Sample records for uranium host rocks

  1. Organic tissues, graphite, and hydrocarbons in host rocks of the Rum Jungle Uranium Field, northern Australia

    USGS Publications Warehouse

    Foster, C.B.; Robbins, E.I.; Bone, Y.

    1990-01-01

    The Rum Jungle Uranium field consists of at least six early Proterozoic deposits that have been mined either for uranium and/or the associated base and precious metals. Organic matter in the host rocks of the Whites Formation and Coomalie Dolomite is now predominantly graphite, consistent with the metamorphic history of these rocks. For nine samples, the mean total organic carbon content is high (3.9 wt%) and ranged from 0.33 to 10.44 wt%. Palynological extracts from the host rocks include black, filamentous, stellate (Eoastrion-like), and spherical morphotypes, which are typical of early Proterozoic microbiota. The colour, abundance, and shapes of these morphotypes reflect the thermal history, organic richness, and probable lacustrine biofacies of the host rocks. Routine analysis of rock thin sections and of palynological residues shows that mineral grains in some of the host rocks are coated with graphitized organic matter. The grain coating is presumed to result from ultimate thermal degradation of a petroleum phase that existed prior to metamorphism. Hydrocarbons are, however, still present in fluid inclusions within carbonates of the Coomalie Dolomite and lower Whites Formation. The fluid inclusions fluoresce dull orange in blue-light excitation and their hydrocarbon content is confirmed by gas chromatography of whole-rock extracts. Preliminary analysis of the oil suggests that it is migrated, and because it has escaped graphitization through metamorphism it is probably not of early Proterozoic age. The presence of live oil is consistent with fluid inclusion data that suggest subsequent, low-temperature brine migration through the rocks. The present observations support earlier suggestions that organic matter in the host formations trapped uranium to form protore. Subsequent fluid migrations probably brought additional uranium and other metals to these formations, and the organic matter provided a reducing environment for entrapment. ?? 1990.

  2. Host rocks and their alterations as related to uranium-bearing veins in the United States

    USGS Publications Warehouse

    Walker, George W.

    1956-01-01

    This paper, dealing with the different kinds of host rocks and their alterations associated with uranium-bearing veins in the United States, is a chapter of a comprehensive report entitled , "Geology of uranium-bearing vein deposits in the United States," in preparation by George W. Walker, Frank W. Osterwald, and others. The comprehensive report will include detailed information on tectonic and structural setting, kinds of host rocks, wall-rock alteration, mineralogy, physical characteristics, processes of deposition, and concepts of origin of uraniferous veins; but, because it will not be completed until sometime in the future, some chapters of the report are being transmitted as they are finished. Part of an introductory chapter to the comprehensive report entitled, "Classification and distribution of uranium-bearing veins in the United States" (Walker and Osterwald, 1956) has already been transmitted; several of the terms used herein are defined in the introductory chapter. Data included in this chapter demonstrate that uranium-bearing veins are: 1) in rocks of nearly all textural, chemical, and mineralogic types; 2) most abundant in holocrystalline, commonly equigranular, igeneous and metamorphic rocks characterized by a moderate to high silica content and and by similar physical properties. Although some of the physiochemical properties of the host rocks are discussed in terms of favorability or nonfavoribility for uranium deposition, the principal purpose of this chapter is to establish the petroloic environment in which uranium-bearing veins have been found. Because favorability or nonfavorability of host rocks is related complexly to the chemistry of ore solutions and to methods or uranium transport and deposition, several hypothetical processes of transport and deposition have been referred to briefly; these and other hypotheses will be outlines and discussed in greater detail in a subsequent chapter. The compilation of data leading to this report and its preparation by a member of the Uranium Research and Resource Section, U.S. Geological Survey, was done on behalf of the Division of Raw Materials, U.S. Atomic Energy Commission. The report is based on both published and unpublished information collected principally by personnel of the U.S. Geological Survey, the U.S. Atomic Energy Commission or its predecessor organization, the Manhattan Engineer District, and to a lesser extent by staff members of other Federal or State agencies and by geologists in private industry. Information concerning foreign uranium-bearing vein deposits has been extracted almost exclusively from published reports; references to these and other data are included at appropriate places.

  3. Mineral and energy resources of the BLM Roswell Resource Area, east-central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, Susan B.

    1992-01-01

    The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and associated gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-valley-type (MVT) lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called "Pecos diamonds" and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, COa, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, dinosaur remains, and clays. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver- tellurium veins, and thorium-rare earth veins. Museum-quality quartz crystals in Lincoln County were formed in association with intrusive rocks in the Lincoln County porphyry belt. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and minor silver, uranium occurrences, as well as important industrial commodities, including caliche, limestone and dolomite, and aggregate (sand). Quaternary basalt contains sub-ore-grade uranium, scoria, and clay deposits.

  4. Mineral and energy resources of the Roswell Resource Area, East-Central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, Susan B.; Donatich, Alessandro J.

    1995-01-01

    The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari Basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-Valley-type lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called 'Pecos diamonds' and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, carbon dioxide, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, and clay. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum-group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver-tellurium veins, and thorium-rare-earth veins. Museum-quality quartz crystals are associated with Tertiary intrusive rocks. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and occurrences of silver and uranium. Important industrial commodities include caliche, limestone and dolomite, and aggregate. Quaternary basalt contains sub-ore-grade uranium, scoria, and clay deposits.

  5. Preliminary report of the uranium favorability of shear zones in the crystalline rocks of the southern Appalachians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penley, H.M.; Schot, E.H.; Sewell, J.M.

    1978-11-01

    Three sheared areas in the crystalline Piedmont and Blue Ridge provinces, from which uranium occurrences or anomalous radioactivity have been reported, were studied to determine their favorability for uranium mineralization. The study, which involved a literature review, geologic reconnaissance, ground radiometric surveys, and sampling of rock outcrops for petrographic and chemical analyses, indicates that more-detailed investigations of these and similar areas are warranted. In each area, surface leaching and deep residual cover make it difficult to assess the potential for uranium mineralization on the basis of results from chemical analyses for U/sub 3/O/sub 8/ and the radiometric surveys. Although anomalousmore » radioactivity and anomalous chemical uranium values were noted in only a few rock exposures and samples from the shear zones, the potential for uranium mineralization at depth could be much greater than indicated by these surface data. The study indicates that shear zones within Precambiran granitic basement complexes (such as the Wilson Creek Gneiss of western North Carolina, the Cranberry Gneiss of eastern Tennessee, and the Toxaway Gneiss of western South Carolina) are favorable as hosts for uranium and may contain subsurface deposits. Mylonitized graphitic schists immediately north of the Towaliga fault in Alabama and Georgia may be favorable host rocks for uranium.« less

  6. Aerial radiometric and magnetic reconnaissance survey of portions of Arizona, Idaho, Montana, New Mexico, South Dakota and Washington. Volume 2-F. Lewistown Quadrangle. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    Results of a high-sensitivity, aerial, gamma-ray spectrometer and magnetometer survey of the Lewistown Quadrangle, Montana, are presented. Instrumentation and methods are described in Volume 1 of this final report. Statistical and geological analysis of the radiometric data revealed 58 uranium anomalies worthy of field-checking as possible prospects. One anomaly may be associated with the Cambrian Flathead Quartzite that may contain deposits similar to the Blind River and Rand uranium deposits. Three anomalies may be indicative of sandstone-type deposits in Jurassic rocks, particularly the Morrison Formation, which hosts uranium mineralization elsewhere. One of the latter anomalies is also related to rocksmore » of the Mississippian Madison Group, and this suggests the possible presence of uranium in limestones of the Mission Canyon Formation. There are 45 anomalies related to the Cretaceous rocks. Lignite in the Hell Creek and Judith River formations and Eagle Sandstone may have caused the formation of 22 epigenetic uranium deposits. Many anomalies occur in the Bearpaw Shale and Claggett Formation. However, only five are considered significant of the remainder are expected to be caused by large amounts of radioactive bentonite or bentonitic shale. Two other Cretaceous units that may host sandstone-type deposits are the Colorado Shale and Kootenai Formation that register 16 and two anomalies respectively. Only one anomaly pertains to Tertiary rocks, and it may be indicative of vein-type deposits in the intrusives of the Judith Mountains. These rocks may also act as source rocks for deposits surrounding the Judith Mountains. Eight anomalies related only to Quaternary units may be demonstrative of uranium-rich source rocks that could host uranium mineralization.Several anomalies are located close to oil fields and may have been cause by radium-rich oil-field brines.« less

  7. The Permo-Triassic uranium deposits of Gondwanaland

    NASA Astrophysics Data System (ADS)

    le Roux, J. P.; Toens, P. D.

    The world's uranium provinces are time bound and occur in five distinct periods ranging from the Proterozoic to the Recent. One of these periods embraces the time of Gondwana sedimentation and probably is related to the proliferation of land plants from the Devonian on-ward. Decaying vegetal matter produced reducing conditions that enhanced uranium precipitation. The association of uranium with molassic basins adjacent to uplifted granitic and volcanic arcs suggests that lithospheric plate subduction, leading to anatexis of basement rocks and andesitic volcanism, created favorable conditions for uranium mineralization. Uranium occurrences of Gondwana age are of four main types: sandstone-hosted, coal-hosted, pelite-hosted, and vein-type deposits. Sandstone-hosted deposits commonly occur in fluviodeltaic sediments and are related to the presence of organic matter. These deposits commonly are enriched in molybdenum and other base metal sulfides and have been found in South Africa, Zimbabwe, Zambia, Angola, Niger, Madagascar, India, Australia, Argentina, and Brazil. Coalhosted deposits contain large reserves of uranium but are of low grade. In Africa they are mostly within the Permian Ecca Group and its lateral equivalents, as in the Springbok Flats, Limpopo, Botswana, and Tanzania basins. Uraniferous black shales are present in the Gabon and Amazon basins but grades are low. Vein-type uranium is found in Argentina, where it occurs in clustered veins crosscutting sedimentary rocks and quartz porphyries.

  8. Uranium mineralization and unconformities: how do they correlate? - A look beyond the classic unconformity-type deposit model?

    NASA Astrophysics Data System (ADS)

    Markwitz, Vanessa; Porwal, Alok; Campbell McCuaig, T.; Kreuzer, Oliver P.

    2010-05-01

    Uranium deposits are usually classified based on the characteristics of their host rocks and geological environments (Dahlkamp, 1993; OECD/NEA Red Book and IAEA, 2000; Cuney, 2009). The traditional unconformity-related deposit types are the most economical deposits in the world, with the highest grades amongst all uranium deposit types. In order to predict undiscovered uranium deposits, there is a need to understand the spatial association of uranium mineralization with structures and unconformities. Hydrothermal uranium deposits develop by uranium enriched fluids from source rocks, transported along permeable pathways to their depositional environment. Unconformities are not only separating competent from incompetent sequences, but provide the physico-chemical gradient in the depositional environment. They acted as important fluid flow pathways for uranium to migrate not only for surface-derived oxygenated fluids, but also for high oxidized metamorphic and magmatic fluids, dominated by their geological environment in which the unconformities occur. We have carried out comprehensive empirical spatial analyses of various types of uranium deposits in Australia, and first results indicate that there is a strong spatial correlation between unconformities and uranium deposits, not only for traditional unconformity-related deposits but also for other styles. As a start we analysed uranium deposits in Queensland and in particular Proterozoic metasomatic-related deposits in the Mount Isa Inlier and Late Carboniferous to Early Permian volcanic-hosted uranium occurrences in Georgetown and Charters Towers Regions show strong spatial associations with contemporary and older unconformities. The Georgetown Inlier in northern Queensland consists of a diverse range of rocks, including Proterozoic and early Palaeozoic metamorphic rocks and granites and late Palaeozoic volcanic rocks and related granites. Uranium-molybdenum (+/- fluorine) mineralization in the Georgetown inlier varies from strata- to structure-bound and occurs above regional unconformities. The Proterozoic basins in the Mount Isa Inlier rest unconformably on Palaeoproterozoic basement accompanied by volcanic and igneous rocks, which were deformed and metamorphosed in the Mesoproterozoic. Uranium occurrences in the Western Succession of Mount Isa are either hosted in clastic metasediments or mafic volcanics that belong to the Palaeoproterozoic Eastern Creek Volcanics. Uranium and vanadium mineralization occur in metasomatised and hematite-magnetite-carbonate alteration zones, bounded by major faults and regional unconformities. The results of this study highlight the importance of unconformities in uranium minerals systems as possible fluid pathways and/or surfaces of physico-chemical contrast that could have facilitated the precipitation of uranium, not only in classical unconformity style uranium deposits but in several other styles of uranium mineralization as well. References Cuney, M., 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44, 3-9. Dahlkamp, F. J., 1993. Uranium ore deposits. Springer, Berlin, p 460. OECD / NEA Red Book & IAEA, 2000. Uranium 1999: Resources, Production and Demand. OECD Nuclear Energy Agency and International Atomic Energy Agency, Paris.

  9. Uranium in the Wyoming Landscape Conservation Initiative study area, southwestern Wyoming

    USGS Publications Warehouse

    Wilson, Anna B.

    2015-10-20

    In the WLCI study area, all uranium areas except Poison Basin and Ketchum Buttes contain roll-front deposits in Eocene (56–34 Ma) sedimentary rocks. Tabular sandstone-hosted uranium deposits are also recognized within the study area.

  10. Potential Aquifer Vulnerability in Regions Down-Gradient from Uranium In Situ Recovery (ISR) Sites

    EPA Science Inventory

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rock...

  11. Geology of the Midnite uranium mine area, Washington: maps, description, and interpretation

    USGS Publications Warehouse

    Nash, J. Thomas

    1977-01-01

    Bedrock geology of about 12 km2 near the Midnite mine has been mapped at the surface, in mine exposures, and from drilling, at scales from 1:600 to 1:12,000 and is presented here at 1:12,000 to provide description of the setting of uranium deposits. Oldest rocks in the area are metapelitic and metacarbonate rocks of the Precambrian (Y) Togo Formation. The chief host for uranium deposits is graphitic and pyritic mica phyllite and muscovite schist. Ore also occurs in calc-silicate hornfels and marble at the western edge of a calcareous section about 1,150 m thick. Calcareous rocks of the Togo are probably older than the pelitic as they are interpreted to be near the axis of a broad anticline. The composition and structural position of the calcareous unit suggests correlation with less metamorphosed carbonate-bearing rocks of the Lower Wallace Formation, Belt Supergroup, about 200 km to the east. Basic sills intrusive into the Togo have been metamorphosed to amphibolite. Unmetamorphosed rocks in the mine area are Cretaceous(?) and Eocene igneous rocks. Porphyritic quartz monzonite of Cretaceous age, part of the Loon Lake batholith, is exposed over one third of the mine area. It underlies the roof pendant of Precambrian rocks in which the Midnite mine occurs at depths of generally less than 300 m. The pluton is a two-mica granite and exhibits pegmatitic and aplitic textural features indicative of water saturation and pressure quenching. Eocene intrusive and extrusive rocks in the area provide evidence that the Eocene surface was only a short distance above the present uranium deposits. Speculative hypotheses are presented for penesyngenetic, hydrothermal, and supergene modes of uranium emplacement. The Precambrian Stratigraphy, similar in age and pre-metamorphic lithology to that of rocks hosting large uranium deposits in Saskatchewan and Northern Territory, Australia, suggests the possibility of uranium accumulation along with diagenetic pyrite in carbonaceous muds in a marine shelf environment. This hypothesis is not favored by the author because there is no evidence for stratabound uranium such as high regional radioactivity in the Togo. A hydrothermal mode of uranium emplacement is supported by the close apparent ages of mineralization and plutonism, and by petrology of the pluton. I speculate that uranium may have become enriched in postmagmatic fluids at the top of the pluton, possibly by hydrothermal leaching of soluble uranium associated with magnetite, and diffused outward into metasedimentary wall rocks to create an aureole about 100 m thick containing about 100 ppm uranium. Chemistry of the hydrothermal process is not understood, but uranium does not appear to have been transported by an oxidizing fluid, and the fluid did not produce veining and alteration comparable to that of base-metal sulfide deposits. Uranium in the low-grade protore is believed to have been redistributed into permeable zones in the Tertiary to create ore grades. Geologic and isotopic ages of uranium mineralization, and the small volume of porphyritic quartz monzonite available for leaching, are not supportive of supergene emplacement of uranium.

  12. Sandstone type uranium deposits in the Ordos Basin, Northwest China: A case study and an overview

    NASA Astrophysics Data System (ADS)

    Akhtar, Shamim; Yang, Xiaoyong; Pirajno, Franco

    2017-09-01

    This paper provides a comprehensive review on studies of sandstone type uranium deposits in the Ordos Basin, Northwest China. As the second largest sedimentary basin, the Ordos Basin has great potential for targeting sandstone type U mineralization. The newly found and explored Dongsheng and Diantou sandstone type uranium deposits are hosted in the Middle Jurassic Zhilou Formation. A large number of investigations have been conducted to trace the source rock compositions and relationship between lithic subarkose sandstone host rock and uranium mineralization. An optical microscopy study reveals two types of alteration associated with the U mineralization: chloritization and sericitization. Some unusual mineral structures, with compositional similarity to coffinite, have been identified in a secondary pyrite by SEM These mineral phases are proposed to be of bacterial origin, following high resolution mapping of uranium minerals and trace element determinations in situ. Moreover, geochemical studies of REE and trace elements constrained the mechanism of uranium enrichment, displaying LREE enrichment relative to HREE. Trace elements such as Pb, Mo and Ba have a direct relationship with uranium enrichment and can be used as index for mineralization. The source of uranium ore forming fluids and related geological processes have been studied using H, O and C isotope systematics of fluid inclusions in quartz veins and the calcite cement of sandstone rocks hosting U mineralization. Both H and O isotopic compositions of fluid inclusions reveal that ore forming fluids are a mixture of meteoric water and magmatic water. The C and S isotopes of the cementing material of sandstone suggest organic origin and bacterial sulfate reduction (BSR), providing an important clue for U mineralization. Discussion of the ore genesis shows that the greenish gray sandstone plays a crucial role during processes leading to uranium mineralization. Consequently, an oxidation-reduction model for sandstone-type uranium deposit is proposed, which can elucidate the source of uranium in the deposits of the Ordos Basin, based on the role of organic materials and sulfate reducing bacteria. We discuss the mechanism of uranium deposition responsible for the genesis of these large sandstone type uranium deposits in this unique sedimentary basin.

  13. Diatremes of the Hopi Buttes, Arizona; chemical and statistical analyses

    USGS Publications Warehouse

    Wenrich, K.J.; Mascarenas, J.F.

    1982-01-01

    Lacustrine sediments deposited in maar lakes of the Hopi Buttes diatremes are hosts for uranium mineralization of as much as 1500 ppm. The monchiquites and limburgite turfs erupted from the diatremes are distinguished from normal alkalic basalts of the Colorado Plateau by their extreme silica undersaturation and high water, TiO2, and P2O5 contents. Many trace elements are also unusually abundant, including Ag, As, Ba, Be, Ce, Dy, Eu, F, Gd, Hf, La, Nd, Pb, Rb, Se, Sm, Sn, Sr, Ta, Tb, Th, U, V, Zn, and Zr. The lacustrine sediments, which consist predominantly of travertine and clastic rocks, are the hosts for syngenetic and epigenetic uranium mineralization of as much as 1500 ppm uranium. Fission track maps show the uranium to be disseminated within the travertine and clastic rocks, and although microprobe analyses have not, as yet, revealed discrete uranium-bearing phases, the clastic rocks show a correlation of high Fe, Ti, and P with areas of high U. Correlation coefficients show that for the travertines, clastics, and limburgite ruffs, Mo, As, Sr, Co, and V appear to have the most consistent and strongest correlations with uranium. Many elements, including many of the rare-earth elements, that are high in these three rocks are also high in the monchiquites, as compared to the average crustal abundance for the respective rock type. This similar suite of anomalous elements, which includes such immobile elements as the rare earths, suggests that Fluids which deposited the travertines were related to the monchiquitic magma. The similar age of about 5 m.y. for both the lake beds and the monchiquites also appears to support this source for the mineralizing fluids.

