started, using ionization chambers and pulse amplifiers, cloud chambers, chemical methods, and so forth. The author decided to do an experiment of a very simple kind. When a nucleus of uranium absorbs a neutron and fission takes place, the two resulting fragments fly apart with great violence, sufficient to propel them through air or other matter for some distance. This distance, called the "range", is quantity of some interest, and the author undertook to measure it by observing the depth of penetration of the fission fragments in a stack of thin aluminum foils. The fission fragments came from a thin layer of uranium oxide spread on a sheet of paper, and exposed to neutrons from a beryllium target bombarded by 8 Mev deuterons in the 37-inch cyclotron. The aluminum foils, each with a thickness of about half a milligram per square centimeter, were stacked like the pages of a book in immediate contact with the layer of uranium oxide. After exposure to the neutrons, the sheets of aluminum were separated and examined for radioactivity by means of an ionization chamber. The fission fragments of course are radioactive atoms, and their activity is found where they stop.
Evaluation of Uranium-235 Measurement Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, Tiffany C.; Lavender, Curt A.; Dibert, Mark W.
2017-05-23
Monolithic U-Mo fuel plates are rolled to final fuel element form from the original cast ingot, and thus any inhomogeneities in 235U distribution present in the cast ingot are maintained, and potentially exaggerated, in the final fuel foil. The tolerance for inhomogeneities in the 235U concentration in the final fuel element foil is very low. A near-real-time, nondestructive technique to evaluate the 235U distribution in the cast ingot is required in order to provide feedback to the casting process. Based on the technical analysis herein, gamma spectroscopy has been recommended to provide a near-real-time measure of the 235U distribution inmore » U-Mo cast plates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuno, H.; Hershcovitch, A.; Fukunishi, N.
2011-04-23
The RIKEN accelerator complex started feeding the next-generation exotic beam facility radioisotope beam factory (RIBF) with heavy-ion beams from 2007 after the successful commissioning of RIBF at the end of 2006. Many improvements made from 2007 to 2010 were instrumental in increasing the intensity of various heavy-ion beams. However, the available beam intensity of very heavy ion beams, especially uranium beams, is far below our goal of 1 p{mu}A (6 x 10{sup 12} particles/s). In order to achieve this goal, upgrade programs are already in progress; the programs include the construction of a new 28-GHz superconducting electron cyclotron resonance ionmore » source and a new injector linac. However, the most serious problem, that of a charge stripper for high-power uranium beams, still remains unsolved, despite extensive research and development work using large foils mounted on a rotating cylinder and a N{sup 2} gas stripper. A gas stripper is free from problems related to lifetime, though the equilibrium charge state in this stripper is considerably lower than that in a carbon foil, owing to the absence of the density effect. Nevertheless, the merits of gas strippers motivated us to develop a low-Z gas stripper to achieve a higher equilibrium charge state even in gases. We measured the electron-loss and electron-capture cross sections of uranium ions in He gas as a function of their charge state at 11, 14, and 15 MeV/nucleon. The equilibrium charge states extracted from the intersection of the lines of the two cross sections were promisingly higher than those in N{sub 2} gas by more than 10. Simple simulations of charge development along the stripper thickness were performed by assuming the measured cross sections. The simulation results show that about 1 mg/cm{sup 2} of He gas should be accumulated to achieve a charge state higher than that of N{sub 2} gas, notwithstanding the difficulty in accumulation of this helium amount owing to its fast dispersion. However, we now believe that the following two solutions can overcome this difficulty: a gas cell with a very large differential pumping system and a gas cell with a plasma window. Their merits and demerits are discussed in the paper.« less
NASA Technical Reports Server (NTRS)
Gregg, R.; Tombrello, T. A.
1978-01-01
Results are presented for an experimental study of the sputtering of U-235 atoms from foil targets by hydrogen, helium, and argon ions, which was performed by observing tracks produced in mica by fission fragments following thermal-neutron-induced fission. The technique used allowed measurements of uranium sputtering yields of less than 0.0001 atom/ion as well as yields involving the removal of less than 0.01 monolayer of the uranium target surface. The results reported include measurements of the sputtering yields for 40-120-keV protons, 40-120-keV He-4(+) ions, and 40- and 80-keV Ar-40(+) ions, the mass distribution of chunks emitted during sputtering by the protons and 80-keV Ar-40(+) ions, the total chunk yield during He-4(+) sputtering, and some limited data on molecular sputtering by H2(+) and H3(+). The angular distribution of the sputtered uranium is discussed, and the yields obtained are compared with the predictions of collision cascade theory.
Energy spectrum of sputtered uranium
NASA Technical Reports Server (NTRS)
Weller, R. A.; Tombrello, T. A.
1977-01-01
The fission track technique for detecting uranium 235 was used in conjunction with a mechanical time-of-flight spectrometer to measure the energy spectrum in the region 1 eV to 1 keV of material sputtered from a 93% enriched U-235 foil by 80 keV Ar-40(+) ions. The spectrum was found to exhibit a peak in the region 2-4 eV and to decrease approximately as E to the -1.77 power for E is approximately greater than 100 eV. The design, construction and resolution of the mechanical spectrometer are discussed and comparisons are made between the data and the predictions of the ramdom collision cascade model of sputtering.
Investigation of charge stripping scheme for uranium ions at 1-20 MeV/nucleon
NASA Astrophysics Data System (ADS)
Kuboki, Hironori; Harada, Hiroyuki; Saha, Pranab K.
2018-05-01
We investigated a possibility to obtain charge distributions of uranium ions under the conditions to meet the requirements of the booster synchrotron proposed for heavy ion acceleration at J-PARC. The charge distribution is expected to have a width as narrow as possible to realize multi-charge acceleration. The main candidate of stripping material is a carbon foil because we can obtain narrower distributions than gas stripper and a lot of data is available. Besides that, the thickness of the stripping material should be less than 142 μg cm-2 because the energy loss in the stripping material would be compensated by an auxiliary accelerating cavity in the synchrotron ring. We studied the impact energy with which the charge distribution attains equilibrium within this thickness and has the narrowest width. The width is estimated over 1-20 MeV/nucleon by the calculation using the ionization and electron capture cross sections. Scaling factors are introduced to reproduce the experimental data and are determined to be 2.0 and 0.08 for the cross sections of ionization and electron capture, respectively. We concluded that the narrowest width can be obtained at 5.5 MeV/nucleon with a 109-μg cm-2-thick carbon foil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuno, H.; Hershcovitch, A.; Fukunishi, N.
2010-09-27
The RIKEN accelerator complex started feeding the next-generation exotic beam facility RIBF (RadioIsotope Beam Factory) with heavy ion beams from 2007 after the successful commissioning at the end of 2006. Many elaborating improvements increased the intensity of the various heavy ion beams from 2007 to 2010. However, the available beam intensity especially of uranium beam is far below our goal of 1 p{micro}A (6 x 10{sup 12} particle/s). In order to achieve it, upgrade programs are well in progress, including constructions of a new 28 GHz superconducting ECR ion source and a new injector linac. However, the most serious problemmore » of the charge stripper for uranium beam is still open although many elaborating R&D works for the problems. Equilibrium charge state in gas generally is much lower than that in carbon foil due to its density-effect. But gas stripper is free from the problems originated from its lifetime and uniformity in thickness. Such merits pushed us think about low-Z gas stripper to get higher equilibrium charge state even in gas. Electron loss and capture cross section of U ion beams in He gas were measured as a function of their charge state at 11, 14 and 15 MeV/u. The extracted equilibrium charge states from the cross point of the two lines of the cross sections were promisingly higher than those in N{sub 2} gas by more than 10. The plasma window is expected to be a key technology to solve the difficulty in accumulation of such thick as about 1 mg/cm{sup 2} of low-Z gas.« less
Spacecraft-produced neutron fluxes on Skylab
NASA Technical Reports Server (NTRS)
Quist, T. C.; Furst, M.; Burnett, D. S.; Baum, J. H.; Peacock, C. L., Jr.; Perry, D. G.
1977-01-01
Estimates of neutron fluxes in different energy ranges are reported for the Skylab spacecraft. Detectors composed of uranium, thorium, and bismuth foils with mica as a fission track recorder, as well as boron foils with cellulose acetate as an alpha-particle recorder, were deployed at different positions in the Orbital Workshop. It was found that the Skylab neutron flux was dominated by high energy (greater than 1 MeV) contributions and that there was no significant time variation in the fluxes. Firm upper limits of 7-15 neutrons/sq cm-sec, depending on the detector location in the spacecraft, were established for fluxes above 1 MeV. Below 1 MeV, the neutron fluxes were about an order of magnitude lower. The neutrons are interpreted as originating from the interactions of leakage protons from the radiation belt with the spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creasy, John T
2015-05-12
This project has the objective to reduce and/or eliminate the use of HEU in commerce. Steps in the process include developing a target testing methodology that is bounding for all Mo-99 target irradiators, establishing a maximum target LEU-foil mass, developing a LEU-foil target qualification document, developing a bounding target failure analysis methodology (failure in reactor containment), optimizing safety vs. economics (goal is to manufacture a safe, but relatively inexpensive target to offset the inherent economic disadvantage of using LEU in place of HEU), and developing target material specifications and manufacturing QC test criteria. The slide presentation is organized under themore » following topics: Objective, Process Overview, Background, Team Structure, Key Achievements, Experiment and Activity Descriptions, and Conclusions. The High Density Target project has demonstrated: approx. 50 targets irradiated through domestic and international partners; proof of concept for two front end processing methods; fabrication of uranium foils for target manufacture; quality control procedures and steps for manufacture; multiple target assembly techniques; multiple target disassembly devices; welding of targets; thermal, hydraulic, and mechanical modeling; robust target assembly parametric studies; and target qualification analysis for insertion into very high flux environment. The High Density Target project has tested and proven several technologies that will benefit current and future Mo-99 producers.« less
Beam halo collimation in heavy ion synchrotrons
NASA Astrophysics Data System (ADS)
Strašík, I.; Prokhorov, I.; Boine-Frankenheim, O.
2015-08-01
This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., 238U92+ ) and partially stripped (e.g., 238U28+ ) ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil) and secondary collimators (bulky absorbers). Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions) was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad-x.
VESUVIO-the double difference inverse geometry spectrometer at ISIS
NASA Astrophysics Data System (ADS)
Mayers, J.; Tomkinson, J.; Abdul-Redah, T.; Stirling, W. G.; Andreani, C.; Senesi, R.; Nardone, M.; Colognesi, D.; Degiorgi, E.
2004-07-01
The VESUVIO spectrometer at the ISIS pulsed neutron source performs inelastic neutron scattering at high-energy and wave vector transfers, employing gold and uranium resonant foils. A factor of two improvement in the instrumental resolution has been achieved by making use of the double filter difference method. Experimental results are presented for measurements on polycrystalline Pb, which indicate that accurate measurements of single-particle momentum distribution n(p) in quantum fluids are now possible at eV energy transfers.
NASA Astrophysics Data System (ADS)
Casoli, P.; Authier, N.; Jacquet, X.; Cartier, J.
2014-04-01
Caliban and Prospero are two highly enriched uranium metallic core reactors operated on the CEA Center of Valduc. These critical assemblies are suitable for integral experiments, such as fission yields measurements or perturbation measurements, which have been carried out recently on the Caliban reactor. Different unfolding methods, based on activation foils and fission chambers measurements, are used to characterize the reactor spectra and especially the Caliban spectrum, which is very close to a pure fission spectrum.
Low-enriched uranium high-density target project. Compendium report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandegrift, George; Brown, M. Alex; Jerden, James L.
2016-09-01
At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassemblymore » of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smales, A.A.; Airey, L.; Woodward, J.
1950-06-01
Consideration has been given to the problem of separating and estimating uranium, polonium, and other alpha emitters (in order to provide analytical methods for their routine determination in conformily with the draft agreement on the Harwell effluent). Uranium may be ether extracted from solutions of ammonium nitrate as salting out agent at pHl with an efficiency of 98 to 99%. The deposition of polonium on silver foil is a specific method for this element and under prescribed conditions similar extraction efficiencies may be obtained. An adequate separation from all other alpha emitters'' is obtained and methods for the estimation ofmore » these are discussed. A comprehensive scheme involving a preliminary activity concentration step has been elaborated. Uranium, polonium, and the majority of the other alpha emitters'' are precipitated as their tannin complexes at pH8 using calcium hydroxide, the calcium-tannin complex acting as a carrier. That part of the activity remaining in solution is determined as in the total activity method, previously described. From the solution of the precipitate, polonium is first separated by electrodeposition, and then uranium by ether extraction in the presence of ammonium nitrate. The majority of the other alpha emitters'' still in the aqueous ammonium nitrate solution are collected on a second calcium-tannin precipitate, while the small part remaining in solution after this operation is obtained by direct evaporation. (auth)« less
ICP MS selection of radiopure materials for the GERDA experiment
NASA Astrophysics Data System (ADS)
di Vacri, M. L.; Nisi, S.; Cattadori, C.; Janicsko, J.; Lubashevskiy, A.; Smolnikov, A.; Walter, M.
2015-08-01
The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the 76Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10-3 counts/keV kg y) at the Qββ. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designed and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system
ICP MS selection of radiopure materials for the GERDA experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Vacri, M. L., E-mail: divacrim@lngs.infn.it; Dipartimento di Scienze Fisiche e Chimiche, University of L’Aquila, via Vetoio, 67100 L’Aquila; Nisi, S., E-mail: nisi@lngs.infn.it
2015-08-17
The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the {sup 76}Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10{sup −3} counts/keV kg y) at the Q{sub ββ}. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designedmore » and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system.« less
Development of stripper options for FRIB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marti, F.; Hershcovitch, A.; Momozaki, Y.
2010-09-12
The US Department of Energy Facility for Rare Isotope Beams (FRIB) at Michigan State University includes a heavy ion superconducting linac capable of accelerating all ions up to uranium with energies higher than 200 MeV/u and beam power up to 400 kW. To achieve these goals with present ion source performance it is necessary to accelerate simultaneously two charge states of uranium from the ion source in the first section of the linac. At an energy of approximately 16.5 MeV/u it is planned to strip the uranium beam to reduce the voltage needed in the rest of the linac tomore » achieve the final energy. Up to five different charge states are planned to be accelerated simultaneously after the stripper. The design of the stripper is a challenging problem due to the high power deposited (approximately 0.7 kW) in the stripper media by the beam in a small spot. To assure success of the project we have established a research and development program that includes several options: carbon or diamond foils, liquid lithium films, gas strippers and plasma strippers. We present in this paper the status of the different options.« less
Actinide Foil Production for MPACT Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beller, Denis
Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systemsmore » are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U or UO2 in extremely thin layers (1 to 2 mg/cm2) on various media such as films, foils, or discs. After many months of investigation and trials in FY10 and 11, UNLV researchers developed a new method to produce pure UO2 deposits on foils using a unique approach, which has never been demonstrated, that involves dissolution of U3O8 directly into room temperature ionic liquid (RTIL) followed by electrodeposition from the RTIL-uDU solution (Th deposition from RTIL had been previously demonstrated). The high-purity dissolution of the U3O8 permits the use of RTIL solutions for deposition of U on metal foils in layers without introducing contamination. In FY10 and early FY11 a natural U surrogate for the uDU was used to investigate this and other techniques. In this research project UNLV will deposit directly from RTIL to produce uDU and Th foils devoid of possible contaminants. After these layers have been deposited, they will be examined for purity and uniformity. UNLV will complete the development and demonstration of the RTIL technology/ methodology to prepare uDU and Th samples for use in constructing fast-neutron detectors. Although this material was purchased for use in research using fast-fission chamber detectors for active inspection techniques for MPACT, it could also contribute to R&D for other applications, such as cross section measurements or neutron spectroscopy for national security« less
Effects of heat treatment on U-Mo fuel foils with a zirconium diffusion barrier
NASA Astrophysics Data System (ADS)
Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.; Keiser, Dennis D.
2015-05-01
A monolith fuel design based on U-Mo alloy has been selected as the fuel type for conversion of the United States' high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U-Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U-Mo foil during fabrication alters the microstructure of both the U-10Mo fuel meat and the U-Mo/Zr interface. This work studied the effects of post-rolling annealing treatment on the microstructure of the co-rolled U-Mo fuel meat and the U-Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U-Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ∼9, ∼13, and ∼20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U-Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U-Mo coupon homogenization. The phases in the Zr/U-Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.
Effects of heat treatment on U–Mo fuel foils with a zirconium diffusion barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.
A monolith fuel design based on U–Mo alloy has been selected as the fuel type for conversion of the United States’ high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U–Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U–Mo foil during fabrication alters the microstructure of both the U–10Mo fuel meat and the U–Mo/Zr interface. This work studied the effects of post-rolling annealing treatmentmore » on the microstructure of the co-rolled U–Mo fuel meat and the U–Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U–Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ~9, ~13, and ~20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U–Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U–Mo coupon homogenization. The phases in the Zr/U–Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.« less
New production systems at ISOLDE
NASA Astrophysics Data System (ADS)
Hagebø, E.; Hoff, P.; Jonsson, O. C.; Kugler, E.; Omtvedt, J. P.; Ravn, H. L.; Steffensen, K.
1992-08-01
New target systems for the ISOLDE on-line mass separator facility are presented. Targets of carbides, metal/graphite mixtures, foils of refractory metals, molten metals and oxides have been tested. Beams of high intensity of neutron-rich isotopes of a large number of elements are obtained from a uranium carbide target with a hot plasma-discharge ion source. A target of ZrO 2 has been shown to provide high intensity beams of neutron-deficient isotopes of Mn, Cu, Zn, Ga, Ge, As, Se, Br, Kr and Rb, while a SiC target with a hot plasma ion source gives intense beams of radioactive isotopes of a number of light elements. All these systems are rather chemically unselective. Chemically selective performance has been obtained for several systems, i.e.: the production of neutron-deficient Au from ( 3He, pχn) reactions on a Pt/graphite target with a hot plasma ion source; the production of neutron-deficient Lu and LuF + and Hf and HfF 3+ from a Ta-foil target with a hot plasma ion source under CF 4 addition; the production of neutron-deficient Sr as SrF + and Y as YF 2+ form a Nb-foil target with a W surface ionizer under CF 4 addition; the production of neutron-deficient Se as COSe + from a ZrO 2 target with a hot plasma ion source under O 2 addition; and the production of radioactive F from a SiC target with a hot plasma ion source operating in Al vapour.
Conversion Preliminary Safety Analysis Report for the NIST Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, D. J.; Baek, J. S.; Hanson, A. L.
The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in anmore » aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.« less
Neutronics Analyses of the Minimum Original HEU TREAT Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D.; Connaway, H.; Yesilyurt, G.
2014-04-01
This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to validate the MCNP model of the TREAT reactor with the well-documented measurements which were taken during the start-up and early operation of TREAT. Furthermore, the effect of carbon graphitization was also addressed. The graphitization level was assumedmore » to be 100% (ANL/GTRI/TM-13/4). For this purpose, a set of experiments was chosen to validate the TREAT MCNP model, involving the approach to criticality procedure, in-core neutron flux measurements with foils, and isothermal temperature coefficient and temperature distribution measurements. The results of this study extended the knowledge base for the TREAT MCNP calculations and established the credibility of the MCNP model to be used in the core conversion feasibility analysis.« less
Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhammad Abir; Fahima Islam; Hyoung Koo Lee
2014-11-01
The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the Highmore » Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.« less
Energy spectrum of sputtered uranium - A new technique
NASA Technical Reports Server (NTRS)
Weller, R. A.; Tombrello, T. A.
1978-01-01
The fission track technique for detecting U-235 has been used in conjunction with a mechanical time-of-flight spectrometer in order to measure the energy spectrum in the region 1 eV to 1 keV of material sputtered from a 93% enriched U-235 foil by 80 keV Ar-40(+) ions. The spectrum was found to exhibit a peak in the region 2-4 eV and to decrease approximately as E exp -1.77 for E not less than 100 eV. The design, construction and resolution of the mechanical spectrometer are discussed and comparisons are made between the data and the predictions of the random collision cascade model of sputtering.
NASA Astrophysics Data System (ADS)
Willingham, David; Naes, Benjamin E.; Tarolli, Jay G.; Schemer-Kohrn, Alan; Rhodes, Mark; Dahl, Michael; Guzman, Anthony; Burkes, Douglas E.
2018-01-01
Uranium-molybdenum (U-Mo) monolithic fuels represent one option for converting civilian research and test reactors operating with high enriched uranium (HEU) to low enriched uranium (LEU), effectively reducing the threat of nuclear proliferation world-wide. However, processes associated with fabrication of U-Mo monolithic fuels result in regions of elemental heterogeneity, observed as bands traversing the cross-section of representative samples. Isotopic variations (e.g., 235U and 238U) could also be introduced because of associated processing steps, particularly since HEU feedstock is melted with natural or depleted uranium diluent to produce LEU. This study demonstrates the utility of correlative analysis of Energy-Dispersive X-ray Spectroscopy (EDS) and Secondary Ion Mass Spectrometry (SIMS) with their image data streams using image fusion, resulting in a comprehensive microanalytical characterization toolbox. Elemental and isotopic measurements were made on a sample from the Advanced Test Reactor (ATR) Full-sized plate In-center flux trap Position (AFIP)-7 experiment and compared to previous optical and electron microscopy results. The image fusion results are characteristic of SIMS isotopic maps, but with the spatial resolution of EDS images and, therefore, can be used to increase the effective spatial resolution of the SIMS imaging results to better understand homogeneity or heterogeneity that persists because of processing selections. Visual inspection using the image fusion methodology indicated slight variations in the 235U/238U ratio and quantitative analysis using the image intensities across several FoVs revealed an average 235U atom percent value of 17.9 ± 2.4%, which was indicative of a non-uniform U isotopic distribution in the area sampled. Further development of this capability is useful for understanding the connections between the properties of LEU fuel alternatives and the ability to predict performance under irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakel, Allen J.; Conner, Cliff; Quigley, Kevin
One of the missions of the Reduced Enrichment for Research and Test Reactors (RERTR) program (and now the National Nuclear Security Administrations Material Management and Minimization program) is to facilitate the use of low enriched uranium (LEU) targets for 99Mo production. The conversion from highly enriched uranium (HEU) to LEU targets will require five to six times more uranium to produce an equivalent amount of 99Mo. The work discussed here addresses the technical challenges encountered in the treatment of uranyl nitrate hexahydrate (UNH)/nitric acid solutions remaining after the dissolution of LEU targets. Specifically, the focus of this work is themore » calcination of the uranium waste from 99Mo production using LEU foil targets and the Modified Cintichem Process. Work with our calciner system showed that high furnace temperature, a large vent tube, and a mechanical shield are beneficial for calciner operation. One- and two-step direct calcination processes were evaluated. The high-temperature one-step process led to contamination of the calciner system. The two-step direct calcination process operated stably and resulted in a relatively large amount of material in the calciner cup. Chemically assisted calcination using peroxide was rejected for further work due to the difficulty in handling the products. Chemically assisted calcination using formic acid was rejected due to unstable operation. Chemically assisted calcination using oxalic acid was recommended, although a better understanding of its chemistry is needed. Overall, this work showed that the two-step direct calcination and the in-cup oxalic acid processes are the best approaches for the treatment of the UNH/nitric acid waste solutions remaining from dissolution of LEU targets for 99Mo production.« less
Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density
NASA Astrophysics Data System (ADS)
Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.
2017-08-01
Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (<20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. Different methods have been employed to fabricate monolithic fuel plates, including hot-rolling with no cold-rolling. L1P09T is a hot-rolled fuel plate irradiated to high fission density in the RERTR-9B experiment. This paper discusses the TEM characterization results for this U-10Mo/Zr/Al6061 monolithic fuel plate (∼59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 °C, respectively. TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (>1 μm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ∼30 at% and ∼7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.
Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, J.; Miller, B. D.; Keiser, D. D.
Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. This paper discusses the TEM results of the U-10Mo/Zr/Al6061 monolithic fuel plate (Plate ID: L1P09T, ~ 59% U-235 enrichment) irradiated in Advancedmore » Test Reactor at Idaho National Laboratory as part of RERTR-9B irradiation campaign with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 C, respectively. A total of 5 TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (> 1 µm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ~ 30 at% and ~ 7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.« less
Science & Technology Review May 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aufderheide III, M B
2006-04-03
This month's issue has the following articles: (1) Science and Technology Help the Nation Counter Terrorism--Commentary by Raymond J. Juzaitis; (2) Imagers Provide Eyes to See Gamma Rays--Gamma-ray imagers provide increased radiation detection capabilities and enhance the nation's arsenal for homeland security; (3) Protecting the Nation's Livestock--Foot-and-mouth disease could devastate America's livestock; a new assay provides a rapid means to detect it; (4) Measures for Measures--Laboratory physicists combine emissivity and reflectivity to achieve highly accurate temperature measurements of metal foils; and (5) Looping through the Lamb Shift--Livermore scientists measured a small perturbation in the spectra of highly ionized uranium--the firstmore » measurement of the two-loop Lamb shift in a bound state.« less
Beam heating of thick targets for on-line mass separators
NASA Astrophysics Data System (ADS)
Eaton, T. W.; Ravn, H. L.; Isolde Collaboration
1987-05-01
Energy deposition computations have been made on a variety of target materials utilized for the production of radioisotopes by means of 600-MeV protons. Results have shown that, when a proton current of 100 μA is assumed, dispersed target materials, such as uranium carbide powder and magnesium oxide, are best able to withstand the energy absorption and consequent beam heating without the need of additional cooling. Modified foil targets of titanium, zirconium and tantalum also appear capable of withstanding a full beam current, whilst liquid metal targets in their present form appear to have limitations in terms of the maximum allowable beam current. A redesign of the target container is proposed which allows higher proton currents to be used with these targets also.
Determining Pu-239 content by resonance transmission analysis using a filtered reactor beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klann, R. T.
A novel technique has been developed at Argonne National Laboratory to determine the {sup 239}Pu content in EBR-II blanket elements using resonance transmission analysis (RTA) with a filtered reactor beam. The technique uses cadmium and gadolinium filters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range from 0.1 to 0.5 eV, the total microscopic cross-section of {sup 239}Pu is significantly larger than the cross-sections of {sup 238}U and {sup 235}U. This large difference in cross-section allows small amounts of {sup 239}Pu to be detected in uranium samples. Tests usingmore » a direct beam from a 250 kW TRIGA reactor have been performed with stacks of depleted uranium and {sup 239}Pu foils. Preliminary measurement results are in good agreement with the predicted results up to about two weight percent of {sup 239}Pu in the sample. In addition, measured {sup 239}Pu masses were in agreement with actual sample masses with uncertainties less than 3.8 percent.« less
Use of the Hugoniot elastic limit in laser shockwave experiments to relate velocity measurements
NASA Astrophysics Data System (ADS)
Smith, James A.; Lacy, Jeffrey M.; Lévesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin
2016-02-01
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. This fuel-cladding interface qualification will ensure the survivability of the fuel plates in the harsh reactor environment even under abnormal operating conditions. One of the concerns of the project is the difficulty of calibrating and standardizing the laser shock technique. An analytical study under development and experimental testing supports the hypothesis that the Hugoniot Elastic Limit (HEL) in materials can be a robust and simple benchmark to compare stresses generated by different laser shock systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, G.; Chambru, L.; Authier, N.
2015-07-01
In the context of criticality accident alarm system tests, several experiments were carried out in 2013 on the PROSPERO reactor to study the response to neutron and gamma of different devices and dosimeters, particularly on the SNAC2 dosimeter. This article presents the results of this criticality dosimeter in different configurations, and compares the experimental measurements with the results of calculation performed with the TRIPOLI-4 Monte-Carlo Neutral Particles transport code. PROSPERO is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located at the French CEA Research Center of Valduc. The core, surrounded by a reflector ofmore » depleted uranium, is composed of 2 horizontal cylindrical blocks made of a highly enriched uranium alloy which can be placed in contact, and of 4 depleted uranium control rods which allow the reactor to be driven. This reactor, placed in a cell 10 m x 8 m x 6 m high, with 1.4-meter-thick concrete walls, is used as a fast neutron spectrum source and is operated at stable power level in delayed critical state, which can vary from 3 mW to 3 kW. PROSPERO is extensively used for electronic hardening or to study the effect of the neutrons on various materials. The SNAC2 criticality dosimeter is a zone dosimeter allowing the off line measurement of criticality accident neutron doses. This dosimeter consists of the pile up of seven activation foils embedded into a 23 mm diameter x 21 mm height cadmium container. The activation measurement of each foil, using a gamma spectroscopy technique, gives information about the neutron reaction rates. The SNAC2 software allows the spectrum unfolding from these values, taking into account the hypothesis of a particular spectrum shape, in three components: a Maxwell spectrum component for the thermal range, a 1/E component for the epithermal range, and a Watt spectrum component for the high energy range. Moreover, from the neutron spectrum, the SNAC software can calculate the neutron fluence integrated by the dosimeter and the neutron dose. During the 3 weeks measurement campaign many radioprotection devices were used. To modify the spectrum seen by these devices, several shields of various thicknesses made of concrete or polyethylene, with or without cadmium covers, were placed in the PROSPERO cell. These devices allow the study of criticality accident spectra in several environments: from metal to pseudo liquid. The fluxes measured by the SNAC2 devices were compared with TRIPOLI-4 calculations. (authors)« less
Integral experiments on thorium assemblies with D-T neutron source
NASA Astrophysics Data System (ADS)
Liu, Rong; Yang, Yiwei; Feng, Song; Zheng, Lei; Lai, Caifeng; Lu, Xinxin; Wang, Mei; Jiang, Li
2017-09-01
To validate nuclear data and code in the neutronics design of a hybrid reactor with thorium, integral experiments in two kinds of benchmark thorium assemblies with a D-T fusion neutron source have been performed. The one kind of 1D assemblies consists of polyethylene and depleted uranium shells. The other kind of 2D assemblies consists of three thorium oxide cylinders. The capture reaction rates, fission reaction rates, and (n, 2n) reaction rates in 232Th in the assemblies are measured by ThO2 foils. The leakage neutron spectra from the ThO2 cylinders are measured by a liquid scintillation detector. The experimental uncertainties in all the results are analyzed. The measured results are compared to the calculated ones with MCNP code and ENDF/B-VII.0 library data.
Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B
2016-11-15
A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. Copyright © 2016. Published by Elsevier B.V.
Funsten, Herbert O.; Baldonado, Juan R.; Dors, Eric E.; Harper, Ronnie W.; Skoug, Ruth M.
2006-03-28
An apparatus for electron multiplication by transmission that is designed with at least one foil having a front side for receiving incident particles and a back side for transmitting secondary electrons that are produced from the incident particles transiting through the foil. The foil thickness enables the incident particles to travel through the foil and continue on to an anode or to a next foil in series with the first foil. The foil, or foils, and anode are contained within a supporting structure that is attached within an evacuated enclosure. An electrical power supply is connected to the foil, or foils, and the anode to provide an electrical field gradient effective to accelerate negatively charged incident particles and the generated secondary electrons through the foil, or foils, to the anode for collection.
Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys
NASA Astrophysics Data System (ADS)
Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean
2017-10-01
A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).
An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming.
Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia
2016-07-13
This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination.
Surface treatment using metal foil liner
NASA Technical Reports Server (NTRS)
Garvey, Ray
1989-01-01
A metal foil liner can be used to seal large area surfaces. Characteristics of the two-layer foil liner are discussed. Micrographs for foil-to-foil, foil-to-composite, visible seams, and hidden seams are examined.
Roles of size and kinematics in drag reduction for two tandem flexible foils
NASA Astrophysics Data System (ADS)
Chao, Li-Ming; Zhang, Dong; Pan, Guang
2017-11-01
The effect of size and kinematics difference between two tandem flexible foils on drag reduction have been numerically studied. Compared with single foil, it is found that the kinematics difference between two foils would not play a significant role in reducing drag, while the size difference between two foils significantly affects the drag reduction in this two foil system. For leading foil, it always enjoys drag reduction and the highest drag reduction can be observed at bigger size difference and gap distance between two foil as 22%. For trailing foil, it suffers drag increase when the gap distance between two foils is smaller, while it enjoys drag decrease when the size difference between two foils is bigger enough. The hydrodynamic interaction between such actively undulated foils also has been uncovered and used to explain the mechanisms of drag reduction.
An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming
Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia
2016-01-01
This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination. PMID:28773692
NASA Astrophysics Data System (ADS)
Liechtenstein, V. Kh.; Ivkova, T. M.; Olshanski, E. D.; Baranov, A. M.; Repnow, R.; Hellborg, R.; Weller, R. A.; Wirth, H. L.
1999-12-01
The sputter preparation technique for thin diamond-like carbon (DLC) foils, advantageously used for ion-beam stripping and timing in accelerator experiments, has been optimized to improve the quality and the performance of the foils. Irradiation lifetimes of 5 μg/cm 2 DLC foils prepared by this technique have been compared with those for foils of approximately the same thickness, prepared by laser plasma ablation and for ethylene cracked foils when bombarded by 11 MeV Cu - - and Au --ion beams of ˜1 μA beam current at the Heidelberg MP-tandem. Standard carbon arc-evaporated foils were used as references. In these experiments, DLC stripper foils appeared to have a mean lifetime approximately two times longer than ethylene-cracked foils regardless of ion species, and compared favorably with foils prepared by laser ablation method. All these foils lasted at least, 10 times longer than standard carbon foils, when irradiated in the MP terminal. Approximately, the same improvement factor was confirmed with 3 μg/cm 2 DLC stripper foils irradiated with 2.3 MeV Ni-beams at the Pelletron accelerator in Lund. Unlike standard carbon foils, most of the advanced lifetime foils exhibited thinning during long irradiation, under clean vacuum. This suggests that sputtering of the foil by the heavy-ion beam might be a dominant process, responsible for the observed failure of these long-lived strippers. Along with specifically corrugated self-supporting DLC beam strippers, we succeeded in the fabrication of very smooth and ultra thin (˜0.5 μg/cm 2) DLC foils, mounted on grids and used as start foils for the ToF spectrometers applied in ion beam analysis.
NASA Astrophysics Data System (ADS)
Spickermann, T.; Borden, M. J.; Macek, R. J.; Shaw, R. W.; Feigerle, C. S.; Sugai, I.
2008-06-01
To accumulate high-intensity proton pulses, the Los Alamos Proton Storage Ring (PSR) uses the charge-exchange injection method. H - ions merge with already circulating protons in a bending magnet, and then are stripped off their two electrons in a carbon stripper foil. The circulating protons continue to interact with the foil. Despite efforts to minimize the number of these foil hits, like "painting" of the vertical phase space, they cannot totally be eliminated. As a result, foil heating and probably also radiation damage limit the lifetime of these foils. In recent years, LANL has collaborated with KEK to improve the carbon foils in use at PSR, and these foils now last typically for about 2 months. Recently, an alternative in the form of corrugated diamond foils has been proposed for use at SNS. These foils have now been tested in PSR production for a year, and have already shown to be at least as enduring as the LANL/KEK carbon foils. Advantages of the diamond foil concept, as well as some noteworthy differences that we observed with respect to the LANL carbon foils, will be discussed here.
Effects of thermal treatment on the co-rolled U-Mo fuel foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis D. Keiser, Jr.; Tammy L. Trowbridge; Cynthia R. Breckenridge
2014-11-01
A monolithic fuel type is being developed to convert US high performance research and test reactors such as Advanced Test Reactor (ATR) at Idaho National Laboratory from highly enriched uranium (HEU) to low-enriched uranium (LEU). The interaction between the cladding and the U-Mo fuel meat during fuel fabrication and irradiation is known to have negative impacts on fuel performance, such as mechanical integrity and dimensional stability. In order to eliminate/minimize the direct interaction between cladding and fuel meat, a thin zirconium diffusion barrier was introduced between the cladding and U-Mo fuel meat through a co-rolling process. A complex interface betweenmore » the zirconium and U-Mo was developed during the co-rolling process. A predictable interface between zirconium and U-Mo is critical to achieve good fuel performance since the interfaces can be the weakest link in the monolithic fuel system. A post co-rolling annealing treatment is expected to create a well-controlled interface between zirconium and U-Mo. A systematic study utilizing post co-rolling annealing treatment has been carried out. Based on microscopy results, the impacts of the annealing treatment on the interface between zirconium and U-Mo will be presented and an optima annealing treatment schedule will be suggested. The effects of the annealing treatment on the fuel performance will also be discussed.« less
U-Mo Monolithic Fuel for Nuclear Research and Test Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad
The metallic fuel selected to replace the current HEU fuels in the research and test reactors is the LEU-10 weight % Mo alloy in the form of a thin sheet or foil encapsulated in AA6061 aluminum alloy with a zirconium interlayer. In order to effectively lead this pursuit, new developments in processing and fabrication of the fuel elements have been initiated, along with a better understanding of material behavior before and after irradiation as a result of these new developments. This editorial note gives an introduction about research and test reactors, need for HEU to LEU conversion, fuel requirements, highmore » uranium density monolithic fuel development and an overview of the four articles published in the December 2017 issue of JOM under a special topic titled “U-Mo Monolithic Fuel for Nuclear Research and Test Reactors”.« less
New insight into UO 2F 2 particulate structure by micro-Raman spectroscopy
Stefaniak, Elzbieta A.; Darchuk, Larysa; Sapundjiev, Danislav; ...
2013-02-19
Uranyl fluoride particles produced via hydrolysis of uranium hexafluoride have been deposited on different substrates: polished graphite disks, silver foil, stainless steel and gold-coated silicon wafer, and measured with micro-Raman spectroscopy (MRS). All three metallic substrates enhanced the Raman signal delivered by UO 2F 2 in comparison to graphite. The fundamental stretching of the U–O band appeared at 867 cm –1 in case of the graphite substrate, while in case of the others it was shifted to lower frequencies (down to 839 cm –1). All applied metallic substrates showed the expected effect of Raman signal enhancement; however the gold layermore » appeared to be most effective. Lastly, application of new substrates provides more information on the molecular structure of uranyl fluoride precipitation, which is interesting for nuclear safeguards and nuclear environmental analysis.« less
Carbon Stripper Foils Used in the Los Alamos PSR
NASA Astrophysics Data System (ADS)
Borden, M.; Plum, M. A.; Sugai, I.
1997-05-01
Carbon stripper foils produced by the modified controlled ACDC arc discharge method (mCADAD) at the Institute for Nuclear Study by Dr. Isao Sugai have been tested and used for high current 800-MeV beam production in the Proton Storage Ring (PSR) since 1993. Two approximately 110 μg/cm2 foils are sandwiched together to produce an equivalent 220 μg/cm^2 foil. The combined foil is supported by 4-5 μm diameter carbon fibers attached to an aluminum frame. These foils have survived as long as five months during PSR normal beam production of near 70 μA on target average current. Typical life-times of other foils vary from seven to fourteen days with lower on-target average current. Beam loss data also indicate that Sugai's foils have slower shrinkage rates than other foils. Equipment has been assembled and used to produce foils by the mCADAD method at Los Alamos. These foils will be tested during 1997 operation.
Reynolds, H. G.; Schoff, M. E.; Farrell, M. P.; ...
2017-03-23
The magnetic recoil spectrometer uses a deuterated polyethylene polymer (CD 2) foil to measure neutron yield in inertial confinement fusion experiments. Higher neutron yields in recent experiments have resulted in primary signal saturation in the detector CR-39 foils, necessitating the fabrication of thinner CD 2 foils than established methods could provide. A novel method of fabricating deuterated polymer foils is described. The resulting foils are thinner, smoother, and more uniform in thickness than the foils produced by previous methods. Here, these new foils have successfully been deployed at the National Ignition Facility, enabling higher neutron yield measurements than previous foils,more » with no primary signal saturation.« less
Effects of stern-foil submerged elevation on the lift and drag of a hydrofoil craft
NASA Astrophysics Data System (ADS)
Suastika, K.; Apriansyah
2018-03-01
Effects of the stern-foil submerged elevation on the lift and drag of a hydrofoil craft are studied by using computational fluid dynamics (CFD) and by considering three alternative stern-foil submerged elevations. The submerged elevation of the front foil is kept constant in all the alternatives. From among the alternatives, the deepest stern-foil placement results in the highest stern-foil lift with the highest foil’s lift-to-drag ratio. However, considering the lift-to-drag ratio of the whole foil-strut-hull system, the shallowest stern-foil placement results in the highest lift-to-drag ratio. The struts and the foil’s submerged elevation significantly affects the drag of the whole foil-strut-hull system.
Crist, Charles E.; Ives, Harry C.; Leifeste, Gordon T.; Miller, Robert B.
1988-01-01
A self-contained hermetically sealed foil changer for advancing a portion of foil web into a position normal to the path of a high energy particle beam. The path of the beam is defined generally by an aperture plate and cooperating axially movable barrel such that the barrel can be advanced toward the plate thereby positioning a portion of the foil across the beam path and sealing the foil between the barrel and the plate to form a membrane across said beam path. A spooling apparatus contained in the foil changer permits selectively advancing a fresh supply of foil across the beam path without breaking the foil changer seal.
Multi-dimensional effects in radiation pressure acceleration of ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, V. K., E-mail: tripathivipin@yahoo.co.in
A laser carries momentum. On reflection from an ultra-thin overdense plasma foil, it deposits recoil momentum on the foil, i.e. exerts radiation pressure on the foil electrons and pushes them to the rear. The space charge field thus created takes the ions along, accelerating the electron-ion double layer as a single unit. When the foil has surface ripple, of wavelength comparable to laser wavelength, the radiation pressure acts non-uniformly on the foil and the perturbation grows as Reyleigh-Taylor (RT) instability as the foil moves. The finite spot size of the laser causes foil to bend. These effects limit the quasi-monomore » energy acceleration of ions. Multi-ion foils, e.g., diamond like carbon foil embedded with protons offer the possibility of suppressing RT instability.« less
50th Annual Fuze Conference.Session 3 and 4
2006-05-11
Exploding Foil Initiator Research • Research on Explosives • Conclusion Wim Prinse Research Scientist3 TNO has organised...Research Scientist6 Exploding Foil Initiator Research • Electrical circuit • Exploding foil • Velocity of the flyer • Driver Explosive • Secondary...90% efficiency of energy deposited in the exploding foil (50 % other circuits) Wim Prinse Research Scientist8 Exploding foil • Dimension of the foil
Method and apparatus for coating thin foil with a boron coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Jeffrey L.