  14. Resource potential for commodities in addition to Uranium in sandstone-hosted deposits: Chapter 13

    USGS Publications Warehouse

    Breit, George N.

    2016-01-01

    Sandstone-hosted deposits mined primarily for their uranium content also have been a source of vanadium and modest amounts of copper. Processing of these ores has also recovered small amounts of molybdenum, rhenium, rare earth elements, scandium, and selenium. These deposits share a generally common origin, but variations in the source of metals, composition of ore-forming solutions, and geologic history result in complex variability in deposit composition. This heterogeneity is evident regionally within the same host rock, as well as within districts. Future recovery of elements associated with uranium in these deposits will be strongly dependent on mining and ore-processing methods.

  15. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, B.A.

    1980-09-01

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leadsmore » to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits.« less

  16. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, E S; Robinson, K; Geer, K A

    1982-09-01

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uraniummore » deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.« less

  17. Geology of the Midnite uranium mine, Stevens County, Washington; a preliminary report

    USGS Publications Warehouse

    Nash, J. Thomas; Lehrman, Norman J.

    1975-01-01

    The Midnite mine is one of only two mines in the United States currently producing uranium from discordant deposits in crystalline host rocks. Ore bodies are in metamorphosed steeply dipping Precambrian pelitic and calcareous rocks of a roof pendant adjacent to a Cretaceous(?) porphyritic quartz monzonite pluton. Production during 14 years, of operation has been about 8 million pounds of U3O8 from oxidized and reduced ores averaging 0.23 percent U3O8. Uranium deposits are generally tabular in form and dimensions range up to 380 m long, 210 m wide, and 50 m thick. Deposits are bounded on at least one side by unmineralized intrusive ribs of granitic rock, and thickest mineralized zones invariably occur at depressions in the intrusive contact. Upper limits of some deposits are nearly horizontal, and upper elevations of adjacent mineralized zones separated by ribs of granite are similar. Near surface ore is predominantly autunite, but ore at depth consists of pitchblende and coffinite with abundant pyrite and marcasite. Uranium minerals occur as .disseminations along foliation, replacements, and stockwork fracture-fillings. No stratigraphic controls on ore deposition are recognized. Rather, mineralized zones cut across lithologic boundaries if permeability is adequate. Most ore is in muscovite schist and mica phyllite, but important deposits occur in calc-silicate hornfels. Amphibolite sills and mid-Tertiary dacite dikes locally, carry ore where intensely fractured. High content of iron and sulfur, contained chiefly in FeS2, appear to be an important feature of favorable host rocks. Geometry of deposits, structural, and geochemical features suggest that uranium minerals were deposited over a span of time from late Cretaceous to late Tertiary. Ore occurs in but is not offset by a shear zone that displaces mid-Tertiary rocks.. Economic zones of uranium are interpreted to have been secondarily enriched in late Tertiary time by downward and lateral migration of uranium into permeable zones where deposition was influenced by ground water controls and minerals that could reduce or neutralize uranium-bearing solutions.

  18. Uranium provinces of North America; their definition, distribution, and models

    USGS Publications Warehouse

    Finch, Warren Irvin

    1996-01-01

    Uranium resources in North America are principally in unconformity-related, quartz-pebble conglomerate, sandstone, volcanic, and phosphorite types of uranium deposits. Most are concentrated in separate, well-defined metallogenic provinces. Proterozoic quartz-pebble conglomerate and unconformity-related deposits are, respectively, in the Blind River–Elliot Lake (BRELUP) and the Athabasca Basin (ABUP) Uranium Provinces in Canada. Sandstone uranium deposits are of two principal subtypes, tabular and roll-front. Tabular sandstone uranium deposits are mainly in upper Paleozoic and Mesozoic rocks in the Colorado Plateau Uranium Province (CPUP). Roll-front sandstone uranium deposits are in Tertiary rocks of the Rocky Mountain and Intermontane Basins Uranium Province (RMIBUP), and in a narrow belt of Tertiary rocks that form the Gulf Coastal Uranium Province (GCUP) in south Texas and adjacent Mexico. Volcanic uranium deposits are concentrated in the Basin and Range Uranium Province (BRUP) stretching from the McDermitt caldera at the Oregon-Nevada border through the Marysvale district of Utah and Date Creek Basin in Arizona and south into the Sierra de Peña Blanca District, Chihuahua, Mexico. Uraniferous phosphorite occurs in Tertiary sediments in Florida, Georgia, and North and South Carolina and in the Lower Permian Phosphoria Formation in Idaho and adjacent States, but only in Florida has economic recovery been successful. The Florida Phosphorite Uranium Province (FPUP) has yielded large quantities of uranium as a byproduct of the production of phosphoric acid fertilizer. Economically recoverable quantities of copper, gold, molybdenum, nickel, silver, thorium, and vanadium occur with the uranium deposits in some provinces.Many major epochs of uranium mineralization occurred in North America. In the BRELUP, uranium minerals were concentrated in placers during the Early Proterozoic (2,500–2,250 Ma). In the ABUP, the unconformity-related deposits were most likely formed initially by hot saline formational water related to diagenesis (»1,400 to 1,330 Ma) and later reconcentrated by hydrothermal events at »1,280–»1,000, »575, and »225 Ma. Subsequently in North America, only minor uranium mineralization occurred until after continental collision in Permian time (255 Ma). Three principal epochs of uranium mineralization occurred in the CPUP: (1) » 210–200 Ma, shortly after Late Triassic sedimentation; (2) »155–150 Ma, in Late Jurassic time; and (3) » 135 Ma, after sedimentation of the Upper Jurassic Morrison Formation. The most likely source of the uranium was silicic volcaniclastics for the three epochs derived from a volcanic island arc at the west edge of the North American continent. Uranium mineralization occurred during Eocene, Miocene, and Pliocene times in the RMIBUP, GCUP, and BRUP. Volcanic activity took place near the west edge of the continent during and shortly after sedimentation of the host rocks in these three provinces. Some volcanic centers in the Sierra de Peña Blanca district within the BRUP may have provided uranium-rich ash to host rocks in the GCUP.Most of the uranium provinces in North America appear to have a common theme of close associations to volcanic activity related to the development of the western margin of the North American plate. The south and west margin of the Canadian Shield formed the leading edge of the progress of uranium source development and mineralization from the Proterozoic to the present. The development of favorable hosts and sources of uranium is related to various tectonic elements developed over time. Periods of major uranium mineralization in North America were Early Proterozoic, Middle Proterozoic, Late Triassic–Early Jurassic, Early Cretaceous, Oligocene, and Miocene. Tertiary mineralization was the most pervasive, covering most of Western and Southern North America. 

  19. Uraniferous opal, Virgin Valley, Nevada: conditions of formation and implications for uranium exploration

    USGS Publications Warehouse

    Zielinski, R.A.

    1982-01-01

    Uraniferous, fluorescent opal, which occurs in tuffaceous sedimentary rocks at Virgin Valley, Nevada, records the temperature and composition of uranium-rich solutions as well as the time of uranium-silica coprecipitation. Results are integrated with previous geologic and geochronologic data for the area to produce a model for uranium mobility that may be used to explore for uranium deposits in similar geologic settings. Uraniferous opal occurs as replacements of diatomite, or silicic air-fall ash layers in tuffaceous lakebeds of the Virgin Valley Formation (Miocene) of Merriam (1907). Fission-track radiography shows uranium to be homogeneously dispersed throughout the opal structure, suggesting coprecipitation of dissolved uranium and silica gel. Fluid inclusions preserved within opal replacements of diatomite have homogenization temperatures in the epithermal range and are of low salinity. Four samples of opal from one locality all have U-Pb apparent ages which suggest uraniferous opal precipitation in late Pliocene time. These ages correspond to a period of local, normal faulting, and highangle faults may have served as vertical conduits for transport of deep, thermalized ground water to shallower levels. Lateral migration of rising solutions occurred at intersections of faults with permeable strata. Silica and some uranium were dissolved from silica-rich host strata of 5-20 ppm original uranium content and reprecipitated as the solutions cooled. The model predicts that in similar geologic settings, ore-grade concentrations of uranium will occur in permeable strata that intersect high-angle faults and that contain uranium source rocks as well as efficient reductant traps for uranium. In the absence of sufficient quantities of reductant materials, uranium will be flushed from the system or will accumulate in low-grade disseminated hosts such as uraniferous opal. ?? 1982.

  20. Uranium in granites from the Southwestern United States: actinide parent-daughter systems, sites and mobilization. First year report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, L T; Williams, I S; Woodhead, J A

    1980-10-01

    Some of the principal findings of the study on the Lawler Peak Granite are: the granite is dated precisely by this work at 1411 +- 3 m.y., confirming its synchroneity with a great regional terrane of granites. Uranium is presently 8-10 times crustal abundance and thorium 2-3 times in this granite. Uranium is found to be enriched in at least eight, possibly ten, primary igneous mineral species over the whole-rock values. Individual mineral species show distinct levels in, and characteristics ranges of, uranium concentration. It appears that in a uraniferous granite such as this, conventional accuracy mineral suites probably cannotmore » account for most of the uranium in the rock, and more rare, high U-concentration phases also are present and are significant uranium hosts. It appears that at least two different geological episodes have contributed to the disturbance of the U-Th-Pb isotope systems. Studies of various sites for transient dispersal of uranium, thorium, and radiogenic lead isotopes indicate a non-uniform dispersal of these components. It appears that the bulk rock has lost at least 24 percent of its original uranium endowment, accepting limited or no radiogenic lead or thorium migration from the sample.« less

  1. Genetic and grade and tonnage models for sandstone-hosted roll-type uranium deposits, Texas Coastal Plain, USA

    USGS Publications Warehouse

    Hall, Susan M.; Mihalasky, Mark J.; Tureck, Kathleen; Hammarstrom, Jane M.; Hannon, Mark

    2017-01-01

    The coincidence of a number of geologic and climatic factors combined to create conditions favorable for the development of mineable concentrations of uranium hosted by Eocene through Pliocene sandstones in the Texas Coastal Plain. Here 254 uranium occurrences, including 169 deposits, 73 prospects, 6 showings and 4 anomalies, have been identified. About 80 million pounds of U3O8 have been produced and about 60 million pounds of identified producible U3O8 remain in place. The development of economic roll-type uranium deposits requires a source, large-scale transport of uranium in groundwater, and deposition in reducing zones within a sedimentary sequence. The weight of the evidence supports a source from thick sequences of volcanic ash and volcaniclastic sediment derived mostly from the Trans-Pecos volcanic field and Sierra Madre Occidental that lie west of the region. The thickest accumulations of source material were deposited and preserved south and west of the San Marcos arch in the Catahoula Formation. By the early Oligocene, a formerly uniformly subtropical climate along the Gulf Coast transitioned to a zoned climate in which the southwestern portion of Texas Coastal Plain was dry, and the eastern portion humid. The more arid climate in the southwestern area supported weathering of volcanic ash source rocks during pedogenesis and early diagenesis, concentration of uranium in groundwater and movement through host sediments. During the middle Tertiary Era, abundant clastic sediments were deposited in thick sequences by bed-load dominated fluvial systems in long-lived channel complexes that provided transmissive conduits favoring transport of uranium-rich groundwater. Groundwater transported uranium through permeable sandstones that were hydrologically connected with source rocks, commonly across formation boundaries driven by isostatic loading and eustatic sea level changes. Uranium roll fronts formed as a result of the interaction of uranium-rich groundwater with either (1) organic-rich debris adjacent to large long-lived fluvial channels and barrier–bar sequences or (2) extrinsic reductants entrained in formation water or discrete gas that migrated into host units via faults and along the flanks of salt domes and shale diapirs. The southwestern portion of the region, the Rio Grande embayment, contains all the necessary factors required for roll-type uranium deposits. However, the eastern portion of the region, the Houston embayment, is challenged by a humid environment and a lack of source rock and transmissive units, which may combine to preclude the deposition of economic deposits. A grade and tonnage model for the Texas Coastal Plain shows that the Texas deposits represent a lower tonnage subset of roll-type deposits that occur around the world, and required aggregation of production centers into deposits based on geologic interpretation for the purpose of conducting a quantitative mineral resource assessment.

  2. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE PAGES

    Balboni, Enrica; Jones, Nina; Spano, Tyler; ...

    2016-08-31

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  3. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Enrica; Jones, Nina; Spano, Tyler

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  4. Radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico with annotated bibliography. [Over 600 citations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLemore, V. T.

    1982-01-01

    From an extensive literature search and field examination of 96 nonsandstone radioactive occurrences, the author compiled an annotated bibliography of over 600 citations and a list of 327 radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico. The citations are indexed by individual radioactive occurrence, geographic area, county, fluorspar deposits and occurrences, geochemical analyses, and geologic maps. In addition, the geology, mineralization, and uranium and thorium potential of 41 geographic areas in New Mexico containing known radioactive occurrences in veins and igneous and metamorphic rocks or that contain host rocks considered favorable for uranium or thorium mineralizationmore » are summarized. A list of aerial-radiometric, magnetic, hydrogeochemical, and stream-sediment survey reports is included.« less

  5. Behavior of uranium under conditions of interaction of rocks and ores with subsurface water

    NASA Astrophysics Data System (ADS)

    Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.

    2007-10-01

    The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water increases by orders of magnitude and subsurface water is commonly undersaturated with uranium. Uranium absorbed by secondary minerals, particularly by iron hydroxides and leucoxene, is its single stable species under oxidizing conditions. The impact of oxygen-bearing water leads to destruction of uranium ore. This process is realized simultaneously at different hypsometric levels even if the permeability of the medium is variable in both the lateral and vertical directions. As a result, intervals containing uranyl minerals and relics of primary uranium ore are combined in ore-bearing zones with intervals of completely dissolved uranium minerals. A wide halo of elevated uranium contents caused by sorption is always retained at the location of uranium ore entirely destroyed by weathering. Uranium ore commonly finds itself in the aeration zone due to technogenic subsidence of the groundwater table caused by open-pit mining or pumping out of water from underground mines. The capillary and film waters that interact with rocks and ores in this zone are supplemented by free water filtering along fractures when rain falls or snow is thawing. The interaction of uranium ore with capillary water results in oxidation of uraninite, accompanied by loosening of the mineral surface, formation of microfractures, and an increase in solubility with enrichment of capillary water in uranium up to 10-4 mol/l. Secondary U(VI) minerals, first of all, uranyl hydroxides and silicates, replace uraninite, and uranium undergoes local diffusion redistribution with its sorption by secondary minerals of host rocks. The influx of free water facilitates the complete dissolution of primary and secondary uranium minerals, the removal of uranium at the sites of groundwater discharge, and its redeposition under reducing conditions at a greater depth. It is evident that the conditions of the upper hydrodynamic zone and the aeration zone are unfit for long-term insulation of SNF and high-level wastes because, after the failure of containers, the leakage of radionuclides into the environment becomes inevitable.

  6. Comparative analysis of uranium bioassociation with halophilic bacteria and archaea

    PubMed Central

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Schmidt, Matthias; Simmons, Karen; Swanson, Juliet S.; Reed, Donald T.; Stumpf, Thorsten

    2018-01-01

    Rock salt represents a potential host rock formation for the final disposal of radioactive waste. The interactions between indigenous microorganisms and radionuclides, e.g. uranium, need to be investigated to better predict the influence of microorganisms on the safety assessment of the repository. Hence, the association process of uranium with two microorganisms isolated from rock salt was comparatively studied. Brachybacterium sp. G1, which was isolated from the German salt dome Gorleben, and Halobacterium noricense DSM15987T, were selected as examples of a moderately halophilic bacterium and an extremely halophilic archaeon, respectively. The microorganisms exhibited completely different association behaviors with uranium. While a pure biosorption process took place with Brachybacterium sp. G1 cells, a multistage association process occurred with the archaeon. In addition to batch experiments, in situ attenuated total reflection Fourier-transform infrared spectroscopy was applied to characterize the U(VI) interaction process. Biosorption was identified as the dominating process for Brachybacterium sp. G1 with this method. Carboxylic functionalities are the dominant interacting groups for the bacterium, whereas phosphoryl groups are also involved in U(VI) association by the archaeon H. noricense. PMID:29329319

  7. Potential Aquifer Vulnerability in Regions Down-Gradient from ...

    EPA Pesticide Factsheets

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of these uranium ores is a process of contacting the uranium mineral deposit with leaching (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality impacts from: 1) potential excursions of leaching solutions away from the injection zone into down-dip, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies

  8. The roles of organic matter in the formation of uranium deposits in sedimentary rocks

    USGS Publications Warehouse

    Spirakis, C.S.

    1996-01-01

    Because reduced uranium species have a much smaller solubility than oxidized uranium species and because of the strong association of organic matter (a powerful reductant) with many uranium ores, reduction has long been considered to be the precipitation mechanism for many types of uranium deposits. Organic matter may also be involved in the alterations in and around tabular uranium deposits, including dolomite precipitation, formation of silicified layers, iron-titanium oxide destruction, dissolution of quartz grains, and precipitation of clay minerals. The diagenetic processes that produced these alterations also consumed organic matter. Consequently, those tabular deposits that underwent the more advanced stages of diagenesis, including methanogenesis and organic acid generation, display the greatest range of alterations and contain the smallest amount of organic matter. Because of certain similarities between tabular uranium deposits and Precambrian unconformity-related deposits, some of the same processes might have been involved in the genesis of Precambrian unconformity-related deposits. Hydrologic studies place important constraints on genetic models of various types of uranium deposits. In roll-front deposits, oxidized waters carried uranium to reductants (organic matter and pyrite derived from sulfate reduction by organic matter). After these reductants were oxidized at any point in the host sandstone, uranium minerals were reoxidized and transported further down the flow path to react with additional reductants. In this manner, the uranium ore migrated through the sandstone at a rate slower than the mineralizing ground water. In the case of tabular uranium deposits, the recharge of surface water into the ground water during flooding of lakes carried soluble humic material to the water table or to an interface where humate precipitated in tabular layers. These humate layers then established the chemical conditions for mineralization and related alterations. In the case of Precambrian unconformity-related deposits, free thermal convection in the thick sandstones overlying the basement rocks carried uranium to concentrations of organic matter in the basement rocks.

  9. Preliminary report on radioactive conglomerates of Middle Precambrian age in the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming

    USGS Publications Warehouse

    Houston, Robert Stroud; Graff, P.J.; Karlstrom, K.E.; Root, Forrest

    1977-01-01

    Middle Precambrian miogeosynclinal metasedimentary rocks o# the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming contain radioactive quartz-pebble conglomerates of possible economic interest. These conglomerates do not contain ore-grade uranium in surface outcrops, but an earlier report on the geochemistry of the Arrastre Lake area of the Medicine Bow Mountains shows that ore-grade deposits may be present in the subsurface. This report describes the stratigraphy of the host metasedimentary rocks and the stratigraphic setting of the radioactive conglomerates in both the Sierra Madre and Medicine Bow Mountains, and compares these rock units with those of the Blind River-Elliot Lake uranium district in Canada. The location of radioactive .conglomerates is given so that further exploration may be undertaken by interested parties.

  10. A study of uranium favorability of Cenozoic sedimentary rocks, Basin and Range Province, Arizona: Part I, General geology and chronology of pre-late Miocene Cenozoic sedimentary rocks

    USGS Publications Warehouse

    Scarborough, Robert Bryan; Wilt, Jan Carol

    1979-01-01

    This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II sediment s.

  11. Geology of the Ralston Buttes district, Jefferson County, Colorado: a preliminary report

    USGS Publications Warehouse

    Sheridan, Douglas M.; Maxwell, Charles H.; Albee, Arden L.; Van Horn, Richard

    1956-01-01

    The Ralston Buttes district in Jefferson County is one of the most significant new uranium districts located east of the Continental Divide in Colorado. The district is east of the Colorado Front Range mineral belt, along the east front of the range. From November 1953 through October 1956, about 10,000 tons of uranium ore, much of which was high-grade pitchblende-bearing vein material, was shipped from the district. The ore occurs in deposits that range in size from bodies containing less than 50 tons to ore shoots containing over 1,000 tons. The only other mining activity in the area has been a sporadic production of beryl, feldspar, and scrap mica from Precambrian pegmatites, and quarrying of dimension stone, limestone, and clay from sedimentary rocks. Most of the Ralston Buttes district consists of complexly folded Precambrian metamorphic and igneous rocks - gneiss, schist, quartzite, amphibolite, and granodiorite. Paleozoic and Mesozoic sedimentary rocks crop out in the northeastern part of the district. These rocks are cut by northwesterly-trending fault systems of Laramide age and by small bodies of intrusive rocks that are Tertiary in age. The typical uranium deposits in the district are hydrothermal veins occupying openings in Laramide fault breccias or related fractures that cut the Precambrian rocks. Pitchblende and lesser amounts of secondary uranium minerals are associated with sparse base-mental sulfides in a gangue of carbonate minerals, potash feldspar, and, more rarely, quartz. Less common types of deposits consist of pitchblende and secondary uranium minerals that occupy fractures cutting pegmatites and quartz veins. The uranium deposits are concentrated in two areas, the Ralston Creek area and the Golden Gate Canyon area. The deposits in the Ralston Creek area are located along the Rogers fault system, and the deposits in the Golden Gate Canyon area are along the Hurricane Hill fault system. Two geologic factors were important to the localization of the uranium deposits: (1) favorable structural environment and (2) favorable host rocks. The deposits in each of the two major areas are located where a northwesterly-trending Laramide fault system splits into a complex network of faults. Also, most of the deposits appear to be localized where the faults cut Precambrian rocks rich in hornblende, biotite, or garnet and biotite. The ore controls recognized in this relatively new uranium district may have wider application in areas of similar geology elsewhere in the Front Range.

  12. Geology of the area adjacent to the Free Enterprise uranium-silver Mine, Boulder District, Jefferson County, Montana

    USGS Publications Warehouse

    Roberts, W.A.; Gude, A.J.

    1952-01-01

    Uranium minerals.occur in pods associated with cryptocrystalline silica, silver minerals, and scattered sulfide mineral grains in a hydrothermal vein that cuts quartz monzonite and alaskite at the Free Enterprise mine, 2 miles west of Boulder, Mont. The Free Enterprise vein is one of many silicified reef-like structures in this area, most of which trend about N. 60° E. The cryptocrystalline silica zones of the area are lenticular and are bordered by an altered zone where quartz monzonite is the wall rock. No alteration was noticed where alaskite is adjacent to silica zones. No uranium minerals were observed at the surface, but radioactivity anomalies were noted at 57 outcrops. Underground mining has shown that leaching by downward percolating waters has removed most of the uranium from the near-surface part of the Free Enterprise vein and probably has enriched slightly, parts of the vein and the adjacent wall rock from the bottom of the leached zone to the ground-water level. It is possible that other veins that show low to moderate radioactivity at the surface may contain significant concentrations of uranium minerals at relatively shallow depth. The quartz monzonite appears to be a more favorable host rock for the cryptocrystalline silica and associated uranium minerals than the alaskite. The alaskite occurs as vertical_dikes plug-like masses, and as irregularly shaped, gently dipping masses that are believed to have been intruded into open fractures formed during the cooling of the quartz monzonite.

  13. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.

    PubMed

    Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T

    2016-12-01

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. Published by Elsevier Ltd.

  14. Measurement of natural radioactivity and radon exhalation rate from rock samples of Jaduguda uranium mines and its radiological implications

    NASA Astrophysics Data System (ADS)

    Mahur, A. K.; Kumar, Rajesh; Sonkawade, R. G.; Sengupta, D.; Prasad, Rajendra

    2008-04-01

    The Singhbhum shear zone is a 200 km long arcuate belt in Jharkhand state situated in eastern India. The central part between Jaduguda-Bhatin-Nimdih, Narwapahr-Garadih-Turamdih is rich in uranium. Presence of uranium in the host rocks and the prevalence of a confined atmosphere within mines could result in enhanced concentration of radon (222Rn) gas and its progeny. Inhalation of radon daughter products is a major contributor to the radiation dose to exposed subjects. By using high resolution γ-ray spectroscopic system various radionuclides in the rock samples, collected from different places of Jaduguda uranium mines have been identified quantitatively based on the characteristic spectral peaks. The activity concentrations of the natural radionuclides, uranium (238U), thorium (232Th) and potassium (40K) were measured in the rock samples and radiological parameters were calculated. Uranium concentration was found to vary from 123 ± 7 Bq kg-1 to 40,858 ± 174 Bq kg-1. Activity of thorium was not significant in the samples, whereas, few samples have shown potassium activity from 162 ± 11 Bq kg-1 to 9024 ± 189 Bq kg-1. Radon exhalation rates from these samples were also measured using "Sealed Can technique" and found to vary from 4.2 ± 0.05 to 13.7 ± 0.08 Bq m-2 h-1. A positive correlation was found between the radon exhalation rate and the uranium activity. The absorbed dose rates vary from 63.6 to 18876.4 nGy h-1, with an average value of 7054.2 nGy h-1. The annual external effective dose rates vary from 0.7 to 23.2 mSv y-1. Radium equivalent activities (Raeq) varied from 134.3 to 40858.0 Bq kg-1. Value of external hazard index (Hex) varied from 0.4 to 110.4 with an average value of 41.2.

  15. The Schlema-Alberoda five-element uranium deposit, Germany: An example of self-organizing hydrothermal system

    NASA Astrophysics Data System (ADS)

    Naumov, G. B.; Vlasov, B. P.; Golubev, V. N.; Mironova, O. F.

    2017-01-01

    As a result of integrating geological, mineralogical, and geochemical data on the unique Schlema-Alberoda five-element uranium deposit situated in Federal Republic of Germany and explored in detail down to a depth of 2 km, it has been shown that its formation for more than 100 Ma has been caused by combination of internal and external factors. The latter comprise favorable metallogenic specialization of the region, injection of intrusive bodies bearing the necessary stock of energy, and periodic pulses of tectonic reactivation. The internal factors of self-development involve evolutionary processes, which occur in host rocks at the consecutive stages of prograde and retrograde metamorphism giving rise to alteration of rocks in consistence with physical and chemical laws at variable temperature and degree of system opening.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson-Moore, J.L.; Collins, D.B.; Hornbaker, A.L.

    This two-part report provides an essentially complete listing of radioactive occurrences in Colorado, with a comprehensive bibliography and bibliographic cross-indexes. Part 1 lists approximately 3000 known radioactive occurrences with their locations and brief accounts of the geology, mineralogy, radioactivity, host rock, production data, and source of data for each. The occurrences are classified by host rock and plotted on U.S. Geological Survey 1/sup 0/ x 2/sup 0/ topographic quadrangle maps with a special 1 : 100,000-scale base map for the Uravan mineral belt. Part 2 contains the bibliography of approximately 2500 citations on radioactive mineral occurrences in the state, withmore » cross-indexes by county, host rock, and the special categories of ''Front Range,'' ''Colorado Plateau,'' and ''thorium.'' The term ''occurrence'' as used in this report is defined as any site where the concentration of uranium or thorium is at least 0.01% or where the range of radioactivity is greater than twice the background radioactivity. All citations and occurrence data are stored on computer diskettes for easy retrieval, correction, and updating.« less

  17. Molecular marker and stable carbon isotope analyses of carbonaceous Ambassador uranium ores of Mulga Rock in Western Australia

    NASA Astrophysics Data System (ADS)

    Jaraula, C.; Schwark, L.; Moreau, X.; Grice, K.; Bagas, L.

    2013-12-01

    Mulga Rock is a multi-element deposit containing uranium hosted by Eocene peats and lignites deposited in inset valleys incised into Permian rocks of the Gunbarrel Basin and Precambrian rocks of the Yilgarn Craton and Albany-Fraser Orogen. Uranium readily adsorbs onto minerals or phytoclasts to form organo-uranyl complexes. This is important in pre-concentrating uranium in this relatively young ore deposit with rare uraninite [UO2] and coffinite [U(SiO4)1-x(OH)4x], more commonly amorphous and sub-micron uranium-bearing particulates. Organic geochemical and compound-specific stable carbon isotope analyses were conducted to identify possible associations of molecular markers with uranium accumulation and to recognize effect(s) of ionizing radiation on molecular markers. Samples were collected from the Ambassador deposit containing low (<200 ppm) to high (>2000 ppm) uranium concentrations. The bulk rock C/N ratios of 82 to 153, Rock-Eval pyrolysis yields of 316 to 577 mg hydrocarbon/g TOC (Hydrogen Index, HI) and 70 to 102 mg CO2/g TOC (Oxygen Index, OI) are consistent with a terrigenous and predominantly vascular plant OM source deposited in a complex shallow water system, ranging from lacustrine to deltaic, swampy wetland and even shallow lake settings as proposed by previous workers. Organic solvent extracts were separated into saturated hydrocarbon, aromatic hydrocarbon, ketone, and a combined free fatty acid and alcohol fraction. The molecular profiles appear to vary with uranium concentration. In samples with relatively low uranium concentrations, long-chain n-alkanes, alcohols and fatty acids derived from epicuticular plant waxes dominate. The n-alkane distributions (C27 to C31) reveal an odd/even preference (Carbon Preference Index, CPI=1.5) indicative of extant lipids. Average δ13C of -27 to -29 ‰ for long-chain n-alkanes is consistent with a predominant C3 plant source. Samples with relatively higher uranium concentrations contain mostly intermediate-length n-alkanes, ketones, alcohols, and fatty acids (C20 to C24) with no preferential distribution (CPI~1). Intermediate length n-alkanes have modest carbon isotope enrichment compared to long-chain n-alkanes. These shorter-chain hydrocarbons are interpreted to represent alteration products. The diversity and relative abundance of ketones in highly mineralised Mulga Rock peats and lignites are not consistent with aerobic and diagenetic degradation of terrigenous OM in oxic environments. Moreover, molecular changes cannot be associated with thermal breakdown due to the low maturity of the deposits. It is possible that the association of high uranium concentrations and potential radiolysis resulted in the oxidation of alcohol functional groups into aldehydes and ketones and breakdown of highly aliphatic macromolecules (i.e. spores, pollen, cuticles, and algal cysts). These phytoclasts are usually considered to be recalcitrant as they evolved to withstand chemical and physical degradation. Previous petrographic analyses show that spores, pollen and wood fragments are preferentially enriched in uranium. Their molecular compositions are feasible sources of short- to intermediate-length n-alkanes that dominate the mineralised peats and lignites.

  18. Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium- uranium deposit, Henry Basin, Utah

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.; Northrop, H.R.

    1990-01-01

    The epigenetic Tony M vanadium-uranium orebody in south-central Utah is hosted in fluvial sandstones of the Morrison Formation (Upper Jurassic). Measurements of the relative amounts of V+3 and V +4 in ore minerals show that V+3 is more abundant. Thermodynamic calculations show that vanadium was more likely transported to the site of mineralization as V+4. The ore formed as V+4 was reduced by hydrogen sulfide, followed by hydrolysis and precipitation of V+3 in oxide minerals or chlorite. Uranium was transported as uranyl ion (U+6), or some complex thereof, and reduced by hydrogen sulfide, forming coffinite. Detrital organic matter in the rocks served as the carbon source for sulfate-reducing bacteria. Vanadium most likely was derived from the dissolution of iron-titanium oxides. Uranium probably was derived from the overlying Brushy Basin Member of the Morrison Formation. Previous studies have shown that the ore formed at the density-stratified interface between a basinal brine and dilute meteoric water. The mineralization processes described above occurred within the mixing zone between these two fluids. -from Authors

  19. National Uranium Resource Evaluation: Aztec quadrangle, New Mexico and Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, M.W.

    1982-09-01

    Areas and formations within the Aztec 1/sup 0/ x 2/sup 0/ Quadrangle, New Mexico and Colorado considered favorable for uranium endowment of specified minimum grade and tonnage include, in decreasing order of favorability: (1) the Early Cretaceous Burro Canyon Formation in the southeastern part of the Chama Basin; (2) the Tertiary Ojo Alamo Sandstone in the east-central part of the San Juan Basin; and (3) the Jurassic Westwater Canyon and Brushy Basin Members of the Morrison Formation in the southwestern part of the quadrangle. Favorability of the Burro Canyon is based on the presence of favorable host-rock facies, carbonaceous materialmore » and pyrite to act as a reductant for uranium, and the presence of mineralized ground in the subsurface of the Chama Basin. The Ojo Alamo Sandstone is considered favorable because of favorable host-rock facies, the presence of carbonaceous material and pyrite to act as a reductant for uranium, and the presence of a relatively large subsurface area in which low-grade mineralization has been encountered in exploration activity. The Morrison Formation, located within the San Juan Basin adjacent to the northern edge of the Grants mineral belt, is considered favorable because of mineralization in several drill holes at depths near 1500 m (5000 ft) and because of favorable facies relationships extending into the Aztec Quadrangle from the Grants mineral belt which lies in the adjacent Albuquerque and Gallup Quadrangles. Formations considered unfavorable for uranium deposits of specified tonnage and grade include the remainder of sedimentary and igneous formations ranging from Precambrian to Quaternary in age. Included under the unfavorable category are the Cutler Formation of Permian age, and Dakota Sandstone of Late Cretaceous age, and the Nacimiento and San Jose Formations of Tertiary age.« less

  20. Geology and ore deposits of the Section 23 Mine, Ambrosia Lake District, New Mexico

    USGS Publications Warehouse

    Granger, H.C.; Santos, E.S.

    1982-01-01

    The section 23 mine is one of about 18 large uranium mines opened in sandstones of the fluvial Westwater Canyon Member of the Jurassic Morrison Formation in the Ambrosia Lake mining district during the early 1960s. The Ambrosia Lake district is one of several mining districts within the Grants mineral belt, an elongate zone containing many uranium deposits along the southern flank of the San Juan basin. Two distinct types of ore occur in the mine. Primary ore occurs as peneconcordant layers of uranium-rich authigenic organic matter that impregnates parts of the reduced sandstone host rocks and which are typically elongate in an east-southeast direction subparallel both to the sedimentary trends and to the present-day regional strike of the strata. These are called prefault or trend ores because of their early genesis and their elongation and alinement. A second type of ore in the mine is referred to as postfault, stacked, or redistributed ore. Its genesis was similar to that of the roll-type deposits in Tertiary rocks of Wyoming and Texas. Oxidation, related to the development of a large tongue of oxidized rock extending from Gallup to Ambrosia Lake, destroyed much of the primary ore and redistributed it as massive accumulations of lower grade ores bordering the redox interface at the edge of the tongue. Host rocks in the southern half of sec. 23 (T. 14 N., R. 10 W.) are oxidized and contain only remnants of the original, tabular, organic-rich ore. Thick bodies of roll-type ore are distributed along the leading edge of the oxidized zone, and pristine primary ore is found only near the north edge of the section. Organic matter in the primary ore was derived from humic acids that precipitated in the pores of the sandstones and fixed uranium as both coffinite and urano-organic compounds. Vanadium, molybdenum, and selenium are also associated with the ore. The secondary or roll-type ores are essentially free of organic carbon and contain uranium both as coffinite and uraninite. They also contain vanadium and selenium but are virtually devoid of molybdenum. Although much has been learned about these deposits since the time this study was conducted, in 1966, a great deal more study will by required to completely elucidate their geologic history.

  1. Uranium concentration and distribution in six peridotite inclusions of probable mantle origin

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Zartman, R. E.

    1973-01-01

    Fission-track activation was used to investigate uranium concentration and distribution in peridotite inclusions in alkali basalt from six localities. Whole-rock uranium concentrations range from 24 to 82 ng/g. Most of the uranium is uniformly distributed in the major silicate phases - olivine, orthopyroxene, and clinopyroxene. Chromian spinels may be classified into two groups on the basis of their uranium content - those which have less than 10 ng/g and those which have 100 to 150 ng/g U. In one sample accessory hydrous phases, phlogopite and hornblende, contain 130 and 300 ng/g U, respectively. The contact between the inclusion and the host basalt is usually quite sharp. Glassy or microcrystalline veinlets found in some samples contain more than 1 microgram/g. Very little uranium is associated with microcrystals of apatite. These results agree with some earlier investigators, who have concluded that suboceanic peridotites contain too little uranium to account for normal oceanic heat flow by conduction alone.

  2. The El Horror uranium anomaly in northeastern Sonora, Mexico: Constraints from geochemical and mineralogical approaches

    NASA Astrophysics Data System (ADS)

    Grijalva-Rodríguez, T.; Valencia-Moreno, M.; Calmus, T.; Del Rio-Salas, R.; Balcázar-García, M.

    2017-12-01

    This work reviews the characteristics of the El Horror uranium prospect in northeastern Sonora, Mexico. It was formerly detected by a radiometric anomaly after airborne gamma ray exploration carried out in the 70's by the Mexican government. As a promising site to contain important uranium resources, the El Horror was re-evaluated by CFE (Federal Electricity Commission) by in situ gamma ray surveys. The study also incorporates rock and stream sediment ICP-MS geochemistry, X-ray diffraction, X-ray fluorescence, Raman spectrometry and Scanning Electron Microscopy (SEM) to provide a better understanding of the radiometric anomaly. The results show that, instead of a single anomaly, it comprises at least five individual anomalies hosted in hydrothermally altered Laramide (80-40 Ma) andesitic volcanic rocks of the Tarahumara Formation. Concentrations for elemental uranium and uranium calculated from gamma ray surveys (i.e., equivalent uranium) are not spatially coincident within the anomaly, but, at least at some degree, they do so in specific sites. X-ray diffraction and Raman spectrometry revealed the presence of rutile/anatase, uvite, bukouvskyte and allanite as the more likely mineral phases to contain uranium. SEM studies revealed a process of iron-rich concretion formation, suggesting that uranium was initially incorporated to the system by adsorption, but was largely removed later during incorporation of Fe+3 ions. Stream sediment geochemistry reveals that the highest uranium concentrations are derived from the southern part of the Sierra La Madera batholith (∼63 Ma), and decrease toward the El Horror anomaly.

  3. Uranium resource assessment through statistical analysis of exploration geochemical and other data. Final report. [Codes EVAL, SURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, G.S. Jr.; Howarth, R.J.; Schuenemeyer, J.H.

    1981-02-01

    We have developed a procedure that can help quadrangle evaluators to systematically summarize and use hydrogeochemical and stream sediment reconnaissance (HSSR) and occurrence data. Although we have not provided an independent estimate of uranium endowment, we have devised a methodology that will provide this independent estimate when additional calibration is done by enlarging the study area. Our statistical model for evaluation (system EVAL) ranks uranium endowment for each quadrangle. Because using this model requires experience in geology, statistics, and data analysis, we have also devised a simplified model, presented in the package SURE, a System for Uranium Resource Evaluation. Wemore » have developed and tested these models for the four quadrangles in southern Colorado that comprise the study area; to investigate their generality, the models should be applied to other quandrangles. Once they are calibrated with accepted uranium endowments for several well-known quadrangles, the models can be used to give independent estimates for less-known quadrangles. The point-oriented models structure the objective comparison of the quandrangles on the bases of: (1) Anomalies (a) derived from stream sediments, (b) derived from waters (stream, well, pond, etc.), (2) Geology (a) source rocks, as defined by the evaluator, (b) host rocks, as defined by the evaluator, and (3) Aerial radiometric anomalies.« less

  4. National Uranium Resource Evaluation: Palestine Quadrangle, Texas and Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowen, M.; Basciano, J.; Fose, F.G. Jr.