An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to amore » thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.« less
Simultaneous laser cutting and welding of metal foil to edge of a plate
Pernicka, John C.; Benson, David K.; Tracy, C. Edwin
1996-01-01
A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.
Bender, M.; Bennett, F.K.; Kuckes, A.F.
1963-09-17
A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)
NASA Technical Reports Server (NTRS)
Schaer, G. R. (Inventor)
1973-01-01
Porous conductive supports for electrochemical cell electrodes are made by electroforming thin corrugated nickel foil, and by stacking pieces of the corrugated foil alternatively with pieces of thin flat nickel foil. Corrugations in successive corrugated pieces are oriented at different angles. Adjacent pieces of foil are bonded by heating in a hydrogen atmosphere and then cutting the stack in planes perpendicular to the foils.
NASA Astrophysics Data System (ADS)
Bin Hassan, M. F.; Bonello, P.
2017-05-01
Recently-proposed techniques for the simultaneous solution of foil-air bearing (FAB) rotor dynamic problems have been limited to a simple bump foil model in which the individual bumps were modelled as independent spring-damper (ISD) subsystems. The present paper addresses this limitation by introducing a modal model of the bump foil structure into the simultaneous solution scheme. The dynamics of the corrugated bump foil structure are first studied using the finite element (FE) technique. This study is experimentally validated using a purpose-made corrugated foil structure. Based on the findings of this study, it is proposed that the dynamics of the full foil structure, including bump interaction and foil inertia, can be represented by a modal model comprising a limited number of modes. This full foil structure modal model (FFSMM) is then adapted into the rotordynamic FAB problem solution scheme, instead of the ISD model. Preliminary results using the FFSMM under static and unbalance excitation conditions are proven to be reliable by comparison against the corresponding ISD foil model results and by cross-correlating different methods for computing the deflection of the full foil structure. The rotor-bearing model is also validated against experimental and theoretical results in the literature.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-12
... Status, Reynolds Packaging LLC (Aluminum Foil Liner Stock), Louisville, Kentucky Pursuant to its...-purpose subzone at the aluminum foil liner stock manufacturing and distribution facilities of Reynolds... manufacturing and distribution of aluminum foil liner stock and aluminum foil at the facilities of Reynolds...
50th Annual Fuze Conference Sessions 3 and 4 Held in Norfolk, Virginia on May 9-11, 2006
2006-05-11
Exploding Foil Initiator Research • Research on Explosives • Conclusion Wim Prinse Research Scientist3 TNO has organised...Research Scientist6 Exploding Foil Initiator Research • Electrical circuit • Exploding foil • Velocity of the flyer • Driver Explosive • Secondary...90% efficiency of energy deposited in the exploding foil (50 % other circuits) Wim Prinse Research Scientist8 Exploding foil • Dimension of the foil
Method and apparatus for corrugating strips
Day, Jack R.; Curtis, Charles H.
1983-01-01
The invention relates to a method and a machine for transversely corrugating a continuous strip of metallic foil. The product foil comprises a succession of alternately disposed corrugations, each defining in cross section, a major segment of a circle. The foil to be corrugated is positioned to extend within a vertical passage in the machine. The walls of the passage are heated to promote the desired deformation of the foil. Foil-deforming rollers are alternately passed obliquely across the passage to respectively engage transverse sections of the foil. The rollers and their respective section of deformed foil comprise a stacked assembly which is moved incrementally through the heated passageway. As the assembly emerges from the passageway, the rollers spill from the corrugated foil and are recovered for re-use.
Simultaneous laser cutting and welding of metal foil to edge of a plate
Pernicka, J.C.; Benson, D.K.; Tracy, C.E.
1996-03-19
A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.
Birefringence and dichroism of poly(vinyl-alcohol) foils containing phthalazinium ylids
NASA Astrophysics Data System (ADS)
Rogojanu, Alina; Dascalu, Carmen Felicia; Zelinschi, Beatrice Carmen; Caprosu, Maria; Dorohoi, Dana Ortansa
2011-10-01
Pure and colored with phthalazinium ylids poly(vinyl-alcohol) (PVA) foils were stretched under gentile heating. The birefringence of the thin foils was determined with a Babinet compensator standardized for yellow radiation of a Sodium lamp. The determined birefringence of the colored PVA foils is higher than that of the pure PVA foils. This fact indicates that the phthalazinium ylids facilitate the increase in the anisotropy of the stretched foils. The visible absorption electronic band of phthalazinium ylids was used to estimate the dichroic ratio and the degree of order of the ylid molecules in the stretched PVA foils. An increase in dichroism and birefringence with the degree of stretching has been evidenced for uncolored and colored PVA foils.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam
2007-01-01
Foil gas bearings are self-acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost top foil layer traps a gas pressure film that supports a load while a layer or layers underneath provide an elastic foundation. Foil bearings are used in many lightly loaded, high-speed turbo-machines such as compressors used for aircraft pressurization, and small micro-turbines. Foil gas bearings provide a means to eliminate the oil system leading to reduced weight and enhanced temperature capability. The general lack of familiarity of the foil bearing design and manufacturing process has hindered their widespread dissemination. This paper reviews the publicly available literature to demonstrate the design, fabrication and performance testing of both first and second generation bump style foil bearings. It is anticipated that this paper may serve as an effective starting point for new development activities employing foil bearing technology.
Double-layer effects on the lifetime of newly developed HBC-foils for RCS of J-PARC
NASA Astrophysics Data System (ADS)
Sugai, I.; Takeda, Y.; Oyaizu, M.; Kawakami, H.; Irie, Y.; Takagi, A.; Hattori, H.; Kawasaki, K.
2010-02-01
We have developed hybrid type boron-mixed carbon (HBC) foils for the rapid cycling synchrotron (RCS) of Japan-proton accelerator research complex (J-PARC) using the controlled DC arc-discharge method. The method has been found suitable for the production of thick foils up to a maximum of 700 μg/cm 2 due to the strong adhesion to the substrate. The foils thus produced showed rather long lifetime. By the development, high-temperature damage (foil deformation, thickness reduction and pinhole formation) of the foil was significantly mitigated even at a temperature of approximately 1700 K. However, when the foil temperature was higher than about 1800 K, especially pinhole formation in the irradiated area of the foil and its peripheries were always observed. In order to relieve high-temperature damage, we investigated the possibility to lower the temperature rise in single and double layer HBC-foils while keeping the total thickness the same. We also compared the lifetime of the single and the double layer HBC-foils as well as diamond and commercially available foils, using a 3.2 MeV Ne + ion beam from the Van de Graaff accelerator.
ERIC Educational Resources Information Center
Szekely, George
2010-01-01
Foil can be shaped into almost anything--it is the all-purpose material for children's art. Foil is a unique drawing surface. It reflects, distorts and plays with light and imagery as young artists draw over it. Foil permits quick impressions of a model or object to be sketched. Foil allows artists to track their drawing moves, seeing the action…
Method and apparatus for corrugating strips
Day, J.R.; Curtis, C.H.
1981-10-27
The invention relates to a method and a machine for transversely corrugating a continuous strip of metallic foil. The product foil comprises a succession of alternately disposed corrugations, each defining in a cross section, a major segment of a circle. The foil to be corrugated is positioned to extend within a vertical passage in the machine. The walls of the passage are heated to promote the desired deformation of the foil. Foil-deforming rollers are alternately passed obliquely across the passage to respectively engage transverse sections of the foil. The rollers and their respective section of deformed foil comprise a stacked assembly which is moved incrementally through the heated passageway. As the assembly emerges from the passageway, the rollers spill from the corrugated foil and are recovered for re-use.
An experimental and theoretical study of structural damping in compliant foil bearings
NASA Technical Reports Server (NTRS)
Ku, C.-P. Roger
1994-01-01
This paper describes an experimental investigation into the dynamic characteristics of corrugated foil (bump foil) strips used in compliant surface foil bearings. This study provided and opportunity to quantify the structural damping of bump foil strips. The experimental data were compared to results obtained by a theoretical model developed earlier. The effects of bearing design parameters, such as static loads, dynamic displacement amplitudes, bump configurations, pivot locations, surface coatings, and lubricant were also evaluated. An understanding of the dynamic characteristics of bump foil strips resulting from this work offers designers a means for enhancing the design of high-performance compliant foil bearings.
Beuhler, Robert J [East Moriches, NY; White, Michael G [Blue Point, NY; Hrbek, Jan [Rocky Point, NY
2006-08-15
A catalytic process for the oxidation of organic. Oxygen is loaded into a metal foil by heating the foil while in contact with an oxygen-containing fluid. After cooling the oxygen-activated foil to room temperature, oxygen diffuses through the foil and oxidizes reactants exposed to the other side of the foil.
Chromic acid anodizing of aluminum foil
NASA Technical Reports Server (NTRS)
Dursch, H.
1988-01-01
The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.
NASA Technical Reports Server (NTRS)
Radil, Kevin C.; DellaCorte, Christopher
2001-01-01
Foil air bearing load capacity tests were conducted to investigate if a solid lubricant coating applied to the surface of the bearing's top foil can function as a break-in coating. Two foil coating materials, a conventional soft polymer film (polyimide) and a hard ceramic (alumina), were independently evaluated against as-ground and worn (run-in) journals coated with NASA PS304, a high-temperature solid lubricant composite coating. The foil coatings were evaluated at journal rotational speeds of 30,000 rpm and at 25 C. Tests were also performed on a foil bearing with a bare (uncoated) nickel-based superalloy top foil to establish a baseline for comparison. The test results indicate that the presence of a top foil solid lubricant coating is effective at increasing the load capacity performance of the foil bearing. Compared to the uncoated baseline, the addition of the soft polymer coating on the top foil increased the bearing load coefficient by 120% when operating against an as-ground journal surface and 85 percent against a run-in journal surface. The alumina coating increased the load coefficient by 40% against the as-ground journal but did not have any affect when the bearing was operated with the run-in journal. The results suggest that the addition of solid lubricant films provide added lubrication when the air film is marginal indicating that as the load capacity is approached foil air bearings transition from hydrodynamic to mixed and boundary lubrication.
Gas electron multiplier (GEM) foil test, repair and effective gain calculation
NASA Astrophysics Data System (ADS)
Tahir, Muhammad; Zubair, Muhammad; Khan, Tufail A.; Khan, Ashfaq; Malook, Asad
2018-06-01
The focus of my research is based on the gas electron multiplier (GEM) foil test, repairing and effective gain calculation of GEM detector. During my research work define procedure of GEM foil testing short-circuit, detection short-circuits in the foil. Study different ways to remove the short circuits in the foils. Set and define the GEM foil testing procedures in the open air, and with nitrogen gas. Measure the leakage current of the foil and applying different voltages with specified step size. Define the Quality Control (QC) tests and different components of GEM detectors before assembly. Calculate the effective gain of GEM detectors using 109Cd and 55Fe radioactive source.
21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one...
21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tin-coated lead foil capsules for wine bottles. 189... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one...
21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one...
21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one...
NASA Astrophysics Data System (ADS)
Bao, Y.; Zhou, D.; Tao, J. J.; Peng, Z.; Zhu, H. B.; Sun, Z. L.; Tong, H. L.
2017-03-01
A two-dimensional computational hydrodynamic model is developed to investigate the propulsive performance of a flapping foil system in viscous incompressible flows, which consists of two anti-phase flapping foils in side-by-side arrangement. In the simulations, the gap between the two foils is varied from 1.0 to 4.0 times of the diameter of the semi-circular leading edge; the amplitude-based Strouhal number is changed from 0.06 to 0.55. The simulations therefore cover the flow regimes from negligible to strong interference in the wake flow. The generations of drag and thrust are investigated as well. The numerical results reveal that the counter-phase flapping motion significantly changes the hydrodynamic force generation and associated propulsive wake. Furthermore, the wake interference becomes important for the case with a smaller foil-foil gap and induces the inverted Bénard von Kármán vortex streets. The results show that the hydrodynamic performance of two anti-phase flapping foils can be significantly different from an isolated pitching foil. Findings of this study are expected to provide new insight for developing hydrodynamic propulsive systems by improving the performance based on the foil-foil interaction.
Developing a laser shockwave model for characterizing diffusion bonded interfaces
NASA Astrophysics Data System (ADS)
Lacy, Jeffrey M.; Smith, James A.; Rabin, Barry H.
2015-03-01
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.
Collodion-reinforcement and plasma-cleaning of target foils
NASA Astrophysics Data System (ADS)
Stoner, John O.
2002-03-01
The preparation of evaporated target foils can often be facilitated by use of collodion coatings either on the substrate sides or on the exterior surfaces of the foils. Later, such coatings must usually be removed. Cleaning of a foil is necessary if thin layers of adhesives have crept onto the foil. Removal and/or cleaning can often be done satisfactorily with an oxygen plasma. Apparatus and procedures used for this are described. Foils that were cleaned successfully, and some that were incompatible with the cleaning process are listed.
Studies of PMMA sintering foils with and without coating by magnetron sputtering Pd
NASA Astrophysics Data System (ADS)
Cutroneo, M.; Mackova, A.; Torrisi, L.; Vad, K.; Csik, A.; Ando', L.; Svecova, B.
2017-09-01
Polymethylmethacrylate thin foils were prepared by using physical and chemical processes aimed at changing certain properties. The density and the optical properties were changed obtaining clear and opaque foils. DC magnetron sputtering method was used to cover the foils with thin metallic palladium layers. The high optical absorbent foils were obtained producing microstructured PMMA microbeads with and without thin metallic coatings. Rutherford Backscattering Spectroscopy, optical investigation and microscopy were employed to characterize the prepared foils useful in the field study of laser-matter interaction.
Measurements of laser generated soft X-ray emission from irradiated gold foils
Davis, J. S.; Frank, Y.; Raicher, E.; ...
2016-08-22
We measured soft x-ray emission from laser irradiated gold foils at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.
Measurements of laser generated soft X-ray emission from irradiated gold foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J. S.; Keiter, P. A.; Klein, S. R.
Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.
Measurements of laser generated soft X-ray emission from irradiated gold foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J. S.; Frank, Y.; Raicher, E.
We measured soft x-ray emission from laser irradiated gold foils at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.
NASA Astrophysics Data System (ADS)
Edwards, Nathaniel S.; Montag, Benjamin W.; Henson, Luke C.; Bellinger, Steven L.; Nichols, Daniel M.; Reichenberger, Michael A.; Fronk, Ryan G.; McGregor, Douglas S.
2018-06-01
6Li foils, each 75-μm thick, were positioned between a Schott Borofloat® 33 microstrip electrode and a planar drift electrode to construct suspended foil microstrip neutron detectors. MCNP6 simulations of two detector configurations, one containing a single 6Li foil and the other containing five 6Li foils, indicated expected maximum intrinsic thermal-neutron detection efficiencies of 18.36% and 54.08%, respectively. For comparison, the intrinsic thermal-neutron detection efficiency as a function of thermal-neutron beam position along the foil span was experimentally measured for both detector configurations. A non-uniform intrinsic thermal-neutron detection efficiency distribution was observed along the span of the 6Li foil(s) between the microstrip and drift electrodes. Maximum intrinsic thermal-neutron detection efficiencies of 12.58 ± 0.15% and 29.75 ± 0.26% for the single and five 6Li foils were measured, respectively. Gamma-ray rejection ratios of 6.46 × 10-5 ± 4.32 × 10-7 and 7.96 × 10-5 ± 4.65 × 10-7 were also measured, respectively, for a 137Cs exposure rate of 50 mR h-1. All measurements were conducted with the 6Li foil(s) contained within a sealed aluminum enclosure pressurized with 10 psig of P-10 gas.
Barty, Christopher P.J.
2013-02-05
A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.
Radiation pressure acceleration of corrugated thin foils by Gaussian and super-Gaussian beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adusumilli, K.; Goyal, D.; Tripathi, V. K.
Rayleigh-Taylor instability of radiation pressure accelerated ultrathin foils by laser having Gaussian and super-Gaussian intensity distribution is investigated using a single fluid code. The foil is allowed to have ring shaped surface ripples. The radiation pressure force on such a foil is non-uniform with finite transverse component F{sub r}; F{sub r} varies periodically with r. Subsequently, the ripple grows as the foil moves ahead along z. With a Gaussian beam, the foil acquires an overall curvature due to non-uniformity in radiation pressure and gets thinner. In the process, the ripple perturbation is considerably washed off. With super-Gaussian beam, the ripplemore » is found to be more strongly washed out. In order to avoid transmission of the laser through the thinning foil, a criterion on the foil thickness is obtained.« less
21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tin-coated lead foil capsules for wine bottles... Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one or both sides with a thin layer...
Method of forming a thin unbacked metal foil
Duchane, David V.; Barthell, Barry L.
1984-01-01
In a method of forming a thin (<2 .mu.m) unbacked metal foil having a desired curviplanar shape, a soluble polymeric film, preferably comprising polyvinyl alcohol, is formed on a supporting structure having a shape that defines the desired shape of the foil product. A layer of metal foil is deposited onto one side of the soluble film, preferably by vacuum vapor deposition. The metallized film is then immersed in a suitable solvent to dissolve the film and thereby leave the metal foil as an unbacked metal foil element mounted on the supporting structure. Aluminum foils less than 0.2 .mu.m (2,000 .ANG.) thick and having an areal density of less than 54 .mu.g/cm.sup.2 have been obtained.
Characterization of Graphene Stripper Foils in 11-MeV Cyclotrons
NASA Astrophysics Data System (ADS)
Korenev, Sergey; Dishman, Rick; Yebra, Alberto; Meshcheryakov, Nikolay; Smirnov, Ilya; Pavlovsky, Igor; Fink, Richard
An experimental study of the use of graphene as an extractor (stripper) foil in the 11-MeV Siemens Eclipse Cyclotron is discussed in this paper. The main advantage of graphene is its high thermal conductivity compared to that of amorphous carbon films. Graphene also has significant mechanical strength. The lifetime of the graphene foils under proton bombardment exceeded 16,000 μAh. Graphene-based stripper foils demonstrated a significant increase in the transmission factor (defined as the ratio of the beam current on the target to the beam current on the stripper foil), which was approximately 90%. Fabrication of the graphene-based foils is discussed. The pros and cons of using the graphene material as a stripper foil in cyclotrons are analyzed.
Micrometeorite penetration effects in gold foil
NASA Technical Reports Server (NTRS)
Hallgren, D. S.; Radigan, W.; Hemenway, C. L.
1976-01-01
Penetration structures revealed by a Skylab experiment dealing with exposure of single and double layers of 500-800 A thick gold foil to micrometeorites are examined. Examination of all double-layered gold foils revealed that particles producing holes of any type greater than 5 microns in diameter in the first foil break up into many fragments which in turn produce many more holes in the second foil. Evidence of an original particle is not found on any stainless steel plate below the foils, except in one instance. A precise relationship between the size of the event and the mass of the particle producing it could not be determined due to the extreme morphological variety in penetration effects. Fluxes from gold foil and crater experiments are briefly discussed.
Thrust augmentation in tandem flapping foils by foil-wake interaction
NASA Astrophysics Data System (ADS)
Anderson, Erik; Lauder, George
2006-11-01
Propulsion by pitching and heaving airfoils and hydrofoils has been a focus of much research in the field of biologically inspired propulsion. Organisms that use this sort of propulsion are self-propelled, so it is difficult to use standard experimental metrics such as thrust and drag to characterize performance. We have constructed a flapping foil robot mounted in a flume on air-bearings that allows for the determination of self-propelled speed as a metric of performance. We have used a pair of these robots to examine the impact of an upstream flapping foil on a downstream flapping foil as might apply to tandem fins of a swimming organism or in-line swimming of schooling organisms. Self-propelled speed and a force transducer confirmed significant thrust augmentation for particular foil-to-foil spacings, phase differences, and flapping frequencies. Flow visualization shows the mechanism to be related to the effective angle of attack of the downstream foil due to the structure of the wake of the upstream foil. This confirms recent computational work and the hypotheses by early investigators of fish fluid dynamics.
Extended foil capacitor with radially spoked electrodes
Foster, James C.
1990-01-01
An extended foil capacitor has a conductive disk electrically connected in oncrushing contact to the extended foil. A conductive paste is placed through spaces between radial spokes on the disk to electrically and mechanically connect the extended foil to the disk.
Explosive-driven, high speed, arcless switch
Skogmo, P.J.; Tucker, T.J.
1986-05-02
An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.
Explosive-driven, high speed, arcless switch
Skogmo, Phillip J.; Tucker, Tillman J.
1987-01-01
An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.
Richards, Todd; Pettet, Mark; Askren, Katie; Grabowski, Tom; Yagle, Kevin; Wallis, Peter; Northey, Mary; Abbott, Robert; Berninger, Virginia
2016-01-01
Thirteen students with and twelve students without spelling disabilities judged whether sentences (1/3 all correct spellings, 1/3 with homonym foil, 1/3 with morpheme foil) were meaningful while event-related potentials (ERPs) were measured with EGI Geodesic EEG System 300 (128-channel hydro-cell nets). For N400, Rapid Automatic Switching (RAS) correlated with comprehending sentences with homonym foils in control group but with morpheme foils in SLD group. For P600, dictated spelling correlated with comprehending sentences with morpheme foils in the control group but solving anagrams with homonym foils in the SLD group. Educational significance and neuropsychological significance of these contrasting results are discussed. PMID:28657362
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaltun, Hakan; Medvedev, Pavel G
2015-06-01
Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance havemore » been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners.« less
Passive Thermal Management of Foil Bearings
NASA Technical Reports Server (NTRS)
Bruckner, Robert J. (Inventor)
2015-01-01
Systems and methods for passive thermal management of foil bearing systems are disclosed herein. The flow of the hydrodynamic film across the surface of bearing compliant foils may be disrupted to provide passive cooling and to improve the performance and reliability of the foil bearing system.
Target materials for exotic ISOL beams
NASA Astrophysics Data System (ADS)
Gottberg, A.
2016-06-01
The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices that can supply new beams of unprecedented intensity and beam current stability.
Characterization of Beryllium Windows for Coherent X-ray Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Shunji; Yabashi, Makina; Tamasaku, Kenji
2007-01-19
Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications.
Development, characterization and qualification of first GEM foils produced in India
NASA Astrophysics Data System (ADS)
Shah, Aashaq; Ahmed, Asar; Gola, Mohit; Sharma, Ram Krishna; Malhotra, Shivali; Kumar, Ashok; Naimuddin, Md.; Menon, Pradeep; Srinivasan, K.
2018-06-01
The increasing demand for Gas Electron Multiplier (GEM) foils has been driven by their application in many current and proposed high-energy physics experiments. Micropack, a Bengaluru-based company, has established and commercialized GEM foils for the first time in India. Micropack used the double-mask etching technique to successfully produce 10 cm × 10 cm GEM foil. In this paper, we report on the development as well as the geometrical and electrical properties of these foils, including the size uniformity of the holes and leakage current measurements. Our characterization studies show that the foils are of good quality and satisfy all the necessary quality control criteria.
Explosive-driven, high speed, arcless switch
Skogmo, P.J.; Tucker, T.J.
1987-07-14
An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed. 7 figs.
Paisley, Dennis L.
1991-01-01
Apparatus for producing high velocity flyer plates involving placing a layer of dielectric material between a first metal foil and a second metal foil. With laser irradiation through an optical substrate, the first metal foil forms a plasma in the area of the irradiation, between the substrate and the solid portion of the first metal foil. When the pressure between the substrate and the foil reaches the stress limit of the dielectric, the dielectric will break away and launch the flyer plate out of the second metal foil. The mass of the flyer plate is controlled, as no portion of the flyer plate is transformed into a plasma.
Quasi-static analysis of foil journal bearings for a Brayton cycle turboalternator
NASA Technical Reports Server (NTRS)
Eshel, A.
1974-01-01
A quasi-static analysis is presented for foil journal bearings designed for a NASA Brayton Cycle Turboalternator. Included in the analysis are effects of 'slack' (due to flexural rigidity of the foil), of frictionally restrained extension of the foil-length in contact with cylindrical guides, of fluid inertia and compressibility, and of thermal expansion of rotor, foil and supporting structure. Comparisons are made with results of early experiments performed by Licht (1968, 1969) and recent data of Licht and Branger (1973). Variatons of film thickness, foil tension and bearing stiffness are presented graphically as functions of pertinent parameters for the case of operation in zero-gravity environment.
Characterization of laser-cut copper foil X-pinches
NASA Astrophysics Data System (ADS)
Collins, G. W.; Valenzuela, J. C.; Hansen, S. B.; Wei, M. S.; Reed, C. T.; Forsman, A. C.; Beg, F. N.
2016-10-01
Quantitative data analyses of laser-cut Cu foil X-pinch experiments on the 150 ns quarter-period, ˜250 kA GenASIS driver are presented. Three different foil designs are tested to determine the effects of initial structure on pinch outcome. Foil X-pinch data are also presented alongside the results from wire X-pinches with comparable mass. The X-ray flux and temporal profile of the emission from foil X-pinches differed significantly from that of wire X-pinches, with all emission from the foil X-pinches confined to a ˜3 ns period as opposed to the delayed, long-lasting electron beam emission common in wire X-pinches. Spectroscopic data show K-shell as well as significant L-shell emission from both foil and wire X-pinches. Fits to synthetic spectra using the SCRAM code suggest that pinching foil X's produced a ˜1 keV, ne ≥ 1023 cm-3 plasma. The spectral data combined with the improved reliability of the source timing, flux, and location indicate that foil X-pinches generate a reproducible, K-shell point-projection radiography source that can be easily modified and tailored to suit backlighting needs across a variety of applications.
Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates
Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.
2015-09-03
Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected bymore » the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.« less
Effect of Circuit Inductance on Ceramics Joining by Titanium Foil Explosion
NASA Astrophysics Data System (ADS)
Takada, Yoshihiro; Takaki, Koichi; Itagaki, Minoru; Mukaigawa, Seiji; Fujiwara, Tamiya; Ohshima, Shuzo; Takahashi, Ikuo; Kuwashima, Takayuki
This article describes the influences of circuit inductance on alumina (Al2O3) tile joining using explosive titanium foil. Several kAs pulse current was supplied from 8.28 µF storage capacitor to the 50 µm thickness titanium foil which was sandwiched between the Al2O3 tiles with pressure of 8.3 MPa. The temperature of the foil was rapidly increased owing to ohmic heating with the large current, and then the foil was liquefied and vaporized. The Al2O3 tiles were successfully bonded when the input energy to the titanium foil was higher than the energy required for the foil vaporization. The bonding strength increases with increasing the energy input to the foil. However, the foil explosion cracked the tiles when the input energy exceeds a critical value. Increasing the circuit inductance from 1.13 µH to 64.8 µH, the critical energy of tile cracking increase from 160 J to 507 J, respectively. the maximum bonding strength of 330 kg was obtained when the circuit inductance was 21.8 µH. An investigation of the interfacial structure of the joints using electron probe micro-analysis revealed that distinct reaction areas existed in the interlayer.
High-performance lithium-ion batteries with 1.5 μm thin copper nanowire foil as a current collector
NASA Astrophysics Data System (ADS)
Chu, Hsun-Chen; Tuan, Hsing-Yu
2017-04-01
Cu Foil, a thin sheet of Cu, is the common anode current collector in commercial lithium ion batteries (LIBs) which accounts for ∼ 10 wt% of the total cell weight. However, thickness reduction of LIB-based Cu foils below 6 μm has been limited by the incapability of conventional rolling annealing or electrodeposition process. We here report a new type of Cu foil, so called Cu nanowire foil (CuNW foil), for use as an LIB anode current collector. We fabricate Cu NW foils by rolling press Cu nanowire fabric to reduce the thickness down to ∼1.5 μm with an areal weight down to ∼1.2 mg cm-2 and a density approximately 96% to that of bulk Cu. The rough surface and porous structure of CuNW foil enable better wetting and adhering properties of graphite slurry on foil. In full cell examination, a cell of a areal capacity of 3 mAh cm-2 exhibits 83.6% capacity retention for 600 cycles at 0.6 C that meets the standard specification of most commercial LIBs. As a proof-of-concept of demonstration, we fabricate a 700 mA pouch-type battery implemented with graphite-Cu NWs foil anodes to serve as energy supply to operate electronic devices.
Characteristics of a plasma flow field produced by a metal array bridge foil explosion
NASA Astrophysics Data System (ADS)
Junying, WU; Long, WANG; Yase, LI; Lijun, YANG; Manzoor, SULTAN; Lang, CHEN
2018-07-01
To improve the energy utilization efficiency of metal bridge foil explosion, and increase the function range of plasmas, array bridge foil explosion experiments with different structures were performed. A Schlieren photographic measurement system with a double-pulse laser source was used to observe the flow field of a bridge foil explosion. The evolution laws of plasmas and shock waves generated by array bridge foil explosions of different structures were analyzed and compared. A multi-phase flow calculation model was established to simulate the electrical exploding process of a metal bridge foil. The plasma equation of state was determined by considering the effect of the changing number of particles and Coulomb interaction on the pressure and internal energy. The ionization degree of the plasma was calculated via the Saha–Eggert equation assuming conditions of local thermal equilibrium. The exploding process of array bridge foils was simulated, and the superposition processes of plasma beams were analyzed. The variation and distribution laws of the density, temperature, pressure, and other important parameters were obtained. The results show that the array bridge foil has a larger plasma jet diameter than the single bridge foil for an equal total area of the bridge foil. We also found that the temperature, pressure, and density of the plasma jet’s center region sharply increase because of the superposition of plasma beams.
Pu-Zr alloy for high-temperature foil-type fuel
McCuaig, Franklin D.
1977-01-01
A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.
Pu-ZR Alloy high-temperature activation-measurement foil
McCuaig, Franklin D.
1977-08-02
A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, David P.; Hirschfeld, Deidre A.; Hooper, Ryan J.
2015-09-01
Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Much of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To enhance the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purposemore » of evaluating new foil-substrate combinations for screening and optimization. The model is experimentally validated using a commercially available Ni-Al multilayer foils and different alloys.« less
Warmington, Leighton L; Gopishankar, N; Broadhurst, John H; Watanabe, Yoichi
2016-12-01
To investigate the feasibility of three-dimensional (3D) dose measurements near thin high-Z materials placed in a water-like medium by using a polymer gel dosimeter (PGD) when the medium was irradiated with high energy photon beams. PGD is potentially a useful tool for this application because it can record the dose around a small object made of a high-Z material in a continuous 3D medium. In this study, the authors manufactured a methacrylic acid-based normoxic PGD, nMAG. Two 0.5 mm thick lead foils (1 × 1 cm) were placed in foil supports with 0.7 cm separation in a 1000 ml polystyrene container filled with nMAG. The authors used two foil configurations, i.e., orthogonal and parallel. In the orthogonal configuration, two foils were placed in the direction orthogonal to the beam axis. The parallel configuration had two foils arranged in parallel to the beam axis. The phantom was irradiated with an 18 MV photon beam of 5 × 5 cm field size. It was imaged with a three-Tesla (3 T) magnetic resonance imaging (MRI) scanned using the Car-Purcell-Meiboom-Gill pulse sequence. The spin-spin relaxation time (R2) to-dose calibration data were obtained by using small vials filled with nMAG and exposing to known doses. The DOSXYZnrc Monte Carlo (MC) code was used to get the expected dose distributions. More than 35 × 10 6 of histories were simulated so that the average error was less than 1%. An in-house matlab-based software was used to obtain the dose distributions from the measured R2 data as well as to compare the measurements and the MC predictions. The dose change due to the presence of the foils was studied by comparing the dose distributions with and without foils (or the reference). For the orthogonal configuration, the measured dose along the beam axis showed an increase in the upstream side of the first foil, between the foils, and on the downstream side of the second foil. The range of increased dose area was 1.1 cm in the upstream of the first foil. However, in the downstream of the second foil, it was 0.2 cm, beyond which the dose fell below the reference dose by 10%. The dose profile between the foils showed a well-like shape with the minimum dose still larger than the reference dose by 1.8%. The minimum dose point was closer to the first foil than to the second foil. For the parallel configuration, the dose between foils was the largest at the center. The increased dose area opposite to the gap between foils extended outward to 1 cm. The spatial dose distributions of PGD and MC showed the same geometrical patterns except for the points inside the foils for both orthogonal and parallel foil arrangements. The authors demonstrated that the nMAG PGD with MRI could be used to measure the 3D dosimetric structures at the mm-scale in the vicinity of the foil. The current study provided more accurate 3D spatial dose distribution than the previous studies. Furthermore, the measurements were validated by the MC simulation.
Methods of making metallic glass foil laminate composites
Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.
1996-08-20
A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.
Methods of making metallic glass foil laminate composites
Vianco, Paul T.; Fisher, Robert W.; Hosking, Floyd M.; Zanner, Frank J.
1996-01-01
A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.
Boron stripper foils for particle accelerators
NASA Astrophysics Data System (ADS)
Zeisler, Stefan K.; Brigham, Michael; Kaur, Ishneet; Jaggi, Vinder
2018-05-01
Micromatter Technologies Inc., now located in Surrey B.C., Canada, is a worldwide supplier of pure and boron containing diamond-like carbon (DLC) stripper foils ranging from 10 nm to 10 μm. These foils are manufactured in-house using pulsed laser deposition. Continuing our research into novel production methods and alternative materials to be used as beam strippers for heavy elements and in particular for tandem particle accelerators, pure boron foils were prepared by laser plasma ablation of a disc shaped boron sputter target. Foil thickness between 10 nm to approximately 0.7 μm were achieved. The new boron foils showed considerably less stress, higher mechanical strength and better flexibility than comparable DLC films.
NMR of samples containing metal foils.
Xiong, J; Lock, H; Tao, T; Keeler, C; Maciel, G E
1999-07-01
By using spool configurations of a sample containing aluminum foil, in which the axis of the spool is collinear with the RF coil axis, one can obtain high-quality 13C NMR spectra of static samples of organic material attached to the aluminum foil. By combining such a spool configuration (or, alternatively, analogous samples containing equivalent amounts of fine aluminum powder) with the magic-angle hopping (MAH) technique, one can achieve a high degree of isotropic averaging of the 13C spectrum. This opens to NMR techniques the study of a variety of samples containing macroscopic pieces of metal foils, e.g., thin films deposited on metal foils and electrochemical systems with species adsorbed on metal-foil electrodes.
Development of aerodynamic foil journal bearings for a high speed cryogenic turboexpander
NASA Astrophysics Data System (ADS)
Xiong, L.-Y.; Wu, G.; Hou, Y.; Liu, L.-Q.; Ling, M.-F.; Chen, C.-Z.
The research presented in this paper is aimed at the development of aerodynamic foil journal bearings applying to a small high speed cryogenic turboexpander. A small high speed cryogenic turboexpander is designed. Attention has been paid to the study of the effect of foil stiffness on the vibration performance of bearings. From rotation tests, it is clear that, with the proper choice of foil stiffness, the foil bearing presented here can possess sufficiently high stability. The maximum rotational speed obtained is greater than 230 000 rpm. Therefore, owing to its simplicity and high performance, this type of foil journal bearing can hopefully be applied to a small high speed cryogenic turboexpander.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, Igor; Ronningen, Reginald Martin
The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UC x material atmore » reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 10 13 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.« less
Measurement of the radon diffusion through a nylon foil for different air humidities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel
The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While themore » left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.« less
Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils
NASA Astrophysics Data System (ADS)
Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching
2017-08-01
Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.
NASA Astrophysics Data System (ADS)
Wang, Xi-yong; Liu, Xue-feng; Zou, Wen-jiang; Xie, Jian-xin
2013-12-01
Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces were fabricated by double rolling. The two surface morphologies of double-rolled copper foils are quite different, and the surface roughness values are 61 and 1095 nm, respectively. The roughness value of matt surface can meet the requirement for bonding the resin matrix with copper foils used for flexible printed circuit boards, thus may omit traditional roughening treatment; the microstructure of double-rolled copper foils demonstrates an obviously asymmetric gradient feature. From bright surface to matt surface in thickness direction, the average grain size first increases from 2.3 to 7.4 μm and then decreases to 3.6 μm; compared with conventional rolled copper foils, the double-rolled copper foils exhibit a remarkably increased bending fatigue life, and the increased range is about 16.2%.
Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey
2010-01-01
An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serov, A. V., E-mail: serov@x4u.lebedev.ru; Mamonov, I. A.
2016-08-15
Photographs of cross sections of an electron beam scattered from thin foils have been obtained on a dosimetric film. The procession of images makes it possible to obtain the spatial distribution of particles both reflected from a foil and passed through it. The spatial distribution of electrons incident on aluminum, copper, and lead foils, as well as on bimetallic foils composed of aluminum and lead layers and of aluminum and copper layers, has been measured. The effect of the material and thickness of the foil, as well as of the angle between the initial beam trajectory and the target plane,more » on the spatial distribution of electrons has been studied. The effect of the sequence of the metal layers in bimetallic foils on the distribution of beams has been analyzed. A 7.4-MeV microtron has been used as a source of electrons.« less
Development of Gating Foils To Inhibit Ion Feedback Using FPC Production Techniques
NASA Astrophysics Data System (ADS)
Arai, D.; Ikematsu, K.; Sugiyama, A.; Iwamura, M.; Koto, A.; Katsuki, K.; Fujii, K.; Matsuda, T.
2018-02-01
Positive ion feedback from a gas amplification device to the drift region of the Time Projection Chamber for the ILC can deteriorate the position resolution. In order to inhibit the feedback ions, MPGD-based gating foils having good electron transmission have been developed to be used instead of the conventional wire gate. The gating foil needs to control the electric field locally in opening or closing the gate. The gating foil with a GEM (gas electron multiplier)-like structure has larger holes and smaller thickness than standard GEMs for gas amplification. It is known that the foil transmits over 80 % of electrons and blocks ions almost completely. We have developed the gating foils using flexible printed circuit (FPC) production techniques including an improved single-mask process. In this paper, we report on the production technique of 335 μm pitch, 12.5 μm thick gating foil with 80 % transmittance of electrons in ILC conditions.
Producing Foils From Direct Cast Titanium Alloy Strip
NASA Technical Reports Server (NTRS)
Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.
1996-01-01
This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.
NASA Technical Reports Server (NTRS)
Munson, John
2009-01-01
In the seal literature you can find many attempts by various researchers to adapt film riding seals to the gas turbine engine. None have been successful, potential distortion of the sealing faces is the primary reason. There is a film riding device that does accommodate distortion and is in service in aircraft applications, namely the foil bearing. More specifically a foil thrust bearing. These are not intended to be seals, and they do not accommodate large axial movement between shaft & static structure. By combining the 2 a unique type of face seal has been created. It functions like a normal face seal. The foil thrust bearing replaces the normal primary sealing surface. The compliance of the foil bearing allows the foils to track distortion of the mating seal ring. The foil seal has several perceived advantages over existing hydrodynamic designs, enumerated in the chart. Materials and design methodology needed for this application already exist. Also the load capacity requirements for the foil bearing are low since it only needs to support itself and overcome friction forces at the antirotation keys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.
Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealedmore » that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.« less
Pulsed electric discharge laser technology. Electron beam window foil material
NASA Astrophysics Data System (ADS)
McGeoch, M. W.; Defuria, A. J.; Pike, C. T.
1984-01-01
An experimental and theoretical study of titanium alloy foil windows is described. The alloys considered are Ti 15-3-3-3, Ti 3-2.5, and CP Ti(4). The foil thickness ranges from 0.5 mil to 1.0 mil. Tensile strength data is presented for 75 F and 600 F. High-cycle (10 to the 7th power) fatigue data is presented to Ti 15-3-3-3 and Ti 3-2.5 at 75 F and 600 F. Crystal structures are shown for all the alloys. Measurements of the biaxial, or membrane, strength of the alloys is presented. A simulation of laser pulsed overpressure conditions is described, and the foil fatigue under these conditions is documented. The stresses in pressure loaded foil windows were calculated by the finite element method, both for static and dynamic loading. The shape of the foil support rib was optimized to minimize the foil stresses. A correlation was performed between the computed stress cycling under pulsed loading and the measured fatigue strength in uniaxial tension. As a check on the pulse simulation, the actual movement of an electron-beam foil window was measured by interferometry. A speckle interferometer which allows measurement of the movement of unpolished foil surfaces is described.
Proactive interference and cuing effects in short-term cued recall: does foil context matter?
Goh, Winston D; Tan, Huiqin
2006-07-01
Tehan and Humphreys's (1995, 1996) short-term cued recall paradigm showed that recall in short-term memory is cue driven. In critical trials, the participants studied two blocks of four words each and were required to forget the first block while remembering the second block. A foil in the first block (e.g., orange) was related to a target (e.g., carrot) in the second block. Proactive interference (PI) was evident when a retrieval cue was used that subsumed the foil and the target (e.g., type of juice), but not when a cue was used that subsumed only the target (e.g., type of vegetable). Four experiments were performed to examine the extent to which contextual organization in the foil block would enhance or diminish the foil's efficacy in creating PI. A novel condition was included in which the words in the foil block were studied in a phonologically related context but the target was cued semantically, and vice versa with a semantic context and phonological cue. There were no differences in recall accuracy between conditions with and without contextual organization, but reliable increases in foil intrusions were observed when contextual organization was present. Contextual organization enhanced the foil, rather than diminished it, but the strengthened foil generated PI only when the cue subsumed the foil and the target and had no effect when the cue subsumed only the target. The results are consistent with a cue-driven retrieval interpretation of short-term recall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivek, A., E-mail: vivek.4@osu.edu; Hansen, S. R.; Daehn, Glenn S.
2014-07-15
Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Dopplermore » velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment.« less
Foil Gas Thrust Bearings for High-Speed Turbomachinery
NASA Technical Reports Server (NTRS)
Edmonds, Brian; DellaCorte, Christopher; Dykas, Brian
2010-01-01
A methodology has been developed for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs, supporting continued development of oil-free turbomachinery. A bearing backing plate is first machined and surface-ground to produce flat and parallel faces. Partial-arc slots needed to retain the foil components are then machined into the plate by wire electrical discharge machining. Slot thicknesses achievable by a single wire pass are appropriate to accommodate the practical range of foil thicknesses, leaving a small clearance in this hinged joint to permit limited motion. The backing plate is constructed from a nickel-based superalloy (Inconel 718) to allow heat treatment of the entire assembled bearing, as well as to permit hightemperature operation. However, other dimensionally stable materials, such as precipitation-hardened stainless steel, can also be used for this component depending on application. The top and bump foil blanks are cut from stacks of annealed Inconel X-750 foil by the same EDM process. The bump foil has several azimuthal slits separating it into five individual bump strips. This configuration allows for variable bump spacing, which helps to accommodate the effects of the varying surface velocity, thermal crowning, centrifugal dishing, and misalignment. Rectangular tabs on the foil blanks fit into the backing plate slots. For this application, a rather traditional set of conventionally machined dies is selected, and bump foil blanks are pressed into the dies for forming. This arrangement produces a set of bump foil dies for foil thrust bearings that provide for relatively inexpensive fabrication of various bump configurations, and employing methods and features from the public domain.