    1982-09-01

    The uranium resource potential of the Palestine Quadrangle, Texas and Louisiana, was evaluated to a depth of 1500 m (5000 ft) using criteria established for the National Uranium Resource Evaluation program. Data derived from geochemical analyses of surface samples (substrate, soil, and stream sediment) in conjunction with hydrochemical data from water wells were used to evaluate geologic environments as being favorable or unfavorable for the occurrence of uranium deposits. Two favorable environments have been identified in the Palestine Quadrangle: potential deposits of modified Texas roll-type in fluvial channels and associated facies within the Yegua Formation, and potential occurrences along mineralizationmore » fronts associated with the Elkhart Graben and Mount Enterprise fault system. Unfavorable environments include: Cretaceous shales and limestones, Tertiary fine-grained marine sequences, Tertiary sandstone units that exhibit favorable host-rock characteristics but fail to show significant syngenetic or epigenetic mineralization, and Quaternary sands and gravels. Unevaluated units include the Woodbine Group (Upper Cretaceous), Jackson Group (Tertiary), and Catahoula Formation (Tertiary). The subsurface interval of the Jackson Group and Catahoula Formation contains depositional facies that may represent favorable environments; however, the evaluation of these units is inconclusive because of the general lack of shallow subsurface control and core material. The Woodbine Group, restricted to the subsurface except for a small exposure over Palestine Dome, occurs above 1500 m (5000 ft) in the northwest quarter of the quadrangle. The unit exhibits favorable host-rock characteristics, but the paucity of gamma logs and cores, as well as the lack of hydrogeochemical and stream-sediment reconnaissance data, makes evaluation of the unit difficult.« less

  5. Preliminary report on uranium and thorium content of intrusive rocks in northeastern Washington and northern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castor, S.B.; Berry, M.R.; Robins, J.W.

    1977-11-01

    This study delineates favorable areas for uranium resources in northeastern Washington and northern Idaho by identifying granitic rocks with relatively large amounts of uranium and (or) thorium. Results are based on analysis of 344 rock samples. Uranium analyses obtained by gamma-ray spectrometric data correlate closely with fluorometric determinations. On the basis of cumulative frequency distribution curves, more than 8 ppM equivalent uranium and more than 20 ppM equivalent thorium are considered anomalous for granitic rocks in northeastern Washington and northern Idaho. Granitic rocks anomalously high in uranium and (or) thorium are concentrated in two northeast-trending belts. The most prominent, themore » Midnite-Hall Mountain belt, includes the Midnite and Sherwood uranium mines, and two lesser but productive areas farther north. This belt follows the contact between Precambrian and Paleozoic rocks, which is also the locus of the Kootenai arc fold belt. The second belt of anomalously radioactive granitic rocks is along the Republic graben, a prominent linear structure in an area with no recorded uranium production. Anomalously radioactive granitic rocks are generally massive quartz monzonite, alaskite, or pegmatite, which contain abundant quartz and potash feldspar. They are also characterized by pink potash feldspar, commonly as large phenocrysts, and by the presence of muscovite. Several uranium and thorium minerals have been identified in these rocks. The two belts of anomalously radioactive plutons are considered favorable for uranium resources. Deposits could occur in the intrusive rocks themselves or in favorable environments in adjacent rocks. 13 figs., 2 tables.« less

  6. Maps showing the distribution of uranium-deposit clusters in the Colorado Plateau uranium province

    USGS Publications Warehouse

    Finch, Warren I.

    1991-01-01

    The Colorado Palteau Uranium Province (CPUP) is defined by the distribution of uranium deposits, chiefly the sandstone-type, in upper Paleozoic and Mesozoic sedimentary rocks within the Colorado Plateau physiographic province (Granger and others, 1986).  The uranium province is bordered by widely distributed and mostly minor uranium deposits in Precambrian and Tertiary rocks and by outcrops of Tertiary extrusive and intrusive igneous rocks.  

  7. Uranium migration and favourable sites of potential radioelement concentrations in Gabal Umm Hammad area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Youssef, Mohamed A. S.; Sabra, Mohamed Elsadek M.; Abdeldayem, Abdelaziz L.; Masoud, Alaa A.; Mansour, Salah A.

    2017-12-01

    Airborne gamma-ray spectrometric data, covering Gabal Umm Hammad area, near Quseir City, in the Eastern Desert of Egypt, has been utilized to identify the uranium migration path, and U, Th and K-favorability indices. The following of the uranium migration technique enabled estimation of the amount of migrated uranium, in and out of the rock units. Investigation of the Taref Formation, Nakhil Formation, Tarawan Formation and Dawi Formation shows large negative amount of uranium migration, indicating that uranium leaching is outward from the geologic body toward surrounding rock units. Moreover, calculation of the U, Th and K-favorability indices has been carried out for the various rock units to locate the rocks having the highest radioelement potentialities. The rock units that possess relatively major probability of uranium potentiality include Mu‧tiq Group, weakly deformed granitic rocks, and Trachyte plugs and sheets. Meanwhile, the rock units with major potential of Th-index are Taref Formation, Quseir Formation and Dawi Formation. The rock units with major potential of K-index are Dokhan volcanic and Mu‧tiq group.

  8. Uranium- and thorium-bearing pegmatites of the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on themore » geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.« less

  9. Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid.

    PubMed

    Madakkaruppan, V; Pius, Anitha; T, Sreenivas; Giri, Nitai; Sarbajna, Chanchal

    2016-08-05

    This paper describes a study on microwave assisted leaching of uranium from a low-grade ore of Indian origin. The host rock for uranium mineralization is chlorite-biotite-muscovite-quartzo-feldspathic schist. The dominant presence of siliceous minerals determined leaching of uranium values in sulfuric acid medium under oxidizing conditions. Process parametric studies like the effect of sulfuric acid concentration (0.12-0.50M), redox potential (400-500mV), particle size (600-300μm) and temperature (35°-95°C) indicated that microwave assisted leaching is more efficient in terms of overall uranium dissolution, kinetics and provide relatively less impurities (Si, Al, Mg and Fe) in the leach liquor compared to conventional conductive leaching. The kinetics of leaching followed shrinking core model with product layer diffusion as controlling mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. U redox fronts and kaolinisation in basement-hosted unconformity-related U ores of the Athabasca Basin (Canada): late U remobilisation by meteoric fluids

    NASA Astrophysics Data System (ADS)

    Mercadier, Julien; Cuney, Michel; Cathelineau, Michel; Lacorde, Mathieu

    2011-02-01

    Proterozoic basement-hosted unconformity-related uranium deposits of the Athabasca Basin (Saskatchewan, Canada) were affected by significant uranium redistribution along oxidation-reduction redox fronts related to cold and late meteoric fluid infiltration. These redox fronts exhibit the same mineralogical and geochemical features as the well-studied uranium roll-front deposits in siliclastic rocks. The primary hydrothermal uranium mineralisation (1.6-1.3 Ga) of basement-hosted deposits is strongly reworked to new disseminated ores comprising three distinctly coloured zones: a white-green zone corresponding to the previous clay-rich alteration halo contemporaneous with hydrothermal ores, a uranium front corresponding to the uranium deposition zone of the redox front (brownish zone, rich in goethite) and a hematite-rich red zone marking the front progression. The three zones directly reflect the mineralogical zonation related to uranium oxides (pitchblende), sulphides, iron minerals (hematite and goethite) and alumino-phosphate-sulphate (APS) minerals. The zoning can be explained by processes of dissolution-precipitation along a redox interface and was produced by the infiltration of cold (<50°C) meteoric fluids to the hydrothermally altered areas. U, Fe, Ca, Pb, S, REE, V, Y, W, Mo and Se were the main mobile elements in this process, and their distribution within the three zones was, for most of them, directly dependent on their redox potential. The elements concentrated in the redox fronts were sourced by the alteration of previously crystallised hydrothermal minerals, such as uranium oxides and light rare earth element (LREE)-rich APS. The uranium oxides from the redox front are characterised by LREE-enriched patterns, which differ from those of unconformity-related ores and clearly demonstrate their distinct conditions of formation. Uranium redox front formation is thought to be linked to fluid circulation episodes initiated during the 400-300 Ma period during uplift and erosion of the Athabasca Basin when it was near the Equator and to have been still active during the last million years. A major kaolinisation event was caused by changes in the fluid circulation regime, reworking the primary uranium redox fronts and causing the redistribution of elements originally concentrated in the uranium-enriched meteoric-related redox fronts.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, R.T.; Strand, J.R.; Reid, B.E.

    Uranium favorability of the Sangre de Cristo Formation (Pennsylvanian-Permian) in the Las Vegas basin has been evaluated. The Las Vegas basin project area, located in Colfax, Mora, and San Miguel Counties, New Mexico, comprises about 3,489 sq mi. The formation contains sedimentologic and stratigraphic characteristics that are considered favorable for uranium deposition. Field investigations consisted of section measuring, rock sampling, and ground radiometric reconnaissance. North-south and east-west cross sections of the basin were prepared from well logs and measured sections. Petrographic, chemical, and spectrographic analyses were conducted on selected samples. Stratigraphic and sedimentologic information were used to determine depositional environments.more » The most favorable potential host rocks include red to pink, coarse-grained, poorly sorted, feldspathic to arkosic lenticular sandstones with stacked sandstone thicknesses of more than 20 ft and sandstone-to-shale ratios between 1:1 and 2:1. The sandstone is interbedded with mudstone and contains carbonaceous debris and anomalous concentrations of uranium locally. Areas of maximum favorability are found in a braided-stream, alluvial-plain depositional environment in the north-central part of the Las Vegas basin. There, carbonaceous material is well preserved, probably due to rapid subsidence and burial. Furthermore, uranium favorability is highest in the lower half of the formation because carbonaceous wood and plant fragments, as well as known uranium deposits, are concentrated in this zone. Piedmont deposits in the north and east, and meander-belt, alluvial-plain deposits in the south, are not considered favorable because of the paucity of uranium deposits and a minimum of carbonaceous material.« less

  12. Field, model, and computer simulation study of some aspects of the origin and distribution of Colorado Plateau-type uranium deposits

    USGS Publications Warehouse

    Ethridge, F.G.; Sunada, D.K.; Tyler, Noel; Andrews, Sarah

    1982-01-01

    Numerous hypotheses have been proposed to account for the nature and distribution of tabular uranium and vanadium-uranium deposits of the Colorado Plateau. In one of these hypotheses it is suggested that the deposits resulted from geochemical reactions at the interface between a relatively stagnant groundwater solution and a dynamic, ore-carrying groundwater solution which permeated the host sandstones (Shawe, 1956; Granger, et al., 1961; Granger, 1968, 1976; and Granger and Warren, 1979). The study described here was designed to investigate some aspects of this hypothesis, particularly the nature of fluid flow in sands and sandstones, the nature and distribution of deposits, and the relations between the deposits and the host sandstones. The investigation, which was divided into three phases, involved physical model, field, and computer simulation studies. During the initial phase of the investigation, physical model studies were conducted in porous-media flumes. These studies verified the fact that humic acid precipitates could form at the interface between a humic acid solution and a potassium aluminum sulfate solution and that the nature and distribution of these precipitates were related to flow phenomena and to the nature and distribution of the host porous-media. During the second phase of the investigation field studies of permeability and porosity patterns in Holocene stream deposits were investigated and the data obtained were used to design more realistic porous media models. These model studies, which simulated actual stream deposits, demonstrated that precipitates possess many characteristics, in terms of their nature and relation to host sandstones, that are similar to ore deposits of the Colorado Plateau. The final phase of the investigation involved field studies of actual deposits, additional model studies in a large indoor flume, and computer simulation studies. The field investigations provided an up-to-date interpretation of the depositional environments of the host sandstones in the Slick Rock District and data on the nature and distribution of the ore deposits which are found to be directly related to the architecture of the host sandstones which acted as conduits for the transport of mineralized groundwaters. Large-scale model studies, designed to simulate Grants Mineral Belt deposits, demonstrated that precipitates had characteristics similar to those of actual uranium deposits and data obtained from these studies strongly supported the hypothesis that the ores formed soon after deposition of the host sandstones and that their distribution was largely controlled by permeability and porosity patterns established at the time of deposition of the host sandstones. A numerical model was developed during the second and third stages of the investigation that can predict favorable locations for mineralization given sufficient data on porosity, hydraulic conductivity, the distribution and thickness of sandstone hosts, and an estimate of the initial hydrologic conditions. The model was successfully tested using data from the Slick Rock District.

  13. URANIUM IN ROCK MINERALS OF THE INTRUSION OF KYZL-OMPUL MOUNTAINS (NORTH KIRGISIA) (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonova, L.L.; Pogiblova, L.S.

    1961-01-01

    The uranium distribution in rock minerals (syenites, granosyenites, and alaskite granites) of the Kyzyl-Ompul raassif is studied. Alaskite granites are characterized by the granite type of uranium distribution in minerals, about 50 percent of this element being connected with rockforming and about 50 percent with accessory uranium minerals. ln syenites uranium (about 70 percent) is bound to rockforming minerals. The same minerals from syenites and granites strongly differ by their uranium content and are constant in the ranges of each of those rock types. Granosyenites have aa intermediate (between syenites and granites) type of uranium distribution in minerals. (auth)

  14. The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, D.E.; Hudson, G.R.T.

    1983-08-01

    The Olympic Dam copper-uranium-gold deposit appears to be a new type of strata-bound sediment-hosted ore deposit. It is located 650 km north-northwest of Adelaide in South Australia and was discovered in 1975. It has an areal extent exceeding 20 km/sup 2/ with vertical thicknesses of mineralization up to 350 m. The deposit is estimated to contain in excess of 2,000 million metric tons of mineralized material with an average grade of 1.6 percent copper, 0.06 percent uranium oxide, and 0.6 g/metric ton gold. The deposit occurs in the basement beneath 350 m of unmineralized, flat-lying Adelaidean (late Proterozoic) to Cambrianmore » sediments in the Stuart shelf region of South Australia. The host rocks of the deposit are unmetamorphosed and are probably younger than 1,580 m.y. The deposit is spatially related to coincident gravity and magnetic anomalies and the intersection of west-northwest- and north-northwest-trending lineaments. The Proterozoic sediments comprising the local basement sequence are predominantly sedimentary breccias ranging from matrix-poor granite breccias to matrix-rich polymict breccias containing clasts of a variety of rock types. This sequence is over 1 km thick and has been divided into two main units--the Olympic Dam Formation and the Greenfield Formation. The Olympic Dam Formation has five members, three of which are matrix rich. The Greenfield Formation has three members, the lower two being very hematite rich while the upper has a significant volcanic component. Pervasive hematite, chlorite, and sericite alteration of varying intensity affects all the basement sequence.« less

  15. Summary of the geology and resources of uranium in the San Juan Basin and adjacent region, New Mexico, Arizona, Utah, and Colorado

    USGS Publications Warehouse

    Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.

    1978-01-01

    The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic

  16. Petrography and geochemistry of granitoids from the Samphire Pluton, South Australia: Implications for uranium mineralisation in overlying sediments

    NASA Astrophysics Data System (ADS)

    Domnick, Urs; Cook, Nigel J.; Bluck, Russel; Brown, Callan; Ciobanu, Cristiana L.

    2018-02-01

    The Blackbush uranium deposit (JORC Inferred Resource: 12,580 tonnes U), located on the north-eastern Eyre Peninsula, is currently the only sediment-hosted U deposit investigated in detail in the Gawler Craton. Uranium is hosted within Eocene sandstone of the Kanaka Beds, overlying Mesoproterozoic granites of the Samphire pluton, affiliated with the Hiltaba Intrusive Suite ( 1.6 Ga). These are considered the most probable source rocks for uranium mineralisation. By constraining the petrography and mineralogy of the granites, insights into the post-emplacement evolution can be gained, which may provide an exploration indicator for other sediment-hosted uranium systems. Three geochemically distinct granite types were identified in the Samphire Pluton and correspond to domains interpreted from geophysical data. All granites show complex alteration overprints and textures with increasing intensity closer to the deposit, as well as crosscutting veining. Alkali feldspar has been replaced by porous K-feldspar and albite, and plagioclase is overprinted by an assemblage of porous albite + sericite ± calc-silicates (prehnite, pumpellyite and epidote). This style of feldspar alteration is regionally widespread and known from Hiltaba-aged granites associated with iron-oxide copper-gold mineralisation at Olympic Dam and in the Moonta-Wallaroo region. In two granite types biotite is replaced by calcic garnet. Calc-silicates are indicative of Ca-metasomatism, sourced from the anorthite component of altered plagioclase. Minor clay alteration of feldspars is present in all samples. Mineral assemblages in veins include quartz + hematite, hematite + coffinite, fluorite + quartz, and clay minerals. Minor chlorite and sericite are found in all vein types. All granite types are anomalously rich in U (concentrations between 10 and 81 ppm). Highly variable Th/U ratios, as well as hydrothermal U minerals (mostly coffinite) in granites and veins, are clear evidence for U mobility. Uranium may have been preconcentrated in veins in the upper parts of the pluton, and was subsequently leached after deposition of the sediment.

  17. National Uranium Resource Evaluation: Lewistown Quadrangle, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culver, J.C.

    1982-09-01

    Uranium resources in the Lewistown Quadrangle, Montana, were evaluated to a depth of 1500 m (5000 ft). All existing geologic data were considered, including geologic surveys, literature, theses, radiometric surveys, oil- and water-well logs. Additional data were generated during the course of two field seasons, including the collection of more than 350 water, rock, crude oil and panned concentrate samples for analyses, sedimentary facies maps, structural geology and isopach maps, and field examination of reported areas of anomalous radioactivity. Three environments with potential for the occurrence of a minimum of 100 t of 0.01% U/sub 3/O/sub 8/ were delineated. Themore » most favorable environment is located in the southeastern portion of the quadrangle; here, Tertiary felsic dikes intrude four potential sandstone host rocks in the Kootenai Formation and the Colorado Shale. Structural-chemical traps for allogenic uranium are provided by the juxtaposition of oil-bearing domes. A second potential environment is located in the Eagle Sandstone in the northwestern and western portions of the quadrangle; here, anomalous water samples were obtained downtip from oxidized outcrops that are structurally related to Tertiary intrusive rocks of the Bearpaw and Highwood Mountains. Lignitic lenses and carbonaceous sandstones deposited in a near-shore lagoonal and deltaic environment provide potential reductants for hexavalent uranium in this environment. A third environment, in the Judith River Formation, was selected as favorable on the basis of water-well and gamma-ray log anomalies and their structural relationship with the Bearpaw Mountains. Organic materials are present in the Judith River Formation as potential reductants. They were deposited in a near-shore fluvial and lagoonal system similar to the depositional environment of the Jackson Group of the Texas Gulf Coast.« less

  18. Permissive tracts for uranium deposits in Mauritania (phase V, deliverable 80): Chapter N1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Fernette, Gregory; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  19. U-Th-Pb systematics of some granitoids from the northeastern Yilgarn Block, Western Australia and implications for uranium source rock potential.

    USGS Publications Warehouse

    Stuckless, J.S.; Bunting, J.A.; Nkomo, I.T.