Ekdahl, Jr., Carl A.; Frost, Charles A.
1986-01-01
An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.
Ekdahl, C.A. Jr.; Frost, C.A.
1984-11-13
An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.
Technical Development Path for Gas Foil Bearings
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
2016-01-01
Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.
NASA Astrophysics Data System (ADS)
Soba, A.; Denis, A.
2007-03-01
The codes PLACA and DPLACA, elaborated in this working group, simulate the behavior of a plate-type fuel containing in its core a foil of monolithic or dispersed fissile material, respectively, under normal operation conditions of a research reactor. Dispersion fuels usually consist of ceramic particles of a uranium compound in a high thermal conductivity matrix. The use of particles of a U-Mo alloy in a matrix of Al requires especially devoted subroutines able to simulate the growth of the interaction layer that develops between the particles and the matrix. A model is presented in this work that gives account of these particular phenomena. It is based on the assumption that diffusion of U and Al through the layer is the rate-determining step. Two moving interfaces separate the growing reaction layer from the original phases. The kinetics of these boundaries are solved as Stefan problems. In order to test the model and the associated code, some previous, simpler problems corresponding to similar systems for which analytical solutions or experimental data are known were simulated. Experiments performed with planar U-Mo/Al diffusion couples are reported in the literature, which purpose is to obtain information on the system parameters. These experiments were simulated with PLACA. Results of experiments performed with U-Mo particles disperse in Al either without or with irradiation, published in the open literature were simulated with DPLACA. A satisfactory prediction of the whole reaction layer thickness and of the individual fractions corresponding to alloy and matrix consumption was obtained.
Developing a laser shockwave model for characterizing diffusion bonded interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Jeffrey M., E-mail: Jeffrey.Lacy@inl.gov; Smith, James A., E-mail: Jeffrey.Lacy@inl.gov; Rabin, Barry H., E-mail: Jeffrey.Lacy@inl.gov
2015-03-31
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengthsmore » in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.« less
Determination of the Secondary Neutron Flux at the Massive Natural Uranium Spallation Target
NASA Astrophysics Data System (ADS)
Zeman, M.; Adam, J.; Baldin, A. A.; Furman, W. I.; Gustov, S. A.; Katovsky, K.; Khushvaktov, J.; Mar`in, I. I.; Novotny, F.; Solnyshkin, A. A.; Tichy, P.; Tsoupko-Sitnikov, V. M.; Tyutyunnikov, S. I.; Vespalec, R.; Vrzalova, J.; Wagner, V.; Zavorka, L.
The flux of secondary neutrons generated in collisions of the 660 MeV proton beam with the massive natural uranium spallation target was investigated using a set of monoisotopic threshold activation detectors. Sandwiches made of thin high-purity Al, Co, Au, and Bi metal foils were installed in different positions across the whole spallation target. The gamma-ray activity of products of (n,xn) and other studied reactions was measured offline with germanium semiconductor detectors. Reaction yields of radionuclides with half-life exceeding 100 min and with effective neutron energy thresholds between 3.6 MeV and 186 MeV provided us with information about the spectrum of spallation neutrons in this energy region and beyond. The experimental neutron flux was determined using the measured reaction yields and cross-sections calculated with the TALYS 1.8 nuclear reaction program and INCL4-ABLA event generator of MCNP6. Neutron spectra in the region of activation sandwiches were also modeled with the radiation transport code MCNPX 2.7. Neutron flux based on excitation functions from TALYS provides a reasonable description of the neutron spectrum inside the spallation target and is in good agreement with Monte-Carlo predictions. The experimental flux that uses INCL4 cross-sections rather underestimates the modeled spectrum in the whole region of interest, but the agreement within few standard deviations was reached as well. The paper summarizes basic principles of the method for determining the spectrum of high-energy neutrons without employing the spectral adjustment routines and points out to the need for model improvements and precise cross-section measurements.
Numerical investigations on aerodynamic forces of deformable foils in hovering motions
NASA Astrophysics Data System (ADS)
Su, Xiaohui; Yin, Zhen; Cao, Yuanwei; Zhao, Yong
2017-04-01
In this paper, the aerodynamic forces of deformable foils for hovering flight are numerically investigated by a two-dimensional finite-volume arbitrary Lagrangian Eulerian Navier-Stokes solver. The effects of deformation on the lift force generation mechanisms of deformable wings in hovering flight are studied by comparison and analysis of deformable and rigid wing results. The prescribed deformation of the wings changes their morphing during hovering motion in both camber and angle of incidence. The effects of deflection amplitude, deflection phase, and rotation location on the aerodynamic performances of the foils, as well as the associated flow structures, are investigated in details, respectively. Results obtained show that foil morphing changes both Leading Edge Vortex (LEV) and Trailing Edge Vortex (TEV) generation and development processes. Consequently, the lift force generation mechanisms of deformable wings differ from those of rigid foil models. For the full deformation foil model studied, the effect of foil deformation enhances its lift force during both wake capture and delayed stall. There is an optimized camber amplitude, which was found to be 0.1*chord among those cases simulated. Partial deformation in the foil does not enhance its lift force due to unfavorable foil camber. TEV is significantly changed by the local angle of attack due to the foil deformation. On the other hand, Trailing Edge Flap (TEF) deflection in the hinge connected two-rigid-plate model directly affects the strength of both the LEV and TEV, thus influencing the entire vortex shedding process. It was found that lift enhancement can reach up to 33.5% just by the TEF deflection alone.
Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S
2016-08-01
To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Su-Yoon; Jeong, Ye-Jin; Chae, So-Ryong; Yeon, Kyeong-Ho; Lee, Yunkyu; Kim, Chan-Soo; Jeong, Nam-Jo; Park, Jin-Soo
2016-04-01
Performance of graphite foil electrodes coated by porous carbon black (i.e., Vulcan) was investigated in comparison with metal electrodes for reverse electrodialysis (RED) application. The electrode slurry that was used for fabrication of the porous carbon-coated graphite foil is composed of 7.2 wt% of carbon black (Vulcan X-72), 0.8 wt% of a polymer binder (polyvinylidene fluoride, PVdF), and 92.0 wt% of a mixing solvent (dimethylacetamide, DMAc). Cyclic voltammograms of both the porous carbon (i.e., Vulcan)-coated graphite foil electrode and the graphite foil electrode without Vulcan showed good reversibility in the hexacyanoferrate(III) (i.e., Fe(CN)63-) and hexacyanoferrate(II) (i.e., Fe(CN)64-) redox couple and 1 M Na2SO4 at room temperature. However, anodic and cathodic current of the Vulcan-coated graphite foil electrode was much higher than those of the graphite foil electrode. Using a bench-scale RED stack, the current-voltage polarization curve of the Vulcan-coated graphite electrode was compared to that of metal electrodes such as iridium (Ir) and platinum (Pt). From the results, it was confirmed that resistance of four different electrodes increased with the following order: the Vulcan-coated graphite foil
2009-09-01
exploding foil initiator ( EFI ) type fuzes are being explored to...Acronyms Au gold Cr chromium Cu copper EFI exploding foil initiator BOE buffered oxide etch MEMS microelectromechanical systems RIE reactive ion...Patterning of Thick Parylene Films by Oxygen Plasma for Application as Exploding Foil Initiator Flyer Material by Eugene Zakar and Michael
Influence of micromachined targets on laser accelerated proton beam profiles
NASA Astrophysics Data System (ADS)
Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran
2018-03-01
High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.
Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil
Alkire, Randall W.
2016-11-01
In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less
Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics
NASA Astrophysics Data System (ADS)
Mahenderkar, Naveen K.; Chen, Qingzhi; Liu, Ying-Chau; Duchild, Alexander R.; Hofheins, Seth; Chason, Eric; Switzer, Jay A.
2017-03-01
We introduce a simple and inexpensive procedure for epitaxial lift-off of wafer-size flexible and transparent foils of single-crystal gold using silicon as a template. Lateral electrochemical undergrowth of a sacrificial SiOx layer was achieved by photoelectrochemically oxidizing silicon under light irradiation. A 28-nanometer-thick gold foil with a sheet resistance of 7 ohms per square showed only a 4% increase in resistance after 4000 bending cycles. A flexible organic light-emitting diode based on tris(bipyridyl)ruthenium(II) that was spin-coated on a foil exploited the transmittance and flexibility of the gold foil. Cuprous oxide as an inorganic semiconductor that was epitaxially electrodeposited onto the gold foils exhibited a diode quality factor n of 1.6 (where n = 1.0 for an ideal diode), compared with a value of 3.1 for a polycrystalline deposit. Zinc oxide nanowires electrodeposited epitaxially on a gold foil also showed flexibility, with the nanowires intact up to 500 bending cycles.
Improvement of Surface Layer Characteristics by Shot Lining
NASA Astrophysics Data System (ADS)
Harada, Yasunori
In the present study, lining of the metal with foils using shot peening was investigated to improve the surface layer characteristics. In the shot peening experiment, the foils set on the metal are pelted with hard particles traveling at a high velocity. The foils are bonded to the metal surface due to plastic deformation induced by the collision of the particles. The foils and the metal are heated to heighten the bondability because of the reduction of flow stress. Lining the metal with the hard powder sandwiched between two aluminum foil sheets was also attempted. In this experiment, a centrifugal shot peening machine wite an electrical heater was employed. The metals are commercially aluminium alloys and magnesium alloys, and the foils are commercially aluminum, titanium and nickel. The effects of shot speed and the heating temperature on the bondability were examined. Wear resistance was also evaluated by grinding. The foils were successfully bonded to the metal surface. It was found that the present method is effective in improving of surface layer characteristics.
A suspended boron foil multi-wire proportional counter neutron detector
NASA Astrophysics Data System (ADS)
Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.
2014-12-01
Three natural boron foils, approximately 1.0 cm in diameter and 1.0 μm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the 10B(n,α)7Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal-neutron detection efficiency for enriched 10B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serov, A. V., E-mail: serov@x4u.lebedev.ru; Mamonov, I. A.; Kol’tsov, A. V., E-mail: koltsov@x4u.lebedev.ru
2015-10-15
The scattering of electrons by aluminum, copper, and lead foils, as well as by bimetallic aluminum-lead and aluminum-copper foils, has been studied experimentally. A microtron with an energy of particles of 7.4 MeV has been used as a source of electrons. The beam of particles incident on a target at small angles is split into particles reflected from the foil, which constitute a reflected beam, and particles crossing the foil, which constitute a refracted beam. The effect of the material and thickness of the foil, as well as the angle between the initial trajectory of the beam and the planemore » of the target, on the direction of motion and the angular divergence of the beam crossing the foil and the beam reflected from the foil has been analyzed. Furthermore, the effect of the sequence of metal layers in bimetallic films on the angles of refraction and reflection of the beam has been examined.« less
Collisions of plastic and foam laser-driven foils studied by orthogonal x-ray imaging.
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Metzler, N.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Schmitt, A. J.; Velikovich, A. L.; Zalesak, S. T.; Gardner, J. H.; Weaver, J.; Oh, J.; Harding, E. C.
2007-11-01
We report an experimental study of hydrodynamic Rayleigh-Taylor and Richtmyer-Meshkov-type instabilities developing at the material interface produced in double-foil collisions. Our double-foil targets consist of a plastic foil irradiated by the 4 ns Nike KrF laser pulse at ˜50 TW/cm^2 and accelerated toward a stationary plastic or foam foil. Either the rear side of the front foil or the front side of the rear foil is rippled. Orthogonal imaging, i. e., a simultaneous side-on and face-on x-ray radiography of the targets has been used in these experiments to observe the process of collision and the evolution of the areal mass amplitude modulation. Its observed evolution is similar to the case of the classical RM instability in finite thickness targets first studied by Y. Aglitsky et al., Phys. Plasmas 13, 80703 (2006). Our data are favorably compared with 1D and 2D simulation results.
First experience with carbon stripping foils for the 160 MeV H- injection into the CERN PSB
NASA Astrophysics Data System (ADS)
Weterings, Wim; Bracco, Chiara; Jorat, Louise; Noulibos, Remy; van Trappen, Pieter
2018-05-01
160 MeV H- beam will be delivered from the new CERN linear accelerator (Linac4) to the Proton Synchrotron Booster (PSB), using a H- charge-exchange injection system. A 200 µg/cm2 carbon stripping foil will convert H- into protons by stripping off the electrons. The H- charge-exchange injection principle will be used for the first time in the CERN accelerator complex and involves many challenges. In order to gain experience with the foil changing mechanism and the very fragile foils, in 2016, prior to the installation in the PSB, a stripping foil test stand has been installed in the Linac4 transfer line. In addition, parts of the future PSB injection equipment are also temporarily installed in the Linac4 transfer line for tests with a 160 MeV H- commissioning proton beam. This paper describes the foil changing mechanism and control system, summarizes the practical experience of gluing and handling these foils and reports on the first results with beam.
Development of thick, long-lived carbon stripper foils for PSR of LANL
NASA Astrophysics Data System (ADS)
Sugai, I.; Oyaizu, M.; Kawakami, H.; Ohmori, C.; Hattori, T.; Kawasaki, K.; Borden, M. J.; Macek, R. J.
1995-02-01
Thick carbon stripper foils (multi-layer thickness ≈ 200 μg/cm 2) have been developed for use with 800 MeV, H + ion beam in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. Foils were prepared by means of the modified controlled ACDC arc discharge method (mCADAD). The lifetime measurements of the foils made by different methods were performed using an 800 MeV proton beam of up to 85 μA in the PSR, and a 3.2 MeV Ne + ion beam of 3 μA at Tokyo Institute of Technology. The foils made by the mCADAD method showed very long lifetimes, as compared to other foils tested, for both 800 MeV p and 3.2 MeV Ne + beam bombardments.
Apparatus and process for ultrasonic seam welding stainless steel foils
Leigh, Richard W.
1992-01-01
An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.
Performance of Simple Gas Foil Thrust Bearings in Air
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.
2012-01-01
Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In this case, the load capacity is constant and in fact often decreases with speed if other factors such as thermal conditions and runner distortions are permitted to dominate the bearing performance.
Pandya, Shwetang N; Peterson, Byron J; Sano, Ryuichi; Mukai, Kiyofumi; Drapiko, Evgeny A; Alekseyev, Andrey G; Akiyama, Tsuyoshi; Itomi, Muneji; Watanabe, Takashi
2014-05-01
A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5-3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi; Peterson, Byron J.
A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil.more » The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5–3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.« less
Performance variation due to stiffness in a tuna-inspired flexible foil model.
Rosic, Mariel-Luisa N; Thornycroft, Patrick J M; Feilich, Kara L; Lucas, Kelsey N; Lauder, George V
2017-01-17
Tuna are fast, economical swimmers in part due to their stiff, high aspect ratio caudal fins and streamlined bodies. Previous studies using passive caudal fin models have suggested that while high aspect ratio tail shapes such as a tuna's generally perform well, tail performance cannot be determined from shape alone. In this study, we analyzed the swimming performance of tuna-tail-shaped hydrofoils of a wide range of stiffnesses, heave amplitudes, and frequencies to determine how stiffness and kinematics affect multiple swimming performance parameters for a single foil shape. We then compared the foil models' kinematics with published data from a live swimming tuna to determine how well the hydrofoil models could mimic fish kinematics. Foil kinematics over a wide range of motion programs generally showed a minimum lateral displacement at the narrowest part of the foil, and, immediately anterior to that, a local area of large lateral body displacement. These two kinematic patterns may enhance thrust in foils of intermediate stiffness. Stiffness and kinematics exhibited subtle interacting effects on hydrodynamic efficiency, with no one stiffness maximizing both thrust and efficiency. Foils of intermediate stiffnesses typically had the greatest coefficients of thrust at the highest heave amplitudes and frequencies. The comparison of foil kinematics with tuna kinematics showed that tuna motion is better approximated by a zero angle of attack foil motion program than by programs that do not incorporate pitch. These results indicate that open questions in biomechanics may be well served by foil models, given appropriate choice of model characteristics and control programs. Accurate replication of biological movements will require refinement of motion control programs and physical models, including the creation of models of variable stiffness.
Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure
NASA Astrophysics Data System (ADS)
Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong
2018-05-01
Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.
Simulation of turn-by-turn passage of protons through the H-minus stripping foil in booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, C.
Equations for transverse emittance growth due to multiple passes of circulating proton beam through the H-minus stripping foil in Booster were developed in [1]. These were based on simple principles of statistics and simple assumptions about the initial distribution of particles incident on the foil. It was assumed there that the foil dimensions and position of the incoming beam are such that all particles hit the foil on every turn around the machine. In the present note we assume only that all incoming H-minus ions from Linac hit the foil and are stripped of their electrons. The resulting protons circulatemore » indefinitely around the machine. Setups in which the foil width is reduced so that not all protons hit the foil on every turn are studied here by simulation. The aim is to determine the effectiveness of such setups in reducing the emittance growth of circulating proton beam during the injection of H-minus beam. The simulations also serve as a check of the equations developed in [1], and vice versa. The particulars of the simulation setup are given in Sections 1 through 11. Figures 1 through 12 show simulation results for the case in which all particles hit the foil on every turn. The results are in good agreement with those obtained from the equations of reference [1]. Figures 13 through 19 show simulation results for various setups in which the foil width is reduced. These results are summarized in Section 12. In all gures the horizontal axis gives the turn number. The unit of the vertical axis is micrometers ( m) in all plots of emittance.« less
Lead foil in dental X-ray film: Backscattering rejection or image intensifier?
NASA Astrophysics Data System (ADS)
Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.
2014-11-01
Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.
NASA Astrophysics Data System (ADS)
Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa
2014-03-01
The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.
NASA Technical Reports Server (NTRS)
Yanke, Anne
2004-01-01
PS304 is a high temperature solid lubricant coating comprised of a nickel-chrome binder, chrome oxide hardener, barium-calcium fluoride high temperature lubricant, and silver as the low temperature lubricant. This coating is used to lubricate Oil-Free Foil Air Bearings as they experience friction and wear during start up and shut down. The coating deposition process begins with undercutting the shaft. This area is then sandblasted to provide a rough surface for the coating to adhere to. The coating powder is then sent through the plasma spray gun and a reasonably thick layer is applied to the undercut area of the shaft. The coating is then ground down even with the surface of the shaft and gets a nice polished finish. The foil air bearings use the solid lubricant, as mentioned above, during start up and shut down. During normal operating conditions, generally above 2000RPM, the bearings utilize air as their lubricant. Foil air bearings are comprised of a thin top foil and a corrugated bump foil. They have an interference fit with the shaft before operation. As the air gets "trapped" between the top foil and the shaft, it presses the top foil against the bump foil, in turn compressing the bumps. As the bumps compress, it allows for the air to separate the top foil from the shaft, therefore, utilizing the trapped air as its lubricant.
Developing NanoFoil-Heated Thin-Film Thermal Battery
2013-09-01
buffer discs (in gray) sandwiching the NanoFoil disc (in yellow). Two Microtherm discs (in dark gray) bracketed the sandwich to prevent excessive heat...of the fuse strip with a Microtherm disc. Cathode Electrolyte Anode Microtherm Heat paper NanoFoil Buffer Agilent 34970A 606.5 Nichrome wire Maccor...gray) sandwiching the NanoFoil disc (in yellow). Two Microtherm discs (in dark gray) bracketed the sandwich to prevent excessive heat loss
A deformation mechanism of hard metal surrounded by soft metal during roll forming
YU, Hailiang; TIEU, A. Kiet; LU, Cheng; LIU, Xiong; GODBOLE, Ajit; LI, Huijun; KONG, Charlie; QIN, Qinghua
2014-01-01
It is interesting to imagine what would happen when a mixture of soft-boiled eggs and stones is deformed together. A foil made of pure Ti is stronger than that made of Cu. When a composite Cu/Ti foil deforms, the harder Ti will penetrate into the softer Cu in the convex shapes according to previously reported results. In this paper, we describe the fabrication of multilayer Cu/Ti foils by the roll bonding technique and report our observations. The experimental results lead us to propose a new deformation mechanism for a hard metal surrounded by a soft metal during rolling of a laminated foil, particularly when the thickness of hard metal foil (Ti, 25 μm) is much less than that of the soft metal foil (Cu, 300 μm). Transmission Electron Microscope (TEM) imaging results show that the hard metal penetrates into the soft metal in the form of concave protrusions. Finite element simulations of the rolling process of a Cu/Ti/Cu composite foil are described. Finally, we focus on an analysis of the deformation mechanism of Ti foils and its effects on grain refinement, and propose a grain refinement mechanism from the inside to the outside of the laminates during rolling. PMID:24853192
NASA Astrophysics Data System (ADS)
Han, Soon Woo; Bang, Young Bong; Kim, Yoon Young
2006-10-01
This investigation shows that if a solenoid encircles a metal foil loop wound around a nonmetallic cylinder vibrating laterally, an electromotive force is induced in the solenoid. The induction is possible only when the foil loop is complete and an antisymmetric magnetic field is applied to the foil. In this work, stationary permanent magnets were used. Because the solenoid is the sensing element, no physical contact between the element and a test specimen is required. The effects of the metal foil thickness and width on the measurement sensitivity were studied and vibration modal testing of an acryl cylinder was performed.
Novel technique of making thin target foil of high density material via rolling method
NASA Astrophysics Data System (ADS)
Gupta, C. K.; Rohilla, Aman; Singh, R. P.; Singh, Gurjot; Chamoli, S. K.
2018-05-01
The conventional rolling method fails to yield good quality thin foils of thicknesses less than 2 mg/cm2 for high density materials with Z ≥ 70 (e.g. gold, lead). A special and improved technique has been developed to obtain such low thickness good quality gold foils by rolling method. Using this technique thin gold foils of thickness in the range of 0.850-2.5 mg/cm2 were obtained in the present work. By making use of alcohol during rolling, foils of thickness 1 mg/cm2 can be obtained in shorter time with less effort.
Dai, Lei; Chen, Shi; Liu, Jianjun; Gao, Yanfeng; Zhou, Jiadong; Chen, Zhang; Cao, Chuanxiang; Luo, Hongjie; Kanehira, Minoru
2013-07-28
F-doped VO2 (M1) nanoparticles were prepared via one-pot hydrothermal synthesis. The F-doping can minimise the size of the VO2 (M1) nanoparticles, induce a homogeneous size distribution and effectively decrease the phase transition temperature to 35 °C at 2.93% F in VO2. VO2 smart glass foils obtained by casting these nanoparticles exhibit excellent thermochromism in the near-infrared region, which suggests that these foils can be used for energy-efficient glass. Compared to a pure VO2 foil, the 2.93% F-doped VO2 foil exhibits an increased solar-heat shielding ability (35.1%) and a modified comfortable colour, while still retaining an excellent solar modulation ability (10.7%) and an appropriate visible transmittance (48.7%). The F-doped VO2 foils are the first to simultaneously meet the requirements of a reduced phase transition temperature, diluted colour and excellent thermochromic properties, and these properties make the further improved F-doped VO2 foils suitable for commercial applications in energy efficient glass.
Coherent synchrotron emission in transmission with double foil target
NASA Astrophysics Data System (ADS)
Xu, X. R.; Qiao, B.; Chang, H. X.; Zhang, Y. X.; Zhang, H.; Zhong, C. L.; Zhou, C. T.; Zhu, S. P.; He, X. T.
2018-04-01
Generation of intense single attosecond pulses from coherent synchrotron emission (CSE), in the transmitted direction of the laser-irradiated double foil targets, has been investigated theoretically and numerically. Unlike conventional CSE in the single foil target case, here the dense electron nanobunch is formed in the vacuum gap between two foils, which is composed of the electrons blown out from the first ultrathin foil. Owing to the existence of the vacuum gap, the electron nanobunch can be accelerated to more energy. In addition, more laser energy can penetrate through the nanobunch and get reflected from the second foil. These reflected lasers and electron nanobunches interact with each other and results in enhanced CSE and consequently, the generation of intense attosecond pulses. Particle-in-cell simulations show that a single attosecond pulse with duration of 18 {as}, photon energy > 0.16 {keV} and peak intensity of 1.7× {10}20 {{W}}/{cm}}2 can be obtained from the double-foil targets irradiated by a laser at intensity of 7.7× {10}21 {{W}}/{cm}}2.
NASA Astrophysics Data System (ADS)
Guo, Zhiyang; Feng, Kai; Liu, Tianyu; Lyu, Peng; Zhang, Tao
2018-07-01
Highly nonlinear subsynchronous vibrations are the main causing factors of failure in gas foil bearing (GFB)-rotor systems. Thus, investigating the vibration generation mechanisms and the relationship between subsynchronous vibrations and GFBs is necessary to ensure the healthy operation of rotor systems. In this study, an integrated nonlinear dynamic model with the consideration of shaft motion, unsteady gas film, and deformations of foil structure is established to investigate the effect of gas film and foil structure on system subsynchronous response. One test rig of GFB-rotor system is developed for model comparison. High agreement is shown between the prediction and test data, especially in the frequency domain. The nonlinear dynamic response is analyzed using waterfall plots, operation deflection shapes, journal orbits, Poincaré maps, and fast Fourier transforms. The parameter studies reveal that subsynchronous vibrations are highly related to gas film and foil structure. Subsynchronous vibrations can be adjusted by parameters such as bump stiffness, nominal clearance, and static loads. Therefore, gas foil bearing parameters should be carefully adjusted by system manufacturers to achieve the best rotordynamic performance.
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.; Stevenson, T. J.
1992-01-01
The Microabrasion Foil Experiment comprises arrays of frames, each supporting two layers of closely spaced metallic foils and a back-stop plate. The arrays, deploying aluminum and brass foil ranging from 1.5 to some 30 microns were exposed for 5.78 years on NASA's LDEF at a mean altitude of 458 km. They were deployed on the North, South, East, West, and Space pointing faces; results presented comprise the perforation rates for each location as a function of foil thickness. Initial results refer primarily to aluminum of 5 microns thickness or greater. This penetration distribution, comprising 2,342 perforations in total, shows significantly differing characteristics for each detector face. The anisotropy confirms, incorporating the dynamics of particulate orbital mechanics, the dominance of incorporating extraterrestrial particulates penetrating thicknesses greater than 20 microns in Al foil, yielding fluxes compatible with hyperbolic geocentric velocities. For thinner foils, a disproportionate increase in flux of particles on the East, North, and South faces shows the presence of orbital particulates which exceed the extraterrestrial component perforation rate at 5 micron foil thickness by a factor of approx. 4.
The effect of chordwise flexibility on flapping foil propulsion in quiescent fluid
NASA Astrophysics Data System (ADS)
Shinde, Sachin; Arakeri, Jaywant
2010-11-01
Motivated to understand the role of wing flexibility of flying creatures during hovering, we experimentally study the effect of chordwise flexibility on the flow generated in quiescent fluid by a sinusoidally pitching rigid symmetrical foil with a flexible flap attached at the trailing edge. This foil produces a narrow, coherent jet containing reverse Karman vortex street, and a corresponding thrust. The thrust and flow is similar to that produced by a hovering bird or insect, however the mechanism seems to be different from known hovering mechanisms. Novelty of the present hovering mechanism is that the thrust generation is due to the coordinated pushing action of rigid foil and flexible flap. We identify the flow and vortex generation mechanism. This foil produces jet flows over a range of flapping frequencies and amplitudes. In contrast, the foil without flap i.e. with rigid trailing edge produces a weak, divergent jet that meanders randomly. Appending a flexible flap to the foil suppresses jet-meandering and strengthens the jet. Flexibility of flap is crucial in determining the flow structure. This study is useful in designing MAVs and thrusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori
2013-04-19
In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was lessmore » than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.« less
Stripper foil failure modes and cures at the Oak Rdige Spallation Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plum, M.A.; Raparia, D.; Cousineau, S.M.
2011-03-28
The Oak Ridge Spallation Neutron Source comprises a 1 GeV, 1.5 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H{sup 0} excited states created during the H{sup -} charge-exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H{sup -} beam, which circled aroundmore » to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.« less
A Microfabricated Involute-Foil Regenerator for Stirling Engines
NASA Technical Reports Server (NTRS)
Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Qiu, Songgang
2007-01-01
A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM. During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90 percent random fiber currently used in small approx.100 W Stirling space-power convertors-in the Reynolds Number range of interest (50 to 100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6 to 9 percent; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C for a potential engine-cooler for a Venus mission), and (2) reduction of the cost of the fabrication process to make it more suitable for terrestrial applications of segmented involute foils. Past attempts have been made to use wrapped foils to approximate the large theoretical figures of merit projected for parallel plates. Such metal wrapped foils have never proved very successful, apparently due to the difficulties of fabricating wrapped-foils with uniform gaps and maintaining the gaps under the stress of time-varying temperature gradients during start-up and shut-down, and relatively-steady temperature gradients during normal operation. In contrast, stacks of involute-foil disks, with each disk consisting of multiple involute-foil segments held between concentric circular ribs, have relatively robust structures. The oscillating-flow rig tests of the segmented-involute-foil regenerator have demonstrated a shift in regenerator performance strongly in the direction of the theoretical performance of ideal parallel-plate regenerators.
A Microfabricated Involute-Foil Regenerator for Stirling Engines
NASA Technical Reports Server (NTRS)
Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terry; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Wood, Gary;
2007-01-01
A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM (electric discharge machining). During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90% random fiber currently used in small 100 W Stirling space-power convertors in the Reynolds Number range of interest (50-100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6-9%; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C for a potential engine-cooler for a Venus mission), and (2) reduction of the cost of the fabrication process to make it more suitable for terrestrial applications of segmented involute foils. Past attempts have been made to use wrapped foils to approximate the large theoretical figures of merit projected for parallel plates. Such metal wrapped foils have never proved very successful, apparently due to the difficulties of fabricating wrapped-foils with uniform gaps and maintaining the gaps under the stress of time-varying temperature gradients during start-up and shut-down, and relatively-steady temperature gradients during normal operation. In contrast, stacks of involute-foil disks, with each disk consisting of multiple involute-foil segments held between concentric circular ribs, have relatively robust structures. The oscillating-flow rig tests of the segmented-involute-foil regenerator have demonstrated a shift in regenerator performance strongly in the direction of the theoretical performance of ideal parallel-plate regenerators.
Strategy to Minimize Energetics Contamination at Military Testing/Training Ranges
2005-09-01
exploding foil exploding foil initiator ) initiator will minimize the energetic material...i.e., exploding foil initiator P 4. Use an electronic S&A; i.e., high voltage driven semi-conductor bridge elements P ’ 5. Use...alternatives Opportunity 1. Eliminate energetics 3. Use an electronic S&A; i.e., exploding foil initiator 1 3 3 -3 2 -6 -2 1 -2 -5 4. Use an
NASA Astrophysics Data System (ADS)
Semionkin, V. A.; Neshev, F. G.; Tsurin, V. A.; Milder, O. B.; Oshtrakh, M. I.
2010-03-01
Proton irradiated Hadfield steel foil was studied using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy. It was shown that proton irradiation leads to structural changes in the foil as well as to surface oxidation with ferric hydrous oxide formation (ferrihydrite). Moreover, oxidation on the foil underside was higher than on the foil right side.
NASA Technical Reports Server (NTRS)
Saltsman, J. F.; Halford, G. R.
1984-01-01
A hydrodynamic air bearing with a compliment surface is used in the gas generator of an upgraded automotive gas turbine engine. In the prototype design, the compliant surface is a thin foil spot welded at one end to the bearing cartridge. During operation, the foil failed along the line of spot welds which acted as a series of stress concentrators. Because of its higher degree of geometric uniformity, electron beam welding of the foil was selected as an alternative to spot welding. Room temperature bending fatigue tests were conducted to determine the fatigue resistance of the electron beam welded foils. Equations were determined relating cycles to crack initiation and cycles to failure to nominal total strain range. A scaling procedure is presented for estimating the reduction in cyclic life when the foil is at its normal operating temperature of 260 C (500 F).
Design, fabrication, and performance of foil journal bearing for the brayton rotating unit
NASA Technical Reports Server (NTRS)
Licht, L.; Branger, M.
1973-01-01
Foil bearings were designed and manufactured to replace pivoted-shoe journal bearings in an existing Brayton Cycle turbo-alternator-compressor. The design of this unconventional rotor support was accomplished within the constraints and space limitations imposed by the present machine, and the substitution of foil bearings was effected without changes or modification other machine components. A housing and a test rig were constructed to incorporate the new foil-bearing support into a unified assemble with an air-driven rotor and the gimbal-mounted thrust bearing, seals, and shrouds of an actual Brayton Rotating Unit. The foil bearing required no external pressure source, and stable self-acting rotation was achieved at all speeds up to 43,200 rpm. Excellent wipe-wear characteristics of the foil bearing permitted well over 1000 start-stop cycles with no deterioriation of performance in the entire speed range.
Tubular hydrogen permeable metal foil membrane and method of fabrication
Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.
2006-04-04
A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.
A Preliminary Foil Gas Bearing Performance Map
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam
2006-01-01
Recent breakthrough improvements in foil gas bearing load capacity, high temperature tribological coatings and computer based modeling have enabled the development of increasingly larger and more advanced Oil-Free Turbomachinery systems. Successful integration of foil gas bearings into turbomachinery requires a step wise approach that includes conceptual design and feasibility studies, bearing testing, and rotor testing prior to full scale system level demonstrations. Unfortunately, the current level of understanding of foil gas bearings and especially their tribological behavior is often insufficient to avoid developmental problems thereby hampering commercialization of new applications. In this paper, a new approach loosely based upon accepted hydrodynamic theory, is developed which results in a "Foil Gas Bearing Performance Map" to guide the integration process. This performance map, which resembles a Stribeck curve for bearing friction, is useful in describing bearing operating regimes, performance safety margins, the effects of load on performance and limiting factors for foil gas bearings.
Shock compression response of highly reactive Ni + Al multilayered thin foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Sean C.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu
2016-03-07
The shock-compression response of Ni + Al multilayered thin foils is investigated using laser-accelerated thin-foil plate-impact experiments over the pressure range of 2 to 11 GPa. The foils contain alternating Ni and Al layers (parallel but not flat) of nominally 50 nm bilayer spacing. The goal is to determine the equation of state and shock-induced reactivity of these highly reactive fully dense thin-foil materials. The laser-accelerated thin-foil impact set-up involved combined use of photon-doppler-velocimetry to monitor the acceleration and impact velocity of an aluminum flyer, and VISAR interferometry was used to monitor the back free-surface velocity of the impacted Ni + Al multilayered target. The shock-compressionmore » response of the Ni + Al target foils was determined using experimentally measured parameters and impedance matching approach, with error bars identified considering systematic and experimental errors. Meso-scale CTH shock simulations were performed using real imported microstructures of the cross-sections of the multilayered Ni + Al foils to compute the Hugoniot response (assuming no reaction) for correlation with their experimentally determined equation of state. It was observed that at particle velocities below ∼150 m/s, the experimentally determined equation of state trend matches the CTH-predicted inert response and is consistent with the observed unreacted state of the recovered Ni + Al target foils from this velocity regime. At higher particle velocities, the experimentally determined equation of state deviates from the CTH-predicted inert response. A complete and self-sustained reaction is also seen in targets recovered from experiments performed at these higher particle velocities. The deviation in the measured equation of state, to higher shock speeds and expanded volumes, combined with the observation of complete reaction in the recovered multilayered foils, confirmed via microstructure characterization, is indicative of the occurrence of shock-induced chemical reaction occurring in the time-scale of the high-pressure state. TEM characterization of recovered shock-compressed (unreacted) Ni + Al multilayered foils exhibits distinct features of constituent mixing revealing jetted layers and inter-mixed regions. These features were primarily observed in the proximity of the undulations present in the alternating layers of the Ni + Al starting foils, suggesting the important role of such instabilities in promoting shock-induced intermetallic-forming reactions in the fully dense highly exothermic multilayered thin foils.« less
Conceptual Design and Feasibility of Foil Bearings for Rotorcraft Engines: Hot Core Bearings
NASA Technical Reports Server (NTRS)
Howard, Samuel A.
2007-01-01
Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include oil-free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit.. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This overview presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section. In addition, system level foil bearing testing capabilities at NASA Glenn Research Center are presented along with analysis work being conducted under NRA Cooperative Agreements.
Optical Property Enhancement and Durability Evaluation of Heat Receiver Aperture Shield Materials
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.
1998-01-01
Under the Solar Dynamic Flight Demonstration (SDFD) program, NASA Lewis Research Center worked with AlliedSignal Aerospace, the heat receiver contractor, on the development, characterization and durability testing of refractory metals to obtain appropriate optical and thermal properties for the SDFD heat receiver aperture shield. Molybdenum and tungsten foils were grit-blasted using silicon carbide or alumina grit under various grit-blasting conditions for optical property enhancement. Black rhenium coated tungsten foil was also evaluated. Tungsten, black rhenium-coated tungsten, and grit-blasted tungsten screens of various mesh sizes were placed over the pristine and grit-blasted foils for optical property characterization. Grit-blasting was found to be effective in decreasing the specular reflectance and the absorptance/emittance ratio of the refractory foils. The placement of a screen further enhanced these optical properties, with a grit-blasted screen over a grit-blasted foil producing the best results. Based on the optical property enhancement results, samples were tested for atomic oxygen and vacuum heat treatment durability. Grit-blasted (Al2O3 grit) 2 mil tungsten foil was chosen for the exterior layer of the SDFD heat receiver aperture shield. A 0.007 in. wire diameter, 20 x 20 mesh tungsten screen was chosen to cover the tungsten foil. Based on these test results, a heat receiver aperture shield test unit has been built with the screen covered grit-blast tungsten foil exterior layers. The aperture shield was tested and verified the thermal and structural durability of the outer foil layers during an off-pointing period.
Magnetic Fano resonances by design in symmetry broken THz meta-foils
Wu, Jianfeng; Moser, Herbert O.; Li, Rujiang; Yang, Yihao; Jing, Liqiao; Chen, Hongsheng; Breese, Mark B. H.
2017-01-01
Magnetic Fano resonances in there-dimensional symmetry broken meta-foils at THz frequencies are theoretically and experimentally studied. Sharp Fano resonances occur due to the interference between different resonances and can be designed by choosing geometric parameters of the meta-foil. At the Fano resonances, the meta-foil supports antisymmetric modes, whereas, at the main resonance, only a symmetric mode exists. The meta-foil is left-handed at the Fano resonances and shows sharp peaks of the real part of the refractive index in transmission with small effective losses opening a way to very sensitive high-speed sensing of dielectric changes in the surrounding media and of mechanical configuration. PMID:28150797
Controlled porous pattern of anodic aluminum oxide by foils laminate approach.
Wang, Gou-Jen; Peng, Chi-Sheng
2006-04-01
A novel, much simpler, and low-cost method to fabricate the porous pattern of the anodic aluminum oxide (AAO) based on the aluminum foils laminate approach was carried out. During our experiments, it was found that the pores of the AAO on the upper foil grew bi-directionally from both the top and the bottom surfaces. Experimental results further indicate that the upward porous pattern of the upper foil is determined by the surface structure of the bottom surface of the upper foil. The porous pattern of AAO can be controlled by a pre-made pattern on the bottom surface. Furthermore, no Aluminum (Al) layer removing process is required in this novel laminate method.
SNS STRIPPER FOIL FAILURE MODES AND THEIR CURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galambos, John D; Luck, Chris; Plum, Michael A
2010-01-01
The diamond stripper foils in use at the Spallation Neutron Source worked successfully with no failures until May 3, 2009, when we started experiencing a rash of foil system failures after increasing the beam power to ~840 kW. The main contributors to the failures are thought to be 1) convoy electrons, stripped from the incoming H beam, that strike the foil bracket and may also reflect back from the electron catcher, and 2) vacuum breakdown from the charge developed on the foil by secondary electron emission. In this paper we will detail these and other failure mechanisms, and describe themore » improvements we have made to mitigate them.« less
Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.
1998-01-01
An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.
Murray, M.M.; Wilfong, D.H.; Lomax, R.E.
1998-12-08
An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.
A Monte Carlo studies of the entrance foil material in a target assembly for FDG production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merouani, A.; El Khayati, N.; EL Ghayour, A.
2015-07-01
In this work, a Monte Carlo simulation was performed for different entrance foil Materials in the target assembly for [{sup 18}F] FDG production, to investigate the neutron generations in the entrance foil. However, the objective is to study a materials that has the more or less similar mechanical properties as the Havar{sup R} foil with less generation of secondary particles and without affecting, the yield of FDG production. (authors)
NASA Astrophysics Data System (ADS)
Koizumi, Yoshiko; Shimoyama, Manabu; Oyama, Koh-Ichiro; Murayama, Yasuhiro; Tsuda, Toshitaka; Nakamura, Takuji
2004-07-01
The foil chaff technique has been used on microrockets such as "Viper" for a long time to measure neutral winds with high altitude resolution in the mesosphere and lower thermosphere. We have developed two new foil chaff storage and ejection systems for muti-instrumented sounding rockets. The first system uses a spring loaded split cylinder which holds the foil chaff, housed in an outer cylinder. The shaft of the split cylinder is kept in place by a lock plate and a stainless steel wire. The split cylinder is ejected by cutting the wire. The second system is of differential pressure type. The cap of an airtight cylinder has a shaft and a sponge piece for sweeping out the foil chaff. The cylinder is sealed at ground level and at the desired height of release, the cap comes out due to differential pressure and brings out the foil chaff. Both these systems were successfully tested on a Japanese sounding rocket in January 2000, releasing about 20 000 pieces of foil chaff during the rocket's descent. Neutral winds were measured in the height range of 85.5-95.0 km with a height resolution of 300 m.
Thorium-uranium fission radiography
NASA Technical Reports Server (NTRS)
Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.
1976-01-01
Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.
Lenz’s law with aluminum foil and a lengthwise slit
NASA Astrophysics Data System (ADS)
Berls, Rob; Ruiz, Michael J.