    1981-01-01

    The Mount Boreas-type granite and spatially associated syenitic granitoid of Western Australia yield Pb/Pb ages of 2370+ or -100Ma and 2760+ or -210Ma, respectively. Th/Pb ages, although less precise, are concordant with these ages, and therefore the apparent ages are interpreted to be the crystallisation ages for these two units. U/Pb ages are variable and for the most part anomalously old, which suggests a Cainozoic uranium loss. However, this loss is generally small (<3mu g/g); therefore, neither granitoid in its fresh state provides a good source for nearby calcrete-hosted uranium deposits. The possibility remains that the Mount Boreas- type granite that has been completely weathered during the Tertiary could have been a source for the calcrete-type uranium deposits in W.A. Although the Mount Boreas-type granite is highly fractionated, it does not bear a strong geochemical imprint of a sedimentary precursor. This feature contrasts it with apparently fresh granitoids from other parts of the world that have lost large amounts of uranium (approx 20mu g/g) and are associated with large roll-type and other low temperature-type uranium deposits.-Authors

  20. Statistical sampling of the distribution of uranium deposits using geologic/geographic clusters

    USGS Publications Warehouse

    Finch, W.I.; Grundy, W.D.; Pierson, C.T.

    1992-01-01

    The concept of geologic/geographic clusters was developed particularly to study grade and tonnage models for sandstone-type uranium deposits. A cluster is a grouping of mined as well as unmined uranium occurrences within an arbitrary area about 8 km across. A cluster is a statistical sample that will reflect accurately the distribution of uranium in large regions relative to various geologic and geographic features. The example of the Colorado Plateau Uranium Province reveals that only 3 percent of the total number of clusters is in the largest tonnage-size category, greater than 10,000 short tons U3O8, and that 80 percent of the clusters are hosted by Triassic and Jurassic rocks. The distributions of grade and tonnage for clusters in the Powder River Basin show a wide variation; the grade distribution is highly variable, reflecting a difference between roll-front deposits and concretionary deposits, and the Basin contains about half the number in the greater-than-10,000 tonnage-size class as does the Colorado Plateau, even though it is much smaller. The grade and tonnage models should prove useful in finding the richest and largest uranium deposits. ?? 1992 Oxford University Press.

  1. Reconnaissance for uranium in asphalt-bearing rocks in the western states

    USGS Publications Warehouse

    Hail, William James

    1955-01-01

    Evaluation of field data indicates that naturally occurring asphalts with a relatively high uranium content probably originated in, or migrated through, rocks that contain more than average amounts of uranium. It is believed that some of the uranium was present as an original constituent of the oil but that some uranium may have been introduced during migration of the oil.

  2. Preliminary study of uranium favorability of the Boulder batholith, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castor, S.B.; Robins, J.W.

    1978-01-01

    The Boulder batholith of southwestern Montana is a composite Late Cretaceous intrusive mass, mostly composed of quartz monzonite and granodiorite. This study was not restricted to the plutonic rocks; it also includes younger rocks that overlie the batholith, and older rocks that it intrudes. The Boulder batholith area has good overall potential for economic uranium deposits, because its geology is similar to that of areas that contain economic deposits elsewhere in the world, and because at least 35 uranium occurrences of several different types are present. Potential is greatest for the occurrence of small uranium deposits in chalcedony veins andmore » base-metal sulfide veins. Three areas may be favorable for large, low-grade deposits consisting of a number of closely spaced chalcedony veins and enriched wall rock; the Mooney claims, the Boulder area, and the Clancy area. In addition, there is a good possibility of by-product uranium production from phosphatic black shales in the project area. The potential for uranium deposits in breccia masses that cut prebatholith rocks, in manganese-quartz veins near Butte, and in a shear zone that cuts Tertiary rhyolite near Helena cannot be determined on the basis of available information. Low-grade, disseminated, primary uranium concentrations similar to porphyry deposits proposed by Armstrong (1974) may exist in the Boulder batholith, but the primary uranium content of most batholith rocks is low. The geologic environment adjacent to the Boulder batholith is similar in places to that at the Midnite mine in Washington. Some igneous rocks in the project area contain more than 10 ppM U/sub 3/O/sub 8/, and some metasedimentary rocks near the batholith contain reductants such as sulfides and carbonaceous material.« less

  3. Organic geochemical analysis of sedimentary organic matter associated with uranium

    USGS Publications Warehouse

    Leventhal, J.S.; Daws, T.A.; Frye, J.S.

    1986-01-01

    Samples of sedimentary organic matter from several geologic environments and ages which are enriched in uranium (56 ppm to 12%) have been characterized. The three analytical techniqyes used to study the samples were Rock-Eval pyrolysis, pyrolysis-gas chromatography-mass spectrometry, and solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. In samples with low uranium content, the pyrolysis-gas chromatography products contain oxygenated functional groups (as hydroxyl) and molecules with both aliphatic and aromatic carbon atoms. These samples with low uranium content give measurable Rock-Eval hydrocarbon and organic-CO2 yields, and C-13 NMR values of > 30% aliphatic carbon. In contrast, uranium-rich samples have few hydrocarbon pyrolysis products, increased Rock-Eval organic-CO2 contents and > 70% aromatic carbon contents from C-13 NMR. The increase in aromaticity and decrease in hydrocarbon pyrolysis yield are related to the amount of uranium and the age of the uranium minerals, which correspond to the degree of radiation damage. The three analytical techniques give complementary results. Increase in Rock-Eval organic-CO2 yield correlates with uranium content for samples from the Grants uranium region. Calculations show that the amount of organic-CO2 corresponds to the quantity of uranium chemically reduced by the organic matter for the Grants uranium region samples. ?? 1986.

  4. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan complex, South China: Implications for uranium mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Chen, Zhenyu; Li, Xiaofeng; Li, Shengrong; Santosh, M.; Huang, Guolong

    2018-05-01

    The Zhuguangshan complex, composed of Caledonian, Indosinian, and Yanshanian granites, and Cretaceous mafic dykes, is one of the most important granite-hosted uranium producers in South China. Here we present LA-ICP-MS zircon U-Pb and hornblende 40Ar/39Ar geochronology and whole-rock and biotite geochemistry for the granites in this complex to evaluate the magmatism and its constraints on uranium mineralization. Samples collected from the Fuxi, Youdong, Longhuashan, Chikeng, Qiling, and Sanjiangkou intrusions yield zircon weighted 206Pb/238U ages of 426.7 ± 5.4 Ma, 226.4 ± 3.5 Ma, 225.0 ± 2.7 Ma, 152.2 ± 3.0 Ma, 153.9 ± 2.1 Ma, and 155.2 ± 2.1 Ma, respectively. A new Ar-Ar dating of the hornblende of the diabase from the Changjiang uranium ore field yields a plateau age of 145.1 ± 1.5 Ma. These results coupled with published geochronological data indicate that six major magmatic events occurred in the study area at 420-435 Ma, 225-240 Ma, 150-165 Ma, 140 Ma, 105 Ma, and 90 Ma. Both U-bearing and barren granites occur in this complex, and they display differences in whole-rock and biotite geochemistry. The barren granites show higher Al2O3, CaO, TFMM, Rb, Zr, Ba, SI, Mg#, (La/Yb)N, and Eu/Eu*, but lower SiO2, ALK, Rb, DI, Rb/Sr, and TiO2/MgO than those of the U-bearing granites. Biotites in the U-bearing granites are close to the Fe-rich siderophyllite-annite end member with Fe/(Fe + Mg) ratios higher than 0.66, whereas those in the barren granites are relatively close to the Mg-rich eastonite-phlogopite end member with Fe/(Fe + Mg) ratios <0.66. The U-bearing granites were mainly derived from the partial melting of pelitic sedimentary source, whereas the psammitic source generated the barren granites. In addition, the barren granites show higher TFMM, Ba, and Eu/Eu* but lower SiO2, Rb/Sr and Al2O3/TiO2 ratios with higher zircon saturation temperatures relative to the U-bearing granites. These results indicate that the geochemical compositions of the U-bearing and barren granites are dictated not only by the compositions of source rocks but also the physicochemical conditions of partial melting. Our study suggests that these two factors are also the major factors that control uranium ore potential of the granites in the Zhuguangshan complex. The geochemical variations of U-bearing and barren granites can serve as a potential detector for granite-hosted uranium deposits.

  5. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Zhang, Wenzheng; Wu, Kai; Li, Shanpeng; Peng, Ping'an; Qin, Yan

    2010-09-01

    The oil source rocks of the Chang 7 member of the Yanchang Formation in the Erdos Basin were deposited during maximum lake extension during the Late Triassic and show a remarkable positive uranium anomaly, with an average uranium content as high as 51.1 μg/g. Uranium is enriched together with organic matter and elements such as Fe, S, Cu, V and Mo in the rocks. The detailed biological markers determined in the Chang 7 member indicate that the lake water column was oxidizing during deposition of the Chang 7 member. However, redox indicators for sediments such as S 2- content, V/Sc and V/(V + Ni) ratios demonstrate that it was a typical anoxic diagenetic setting. The contrasted redox conditions between the water column and the sediment with a very high content of organic matter provided favorable physical and chemical conditions for syngenetic uranium enrichment in the oil source rocks of the Chang 7 member. Possible uranium sources may be the extensive U-rich volcanic ash that resulted from contemporaneous volcanic eruption and uranium material transported by hydrothermal conduits into the basin. The uranium from terrestrial clastics was unlike because uranium concentration was not higher in the margin area of basin where the terrestrial material input was high. As indicated by correlative analysis, the oil source rocks of the Chang 7 member show high gamma-ray values for radioactive well log data that reflect a positive uranium anomaly and are characterized by high resistance, low electric potential and low density. As a result, well log data can be used to identify positive uranium anomalies and spatial distribution of the oil source rocks in the Erdos Basin. The estimation of the total uranium reserves in the Chang 7 member attain 0.8 × 10 8 t.

  6. Radioactive deposits in California

    USGS Publications Warehouse

    Walker, George W.; Lovering, Tom G.

    1954-01-01

    Reconnaissance examination by Government geologists of many areas, mine properties, and prospects in California during the period between 1948 and 1953 has confirmed the presence of radioactive materials in place at more than 40 localities. Abnormal radioactivity at these localities is due to concentrations of primary and secondary uranium minerals, to radon gas, radium (?), and to thorium minerals. Of the known occurrences only three were thought to contain uranium oxide (uranitite or pitchblende), 4 contained uranium-bearing columbate, tantalate, or titanate minerals, 12 contained secondary uranium minerals, such as autunite, carnotite, and torbernite, one contained radon gas, 7 contained thorium minerals, and, at the remaining 16 localities, the source of the anomalous radiation was not positively determined. The occurrences in which uranium oxide has been tentatively identified include the Rathgeb mine (Calaveras County), the Yerih group of claims (San Bernardino County), and the Rainbow claim (Madera County). Occurrences of secondary uranium minerals are largely confined to the arid desert regions of south-eastern California including deposits in San Bernardino, Kern, Inyo, and Imperial Counties. Uranium-bearing columbate, tantalate, or titanate minerals have been reported from pegmatite and granitic rock in southeastern and eastern California. Thorium minerals have been found in vein deposits in eastern San Bernardino County and from pegmatites and granitic rocks in various parts of southeastern California; placer concentrations of thorium minerals are known from nearly all areas in the State that are underlain, in part, by plutonic crystalline rocks. The primary uranium minerals occur principally as minute accessory crystals in pegmatite or granitic rock, or with base-metal sulfide minerals in veins. Thorium minerals also occur as accessory crystals in pegmatite or granitic rock, in placer deposits derived from such rock, and, at Mountain Pass, in veins containing rare earths. Secondary uranium minerals have been found as fracture coatings and as disseminations in various types of wall rock, although they are largely confined to areas of Tertiary volcanic rocks. Probably the uranium in the uraniferous deposits in California is related genetically to felsic crystalline rocks and felsic volcanic rocks; the present distribution of the secondary uranium minerals has been controlled, in part, by circulating ground waters and probably, in part, by magmatic waters related to the Tertiary volcanic activity. The thorium minerals are genetically related to the intrusion of pegmatite and plutonic crystalline rocks. None of the known deposits of radioactive minerals in California contain marketable reserves of uranium or thorium ore under economic conditions existing in 1952. With a favorable local market small lots of uranium ore may be available in the following places: the Rosamund prospect, the Rafferty and Chilson properties, the Lucky Star claim, and the Yerih group. The commercial production of thorium minerals will be possible, in the near future, only if these minerals can be recovered cheaply as a byproduct either from the mining of rare earths minerals at Mountain Pass or as a byproduct of placer mining for gold.

  7. Uranium in NIMROC standard igneous rock samples

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.

    1976-01-01

    Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.

  8. Factors controlling localization of uranium deposits in the Dakota Sandstone, Gallup and Ambrosia Lake mining districts, McKinley County, New Mexico

    USGS Publications Warehouse

    Pierson, Charles Thomas; Green, Morris W.

    1977-01-01

    Geologic studies were made at all of the uranium mines and prospects in the Dakota Sandstone of Early(?) and Late Cretaceous age in the Gallup mining district, McKinley County, New Mexico. Dakota mines in the adjacent Ambrosia Lake mining district were visited briefly for comparative purposes. Mines in the eastern part of the Gallup district, and in the Ambrosia Lake district, are on the Chaco slope of the southern San Juan Basin in strata which dip gently northward toward the central part of the basin. Mines in the western part of the Gallup district are along the Gallup hogback (Nutria monocline) in strata which dip steeply westward into the Gallup sag. Geologic factors which controlled formation of the uranium deposits in the Dakota Sandstone are: (1) a source of uranium, believed to be uranium deposits of the underlying Morrison Formation of Late Jurassic age; (2) the accessibility to the Dakota of uranium-bearing solutions from the Morrison; (3) the presence in the Dakota of permeable sandstone beds overlain by impermeable carbonaceous shale beds; and (4) the occurrence within the permeable Dakota sandstone beds of carbonaceous reducing material as bedding-plane laminae, or as pockets of carbonaceous trash. Most of the Dakota uranium deposits are found in the lower part of the formation in marginal-marine distributary-channel sandstones which were deposited in the backshore environment. However, the Hogback no. 4 (Hyde) Mine (Gallup district) occurs in sandy paludal shale of the backshore environment, and another deposit, the Silver Spur (Ambrosia Lake district), is found in what is interpreted to be a massive beach or barrier-bar sandstone of the foreshore environment in the upper part of the Dakota. The sedimentary depositional environment most favorable for the accumulation of uranium is that of backshore areas lateral to main distributary channels, where levee, splay, and some distributary-channel sandstones intertongue with gray carbonaceous shales and siltstones of the well-drained swamp environment. Deposits of black carbonaceous shale which were formed in the poorly drained swamp deposits of the interfluve area are not favorable host rocks for uranium. The depositional energy levels of the various environments in which the sandstone and shale beds of the Dakota were deposited govern the relative favorability of the strata as uranium host rocks. In the report area, uranium usually occurs in carbonaceous sandstone deposited under low- to medium-energy fluvial conditions within distributary channels. A prerequisite, however, is that such sandstone be overlain by impermeable carbonaceous shale beds. Low- to medium-energy fluvial conditions result in the deposition of sandstone beds having detrital carbonaceous material distributed in laminae or in trash pockets on bedding planes. The carbonaceous laminae and trash pockets provide the necessary reductant to cause precipitation of uranium from solution. High-energy fluvial conditions result in the deposition of sandstones having little or no carbonaceous material included to provide a reductant. Very low energy swampy conditions result in carbonaceous shale deposits, which are generally barren of uranium because of their relative impermeability to migrating uranium-bearing solutions.

  9. Geology and uranium deposits of the Cochetopa and Marshall Pass districts, Saguache and Gunnison counties, Colorado

    USGS Publications Warehouse

    Olson, Jerry C.

    1988-01-01

    The Cochetopa and Marshall Pass uranium districts are in Saguache and Gunnison Counties, south-central Colorado. Geologic mapping of both districts has shown that their structural history and geologic relationships have a bearing on the distribution and origin of their uranium deposits. In both districts, the principal uranium deposits are situated at the intersection of major faults with Tertiary erosion surfaces. These surfaces were buried by early Tertiary siliceous tuffs-- a likely source of the uranium. That uranium deposits are related to such unconformities in various parts of the world has been suggested by many other authors. The purpose of this study is to understand the geology of the two districts and to define a genetic model for uranium deposits that may be useful in the discovery and evaluation of uranium deposits in these and other similar geologic settings. The Cochetopa and Marshall Pass uranium districts produced nearly 1,200 metric tons of uranium oxide from 1956 to 1963. Several workings at the Los Ochos mine in the Cochetopa district, and the Pitch mine in the Marshall Pass district, accounted for about 97 percent of this production, but numerous other occurrences of uranium are known in the two districts. As a result of exploration of the Pitch deposit in the 1970's, a large open-pit mining operation began in 1978. Proterozoic rocks in both districts comprise metavolcanic, metasedimentary, and igneous units. Granitic rocks, predominantly quartz monzonitic in composition, occupy large areas. In the northwestern part of the Cochetopa district, metavolcanic and related metasedimentary rocks are of low grade (lower amphibolite facies). In the Marshall Pass district, layered metamorphic rocks are predominantly metasedimentary and are of higher (sillimanite subfacies) grade than the Cochetopa rocks. Paleozoic sedimentary rocks in the Marshall Pass district range from Late Cambrian to Pennsylvanian in age and are 700 m thick. The Paleozoic rocks include, from oldest to youngest, the Sawatch Quartzite, Manitou Dolomite, Harding Quartzite, Fremont Dolomite, Parting Formation and Dyer Dolomite of the Chaffee Group, Leadville Dolomite, and Belden Formation. In the Cochetopa district, Paleozoic rocks are absent. Mesozoic sedimentary rocks overlie the Precambrian rocks in the Cochetopa district and comprise the Junction Creek Sandstone, Morrison Formation, Dakota Sandstone, and Mancos Shale. In the Marshall Pass district, Mesozoic rocks are absent and were presumably removed by pre-Tertiary erosion. Tertiary volcanic rocks were deposited on an irregular surface of unconformity; they blanketed both districts but have been eroded, away from much of the area. They include silicic ash flows as well as andesitic lava flows and breccias. In the Marshall Pass district, a 20to 20D-m thickness of waterlaid tuff of early Tertiary age indicates the former presence of a lake over much of the district. In the Cochetopa district, faults have a predominantly east-west trend, and the major Los Ochos fault shows displacement during Laramide time. In the Marshall Pass district, the Chester fault is a major north-trending reverse fault along which Proterozoic rocks have been thrust westward over Paleozoic and Proterozoic rocks. Displacement on the Chester fault was almost entirely of Laramide age. Both faults and old erosion surfaces or unconformities are important in the origin of uranium deposits because of their influence on the movement and localization of ore-forming solutions. In the Cochetopa district, all the known uranium occurrences crop out within 100 m of the inferred position of the unconformity surface beneath the Tertiary volcanic rocks. Much of the district was part of the drainage of an ancestral Cochetopa Creek. The principal uranium deposit, at the Los Ochos mine, is localized along the Los Ochos fault and is near the bottom of the paleovalley where the paleovalley crosses the fault. This

  10. A preliminary report on the geology of the Dennison-Bunn uranium claim, Sandoval County, New Mexico

    USGS Publications Warehouse

    Ridgley, Jennie L.