2018-07-01
The classic demonstration illustrating Lenz’s law by dropping a magnet through a copper pipe is presented using household aluminum foil right out of the box. Then comes the surprise. The teacher presents an aluminum foil cylinder with a missing lengthwise slice (cut before class). Will the demonstration still work? Students are amazed at the result, described in this paper and included in our accompanying video (Ruiz 2018 Video: Lenz’s law with aluminum foil http://mjtruiz.com/ped/aluminum/).
Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc
NASA Astrophysics Data System (ADS)
Fan, Qiwen; Du, Yinghui; Zhang, Rong; Xu, Guoji
2013-04-01
Thin diamond-like carbon (DLC) stripper foils ˜5 μg/cm2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ˜4 μg/cm2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine-saccharose as releasing agent, which were previously covered with evaporated carbon layers ˜1 μg/cm2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4for the 197Au- (˜9 MeV, ˜1 μA) and 63Cu- (˜9 MeV, ˜1 μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (ID/IG) measured by the Raman spectroscopy is0.78.
SU-E-T-25: Real Time Simulator for Designing Electron Dual Scattering Foil Systems.
Carver, R; Hogstrom, K; Price, M; Leblanc, J; Harris, G
2012-06-01
To create a user friendly, accurate, real time computer simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator should allow for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator consists of an analytical algorithm for calculating electron fluence and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with a refined Moliere formalism for scattering powers. The simulator also estimates central-axis x-ray dose contamination from the dual foil system. Once the geometry of the beamline is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scattering foil material and Gaussian shape (thickness and sigma), and beam energy. The beam profile and x-ray contamination are displayed in real time. The simulator was tuned by comparison of off-axis electron fluence profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV and using present foils on the Elekta radiotherapy accelerator, the simulator profiles agreed to within 2% of MC profiles from within 20 cm of the central axis. The x-ray contamination predictions matched measured data to within 0.6%. The calculation time was approximately 100 ms using a single processor, which allows for real-time variation of foil parameters using sliding bars. A real time dual scattering foil system simulator has been developed. The tool has been useful in a project to redesign an electron dual scattering foil system for one of our radiotherapy accelerators. The simulator has also been useful as an instructional tool for our medical physics graduate students. © 2012 American Association of Physicists in Medicine.
A review of progress and challenges in flapping foil power generation
NASA Astrophysics Data System (ADS)
Young, John; Lai, Joseph C. S.; Platzer, Max F.
2014-05-01
Power may be extracted from a flowing fluid in a variety of ways. Turbines using one or more oscillating foils are under increasingly active investigation, as an alternative to rotary wind turbines and river, oceanic and tidal current water turbines, although industrial development is at a very nascent stage. Such flapping foil turbines promise some key potential advantages, including lower foil velocities (and hence lower noise and wildlife impact), and more effective small-scale and shallow water operation. The role of a number of parameters is investigated, including foil kinematics (modes, frequencies, amplitudes and time histories of motion), foil and system geometry (shape, configuration and structural flexibility), and flow physics effects (Reynolds number and turbulence, shear flows and ground effect). Details of the kinematics are shown to have the single largest influence on power output and efficiency (measured as the ratio of power output to that available and accessible in the fluid stream). The highest levels of power and efficiency are associated with very large foil pitch angles (upwards of 70°) and angles of attack (30-40°), such that the flow is massively separated for much of the flapping cycle, in contrast to rotary turbines which rely on attached flow over as much of the rotor disk as possible. This leads to leading edge vortices comparable in size to the foil chord, and the evolution and interaction of these vortices with the foil as it moves play a central role in determining performance. The other parameters also influence the vortex behaviour, but in general to a lesser degree. Numerous gaps in the research literature and outstanding issues are highlighted.
NASA Astrophysics Data System (ADS)
Inoue, Shunsuke; Tokita, Shigeki; Hashida, Masaki; Sakabe, Shuji
2015-04-01
The temporal evolutions of electromagnetic fields generated by the interaction between ultraintense lasers (1.3 ×1018 and 8.2 ×1018W /c m2 ) and solid targets at a distance of several millimeters from the laser-irradiated region have been investigated by electron deflectometry. For three types of foil targets (insulating foil, conductive foil, and insulating foil onto which a metal disk was deposited), transient changes in the fields were observed. We found that the direction, strength, and temporal evolution of the generated fields differ markedly for these three types of targets. The results provide an insight for studying the emission dynamics of laser-accelerated fast electrons.
Tayyab, M; Bagchi, S; Ramakrishna, B; Mandal, T; Upadhyay, A; Ramis, R; Chakera, J A; Naik, P A; Gupta, P D
2014-08-01
We report on the proton acceleration studies from thin metallic foils of varying atomic number (Z) and thicknesses, investigated using a 45 fs, 10 TW Ti:sapphire laser system. An optimum foil thickness was observed for efficient proton acceleration for our laser conditions, dictated by the laser ASE prepulse and hot electron propagation behavior inside the material. The hydrodynamic simulations for ASE prepulse support the experimental observation. The observed maximum proton energy at different thicknesses for a given element is in good agreement with the reported scaling laws. The results with foils of different atomic number Z suggest that a judicious choice of the foil material can enhance the proton acceleration efficiency, resulting into higher proton energy.
NASA Astrophysics Data System (ADS)
Jeong, Namjo; Jwa, Eunjin; Kim, Chansoo; Choi, Ji Yeon; Nam, Joo-youn; Park, Soon-chul; Jang, Moon-seok
2017-11-01
We report the high-yield and large-area synthesis of a spaghetti-like carbon nanotubes (CNTs) on macroscopic Cu substrates (foil and foam) using a Cu-Sn alloy catalyst. In addition, we investigate the corrosion properties of the as-synthesized CNT/Cu foil system in 0.6 M NaCl solution. Electrochemical analysis showed that the corrosion resistance of the CNT/Cu foil system improved by a factor of ∼100 compared to the as-received Cu foil. Thus, it is concluded that a dense network of CNT was uniformly coated on the Cu foil and this coating functioned as an efficient barrier to corrosion under simulated seawater conditions.
Positron annihilation lifetime spectroscopy study of Kapton thin foils
NASA Astrophysics Data System (ADS)
Kanda, G. S.; Ravelli, L.; Löwe, B.; Egger, W.; Keeble, D. J.
2016-01-01
Variable energy positron annihilation lifetime spectroscopy (VE-PALS) experiments on polyimide material Kapton are reported. Thin Kapton foils are widely used in a variety of mechanical, electronic applications. PALS provides a sensitive probe of vacancy-related defects in a wide range of materials, including open volume in polymers. Varying the positron implantation energy enables direct measurement of thin foils. Thin Kapton foils are also commonly used to enclose the positron source material in conventional PALS measurements performed with unmoderated radionuclide sources. The results of depth-profiled positron lifetime measurements on 7.6 μm and 25 μm Kapton foils are reported and determine a dominant 385(1) ps lifetime component. The absence of significant nanosecond lifetime component due to positronium formation is confirmed.
The transonic multi-foil Augmentor-Wing
NASA Technical Reports Server (NTRS)
Farbridge, J. E.; Smith, R. C.
1977-01-01
The paper describes the development of a transonic blown multi-foil Augmentor-Wing airfoil section that has a thickness/chord (t/c) value of 0.18. In comparison with an unblown single-foil supercritical section of the same overall t/c the new multi-foil section is characterized by an increased drag rise Mach number, increased buffet boundaries, and a reduction in 'effective' drag due to blowing. Potential advantages of the Augmentor-Wing are considered and the testing of three high-speed models in a trisonic pressurized wind tunnel (possessing a two-dimensional transonic insert) is discussed. The data indicate that a very thick wing is feasible since separations toward the rear of the main foil can be controlled both by shroud location and augmentor blowing.
CR-39 track etching and blow-up method
Hankins, Dale E.
1987-01-01
This invention is a method of etching tracks in CR-39 foil to obtain uniformly sized tracks. The invention comprises a step of electrochemically etching the foil at a low frequency and a "blow-up" step of electrochemically etching the foil at a high frequency.
Remaining Technical Challenges and Future Plans for Oil-Free Turbomachinery
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Bruckner, Robert J.
2010-01-01
The application of Oil-Free technologies (foil gas bearings, solid lubricants and advanced analysis and predictive modeling tools) to advanced turbomachinery has been underway for several decades. During that time, full commercialization has occurred in aircraft air cycle machines, turbocompressors and cryocoolers and ever-larger microturbines. Emerging products in the automotive sector (turbochargers and superchargers) indicate that high volume serial production of foil bearings is imminent. Demonstration of foil bearings in APU s and select locations in propulsion gas turbines illustrates that such technology also has a place in these future systems. Foil bearing designs, predictive tools and advanced solid lubricants have been reported that can satisfy anticipated requirements but a major question remains regarding the scalability of foil bearings to ever larger sizes to support heavier rotors. In this paper, the technological history, primary physics, engineering practicalities and existing experimental and experiential database for scaling foil bearings are reviewed and the major remaining technical challenges are identified.
Resistence seam welding thin copper foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollar, D.L. Jr.
1991-02-01
Use of flat flexible circuits in the electronics industry is expanding. The term flexible circuits'' is defined here as copper foil which has been bonded to an insulating film such as Kapton film. The foil is photo processed to produce individual circuit paths similar to printed circuit boards. Another insulating film is laminated over the conductors to complete the flexible circuit. Flexible circuits, like multiwire cables, are susceptible to electromagnetic radiation (EMR) interference. On multiwire cables the interference problem is mitigated by adding a woven wire braid shielding over the conductors. Shielding on flexible circuits is accomplished by enclosing themore » circuits in a copper foil envelope. However, the copper foil must be electrically sealed around the flexcircuit to be effective. Ultimately, a resistance seam welding process and appropriate equipment were developed which would provide the required electrical seal between two layers of 2-oz (0.0028-inch thick) copper foil on a 1.1-inch wide, 30-inch long, 0.040-inch thick flexible circuit. 4 refs., 19 figs.« less
Inspection of cup-shaped steel parts from the I.D. side using eddy current
NASA Astrophysics Data System (ADS)
Griffiths, Erick W.; Pearson, Lee H.
2018-04-01
An eddy current method was developed to inspect cup-shaped steel parts from the I.D. side. During the manufacturing process of these parts, a thin Al tape foil is applied to the I.D. side of the part. One of the critical process parameters is that only one foil layer can be applied. An eddy current inspection system was developed to reject parts with more than one foil layer. The Al tape foil is cut to length to fit the inner diameter, however, after application of the foil there is a gap created between the beginning and end of the foil. It was found that this gap interfered with the eddy current inspection causing a false positive indication. To solve this problem a sensor design and data analysis process were developed to overcome the effects of these gaps. The developed system incorporates simultaneous measurements from multiple eddy current sensors and signal processing to achieve a reliable inspection.
NASA Technical Reports Server (NTRS)
Bruckner, Robert
2013-01-01
An improved foil thrust bearing is described that eliminates or reduces the need for forced cooling of the bearing foils while at the same time improves the load capacity of the bearing, enhances damping, provides overload tolerance, and eliminates the high speed load capacity drop-off that plagues the current state of the art. The performance improvement demonstrated by the chevron foil thrust bearing stems from a novel trailing edge shape that splays the hot lubricant in the thin film radially, thus preventing hot lubricant carry-over into the ensuing bearing sector. Additionally, the chevron shaped trailing edge induces vortical mixing of the hot lubricant with the gas that is naturally resident within the inter-pad region of a foil thrust bearing. The elimination of hot gas carry-over in combination with the enhanced mixing has enabled a completely passive thermally managed foil bearing design. Laboratory testing at NASA has confirmed the original analysis and reduced this concept to practice.
Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; DellaCorte, Christopher
2006-01-01
The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.
Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×108 A/cm2
NASA Astrophysics Data System (ADS)
Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; Mingaleev, A. R.; Atoyan, L.; Hammer, D. A.
2018-02-01
Electric explosions of flat Al, Ti, Ni, Cu, and Ta foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5-50) × 108 A/cm2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing method with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.
Tungsten foil laminate for structural divertor applications - Joining of tungsten foils
NASA Astrophysics Data System (ADS)
Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou
2013-05-01
This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.
Braze system and method for reducing strain in a braze joint
Cadden, Charles H.; Goods, Steven H.; Prantil, Vincent C.
2004-05-11
A system for joining a pair of structural members having widely differing coefficients of thermal expansion is disclosed. A mechanically "thick" foil is made by dispersing a refractory metal powder, such as molybdenum, niobium, tantalum, or tungsten into a quantity of a liquid, high expansion metal such as copper, silver, or gold, casting an ingot of the mixture, and then cutting sections of the ingot about 1 mm thick to provide the foil member. These foil members are shaped, and assembled between surfaces of structural members for joining, together with a layer of a braze alloy on either side of the foil member capable of wetting both the surfaces of the structural members and the foil. The assembled body is then heated to melt the braze alloy and join the assembled structure. The foil member subsequently absorbs the mechanical strain generated by the differential contraction of the cooling members that results from the difference in the coefficients of thermal expansion of the members.
NASA Astrophysics Data System (ADS)
Macku, K.; Jatuff, F.; Murphy, M. F.; Joneja, O. P.; Bischofberger, R.; Chawla, R.
2006-06-01
Different foil activation techniques have been used for measuring spatial distributions of the 63Cu(n,γ) 64Cu reaction within two pins of a SVEA-96 Optima2 boiling water reactor fuel assembly, at the critical facility PROTEUS. This reaction is of interest because its 1/v cross-section gives it a good representation of the 235U fission rate. Initially, radial capture rate profiles were measured with mechanically punched copper foils. More detailed profiles were then determined by using a 0.2 mm copper wire spiral (˜200 μm resolution), as well as 5-, 10-, and 20-ring UV-lithography, electroplating, and molding (UV-LIGA) foils (up to a 100 μm resolution). For azimuthal measurements, apart from manually cut activation foils (into 8 sectors), 8- and 12-sector LIGA foils were used. The highly versatile LIGA foils have the additional advantage of being very easily separated into individual pieces after irradiation without the use of punches or other cutting tools. In order to account for the invasive character of the foil activation techniques, corrections to account for sample perturbations and for self-shielding effects were determined via simplified Monte Carlo (MCNP4C) modeling of the experimental setup. The final results from the various measurements of 63Cu(n,γ) 64Cu within-pin distributions have been compared with MCNP computations employing a detailed model of the full SVEA Optima2 fuel assembly.
NASA Astrophysics Data System (ADS)
Volmert, Ben; Pantelias, Manuel; Mutnuru, R. K.; Neukaeter, Erwin; Bitterli, Beat
2016-02-01
In this paper, an overview of the Swiss Nuclear Power Plant (NPP) activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG) in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.
Variation across individuals and items determine learning outcomes from fast mapping.
Coutanche, Marc N; Koch, Griffin E
2017-11-01
An approach to learning words known as "fast mapping" has been linked to unique neurobiological and behavioral markers in adult humans, including rapid lexical integration. However, the mechanisms supporting fast mapping are still not known. In this study, we sought to help change this by examining factors that modulate learning outcomes. In 90 subjects, we systematically manipulated the typicality of the items used to support fast mapping (foils), and quantified learners' inclination to employ semantic, episodic, and spatial memory through the Survey of Autobiographical Memory (SAM). We asked how these factors affect lexical competition and recognition performance, and then asked how foil typicality and lexical competition are related in an independent dataset. We find that both the typicality of fast mapping foils, and individual differences in how different memory systems are employed, influence lexical competition effects after fast mapping, but not after other learning approaches. Specifically, learning a word through fast mapping with an atypical foil led to lexical competition, while a typical foil led to lexical facilitation. This effect was particularly evident in individuals with a strong tendency to employ semantic memory. We further replicated the relationship between continuous foil atypicality and lexical competition in an independent dataset. These findings suggest that semantic properties of the foils that support fast mapping can influence the degree and nature of subsequent lexical integration. Further, the effects of foils differ based on an individual's tendency to draw-on the semantic memory system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; Puleo, Bernadette J.
2008-01-01
An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.
Stegenta, Sylwia; Dębowski, Marcin; Bukowski, Przemysław; Randerson, Peter F; Białowiec, Andrzej
2018-02-01
The opinion, that the use of foil reactors for the aerobic biostabilization of municipal wastes is not a valid method, due to vulnerability to perforation, and risk of uncontrolled release of exhaust gasses, was verified. This study aimed to determine the intensity of greenhouse gas (GHG) emissions to the atmosphere from the surface of foil reactors in relation to the extent of foil surface perforation. Three scenarios were tested: intact (airtight) foil reactor, perforated foil reactor, and torn foil reactor. Each experimental variant was triplicated, and the duration of each experiment cycle was 5 weeks. Temperature measurements demonstrated a significant decrease in temperature of the biostabilization in the torn reactor. The highest emissions of CO 2 , CO and SO 2 were observed at the beginning of the process, and mostly in the torn reactor. During the whole experiment, observed emissions of CO, H 2 S, NO, NO 2 , and SO 2 were at a very low level which in extreme cases did not exceed 0.25 mg t -1 .h -1 (emission of gasses mass unit per waste mass unit per unit time). The lowest average emissions of greenhouse gases were determined in the case of the intact reactor, which shows that maintaining the foil reactors in an airtight condition during the process is extremely important. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... 57215): Paper, Film, and Foil Coatings; Metal Furniture Coatings; and Large Appliance Coatings... Emissions Paper, Film, and Foil Coatings. From Industrial Surface Coating Operations. 10 CSR 10-5.220... Paneling Coatings Paper, Film, and Foil Coatings Miscellaneous Industrial Adhesives Large Appliance...
FOIL ELEMENT FOR NUCLEAR REACTOR
Noland, R.A.; Walker, D.E.; Spinrad, B.I.
1963-07-16
A method of making a foil-type fuel element is described. A foil of fuel metal is perforated in; regular design and sheets of cladding metal are placed on both sides. The cladding metal sheets are then spot-welded to each other through the perforations, and the edges sealed. (AEC)
Method to Increase Performance of Foil Bearings Through Passive Thermal Management
NASA Technical Reports Server (NTRS)
Bruckner, Robert
2013-01-01
This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and passive cooling mechanism. This cooling mechanism functions in such a way as to prevent used (higher temperature) lubricant from being carried over from the exit of one sector into the entry of the next sector of the foil bearing. The disclosed innovation is an improved foil bearing design that reduces or eliminates the need for force cooling of the bearing, while at the same time improving the load capacity of the bearing by at least a factor of two. These improvements are due to the elimination of lubricant carryover from the trailing edge of one sector into the leading edge of the next, and the mixing of used lubricant with the surrounding ambient fluid.
Process for producing molybdenum foil and collapsible tubing
NASA Technical Reports Server (NTRS)
Bretts, G. R.; Gavert, R. B.; Groschke, G. F.
1971-01-01
Manufacturing process produces molybdenum foil 0.002 cm thick and 305 m long, and forms foil into high-strength, thin-walled tubing which can be flattened for storage on a spool. Desirable metal properties include high thermal conductivity stiffness, yield and tensile stress, and low thermal expansion coeffecient.
Bonded foil pressure transducers
NASA Astrophysics Data System (ADS)
Daube, Bernie W.
The design of bonded-foil pressure transducers is discussed, with consideration given to individual components of both the electrical and the mechanical sections of the bonded-foil pressure transducers, as well as to the temperature control and the accuracy specification of these devices. Particular attention is given to applications of bonded foil pressure transducers, which include solid and liquid rocket engine testing for fuel and exhaust pressures, fuel and oil pressure monitoring on jet engines, and nuclear underground safety system pressure monitoring and nuclear test monitoring. A diagram of a transducer cutaway view is included.
Method for laser welding ultra-thin metal foils
Pernicka, J.C.; Benson, D.K.; Tracy, C.E.
1996-03-26
A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.
Method for laser welding ultra-thin metal foils
Pernicka, John C.; Benson, David K.; Tracy, C. Edwin
1996-01-01
A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.
Measuring Hydrogen Concentrations in Metals
NASA Technical Reports Server (NTRS)
Danford, M. D.
1985-01-01
Commercial corrosion-measurement system adapted to electrochemical determination of hydrogen concentrations in metals. New technique based on diffusion of hydrogen through foil specimen of metal. In sample holder, hydrogen produced on one side of foil, either by corrosion reaction or by cathodic current. Hydrogen diffused through foil removed on other side by constant anode potential, which leads to oxidation of hydrogen to water. Anode current is measure of concentration of hydrogen diffusing through foil. System used to study hydrogen uptake, hydrogen elimination by baking, effect of heat treatment, and effect of electroplating on high-strength steels.
Elevated-Temperature Tensile-Testing of Foil-Gage Metals
NASA Technical Reports Server (NTRS)
Blackburn, L. B.; Ellingsworth, J. R.
1986-01-01
Automated system for measuring strain in metal foils at temperatures above 500 degrees F (260 degrees C) uses mechanical extensometer and displacement transducer. System includes counterbalance feature, which eliminates weight contribution of extensometer and reduces grip pressure required for attachment to specimen. Counterbalancing feature overcomes two major difficulties in using extensometers with foil-gage specimens: (1) Weight of extensometer and transducer represents significant fraction of total load applied to specimen and may actually damage it; and (2) grip pressure required for attachment of extensometer to specimens may induce bending stresses in foil-gage materials.
Producing carbon stripper foils containing boron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, J. O. Jr.
2012-12-19
Parameters being actively tested by the accelerator community for the purpose of extending carbon stripper foil lifetimes in fast ion beams include methods of deposition, parting agents, mounting techniques, support (fork) materials, and inclusion of alloying elements, particularly boron. Specialized production apparatus is required for either sequential deposition or co-deposition of boron in carbon foils. A dual-use vacuum evaporator for arc evaporation of carbon and electron-beam evaporation of boron and other materials has been built for such development. Production of both carbon and boron foils has begun and improvements are in progress.
Method of Suppressing Sublimation in Advanced Thermoelectric Devices
NASA Technical Reports Server (NTRS)
Sakamoto, Jeffrey S. (Inventor); Caillat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Snyder, G. Jeffrey (Inventor)
2009-01-01
A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makita, M.; Nersisyan, G.; McKeever, K.
2014-02-15
We have studied the propagation of fast electrons through laser irradiated Ti foils by monitoring the emission of hard X-rays and K-α radiation from bare foils and foils backed by a thick epoxy layer. Key observations include strong refluxing of electrons and divergence of the electron beam in the foil with evidence of magnetic field collimation. Our diagnostics have allowed us to estimate the fast electron temperature and fraction of laser energy converted to fast electrons. We have observed clear differences between the fast electron temperatures observed with bare and epoxy backed targets which may be due to the effectsmore » of refluxing.« less
Titanium conversion coatings on the aluminum foil AA 8021 used for lithium-ion battery package
NASA Astrophysics Data System (ADS)
Xia, Xu-Feng; Gu, Ying-Ying; Xu, Shi-Ai
2017-10-01
In this study, an environment-friendly titanium (Ti) conversion coating was successfully deposited on the aluminum foil AA 8021 in the solution containing hexafluorotitanic acid (H2TiF6), and its morphology, composition, growth process, hydrophilicity and corrosion resistance were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), X-ray photoelectric spectroscopy (XPS), contact-angle measurements (CAM) and salt spray exposure. The peeling strength between the Ti treated Al foil and the modified polypropylene (PP) film (PP grafted with maleic anhydride, PP-g-MAH) (Al/PP-g-MAH) was measured by T-peeling test. The results show that the Ti conversion coating is a multi-component coating composed primarily of metal oxides (TiO2 and Al2O3) and metal fluoride (AlF3). Ti treated Al foil shows better corrosion resistance than untreated and alkali-cleaned Al foils. The peeling strength of PP-g-MAH film with Ti treated Al foils is approximately 30 times higher than that with untreated Al foils. Thus, Ti treatment is a promising approach to improve the corrosion resistance and peeling strength of aluminum/polymer composite film (Al/P) used in the lithium-ion battery package.
A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.
2002-01-01
Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.
Explosion of thin aluminum foils in air
NASA Astrophysics Data System (ADS)
Baksht, R.; Pokryvailo, A.; Yankelevich, Y.; Ziv, I.
2004-12-01
An inductive-based power supply (240μH, 50kA) was used for the investigation of the foil explosion process in the time range of 0.05ms
Development of damage suppression system using embedded SMA foil in CFRP laminates
NASA Astrophysics Data System (ADS)
Ogisu, Toshimichi; Nomura, Masato; Ando, Norio; Takaki, Junji; Kobayashi, Masakazu; Okabe, Tomonaga; Takeda, Nobuo
2001-07-01
Some recent studies have suggested possible applications of Shape Memory Alloy (SMA) for a smart health monitoring and suppression of damage growth. The authors have been conducting research and development studies on applications of embedded SMA foil actuators in CFRP laminates as the basic research for next generation aircrafts. First the effective surface treatment for improvement of bonding properties between SMA and CFRP was studied. It was certified that the anodic oxide treatment by 10% NaOH solution was the most effective treatment from the results of peel resistance test and shear strength test. Then, CFRP laminates with embedded SMA foils were successfully fabricated using this effective surface treatment. The damage behavior of quasi-isotropic CFRP laminates with embedded SMA foils was characterized in both quasi-static load-unload and fatigue tests. The relationship between crack density and applied strain was obtained. The recovery stress generated by embedded SMA foils could increase the onset strain of transverse cracking by 0.2%. The onset strain of delmination in CFRP laminates was also increased accordingly. The shear-lag analysis was also conducted to predict the damage evolution in CFRP laminates with embedded SMA foils. The adhesive layers on both sides of SMA foils were treated as shear elements. The theoretical analysis successfully predicted the experimental results.
Welding bulk metallic glass using nanostructured reactive multilayer foils
NASA Astrophysics Data System (ADS)
Trenkle, Jonathan C.
We have used Al/Ni reactive foils to weld Zr57Ti 5Cu20Ni8Al10 metallic glasses. The welds are a composite morphology comprised of glass ligaments and intermetallic AlNi (the product of the reactive foil). The presence of the presumably brittle intermetallic (in lieu of the glass) is expected to limit the mechanical properties of the welds. Based on fracture toughness measurements and the crack propagation paths, we conclude that virtually all of the toughness can be ascribed to the presence of the metallic glass ligaments. Increasing the pressure applied during welding increases the fraction of the joint made of these ligaments and so increases the fracture toughness as well. To eliminate the intermetallic from the weld altogether, we attempted to fabricate reactive mulitlayer foils that form an amorphous product by melting and cooling rapidly during a self-propagating reaction. We began with reactive foils with overall composition Zr2Ni but quickly determined that the foils did not fully melt. We then attempted to lower the melting temperature and increase the glass forming ability and the heat of mixing by adding Al and Cu. These foils again did not fully melt. Finally we systematically determined that foils of overall compositions Hf37Ni63, Ni 80P20, and Ni60P40, which are all known binary metallic glasses, will potentially melt during a self-propagating reaction. Knowledge of the phase transformations during a self-propagating reaction is necessary to engineer reactive foils for future applications. Furthermore, reactive foils provide an opportunity to study phase transformations under high heating rates not easily achievable. Characterizing the processes in the reaction zone however is challenging, requiring both temporal resolution better than ˜ 100 mus (the time required for the reaction front to pass a fixed location) and spatial resolution of < 100 mum (the approximate width of the reaction zone). Using synchrotron x-ray radiation, we have studied these phase transformations in situ in Al/Ni multilayers. Unlike previous annealing and quenching studies in these multilayers, we observed no metastable or intermediate phases.
Wake visualization of a heaving and pitching foil in a soap film
NASA Astrophysics Data System (ADS)
Muijres, Florian T.; Lentink, David
2007-11-01
Many fish depend primarily on their tail beat for propulsion. Such a tail is commonly modeled as a two-dimensional flapping foil. Here we demonstrate a novel experimental setup of such a foil that heaves and pitches in a soap film. The vortical flow field generated by the foil correlates with thickness variations in the soap film, which appear as interference fringes when the film is illuminated with a monochromatic light source (we used a high-frequency SOX lamp). These interference fringes are subsequently captured with high-speed video (500 Hz) and this allows us to study the unsteady vortical field of a flapping foil. The main advantage of our approach is that the flow fields are time and space resolved and can be obtained time-efficiently. The foil is driven by a flapping mechanism that is optimized for studying both fish swimming and insect flight inside and outside the behavioral envelope. The mechanism generates sinusoidal heave and pitch kinematics, pre-described by the non-dimensional heave amplitude (0-6), the pitch amplitude (0°-90°), the phase difference between pitch and heave (0°-360°), and the dimensionless wavelength of the foil (3-18). We obtained this wide range of wavelengths for a foil 4 mm long by minimizing the soap film speed (0.25 m s-1) and maximizing the flapping frequency range (4-25 Hz). The Reynolds number of the foil is of order 1,000 throughout this range. The resulting setup enables an effective assessment of vortex wake topology as a function of flapping kinematics. The efficiency of the method is further improved by carefully eliminating background noise in the visualization (e.g., reflections of the mechanism). This is done by placing mirrors at an angle behind the translucent film such that the camera views the much more distant and out-of-focus reflections of the black laboratory wall. The resulting high-quality flow visualizations require minimal image processing for flow interpretation. Finally, we demonstrate the effectiveness of our setup by visualizing the vortex dynamics of the flapping foil as a function of pitch amplitude by assessing the symmetry of the vortical wake.
Wake visualization of a heaving and pitching foil in a soap film
NASA Astrophysics Data System (ADS)
Muijres, Florian T.; Lentink, David
Many fish depend primarily on their tail beat for propulsion. Such a tail is commonly modeled as a twodimensional flapping foil. Here we demonstrate a novel experimental setup of such a foil that heaves and pitches in a soap film. The vortical flow field generated by the foil correlates with thickness variations in the soap film, which appear as interference fringes when the film is illuminated with a monochromatic light source (we used a high-frequency SOX lamp). These interference fringes are subsequently captured with high-speed video (500 Hz) and this allows us to study the unsteady vortical field of a flapping foil. The main advantage of our approach is that the flow fields are time and space resolved and can be obtained time-efficiently. The foil is driven by a flapping mechanism that is optimized for studying both fish swimming and insect flight inside and outside the behavioral envelope. The mechanism generates sinusoidal heave and pitch kinematics, pre-described by the non-dimensional heave amplitude (0-6), the pitch amplitude (0° - 90°), the phase difference between pitch and heave (0° - 360°), and the dimensionless wavelength of the foil (3-18). We obtained this wide range of wavelengths for a foil 4 mm long by minimizing the soap film speed (0.25 m s- 1) and maximizing the flapping frequency range (4-25 Hz). The Reynolds number of the foil is of order 1,000 throughout this range. The resulting setup enables an effective assessment of vortex wake topology as a function of flapping kinematics. The efficiency of the method is further improved by carefully eliminating background noise in the visualization (e.g., reflections of the mechanism). This is done by placing mirrors at an angle behind the translucent film such that the camera views the much more distant and out-of-focus reflections of the black laboratory wall. The resulting high-quality flow visualizations require minimal image processing for flow interpretation. Finally, we demonstrate the effectiveness of our setup by visualizing the vortex dynamics of the flapping foil as a function of pitch amplitude by assessing the symmetry of the vortical wake.
Intact suppression of increased false recognition in schizophrenia.
Weiss, Anthony P; Dodson, Chad S; Goff, Donald C; Schacter, Daniel L; Heckers, Stephan
2002-09-01
Recognition memory is impaired in patients with schizophrenia, as they rely largely on item familiarity, rather than conscious recollection, to make mnemonic decisions. False recognition of novel items (foils) is increased in schizophrenia and may relate to this deficit in conscious recollection. By studying pictures of the target word during encoding, healthy adults can suppress false recognition. This study examined the effect of pictorial encoding on subsequent recognition of repeated foils in patients with schizophrenia. The study included 40 patients with schizophrenia and 32 healthy comparison subjects. After incidental encoding of 60 words or pictures, subjects were tested for recognition of target items intermixed with 60 new foils. These new foils were subsequently repeated following either a two- or 24-word delay. Subjects were instructed to label these repeated foils as new and not to mistake them for old target words. Schizophrenic patients showed greater overall false recognition of repeated foils. The rate of false recognition of repeated foils was lower after picture encoding than after word encoding. Despite higher levels of false recognition of repeated new items, patients and comparison subjects demonstrated a similar degree of false recognition suppression after picture, as compared to word, encoding. Patients with schizophrenia displayed greater false recognition of repeated foils than comparison subjects, suggesting both a decrement of item- (or source-) specific recollection and a consequent reliance on familiarity in schizophrenia. Despite these deficits, presenting pictorial information at encoding allowed schizophrenic subjects to suppress false recognition to a similar degree as the comparison group, implying the intact use of a high-level cognitive strategy in this population.
Sex differences in mental rotation tasks: Not just in the mental rotation process!
Boone, Alexander P; Hegarty, Mary
2017-07-01
The paper-and-pencil Mental Rotation Test (Vandenberg & Kuse, 1978) consistently produces large sex differences favoring men (Voyer, Voyer, & Bryden, 1995). In this task, participants select 2 of 4 answer choices that are rotations of a probe stimulus. Incorrect choices (i.e., foils) are either mirror reflections of the probe or structurally different. In contrast, in the mental rotation experimental task (Shepard & Metzler, 1971) participants judge whether 2 stimuli are the same but rotated or different by mirror reflection. The goal of the present research was to examine sources of sex differences in mental rotation, including the ability to capitalize on the availability of structure foils. In 2 experiments, both men and women had greater accuracy and faster reaction times (RTs) for structurally different compared with mirror foils in different versions of the Vandenberg and Kuse Mental Rotation Test (Experiment 1) and the Shepard and Metzler experimental task (Experiment 2). A significant male advantage in accuracy but not response time was found for both trial types. The male advantage was evident when all foils were structure foils so that mental rotation was not necessary (Experiment 3); however, when all foils were structure foils and participants were instructed to look for structure foils a significant sex difference was no longer evident (Experiment 4). Results suggest that the mental rotation process is not the only source of the sex difference in mental rotation tasks. Alternative strategy use is another source of sex differences in these tasks. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.
2010-01-01
Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.
Measurements of Laser Generated X-ray Spectra from Irradiated Gold Foils
NASA Astrophysics Data System (ADS)
Davis, Joshua; Keiter, Paul; Drake, Paul; Klein, Sallee
2015-11-01
Soft x-ray sources may provide a means of driving photoionization fronts in materials with a Z >2. To generate these soft x-rays at a traditional UV laser facility, a gold converter foil can be implemented that absorbs the UV photons and heats up to act as a quasi-continuum blackbody emitter with a characteristic temperature of ~ 100eV. However, it takes time for the heating wave to propagate through the foil, with thicker foils having a longer delay before measureable emission is produced. Prior work has studied the emission characteristics of foil x-ray sources but was limited to laser pulses of 1ns or less. Our interest is in long duration sources (>1ns) which requires the use of thicker Au foils. To better understand how the increased foil thickness affects emission we have performed experiments at the Omega-60 laser facility studying the x-ray intensity and total emission time of 0.5, 1.0, and 2.0 μm thick gold foils driven by a 2kJ, 6ns laser pulse. This presentation will discuss the results of these experiments and will include a discussion of how these results compare with theoretical predictions. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, grant No. DE-NA0001840, and the NLUF Program, grant No. DE-NA0000850, and through LLE, Univ of Rochester by the NNSA/OICF under Agreement No. DE-FC52-08NA28302.
Prism Foil from an LCD Monitor as a Tool for Teaching Introductory Optics
ERIC Educational Resources Information Center
Planinsic, Gorazd; Gojkosek, Mihael
2011-01-01
Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and…
Insulating effectiveness of self-spacing dimpled foil
NASA Technical Reports Server (NTRS)
Bond, J. A.
1972-01-01
Experimental data are graphed for determining conductive heat losses of multilayer insulation as function of number of foil layers. Foil was 0.0051 cm thick Nb, 1% Zr refractory alloy, dimpled to 0.0254 cm with approximately 28 dimples/sq cm. Heat losses were determined at 0.1 microtorr between 700 and 1089 K.
NASA Astrophysics Data System (ADS)
Floss, C.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Doll, R.; Flynn, G. J.; Frank, D.; Gainsforth, Z.; Grün, E.; Heck, P. R.; Hillier, J. K.; Hoppe, P.; Howard, L.; Huss, G. R.; Huth, J.; Kearsley, A.; King, A. J.; Lai, B.; Leitner, J.; Lemelle, L.; Leonard, A.; Leroux, H.; Nittler, L. R.; Ogliore, R. C.; Ong, W. J.; Postberg, F.; Price, M. C.; Sandford, S. A.; Sans Tresseras, J. A.; Schmitz, S.; Schoonjans, T.; Schreiber, K.; Silversmit, G.; Siminonovici, A.; Srama, R.; Stadermann, F. J.; Stephan, T.; Stodolna, J.; Stroud, R. M.; Sutton, S. R.; Toucoulou, R.; Trieloff, M.; Tsou, P.; Tsuchiyama, A.; Tyliczszak, T.; Vekemans, B.; Vincze, L.; Westphal, A. J.; Zolensky, M. E.; 29,000 Stardust@Home Dusters
2011-03-01
Ten submicrometer (235-700-nm) craters were identified on Stardust interstellar foils 1061N and 1031N. The craters are distributed randomly over the foil areas, indicating that the high abundance observed is not due to clusters of secondary impacts.
Rhenium-Foil Witness Cylinders
NASA Technical Reports Server (NTRS)
Knight, B. L.
1992-01-01
Cylindrical portion of wall of combustion chamber replaced with rhenium foil mounted on holder. Rhenium oxidizes without melting, indicating regions of excess oxidizer in combustion-chamber flow. Rhenium witness foils also useful in detecting excess oxygen and other oxidizers at temperatures between 2,000 and 3,600 degrees F in burner cores of advanced gas-turbine engines.
NASA Astrophysics Data System (ADS)
Zhou, Weijun; Hong, Xueren; Xie, Baisong; Yang, Yang; Wang, Li; Tian, Jianmin; Tang, Rongan; Duan, Wenshan
2018-02-01
In order to generate high quality ion beams through a relatively uniform radiation pressure acceleration (RPA) of a common flat foil, a new scheme is proposed to overcome the curve of the target while being radiated by a single transversely Gaussian laser. In this scheme, two matched counterpropagating transversely Gaussian laser pulses, a main pulse and an auxiliary pulse, impinge on the foil target at the meantime. It is found that in the two-dimensional (2D) particle-in-cell (PIC) simulation, by the restraint of the auxiliary laser, the curve of the foil can be effectively suppressed. As a result, a high quality monoenergetic ion beam is generated through an efficient RPA of the foil target. For example, two counterpropagating transversely circularly polarized Gaussian lasers with normalized amplitudes a1=120 and a2=30 , respectively, impinge on the foil target at the meantime, a 1.3 GeV monoenergetic proton beam with high collimation is obtained finally. Furthermore, the effects on the ions acceleration with different parameters of the auxiliary laser are also investigated.
Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×10 8A/cm 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.
Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5–50) × 10 8 A/cm 2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing methodmore » with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.« less
Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×10 8A/cm 2
Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; ...
2018-01-01
Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5–50) × 10 8 A/cm 2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing methodmore » with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.« less
Selecting foils for identification lineups: matching suspects or descriptions?
Tunnicliff, J L; Clark, S E
2000-04-01
Two experiments directly compare two methods of selecting foils for identification lineups. The suspect-matched method selects foils based on their match to the suspect, whereas the description-matched method selects foils based on their match to the witness's description of the perpetrator. Theoretical analyses and previous results predict an advantage for description-matched lineups both in terms of correctly identifying the perpetrator and minimizing false identification of innocent suspects. The advantage for description-matched lineups should be particularly pronounced if the foils selected in suspect-matched lineups are too similar to the suspect. In Experiment 1, the lineups were created by trained police officers, and in Experiment 2, the lineups were constructed by undergraduate college students. The results of both experiments showed higher suspect-to-foil similarity for suspect-matched lineups than for description-matched lineups. However, neither experiment showed a difference in correct or false identification rates. Both experiments did, however, show that there may be an advantage for suspect-matched lineups in terms of no-pick and rejection responses. From these results, the endorsement of one method over the other seems premature.
Clark, S E; Tunnicliff, J L
2001-06-01
Experimental research on eyewitness identification follows a standard principle of experimental design. Perpetrator-present and perpetrator-absent lineups are constructed with the same foils, so that the two conditions are identical except for the presence or absence ofthe trueperpetrator ofthe crime. However, this aspect of the design simulates conditions that do not correspond to those of real criminal investigations. Specifically, these conditions can create perp-absent lineups in which the foils are selected based on their similarity to an unknown person--the real perpetrator. Analysis of the similarity relations predicts that when foils for perp-absent lineups are selected based on their match to the perpetrator the false identification rate will be lower than if the foils are selected based on their match to the innocent suspect. This prediction was confirmed in an experiment that compared these two perp-absent lineup conditions. These results suggest that false identification rates in previous experiments would have been higher if the foils had been selected based on their match to the innocent suspect, rather than the absent perpetrator.
NASA Astrophysics Data System (ADS)
Ku, C.-P. Roger; Heshmat, Hooshang
1994-07-01
Compliant foil bearings operate on either gas or liquid, which makes them very attractive for use in extreme environments such as in high-temperature aircraft turbine engines and cryogenic turbopumps. However, a lack of analytical models to predict the dynamic characteristics of foil bearings forces the bearing designer to rely on prototype testing, which is time-consuming and expensive. In this paper, the authors present a theoretical model to predict the structural stiffness and damping coefficients of the bump foil strip in a journal bearing or damper. Stiffness is calculated based on the perturbation of the journal center with respect to its static equilibrium position. The equivalent viscous damping coefficients are determined based on the area of a closed hysteresis loop of the journal center motion. The authors found, theoretically, that the energy dissipated from this loop was mostly contributed by the frictional motion between contact surfaces. In addition, the source and mechanism of the nonlinear behavior of the bump foil strips were examined. With the introduction of this enhanced model, the analytical tools are now available for the design of compliant foil bearings.
Hooper, R. J.; Davis, C. G.; Johns, P. M.; ...
2015-06-26
Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical modelmore » for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.« less
Investigations on electroluminescent tapes and foils in relation to their applications in automotive
NASA Astrophysics Data System (ADS)
Plotog, Ioan
2015-02-01
The electroluminescent (EL) tapes or foils having barrier films for an additional level of protection against the toughest environments conditions, offer a large area of applications. The EL lights, due to their characteristics, began to be used not only in the entertainment industry, but also for automotive and aerospace applications. In the paper, the investigations regarding EL foils technical performances in relation to their applications as light sources in automotive ambient light were presented. The experiments were designed based on the results of EL foils electrical properties previous investigations done in laboratory conditions, taking into account the range of automotive ambient temperatures for sinusoidal alternative supply voltage. The measurements for different temperatures were done by keeping the EL foils into electronic controlled oven that ensures the dark enclosure offering conditions to use a lux-meter in order to measure and maintain under control light emission intensity. The experiments results define the EL foils characteristics as load in automotive ambient temperatures condition, assuring so the data for optimal design of a dedicated inverter.
Misalignment in Gas Foil Journal Bearings: An Experimental Study
NASA Technical Reports Server (NTRS)
Howard, Samuel A.
2008-01-01
As gas foil journal bearings become more prevalent in production machines, such as small gas turbine propulsion systems and microturbines, system-level performance issues must be identified and quantified in order to provide for successful design practices. Several examples of system-level design parameters that are not fully understood in foil bearing systems are thermal management schemes, alignment requirements, balance requirements, thrust load balancing, and others. In order to address some of these deficiencies and begin to develop guidelines, this paper presents a preliminary experimental investigation of the misalignment tolerance of gas foil journal bearing systems. Using a notional gas foil bearing supported rotor and a laser-based shaft alignment system, increasing levels of misalignment are imparted to the bearing supports while monitoring temperature at the bearing edges. The amount of misalignment that induces bearing failure is identified and compared to other conventional bearing types such as cylindrical roller bearings and angular contact ball bearings. Additionally, the dynamic response of the rotor indicates that the gas foil bearing force coefficients may be affected by misalignment.
Multi-element microelectropolishing method
Lee, Peter J.
1994-01-01
A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle.
Stripper foil failure modes and cures at the Spallation Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cousineau, Sarah M; Galambos, John D; Kim, Sang-Ho
2011-01-01
The Spallation Neutron Source comprises a 1 GeV, 1.4 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the $H^0$ excited states created during the $H^-$ charge exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming $H^-$ beam, which circled around to strike the foilmore » bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.« less
Analysis of Hybrid Type Boron-Doped Carbon Stripper Foils in J-PARC RCS
NASA Astrophysics Data System (ADS)
Yamazaki, Y.; Yoshimoto, M.; Takeda, O.; Kinsho, M.; Taguchi, T.; Yamamoto, S.; Kurihara, T.; Sugai, I.
2013-03-01
J-PARC (Japan-Proton Accelerator Research Complex) requires a carbon stripper foil to strip electrons from the H- beam supplied by the linac before injection into the Rapid Cycling Synchrotron (RCS) [1]. The foil thickness is about μm (200μg/cm2) corresponding to conversion efficiency of 99.7% from the primary H- beams of 181MeV energy to H+. We have successfully developed the Hybrid type thick Boron-doped Carbon (HBC) stripper foil, which showed a drastic improvement the lifetime without thickness reduction and shrinkage at the irradiated area. We started to study carbon stripper foils microscopically why carbon foils have considerable endurance for the beam impact by boron-doped. At first step, we made a comparison of ion irradiation effect between normal carbon and HBC by the electric microscope, ion-induced analysis. In particular, it seems that grain size of boron-rich area became much larger by irradiation for HBC. It was also observed that the boron-rich grain grew up by taking around material and generated pinholes more than 100 nm near itself consequently.
Process for forming a nickel foil with controlled and predetermined permeability to hydrogen
Engelhaupt, Darell E.
1981-09-22
The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.
Pint, Bruce A.; Dryepondt, Sebastien N.; Brady, Michael P.; ...
2016-07-19
Alumina-forming austenitic (AFA) steels represent a new class of corrosion- and creep-resistant austenitic steels designed to enable higher temperature recuperators. Field trials are in progress for commercially rolled foil with widths over 39 cm. The first trial completed 3000 hrs in a microturbine recuperator with an elevated turbine inlet temperature and showed limited degradation. A longer microturbine trial is in progress. A third exposure in a larger turbine has passed 16,000 hrs. Furthermore, to reduce alloy cost and address foil fabrication issues with the initial AFA composition, several new AFA compositions are being evaluated in creep and laboratory oxidation testingmore » at 650–800 °C and the results compared to commercially fabricated AFA foil and conventional recuperator foil performance.« less
Ri, Jin Hyok; Wu, Shufang; Jin, Jingpeng; Peng, Tianyou
2017-11-30
A sea urchin-like rutile TiO 2 microsphere (RMS) film was fabricated on Ti foil via a hydrothermal process. The resulting rutile TiO 2 hierarchical microspheres with a diameter of 5-6 μm are composed of nanorods with a diameter of ∼200 nm and a length of 1-2 μm. The sea urchin-like hierarchical structure leads to the Ti foil-based RMS film possessing much better light-scattering capability in the visible region than the bare Ti foil. By using it as an underlayer of a nanosized anatase TiO 2 film (bTPP3) derived from a commercially available paste (TPP3), the corresponding bilayer Ti foil-based quasi-solid-state dye-sensitized solar cell (DSSC) only gives a conversion efficiency of 4.05%, much lower than the single bTPP3 film-based one on Ti foil (5.97%). By spin-coating a diluted TPP3 paste (sTPP3) on the RMS film prior to scraping the bTPP3 film, the resulting RMS/sTPP3/bTPP3 film-based DSSC achieves a significantly enhanced efficiency (7.27%). The electrochemical impedance spectra (EIS) show that the RMS/sTPP3/bTPP3 film possesses better electron transport capability and longer electron lifetime than the bTPP3 film. This work not only provides the first example of directly growing rutile TiO 2 hierarchically structured microsphere film on Ti foil suitable for replacing the rigid, heavy and expensive transparent conductive oxide (TCO) glass substrate to serve as a light-scattering underlayer of Ti foil-based quasi-solid-state DSSCs, but also paves a new route to develop Ti foil-based flexible DSSCs with high efficiency, low cost and a wide application field through optimizing the composition and structure of the photoanode.
Foil cooling for rep-rated electron beam pumped KrF lasers
NASA Astrophysics Data System (ADS)
Giuliani, J. L.; Hegeler, F.; Sethian, J. D.; Wolford, M. F.; Myers, M. C.; Abdel-Khalik, S.; Sadowski, D.; Schoonover, K.; Novak, V.
2006-06-01
In rep-rated electron beam pumped lasers the foil separating the vacuum diode from the laser gas is subject to repeated heating due to partial beam stopping. Three cooling methods are examined for the Electra KrF laser at the Naval Research Laboratory (NRL). Foil temperature measurements for convective cooling by the recirculating laser gas and by spray mist cooling are reported, along with estimates for thermal conductive foil cooling to the hibachi ribs. Issues on the application of each of these approaches to laser drivers in a fusion power plant are noted. Work supported by DOE/NNSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, K., E-mail: mukai.kiyofumi@LHD.nifs.ac.jp; Peterson, B. J.; SOKENDAI
The InfraRed imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil detector is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified.
Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martini, R., E-mail: roberto.martini@imec.be; imec, Kapeldreef 75, 3001 Leuven; Kepa, J.
2014-10-27
We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process.more » A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.« less
Heat Transfer in High Temperature Multilayer Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Miller, Steve D.; Cunnington, George R.
2007-01-01
High temperature multilayer insulations have been investigated as an effective component of thermal-protection systems for atmospheric re-entry of reusable launch vehicles. Heat transfer in multilayer insulations consisting of thin, gold-coated, ceramic reflective foils and Saffil(TradeMark) fibrous insulation spacers was studied both numerically and experimentally. A finite volume numerical thermal model using combined conduction (gaseous and solid) and radiation in porous media was developed. A two-flux model with anisotropic scattering was used for radiation heat transfer in the fibrous insulation spacers between the reflective foils. The thermal model was validated by comparison with effective thermal conductivity measurements in an apparatus based on ASTM standard C201. Measurements were performed at environmental pressures in the range from 1x10(exp -4) to 760 torr over the temperature range from 300 to 1300 K. Four multilayer samples with nominal densities of 48 kg/cu m were tested. The first sample was 13.3 mm thick and had four evenly spaced reflective foils. The other three samples were 26.6 mm thick and utilized either one, two, or four reflective foils, located near the hot boundary with nominal foil spacing of 1.7 mm. The validated thermal model was then used to study relevant design parameters, such as reflective foil spacing and location in the stack-up and coating of one or both sides of foils.
Preliminary Analysis for an Optimized Oil-Free Rotorcraft Engine Concept
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.
2008-01-01
Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include Oil-Free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This paper presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section.
Jeszeová, Lenka; Puškárová, Andrea; Bučková, Mária; Kraková, Lucia; Grivalský, Tomáš; Danko, Martin; Mosnáčková, Katarína; Chmela, Štefan; Pangallo, Domenico
2018-06-22
The microbial communities responsible for the degradation of poly(lactic acid)/poly(3-hydroxybutyrate) (PLA/PHB) blend foils were investigated in 1 year long laboratory soil burial experiments. Different PLA/PHB foils were tested: (a) PLA/PHB original transparent foil, (b) PLA/PHB carbon black filled foil and (c) PLA/PHB black foil previously exposed for 90 days to sun light. The microbiome diversity of these three types of foil was compared with that identified from soil/perlite sample at the beginning of experiment and that developed on a cellulose mat. Culture-dependent and culture-independent (DGGE-cloning) approaches together with PLA, PHB and PLA/PHB degradation plate assays were employed. The cultivation strategy combined with degradation tests permitted the isolation and evaluation of several PLA/PHB blend degrading microorganisms such as members of the genera Bacillus, Paenibacillus, Streptomyces, Rhodococcus, Saccharothrix, Arthrobacter, Aureobasidium, Mortierella, Absidia, Actinomucor, Bjerkandera, Fusarium, Trichoderma and Penicillium. The DGGE-cloning investigation increased the information about the microbial communities occurring during bioplastic degradation detecting several bacterial and fungal taxa and some of them (members of the orders Anaerolineales, Selenomonadales, Thelephorales and of the genera Pseudogymnoascus and Pseudeurotium) were revealed here for the first time. This survey showed the microbiome colonizing PLA/PHB blend foils and permitted the isolation of several microorganisms able to degrade the tested polymeric blends.
Induction Bonding of Prepreg Tape and Titanium Foil
NASA Technical Reports Server (NTRS)
Messier, Bernadette C.; Hinkley, Jeffrey A.; Johnston, Norman J.
1998-01-01
Hybrid structural laminates made of titanium foil and carbon fiber reinforced polymer composite offer a potential for improved performance in aircraft structural applications. To obtain information needed for the automated fabrication of hybrid laminates, a series of bench scale tests were conducted of the magnetic induction bonding of titanium foil and thermoplastic prepreg tape. Foil and prepreg specimens were placed in the gap of a toroid magnet mounted in a bench press. Several magnet power supplies were used to study power at levels from 0.5 to 1.75 kW and frequencies from 50 to 120 kHz. Sol-gel surface-treated titanium foil, 0.0125 cm thick, and PIXA/IM7 prepreg tape were used in several lay-up configurations. Data were obtained on wedge peel bond strength, heating rate, and temperature ramp over a range of magnet power levels and frequencies at different "power-on" times for several magnet gap dimensions. These data will be utilized in assessing the potential for automated processing. Peel strengths of foil-tape bonds depended on the maximum temperature reached during heating and on the applied pressure. Maximum peel strengths were achieved at 1.25kW and 8OkHz. Induction heating of the foil appears to be capable of good bonding up to 10 plies of tape. Heat transfer calculations indicate that a 20-40 C temperature difference exists across the tape thickness during heat-up.
Instability Coupling Experiments*
NASA Astrophysics Data System (ADS)
Chrien, R. E.; Hoffman, N. M.; Magelssen, G. R.; Schappert, G. T.; Smitherman, D. P.
1996-11-01
The coupling of Richtmyer-Meshkov (RM) and ablative Rayleigh-Taylor (ART) instabilities is being studied with indirectly-driven planar foil experiments on the Nova laser at Livermore. The foil is attached to a 1.6-mm-diameter, 2.75-mm-long Au hohlraum driven by a 2.2-ns long, 1:5-contrast-ratio shaped laser pulse. A shock is generated in 35-μm or 86-μm thick Al foils with a 50-μm-wavelength, 4-μm-amplitude sinusoidal perturbation on its rear surface. In some experiments, the perturbation is applied to a 10-μm Be layer on the Al. A RM instability develops when the shock encounters the perturbed surface. The flow field of the RM instability can ``feed out'' to the ablation surface of the foil and provide the seed for ART perturbation growth. Face-on and side-on x-radiography are used to observe areal density perturbations in the foil. For the 86-μm foil, the perturbation arrives at the ablation surface while the hohlraum drive is dropping and the data are consistent with RM instability alone. For the 35-μm foil, the perturbation feeds out while the hohlraum drive is close to its peak and the data appear to show strong ART perturbation growth. Comparisons with LASNEX simulations will be presented. *This work supported under USDOE contract W-7405-ENG-36.
Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration
Góngora-Rubio, Mário R.; Kiyono, César Y.; Mello, Luis A. M.; Cardoso, Valtemar F.; Rosa, Reinaldo L. S.; Kuebler, Derek A.; Brodeur, Grace E.; Alotaibi, Amani H.; Coene, Marisa P.; Coene, Lauren M.; Jean, Elizabeth; Santiago, Rafael C.; Oliveira, Francisco H. A.; Rangel, Ricardo; Thomas, Gilles P.; Belay, Kalayu; da Silva, Luciana W.; Moura, Rafael T.; Seabra, Antonio C.; Silva, Emílio C. N.
2018-01-01
Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more. PMID:29401745
Lenz's Law with Aluminum Foil and a Lengthwise Slit
ERIC Educational Resources Information Center
Berls, Rob; Ruiz, Michael J.
2018-01-01
The classic demonstration illustrating Lenz's law by dropping a magnet through a copper pipe is presented using household aluminum foil right out of the box. Then comes the surprise. The teacher presents an aluminum foil cylinder with a missing lengthwise slice (cut before class). Will the demonstration still work? Students are amazed at the…
Hot foil transducer skin friction sensor
NASA Technical Reports Server (NTRS)
Vranas, T. (Inventor)
1982-01-01
The device utilizes foil transducers with only one edge exposed to the fluid flow. The surfaces are polished producing a foil transducer that does not generate turbulence while sufficiently thick to carry the required electrical current for high temperature fluid flow. The assembly utilizes a precut layered metal sandwich with attached electrodes eliminating a need for welding and individual sensor calibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lula, J.W.
Copper foil adhesion to polyimide/glass prepreg was evaluated. Typical peel strength obtained between prepreg and the smooth side of the copper foil was 1 to 3 lb./in. width. Peel strength between prepreg and the rough side of the copper foil ranged between 6 and 7 lb./in. width. An alternate test for evaluating the integrity of multilayer printed wiring boards is described.
Mann, Karsten; Davids, Andreas; Range, Ursula; Richter, Gert; Boening, Klaus; Reitemeier, Bernd
2015-04-01
The 2-step putty and wash impression technique is commonly used in fixed prosthodontics. However, cutting sluiceways to allow the light-body material to drain is time-consuming. A solution might be the use of a spacer foil. The purpose of this study was to evaluate the influence of spacer foil on the margin reproduction and dimensional accuracy of 2-step putty and wash impressions. Two methods of creating space for the wash material in a 2-step putty and wash impression were compared: the traditional cutout technique and a spacer foil. Eleven commercially available combinations of silicone impression materials were included in the study. The impressions and the cast production were carried out under standardized conditions. All casts were measured with a 3-dimensional (3D) coordinate measuring machine. Preparation margin reproduction and the diameters and spacing of the stone cast dies were measured (α=.05). The 2 methods showed significant differences (P<.05) in the reproduction of the preparation margins (complete reproduction cutout, 90% to 98%; foil, 74% to 91%). The use of a foil resulted in greater dimensional accuracy of the cast dies compared to the cutout technique. Cast dies from the cutout technique were significantly smaller than the metallic original cast (cutout median, 4.55 mm to 4.61 mm; foil median, 4.61 to 4.64). Spacing between the dies revealed only a few additional significant differences between the techniques. When spacer foils were used, dies were obtained that better corresponded to the original tooth. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Note: Radial-thrust combo metal mesh foil bearing for microturbomachinery
NASA Astrophysics Data System (ADS)
Park, Cheol Hoon; Choi, Sang Kyu; Hong, Doo Euy; Yoon, Tae Gwang; Lee, Sung Hwi
2013-10-01
This Note proposes a novel radial-thrust combo metal mesh foil bearing (MMFB). Although MMFBs have advantages such as higher stiffness and damping over conventional air foil bearings, studies related to MMFBs have been limited to radial MMFBs. The novel combo MMFB is composed of a radial top foil, thrust top foils, and a ring-shaped metal mesh damper—fabricated by compressing a copper wire mesh—with metal mesh thrust pads for the thrust bearing at both side faces. In this study, the combo MMFB was fabricated in half-split type to support the rotor for a micro gas turbine generator. The manufacture and assembly process for the half-split-type combo MMFB is presented. In addition, to verify the proposed combo MMFB, motoring test results up to 250 000 rpm and axial displacements as a function of rotational speed are presented.
NASA Technical Reports Server (NTRS)
Borg, J.; Horz, F.; Bridges, J. C.; Burchell, M. J.; Djouadi, Z.; Floss, C.; Graham, G. A.; Green, S. F.; Heck, P. R.; Hoppe, P.;
2007-01-01
Aluminium foils were used on Stardust to stabilize the aerogel specimens in the modular collector tray. Part of these foils were fully exposed to the flux of cometary grains emanating from Wild 2. Because the exposed part of these foils had to be harvested before extraction of the aerogel, numerous foil strips some 1.7 mm wide and 13 or 33 mm long were generated during Stardusts's Preliminary Examination (PE). These strips are readily accommodated in their entirety in the sample chambers of modern SEMs, thus providing the opportunity to characterize in situ the size distribution and residue composition - employing EDS methods - of statistically more significant numbers of cometary dust particles compared to aerogel, the latter mandating extensive sample preparation. We describe here the analysis of nearly 300 impact craters and their implications for Wild 2 dust.
Gas-path leakage seal for a gas turbine
Wolfe, C.E.; Dinc, O.S.; Bagepalli, B.S.; Correia, V.H.; Aksit, M.F.
1996-04-23
A gas-path leakage seal is described for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a gas turbine (such as combustor casing segments). The seal includes a generally imperforate foil-layer assemblage which is generally impervious to gas and is located in the leakage-gap. The seal also includes a cloth-layer assemblage generally enclosingly contacting the foil-layer assemblage. In one seal, the first edge of the foil-layer assemblage is left exposed, and the foil-layer assemblage resiliently contacts the first member near the first edge to reduce leakage in the ``plane`` of the cloth-layer assemblage under conditions which include differential thermal growth of the two members. In another seal, such leakage is reduced by having a first weld-bead which permeates the cloth-layer assemblage, is attached to the metal-foil-layer assemblage near the first edge, and unattachedly contacts the first member. 4 figs.
Gas-path leakage seal for a gas turbine
Wolfe, Christopher E.; Dinc, Osman S.; Bagepalli, Bharat S.; Correia, Victor H.; Aksit, Mahmut F.
1996-01-01
A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a gas turbine (such as combustor casing segments). The seal includes a generally imperforate foil-layer assemblage which is generally impervious to gas and is located in the leakage-gap. The seal also includes a cloth-layer assemblage generally enclosingly contacting the foil-layer assemblage. In one seal, the first edge of the foil-layer assemblage is left exposed, and the foil-layer assemblage resiliently contacts the first member near the first edge to reduce leakage in the "plane" of the cloth-layer assemblage under conditions which include differential thermal growth of the two members. In another seal, such leakage is reduced by having a first weld-bead which permeates the cloth-layer assemblage, is attached to the metal-foil-layer assemblage near the first edge, and unattachedly contacts the first member.
Note: Radial-thrust combo metal mesh foil bearing for microturbomachinery.
Park, Cheol Hoon; Choi, Sang Kyu; Hong, Doo Euy; Yoon, Tae Gwang; Lee, Sung Hwi
2013-10-01
This Note proposes a novel radial-thrust combo metal mesh foil bearing (MMFB). Although MMFBs have advantages such as higher stiffness and damping over conventional air foil bearings, studies related to MMFBs have been limited to radial MMFBs. The novel combo MMFB is composed of a radial top foil, thrust top foils, and a ring-shaped metal mesh damper--fabricated by compressing a copper wire mesh--with metal mesh thrust pads for the thrust bearing at both side faces. In this study, the combo MMFB was fabricated in half-split type to support the rotor for a micro gas turbine generator. The manufacture and assembly process for the half-split-type combo MMFB is presented. In addition, to verify the proposed combo MMFB, motoring test results up to 250,000 rpm and axial displacements as a function of rotational speed are presented.
Application study on aircraft structures of CFRP laminates with embedded SMA foils
NASA Astrophysics Data System (ADS)
Ogisu, Toshimichi; Nomura, Masato; Ando, Norio; Takaki, Junji; Takeda, Nobuo
2002-07-01
This paper reports some research results for the application study of the smart materials an structural using Shape Memory Alloy (SMA) foils. First, the authors acquired the recovery strain of CFRP laminates generated by the recovery stress of the pre-strained SMA foils. Then, the quasi-static load-unload tests were conducted using several kinds of quasi-isotropic CFRP laminates with embedded SMA foils. Micro-mechanics of damage behavior due to the effects of the recovery strain and the first transverse crack strain were discussed. The improvement of maximum 40 percent for the onset strain of the transverse cracks and maximum 60 percent for the onset strain of delamination were achieved for CFRP laminates with embedded pre-strained SMA foils compared with standard CFRP laminates. Furthermore, the authors conducted the structural element test for application to actual structures. Testing technique and the manufacturing technique of the structural element specimen were established.
The possibility of using platinum foils with a rippled surface as diffraction gratings
NASA Astrophysics Data System (ADS)
Korsukov, V. E.; Ankudinov, A. V.; Butenko, P. N.; Knyazev, S. A.; Korsukova, M. M.; Obidov, B. A.; Shcherbakov, I. P.
2014-09-01
The atomic structure and surface relief of thin cold-rolled platinum foils upon recrystallization annealing and loading under ultrahigh vacuum conditions have been studied by low energy electron diffraction (LEED), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). The surface of samples upon high-temperature annealing and subsequent uniaxial extension of recrystallized Pt foils represents a fractal structure of unidirectional ripples on various spatial scales. The total fractal dimension of this surface is D GW = 2.3, while the fractal dimensions along and across ripples are D ‖ ≈ 1 and D ⊥ ≈ 1.3, respectively. The optical spectra of a halogen lamp and a PRK-2 mercury lamp were recorded using these rippled Pt foils as reflection diffraction gratings. It is shown that Pt foils with this surface relief can be used as reflection diffraction gratings for electromagnetic radiation in a broad spectral range.
Ion track etching revisited: I. Correlations between track parameters in aged polymers
NASA Astrophysics Data System (ADS)
Fink, D.; Muñoz H., G.; García A., H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.
2018-04-01
Some yet poorly understood problems of etching of pristine and swift heavy ion track-irradiated aged polymers were treated, by applying conductometry across the irradiated foils during etching. The onset times of etchant penetration across pristine foils, and the onset times of the different etched track regimes in irradiated foils were determined for polymers of various proveniences, fluences and ages, as well as their corresponding etching speeds. From the results, correlations of the parameters with each other were deduced. The normalization of these parameters enables one to compare irradiated polymer foils of different origin and treatment with one another. In a number of cases, also polymeric gel formation and swelling occur which influence the track etching behaviour. The polymer degradation during aging influences the track etching parameters, which differ from each other on both sides of the foils. With increasing sample age, these differences increase.
Method of using deuterium-cluster foils for an intense pulsed neutron source
Miley, George H.; Yang, Xiaoling
2013-09-03
A method is provided for producing neutrons, comprising: providing a converter foil comprising deuterium clusters; focusing a laser on the foil with power and energy sufficient to cause deuteron ions to separate from the foil; and striking a surface of a target with the deuteron ions from the converter foil with energy sufficient to cause neutron production by a reaction selected from the group consisting of D-D fusion, D-T fusion, D-metal nuclear spallation, and p-metal. A further method is provided for assembling a plurality of target assemblies for a target injector to be used in the previously mentioned manner. A further method is provided for producing neutrons, comprising: splitting a laser beam into a first beam and a second beam; striking a first surface of a target with the first beam, and an opposite second surface of the target with the second beam with energy sufficient to cause neutron production.
Stratification in Al and Cu foils exploded in vacuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baksht, R. B.; Electrical Discharge and Plasma Laboratory, Tel Aviv University, Tel Aviv 6997801; Rousskikh, A. G.
2015-10-15
An experiment with exploding foils was carried out at a current density of 0.7 × 10{sup 8} A/cm{sup 2} through the foil with a current density rise rate of about 10{sup 15} A/cm{sup 2} s. To record the strata arising during the foil explosions, a two-frame radiographic system was used that allowed tracing the dynamics of strata formation within one shot. The original striation wavelength was 20–26 μm. It was observed that as the energy deposition to a foil stopped, the striation wavelength increased at a rate of ∼(5–9) × 10{sup 3} cm/s. It is supposed that the most probable reason for the stratification is the thermal instabilitymore » that develops due to an increase in the resistivity of the metal with temperature.« less
Two High-Temperature Foil Journal Bearings
NASA Technical Reports Server (NTRS)
Zak, Michail
2006-01-01
An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.
Fitzgerald, J.J.; Detwiler, C.G. Jr.
1960-05-24
A description is given of a personnel neutron dosimeter capable of indicating the complete spectrum of the neutron dose received as well as the dose for each neutron energy range therein. The device consists of three sets of indium foils supported in an aluminum case. The first set consists of three foils of indium, the second set consists of a similar set of indium foils sandwiched between layers of cadmium, whereas the third set is similar to the second set but is sandwiched between layers of polyethylene. By analysis of all the foils the neutron spectrum and the total dose from neutrons of all energy levels can be ascertained.
Rematching AGS Booster synchrotron injection lattice for smaller transverse beam emittances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Beebe-Wang, J.; Brown, K.
2017-01-25
The polarized proton beam is injected into the booster via the charge-exchange (H- to H+) scheme. The emittance growth due to scattering at the stripping foil is proportional to the beta functions at the foil. It was demonstrated that the current scheme of reducing the beta functions at the stripping foil preserves the emittance better; however the betatron tunes are above but very close to half integer. Due to concern of space charge and half integer in general, options of lattice designs aimed towards reducing the beta functions at the stripping foil with tunes at more favorable places are explored.
Dye foils with increased durability for passive Q-switching in a 1064 nm laser
NASA Astrophysics Data System (ADS)
Mierczyk, Z.; Kwasny, M.; Czeszko, J.
The results of spectral gel permeation chromatography and differential thermal analysis investigations of structures of dye foils consisting of bis-(4-dimethyl-amino-dithio-benzil)-nickel dye suspended in polymethylmethacrylate matrix, to be used for passive Q-switching in a 1064 nm laser, are reported. Results of experimental measurements and of numerical calculations of thermal and generating properties, and of the endurance of passive foil type Q-switches in the resonator of YAG:Nd(3+) laser are also presented. Optimization of polymerization conditions has enabled the production of dye foils with high thermal and photochemical resistance, which give stable operation of a giant pulsed laser.
A novel carbon coating technique for foil bolometers
NASA Astrophysics Data System (ADS)
Sheikh, U. A.; Duval, B. P.; Labit, B.; Nespoli, F.
2016-11-01
Naked foil bolometers can reflect a significant fraction of incident energy and therefore cannot be used for absolute measurements. This paper outlines a novel coating approach to address this problem by blackening the surface of gold foil bolometers using physical vapour deposition. An experimental bolometer was built containing four standard gold foil bolometers, of which two were coated with 100+ nm of carbon. All bolometers were collimated and observed the same relatively high temperature, ohmically heated plasma. Preliminary results showed 13%-15% more incident power was measured by the coated bolometers and this is expected to be much higher in future TCV detached divertor experiments.
An Oil-Free Thrust Foil Bearing Facility Design, Calibration, and Operation
NASA Technical Reports Server (NTRS)
Bauman, Steve
2005-01-01
New testing capabilities are needed in order to foster thrust foil air bearing technology development and aid its transition into future Oil-Free gas turbines. This paper describes a new test apparatus capable of testing thrust foil air bearings up to 100 mm in diameter at speeds to 80,000 rpm and temperatures to 650 C (1200 F). Measured parameters include bearing torque, load capacity, and bearing temperatures. This data will be used for design performance evaluations and for validation of foil bearing models. Preliminary test results demonstrate that the rig is capable of testing thrust foil air bearings under a wide range of conditions which are anticipated in future Oil-Free gas turbines. Torque as a function of speed and temperature corroborates results expected from rudimentary performance models. A number of bearings were intentionally failed with no resultant damage whatsoever to the test rig. Several test conditions (specific speeds and loads) revealed undesirable axial shaft vibrations which have been attributed to the magnetic bearing control system and are under study. Based upon these preliminary results, this test rig will be a valuable tool for thrust foil bearing research, parametric studies and technology development.
Additional security features for optically variable foils
NASA Astrophysics Data System (ADS)
Marshall, Allan C.; Russo, Frank
1998-04-01
For thousands of years, man has exploited the attraction and radiance of pure gold to adorn articles of great significance. Today, designers decorate packaging with metallic gold foils to maintain the prestige of luxury items such as perfumes, chocolates, wine and whisky, and to add visible appeal and value to wide range of products. However, today's products do not call for the hand beaten gold leaf of the Ancient Egyptians, instead a rapid production technology exists which makes use of accurately coated thin polymer films and vacuum deposited metallic layers. Stamping Foils Technology is highly versatile since several different layers may be combined into one product, each providing a different function. Not only can a foil bring visual appeal to an article, it can provide physical and chemical resistance properties and also protect an article from human forms of interference, such as counterfeiting, copying or tampering. Stamping foils have proved to be a highly effective vehicle for applying optical devices to items requiring this type of protection. Credit cards, bank notes, personal identification documents and more recently high value packaged items such as software and perfumes are protected by optically variable devices applied using stamping foil technology.
Experimental Investigation of the Electrothermal Instability on Planar Foil Ablation Experiments
NASA Astrophysics Data System (ADS)
Steiner, Adam; Patel, Sonal; Yager-Elorriaga, David; Jordan, Nicholas; Gilgenbach, Ronald; Lau, Y. Y.
2014-10-01
The electrothermal instability (ETI) is an important early-time physical effect on pulsed power foil ablation experiments due to its ability to seed the destructive magneto-Rayleigh-Taylor (MRT) instability. ETI occurs whenever electrical resistivity has temperature dependence; when resistivity increases with temperature, as with solid metal liners or foils, ETI forms striation structures perpendicular to current flow. These striations provide an initial perturbation for the MRT instability, which is the dominant late-time instability in planar foil ablations. The MAIZE linear transformer driver was used to drive current pulses of approximately 600 kA into 400 nm-thick aluminum foils in order to study ETI in planar geometry. Shadowgraph images of the aluminum plasmas were taken for multiple shots at various times within approximately 50 ns of current start. Fourier analysis extracted the approximate wavelengths of the instability structures on the plasma-vacuum interface. Surface metrology of pre-shot foils was performed to provide a comparison between surface roughness features and resulting plasma structure. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager supported by NSF fellowship Grant # DGE 1256260.
Kim, Hyeryun; Ohta, Jitsuo; Ueno, Kohei; Kobayashi, Atsushi; Morita, Mari; Tokumoto, Yuki; Fujioka, Hiroshi
2017-05-18
GaN-based light-emitting diodes (LEDs) have been widely accepted as highly efficient solid-state light sources capable of replacing conventional incandescent and fluorescent lamps. However, their applications are limited to small devices because their fabrication process is expensive as it involves epitaxial growth of GaN by metal-organic chemical vapor deposition (MOCVD) on single crystalline sapphire wafers. If a low-cost epitaxial growth process such as sputtering on a metal foil can be used, it will be possible to fabricate large-area and flexible GaN-based light-emitting displays. Here we report preparation of GaN films on nearly lattice-matched flexible Hf foils using pulsed sputtering deposition (PSD) and demonstrate feasibility of fabricating full-color GaN-based LEDs. It was found that introduction of low-temperature (LT) grown layers suppressed the interfacial reaction between GaN and Hf, allowing the growth of high-quality GaN films on Hf foils. We fabricated blue, green, and red LEDs on Hf foils and confirmed their normal operation. The present results indicate that GaN films on Hf foils have potential applications in fabrication of future large-area flexible GaN-based optoelectronics.
Silva, A I V; Brasil, D M; Vasconcelos, K F; Haiter Neto, F; Boscolo, F N
2015-01-01
Objectives: To assess the efficacy of lead foils in reducing the radiation dose received by different anatomical sites of the head and neck during periapical intraoral examinations performed with digital systems. Methods: Images were acquired through four different manners: phosphor plate (PSP; VistaScan® system; Dürr Dental GmbH, Bissingen, Germany) alone, PSP plus lead foil, complementary metal oxide semiconductor (CMOS; DIGORA® Toto, Soredex®, Tuusula, Finland) alone and CMOS plus lead foil. Radiation dose was measured after a full-mouth periapical series (14 radiographs) using the long-cone paralleling technique. Lithium fluoride (LiF 100) thermoluminescent dosemeters were placed in an anthropomorphic phantom at points corresponding to the tongue, thyroid, crystalline lenses, parotid glands and maxillary sinuses. Results: Dosemeter readings demonstrated the efficacy of the addition of lead foil in the intraoral digital X-ray systems provided in reducing organ doses in the selected structures, approximately 32% in the PSP system and 59% in the CMOS system. Conclusions: The use of lead foils associated with digital X-ray sensors is an effective alternative for the protection of different anatomical sites of the head and neck during full-mouth periapical series acquisition. PMID:26084474
Multi-element microelectropolishing method
Lee, P.J.
1994-10-11
A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle. 10 figs.
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Wosnik, Martin
2012-11-01
A NACA 63-424 hydrofoil with a 75 mm chord and a 152 mm span was tested in the recently renovated 6-inch high-speed water tunnel at the University of New Hampshire. The NACA 63-424 foil is being considered for use on rotors of marine hydrokinetic turbines, including the US Department of Energy Reference Horizontal Axis Turbine (RHAT) for tidal and ocean current applications. For various angles of attack, the foil was tested at speeds ranging from 2 m/s to 12 m/s. Pressure in the test section was varied independently. For each angle, speed and pressure setting, high speed videos were recorded (at 3600 frames per second and above). Cavitation inception and desinance were obtained. Lift and drag were measured using a new 2-component force balance. In tidal turbines applications, bidirectional foils do not require pitch control, hence the experiments were repeated for a bidirectional version of the NACA 63-424 foil and the characteristics of the two foils were compared. The results can be used to predict cavitation inception and performance of marine hydrokinetic turbines, for a given site, deployment depth and and tip speed ratio.
Integral window/photon beam position monitor and beam flux detectors for x-ray beams
Shu, Deming; Kuzay, Tuncer M.
1995-01-01
A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.
Design of a medium size x-ray mirror module based on thin glass foils
NASA Astrophysics Data System (ADS)
Basso, Stefano; Civitani, Marta; Pareschi, Giovanni
2016-07-01
The hot slumping glass technology for X-ray mirror is under development and in the last years the results have been improved. Nustar is the first X-ray telescope based on slumped glass foils and it benefit is the low cost compared to the direct polishing of glass. With the slumping technique it is possible to maintain the glass mass to low values with respect to the direct polishing, but in general the angular resolution is worst. A further technique based on glass is the cold shaping of foils. The improved capabilities of manufacturing thin glass foils, pushed by the industrial application for screens, open new possibilities for X-ray mirror. The increase in strength of thin tempered glasses, the reduction of thickness errors and the good roughness of flat foils are potentially great advantages. In this paper a design of a mediumsize X-ray mirror module is analysed. It is based on integration of glass foils, stacked directly on a supporting structure that is part of the X-ray telescope using stiffening ribs as spacer between foils. The alignment of each stack is performed directly into the integration machine avoiding the necessity of the alignment of different stacked modules. A typical module (glass optic and metallic structure) provides an effective area of 10 cm2/kg at 1 keV (with a mass of about 50- 100 kg and a focal length of 10 m).
Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.
Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S
2018-05-01
People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.
NASA Astrophysics Data System (ADS)
Zhou, Yijie; Huang, Aibin; Zhou, Huaijuan; Ji, Shidong; Jin, Ping
2018-03-01
Research on functional flexible films has recently been attracting widespread attention especially with regards to foils, which can be designed artificially on the basis of the practical requirements. In this work, a foil with high visible reflection and a strong near infrared shielding efficiency was prepared by a simple wet chemical method. In the process of making this kind of optical foil, emulsion polymerization was first introduced to synthesize polymer opals, which were further compressed between two pieces of polyethylene terephthalate (PET) foil under polymer melting temperature to obtain a photonic crystal film with a strong reflection in the visible region to block blue rays. The following step was to coat a layer of the inorganic nano paint, which was synthesized by dispersing Cs-doped WO3 (CWO) nanoparticles homogenously into organic resin on the surface of the PET to achieve a high near infrared shielding ability. The final composite foil exhibited unique optical properties such as high visible reflectance (23.9%) to block blue rays, and excellent near infrared shielding efficiency (98.0%), meanwhile it still maintained a high transparency meaning that this foil could potentially be applied in energy-saving window films. To sum up, this study provides new insight into devising flexible hybrid films with novel optical properties, which could be further extended to prepare other optical films for potential use in automobile, architectural and other decorative fields.
Cutting of Gold Foil in the Genesis Laboratory
2005-02-15
The facility for storing and examining Genesis solar wind samples consists of two adjacent laboratories. In these laboratories, the cutting of gold foil to be used in the gathering of the solar wind dust aboard the Genesis spacecraft. Views include: The process of cutting gold foil to be used aboard the Genesis spacecraft. The technicians use Gore-Tex suits with filters as to not contaminate the items.
Theoretical performance of foil journal bearings
NASA Technical Reports Server (NTRS)
Carpino, M.; Peng, J.-P.
1991-01-01
A modified forward iteration approach for the coupled solution of foil bearings is presented. The method is used to predict the steady state theoretical performance of a journal type gas bearing constructed from an inextensible shell supported by an elastic foundation. Bending effects are treated as negligible. Finite element methods are used to predict both the foil deflections and the pressure distribution in the gas film.
Metallic glass coating on metals plate by adjusted explosive welding technique
NASA Astrophysics Data System (ADS)
Liu, W. D.; Liu, K. X.; Chen, Q. Y.; Wang, J. T.; Yan, H. H.; Li, X. J.
2009-09-01
Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.
Development of explosively bonded TZM wire reinforced Columbian sheet composites
NASA Technical Reports Server (NTRS)
Otto, H. E.; Carpenter, S. H.
1972-01-01
Methods of producing TZM molybdenum wire reinforced C129Y columbium alloy composites by explosive welding were studied. Layers of TZM molybdenum wire were wound on frames with alternate layers of C129Y columbium alloy foil between the wire layers. The frames held both the wire and foils in place for the explosive bonding process. A goal of 33 volume percent molybdenum wire was achieved for some of the composites. Variables included wire diameter, foil thickness, wire separation, standoff distance between foils and types and amounts of explosive. The program was divided into two phases: (1) development of basic welding parameters using 5 x 10-inch composites, and (2) scaleup to 10 x 20-inch composites.
NASA Astrophysics Data System (ADS)
Plum, M.
The beam instability at the Los Alamos Proton Storage Ring (PSR) most likely involves coupled oscillations between electrons and protons. For this instability to occur, there must be a strong source of electrons. Investigation of the various sources of electrons in the PSR had begun. Copious electron production is expected in the injection section because this section contains the stripper foil. This foil is mounted near the center of the beam pipe, and both circulating and injected protons pass through it, thus allowing ample opportunity for electron production. This paper discusses various mechanisms for electron production, beam-induced electric fields, and electron motion in the vicinity of the foil.
Eddy current probe with foil sensor mounted on flexible probe tip and method of use
Viertl, John R. M.; Lee, Martin K.
2001-01-01
A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.
Use of Kelvin probe force microscopy for identification of CVD grown graphene flakes on copper foil
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Mehta, B. R.; Kanjilal, D.
2017-05-01
Graphene flakes have been grown by chemical vapour deposition (CVD) method on Cu foils. The obtained graphene flakes have been characterized by optical microscopy, field emission scanning electron microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy. The graphene flakes grown on Cu foil comprise mainly single layer graphene and confirm that the nucleation for graphene growth starts very quickly. Moreover, KPFM has been found to be a valuable technique to differentiate between covered and uncovered portion of Cu foil by graphene flakes deposited for shorter duration. The results show that KPFM can be a very useful technique in understanding the mechanism of graphene growth.
Abdollahi Nejand, B; Nazari, P; Gharibzadeh, S; Ahmadi, V; Moshaii, A
2017-01-05
Here, a low-cost perovskite solar cell using CuI and ZnO as the respective inorganic hole and electron transport layers is introduced. Copper foil is chosen as a cheap and low-weight conductive substrate which has a similar work function to ITO. Besides, copper foil is an interesting copper atom source for the growth of the upper cuprous iodide layer on copper foil. A spray coating of a transparent silver nanowire electrode is used as a top contact. The prepared device shows a maximum power conversion efficiency of 12.80% and long-term durability providing an environmentally and market friendly perovskite solar cell.
Kim, Yun Ho; Kim, Jungho; Lee, Jong-Man; Park, Hyeonseo
2016-03-01
A beta-gamma coincidence system has been developed for measuring (198)Au activity in gold foils. The system was validated by Monte Carlo simulations and by measuring the activity of a (60)Co point-source. To study effects such as self-shielding of beta particles in gold foils, (198)Au activity measurements and simulations were performed for various scintillators and foil sizes. The measured (198)Au activities were ~1% above the reference activity, which might be due to self-shielding of beta particles. The measured and simulated (198)Au activities agreed, suggesting feasibility of precise activity measurement. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dye Foils With Increased Durability For Passive Q-Switching In A 1064 Nm Laser.
NASA Astrophysics Data System (ADS)
Mierczyk, Z.; Kwasny, M.; Czeszko, J.