    1978-01-01

    Uranium at the Dennison-Bunn claim, south of Cuba, N. Mex., along the east margin of the San Juan Basin, occurs in unoxidized gray, fluvial channel sandstone of the Westwater Canyon Member of the Upper Jurassic Morrison Formation. The uranium-bearing sandstone is bounded on the north and south by a variable zone of buff and orange sandstone. Within the mineralized zone, the uranium has been remobilized and reconcentrated along the margins of numerous smaller tongues of oxidized rock in a configuration similar to that found in roll-type uranium deposits. In cross section, these small-scale features are zoned; they have an inner, pale orange, oxidized core, a mineralized redox rim cemented with hematite(?), and an outer-shell of -gray, slightly to moderately mineralized rock. The uranium content in the mineralized rock ranges from 0.001 to 0.07 percent U3O8. The uranium, at this locality, is believed to have originated within the Westwater Canyon Member or to have been derived from the overlying Brushy Basin Member. Based on observed outcrop relations, two hypotheses are proposed for explaining the origin of the occurrence. Briefly these hypotheses are: (1) the mineralized zone represents the remnant of an original roll-type uranium deposit, formed during early Eocene time, which has undergone subsequent oxidation with remobilization and redeposition of uranium around the margins of smaller tongues of oxidized rock; and (2) the mineralized zone represents the remnant of an original tabular deposit which has undergone subsequent oxidation with remobilization and redeposition of uranium around the margins of smaller tongues of oxidized rock.

  11. The East Slope No. 2 uranium prospect, Piute County, Utah

    USGS Publications Warehouse

    Wyant, Donald Gray

    1954-01-01

    The secondary uranium minerals autunite, metatorbernite, uranophane(?), and schroeckingerite occur in altered hornfels at the East Slope No. 9. uranium prospect. The deposit, in sec. 6, T. 9.7 S., R. 3 W., Piute County, Utah, is about 1 mile west of the Bullion Monarch mine which is in the central producing area of the Marysvale uranium district. Hornfels, formed by contact metamorphism of rocks of the Bullion Canyon volcanics borderhug the margin of a quartz monzonite stock, is in fault contact with the later Mount Belknap rhyolite. The hornfels was intensely altered by hydrothermal solutions in pre-Mount Belknap time. Hematite-alunite-quartz-kaolinite rock, the most completely altered hornfels, is surrounded by orange to white argillized hornfels containing beidellite-montmorillonite clay, and secondary uranium minerals. The secondary uranium minerals probably have been derived from pitchblende, the primary ore mineral in other deposits of the Marysvale area. The two uranium-rich zones, 4 feet ad 5 feet thick, have been traced on the surface for 60 feet and 110 feet, respectively. Channel samples from these zones contained as much as 0.047 percent uranium. The deposit is significant because of its position outside the central producing area and because of the association of uranium minerals with alunitic rock in hydrothermally altered hornfels of volcanic rocks of early Tertiary age.

  12. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    USGS Publications Warehouse

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  13. Uranium-bearing lignite in southwestern North Dakota

    USGS Publications Warehouse

    Moore, George W.; Melin, Robert E.; Kepferle, Roy C.

    1954-01-01

    Uranium-bearing lignite was mapped and sampled in the Bullion Butte, Sentinel Butte, HT Butte, and Chalky Buttes areas in southwestern North Dakota. The uraniferous lignite occurs at several stratigraphic positions in the Sentinel Butte member of the Fort Union formation of Paleocene age. A total of 261 samples were collected for uranium analysis from 85 localities, Lignite contained as much as 0.045 percent uranium, 10.0 percent ash, and 0.45 percent uranium in the ash was found although the average is lower. Inferred reserves for the four areas examined are estimated to be about 27 million tons of lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite averages more than 30 percent ash in the surface samples. The principal factor that seems to influence the uranium content of lignite beds is their stratigraphic position below the overlying rocks of the White River group of Oligocene age. All of the uranium-bearing beds closely underlie the base of the White River group. Although this relationship seems to be the controlling factor, the relative concentration of uranium may be modified by other conditions. Beds enclosed in permeable rocks are more uraniferous than beds in impermeable rocks, and thin beds have higher content of uranium than thick beds. In addition, thick lignite beds commonly have a top=preferential distribution of uranium. These and other factors suggest that the uranium is secondary and this it was introduced by ground water which had leached uranium from volcanic ash in the overlying rocks of the White River group. It is thought that the uranium is held in the lignite as part of a metallo-organic compound.

  14. Uranium favorability of tertiary rocks in the Badger Flats, Elkhorn Thrust Area, Park and Teller Counties, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, P.; Mickle, D.G.

    1976-10-01

    Uranium potential of Tertiary rocks in the Badger Flats--Elkhorn Thrust area of central Colorado is closely related to a widespread late Eocene erosion surface. Most uranium deposits in the area are in the Eocene Echo Park Alluvium and Oligocene Tallahassee Creek Conglomerate, which were deposited in paleodrainage channels on or above this surface. Arkosic detritus within the channels and overlying tuffaceous sedimentary rocks of the Antero and Florissant Formations of Oligocene age and silicic tuffs within the volcanic units provide abundant sources of uranium that could be concentrated in the channels where carbonaceous debris facilitates a reducing environment. Anomalous soil,more » water, and stream-sediment samples near the Elkhorn Thrust and in Antero basin overlie buried channels or are offset from them along structural trends; therefore, uranium-bearing ground water may have moved upward from buried uranium deposits along faults. The area covered by rocks younger than the late Eocene erosion surface, specifically the trends of mapped or inferred paleochannels filled with Echo Park Alluvium and Tallahassee Creek Conglomerate, and the Antero Formation are favorable for the occurrence of uranium deposits.« less

  15. Whole-rock uranium analysis by fission track activation

    NASA Technical Reports Server (NTRS)

    Weiss, J. R.; Haines, E. L.

    1974-01-01

    We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.

  16. Réduction des nitrates et de l'uranium par les bactéries indigènes

    NASA Astrophysics Data System (ADS)

    Abdelouas, Abdesselam; Lutze, Werner; Nuttall, Eric

    1998-07-01

    A bioremediation concept has been developed to clean up ground water contaminated with nitrate (1200 mg·L -1) and uranium (0.25 mg·L -1). We studied the Tuba City mill tailings site, Arizona, USA. Indigenous bacteria capable of catalyzing the reduction of NO 3- and U(VI) were identified in the ground water and in the host rock, the Navajo sandstone. After complete reduction of O 2 and NO 3- within one week, U(VI) was reduced and precipitated as uraninite. Final uranium concentrations < 15 μg·L -1 were reached after a few weeks at 24 °C. Iron sulfide also precipitated as a result of reduction of Fe(III) on the sand surface and sulfate in the ground water. U(VI) was not reduced by sulfide. It was found that enzymatic reduction of U(VI) is faster than abiotic reduction under the conditions given by the composition of the ground water.

  17. Mineral resources of the Little Black Peak and Carrizozo Lava Flow wilderness study areas, Lincoln County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeser, D.B.; Senterfit, M.K.; Zelten, J.E.

    1989-01-01

    This book discusses the Little Black Peak and Carrizozo Lava Flow Wilderness Study Areas in east-central New Mexico (24,249 acres) which are underlain by Quaternary basaltic lava flows and upper Paleozoic to Mesozoic sedimentary rocks. The only identified resource is lava from the basalt flows, which is used for road metal, construction materials, and decorative stone. The basalt is classed as an inferred subeconomic resource. Both areas have low resource potential for sediment-hosted uranium and copper oil, gas, coal, and geothermal energy and moderate potential for gypsum and salt. The Little Black Peak area also has low potential for uraniummore » associated with Tertiary alkaline intrusive rocks. Two aeromagnetic anomalies occur beneath the northern part of the Carrizozo lava flow area and the southern part of the Little Black Peak area; the resource potential for these rocks is unknown.« less

  18. Geological and geochemical investigations of uranium occurrences in the Arrastre Lake area of the Medicine Bow Mountains, Wyoming

    USGS Publications Warehouse

    Miller, W. Roger; Houston, R.S.; Karlstrom, K.E.; Hopkins, D.M.; Ficklin, W.H.

    1977-01-01

    Metasedimentary rocks of Precambrian X age in and near the Snowy Range wilderness study area of southeastern Wyoming are lithologically and chronologically similar to those on the north shore of Lake Huron in Canada. The rocks in Canada contain major deposits of uranium in quartz-pebble conglomerates near the base of the metasedimentary sequence. Similar conglomerates in the Deep Lake Formation in the Medicine Bow Mountains of southeastern Wyoming are slightly radioactive and may contain deposits of uranium and other valuable heavy metals. During the summer of 1976, a geological and geochemical pilot study was conducted in the vicinity of Arrastre Lake in the Medicine Bow Mountains to determine the most effective exploration methods for evaluating the uranium potential of the Snowy Range wilderness study area. The area around Arrastre Lake was selected because of the presence of a radioactive lens within a quartz-pebble conglomerate of the Deep Lake Formation. The results of the survey indicate possible uranium mineralization in the subsurface rocks of this formation. The radon content of the dilute waters of the area is much higher than can be accounted for by the uranium content of the surface rocks. Two sources for the high content of the radon are possible. In either case, the high values of radon obtained in this study are a positive indication of uranium mineralization in the subsurface rocks. The determination of the radon content of water samples is the recommended geochemical technique for uranium exploration in the area. The determination of uranium in water and in organic-rich bog material is also recommended.

  19. Preliminary reconnaissance survey for thorium, uranium, and rare-earth oxides, Bear Lodge Mountains, Crook County, Wyoming

    USGS Publications Warehouse

    Wilmarth, V.R.; Johnson, D.H.

    1953-01-01

    An area about 6 miles north of Sundance, in the Bear Lodge Mountains, in Crook County, Wyo., was examined during August 1950 for thorium, uranium, and rare-earth oxides and samples were collected. Uranium is known to occur in fluorite veins and iron-manganese veins and in the igneous rocks of Tertiary age that compose the core of the Bear Lodge Mountains. The uranium content of the samples ranges from 0.001 to 0.015 percent in those from the fluorite veins, from 0.005 to 0.018 percent in those from the iron-manganese veins, and from 0.001 to 0.017 percent in those from the igneous rocks. The radioactivity of the samples is more than that expected from the uranium content. Thorium accounts for most of this discrepancy. The thorium oxide content of samples ranges from 0.07 to 0.25 percent in those from the iron-manganese veins and from 0.07 to 0.39 percent in those from the sedimentary rocks, and from0.04 to 0.30 in those from the igneous rocks. Rare-earth oxides occur in iron-manganese veins and in zones of altered igneous rocks. The veins contain from 0.16 to 12.99 percent rare-earth oxides, and the igneous rocks, except for two localities, contain from 0.01 to 0.42 percent rare-earth oxides. Inclusions of metamorphosed sedimentary rocks in the intrusive rocks contain from 0.07 to 2.01 percent rare-earth oxides.

  20. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.

    1982-08-01

    The Wells 2/sup 0/ Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins aremore » unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin.« less

  1. The Robinson and Weatherly uraniferous pyrobitumen deposits near Placerville, San Miguel County, Colorado

    USGS Publications Warehouse

    Wilmarth, V.R.; Vickers, R.C.

    1953-01-01

    Uranium deposits that contain uraniferous pyrobitumen of possible hydrothermal origin occur at the Weatherly and Robinson properties near Placerville, San Miguel County, Colo. These deposits were mined for copper, silver, and gold more than 50 years ago and were developed for uranium in 1950. The Robinson property, half a mile east of Placerville, consists of the White Spar, New Discovery Lode, and Barbara Jo claims. The rocks in this area are nearly horizontal sandstones, shales, limestones, and conglomerates of the Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. These rocks have been faulted extensively and intruded by a Tertiary (?) andesite porphyry dike. Uranium-bearing pyrobitumen associated with tennantite, tetrahedrite, galena, sphalerite, chalcopyrite, bornite, azurite, malachite, calcite, barite, and quartz occurs in a lenticular body as much as 40 feet long and 6 feet wide along a northwest-trending, steeply dipping normal fault. The uranium content of eleven samples from the uranium deposit ranges from 0.001 to 0.045 percent uranium and averages about 0.02 percent uranium. The Weatherly property, about a mile northwest of Placerville, consists of the Black King claims nos. 1, 4, and 5. The rocks in this area include the complexly faulted Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. Uranium-bearing pyrobitumen arid uranophane occur, along a northwest-trending, steeply dipping normal fault and in the sedimentary rocks on the hanging wall of the fault. Lens-shaped deposits in the fault zone are as much as 6 feet long and 2 feet wide and contain as much as 9 percent uranium; whereas channel samples across the fault zone contain from 0.001 to 0.014 percent uranium. Tetrahedrite, chalcopyrite, galena, sphalerite, fuchsite, malachite, azurite, erythrite, bornite, and molybdite in a gangue of pyrite, calcite, barite, and quartz are associated with the uraniferous material. In the sedimentary rocks on the hanging wall, uranium-bearing pyrobitumen occurs in replacement lenses as much as,8 inches wide and 6 feet long, and in nodules as much as 6 inches in diameter for approximately 100 feet away from the fault. Pyrite and calcite are closely associated with the uraniferous material in the sedimentary rocks. Samples from the replacement bodies contain from 0. 007 to 1.4 percent uranium.

  2. Formation and resulfidization of a South Texas roll-type uranium deposit

    USGS Publications Warehouse

    Goldhaber, Martin B.; Reynolds, Richard L.; Rye, Robert O.

    1979-01-01

    Core samples from a roll type uranium deposit in Live Oak County, south Texas have been studied and results are reported for Se, Mo, FeS2 and organic-carbon distribution, sulfide mineral petrology, and sulfur isotopic composition of iron-disulfide phases. In addition, sulfur isotopic compositions of dissolved sulfate and sulfide from the modern ground water within the ore bearing sand have been studied. The suite of elements in the ore sand and their geometric relationships throughout the deposit are those expected for typical roll-type deposits with well-developed oxidation-reduction interfaces. However, iron-disulfide minerals are abundant in the altered tongue, demonstrating that this interval has been sulfidized after mineralization (resulfidized or rereduced). Iron disulfide minerals in the rereduced interval differ mineralogically and isotopically from those throughout the remainder of the deposit. The resulfidized sand contains dominantly pyrite that is enriched in 34S, whereas the sand beyond the altered tongue contains abundant marcasite that is enriched in the light isotope, 32S. Textural relationships between pyrite and marcasite help to establish relative timing of iron disulfide formation. In reduced rock outside the altered tongue, three distinct generations of iron disulfide are present. The oldest of these generations consists largely of pyrite with lesser amounts of marcasite. A major episode of marcasite formation contemporaneous with ore genesis postdates the oldest pyrite generation but predates a younger pyrite generation. Resulfidization probably led to the final pyrite stage recognized beyond the altered tongue. Stable isotope data establish that the source of sulfur for the resulfidization was fault-leaked H2S probably derived from the Edwards Limestone of Cretaceous age which underlies the deposit. The deposit formed in at least two stages: (1) a pre-ore process of host rock sulfidization which produced disseminated pyrite as the dominant iron disulfide phase; and (2) an ore-stage process which led to the development of the uranium roll with emplacement of the characteristic suite of minor and accessory elements and which produced abundant isotopically light marcasite. The host rock was modified by a post-ore stage of resulfidization which precipitated isotopically heavy pyrite. Sulfur isotopic compositions of sulfide and sulfate present in modern ground water within the host sand differ greatly from sulfur isotopic composition of iron disulfides formed during the resulfidization episode. Iron disulfide minerals formed from the sulfur species of modern ground water have not been unequivocally identified.

  3. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    NASA Astrophysics Data System (ADS)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated the concentration of radioactive elements in the sample. The highest concentration of thorium and uranium has been found in the clayey raw material. Their value was respectively from 8 to 12 mg/kg for thorium and from 2.3 to 3.5 mg/kg for uranium. In carbonate sediments the content of thorium was at the level from 0.5 to 2.1 mg/kg and uranium from 0.5-2.2 mg/kg. From a group of the siliceous raw materials the diatomite had a highest concentrations of radioactive elements where the content of thorium was from 1.5 to 1.8 mg/kg and uranium from 1.3 to 1.7 mg/kg.

  4. A microfluidic approach to water-rock interactions using thin rock sections: Pb and U sorption onto thin shale and granite sections.

    PubMed

    Oh, Youn Soo; Jo, Ho Young; Ryu, Ji-Hun; Kim, Geon-Young

    2017-02-15

    The feasibility of using microfluidic tests to investigate water-rock (mineral) interactions in fractures regarding sorption onto thin rock sections (i.e., shale and granite) of lead (Pb) and uranium (U) was evaluated using a synthetic PbCl 2 solution and uranium-containing natural groundwater as fluids. Effluent composition and element distribution on the thin rock sections before and after microfluidic testing were analyzed. Most Pb removal (9.8mg/cm 2 ) occurred within 3.5h (140 PVF), which was 74% of the total Pb removal (13.2mg/cm 2 ) at the end of testing (14.5h, 560 PVF). Element composition on the thin shale sections determined by μ-XRF analysis indicated that Pb removal was related primarily to Fe-containing minerals (e.g., pyrite). Two thin granite sections (biotite rich, Bt-R and biotite poor, Bt-P) exhibited no marked difference in uranium removal capacity, but a slightly higher amount of uranium was removed onto the thin Bt-R section (266μg/cm 2 ) than the thin Bt-P section (240μg/cm 2 ) within 120h (4800 PVF). However, uranium could not be detected by micro X-ray fluorescence (μ-XRF) analysis, likely due to the detection limit. These results suggest that microfluidic testing on thin rock sections enables quantitative evaluation of rock (mineral)-water interactions at the micro-fracture or pore scale. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Reconnaissance for uranium-bearing carbonaceous rocks in California and adjacent parts of Oregon and Nevada

    USGS Publications Warehouse

    Moore, George Winfred; Stephens, James G.

    1954-01-01

    During the summer of 1952 a reconnaissance was conducted in California and parts of Oregon and Nevada in search of new deposits of uranium-bearing carbonaceous rocks. The principal localities found in California where uranium occurs in coal are listed here with. the uranium content of the coal: Newhall prospect, Los Angeles County, 0.020 percent; Fireflex mine, San Benito County, 0.005 percent; American licyaite mine, Amador County, 0.004 percent; and Tesla prospect, Alameda County, 0.003 percent. An oil-saturated sandstone near Edna, San Luis Obispo County, contains 0.002 percent uranium.

  6. Summary of the mineralogy of the Colorado Plateau uranium ores

    USGS Publications Warehouse

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little affected by oxidation. The unoxidized nonvanadiferous ores contain uraninite and coffinite in close association with coalified wood and iron and copper sulfides, and traces of many other sulfides, arsenides and selenides. The oxidized nonvanadiferous ores differ from the vanadiferous ores because, in the absence of vanadium to complex the uranium, a great variety of secondary yellow and greenish-yellow uranyl minerals are formed. The uranyl sulfates and carbonates are more common than the oxides, phosphates, arsenates, and silicates. Because the sulfates and carbonates are much less stable that carnotite, the oxidized nonvanadiferous ores occure only as halos around cores of unoxidized ore and do not form large oxidized deposits close to the surface of the ground as carnotite ores. Oxidation has taken place since the lowering of the water table in the present erosion cycle. Because of local structures and the highly lenticular character of the fluviatile host rocks perched water tables and water-saturated lenses of sandstone are common high above the regional water table. Unoxidized ore has been preserved in these water-saturated rocks and the boundary between oxidized and unoxidized ore is very irregular.