1987-10-01
The results of spectral (IR, UV-VIS, H NMR) , gel permeation chromatography and differential thermal analysis investigations of structures of dye foils consisting of bis-(4-dimethyl-amino-dithio-benzil)-nickel dye suspended in polymethylmethacrylate matrix, to be used for passive Q-switching in a 1064 nm laser, are reported. Results of experimental measurements and of numerical calculations of thermal and generating properties, and of the endurance of passive foil type Q-switches in the resona-tor of YAG:Nd3+ laser are also presented. Optimization of polymerization conditions has enabled the production of dye foils with high thermal and photochemical resistance, which give stable operation of a giant pulsed laser.
Effects of laser shock peening with contacting foil on micro laser texturing surface of Ti6Al4V
NASA Astrophysics Data System (ADS)
Dai, Fengze; Zhang, Zidong; Ren, Xudong; Lu, Jinzhong; Huang, Shu
2018-02-01
Ti6Al4V samples with micro-dimple arrays were subjected to laser shock peening in contact with foil (HCLSP). The surface roughness, micro-hardness, the residual stress distribution and the surface morphology of the micro-dimple arrays were studied to evaluate the effects of HCLSP. Moreover, the surface topography of the foils in contact was also analyzed. The gap existence between the foil and the to-be treated surface led the mechanism of HCLSP to be different compared to regular laser shock peening. The surface roughness reduction, the work-hardening effects, the compressive residual stress and the micro crack enclosure were achieved. A simplified ball-hitting-surface model was utilized to analyze the HCLSP impact. The model could well explain the experimental results. When treated by the HCLSP with H62 foil at the laser power density of 4.24 GW/cm2, the Ti6Al4V samples with micro-dimple arrays exhibit well surface topography and mechanical performance.
NASA Technical Reports Server (NTRS)
Peralta, S.; Rosales, Keisa R.; Stoltzfus, Joel M.
2009-01-01
Metallic contaminant was found in the liquid oxygen (LOX) pre-valve screen of the shuttle main engine propulsion system on two orbiter vehicles. To investigate the potential for an ignition, NASA Johnson Space Center White Sands Test Facility performed (modified) rotating friction ignition testing in LOX. This testing simulated a contaminant particle in the low-pressure oxygen turbo pump (LPOTP) and the high-pressure oxygen turbo pump (HPOTP) of the shuttle main propulsion system. Monel(R) K-500 and Inconel(R) 718 samples represented the LPOTP and HPOTP materials. Aluminum foil tape and titanium foil represented the contaminant particles. In both the Monel(R) and Inconel(R) material configurations, the aluminum foil tape samples did not ignite after 30 s of rubbing. In contrast, all of the titanium foil samples ignited regardless of the rubbing duration or material configuration. However, the titanium foil ignitions did not propagate to the Monel and Inconel materials.
Evidence of circular Rydberg states in beam-foil experiments: Role of the surface wake field
NASA Astrophysics Data System (ADS)
Sharma, Gaurav; Puri, Nitin K.; Kumar, Pravin; Nandi, T.
2017-12-01
We have employed the concept of the surface wake field to model the formation of the circular Rydberg states in the beam-foil experiments. The experimental studies of atomic excitation processes show the formation of circular Rydberg states either in the bulk of the foil or at the exit surface, and the mechanism is explained by several controversial theories. The present model is based on the interesting fact that the charge state fraction as well as the surface wake field depend on the foil thickness and it resolves a long-standing discrepancy on the mechanism of the formation of circular Rydberg states. The influence of exit layers is twofold. Initially, the high angular momentum Rydberg states are produced in the last layers of the foil by the Stark switching due to the bulk wake field and finally, they are transferred to the circular Rydberg states as a single multiphoton process due to the influence of the surface wake field.
NASA Astrophysics Data System (ADS)
Hida, Hirotaka; Hamamura, Tomohiro; Nishi, Takahito; Tan, Goon; Umegaki, Toshihito; Kanno, Isaku
2017-10-01
We fabricated the piezoelectric bimorphs composed of Pb(Zr,Ti)O3 (PZT) thin films on metal foil substrates. To efficiently inexpensively manufacture piezoelectric bimorphs with high flexibility, 1.2-µm-thick PZT thin films were directly deposited on both surfaces of 10- and 20-µm-thick bare stainless-steel (SS) foil substrates by dip coating with a sol-gel solution. We confirmed that the PZT thin films deposited on the SS foil substrates at 500 °C or above have polycrystalline perovskite structures and the measured relative dielectric constant and dielectric loss were 323-420 and 0.12-0.17, respectively. The PZT bimorphs were demonstrated by comparing the displacements of the cantilever specimens driven by single- and double-side PZT thin films on the SS foil substrates under the same applied voltage. We characterized the piezoelectric properties of the PZT bimorphs and the calculated their piezoelectric coefficient |e 31,f| to be 0.3-0.7 C/m2.
Crimp, Martin A
2006-05-01
The imaging and characterization of dislocations is commonly carried out by thin foil transmission electron microscopy (TEM) using diffraction contrast imaging. However, the thin foil approach is limited by difficult sample preparation, thin foil artifacts, relatively small viewable areas, and constraints on carrying out in situ studies. Electron channeling imaging of electron channeling contrast imaging (ECCI) offers an alternative approach for imaging crystalline defects, including dislocations. Because ECCI is carried out with field emission gun scanning electron microscope (FEG-SEM) using bulk specimens, many of the limitations of TEM thin foil analysis are overcome. This paper outlines the development of electron channeling patterns and channeling imaging to the current state of the art. The experimental parameters and set up necessary to carry out routine channeling imaging are reviewed. A number of examples that illustrate some of the advantages of ECCI over thin foil TEM are presented along with a discussion of some of the limitations on carrying out channeling contrast analysis of defect structures. Copyright (c) 2006 Wiley-Liss, Inc.
Multilayer based lab-on-a-chip-systems for substance testing
NASA Astrophysics Data System (ADS)
Sonntag, Frank; Grünzner, Stefan; Schmieder, Florian; Busek, Mathias; Klotzbach, Udo; Franke, Volker
2015-03-01
An integrated technology chain for laser-microstructuring and bonding of polymer foils for fast, flexible and low-cost manufacturing of multilayer lab-on-a-chip devices especially for complex cell and tissue culture applications, which provides pulsatile fluid flow within physiological ranges at low media-to-cells ratio, was developed and established. Initially the microfluidic system is constructively divided into individual layers which are formed by separate foils or plates. Based on the functional boundary conditions and the necessary properties of each layer the corresponding foils and plates are chosen. In the third step the foils and plates are laser microstructured and functionalized from both sides. In the fourth and last manufacturing step the multiple plates and foils are joined using thermal diffusion bonding. Membranes for pneumatically driven valves and micropumps where bonded via chemical surface modification. Based on the established lab-on-a-chip platform for perfused cell-based assays, a multilayer microfluidic system with two parallel connected cell culture chambers was successfully implemented.
NASA Technical Reports Server (NTRS)
Licht, L.
1970-01-01
A sixteen-inch rotor, weighing approximately twenty-one pounds, was supported by air-lubricated foil bearings. In physical size and in mass distribution, the rotor closely matched that of an experimental Brayton cycle turboalternator unit. The rotor was stable in both vertical horizontal attitudes at speeds up to 50,000 rpm. A detailed description of the experimental apparatus and of the foil bearing design are given. The paper contains data on response of the rotor to rotating imbalance, symmetric and asymmetric, and to excitation by means of a vibrator (shake table). It is concluded that the gas-lubricated foil bearing suspension is free from fractional frequency whirl and suffers no loss of load capacity when excited at frequency equal to half the rotational speed. In contrast to rigid gas bearings, the foil bearing imposes no stringent requirements with respect to dimensional tolerances, cleanliness, or limitations of journal motion within the narrow confines of bearing clearance.
THE USE OF A PHOSPHORUS-POLYTHENE MIXTURE FOR FAST NEUTRON MEASUREMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, K.G.; Williams, G.H.
1962-06-01
A convenient way of measuring relative fast fluxes in a small reactor core using foils of phosphorus-Polythene mixture is described. Determination of the disintegration rate of these foils involves the measurement of the BETA -ray self-absorption of the foils as a function of thickness. Accurate disintegration rate measurements after irradiation for 6 hr using 7/16 in. dia foils enabled fission fluxes of 5 x 10/sup 5/ n/cm/sup 2/ sec or more to be measured absolutely to within plus or minus 6 per cent and fluxes as low as 5 x 10/sup 4/ n/cm/sup 2/ sec to within plus or minusmore » 20 per cent when the counter background was 80 c/ min. By reducing this background and increasing foil size, both of these limits are lowered by about a factor 50. The method compares favorably with methods using the S/sup 32/(n,p P/sup 32/ threshold reaction. (auth)« less
Dynamic environmental control mechanisms for pneumatic foil constructions
NASA Astrophysics Data System (ADS)
Flor, Jan-Frederik; Wu, Yupeng; Beccarelli, Paolo; Chilton, John
2017-11-01
Membrane and foil structures have become over the last decades an attractive alternative to conventional materials and building systems with increasing implementation in different typologies and scale. The development of transparent, light, flexible and resistant materials like Ethylene Tetrafluoroethylene (ETFE) has triggered a rethinking of the building envelope in the building industry towards lightweight systems. ETFE foil cushions have proven to fulfil the design requirements in terms of structural efficiency and aesthetic values. But the strategies to satisfy increasing demands of energy efficiency and comfort conditions are still under development. The prediction and manipulation of the thermo-optical behaviour of ETFE foil cushion structures currently remain as one of the main challenges for designers and manufacturers. This paper reviews ongoing research regarding the control of the thermo-optical performance of ETFE cushion structures and highlights challenges and possible improvements. An overview of different dynamic and responsive environmental control mechanisms for multilayer foil constructions is provided and the state of the art in building application outlined by the discussion of case studies.
Fabrication of Monolithic RERTR Fuels by Hot Isostatic Pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jan-Fong Jue; Blair H. Park; Curtis R. Clark
2010-11-01
The RERTR (Reduced Enrichment for Research and Test Reactors) Program is developing advanced nuclear fuels for high-power test reactors. Monolithic fuel design provides higher uranium loading than that of the traditional dispersion fuel design. Hot isostatic pressing is a promising process for low-cost batch fabrication of monolithic RERTR fuel plates for these high-power reactors. Bonding U Mo fuel foil and 6061 Al cladding by hot isostatic press bonding was successfully developed at Idaho National Laboratory. Due to the relatively high processing temperature, the interaction between fuel meat and aluminum cladding is a concern. Two different methods were employed to mitigatemore » this effect: (1) a diffusion barrier and (2) a doping addition to the interface. Both types of fuel plates have been fabricated by hot isostatic press bonding. Preliminary results show that the direct fuel/cladding interaction during the bonding process was eliminated by introducing a thin zirconium diffusion barrier layer between the fuel and the cladding. Fuel plates were also produced and characterized with a silicon-rich interlayer between fuel and cladding. This paper reports the recent progress of this developmental effort and identifies the areas that need further attention.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, A.W.; Leavitt, W.Z.
A preliminary study was conducted to determine the feasiblllty of uslng neutron radiography for examining ordnance materials. Depleted U and 4140 steel castings in various thicknesses were examined. In addition, a thin section of Be, a grasshopper and a cricket were radiographed to illustrate the ability of neutrons to determine defects in low-density materials. For uranium thicknesses up to 5 in., a contrast sensitivity between 1.5 and 7.5%o was obtained using thermal neutrons, In foil, and industrial x-ray film transfer techniques. For 6 in. of U, a contrast sensitivity between 6.3 and 12.5% was obtained. For U thicknesses up tomore » 6 in., a detail sensitivity of 2.1% was obtained. For thicknesses up to 4 in. of steel, a contrast sensitivity between 1.9 and 9.4% and a detail sensitivity between 0.8 and 3.1% were obtained. For 5.125 and 6 in. of steel, contrast sensitivities between 14.6 and 29.2% and 14.6 and 39.6%, respectively, and detail sensitivities of no less than 4.9% were obtained. Both a contrast and a detail sensitivity of about 5% were obtained in examining a thin section of Be. Recommendations for further studies are given. (auth)« less
The WPI reactor-readying for the next generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobek, L.M.
1993-01-01
Built in 1959, the 10-kW open-pool nuclear training reactor at Worcester Polytechnic Institute (WPI) was one of the first such facilities in the nation located on a university campus. Since then, the reactor and its related facilities have been used to train two generations of nuclear engineers and scientists for the nuclear industry. With the use of nuclear technology playing an increasing role in many segments of the economy, WPI with its nuclear reactor facility is committed to continuing its mission of training future nuclear engineers and scientists. The WPI reactor includes a 6-in. beam port, graphite thermal column, andmore » in-core sample facility. The reactor, housed in an open 8000-gal tank of water, is designed so that the core is readily accessible. Both the control console and the peripheral counting equipment used for student projects and laboratory exercises are located in the reactor room. This arrangement provides convenience and flexibility in using the reactor for foil activations in neutron flux measurements, diffusion measurements, radioactive decay measurements, and the neutron activation of samples for analysis. In 1988, the reactor was successfully converted to low-enriched uranium fuel.« less
The RIB production target for the SPES project
NASA Astrophysics Data System (ADS)
Monetti, Alberto; Andrighetto, Alberto; Petrovich, Carlo; Manzolaro, Mattia; Corradetti, Stefano; Scarpa, Daniele; Rossetto, Francesco; Martinez Dominguez, Fernando; Vasquez, Jesus; Rossignoli, Massimo; Calderolla, Michele; Silingardi, Roberto; Mozzi, Aldo; Borgna, Francesca; Vivian, Gianluca; Boratto, Enrico; Ballan, Michele; Prete, Gianfranco; Meneghetti, Giovanni
2015-10-01
Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.
NASA Astrophysics Data System (ADS)
Kunz, Peter; Bricault, Pierre; Dombsky, Marik; Erdmann, Nicole; Hanemaayer, Vicky; Wong, John; Lützenkirchen, Klaus
2013-09-01
The production of radioactive ion beams (RIB) from spallation targets by irradiation with a continuous 500 MeV proton beam, has been routine at TRIUMF for several years. Based on the experience with composite refractory carbide targets a procedure for the fabrication of UC2/C targets was developed. It includes the preparation of UC2 by carbothermal reduction of UO2, the slip-casting of fine-grained UC2/C slurry on graphite foil under inert gas atmosphere and the cutting of composite target discs which are stacked up to a lamellar structure. The thermal properties of such an arrangement are adequate to withstand the high power deposition of an intense, continuous proton beam and also beneficial for the fast release of short-lived radioactive isotopes. Molecular structure, particle size and the impact of sintering of the target discs were investigated via XRD and SEM. Thickness and mass distribution were measured with position-sensitive LIII-edge densitometry. The results confirm that the properties of the UC2/C target material are well suited for RIB production at TRIUMF while there is still room for improvement with regard to uniformity of mass distribution in target disc thickness.
Bi-metal foil gas dynamic bearings with bimorph piezoelectric foils
NASA Astrophysics Data System (ADS)
Sytin, A.; Rodichev, A.; Kulkov, A.
2017-08-01
The present paper considers application of bi-metal materials and coatings to provide necessary strength and wear resistance of the surfaces of rigid and elastic gas dynamic bearings. Authors suggest using multi-layer foils with bimorph piezoelectric elements that operate in the generator regime to determine the deformation of elastic elements, and in the actuator regime to form an optimal shape of the surface of the bearing.
Leitman, David I; Wolf, Daniel H; Loughead, James; Valdez, Jeffrey N; Kohler, Christian G; Brensinger, Colleen; Elliott, Mark A; Turetsky, Bruce I; Gur, Raquel E; Gur, Ruben C
2011-01-01
Schizophrenia patients display impaired performance and brain activity during facial affect recognition. These impairments may reflect stimulus-driven perceptual decrements and evaluative processing abnormalities. We differentiated these two processes by contrasting responses to identical stimuli presented under different contexts. Seventeen healthy controls and 16 schizophrenia patients performed an fMRI facial affect detection task. Subjects identified an affective target presented amongst foils of differing emotions. We hypothesized that targeting affiliative emotions (happiness, sadness) would create a task demand context distinct from that generated when targeting threat emotions (anger, fear). We compared affiliative foil stimuli within a congruent affiliative context with identical stimuli presented in an incongruent threat context. Threat foils were analysed in the same manner. Controls activated right orbitofrontal cortex (OFC)/ventrolateral prefrontal cortex (VLPFC) more to affiliative foils in threat contexts than to identical stimuli within affiliative contexts. Patients displayed reduced OFC/VLPFC activation to all foils, and no activation modulation by context. This lack of context modulation coincided with a 2-fold decrement in foil detection efficiency. Task demands produce contextual effects during facial affective processing in regions activated during affect evaluation. In schizophrenia, reduced modulation of OFC/VLPFC by context coupled with reduced behavioural efficiency suggests impaired ventral prefrontal control mechanisms that optimize affective appraisal.
NASA Astrophysics Data System (ADS)
Titarenko, Yu. E.; Batyaev, V. F.; Chauzova, M. V.; Chauzova, M. V.; Kashirin, I. A.; Malinovskiy, S. V.; Pavlov, K. V.; Rogov, V. I.; Titarenko, A. Yu.; Zhivun, V. M.; Mashnik, S. G.; Stankovskiy, A. Yu.
2016-05-01
The results of 3H production in Al foil monitors (˜ 59 mg/cm2 thickness) are presented. These foils have been irradiated in 15×15 mm polyethylene bags of ˜ 14 mg/cm2 thickness together with foils of Cr (˜ 395 mg/cm2 thickness) and 56Fe (˜ 332 mg/cm2 thickness) by protons of different energies in a range of 0.04 - 2.6 GeV. The diameters of all the foils were 10.5 mm. The irradiations were carried out at the ITEP accelerator U-10 under the ISTC Project # 3266 in 2006-2009. 3H has been extracted from Al foils using an A307 Sample Oxidizer. An ultra low level liquid scintillation spectrometer Quantulus1220 was used to measure the 3H β-spectra and the SpectraDec software package was applied for spectra processing, deconvolution and 3H activity determination. The values of the Al (p, x)3H reaction cross sections obtained in these experiments are compared with data measured at other labs and with results of simulations by the MCNP6 radiation transport code using the CEM03.03 event generator.
NASA Astrophysics Data System (ADS)
Li, Yintang; Wu, Minger
2015-02-01
Ethylene tetrafluoroethylene (ETFE) foil has been widely used in spatial structures for its light weight and high transparency. This paper studies short- and long-term creep properties of ETFE foil. Two series of short-term creep and recovery tests were performed, in which residual strain was observed. A long-term creep test of ETFE foil was also conducted and lasted about 400 days. A viscoelastic-plastic model was then established to describe short-term creep and recovery behaviour of ETFE foil. This model contains a traditional generalised Kelvin part and an added steady-flow component to represent viscoelastic and viscoplastic behaviour, respectively. The model can fit tests' data well at three stresses and six temperatures. Additionally, time-temperature superposition was adopted to simulate long-term creep behaviour of ETFE foil. Horizontal shifting factors were determined by W.L.F. equation in which transition temperature was simulated by shifting factors. Using this equation, long-term creep behaviours at three temperatures were predicted. The results of the long-term creep test showed that a short-term creep test at identical temperatures was insufficient to predict additional creep behaviour, and the long-term creep test verified horizontal shifting factors which were derived from the time-temperature superposition.
Titarenko, Yu. E.; Batyaev, V. F.; Chauzova, M. V.; ...
2016-01-01
Our results of 3H production in Al foil monitors (~ 59 mg/cm 2 thickness) are presented. We irradiated these foils in 15×15 mm polyethylene bags of ~ 14 mg/cm 2 thickness together with foils of Cr (~ 395 mg/cm 2 thickness) and 56Fe (~ 332 mg/cm 2 thickness) by protons of different energies in a range of 0.04 – 2.6 GeV. The diameters of all the foils were 10.5 mm. The irradiations were carried out at the ITEP accelerator U–10 under the ISTC Project # 3266 in 2006–2009. 3H has been extracted from Al foils using an A307 Sample Oxidizer.more » We then used an ultra low level liquid scintillation spectrometer Quantulus1220 to measure the 3H β–spectra and the SpectraDec software package was applied for spectra processing, deconvolution and 3H activity determination. The values of the Al (p, x) 3H reaction cross sections obtained in these experiments are compared with data measured at other labs and with results of simulations by the MCNP6 radiation transport code using the CEM03.03 event generator.« less
The target-to-foils shift in simultaneous and sequential lineups.
Clark, Steven E; Davey, Sherrie L
2005-04-01
A theoretical cornerstone in eyewitness identification research is the proposition that witnesses, in making decisions from standard simultaneous lineups, make relative judgments. The present research considers two sources of support for this proposal. An experiment by G. L. Wells (1993) showed that if the target is removed from a lineup, witnesses shift their responses to pick foils, rather than rejecting the lineups, a result we will term a target-to-foils shift. Additional empirical support is provided by results from sequential lineups which typically show higher accuracy than simultaneous lineups, presumably because of a decrease in the use of relative judgments in making identification decisions. The combination of these two lines of research suggests that the target-to-foils shift should be reduced in sequential lineups relative to simultaneous lineups. Results of two experiments showed an overall advantage for sequential lineups, but also showed a target-to-foils shift equal in size for simultaneous and sequential lineups. Additional analyses indicated that the target-to-foils shift in sequential lineups was moderated in part by an order effect and was produced with (Experiment 2) or without (Experiment 1) a shift in decision criterion. This complex pattern of results suggests that more work is needed to understand the processes which underlie decisions in simultaneous and sequential lineups.
Spectroscopic Measurements of Planar Foil Plasmas Driven by a MA LTD
NASA Astrophysics Data System (ADS)
Patel, Sonal; Yager-Elorriaga, David; Steiner, Adam; Jordan, Nick; Gilgenbach, Ronald; Lau, Y. Y.
2014-10-01
Planar foil ablation experiments are being conducted on the Linear Transformer Driver (LTD) at the University of Michigan. The experiment consists of a 400 nm-thick, Al planar foil and a current return post. An optical fiber is placed perpendicular to the magnetic field and linear polarizers are used to isolate the pi and sigma lines. The LTD is charged to +/-70 kV with approximately 400-500 kA passing through the foil. Laser shadowgraphy has previously imaged the plasma and measured anisotropy in the Magneto Rayleigh-Taylor (MRT) instability. Localized magnetic field measurements using Zeeman splitting during the current rise is expected to yield some insight into this anisotropy. Initial experiments use Na D lines of Al foils seeded with sodium to measure Zeeman splitting. Several ion lines are also currently being studied, such as Al III and C IV, to probe the higher temperature core plasma. In planned experiments, several lens-coupled optical fibers will be placed across the foil, and local magnetic field measurements will be taken to measure current division within the plasma. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager supported by NSF fellowship Grant DGE 1256260.
Dynamics and locomotion of flexible foils in a frictional environment
NASA Astrophysics Data System (ADS)
Wang, Xiaolin; Alben, Silas
2018-01-01
Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N-periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.
Dynamics and locomotion of flexible foils in a frictional environment.
Wang, Xiaolin; Alben, Silas
2018-01-01
Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N -periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.
Characterizing proton-activated materials to develop PET-mediated proton range verification markers
NASA Astrophysics Data System (ADS)
Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.
2016-06-01
Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm-3) and beef (~1.0 g cm-3) were embedded with Cu or 68Zn foils of several volumes (10-50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avery, S; Christodouleas, J; Delaney, K
2014-06-01
Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBsmore » to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.« less
2012-02-01
available for interrogation. Although commercially available fibre Bragg grating ( FBG ) sensors have emerged in the marketplace over the past decade...the results from a preliminary trial investigating the feasibility of using embedded FBG arrays in a shape adaptive composite foil to characterise...The response from the FBG sensors was also monitored during fabrication of the foil during the resin infusion and curing stages of the process
Slowing down of 100 keV antiprotons in Al foils
NASA Astrophysics Data System (ADS)
Nordlund, K.
2018-03-01
Using energy degrading foils to slow down antiprotons is of interest for producing antihydrogen atoms. I consider here the slowing down of 100 keV antiprotons, that will be produced in the ELENA storage ring under construction at CERN, to energies below 10 keV. At these low energies, they are suitable for efficient antihydrogen production. I simulate the antihydrogen motion and slowing down in Al foils using a recently developed molecular dynamics approach. The results show that the optimal Al foil thickness for slowing down the antiprotons to below 5 keV is 910 nm, and to below 10 keV is 840 nm. Also the lateral spreading of the transmitted antiprotons is reported and the uncertainties discussed.
NASA Technical Reports Server (NTRS)
Bouquet, F. L.; Hribar, V. F.; Metzler, E. C.; Russell, D. A.
1984-01-01
Selective results are presented of laboratory radiation tests of metallic foil tapes, thermal blankets, and thermooptical coatings undertaken as part of the development and qualification of materials for the Galileo spacecraft. Of the two metallic foil tapes used for electrical continuity, the adhesive used on the aluminum embossed foil was superior to the copper embossed foil when exposed to simulated Jovian electrons. Proton-irradiation tests performed on a number of thermal blanket samples showed that black polyester on Kapton proved to be a lower weight loss (i.e., outgassing) material than Fluorglas. In addition, preliminary results concerning the response of thermooptical coatings to simulated Jovian electrons show that the ITO-coated polyester over a Kapton surface gave the lowest absorptance.
Composite multilayer insulations for thermal protection of aerospace vehicles
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Pitts, William C.
1989-01-01
Composite flexible multilayer insulation systems (MLI), consisting of alternating layers of metal foil and scrim cloth or insulation quilted together using ceramic thread, were evaluated for thermal performance and compared with a silica fibrous (baseline) insulation system. The systems studied included: (1) alternating layers of aluminoborosilicate (ABS) scrim cloth and stainless steel foil, with silica, ABS, or alumina insulation; (2) alternating layers of scrim cloth and aluminum foil, with silica or ABS insulation; (3) alternating layers of aluminum foil and silica or ABS insulation; and (4) alternating layers of aluminum-coated polyimide placed on the bottom of the silica insulation. The MLIs containing aluminum were the most efficient, measuring as little as half the backface temperature increase of the baseline system.
Flowe, Heather D; Ebbesen, Ebbe B
2007-02-01
Two experiments investigated whether remembering is affected by the similarity of the study face relative to the alternatives in a lineup. In simultaneous and sequential lineups, choice rates and false alarms were larger in low compared to high similarity lineups, indicating criterion placement was affected by lineup similarity structure (Experiment 1). In Experiment 2, foil choices and similarity ranking data for target present lineups were compared to responses made when the target was removed from the lineup (only the 5 foils were presented). The results indicated that although foils were selected more often in target-removed lineups in the simultaneous compared to the sequential condition, responses shifted from the target to one of the foils at equal rates across lineup procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, George H.
Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of themore » available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition Facility (NIF) in CA within a year. This will usher in the technology development Phase of ICF after years of research aimed at achieving breakeven experiment. Methods to achieve the high energy gain needed for a competitive power plant will then be a key developmental issue, and our D-cluster target for Fast Ignition (FI) is expected to meet that need.« less
MULPEX: A compact multi-layered polymer foil collector for micrometeoroids and orbital debris
NASA Astrophysics Data System (ADS)
Kearsley, A. T.; Graham, G. A.; Burchell, M. J.; Taylor, E. A.; Drolshagen, G.; Chater, R. J.; McPhail, D.
Detailed studies of preserved hypervelocity impact residues on spacecraft multi-layer insulation foils have yielded important information about the flux of small particles from different sources in low-Earth orbit (LEO). We have extended our earlier research on impacts occurring in LEO to design and testing of a compact capture device. MUlti- Layer Polymer EXperiment (MULPEX) is simple, cheap to build, lightweight, of no power demand, easy to deploy, and optimised for the efficient collection of impact residue for analysis on return to Earth. The capture medium is a stack of very thin (8 and 40 μm) polyimide foils, supported on poly-tetrafluoroethylene sheet frames, surrounded by a protective aluminium casing. The uppermost foil has a very thin metallic coating for thermal protection and resistance to atomic oxygen and ultra-violet exposure. The casing provides a simple detachable interface for deployment on the spacecraft, facing into the desired direction for particle collection. On return to the laboratory, the stacked foils are separated for examination in a variable pressure scanning electron microscope, without need for surface coating. Analysis of impact residue is performed using energy dispersive X-ray spectrometers. Our laboratory experiments, utilising buck-shot firings of analogues to micrometeoroids (35-38 μm olivine) and space debris (4 μm alumina and 1 mm stainless steel) in a light gas gun, have shown that impact residue is abundant within the foil layers, and preserves a record of the impacting particle, whether of micrometer or millimetre dimensions. Penetrations of the top foil are easily recognised, and act as a proxy for dimensions of the penetrating particle. Impact may cause disruption and melting, but some residue retains sufficient crystallographic structure to show clear Raman lines, diagnostic of the original mineral.
MULPEX: a compact multi-layered polymer foil collector for micrometeoroids and orbital debris.
NASA Astrophysics Data System (ADS)
Kearsley, A. T.; Graham, G. A.; Burchell, M. J.; Taylor, E. A.; Drolshagen, G.; Chater, R. J.; McPhail, D.
Detailed studies of preserved hypervelocity impact residues on spacecraft multi-layer insulation foils have yielded important information about the flux of small particles from different sources in low-Earth orbit (LEO). We have extended our earlier research on impacts occurring in LEO to design and testing of a compact capture device. MULPEX (MUlti-Layer Polymer EXperiment) is simple, cheap to build, lightweight, of no power demand, easy to deploy, and optimised for the efficient collection of impact residue for analysis on return to Earth. The capture medium is a stack of very thin (8 micron and 40 micron) polyimide foils, supported on poly-tetrafluoroethylene sheet frames, surrounded by a protective aluminium casing. The uppermost foil has a very thin metallic coating for thermal protection and resistance to atomic oxygen and ultra-violet exposure. The casing provides a simple detachable interface for deployment on the spacecraft, facing into the desired direction for particle collection. On return to the laboratory, the stacked foils are separated for examination in a variable pressure scanning electron microscope, without need for surface coating. Analysis of impact residue is performed using energy dispersive X-ray spectrometers. Our laboratory experiments, utilising buck-shot firings of analogues to micrometeoroids (35-38 micron olivine) and space debris (4 micron alumina and 1mm stainless steel) in a light gas gun, have shown that impact residue is abundant within the foil layers, and preserves a record of the impacting particle, whether of micrometer or millimetre dimensions. Penetrations of the top foil are easily recognised, and act as a proxy for dimensions of the penetrating particle. Impact may cause disruption and melting, but some residue retains sufficient crystallographic structure to show clear Raman lines, diagnostic of the original mineral.
On the propagation mechanism of a detonation wave in a round tube with orifice plates
NASA Astrophysics Data System (ADS)
Ciccarelli, G.; Cross, M.
2016-09-01
This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.
Caro, Adam C; Hankenson, F Claire; Marx, James O
2013-09-01
General anesthesia affects several body systems, including thermoregulation. Decreased body temperature during anesthesia has potential negative effects, including delayed recovery to consciousness. Thermoregulatory support devices are used to maintain temperature in anesthetized rodents. We analyzed 2 novel thermoregulatory devices, thermogenic gel packs and reflective foils, to compare their effectiveness in maintaining temperatures with that of a standard circulating-warm-water blanket (CWWB) in C57BL/6 mice. Mice were grouped randomly: control (no thermal support), reflective foil, gel pack, gel pack plus reflective foil, CWWB on medium setting, CWWB on high setting, and CWWB on high setting plus reflective foil. Mice were anesthetized with isoflurane for 30 min, and temperature and heart and respiratory rates were monitored. Results indicated that the temperatures of mice with reflective foil only (start temperature, 36.2 ± 0.38 °C; end temperature, 28.8 ± 0.78 °C) did not differ significantly from those of control mice; however, the inclusion of foil heightened thermogenic properties when combined with other devices. Thermogenic gel packs and CWWB on high setting, both with and without reflective foil, caused significant temperature increases (that is, 1.6 °C to 4.4 °C) in mice. CWWB on medium setting (blanket temperature, 37.5 °C) maintained mice at temperatures within 1 °C of the 36.1 °C baseline. Strong correlations existed between temperature, heart and respiratory rates, and recovery time to consciousness. This information provides guidance regarding the use of thermoregulatory devices in anesthetized rodents and demonstrates the effect of maintaining a consistent core temperature on physiologic parameters.
Caro, Adam C; Hankenson, F Claire; Marx, James O
2013-01-01
General anesthesia affects several body systems, including thermoregulation. Decreased body temperature during anesthesia has potential negative effects, including delayed recovery to consciousness. Thermoregulatory support devices are used to maintain temperature in anesthetized rodents. We analyzed 2 novel thermoregulatory devices, thermogenic gel packs and reflective foils, to compare their effectiveness in maintaining temperatures with that of a standard circulating-warm–water blanket (CWWB) in C57BL/6 mice. Mice were grouped randomly: control (no thermal support), reflective foil, gel pack, gel pack plus reflective foil, CWWB on medium setting, CWWB on high setting, and CWWB on high setting plus reflective foil. Mice were anesthetized with isoflurane for 30 min, and temperature and heart and respiratory rates were monitored. Results indicated that the temperatures of mice with reflective foil only (start temperature, 36.2 ± 0.38 °C; end temperature, 28.8 ± 0.78 °C) did not differ significantly from those of control mice; however, the inclusion of foil heightened thermogenic properties when combined with other devices. Thermogenic gel packs and CWWB on high setting, both with and without reflective foil, caused significant temperature increases (that is, 1.6 °C to 4.4 °C) in mice. CWWB on medium setting (blanket temperature, 37.5 °C) maintained mice at temperatures within 1 °C of the 36.1 °C baseline. Strong correlations existed between temperature, heart and respiratory rates, and recovery time to consciousness. This information provides guidance regarding the use of thermoregulatory devices in anesthetized rodents and demonstrates the effect of maintaining a consistent core temperature on physiologic parameters. PMID:24041214
Extraction of Solar Wind Nitrogen and Noble Gases From the Genesis Gold Foil Collector
NASA Astrophysics Data System (ADS)
Schlutter, D. J.; Pepin, R. O.
2005-12-01
The Genesis gold foil is a bulk solar wind collector, integrating fluences from all three of the wind regimes. Pyrolytic extraction of small foil samples at Minnesota yielded He fluences, corrected for backscatter, in good agreement with measurements by on-board spacecraft instruments, and He/Ne elemental ratios close to those implanted in collector foils deployed on the lunar surface during the Apollo missions. Isotopic distributions of He, Ne and Ar are under study. Pyrolysis to temperatures above the gold melting point generates nitrogen blanks large enough to obscure the solar-wind nitrogen component. An alternative technique for nitrogen and noble gas extraction, by room-temperature amalgamation of the gold foil surface, will be discussed. Ne and Ar releases in preliminary tests of this technique on small foil samples were close to 100% of the amounts expected from the high-temperature pyrolysis yields, indicating that amalgamation quantitatively liberates gases from several hundred angstroms deep in the gold, beyond the implantation depth of most of the solar wind. Present work is focused on two problems currently interfering with accurate nitrogen measurements at the required picogram to sub-picogram levels: a higher than expected blank likely due to tiny air bubbles rolled into the gold sheet during fabrication, and the presence of a refractory hydrocarbon film on Genesis collector surfaces (the "brown stain") that, if left in place on the foil, shields the underlying gold from mercury attack. We have found, however, that the film is efficiently removed within tens of seconds by oxygen plasma ashing. Potential nitrogen contaminants introduced during the crash of the sample return canister are inert in amalgamation, and so are not hazards to the measurements.
NASA Astrophysics Data System (ADS)
Lehn, Andrea M.; Thornycroft, Patrick J. M.; Lauder, George V.; Leftwich, Megan C.
2017-02-01
In this paper we consider the effects of adding high-frequency, low-amplitude perturbations to a smooth sinusoidal base input signal for a heaving panel in a closed loop flow tank. Specifically, 0.1 cm amplitude sinusoidal perturbation waves with frequency fp ranging from 0.5 to 13.0 Hz are added to 1 cm heave sinusoids with base frequencies, fb, ranging from 0.5 to 3.0 Hz. Two thin foils with different flexural stiffness are heaved with the combined input signals in addition to both the high-heave and low-heave signals independently. In all cases, the foils are heaved in a recirculating water channel with an incoming velocity of Vx=10 cm/s and a Reynolds number based on the chord length of Re=17 300 . Results demonstrate that perturbations increase the net axial force, in the streamwise direction, in most cases tested (with the exception of some poor performing flexible foil cases). Most significantly, for a base frequency of 1 Hz, perturbations at 9 Hz result in a 780.7% increase in net streamwise force production. Generally, the higher the perturbation frequency, fp the more axial force generated. However, for the stiffer foil, a clear peak in net force exists at fp=9 Hz , regardless of the base frequency. For the stiffer foil, swimming efficiency at a 1 Hz flapping frequency is increased dramatically with the addition of a perturbation, with reduced efficiency increases at higher flapping frequencies. Likewise, for the flexible foil, swimming efficiency gains are greatest at the lower flapping frequencies. Perturbations alter the wake structure by increasing the vorticity magnitude and increasing the vortex shedding frequency; i.e., more, stronger vortices are produced in each flapping cycle.
Rotordynamics and Design Methods of an Oil-Free Turbocharger
NASA Technical Reports Server (NTRS)
Howard, Samuel A.
1999-01-01
The feasibility of supporting a turbocharger rotor on air foil bearings is investigated based upon predicted rotordynamic stability, load accommodations, and stress considerations. It is demonstrated that foil bearings offer a plausible replacement for oil-lubricated bearings in diesel truck turbochargers. Also, two different rotor configurations are analyzed and the design is chosen which best optimizes the desired performance characteristics. The method of designing machinery for foil bearing use and the assumptions made are discussed.
High-quality uniform dry transfer of graphene to polymers.
Lock, Evgeniya H; Baraket, Mira; Laskoski, Matthew; Mulvaney, Shawn P; Lee, Woo K; Sheehan, Paul E; Hines, Daniel R; Robinson, Jeremy T; Tosado, Jacob; Fuhrer, Michael S; Hernández, Sandra C; Walton, Scott G
2012-01-11
In this paper we demonstrate high-quality, uniform dry transfer of graphene grown by chemical vapor deposition on copper foil to polystyrene. The dry transfer exploits an azide linker molecule to establish a covalent bond to graphene and to generate greater graphene-polymer adhesion compared to that of the graphene-metal foil. Thus, this transfer approach provides a novel alternative route for graphene transfer, which allows for the metal foils to be reused. © 2011 American Chemical Society
Large-area thin self-supporting carbon foils with MgO coatings
NASA Astrophysics Data System (ADS)
Stolarz, Anna; Maier-Komor, Peter
2002-03-01
Large area self-supporting carbon foils in the thickness of range of 8-22 μg/cm 2, coated with approximately 4 μg/cm 2 MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm 2. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.
Compliant hydrodynamic fluid journal bearing
NASA Technical Reports Server (NTRS)
Warren, E. L. (Inventor)
1985-01-01
An air bearing structure is described that prevents destructive bending moments within the top foil. Welds are eliminated by mounting the top bearing foil in the bearing cartridge sleeve without using a space block. Tabs or pins at the end of the top bearing foil are restrained by slots or stops formed in the cartridge sleeve. These structural members are free to move in a direction normal to the shaft while being restrained from movement in the direction of shaft rotation.
Process for Design Optimization of Honeycomb Core Sandwich Panels for Blast Load Mitigation
2012-12-01
experiments. Numerical simulation using a single ‘Y’ cross-sectional unit cell model predicted the crush behavior quite well compared to experiments with...of foil glued together by an adhesive. LS-DYNA is used to carry out the virtual simulation . The foil is modeled by quadrilateral Belytschko-Tsay...aluminum alloy with bilinear isotropic-hardening elastoplastic material model is used for the foil. Since the yield and ultimate strength of the AL5052
Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-Ray Laser
1989-07-01
compounds held in plastic vials or cylindrical planchettes . Foils and planchertes were exposed with their faces normal to the machine center- line. The...irradiation; foils and planchettes were counted with a solid NaI(TI) detector system and vials were again studied with the well detector. Samples...P to flat planchettes , and F to metallic foils. The self-absorption corrections represent the fraction of fluorescent photons which reach the
Fluid-film foil bearings control engine heat
NASA Astrophysics Data System (ADS)
O'Connor, Leo
1993-05-01
The state-of-the-art of fluid-film foil bearings and their current and prospective applications are briefly reviewed. In particular, attention is given to the general design of fluid-film foil bearings, the materials used, and bearing performance. The applications discussed include launch vehicle turbopumps, turbines used to cool aircraft cabins, and turbocompressors and turboexpanders used in the processing of cryogenic fluids. Future applications may include turbochargers, textile spindles, cryocoolers, motor blowers, heat pumps, and solar chillers.
Joining of materials using laser heating
Cockeram, Brian V.; Hicks, Trevor G.; Schmid, Glenn C.
2003-07-01
A method for diffusion bonding ceramic layers such as boron carbide, zirconium carbide, or silicon carbide uses a defocused laser beam to heat and to join ceramics with the use of a thin metal foil insert. The metal foil preferably is rhenium, molybdenum or titanium. The rapid, intense heating of the ceramic/metal/ceramic sandwiches using the defocused laser beam results in diffusive conversion of the refractory metal foil into the ceramic and in turn creates a strong bond therein.
Light scattering apparatus and method for determining radiation exposure to plastic detectors
Hermes, Robert E.
2002-01-01
An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.
A heater made from graphite composite material for potential deicing application
NASA Technical Reports Server (NTRS)
Hung, C. C.; Stahl, M.; Stahl, M.; Stahl, M.
1986-01-01
A surface heater was developed using a graphite fiber-epoxy composite as the heating element. This heater can be thin, highly electrically and thermally conductive, and can conform to an irregular surface. Therefore it may be used in an aircraft's thermal deicing system to quickly and uniformly heat the aircraft surface. One-ply of unidirectional graphite fiber-epoxy composite was laminated between two plies of fiber glass-epoxy composite, with nickel foil contacting the end portions of the composite and partly exposed beyond the composites for electrical contact. The model heater used brominated P-100 fibers from Amoco. The fiber's electrical resistivity, thermal conductivity and density were 50 micro ohms per centimeter, 270 W/m-K and 2.30 gm/cubic cm, respectively. The electricity was found to penetrate through the composite in the transverse direction to make an acceptably low foil-composite contact resistance. When conducting current, the heater temperature increase reached 50 percent of the steady state value within 20 sec. There was no overheating at the ends of the heater provided there was no water corrosion. If the foil-composite bonding failed during storage, liquid water exposure was found to oxidize the foil. Such bonding failure may be avoided if perforated nickel foil is used, so that the composite plies can bond to each other through the perforated holes and therefore lock the foil in place.
The effect of copper pre-cleaning on graphene synthesis.
Kim, Soo Min; Hsu, Allen; Lee, Yi-Hsien; Dresselhaus, Mildred; Palacios, Tomás; Kim, Ki Kang; Kong, Jing
2013-09-13
Copper foil is the most common substrate to synthesize monolayer graphene by chemical vapor deposition (CVD). The surface morphology and conditions of the copper foil can be very different depending on the various suppliers or different batches. These surface properties of copper strongly affect the growth behavior of graphene, thus rendering the growth conditions irreproducible when different batches of Cu foil are used. Furthermore, the quality of the graphene is severely affected as well. In this work, we report a facile method of copper pre-cleaning to improve the graphene quality and the reproducibility of the growth process. We found that the commercial Ni etchant (based on nitric acid) or nitric acid is the most effective cleaning agent among various acidic or basic solutions. The graphene grown on thus-treated copper surfaces is very clean and mostly monolayer when observed under scanning electron microscopy (SEM) and optical imaging, as compared to the graphene grown on untreated copper foil. Different batches (but with the same catalog number) of copper foil from Alfa Aesar Company were examined to explore the effect of copper pre-cleaning; consistent growth results were obtained when pre-cleaning was used. This method overcomes a commonly encountered problem in graphene growth and could become one of the standard protocols for preparing the copper foil substrate for growing graphene or other 2D materials.
A nanometric Rh overlayer on a metal foil surface as a highly efficient three-way catalyst.
Misumi, Satoshi; Yoshida, Hiroshi; Hinokuma, Satoshi; Sato, Tetsuya; Machida, Masato
2016-07-08
Pulsed arc-plasma (AP) deposition of an Rh overlayer on an Fe-Cr-Al stainless steel foil produced a composite material that exhibited high activity for automotive three-way catalysis (TWC). The AP pulses deposited metallic Rh nanoparticles 1-3 nm in size, whose density on the surface increased with the number of pulses. This led to coalescence and grain growth on the foil surface and the eventual formation of a uniform two-dimensional Rh overlayer. Full coverage of the 51 μm-thick flat foil by a 3.2 nm-thick Rh overlayer was achieved after 1,000 pulses. A simulated TWC reaction using a miniature honeycomb fabricated using flat and corrugated foils with the Rh overlayers exhibited successful light-off at a practical gaseous hourly space velocity of 1.2 × 10(5) h(-1). The turnover frequency for the NO-CO reaction over the metallic honeycomb catalyst was ca. 80-fold greater than that achieved with a reference Rh/ZrO2-coated cordierite honeycomb prepared using a conventional wet impregnation and slurry coating procedure. Despite the nonporosity and low surface area of the foil-supported Rh overlayer compared with conventional powder catalysts (Rh/ZrO2), it is a promising alternative design for more efficient automotive catalysts that use less Rh loading.
Foil Bearing Starting Considerations and Requirements for Rotorcraft Engine Applications
NASA Technical Reports Server (NTRS)
Radil, Kevin C.; DellaCorte, Christopher
2009-01-01
Foil gas bearings under development for rotorcraft-sized, hot core engine applications have been susceptible to damage from the slow acceleration and rates typically encountered during the pre-ignition stage in conventional engines. Recent laboratory failures have been assumed to be directly linked to operating foil bearings below their lift-off speed while following conventional startup procedures for the engines. In each instance, the continuous sliding contact between the foils and shaft was believed to thermally overload the bearing and cause the engines to fail. These failures highlight the need to characterize required acceleration rates and minimum operating speeds for these applications. In this report, startup experiments were conducted with a large, rotorcraft engine sized foil bearing under moderate load and acceleration rates to identify the proper start procedures needed to avoid bearing failure. The results showed that a bearing under a 39.4 kPa static load can withstand a modest acceleration rate of 500 rpm/s and excessive loitering below the bearing lift-off speed provided an adequate solid lubricant is present.
Analytical study of graphite-epoxy tube response to thermal loads
NASA Technical Reports Server (NTRS)
Knott, Tamara W.; Hyer, M. W.
1988-01-01
The thermally-induced stresses and deformations in graphite-epoxy tubes with aluminum foil bonded to both inner and outer surfaces, and to the outer surface only are computed. Tubes fabricated from three material systems, T300/934, P75s/934, and P75s/BP907, and having a 1 inch inner radius and a lamination sequence of (+15/0 + or - 10/0)sub s are studied. Radial, axial, and circumferential stresses in the various layers of the tube, in the foil, and in the adhesive bonding the foil to the tubes are computed using an elasticity solution. The results indicate that the coatings have no detrimental effect on the stress state in the tube, particularly those stresses that lead to microcracking. The addition of the aluminum foil does, however, significantly influence the axial expansion of the T300/934 tube, the tube with the softer graphite fibers. The addition of foil can change the sign of the axial coefficient of thermal expansion. Twist tendencies of the tubes are only slightly affected by the addition of the coatings, but are of second order compared to the axial response.
Conductive copper sulfide thin films on polyimide foils
NASA Astrophysics Data System (ADS)
Cardoso, J.; Gomez Daza, O.; Ixtlilco, L.; Nair, M. T. S.; Nair, P. K.
2001-02-01
Kapton polyimide is known for its high thermal stability, >400 °C. Copper sulfide thin films of 75 and 100 nm thickness were coated on DuPont Kapton HN polyimide foils of 25 µm thickness by floating them on a chemical bath containing copper complexes and thiourea. The coated foils were annealed at 150-400 °C in nitrogen, converting the coating from CuS to Cu1.8S. The sheet resistance of the annealed coatings (100 nm) is 10-50 Ω/□ and electrical conductivity, 2-10×103 Ω-1 cm- 1, which remain nearly constant even after the foils are immersed in 0.1-1 M HCl for 30-120 min. The coated polyimide has a transmittance (25-35%) peak located in the wavelength region 550-600 nm, with transmittance dropping to near zero below 450 nm and below 10% in the near-infrared spectral region. These characteristics are relevant in solar radiation control applications. The coated foils might also be used as conductive substrates for electrolytic deposition of metals and semiconductors and for optoelectronic device structures.
Conducting-polymer-driven actively shaped propellers and screws
NASA Astrophysics Data System (ADS)
Madden, John D.; Schmid, Bryan; Lafontaine, Serge R.; Madden, Peter G. A.; Hover, Franz S.; McLetchie, Karl; Hunter, Ian W.
2003-07-01
Conducting polymer actuators are employed to create actively shaped hydrodynamic foils. The active foils are designed to allow control over camber, much like the ailerons of an airplane wing. Control of camber promises to enable variable thrust in propellers and screws, increased maneuverability, and improved stealth. The design and fabrication of the active foils are presented, the forces are measured and operation is demonstrated both in still air and water. The foils have a "wing" span of 240 mm, and an average chord length (width) of 70 mm. The trailing 30 mm of the foil is composed of a thin polypyrrole actuator that curls chordwise to achieve variable camber. The actuator consists of two 30 μm thick sheets of hexafluorophosphate doped polypyrrole separated from each other by a gel electrolyte. A polymer layer encapsulates the entire structure. Potentials are applied between the polymer layers to induce reversible bending by approximately 35 degrees, and generating forces of 0.15 N. These forces and displacements are expected to enable operation in water at flow rates of > 1 m/s and ~ 30 m/s in air.
Fragmentation of copper current collectors in Li-ion batteries during spherical indentation
NASA Astrophysics Data System (ADS)
Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; Bingham, Philip R.; Allu, Srikanth; Turner, John A.
2017-10-01
Large, areal, brittle fracture of copper current collector foils has been observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture is hidden and non-catastrophic to a degree because the graphite layers deform plastically, and hold the materials together so that the cracks in the foils cannot be seen under optical and electron microscopy. The cracking of copper foils could not be immediately confirmed when the cell is opened for post-mortem examination. However, 3D XCT on the indented cell reveals ;mud cracks; within the copper layer and an X-ray radiograph on a single foil of the Cu anode shows clearly that the copper foil has broken into multiple pieces. This failure mode of anodes in Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. The fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1988-01-01
The determination of the tribilogically optimum composition of chromium-carbide-based solid lubricant coatings using a foil gas bearing test apparatus is described. The coatings contain a wear resistant chromium carbide `base stock' with the lubricant additives silver and BaF2-CaF2 eutectic. The coating composition is optimized for air-lubricated foil gas bearings at temperatures ranging from 25 to 650 C. The various compositions were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized Ni-Cr alloy foils, and the test bearings were subjected to repeated start-stop cycles under a bearing unit of 14 kPa. Sliding contact between the coated journal and the smooth foil occurs during bearing start-up before lift-off or hydrodynamic lubrication by the air film and during bearing coast-down. The bearings were tested for 9000 start-stop cycles or until specimen reached a predetermined failure level.
Multilayer-based lab-on-a-chip systems for perfused cell-based assays
NASA Astrophysics Data System (ADS)
Klotzbach, Udo; Sonntag, Frank; Grünzner, Stefan; Busek, Mathias; Schmieder, Florian; Franke, Volker
2014-12-01
A novel integrated technology chain of laser-microstructured multilayer foils for fast, flexible, and low-cost manufacturing of lab-on-a-chip devices especially for complex cell and tissue culture applications, which provides pulsatile fluid flow within physiological ranges at low media-to-cells ratio, was developed and established. Initially the microfluidic system is constructively divided into individual layers, which are formed by separate foils or plates. Based on the functional boundary conditions and the necessary properties of each layer, their corresponding foils and plates are chosen. In the third step, the foils and plates are laser microstructured and functionalized from both sides. In the fourth and last manufacturing step, the multiple plates and foils are joined using different bonding techniques like adhesive bonding, welding, etc. This multilayer technology together with pneumatically driven micropumps and valves permits the manufacturing of fluidic structures and perfusion systems, which spread out above multiple planes. Based on the established lab-on-a-chip platform for perfused cell-based assays, a multilayer microfluidic system with two parallel connected cell culture chambers was successfully implemented.
A bioinspired aquatic robot propelled by an internal rotor
NASA Astrophysics Data System (ADS)
Tallapragada, Phanindra; Pollard, Beau
2015-11-01
Low dimensional models of fish-like swimming of a deformable Joukowski foil shedding singular distributions of vorticity have been well known for two decades. The deformation of the foil can be interpreted to be periodic changes in an abstract shape space and the creation of vorticity can be shown to act as a nonholonomic constraint. With this geometric insight, it can be demonstrated that a Joukowski foil (or in general any body) can possibly swim to the motion of an internal rotor, that acts as a shape variable. The motion of the rotor pumps in angular momentum and the simultaneous creation of vorticity allows this to be `converted' into linear momentum of the foil. We demonstrate the feasibility of this theoretical prediction with a robot shaped as a Joukowski foil propelled by the motion of an internal momentum wheel. We also demonstrate that the internal rotor acts both as a means of propulsion as well as a means of controlling the heading of the robot. Some maneuvers of the robot and features of its physical and `mathematical' resemblance to fish-like motion are demonstrated.
Advancements Toward Oil-Free Rotorcraft Propulsion
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; Bruckner, Robert J.; Radil, Kevin C.
2010-01-01
NASA and the Army have been working for over a decade to advance the state-of-the-art (SOA) in Oil-Free Turbomachinery with an eye toward reduced emissions and maintenance, and increased performance and efficiency among other benefits. Oil-Free Turbomachinery is enabled by oil-free gas foil bearing technology and relatively new high-temperature tribological coatings. Rotorcraft propulsion is a likely candidate to apply oil-free bearing technology because the engine size class matches current SOA for foil bearings and because foil bearings offer the opportunity for higher speeds and temperatures and lower weight, all critical issues for rotorcraft engines. This paper describes an effort to demonstrate gas foil journal bearing use in the hot section of a full-scale helicopter engine core. A production engine hot-core location is selected as the candidate foil bearing application. Rotordynamic feasibility, bearing sizing, and load capability are assessed. The results of the program will help guide future analysis and design in this area by documenting the steps required and the process utilized for successful application of oil-free technology to a full-scale engine.
Reanalysis of tritium production in a sphere of /sup 6/LiD irradiated by 14-MeV neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawcett, L.R. Jr.
1985-08-01
Tritium production and activation of radiochemical detector foils in a sphere of /sup 6/LiD irradiated by a central source of 14-MeV neutrons has been reanalyzed. The /sup 6/LiD sphere consisted of 10 solid hemispherical nested shells with ampules of /sup 6/LiH, /sup 7/LiH, and activation foils located 2.2, 5, 7.7, 12.6, 20, and 30 cm from the center. The Los Alamos Monte Carlo Neutron Photon Transport Code (MCNP) was used to calculate neutron transport through the /sup 6/LiD, tritium production in the ampules, and foil activation. The MCNP input model was three-dimensional and employed ENDF/B-V cross sections for transport, tritiummore » production, and (where available) foil activation. The reanalyzed experimentally observed-to-calculated values of tritium production were 1.053 +- 2.1% in /sup 6/LiH and 0.999 +- 2.1% in /sup 7/LiH. The recalculated foil activation observed-to-calculated ratios were not generally improved over those reported in the original analysis.« less
Formation of a pinched electron beam and an intense x-ray source in radial foil rod-pinch diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, S. A.
2016-04-15
Low-impedance rod-pinch diode experiments were performed on the MIG generator at Institute of High Current Electronics using an aluminum foil placed between concentric electrodes of a rod-pinch diode. The J × B force accelerates the foil plasma in the axial and radial directions. After the foil plasma is pushed beyond the tip of the rod, a vacuum gap and a pinched electron beam form. The anode and cathode plasmas expansion and the following plasmas sweeping up by the J × B force can result in repetitive gap formations and closures, which are evident in the several successive intense x-ray pulses. A 0.7-mm-size point-like x-raymore » source was realized using a 1-mm-diameter tungsten rod, tapered to a point over the last 10 mm. The results of experiments show that the foil-shorted rod-pinch diode configuration has the potential to form low-impedance diodes, to shorten x-ray pulse duration and to realize submillimeter spot-size x-ray sources.« less
Experimental and Theoretical Study on Minimum Achievable Foil Thickness during Asymmetric Rolling
Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang
2014-01-01
Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the ‘cross-shear’ zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling. PMID:25203265
3D Structure of the Inverse Karman Vortex Street in the Wake of a Flapping Foil
NASA Astrophysics Data System (ADS)
Bozkurttas, Meliha; Mittal, Rajat; Dong, Haibo
2004-11-01
Flapping foils are being considered for lift generation and/or propulsion in Micro Aerial Vehicles (MAVs) and Autonomous Underwater Vehicles (AUVs). In the present study, a DNS/LES solver that is capable of simulating these flows in all their complexity will be used. The flow around a NACA 0012 foil undergoing pitch oscillation at a chord Reynolds number of 12600 has been investigated and the comparison of mean thrust coefficient results with the experiment has indicated significant under-prediction of the thrust although good match is observed with a 2D RANS calculation. This discrepancy could be related to the absence of 3D effects in both numerical simulations. Although this conclusion has also been reached in other studies, the details of the physical mechanism that lead to inaccurate prediction of surface pressure and ultimately to thrust force for pitching and heaving flapping foils have not been clarified yet. In this study, the streamwise (secondary) vortical structures in the inverse Karman Vortex Street generated in the wake of a thrust producing flapping foil will be studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A.H.; Fawley, W.M.; Rule, D.W.
We present an adaptation of the measurements performed in the visible-to-VUV regime of the z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL). In these experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed x-ray SASE FELs, the intense SASE emission is either too strongly transmitted at 1.5 Angstrom or the needed foil thickness for blocking scatters the electron beam too much. Since x-ray transition radiation (XTR) is emitted in an annulus with openingmore » angle 1/g = 36 mrad for 14.09-GeV electrons, we propose using a thin foil or foil stack to generate the XTR and coherent XTR (CXTR) and an annular crystal to wavelength sort the radiation. The combined selectivity in angle and wavelength will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER simulations support the z-dependent gain evaluation plan.« less
Gas insulated transmission line having low inductance intercalated sheath
Cookson, Alan H.
1978-01-01
A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.
Electrical properties of Al foil/n-4H-SiC Schottky junctions fabricated by surface-activated bonding
NASA Astrophysics Data System (ADS)
Morita, Sho; Liang, Jianbo; Matsubara, Moeko; Dhamrin, Marwan; Nishio, Yoshitaka; Shigekawa, Naoteru
2018-02-01
We fabricate 17-µm-thick Al foil/n-4H-SiC Schottky junctions by surface-activated bonding. Their current-voltage and capacitance-voltage characteristics are compared with those of Schottky junctions fabricated by evaporating Al layers on n-4H-SiC epilayers. We find that the ideality factor of Al foil/SiC junctions is larger than that of conventional junctions, which is due to the irradiation of the fast atom beam (FAB) of Ar. The ideality factor of Al foil/SiC junctions is improved by annealing at 400 °C. We also find that the Schottky barrier height is increased by FAB irradiation, which is likely to be due to the negative charges formed at SiC surfaces.
Spectrometry and filtering with high rejection of stray light
Ferrell, Thomas L.; Thundat, Thomas G.
2004-12-14
A microoptoelectromechanical integrated spectrometer with a photonic element assembly having metal foil removably disposed on a first transparent substrate surface, the substrate having no foil on any other surface. A means is provided for directing source photons that are reflected from or transmitted through a sample, over a range of angles of incidence, into the transparent substrate and onto the metal foil such that source photons are incident at the Brewsters angle. A means is also provided for detecting an induced exponential field in the metal foil. A means is also provided for relating the induced exponential field to a known exponential field for the sample and determining the identity of the sample. The spectrometer performs ultraviolet-to-visible-to-infrared spectroscopy using photon tunneling and surface plasmon excitation.
Research Capabilities for Oil-Free Turbomachinery Expanded by New Rotordynamic Simulator Facility
NASA Technical Reports Server (NTRS)
Howard, Samuel A.
2004-01-01
A new test rig has been developed for simulating high-speed turbomachinery shafting using Oil-Free foil air bearing technology. Foil air journal bearings are self-acting hydrodynamic bearings with a flexible inner sleeve surface using air as the lubricant. These bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. More recently, interest has been growing in applying foil bearings to aircraft gas turbine engines. They offer potential improvements in efficiency and power density, decreased maintenance costs, and other secondary benefits. The goal of applying foil air bearings to aircraft gas turbine engines prompted the fabrication of this test rig. The facility enables bearing designers to test potential bearing designs with shafts that simulate the rotating components of a target engine without the high cost of building actual flight hardware. The data collected from this rig can be used to make changes to the shaft and bearings in subsequent design iterations. The rest of this article describes the new test rig and demonstrates some of its capabilities with an initial simulated shaft system. The test rig has two support structures, each housing a foil air journal bearing. The structures are designed to accept any size foil journal bearing smaller than 63 mm (2.5 in.) in diameter. The bearing support structures are mounted to a 91- by 152-cm (3- by 5-ft) table and can be separated by as much as 122 cm (4 ft) and as little as 20 cm (8 in.) to accommodate a wide range of shaft sizes. In the initial configuration, a 9.5-cm (3.75-in.) impulse air turbine drives the test shaft. The impulse turbine, as well as virtually any number of "dummy" compressor and turbine disks, can be mounted on the shaft inboard or outboard of the bearings. This flexibility allows researchers to simulate various engine shaft configurations. The bearing support structures include a unique bearing mounting fixture that rotates to accommodate a laserbased alignment system. This can measure the misalignment of the bearing centers in each of 2 translational degrees of freedom and 2 rotational degrees of freedom. In the initial configuration, with roughly a 30.5-cm- (12-in.-) long shaft, two simulated aerocomponent disks, and two 50.8-cm (2-in.) foil journal bearings, the rig can operate at 65,000 rpm at room temperature. The test facility can measure shaft displacements in both the vertical and horizontal directions at each bearing location. Horizontal and vertical structural vibrations are monitored using accelerometers mounted on the bearing support structures. This information is used to determine system rotordynamic response, including critical speeds, mode shapes, orbit size and shape, and potentially the onset of instabilities. Bearing torque can be monitored as well to predict the power loss in the foil bearings. All of this information is fed back and forth between NASA and the foil bearing designers in an iterative fashion to converge on a final bearing and shaft design for a given engine application. In addition to its application development capabilities, the test rig offers several unique capabilities for basic bearing research. Using the laser alignment system mentioned earlier, the facility will be used to map foil air journal bearing performance. A known misalignment of increasing severity will be induced to determine the sensitivity of foil bearings to misalignment. Other future plans include oil-free integral starter generator testing and development, and dynamic load testing of foil journal bearings.
ERIC Educational Resources Information Center
Pafford, William N.
1970-01-01
Aluminum foil, because of its characteristics, can be used for many elementary science activities: demonstrating Archimedes Principle, how to reduce cohesion, reflection and mirror effect, fuse action, condensation, friction, and as containers and barriers. (BR)
Method of high-density foil fabrication
Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.
2003-12-16
A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurai, Tatsuyuki; Kohmura, Yoshiki; Takeuchi, Akihisa
2007-01-19
When beryllium is used in transmission X-ray optical elements for spatially coherent beams, speckles are usually observed in the transmission images. These speckles seem to be caused by defects either inside or on the surface of beryllium foil. We measured highly polished beryllium foil using two methods, X-ray computed tomography and X-ray shearing interferometry. The results indicate that observed speckle pattern is caused by many voids inside beryllium or inner low-density regions.
METHOD OF MEASURING THE INTEGRATED ENERGY OUTPUT OF A NEUTRONIC CHAIN REACTOR
Sturm, W.J.
1958-12-01
A method is presented for measuring the integrated energy output of a reactor conslsting of the steps of successively irradiating calibrated thin foils of an element, such as gold, which is rendered radioactive by exposure to neutron flux for periods of time not greater than one-fifth the mean life of the induced radioactlvity and producing an indication of the radioactivity induced in each foil, each foil belng introduced into the reactor immediately upon removal of its predecessor.
Visualization and Measurement of the Deflagration of JA2 Bonded to Various Metal Foils
2016-01-01
Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by other... design tools. There are numerous design parameters, including 1) the wires’ thermophysical properties and diameter(s), 2) their quantity, spacing, and...gasified by combustion. This is suggested by Figs. 7 and 8, which present posttest examinations of 2- and 3-mil-thick foils. On the 2-mil-thick Cu foils, a
Development, fabrication and evaluation of composite thermal engine insulation
NASA Technical Reports Server (NTRS)
1973-01-01
Foil enclosure configurations of 10 variations were fabricated and evaluated. A discussion of the thermal protection system panel design includes: (1) description of 3DSX/foil concept, (2) design environment, (3) material selection, (4) fabrication enclosure, (5) structural design, (6) thermal sizing, and (7) weight analysis. The structural design study includes foil evaluation, venting pressure loads, thermomechanical behavior, and enclosure venting (burst) pressure tests. Results of experimental demonstrations of performance and reuse capabilities are given for both thermal and acoustic testing.
Steel Foil Improves Performance Of Blasting Caps
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Perry, Ronnie; Schimmel, Morry L.
1990-01-01
Blasting caps, which commonly include deep-drawn aluminum cups, give significantly higher initiation performance by application of steel foils on output faces. Steel closures 0.005 in. (0.13 mm) thick more effective than aluminum. Caps with directly bonded steel foil produce fragment velocities of 9,300 ft/s (2.8 km/s) with large craters and unpredictable patterns to such degree that no attempts made to initiate explosions. Useful in military and aerospace applications and in specialized industries as mining and exploration for oil.
Ji, Bifa; Zhang, Fan; Sheng, Maohua; Tong, Xuefeng; Tang, Yongbing
2017-02-01
A novel battery configuration based on an aluminum foil anode and a conventional cathode is developed. The aluminum foil plays a dual role as both the active anode material and the current collector, which enhances the energy density of the packaged battery, and reduces the production cost. This generalized battery configuration has high potential for application in next-generation lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of oxide particles on the stabilization and final microstructure in aluminium
Bachmaier, Andrea; Pippan, Reinhard
2011-01-01
Bulk aluminium samples containing alumina particles have been produced by different severe plastic deformation methods. Aluminium foils with different initial foil thicknesses were cold rolled to different amounts of strain and aluminium powders were consolidated and deformed by high pressure torsion (HPT). During processing, alumina particles from the foil or particle surface are easily incorporated and dispersed in the bulk material. The influence of these alumina particles on the developing microstructures and the mechanical properties has been studied. PMID:21976787
Real-time simulator for designing electron dual scattering foil systems.
Carver, Robert L; Hogstrom, Kenneth R; Price, Michael J; LeBlanc, Justin D; Pitcher, Garrett M
2014-11-08
The purpose of this work was to develop a user friendly, accurate, real-time com- puter simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator allows for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator also is a powerful educational tool. The simulator consists of an analytical algorithm for calculating electron fluence and X-ray dose and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with the reduced Gaussian formalism for scattering powers. The simulator also estimates central-axis and off-axis X-ray dose arising from the dual foil system. Once the geometry of the accelerator is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scat- tering foil material and Gaussian shape (thickness and sigma), and beam energy. The off-axis electron relative fluence or total dose profile and central-axis X-ray dose contamination are computed and displayed in real time. The simulator was validated by comparison of off-axis electron relative fluence and X-ray percent dose profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV, using present foils on an Elekta radiotherapy accelerator, the simulator was able to reproduce MC profiles to within 2% out to 20 cm from the central axis. The central-axis X-ray percent dose predictions matched measured data to within 0.5%. The calculation time was approximately 100 ms using a single Intel 2.93 GHz processor, which allows for real-time variation of foil geometrical parameters using slider bars. This work demonstrates how the user-friendly GUI and real-time nature of the simulator make it an effective educational tool for gaining a better understanding of the effects that various system parameters have on a relative dose profile. This work also demonstrates a method for using the simulator as a design tool for creating custom dual scattering foil systems in the clinical range of beam energies (6-20 MeV).
A large surface neutron and photon detector for civil security applications
NASA Astrophysics Data System (ADS)
De Vita, R.; Ambi, F.; Battaglieri, M.; Osipenko, M.; Piombo, D.; Ricco, G.; Ripani, M.; Taiuti, M.
2010-05-01
The security of ports and transportation is of utmost importance for the development of economy and the security of a nation. Among the necessary actions to ensure the security of ports and borders, the inspection of containers is one of the most time consuming and expensive procedures. Potential threats are the illegal traffic of radioactive materials that could be employed for the construction of weapons, as uranium and plutonium. New techniques for the inspections of containers should be fast, allow the detection and identification of dangerous materials, and be non-invasive, to reduce costs and delays. We propose to build a large surface photon and neutron detector based on plastic scintillator to identify the presence of fissile or fertile material inside a container. The detector consists of scintillator bars, wrapped in thin foils of reflecting material containing gadolinium for neutron capture and arranged in planes separated by few-millimeter-thick lead sheets. The total instrumented surface is a few squared meters. Neutrons emitted by fissile materials are identified by gadolinium capture, which results in a high multiplicity gamma flash with total energy of 8 MeV. Photons emitted by the same source are detected via their Compton interaction in the scintillating material. The discrimination between photons and neutrons is achieved by measuring the number of bars of the detector that measured a signal above threshold. The resulting multiplicity is a clear signature of the particle type. First simulations of the detector response with GEANT4 have shown that a detection efficiency of 20-30% for neutrons emitted by fissile materials and a photon/neutron rejection ratio of more than two orders of magnitude can be achieved. Based on these simulations, the sensitivity of the detector to known amounts of plutonium and uranium was estimated. In this contribution, the conceptual design of the detector will be reviewed, the results of the simulations will be presented and the plan of measurements to be performed on a prototype will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James A. Smith; Jeffrey M. Lacy; Barry H. Rabin
12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEUmore » to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser shock.« less
Applications of beam-foil spectroscopy to atomic collisions in solids
NASA Technical Reports Server (NTRS)
Sellin, I. A.
1976-01-01
Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.
Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current
Gao, Lan; Ji, Hantao; Fiksel, Gennady; ...
2016-04-15
Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ~ 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ~ 3 x 10 16 W/cm 2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ~ 40-50 T magnetic fields at the center of the coil ~ 3-4 ns after laser irradiation. In conclusion, themore » experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.« less
Induction of subterahertz surface waves on a metal wire by intense laser interaction with a foil
NASA Astrophysics Data System (ADS)
Teramoto, Kensuke; Inoue, Shunsuke; Tokita, Shigeki; Yasuhara, Ryo; Nakamiya, Yoshihide; Nagashima, Takeshi; Mori, Kazuaki; Hashida, Masaki; Sakabe, Shuji
2018-02-01
We have demonstrated that a pulsed electromagnetic wave (Sommerfeld wave) of subterahertz frequency and 11-MV/m field strength can be induced on a metal wire by the interaction of an intense femtosecond laser pule with an adjacent metal foil at a laser intensity of 8.5 × 1018W /c m2 . The polarity of the electric field of this surface wave is opposite to that obtained by the direct interaction of the laser with the wire. Numerical simulations suggest that an electromagnetic wave associated with electron emission from the foil induces the surface wave. A tungsten wire is placed normal to an aluminum foil with a gap so that the wire is not irradiated and damaged by the laser pulse, thus making it possible to generate surface waves on the wire repeatedly.
Solid Lubricants for Oil-Free Turbomachinery
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2005-01-01
Recent breakthroughs in gas foil bearing solid lubricants and computer based modeling has enabled the development of revolulionary Oil-Free turbomachinery systems. These innovative new and solid lubricants at low speeds (start-up and shut down). Foil bearings are hydrodynamic, self acting fluid film bearings made from thin, flexible sheet metal foils. These thin foils trap a hydrodynamic lubricating air film between their surfaces and moving shaft surface. For low temperature applications, like ainrafl air cycle machines (ACM's), polymer coatings provide important solid lubrication during start-up and shut down prior to the development of the lubricating fluid film. The successful development of Oil-Free gas turbine engines requires bearings which can operate at much higher temperatures (greater than 300 C). To address this extreme solid lubrication need, NASA has invented a new family of compostie solid lubricant coatings, NASA PS300.
Numerical study on the power extraction performance of a flapping foil with a flexible tail
NASA Astrophysics Data System (ADS)
Wu, J.; Shu, C.; Zhao, N.; Tian, F.-B.
2015-01-01
The numerical study on the power extraction performance of a flapping foil with a flexible tail is performed in this work. A NACA0015 airfoil is arranged in a two-dimensional laminar flow and imposed with a synchronous harmonic plunge and pitch rotary motion. A flat plate that is attached to the trailing edge of the foil is utilized to model a tail, and so they are viewed as a whole for the purpose of power extraction. In addition, the tail either is rigid or can deform due to the exerted hydrodynamic forces. To implement numerical simulations, an immersed boundary-lattice Boltzmann method is employed. At a Reynolds number of 1100 and the position of the pitching axis at third chord, the influences of the mass and flexibility of the tail as well as the frequency of motion on the power extraction are systematically examined. It is found that compared to the foil with a rigid tail, the efficiency of power extraction for the foil with a deformable tail can be improved. Based on the numerical analysis, it is indicated that the enhanced plunging component of the power extraction, which is caused by the increased lift force, directly contributes to the efficiency improvement. Since a flexible tail with medium and high masses is not beneficial to the efficiency improvement, a flexible tail with low mass together with high flexibility is recommended in the flapping foil based power extraction system.
200 kj copper foil fuses. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClenahan, C.R.; Goforth, J.H.; Degnan, J.H.
1980-04-01
A 200-kJ, 50-kV capacitor bank has been discharged into 1-mil-thick copper foils immersed in fine glass beads. These foils ranged in length from 27 to 71 cm and in width from 15 to 40 cm. Voltage spikes of over 250 kV were produced by the resulting fuse behavior of the foil. Moreover, the current turned off at a rate that was over 6 times the initial bank dI/dt. Full widths at half maxima for the voltage and dI/dt spikes were about 0.5 microsec, with some as short as 300 nanosec. Electrical breakdown was prevented in all but one size fuzemore » with maximum applied fields of 7 kV/cm. Fuses that were split into two parallel sections have been tested, and the effects relative to one-piece fuses are much larger than would be expected on the basis of inductance differences alone. A resistivity model for copper foil fuses, which differs from previous work in that it includes a current density dependence, has been devised. Fuse behavior is predicted with reasonable accuracy over a wide range of foil sizes by a quasi-two-dimensional fuse code that incorporates this resistivity model. A variation of Maisonnier's method for predicting optimum fuze size has been derived. This method is valid if the risetime of the bank exceeds 3 microsec, in which case it can be expected to be applicable over a wide range of peak current densities.« less
Simultaneous schlieren photography and soot foil in the study of detonation phenomena
NASA Astrophysics Data System (ADS)
Kellenberger, Mark; Ciccarelli, Gaby
2017-10-01
The use of schlieren photography has been essential in unravelling the complex nature of high-speed combustion phenomena, but its line-of-sight integration makes it difficult to decisively determine the nature of multi-dimensional combustion wave propagation. Conventional schlieren alone makes it impossible to determine in what plane across the channel an observed structure may exist. To overcome this, a technique of simultaneous high-speed schlieren photography and soot foils was demonstrated that can be applied to the study of detonation phenomena. Using a kerosene lamp, soot was deposited on a glass substrate resulting in a semi-transparent sheet through which schlieren source light could pass. In order to demonstrate the technique, experiments were carried out in mixtures of stoichiometric hydrogen-oxygen at initial pressures between 10 and 15 kPa. Compared to schlieren imaging obtained without a sooted foil, high-speed video results show schlieren images with a small reduction of contrast with density gradients remaining clear. Areas of high temperature cause soot lofted from the foil to incandescence strongly, resulting in the ability to track hot spots and flame location. Post-processing adjustments were demonstrated to make up for camera sensitivity limitations to enable viewing of schlieren density gradients. High-resolution glass soot foils were produced that enable direct coupling of schlieren video to triple-point trajectories seen on the soot foils, allowing for the study of three-dimensional propagation mechanisms of detonation waves.
NASA Astrophysics Data System (ADS)
Adrich, Przemysław
2016-05-01
In Part I of this work existing methods and problems in dual foil electron beam forming system design are presented. On this basis, a new method of designing these systems is introduced. The motivation behind this work is to eliminate the shortcomings of the existing design methods and improve overall efficiency of the dual foil design process. The existing methods are based on approximate analytical models applied in an unrealistically simplified geometry. Designing a dual foil system with these methods is a rather labor intensive task as corrections to account for the effects not included in the analytical models have to be calculated separately and accounted for in an iterative procedure. To eliminate these drawbacks, the new design method is based entirely on Monte Carlo modeling in a realistic geometry and using physics models that include all relevant processes. In our approach, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of the system performance in function of parameters of the foils. The new method, while being computationally intensive, minimizes the involvement of the designer and considerably shortens the overall design time. The results are of high quality as all the relevant physics and geometry details are naturally accounted for. To demonstrate the feasibility of practical implementation of the new method, specialized software tools were developed and applied to solve a real life design problem, as described in Part II of this work.
Precise method to determine points on isentropic release curve on copper
NASA Astrophysics Data System (ADS)
Remiot, C.; Mexmain, J. M.; Bonnet, L.
1996-05-01
When a higher shock impedance foil (with several hundreds of μm in thickness) is set on the studied material surface, the release phase occurs by steps, whose duration of each plateau corresponds to a go and return of the shock wave in the foil. Step velocity levels can be easily measured by D.L.I. technique. The intermediate velocity values, connected with the knowledge of the foil Hugoniot, allow us to determine a few points on the isentropic release curve. The experiments have been achieved on a two stage light gas gun with a projectile velocity varying from 1400 to 3000 m/s. The caliber of the launcher is 30 mm. For this study concerning copper, the target is composed of a 2 mm thickness copper transmitter on which the sample is mechanically held. The tungsten (W) thick foil is, under pressure, sticked on the sample with UV stick-cord. The free surface velocity measurement accuracy of the tungsten foil is 0.4% for values between 1500 to 3500 m/s. The first shock in the sample is varying from 40 to 120 GPa and the mass velocity from 800 to 2000 m/s. By impedance matching between the copper sample and the tungsten thick foil, we deduce for each experiment three points on the copper isentropic release curve and the final free surface velocity. The accuracy we obtain is in order of 0.4 GPa for the pressure and 10 m/s for the mass velocity.
A New Analysis Tool Assessment for Rotordynamic Modeling of Gas Foil Bearings
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; SanAndres, Luis
2010-01-01
Gas foil bearings offer several advantages over traditional bearing types that make them attractive for use in high-speed turbomachinery. They can operate at very high temperatures, require no lubrication supply (oil pumps, seals, etc.), exhibit very long life with no maintenance, and once operating airborne, have very low power loss. The use of gas foil bearings in high-speed turbomachinery has been accelerating in recent years, although the pace has been slow. One of the contributing factors to the slow growth has been a lack of analysis tools, benchmarked to measurements, to predict gas foil bearing behavior in rotating machinery. To address this shortcoming, NASA Glenn Research Center (GRC) has supported the development of analytical tools to predict gas foil bearing performance. One of the codes has the capability to predict rotordynamic coefficients, power loss, film thickness, structural deformation, and more. The current paper presents an assessment of the predictive capability of the code, named XLGFBTH (Texas A&M University). A test rig at GRC is used as a simulated case study to compare rotordynamic analysis using output from the code to actual rotor response as measured in the test rig. The test rig rotor is supported on two gas foil journal bearings manufactured at GRC, with all pertinent geometry disclosed. The resulting comparison shows that the rotordynamic coefficients calculated using XLGFBTH represent the dynamics of the system reasonably well, especially as they pertain to predicting critical speeds.
Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes
NASA Astrophysics Data System (ADS)
Zhao, Jie; Zhou, Guangmin; Yan, Kai; Xie, Jin; Li, Yuzhang; Liao, Lei; Jin, Yang; Liu, Kai; Hsu, Po-Chun; Wang, Jiangyan; Cheng, Hui-Ming; Cui, Yi
2017-10-01
Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed LixM (M = Si, Sn, or Al) nanoparticles encapsulated by large graphene sheets. With the protection of graphene sheets, the large and freestanding LixM/graphene foils are stable in different air conditions. With fully expanded LixSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). This foil is also paired with high-capacity Li-free V2O5 and sulfur cathodes to achieve stable full-cell cycling.
Fragmentation of copper current collectors in Li-ion batteries during spherical indentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan
Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of themore » Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.« less
Fragmentation of copper current collectors in Li-ion batteries during spherical indentation
Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; ...
2017-08-29
Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of themore » Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.« less
Scattering effects in passive foil focusing of ion beams
Yuen, Albert; Lund, Steven M.; Barnard, John J.; ...
2015-09-11
A stack of thin, closely spaced conducting foils has been investigated by Lund et al. [ Phys. Rev. ST Accel. Beams 16, 044202 (2013)] as a passive focusing lens for intense ion beams. The foils mitigate space-charge defocusing forces to enable the beam self-magnetic field to focus. In this study, we analyze possible degradation of focusing due to scattering of beam ions resulting from finite foil thickness using an envelope model and numerical simulations with the particle-in-cell code WARP. Ranges of kinetic energy where scattering effects are sufficient to destroy passive focusing are quantified. The scheme may be utilized tomore » focus protons produced in intense laser-solid accelerator schemes. The spot size of an initially collimated 30 MeV proton beam with initial rms radius 200 μm, perveance Q=1.8×10 -2, and initial transverse emittance ϵ x,rms=0.87 mm mrad propagating through a stack of 6.4 μm thick foils, spaced 100 μm apart, gives a 127.5 μm spot with scattering and a 81.0 μm spot without scattering, illustrating the importance of including scattering effects.« less
Small scale mechanical characterization of thin foil materials via pin load microtesting
Wheeler, Robert; Pandey, Amit; Shyam, Amit; ...
2015-05-06
In situ scanning electron microscope (SEM) experiments, where small-scale mechanical tests are conducted on micro- and nanosized specimens, allow direct visualization of elastic and plastic responses over the entirety of the volume being deformed. This enables precise spatial and temporal correlation of slip events contributing to the plastic flow evidenced in a stress–strain curve. A new pin-loading methodology has been employed, in situ within the SEM, to conduct microtensile tests on thin polycrystalline metal foils. This approach can be tailored to a specific foil whose particular grain size may range from microns to tens of microns. Manufacture of the specializedmore » pin grip was accomplished via silicon photolithography-based processing followed by subsequent focused ion beam finishing. Microtensile specimen preparation was achieved by combining a stencil mask methodology employing broad ion beam sputtering along with focused ion beam milling in the study of several metallic foil materials. Finite-element analyses were performed to characterize the stress and strain distributions in the pin grip and micro-specimen under load. Furthermore, under appropriately conceived test conditions, uniaxial stress–strain responses measured within these foils by pin-load microtensile testing exhibit properties consistent with larger scale tests.« less
Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes
Zhao, Jie; Zhou, Guangmin; Yan, Kai; ...
2017-07-10
Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by largemore » graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.« less
Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jie; Zhou, Guangmin; Yan, Kai
Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by largemore » graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.« less
Evaluation of Advanced Solid Lubricant Coatings for Foil Air Bearings Operating at 25 and 500 C
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Fellenstein, James A.; Benoy, Patricia A.
1998-01-01
The tribological properties of one chrome oxide and one chrome carbide based solid lubricant coating were evaluated in a partial-arc foil bearing at 25 and 500 C. Start/stop bearing operation up to 20,000 cycles were run under 10 kPa (1.5 psi) static deadweight load. Bearing friction (torque) was measured during the test. Specimen wear and SEM/EDS surface analyses were conducted after testing to understand and elucidate the tribological characteristics observed. The chrome oxide coating which contains both (Ag) and (BaF2/CaF2) for low and high temperature lubrication, exhibited low friction in sliding against Al2O3 coated foils at 25 and 500 C. The chrome carbide coating, which lacked a low temperature lubricant but contained BaF2/CaF2 as a high temperature lubricant, exhibited high friction at 25 C and low friction at 500 C against both bare and Al2O3 coated superalloy foil surfaces. Post test surface analyses suggest that improved tribological performance is exhibited when a lubricant film from the coating transfers to the foil surface.
Force Generation by Flapping Foils
NASA Astrophysics Data System (ADS)
Bandyopadhyay, P. R.; Donnelly, M.