  7. Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-01

    Twelve anamolous areas attributable to gamma radiation in the uranium spectral window, and twenty-three in the thorium channel, have been recognized and delineated on the Weed quadrangle. The majority of the uranium anomalies are located in the southwestern part of the map sheet. Most of these are correlated with the pre-Cretaceous metamorphic rock system and the Mesozoic granitic rocks intrusive into it. Of the twenty-three anomalous areas of increased gamma radiation in the thorium spectral window, most are located in the northeast and the east center in a north-south trending belt. However, this apparent alignment is probably fortuitous as themore » individual anomalies are correlated with several different rock formations. Three are correlated with upper Cretaceous marine sediments, six with Ordovician marine sediments, two with Mesozoic granitic intrusives, and two with Silurian marine sediments. In the northwestern part of the quadrangle, four thorium radiation anomalies are delineated over exposures of upper Jurassic marine rocks. Anomaly 6, in the southwest, warrants attention as it suggests strong radiation in the uranium channel with little or no thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are also strong, supporting the likelihood of uranium enrichment. The feature is located on line 540, fiducials 7700 to 7720. Anomaly 7, on line 540, fiducials 8390 to 8420, shows similar characteristics although a minor thorium excursion is present. Anomaly 10, on line 3010 fiducials 9820 to 9840, is also characterized by a strong uranium radiation spike, with minor thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are well defined and relatively intense.« less

  8. Indian Creek uranium prospects, Beaver County, Utah

    USGS Publications Warehouse

    Wyant, Donald G.; Stugard, Frederick

    1951-01-01

    The secondary uranium minerals metatorbernite (?) and autunite (?) were discovered at Indian Creek in the spring of 1950. The deposits, in sec. 26, T. 27 S., R. 6 T., Beaver County, Utah, are 20 miles west of Marysvale, and about three-eighths of a mile east of a quartz monzonite stock. The uranium minerals are sparsely disseminated in argillized and silicified earlier Tertiary Bullion Canyon latite and related volcanic rock beneart, but close to, the contact of the overlying later Tertiary Mount Belknap gray rhyolite. The prospects are in a landslide area where exposures are scarce. Therefore, trend and possible continuity of the altered and the uraniferous zones cannot be established definitely. The occurrence of secondary uranium minerals in beidellite-montmorillonite rock, formed by alteration of earlier Tertiary rocks near a quartz monzonite stock, is similar to that in some of the deposits in the Marysvale uranium district.

  9. Uranium in the Upper Cambrian black shale of Sweden

    USGS Publications Warehouse

    McKelvey, Vincent Ellis

    1955-01-01

    The Peltura zone of the Upper Cambrian black shales of Sweden contains about 0.02 percent uranium. Maximum amounts are present in rocks deposited in an embayment in the sea and in rocks in or closely adjacent to that part of the vertical sequence that contains maximum amounts of distillable oil, total organic matter, pyrite, and a black highly uraniferous kerogen called "kolm". Available data suggest that the precipitation of uranium is favored by a low redox potential and that the uranium in the shale matrix may be in fine-grained kolm.

  10. Radon exhalation and radiometric prospecting on rocks associated with Cu-U mineralizations in the Singhbhum shear zone, Bihar.

    PubMed

    Sengupta, D; Kumar, R; Singh, A K; Prasad, R

    2001-12-01

    The Singhbhum thrust belt is a 200 km long arcuate orogenic belt in Bihar, eastern India. The huge mineral resources, viz. copper, uranium, magnetite, apatite and molybdenite, etc., make it significant from an economic as well as a geological point of view. The belt hosts three types of mineralization: sulphides of copper and other metals, uranium oxides and apatite-magnetite. Several distinct geological episodes are responsible for the evolution of mineralization and the thrust zone itself. Extensive and reliable radiometric prospecting and assaying have been carried out by us for the past 5 years from Dhobani in the east to Turamdih in the west of the Singhbhum shear zone. The present work indicates uranium mineralization in the Pathargora-Rakha area presently being mined for copper and also within areas in the vicinity of Bhatin. Studies on radon emanation have also been undertaken in some parts of the shear zone which indicate reasonably high radon emanation of the soils and rocks studied. This suggests the need for regular monitoring and suitable controls on the mine environment (air quality) and its vicinity. Radon emanation studies coupled with gamma-ray spectrometry and the subsequent modelling of the radiometric and radon measurements will help in the application of radon as a geophysical tracer in exploration of radioactive ore bodies and in radon risk assessment as well as in delineating active and passive faults and even in petroleum exploration.

  11. Origin of the Okrouhlá Radouň episyenite-hosted uranium deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints

    NASA Astrophysics Data System (ADS)

    Dolníček, Zdeněk; René, Miloš; Hermannová, Sylvie; Prochaska, Walter

    2014-04-01

    The Okrouhlá Radouň shear zone hosted uranium deposit is developed along the contact of Variscan granites and high-grade metasedimentary rocks of the Moldanubian Zone of the Bohemian Massif. The pre-ore pervasive alteration of wall rocks is characterized by chloritization of mafic minerals, followed by albitization of feldspars and dissolution of quartz giving rise to episyenites. The subsequent fluid circulation led to precipitation of disseminated uraninite and coffinite, and later on, post-ore quartz and carbonate mineralization containing base metal sulfides. The fluid inclusion and stable isotope data suggest low homogenization temperatures (˜50-140 °C during pre-ore albitization and post-ore carbonatization, up to 230 °C during pre-ore chloritization), variable fluid salinities (0-25 wt.% NaCl eq.), low fluid δ18O values (-10 to +2 ‰ V-SMOW), low fluid δ13C values (-9 to -15 ‰ V-PDB), and highly variable ionic composition of the aqueous fluids (especially Na/Ca, Br/Cl, I/Cl, SO4/Cl, NO3/Cl ratios). The available data suggest participation of three fluid endmembers of primarily surficial origin during alteration and mineralization at the deposit: (1) local meteoric water, (2) Na-Ca-Cl basinal brines or shield brines, (3) SO4-NO3-Cl-(H)CO3 playa-like fluids. Pre-ore albitization was caused by circulation of alkaline, oxidized, and Na-rich playa fluids, whereas basinal/shield brines and meteoric water were more important during the post-ore stage of alteration.

  12. Estimation and mapping of uranium content of geological units in France.

    PubMed

    Ielsch, G; Cuney, M; Buscail, F; Rossi, F; Leon, A; Cushing, M E

    2017-01-01

    In France, natural radiation accounts for most of the population exposure to ionizing radiation. The Institute for Radiological Protection and Nuclear Safety (IRSN) carries out studies to evaluate the variability of natural radioactivity over the French territory. In this framework, the present study consisted in the evaluation of uranium concentrations in bedrocks. The objective was to provide estimate of uranium content of each geological unit defined in the geological map of France (1:1,000,000). The methodology was based on the interpretation of existing geochemical data (results of whole rock sample analysis) and the knowledge of petrology and lithology of the geological units, which allowed obtaining a first estimate of the uranium content of rocks. Then, this first estimate was improved thanks to some additional information. For example, some particular or regional sedimentary rocks which could present uranium contents higher than those generally observed for these lithologies, were identified. Moreover, databases on mining provided information on the location of uranium and coal/lignite mines and thus indicated the location of particular uranium-rich rocks. The geological units, defined from their boundaries extracted from the geological map of France (1:1,000,000), were finally classified into 5 categories based on their mean uranium content. The map obtained provided useful data for establishing the geogenic radon map of France, but also for mapping countrywide exposure to terrestrial radiation and for the evaluation of background levels of natural radioactivity used for impact assessment of anthropogenic activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Quantifying uranium transport rates and storage of fluvially eroded mine tailings from a historic mine site in the Grand Canyon Region

    NASA Astrophysics Data System (ADS)

    Skalak, K.; Benthem, A. J.; Walton-Day, K. E.; Jolly, G.

    2015-12-01

    The Grand Canyon region contains a large number of breccia pipes with economically viable uranium, copper, and silver concentrations. Mining in this region has occurred since the late 19th century and has produced ore and waste rock having elevated levels of uranium and other contaminants. Fluvial transport of these contaminants from mine sites is a possibility, as this arid region is susceptible to violent storms and flash flooding which might erode and mobilize ore or waste rock. In order to assess and manage the risks associated with uranium mining, it is important to understand the transport and storage rates of sediment and uranium within the ephemeral streams of this region. We are developing a 1-dimensional sediment transportation model to examine uranium transport and storage through a typical canyon system in this region. Our study site is Hack Canyon Mine, a uranium and copper mine site, which operated in the 1980's and is currently experiencing fluvial erosion of its waste rock repository. The mine is located approximately 40km upstream from the Colorado River and is in a deep, narrow canyon with a small watershed. The stream is ephemeral for the upper half of its length and sediment is primarily mobilized during flash flood events. We collected sediment samples at 110 locations longitudinally through the river system to examine the distribution of uranium in the stream. Samples were sieved to the sand size and below fraction (<2mm) and uranium was measured by gamma-ray spectroscopy. Sediment storage zones were also examined in the upper 8km of the system to determine where uranium is preferentially stored in canyon systems. This information will quantify the downstream transport of constituents associated with the Hack Canyon waste rock and contribute to understanding the risks associated with fluvial mobilization of uranium mine waste.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less

  15. Preliminary examination of uranium deposits near Marysvale, Piute County, Utah

    USGS Publications Warehouse

    Granger, Harry C.; Bauer, Herman L.

    1950-01-01

    Autunite and other uranium minerals were discovered in 1948 by Pratt Seegmiller about 3 1/4 miles north of Marysvale, Piute County, Utah. Mining operations were begun in the summer of 1949 by the Vanadium Corporation of America on the Prospector and the Freedom claims, and by the Bullion Monarch Mining Company a the Bullion Monarch claims. These claims were examined briefly in December 1949 and January 1950 by the writers. The uranium deposits of the Marysvale district are in north-easterly striking fault zones in quartz monzonite that intrudes rocks of the "older" Tertiary volcanic sequence. Flows and tuffs of the "younger" Tertiary volcanic sequence uncomfortably overlie the earlier rocks. Autunite, tobernite, uranophane, schroeckingerite, and at least one unidentified secondary uranium mineral occur in the upper parts of the deposits. Pitchblende has been mined from the underground workings of the Prospector No. 1 mine. The uranium minerals are associated with dense quartz veins and intensely argillized wall rock. In the upper parts of the deposits pyrite is completely oxidized. The secondary uranium minerals probably were formed by the alteration of primary pitchblende by circulating meteoric waters.

  16. Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest, CA.

    PubMed

    Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W

    2014-10-01

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment. Published by Elsevier Ltd.

  17. Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest, CA

    DOE PAGES

    Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.; ...

    2014-06-07

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less

  18. A reconnaissance for uranium in carbonaceous rocks in southwestern Colorado and parts of New Mexico

    USGS Publications Warehouse

    Baltz, Elmer H.

    1955-01-01

    Coal and carbonaceous shale of the Dakota formation of Cretaceous age were examined for radioactivity in the Colorado Plateau of southwestern Colorado and northwestern New l1exico during the summer of 1953. Older and younger sedimentary rocks and some igneous rocks also were examined, but in less detail, Weak radioactivity was detected at many places but no new deposits of apparent economic importance were discovered. The highest radioactivity of carbonaceous rocks was detected in black shale, siltstone, and sandstone of the Paradox member of the Hermosa formation of Pennsylvanian age. A sample collected from this member at the Bald Eagle prospect in Gypsum Valley, San Higuel County, Colo. contains 0.10. percent uranium. Carbonaceous rocks were investigated at several localities on the Las Vegas Plateau and the Canadian Escarpment in Harding and San Miguel Counties, northeastern New Mexico. Carbonaceous sandstone and siltstone in the middle sandstone member of the Chinle formation of Triassic age contain uranium at a prospect of the Hunt Oil Company southwest of Sabinoso in northeastern San Miguel County, N. Mex. A channel sample across 3.2 feet of mineralized rocks at this locality contains 0.22 percent uranium. Weak radioactivity was detected at two localities in carbonaceous shale of the Dakota and Purgatoire formations of Cretaceous age.

  19. The Nopal 1 Uranium Deposit: an Overview

    NASA Astrophysics Data System (ADS)

    Calas, G.; Allard, T.; Galoisy, L.

    2007-05-01

    The Nopal 1 natural analogue is located in the Pena Blanca uranium district, about 50 kms north of Chihuahua City, Mexico. The deposit is hosted in tertiary ignimbritic ash-flow tuffs, dated at 44 Ma (Nopal and Colorados formations), and overlying the Pozos conglomerate formation and a sequence of Cretaceous carbonate rocks. The deposit is exposed at the ground surface and consists of a near vertical zone extending over about 100 m with a diameter of 40 m. An interesting characteristic is that the primary mineralization has been exposed above the water table, as a result of the uplift of the Sierra Pena Blanca, and subsequently oxidized with a remobilization of hexavalent uranium. The primary mineralization has been explained by various genetic models. It is associated to an extensive hydrothermal alteration of the volcanic tuffs, locally associated to pyrite and preserved by an intense silicification. Several kaolinite parageneses occur in fissure fillings and feldspar pseudomorphs, within the mineralized breccia pipe and the barren surrounding rhyolitic tuffs. Smectites are mainly developed in the underlying weakly welded tuffs. Several radiation-induced defect centers have been found in these kaolinites providing a unique picture of the dynamics of uranium mobilization (see Allard et al., this session). Another evidence of this mobilization is given by the spectroscopy of uranium-bearing opals, which show characteristic fluorescence spectra of uranyl groups sorbed at the surface of silica. By comparison with the other uranium deposits of the Sierra Pena Blanca and the nearby Sierra de Gomez, the Nopal 1 deposit is original, as it is one of the few deposits hving retained a reduced uranium mineralization.

  20. The distribution of uranium and thorium in granitic rocks of the basin and range province, Western United States

    USGS Publications Warehouse

    McNeal, J.M.; Lee, D.E.; Millard, H.T.

    1981-01-01

    Some secondary uranium deposits are thought to have formed from uranium derived by the weathering of silicic igneous rocks such as granites, rhyolites, and tuffs. A regional geochemical survey was made to determine the distribution of uranium and thorium in granitic rocks of the Basin and Range province in order to evaluate the potential for secondary uranium occurrences in the area. The resulting geochemical maps of uranium, thorium, and the Th:U ratio may be useful in locating target areas for uranium exploration. The granites were sampled according to a five-level, nested, analysis-of-variance design, permitting estimates to be made of the variance due to differences between:(1) two-degree cells; (2) one-degree cells; (3) plutons; (4) samples; and (5) analyses. The cells are areas described in units of degrees of latitude and longitude. The results show that individual plutons tend to differ in uranium and thorium concentrations, but that each pluton tends to be relatively homogeneous. Only small amounts of variance occur at the two degree and the between-analyses levels. The three geochemical maps that were prepared are based on one-degree cell means. The reproducibility of the maps is U > Th ??? Th:U. These geochemical maps may be used in three methods of locating target areas for uranium exploration. The first method uses the concept that plutons containing the greatest amounts of uranium may supply the greatest amounts of uranium for the formation of secondary uranium occurrences. The second method is to examine areas with high thorium contents, because thorium and uranium are initially highly correlated but much uranium could be lost by weathering. The third method is to locate areas in which the plutons have particularly high Th:U ratios. Because uranium, but not thorium, is leached by chemical weathering, high Th:U ratios suggest a possible loss of uranium and possibly a greater potential for secondary uranium occurrences to be found in the area. ?? 1981.

  1. Reconnaissance for radioactive materials in the southern part of Brazil

    USGS Publications Warehouse

    Pierson, Charles T.; Haynes, Donald D.; Filho, Evaristo Ribeiro

    1957-01-01

    During 1954-1956 a reconnaissance for radioactive minerals was made with carborne, airborne and handborne scintillation equipment in the southern Brazilian states of Rio de Janeiro, Sao Paulo, Parana, Santa Catarina and Rio Grande do Sul. During the traverse covering more than 5,000 kilometers the authors checked the radioactivity of Precambrian igneous and metamorphic rocks, Paleozoic, Mesozoic and Cenozoic sedimentary rocks, and Mesozoic alkalic intrusive and basaltic extrusive rocks. The 22 samples collected contained from 0.003 to 0.029 percent equivalent uranium oxide and from 0.10 to 0.91 percent equivalent thorimn; two samples were taken from radioactive pegmati tes for mineralogic studies. None of the localities is at present a commercial source of uranium or thorium; however, additional work should be done near the alkalic stock at Lages in the State of Santa Catarina and at the Passo das Tropas fossil plant locality near Santa Maria in the state of Rio Grande do Sul. Near Lages highly altered alkalic rock from a dike contained 0.026 percent uranium oxide. At Passo das Tropas highly altered, limonite-impregnated sandstone from the Rio do Rasto group of sedimentary rocks contained 0.029 percent uranium oxide.

  2. Epithermal uranium deposits in a volcanogenic context: the example of Nopal 1 deposit, Sierra de Pena Blanca, Mexico

    NASA Astrophysics Data System (ADS)

    Calas, G.; Angiboust, S.; Fayek, M.; Camacho, A.; Allard, T.; Agrinier, P.

    2009-12-01

    The Peña Blanca molybdenum-uranium field (Chihuahua, Mexico) exhibits over 100 airborne anomalies hosted in tertiary ignimbritic ash-flow tuffs (44 Ma) overlying the Pozos conglomerate and a sequence of Cretaceous carbonate rocks. Uranium occurrences are associated with breccia zones at the intersection of two or more fault systems. Periodic reactivation of these structures associated with Basin and Range and Rio Grande tectonic events resulted in the mobilization of U and other elements by meteoric fluids heated by geothermal activity. Trace element geochemistry (U, Th, REE) provides evidence for local mobilization of uranium under oxidizing conditions. In addition, O- and H-isotope geochemistry of kaolinite, smectite, opal and calcite suggests that argillic alteration proceeded at shallow depth with meteoric water at 25-75 °C. Focussed along breccia zones, fluids precipitated several generations of pyrite and uraninite together with kaolinite, as in the Nopal 1 mine, indicating that mineralization and hydrothermal alteration of volcanic tuffs are contemporaneous. Low δ34S values (~ -24.5 ‰) of pyrites intimately associated with uraninite suggest that the reducing conditions at the origin of the U-mineralization arise from biological activity. Later, the uplift of Sierra Pena Blanca resulted in oxidation and remobilization of uranium, as confirmed by the spatial distribution of radiation-induced defect centers in kaolinites. These data show that tectonism and biogenic reducing conditions can play a major role in the formation and remobilization of uranium in epithermal deposits. By comparison with the other uranium deposits at Sierra Pena Blanca and nearby Sierra de Gomez, Nopal 1 deposit is one of the few deposits having retained a reduced uranium mineralization.

  3. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium andmore » 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.« less

  4. Characterization of Possible Carbonatites in Southeast Missouri

    NASA Astrophysics Data System (ADS)

    Shavers, E. J.; Wulamu, A.; Encarnacion, J. P.; Luetkemeyer, P. B.

    2014-12-01

    Carbonatite is an igneous rock containing greater than 50% carbonate minerals. These rocks are the most common host of REE mineralization and may contain other economic deposits such as uranium, fluorine and niobium. Several researchers have mentioned the presence of a carbonatite phase interspersed among the olivine melilitite-alnöite dikes and diatremes of southeast Missouri, yet a comprehensive validation of this occurrence has, so far, remained elusive. Here we present petrographic, cathodoluminescence, stable isotope and Vis-NIR analysis which support the presence of a carbonatite magma. We identify apparently single generation calcite groundmass surrounding country rock xenoliths and olivine-cored mafic spheroids altered to carbonate and opaque minerals. We present stable isotope data for twenty samples of intrusive and country rock from across the study area. δ18O values for all rock types exhibit little variation with values between 21.9 ‰ and 28.1 ‰ (VSMOW), possibly the result of outgassing during emplacement. Measured δ13C values of (1) carbonate country rocks are between -0.1 ‰ and -2.9 ‰ (VPDB), (2) ultramafic and carbonate-rich mafic rocks range from -3.0 ‰ to -4.6 ‰ (VPDB) and (3) carbonate-rich rocks with volcanic textures, as well as carbonate veins within mafic rocks, fall between -5.4 ‰ to -8.2 ‰ (VPDB). We suggest that this data and initial petrographic observations indicate (1) limited fluid-rock interaction as the host rock clasts have retained their original isotopic signature, (2) an initial ultramafic phase enriched in 13C by a small amount of sedimentary rock due to low initial C content, (3) mantle sourced carbonate fluids entraining fragments of the ultramafic phase and xenoliths. However, future electron microprobe studies may allow us to further constrain the causes for the observed isotopic shifts. We compare laboratory reflectance measurements of a dolomitic intrusive and adjacent dolomite country rock. Absorption bands in the 0.42-1.35 and 2.2-2.4 μm regions indicate unique Si, Fe, Mg, Al and possibly Cr mineralization in the intrusive rock. These features may indicate higher chemical content in addition to, or alternately, intrusive specific mineralogy. This data may allow for future carbonatite identification using remote imaging spectroscopy.