1996-11-01
Aquatic animals like fish use flapping caudal fins to produce axial and cross-stream forces. During WW2, German scientists had built and tested an underwater vehicle powered by similar flapping foils. We have examined the forces produced by a pair of flapping foils. We have examined the forced produced by a pair of flapping foils attached to the tail end of a small axisymmetric cylinder. The foils operate in-phase (called waving), or in anti-phase (called clapping). In a low-speed water tunnel, we have undertaken time-dependent measurements of axial and cross-stream forces and moments that are exerted by the vortex shedding process over the entire body. Phase-matched LDV measurements of vorticity-velocity vectors, as well as limited flow visualization of the periodic vortex shedding process have also been carried out. The direction of the induced velocity within a pair of shed vortices determines the nature of the forces produced, viz., thrust or drag or cross-stream forces. The clapping mode produces a widely dispersed symmetric array of vortices which results in axial forces only (thrust and rag). On the other hand, the vortex array is staggered in the waving mode and cross-stream (maneuvering) forces are then generated.
Foil bearing performance in liquid nitrogen and liquid oxygen
NASA Technical Reports Server (NTRS)
Genge, Gary G.; Saville, Marshall; Gu, Alston
1993-01-01
Space transfer vehicles and other power and propulsion systems require long-life turbopumps. Rolling-element bearings used in current turbopumps do not have sufficient life for these applications. Process fluid foil bearings have established long life, with exceptional reliability, over a wide range of temperatures and fluids in many high-speed turbomachinery applications. However, actual data on bearing performance in cryogenic fluids has been minimal. The National Aeronautics and Space Administration (NASA) and AlliedSignal Aerospace Systems and Equipment (ASE) have attempted to characterize the leaf-type compliant foil bearing in oxygen and nitrogen. The work performed under a joint internal research and development program between Marshall Space Flight Center (MSFC) and ASE demonstrated that the foil bearing has load capacities of at least 266 psi in liquid oxygen and 352 psi in liquid nitrogen. In addition, the bearing demonstrated a direct damping coefficient of 40 to 50 lb-sec/in. with a damping ratio of .7 to 1.4 in. liquid nitrogen using a bearing sized for upper-stage turbopumps. With the results from this testing and the years of successful use in air cycle machines and other applications, leaf-type compliant foil bearings are ready for testing in liquid oxygen turbopumps.
[Implants with 32P-foils for LDR-brachytherapy of benign stenosis in urology and gastroenterology].
Assmann, Walter; Becker, Ricarda; Otto, Henrike; Bader, Markus; Clemente, Lucas; Reinhardt, Sabine; Schäfer, Claus; Schirra, Jörg; Uschold, Stephanie; Welzmüller, Andreas; Sroka, Ronald
2013-02-01
For LDR-brachytherapy, a limited number of implant geometries and materials are available. To avoid wound healing related hyper-proliferation (stenosis, keloids) a novel radioactive foil system was developed based on beta emitting (32)P, which can be easily integrated in existing implants such as urethral catheters or bile duct stents. As substrate material for these foils PEEK (polyetherethercetone) was chosen because of its radiation hardness during neutron activation of (32)P. The activity was determined by liquid scintillation counting and gamma spectroscopy, dose distributions were measured with scintillation detectors and radiochromic films. The correlation between activity and dose was checked by Monte-Carlo-simulations (Geant4). Prototypes of the (32)P-implants have shown in wash-out tests the required tightness for sealed radioactive sources. In animal tests on urethra and bile duct, the uncomplicated and save application of (32)P-foils mounted on standard implants has been demonstrated, which is almost unchanged due to the simple radiation protection with plexiglass. This concept of radioactive implants with integrated (32)P-foils could extend essentially the application possibilities of LDR-brachytherapy. Copyright © 2012. Published by Elsevier GmbH.
Acceleration of planar foils by the indirect-direct drive scheme
NASA Astrophysics Data System (ADS)
Honrubia, J. J.; Martínez-Val, J. M.; Bocher, J. L.; Faucheux, G.
1996-05-01
We have investigated the hydrodynamic response of plastic and aluminum foils accelerated by a pulse formed by an x-ray prepulse followed by the main laser pulse. This illumination scheme, so-called indirect-direct drive scheme, has been proposed as an alternative to the direct and indirect drive. The advantages of such a scheme are that it can contribute to solve the problem of uniformity of the direct drive and, at the same time, it can be much more efficient and use simpler targets than the indirect-drive. Experiments about this hybrid drive scheme have been performed at Limeil with the PHEBUS facility and the standard experimental set-up and diagnostics. The agreement between experiments and simulations is good for quantities such as the energy of the laser converted into x-rays and the burnthrough time of the converter foil. To simulate the full hydrodynamic evolution of the converter and target foils separated a distance of 1 mm, 2-D effects should be taken into account. The basic goals have been to check the simulation codes developed by the Institute of Nuclear Fusion and to determine the hydrodynamic response of the target foil to the hybrid pulse. These goals have been fulfilled.
Flow over a traveling wavy foil with a passively flapping flat plate
NASA Astrophysics Data System (ADS)
Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun
2012-05-01
Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.
Pulsed particle beam vacuum-to-air interface
Cruz, G.E.; Edwards, W.F.
1987-06-18
A vacuum-to-air interface is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve, from which extends a vacuum-tight duct, that terminates in an aperture. Means are provided for periodically advancing a foil strip across the aperture at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band urges foil strip, when stationary, against and into the aperture. Gas pressure means periodically lift off and separate foil strip from aperture, so that it may be readily advanced. 5 figs.
Pegoraro, F; Bulanov, S V
2007-08-10
The stability of a thin plasma foil accelerated by the radiation pressure of a high intensity electromagnetic (e.m.) pulse is investigated analytically and with particle in cell numerical simulations. It is shown that the onset of a Rayleigh-Taylor-like instability can lead to transverse bunching of the foil and to broadening of the energy spectrum of fast ions. The use of a properly tailored e.m. pulse with a sharp intensity rise can stabilize the foil acceleration.
1990-05-01
J3 w c’f oz us~ w - 0n fn 00:1 0 Ic 0 L o 0j 0 0I LL 0 Iof the less than adequate reliability of the earlier Exploding Foil Initiator ( EFI ) design...Action and Alternatives EFI Exploding Foil Initiator Environmental Assessment (EA) A concise public document in which a Federal agency provides...Interceptor (GBI) firing unit (the Explosive Foil Initiator ) was built and tested, it operated unreliably. Many hardware development problems were
Compressor ported shroud for foil bearing cooling
Elpern, David G [Los Angeles, CA; McCabe, Niall [Torrance, CA; Gee, Mark [South Pasadena, CA
2011-08-02
A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.
Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.
1999-06-29
A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.
NASA Astrophysics Data System (ADS)
Korsukov, V. E.; Malygin, G. A.; Korsukova, M. M.; Nyapshaev, I. A.; Obidov, B. A.
2015-12-01
Thin platinum foils and metallic glass ribbons with a fractal surface consisting of different-scale unidirectionally oriented ripples have been fabricated using special thermoplastic processing. The general fractal dimension of the rippled surface and dimensions along and across the ripples have been measured. The optical spectra of a PRK-4 lamp using rippled Pt(111) foils as reflective diffraction gratings have been determined. A model describing the mechanism of the formation of surface unidirectional fractal structures during deformation has been proposed.
Flexible phosphorescent OLEDs on metal foil for military and commercial applications
NASA Astrophysics Data System (ADS)
Chwang, Anna; Lu, JengPing; Shih, Chinwen; Tung, Yeh-Jiun; Hewitt, Richard; Hack, Michael; Ho, Jackson; Brown, Julie
2005-05-01
We report recent advances in the development of low power consumption, emissive, flexible active matrix displays through integration of top emitting phosphorescent OLED (T-PHOLED) and poly-Si TFT backplane technologies. The displays are fabricated on flexible stainless steel foil. The T-PHOLEDs are based on UDC phosphorescent OLED technology, and the backplane is based on PARC's Excimer Laser Annealed (ELA) poly-Si TFT process. We also present progress in operational lifetime of encapsulated T-PHOLED pixels on planarized metal foil and discuss PHOLED encapsulation strategy.
Schlyer, David J.; Ferrieri, Richard A.; Koehler, Conrad
1999-01-01
A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.
Electric current heating calibration of a laser holographic nondestructive test system
NASA Technical Reports Server (NTRS)
Liu, H.-K.; Kurtz, R. L.
1975-01-01
Holographic NDT was used to measure small surface displacements controlled by electric heating by detecting the difference of the interference fringe patterns as viewed through the hologram on a real time basis. A perforated aluminum test plate, with the holes used to position thin metal foils, was used in the experiment. One of the foils was connected to an electric power source and small displacements of the foil were caused and controlled by Ohmic heating. An He-Ne laser was used to perform the holography.
Flapping foil power generator performance enhanced with a spring-connected tail
NASA Astrophysics Data System (ADS)
Liu, Zhengliang; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.
2017-12-01
The flexibility effects on the performance of a flapping foil power generator are numerically studied by using the immersed boundary-lattice Boltzmann method at a Reynolds number of 1100. The flapping foil system consists of a rigid NACA0015 foil undergoing harmonic pitch and plunge motions and a passively actuated flat plate pinned to the trailing edge of the rigid foil. The flexibility is modeled by a torsional spring model at the conjuncture of the rigid foil and the tail. Here, a parametric study on mass density and natural frequency is conducted under the optimum kinematic condition of the rigid system identified from the literature and numerical simulations made for reduced frequency f* = 0.04-0.24 and pitch amplitude θ0 = 40°-90°. Four typical cases are discussed in detail by considering time histories of hydrodynamic loads and tail deformations under the optimal and non-optimal kinematic conditions. Results show that under the rigid-system optimal kinematic condition, a tail with appropriate mass density (μ = 0.60) and resonant frequency ( fr*=1.18 ) can improve the maximum efficiency by 7.24% accompanied by an increase of 6.63% in power compared to those of a rigid foil with a rigid tail. This is because the deflection of the tail reduces the low pressure region on the pressure surface (i.e., the lower surface during the upstroke or the upper surface during the downstroke) caused by the leading edge vortex after the stroke reversal, resulting in a higher efficiency. At high flapping frequencies, a spring-connected tail ( fr*=0.13 ) eliminates the large spike in the moment observed in high stiffness cases, reducing the power required for the pitch motion, resulting in 117% improvement in efficiency over that with a rigid tail at a reduced frequency of 0.24.
NASA Astrophysics Data System (ADS)
Civitani, M.; Ghigo, M.; Basso, S.; Proserpio, L.; Spiga, D.; Salmaso, B.; Pareschi, G.; Tagliaferri, G.; Burwitz, V.; Hartner, G.; Menz, B.; Bavdaz, M.; Wille, E.
2013-09-01
X-ray telescopes with very large collecting area, like the proposed International X-ray Observatory (IXO, with around 3 m2 at 1 keV), need to be composed of a large number high quality mirror segments, aiming at achieving an angular resolution better than 5 arcsec HEW (Half-Energy-Width). A possible technology to manufacture the modular elements that will compose the entire optical module, named X-ray Optical Units (XOUs), consists of stacking in Wolter-I configuration several layers of thin foils of borosilicate glass, previously formed by hot slumping. The XOUs are subsequently assembled to form complete multi-shell optics with Wolter-I geometry. The achievable global angular resolution of the optic relies on the required surface shape accuracy of slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments. The Brera Astronomical Observatory (INAF-OAB) is leading a study, supported by ESA, concerning the implementation of the IXO telescopes based on thin slumped glass foils. In addition to the opto-mechanical design, the study foresees the development of a direct hot slumping thin glass foils production technology. Moreover, an innovative assembly concept making use of Wolter-I counter-form moulds and glass reinforcing ribs is under development. The ribs connect pairs of consecutive foils in an XOU stack, playing a structural and a functional role. In fact, as the ribs constrain the foil profile to the correct shape during the bonding, they damp the low-frequency profile errors still present on the foil after slumping. A dedicated semirobotic Integration MAchine (IMA) has been realized to this scope and used to build a few integrated prototypes made of several layers of slumped plates. In this paper we provide an overview of the project, we report the results achieved so far, including full illumination intra-focus X-ray tests of the last integrated prototype that are compliant with a HEW of around 17''.
ERIC Educational Resources Information Center
Sunal, Dennis W., Ed.; Tracy, Dyanne M., Ed.
1992-01-01
Presents activities to supplement lessons on length and mass measurement or as part of a unit on atoms or orders of magnitude. Provides a lesson plan using aluminum foil to estimate unit measures, calculate the foil's thickness, and do an atom count. (MDH)
Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lan; Ji, Hantao; Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543
2016-04-15
Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ∼1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ∼3 × 10{sup 16 }W/cm{sup 2}. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ∼40–50 T magnetic fields at the center of the coil ∼3–4 ns after laser irradiation. The experiments provide significant insight for future target designs that aim tomore » develop a powerful source of external magnetic fields for various applications in high-energy-density science.« less
Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils.
Debord, J Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A; Verkhoturov, Stanislav V; Schweikert, Emile A
2012-04-12
Carbon cluster emission from thin carbon foils (5-40 nm) impacted by individual Au(n) (+q) cluster projectiles (95-125 qkeV, n/q = 3-200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function of projectile size, energy, and target thickness. A key finding is that the massive cluster impact develops very differently from that of a small polyatomic projectile. The range of the 125 qkeV Au(100q) (+q) (q ≈ 4) projectile is estimated to be 20 nm (well beyond the range of an equal velocity Au(+)) and projectile disintegration occurs at the exit of even a 5 nm thick foil.
Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils
DeBord, J. Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A.; Verkhoturov, Stanislav V.; Schweikert, Emile A.
2012-01-01
Carbon cluster emission from thin carbon foils (5–40 nm) impacted by individual Aun+q cluster projectiles (95–125 qkeV, n/q = 3–200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function of projectile size, energy, and target thickness. A key finding is that the massive cluster impact develops very differently from that of a small polyatomic projectile. The range of the 125 qkeV Au100q+q (q ≈ 4) projectile is estimated to be 20 nm (well beyond the range of an equal velocity Au+) and projectile disintegration occurs at the exit of even a 5 nm thick foil. PMID:22888385
Porus electrode comprising a bonded stack of pieces of corrugated metal foil
NASA Technical Reports Server (NTRS)
Mccallum, J. (Inventor)
1973-01-01
An electrode suitable for use in an electrochemical cell is described. The electrode is composed of a porous conductive support with a bonded stack of pieces of thin corrugated nickel foil where the corrugations are oriented approximately perpendicular to the sides of the electrode and form an array of passages through the electrode. Active material such as cadmium hydroxide or nickel hydroxide is uniformly distributed within the passages. The support may comprise also a piece of thin flat nickel foil between adjacent pieces of the corrugated foil, forming a barrier between the passages formed on each side of it. Typically the corrugations in the odd corrugated layers are oriented at a small angle from the perpendicular in one direction and the corrugations in the even corrugated layers are oriented at a small angle from the perpendicular in the opposite direction.
High fidelity studies of exploding foil initiator bridges, Part 2: Experimental results
NASA Astrophysics Data System (ADS)
Neal, William; Bowden, Mike
2017-01-01
Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA MHD, it is now possible to simulate these components in three dimensions and predict greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this second paper of a three part study, data is presented from a flexible foil EFI header experiment. This study has shown that there is significant bridge expansion before time of peak voltage and that heating within the bridge material is spatially affected by the microstructure of the metal foil.
Thermal Analysis and Design of Multi-layer Insulation for Re-entry Aerodynamic Heating
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
2001-01-01
The combined radiation/conduction heat transfer in high-temperature multi-layer insulations was modeled using a finite volume numerical model. The numerical model was validated by comparison with steady-state effective thermal conductivity measurements, and by transient thermal tests simulating re-entry aerodynamic heating conditions. A design of experiments technique was used to investigate optimum design of multi-layer insulations for re-entry aerodynamic heating. It was found that use of 2 mm foil spacing and locating the foils near the hot boundary with the top foil 2 mm away from the hot boundary resulted in the most effective insulation design. A 76.2 mm thick multi-layer insulation using 1, 4, or 16 foils resulted in 2.9, 7.2, or 22.2 percent mass per unit area savings compared to a fibrous insulation sample at the same thickness, respectively.
Laser shock microforming of aluminum foil with fs laser
NASA Astrophysics Data System (ADS)
Ye, Yunxia; Feng, Yayun; Xuan, Ting; Hua, Xijun; Hua, Yinqun
2014-12-01
Laser shock microforming of Aluminum(Al) foil through fs laser has been researched in this paper. The influences of confining layer, clamping method and impact times on induced dent depths were investigated experimentally. Microstructure of fs laser shock forming Al foil was observed through Transmission electron microscopy (TEM). Under the condition of tightly clamping, the dent depths increase with impact times and finally tend to saturating. Another new confining layer, the main component of which is polypropylene, was applied and the confining effect of it is better because of its higher impedance. TEM results show that dislocation is one of the main deformation mechanisms of fs laser shock forming Al foil. Specially, most of dislocations exist in the form of short and discrete dislocation lines. Parallel straight dislocation slip line also were observed. We analyzed that these unique dislocation arrangements are due to fs laser-induced ultra high strain rate.
Foil Bearing Coating Behavior in CO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Matthew; Kruizenga, Alan Michael; Pasch, James Jay
2017-08-01
The Sandia S-CO 2 Recompression Closed Brayton Cycle (RCBC) utilizes a series of gas foil bearings in its turbine-alternator-compressors. At high shaft rotational speed these bearings allow the shaft to ride on a cushion of air. Conversely, during startup and shutdown, the shaft rides along the foil bearing surface. Low-friction coatings are used on bearing surfaces in order to facilitate rotation during these periods. An experimental program was initiated to elucidate the behavior of coated bearing foils in the harsh environments of this system. A test configuration was developed enabling long duration exposure tests, followed by a range of analysesmore » relevant to their performance in a bearing. This report provides a detailed overview of this work. The results contained herein provide valuable information in selecting appropriate coatings for more advanced future bearing-rig tests at the newly established test facility in Sandia-NM.« less
A Recovery Process of Active Cathode Paste from Spent Li-Ion Batteries
NASA Astrophysics Data System (ADS)
Toma, C. M.; Ghica, G. V.; Buzatu, M.; Petrescu, M. I.; Vasile, E.; Iacob, G.
2017-06-01
In this work, the depleted active paste from spent lithium-ion batteries was separated from cathode by means of ultrasonic vibration. First the unit cells were discharged in brine at room temperature, for safety reasons. Then anode, separator, electrolyte and cathode were separated. Spent Li-Ion batteries were introduced into a washing container to separate electrode materials from their support substrate: active paste (lithium cobalt oxide - LiCoO2) from cathode (Al foil) and graphite from anode (Cu foil). The Al foil and Cu foil were also recovered. A cleaning efficiency of 91% was achieved using a solution of 1.5 M acetic acid after a 6 minute time of exposure into an ultrasonic washing container with a frequency and electric power of 50 kHz and 50 W, respectively. The XRD patterns and the morphology of LiCoO2 powder were presented.
Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; ...
2015-10-01
Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madito, M. J.; Bello, A.; Dangbegnon, J. K.
2016-01-07
A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupledmore » plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.« less
Effects of laser power density and initial grain size in laser shock punching of pure copper foil
NASA Astrophysics Data System (ADS)
Zheng, Chao; Zhang, Xiu; Zhang, Yiliang; Ji, Zhong; Luan, Yiguo; Song, Libin
2018-06-01
The effects of laser power density and initial grain size on forming quality of holes in laser shock punching process were investigated in the present study. Three different initial grain sizes as well as three levels of laser power densities were provided, and then laser shock punching experiments of T2 copper foil were conducted. Based upon the experimental results, the characteristics of shape accuracy, fracture surface morphology and microstructures of punched holes were examined. It is revealed that the initial grain size has a noticeable effect on forming quality of holes punched by laser shock. The shape accuracy of punched holes degrades with the increase of grain size. As the laser power density is enhanced, the shape accuracy can be improved except for the case in which the ratio of foil thickness to initial grain size is approximately equal to 1. Compared with the fracture surface morphology in the quasistatic loading conditions, the fracture surface after laser shock can be divided into three zones including rollover, shearing and burr. The distribution of the above three zones strongly relates with the initial grain size. When the laser power density is enhanced, the shearing depth is not increased, but even diminishes in some cases. There is no obvious change of microstructures with the enhancement of laser power density. However, while the initial grain size is close to the foil thickness, single-crystal shear deformation may occur, suggesting that the ratio of foil thickness to initial grain size has an important impact on deformation behavior of metal foil in laser shock punching process.
NASA Astrophysics Data System (ADS)
Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.
2016-01-01
A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.
Organic Adsorption Capacity of Aluminum for Potential Mars Sample Return Contamination Analysis
NASA Astrophysics Data System (ADS)
Skoog, E. J.; Tuite, M. L., Jr.; Williford, K. H.
2017-12-01
The NASA Mars 2020 rover will sample martian rock and regolith as it searches for biosignatures and chemical potential for life. Possible contamination of martian samples by Earth-derived organic and inorganic materials poses a challenge to the ultimate goal of determining whether features detected within samples are of martian origin. To address this issue, Mars 2020 will implement a contamination knowledge strategy that includes "witness blanks": special sample tubes that contain multiple "getter" materials designed to witness any ambient contamination in the environment during sampling events on Mars. One getter material being considered for use inside witness tubes is aluminum foil. Here we present data from a series of experiments to evaluate the capacity of aluminum foil to adsorb organics and release them by solvent extraction. Strips of clean aluminum foil were suspended in closed vials containing 0.15 mg of pyrene and heated to 50°C to provide a bounding case for ambient pyrene concentration. Another set of foil strips in vials was stored at -20°C to better simulate martian conditions. After ten weeks, these foil strips were exposed to pyrene at additive 15 minute increments to test the time dependence of pyrene adsorption at -20°C. Foil strips were removed from vials and subjected to solvent extraction gas chromatography mass spectrometry. Preliminary results suggest that the pyrene adsorption capacity of aluminum at 50°C is 1-10 ng/cm2 after 24 hours. Further research will test the adsorption capacity of aluminum at varying temperatures, varying times, and varying organic compositions.
Slumped glass foils as substrate for adjustable x-ray optics
NASA Astrophysics Data System (ADS)
Salmaso, Bianca; Basso, Stefano; Civitani, Marta; Ghigo, Mauro; Hołyszko, Joanna; Pelliciari, Carlo; Spiga, Daniele; Vecchi, Gabriele; Pareschi, Giovanni
2016-09-01
Thin glass modular mirrors are a viable solution to build future X-ray telescopes with high angular resolution and large collecting area. In our laboratories, we shape thin glass foils by hot slumping and we apply pressure to assist the replication of a cylindrical mould figure; this technology is coupled with an integration process able to damp low frequency errors and produces optics in the Wolter I configuration, typical for the X-ray telescopes. From the point of view of the hot slumping process, the efforts were focused in reducing low-, mid- and high- frequency errors of the formed Eagle glass foils. Some of our slumped glass foils were used for the development of active X-ray optics, where piezoelectric actuators are used to correct the slumped glass foil deviations from the ideal shape. In particular, they were used for the Adjustable X-raY optics for astrOnoMy project (AXYOM) developed in Italy, and the X-ray Surveyor mission, as developed at the Smithsonian Astrophysical Observatory / Center for Astrophysics (SAO/CfA) in USA. In this paper we describe the optimisation of the hot slumping process, comparing the results with the requirements of the considered active optics projects. Finally, since the present configuration of the Pennsylvania State University (PSU) coating equipment is limited to 100 x 100 mm2, the slumped glass foils used for the SAO project were cut from 200 x 200 mm2 to 100 x 100 mm2, and a low-frequency change was observed. A characterisation of the profile change upon cutting is presented.
Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.
2005-01-01
A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.
SR-XRD and SR-FTIR study of the alteration of silver foils in medieval paintings.
Salvadó, Nati; Butí, Salvador; Labrador, Ana; Cinque, Gianfelice; Emerich, Hermann; Pradell, Trinitat
2011-03-01
Altarpieces and polychrome carved wood from the fifteenth century AD usually exhibit golden and silvery areas by the application of a very thin foil of metal. The metal foils were normally protected from the atmosphere by a varnish or resin which maybe either preserved or absent. Moreover, they were glued to the background surface by adhesive substances (egg yolk, drying oil or animal glue). The high proportion of the glueing substances often renders the development of reaction compounds. With time, silver alters blacken or simply disappear completely. In this paper, we study the alterations to metal foils from a selection of fifteenth century artworks showing different glueing agents, organic coatings and several degrees of conservation of the organic coatings and metal leafs. The submillimetric layered structure and the high variability and low amount of most of the compounds present in the different layers, as well as their differing nature (organic and inorganic) make the use of micron-sensitive high-resolution techniques essential for their study. In particular, the high resolution, high brilliance and small footprint renders synchrotron radiation most adequate for their study. SR-XRD was performed to identify the reaction compounds formed in the different layers; μFTIR was used at to identify the silver protecting organic coatings, the metal foil glueing layers and the corresponding reaction compounds. The results obtained suggest that atmospheric corrosion is the dominant mechanism, and therefore that the degree of corrosion of the metal foils is mainly related to the conservation state of the protecting coatings.
Abrams, Michael S; Duncan, Candace L; McMurtrey, Ryan
2011-04-01
To document the development of motor fusion when patients with a history of strabismic amblyopia are treated part-time with Bangerter foils. This was a prospective interventional outcome study of consecutive patients with a history of strabismic amblyopia, horizontal strabismus (only) ≤20(∆), visual acuity of 20/60 or better in the nonfixating eye, and no motor fusion (as indicated by the absence of prism vergence) for 1 year before entry into the study. Subjects wore a 0.1 density Bangerter foil for 3-4 hours daily. Data on visual acuity, alignment, and motor fusion status were collected for a minimum of 2 years. Patients with motor fusion were then followed for a minimum of 18 months to assess the stability of their motor fusion status after the Bangerter foil was discontinued. Of the 46 patients meeting entry criteria (mean age, 5.3 ± 1.7 years) who completed follow-up, 28 (61%) developed motor fusion. Motor fusion was retained in all 17 patients who were followed after their foils were discontinued for a mean of 13.3 months. A child's motor fusion status is generally believed to be established during an early formative period of visual development. The development of motor fusion in many of our patients during the course of part-time Bangerter foil treatment suggests that improvements in motor fusion status can occur at a later age than previously believed. Copyright © 2011 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
Spes: An intense source of Neutron-Rich Radioactive Beams at Legnaro
NASA Astrophysics Data System (ADS)
Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Ballan, M.; Borgna, F.; D'Agostini, F.; Gramegna, F.; Prete, G.; Meneghetti, G.; Ferrari, M.; Zenoni, A.
2018-02-01
The Isotope Separation On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) is attracting significant interest in the worldwide nuclear physics community. Within this context the SPES (Selective Production of Exotic Species) RIB facility is now under construction at INFN LNL (Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro). This technique is established as one of the main techniques for high intensity and high quality beams production. The SPES facility will produce n-rich isotopes by means of a 40 MeV proton beam, emitted by a cyclotron, impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe the most important results obtained by the study of the on-line behavior of the SPES production target assembly. This target system will produce RIBs at a rate of about 1013 fissions per second, it will be able to dissipate a total power of up to 10 kW, and it is planned to work continuously for 2 week-runs of irradiation. ISOL beams of 24 different elements will be produced, therefore a target and ion source development is ongoing to ensure a great variety of produced isotopes and to improve the beam intensity and purity.
ERIC Educational Resources Information Center
Anderson, Thomas
1980-01-01
The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balachandran, U.
The purpose of this CRADA is to develop a fabrication process to reduce the manufacturing cost for a very compact, high temperature, film-on-foil high energy-density PLZT (Pb-La-Zr- Ti-O) capacitor. Motivation for this CRADA is derived from the DOE’s Office of Vehicle Technologies (OVT) program, which seeks to advance technologies to improve vehicle fuel efficiency in the mid-term and facilitate the transition to electric drive vehicles over the longterm. The objective of Argonne’s work is to develop and characterize high-performance capacitors on base-metal foils. The PLZT film-on-foil prepared using a spin-coating technique
NASA Technical Reports Server (NTRS)
Kearsley, A. T.; Westphal, A. J.; Burchell, M. J.; Zolensky, Michael E.
2008-01-01
Preliminary Examination (PE) of the Stardust cometary collector revealed material embedded in aerogel and on aluminium (Al) foil. Large numbers of sub-micrometer impact craters gave size, structural and compositional information. With experience of finding and analyzing the picogram to nanogram mass remains of cometary particles, are we now ready for PE of the Interstellar (IS) collector? Possible interstellar particle (ISP) tracks in the aerogel are being identified by the stardust@home team. We are now assessing challenges facing PE of Al foils from the interstellar collector.
Numerical simulation of VAWT on the effects of rotation cylinder
NASA Astrophysics Data System (ADS)
Xing, Shuda; Cao, Yang; Ren, Fuji
2017-06-01
Based on Finite Element Analysis Method, studying on Vertical Axis Wind Turbine (VAWT) which is added rotating cylinder in front of its air foils, especially focusing on the analysis of NACA6 series air foils about variation of lift to drag ratio. Choosing the most suitable blades with rotary cylinder added on leading edge. Analysis indicates that the front rotating cylinders on the VAWT is benefit to lift rise and drag fall. The most suitable air foil whose design lift coefficient is 0.8, the blades relative thickness is 20%, and the optimistic tip speed ratio is about 7.
Nanolaminate deformable mirrors
Papavasiliou, Alexandros P.; Olivier, Scot S.
2009-04-14
A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.
Method and apparatus for tensile testing of metal foil
NASA Technical Reports Server (NTRS)
Wade, O. W. (Inventor)
1976-01-01
A method for obtaining accurate and reproducible results in the tensile testing of metal foils in tensile testing machines is described. Before the test specimen are placed in the machine, foil side edges are worked until they are parallel and flaw free. The specimen are also aligned between and secured to grip end members. An aligning apparatus employed in the method is comprised of an alignment box with a longitudinal bottom wall and two upright side walls, first and second removable grip end members at each end of the box, and a means for securing the grip end members within the box.
Tamaki, S; Sakai, M; Yoshihashi, S; Manabe, M; Zushi, N; Murata, I; Hoashi, E; Kato, I; Kuri, S; Oshiro, S; Nagasaki, M; Horiike, H
2015-12-01
Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error. Copyright © 2015 Elsevier Ltd. All rights reserved.
Detailed in situ laser calibration of the infrared imaging video bolometer for the JT-60U tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parchamy, H.; Peterson, B. J.; Konoshima, S.
2006-10-15
The infrared imaging video bolometer (IRVB) in JT-60U includes a single graphite-coated gold foil with an effective area of 9x7 cm{sup 2} and a thickness of 2.5 {mu}m. The thermal images of the foil resulting from the plasma radiation are provided by an IR camera. The calibration technique of the IRVB gives confidence in the absolute levels of the measured values of the plasma radiation. The in situ calibration is carried out in order to obtain local foil properties such as the thermal diffusivity {kappa} and the product of the thermal conductivity k and the thickness t{sub f} of themore » foil. These quantities are necessary for solving the two-dimensional heat diffusion equation of the foil which is used in the experiments. These parameters are determined by comparing the measured temperature profiles (for kt{sub f}) and their decays (for {kappa}) with the corresponding results of a finite element model using the measured HeNe laser power profile as a known radiation power source. The infrared camera (Indigo/Omega) is calibrated by fitting the temperature rise of a heated plate to the resulting camera data using the Stefan-Boltzmann law.« less
The stopping power and energy straggling of light ions in graphene oxide foils
NASA Astrophysics Data System (ADS)
Mikšová, R.; Macková, A.; Malinský, P.; Sofer, Z.
2017-09-01
Energy-loss and straggling experiments were performed using 2-4 MeV 1H+ and 7.4-9.0 MeV 4He2+ ions in graphene oxide foils by the transmission technique. The thickness of the graphene oxide foils was determined using a detailed image analysis of a graphene oxide cut, which was used to refine the graphene oxide density. The density was determined by the standard technique of micro-balance weighing. The stoichiometry of the graphene oxide foils before the irradiation was determined by Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA) using 2 and 2.5 MeV 4He+. The measured energy stopping powers for hydrogen and helium ions in graphene oxide were compared with the predictions obtained from the SRIM-2013 code. The energy straggling was compared with that calculated using Bohr's, Bethe-Livingston and Yang predictions. The results show that the stopping power of graphene oxide foils irradiated by both ion species decreases with increasing energies, the differences between the measured and predicted values being below 3.8%. The energy straggling determined in our experiment is higher than Bohr's and Bethe-Livingston predicted values; the predictions by Yang are in better agreement with our experiment.
NASA Astrophysics Data System (ADS)
Mehrangiz, M.; Ghasemizad, A.
2017-06-01
Deuteron fast ignition of a conically guided pre-compressed DT fuel is investigated. For this purpose, the acceleration of the deuterated thin foil by the intense laser beam is evaluated. The acceleration values and the number of foil-generated deuterons are calculated in terms of the laser pulse duration. Using the created deuterons as the fast ignitors, we investigate the fast ignition scheme by comparing fully degenerate, partial degenerate and classical types of DT plasma. The total energy gain of deuterons "beam fusion" is calculated to show the efficiency of beam reactions in increasing fusion rate. Besides, the stopping time and stopping range of incident deuterons are evaluated. Our numerical results indicate that degeneracy increases the beam-target collisions. Thus, it prepares the ignition situation sooner than the classical plasma. Moreover, the number of generated deuterons and their acceleration depend on the foil thickness and laser parameters. We show that when a 4ps laser with intensity of 10^{19} W/cm^2 focused onto a 20μm foil, 35× 10^{15} deuterons are generated. Moreover, under our analysis, in order to have a practicable fast ignition, 18% of the laser energy is necessary to convert into a deuteron driver.
NASA Astrophysics Data System (ADS)
Yager-Elorriaga, D. A.; Patel, S. G.; Steiner, A. M.; Jordan, N. M.; Weiss, M. R.; Gilgenbach, R. M.; Lau, Y. Y.
2014-10-01
Experiments are underway to study the effects an axial magnetic field on the magneto-Rayleigh-Taylor instability (MRT) in ablating planar foils on the 1-MA LTD at the Michigan Accelerator for Inductive Z-pinch Experiments (MAIZE) facility at the University of Michigan. For 600 kA drive current, a 15 T axial magnetic field is produced using helical return current posts. During the current pulse, the magnetic field may diffuse into the foil, creating a sheared magnetic field along with the possibility of shear stabilization of the MRT instability. Theoretical investigation at UM has shown that a sheared azimuthal magnetic field coupled with an axial magnetic field reduces the MRT growth rate in general. In order to study this effect, the amount of magnetic shear is controlled by offsetting the initial position of the foil. A 775 nm Ti:sapphire laser will be used to shadowgraph the foil in order to measure the MRT growth rate. By comparing these results to previous experiments at UM, the effects of magnetic shear and an axial magnetic field will be determined. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager-Elorriaga supported by NSF fellowship Grant DGE 1256260.
NASA Technical Reports Server (NTRS)
Wagner, R. C.; Sliney, Harold E.
1986-01-01
A new self-lubricating coating composition of nickel aluminide-bonded chromium carbide formulated with silver and Group II fluorides was developed in a research program on high temperature solid lubricants. One of the proposed applications for this new coating composition is as a wide temperature spectrum solid lubricant for complaint foil gas bearings. Friction and wear properties were obtained using a foil gas bearing start-stop apparatus at temperatures from 25 to 650 C. The journals were Inconel 748. Some were coated with the plasma sprayed experimental coating, others with unmodified nickel aluminide/chromium carbide as a baseline for comparison. The additional components were provided to assist in achieving low friction over the temperature range of interest. Uncoated, preoxidized Inconel X-750 foil bearings were operated against these surfaces. The foils were subjected to repeated start/stop cycles under a 14-kPa (2-Psi) bearing unit loading. Sliding contact occurred during lift-off and coastdown at surface velocities less than 6 m/s (3000 rPm). Testing continued until 9000 start/stop cycles were accumulated or until a rise in starting torque indicated the journal/bearing had failed. Comparison in coating performance as well as discussions of their properties and methods of application are given.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1987-01-01
A test program to determine the optimum composition of chromium carbide based solid lubricant coatings for compliant gas bearings is described. The friction and wear properties of the coatings are evaluated using a foil gas bearing test apparatus. The various coatings were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized nickel-chromium alloy foils. The test bearings were subjected to repeated start/stop cycles under a 14 kPa (2 psi) bearing unit load. The bearings were tested for 9000 start/stop cycles or until the specimen wear reached a predetermined failure level. In general, the addition of silver and eutectic to the chromium carbide base stock significantly reduced foil wear and increased journal coating wear. The optimum coating composition, PS212 (70 wt% metal bonded Cr3C2, 15 wt% Ag, 15% BaF2/CaF2 eutectic), reduced foil wear by a factor of two and displayed coating wear well within acceptable limits. The load capacity of the bearing using the plasma-sprayed coating prior to and after a run-in period was ascertained and compared to polished Inconel 718 specimens.
NASA Technical Reports Server (NTRS)
Wagner, R. C.; Sliney, H. E.
1984-01-01
A new self-lubricating coating composition of nickel aluminide-bonded chromium carbide formulated with silver and Group II fluorides was developed in a research program on high temperature solid lubricants. One of the proposed applications for this new coating composition is as a wide temperature spectrum solid lubricant for complaint foil gas bearings. Friction and wear properties were obtained using a foil gas bearing start/stop apparatus at temperatures from 25 to 650 C. The journals were Inconel 718. Some were coated with the plasma sprayed experimental coating, others with unmodified nickel aluminide/chromium carbide as a baseline for comparison. The addtitional components were provided to assist in achieving low friction over the temperature range of interest. Uncoated, preoxidized Inconel X-750 foil bearings were operated against these surfaces. The foils were subjected to repeated start/stop cycles under a 14-kPa (2-psi) bearing unit loading. Sliding contact occurred during lift-off and coastdown at surface velocities less than 6 m/s (3000 rpm). Testing continued until 9000 start/stop cycles were accumulated or until a rise in starting torque indicated the journal/bearing had failed. Comparison in coating performance as well as discussions of their properties and methods of application are given.
Wang, Mingzhan; Tang, Miao; Chen, Shulin; Ci, Haina; Wang, Kexin; Shi, Liurong; Lin, Li; Ren, Huaying; Shan, Jingyuan; Gao, Peng; Liu, Zhongfan; Peng, Hailin
2017-12-01
Aluminum (Al) foil, as the most accepted cathode current collector for lithium-ion batteries (LIBs), is susceptible to local anodic corrosions during long-term operations. Such corrosions could lead to the deterioration or even premature failure of the batteries and are generally believed to be a bottleneck for next-generation 5 V LIBs. Here, it is demonstrated that Al foil armored by conformal graphene coating exhibits significantly reinforced anodic corrosion resistance in both LiPF 6 and lithium bis(trifluoromethanesulphonyl) imide (LiTFSI) based electrolytes. Moreover, LiMn 2 O 4 cells using graphene-armored Al foil as current collectors (LMO/GA) demonstrate enhanced electrochemical performance in comparison with those using pristine Al foil (LMO/PA). The long-term discharge capacity retention of LMO/GA cell after ≈950 h straight operations at low rate (0.5 C) reaches up to 91%, remarkably superior to LMO/PA cell (75%). The self-discharge propensity of LMO/GA is clearly relieved and the rate/power performance is also improved with graphene mediations. This work not only contributes to the long-term stable operations of LIBs but also might catalyze the deployment of 5 V LIBs in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shock wave driven microparticles for pharmaceutical applications
NASA Astrophysics Data System (ADS)
Menezes, V.; Takayama, K.; Gojani, A.; Hosseini, S. H. R.
2008-10-01
Ablation created by a Q-switched Nd:Yttrium Aluminum Garnet (Nd:YAG) laser beam focusing on a thin aluminum foil surface spontaneously generates a shock wave that propagates through the foil and deforms it at a high speed. This high-speed foil deformation can project dry micro- particles deposited on the anterior surface of the foil at high speeds such that the particles have sufficient momentum to penetrate soft targets. We used this method of particle acceleration to develop a drug delivery device to deliver DNA/drug coated microparticles into soft human-body targets for pharmaceutical applications. The device physics has been studied by observing the process of particle acceleration using a high-speed video camera in a shadowgraph system. Though the initial rate of foil deformation is over 5 km/s, the observed particle velocities are in the range of 900-400 m/s over a distance of 1.5-10 mm from the launch pad. The device has been tested by delivering microparticles into liver tissues of experimental rats and artificial soft human-body targets, modeled using gelatin. The penetration depths observed in the experimental targets are quite encouraging to develop a future clinical therapeutic device for treatments such as gene therapy, treatment of cancer and tumor cells, epidermal and mucosal immunizations etc.
NASA Astrophysics Data System (ADS)
Dixon, David A.; Hughes, H. Grady
2017-09-01
This paper presents a validation test comparing angular distributions from an electron multiple-scattering experiment with those generated using the MCNP6 Monte Carlo code system. In this experiment, a 13- and 20-MeV electron pencil beam is deflected by thin foils with atomic numbers from 4 to 79. To determine the angular distribution, the fluence is measured down range of the scattering foil at various radii orthogonal to the beam line. The characteristic angle (the angle for which the max of the distribution is reduced by 1/e) is then determined from the angular distribution and compared with experiment. Multiple scattering foils tested herein include beryllium, carbon, aluminum, copper, and gold. For the default electron-photon transport settings, the calculated characteristic angle was statistically distinguishable from measurement and generally broader than the measured distributions. The average relative difference ranged from 5.8% to 12.2% over all of the foils, source energies, and physics settings tested. This validation illuminated a deficiency in the computation of the underlying angular distributions that is well understood. As a result, code enhancements were made to stabilize the angular distributions in the presence of very small substeps. However, the enhancement only marginally improved results indicating that additional algorithmic details should be studied.
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium feed; natural uranium feed...) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The term uranium feed or natural uranium feed means natural uranium in the form of UF6 suitable for uranium...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed...) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The term uranium feed or natural uranium feed means natural uranium in the form of UF6 suitable for uranium...
Process for continuous production of metallic uranium and uranium alloys
Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.
1995-06-06
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.
Process for continuous production of metallic uranium and uranium alloys
Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.
1995-01-01
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.