  5. National Uranium Resource Evaluation, Tularosa Quadrangle, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, V.P.; Nagy, P.A.; Spreng, W.C.

    1981-12-01

    Uranium favorability of the Tularosa Quadrangle, New Mexico, was evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Uranium occurrences reported in the literature were located, sampled, and described in detail. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, and geochemical anomalies, interpreted from hydrogeochemical and stream-sediment reconnaissance, were also investigated. Additionally, several hundred rock samples were studied in thin section, and supplemental geochemical analyses of rock and water samples were completed. Fluorometric analyses were completed for samples from the Black Range Primitive Area to augment previously available geochemical data. Subsurface favorability was evaluatedmore » using gamma-ray logs and descriptive logs of sample cuttings. One area of uranium favorability was delineated, based on the data made available from this study. This area is the Nogal Canyon cauldron margin zone. Within the zone, characterized by concentric and radial fractures, resurgent doming, ring-dike volcanism, and intracauldron sedimentation, uranium conentration is confined to magmatic-hydrothermal and volcanogenic uranium deposits.« less

  6. Geologic field notes and geochemical analyses of outcrop and drill core from Mesoproterozoic rocks and iron-oxide deposits and prospects of southeast Missouri

    USGS Publications Warehouse

    Day, Warren C.; Granitto, Matthew

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources/Missouri Geological Survey, undertook a study from 1988 to 1994 on the iron-oxide deposits and their host Mesoproterozoic igneous rocks in southeastern Missouri. The project resulted in an improvement of our understanding of the geologic setting, mode of formation, and the composition of many of the known deposits and prospects and the associated rocks of the St. Francois terrane in Missouri. The goal for this earlier work was to allow the comparison of Missouri iron-oxide deposits in context with other iron oxide-copper ± uranium (IOCG) types of mineral deposits observed globally. The raw geochemical analyses were released originally through the USGS National Geochemical Database (NGDB, http://mrdata.usgs.gov). The data presented herein offers all of the field notes, locations, rock descriptions, and geochemical analyses in a coherent package to facilitate new research efforts in IOCG deposit types. The data are provided in both Microsoft Excel (Version Office 2010) spreadsheet format (*.xlsx) and MS-DOS text formats (*.txt) for ease of use by numerous computer programs.

  7. Preliminary study of favorability for uranium resources in Juab County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leedom, S.H.; Mitchell, T.P.

    1978-02-01

    The best potential for large, low-grade uranium deposits in Juab County is in the hydrothermally altered vitric tuffs of Pliocene age. The lateral extent of the altered tuffs may be determined by subsurface studies around the perimeter of the volcanic centers in the Thomas Range and the Honeycomb Hills. Because the ring-fracture zone associated with collapse of the Thomas caldera was a major control for hydrothermal uranium deposits, delineation of the northern and eastern positions of the ring-fracture zone is critical in defining favorable areas for uranium deposits. A small, medium-grade ore deposit in tuffaceous sand of Pliocene age atmore » the Yellow Chief mine in Dugway Dell is unique in origin, and the probability of discovering another deposit of this type is low. A deposit of this type may be present under alluvial cover in the northwestern Drum Mountains along the southern extension of the ring-fracture zone of the Thomas caldera. Festoonlike iron oxide structures and uranium deposition within permeable sandstone horizons indicate that the Yellow Chief deposit was formed by recent ground-water circulation. Granitic intrusive rocks in the Deep Creek Range and in Desert Mountain contain isolated epigenetic vein-type deposits. These rocks could be a source of arkosic sediments buried in adjacent valleys. The Pleistocene lacustrine sediments and playa lake brines may contain concentrations of uranium leached from uranium-rich rocks.« less

  8. Fluid-rock interactions related to metamorphic reducing fluid flow in meta-sediments: example of the Pic-de-Port-Vieux thrust (Pyrenees, Spain)

    NASA Astrophysics Data System (ADS)

    Trincal, Vincent; Buatier, Martine; Charpentier, Delphine; Lacroix, Brice; Lanari, Pierre; Labaume, Pierre; Lahfid, Abdeltif; Vennemann, Torsten

    2017-09-01

    In orogens, shortening is mainly accommodated by thrusts, which constitute preferential zones for fluid-rock interactions. Fluid flow, mass transfer, and mineralogical reactions taking place along thrusts have been intensely investigated, especially in sedimentary basins for petroleum and uranium research. This study combines petrological investigations, mineralogical quantifications, and geochemical characterizations with a wide range of analytical tools with the aim of defining the fluid properties (nature, origin, temperature, and redox) and fluid-host rock interactions (mass transfers, recrystallization mechanisms, and newly formed synkinematic mineralization) in the Pic-de-Port-Vieux thrust fault zone (Pyrenees, Spain). We demonstrate that two geochemically contrasted rocks have been transformed by fluid flow under low-grade metamorphism conditions during thrusting. The hanging-wall Triassic red pelite was locally bleached, while the footwall Cretaceous dolomitic limestone was mylonitized. The results suggest that thrusting was accompanied by a dynamic calcite recrystallization in the dolomitic limestone as well as by leaching of iron via destabilization of iron oxides and phyllosilicate crystallization in the pelite. Geochemical and physical changes highlighted in this study have strong implications on the understanding of the thrust behavior (tectonic and hydraulic), and improve our knowledge of fluid-rock interactions in open fluid systems in the crust.

  9. National uranium resource evaluation: Newark Quadrangle, Pennsylvania and New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popper, G.H.P.; Martin, T.S.

    1982-04-01

    The Newark Quadrangle, Pennsylvania and New Jersey, was evaluated to a depth of 1500 m to identify geologic environments and delineate areas favorable for uranium deposits. Criteria used were those developed for the National Uranium Resource Evaluation program. Results of the investigation indicate that the Precambrian Reading Prong contains environments favorable for anatectic and allogenic uranium deposits. Two suites of rocks are favorable for anatectic-type concentrations: An alaskite-magnetite-gneiss association, and red granite and quartz monzonite. Allogenic uranium concentrations occur in rocks of the marble-skarn-serpentinite association. Environments favorable for peneconcordant sandstone-type uranium deposits occur in the upper one-third of the Catskillmore » Formation, the Mississippian-Pennsylvanian Mauch Chunk-Pottsville transition beds, and the upper half of the Triassic Stockton Formation. The Triassic Lockatong Formation contains environments favorable for carbonaceous shale-type uranium concentrations. The Ordovician Epler Formation and the Cretaceous-Tertiary strata of the Coastal Plain were not evaluated due to time restrictions and lack of outcroup. All other geologic environments are considered unfavorable for uranium deposits.« less

  10. Testing the concept of drift shadow at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Paces, J.B.; Neymark, L.A.; Ghezzehei, T.; Dobson, P.F.

    2006-01-01

    If proven, the concept of drift shadow, a zone of reduced water content and slower ground-water travel time beneath openings in fractured rock of the unsaturated zone, may increase performance of a proposed geologic repository for high-level radioactive waste at Yucca Mountain, To test this concept under natural-flow conditions present in the proposed repository horizon, isotopes within the uranium-series decay chain (uranium-238, uranium-234, and thorium-230, or 238U-234U-230Th) have been analyzed in samples of rock from beneath four naturally occurring lithophysal cavities. All rock samples show 234U depletion relative to parent 238U indicating varying degrees of water-rock interaction over the past million years. Variations in 234U/238U activity ratios indicate that depletion of 234U relative to 238U can be either smaller or greater in rock beneath cavity floors relative to rock near cavity margins. These results are consistent with the concept of drift shadow and with numerical simulations of meter-scale spherical cavities in fractured tuff. Differences in distribution patterns of 234U/ 238U activity ratios in rock beneath the cavity floors are interpreted to reflect differences in the amount of past seepage into lithophysal cavities, as indicated by the abundance of secondary mineral deposits present on the cavity floors.

  11. Assessment of undiscovered sandstone-hosted uranium resources in the Texas Coastal Plain, 2015

    USGS Publications Warehouse

    Mihalasky, Mark J.; Hall, Susan M.; Hammarstrom, Jane M.; Tureck, Kathleen R.; Hannon, Mark T.; Breit, George N.; Zielinski, Robert A.; Elliott, Brent

    2015-12-02

    The U.S. Geological Survey estimated a mean of 220 million pounds of recoverable uranium oxide (U3O8 ) remaining as potential undiscovered resources in southern Texas. This estimate used a geology-based assessment method for Tertiary sandstone-hosted uranium deposits in the Texas Coastal Plain sedimentary strata (fig.1).

  12. Excess lead in "rusty rock" 66095 and implications for an early lunar differentiation

    USGS Publications Warehouse

    Nunes, P.D.; Tatsumoto, M.

    1973-01-01

    Apollo 16 breccia 66095 contains a remarkably high amount of lead (15 part's per million), 85 percent of which is not supported by uranium and thorium in the rock. An acid leach experiment coupled with separate analyses of the whole rock and mineral fractions for uranium, thorium, and lead indicate that the excess lead has a lunar source and was apparently introduced about 4.0 X 109 years ago. The data also suggest that a major lunar crustal differentiation occurred about 4.47 X 109 years ago.

  13. Permissive tracts for sediment-hosted lead-zinc-silver deposits in Mauritania (phase V, deliverable 72): Chapter J1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Mauk, Jeffrey L.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  14. Uranium mineralization in fluorine-enriched volcanic rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffsmore » are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).« less

  15. PRIMARY MINERALIZATION OF URANIUM-BEARING "SILICEOUS REEF" VEINS IN THE BOULDER BATHOLITH, MONTANA. PART I. THE HOST ROCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, H.D.; Bieler, B.H.

    1960-01-01

    Between 1952 and 1956 a study was made of some of the uranium-bearing hydrothermal veins in the northern part of the Boulder batholith, Montana. Three mines, the W. Wilson, G. Washington, and Free Enterprise, were investigated in detail. The veins are characterized by a microcrystalline quartz gangue containing sparsely scattered, very fine-grained sulfide minerals and uraninite. Above the present water table, secondary uranium minerals are abundant locally. Throughout the area the veins --called "siliceous reefs"--strike east to northeast, are of steep dip, and vary in thickness from a fraction of an inch to several feet. The country rock is granodioritemore » containing, in order of abundance, plagioclase (An/sub 30/ to An/sub 36/), quartz, orthoclase, biotite, and hornblende, with apatite, zircon, and sphene. Small bodies of aplite, pegmatite, and alaskite occur along some veins. The granodiorite adjacent to the veins is rather strongly altered. The alteration is similar throughout all of the deposits studied, in barren and orebearing portions alike. The essential minerals show a characteristic sequence of alteration, in the order hornblende, andesine, biotite, orthoclase, and quartz. Successive zones of alteration are characterized, from the vein outward, by maximum development of sericite (muscovite polytype 1M, in part), kaolinite, and montmorillonite. Other alteration products are quartz, pyrite, calcite, leucoxene, and chlorite. The alteration resulted in an increase in silica and ferric iron, a decrease in alumina, total iron, ferrous iron, lime, soda, and magnesia, and little change in potash, titania, phosphorus, carbon dioxide, and sulfur. Consideration of the stability fields of the sheet structure silicate minerals indicates little basis for interpretation of the temperatures prevailing during mineralization. (auth)« less

  16. Second Projet de Renforcement Institutionnel du Secteur Minier de la République Islamique de Mauritanie (PRISM-II) Phase V

    USGS Publications Warehouse

    Taylor, Cliff D.

    2015-12-30

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  17. National Uranium Resource Evaluation: Durango Quadrangle, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theis, N.J.; Madson, M.E.; Rosenlund, G.C.

    1981-06-01

    The Durango Quadrangle (2/sup 0/), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions ofmore » the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access.« less

  18. Distribution of radioactive isotopes in rock and ore of Arkhangelskaya pipe from the Arkhangelsk diamond province

    NASA Astrophysics Data System (ADS)

    Kiselev, G. P.; Yakovlev, E. Yu.; Druzhinin, S. V.; Galkin, A. S.

    2017-09-01

    The contents of radioactive elements and the uranium isotopic composition of kimberlite in the Arkhangelskaya pipe at the M.V. Lomonosov deposit and of nearby country rocks have been studied. A surplus of 234U isotope has been established in rocks from the near-pipe space. The high γ = 234U/238U ratio is controlled by the geological structure of the near-pipe space. A nonequilibrium uranium halo reaches two pipe diameters in size and can be regarded as a local ore guide for kimberlite discovery. The rocks in the nearpipe space are also characterized by elevated or anomalous U, Th, and K contents with respect to the background.

  19. Review and interpretation of previous work and new data on the hydrogeology of the Schwartzwalder Uranium Mine and vicinity, Jefferson County, Colorado

    USGS Publications Warehouse

    Caine, Jonathan S.; Johnson, Raymond H.; Wild, Emily C.

    2011-01-01

    The Schwartzwalder deposit is the largest known vein type uranium deposit in the United States. Located about eight miles northwest of Golden, Colorado it occurs in Proterozoic metamorphic rocks and was formed by hydrothermal fluid flow, mineralization, and deformation during the Laramide Orogeny. A complex brittle fault zone hosts the deposit comprising locally brecciated carbonate, oxide, and sulfide minerals. Mining of pitchblende, the primary ore mineral, began in 1953 and an extensive network of underground workings was developed. Mine dewatering, treatment of the effluent and its discharge into the adjacent Ralston Creek was done under State permit from about 1990 through about 2008. Mining and dewatering ceased in 2000 and natural groundwater rebound has filled the mine workings to a current elevation that is above Ralston Creek but that is still below the lowest ground level adit. Water in the 'mine pool' has concentrations of dissolved uranium in excess of 1,000 times the U.S. Environmental Protection Agency drinking-water standard of 30 milligrams per liter. Other dissolved constituents such as molybdenum, radium, and sulfate are also present in anomalously high concentrations. Ralston Creek flows in a narrow valley containing Quaternary alluvium predominantly derived from weathering of crystalline bedrock including local mineralized rock. Just upstream of the mine site, two capped and unsaturated waste rock piles with high radioactivity sit on an alluvial terrace. As Ralston Creek flows past the mine site, a host of dissolved metal concentrations increase. Ralston Creek eventually discharges into Ralston Reservoir about 2.5 miles downstream. Because of highly elevated uranium concentrations, the State of Colorado issued an enforcement action against the mine permit holder requiring renewed collection and treatment of alluvial groundwater. As part of planned mine reclamation, abundant data were collected and compiled into a report by Wyman and Effner (2007), which was to be used as a basis for eventual mine site closure. In 2010 the U.S. Geological Survey was asked by the State of Colorado to provide an objective and independent review of the Wyman and Effner (2007) report and to identify gaps in knowledge regarding the hydrogeology of the mine site. Key findings from the U.S. Geological Survey assessment include geological structural analysis indicating that although the primary uranium-hosting fault likely does not cross under Ralston Creek, many complex subsidiary faults do cross under Ralston Creek. It is unknown if any of these faults act as conduits for mine pool water to enter Ralston Creek. Reported bedrock permeabilities are low, but local hydraulic gradients are sufficient to potentially drive groundwater flow from the mine pool to the creek. Estimated average linear velocities for the full range of reported hydraulic conductivities indicate groundwater transit times from the mine pool to the creek on the order of a few months to about 3,800 years or 11 to 65 years using mean reported input values. These estimates do not account for geochemical reactions along any given flow path that may differentially enhance or retard movement of individual dissolved constituents. New reconnaissance data including 34S isotope and 234U/238U isotopic activity ratios show potentially distinctive signatures for the mine pool compared to local groundwater and Ralston Creek water above the mine site. Although the mine pool may be near an equilibrium elevation, evidence for groundwater recharge transients indicates inflow to the workings that are greater than outflow. There is not enough hydraulic head data adjacent to the mine workings to adequately constrain a final equilibrium elevation or to predict how several wet years in succession might affect variations in mine pool elevation. Although ground level adits are sealed with bulkheads, if the mine pool elevation were to rise slightly to the elevation of or abo

  20. The formation of technic soil in a revegetated uranium ore waste rock pile (Limousin, France)

    NASA Astrophysics Data System (ADS)

    Boekhout, Flora; Gérard, Martine; Kanzari, Aisha; Calas, Georges; Descostes, Michael

    2014-05-01

    Mining took place in France between 1945 and 2001 during which time ~210 different sites were exploited and/or explored. A total of 76 Kt of uranium was produced, 52 Mt of ore was extracted, but also 200 Mt of waste rocks was produced, the majority of which, with uranium levels corresponding to the natural environment. So far, the processes of arenisation and technic soil formation in waste rock piles are not well understood but have important implications for understanding the environmental impact and long-term speciation of uranium. Understanding weathering processes in waste rock piles is essential to determine their environmental impact. The main objectives of this work are to assess 1) the micromorphological features and neo-formed U-bearing phases related to weathering and 2) the processes behind arenisation of the rock pile. The site that was chosen is the Vieilles Sagnes waste rock pile in Fanay (Massif Central France) that represents more or less hydrothermally altered granitic rocks that have been exposed to weathering since the construction of the waste rock pile approximately 50 years ago. Two trenches were excavated to investigate the vertical differentiation of the rock pile. This site serves as a key location for studying weathering processes of waste rock piles, as it has not been reworked after initial construction and has therefore preserved information on the original mineralogy of the waste rock pile enabling us to access post emplacement weathering processes. The site is currently overgrown by moss, meter high ferns and small trees. At present day the rock pile material can be described as hydrothermally altered rocks and rock fragments within a fine-grained silty clay matrix exposed to surface conditions and weathering. A sandy "paleo" technic soil underlies the waste rock pile and functions as a natural liner by adsorption of uranium on clay minerals. Post-mining weathering of rock-pile material is superimposed on pre-mining hydrothermal and possible supergene alteration. Clay minerals present are kaolinite, smectite and chlorite. The formation of these minerals is however ambiguous, and can form during both hydrothermal as weathering processes, calling for a detailed micromorphological study. Micromorphological investigations on undisturbed samples by microscopic and ultramicroscopic techniques allow us to interpretate the processes behind the formation of technic soil in the matrix of the waste rock pile, as well as the rate and chronology of mineral formation and arenisation related to weathering (formation of protosoil and saprolitisation). By studying the formation of weathering aureaoles in between the different granitic blocks, we quantify the anthropogenic influence on weathering of this rock pile and their impacts on local ecosystem by comparing our site with natural occuring outcrops of granites currently subjected to weathering. Electron microscope imaging and microgeochemical mapping permits us to make detailed micromorphological observations linking nanoscale processes to petrolographical macroscopic features and field observations. Different petrographic and electronic images of the mineral paragenesis in the micromass associated to their microgeochemical characteristics will be presented. Also, the impact of previous hydrothermal alteration will be highlighted.

  1. Uranium hydrogeochemical and stream sediment reconnaissance of the Cortez NTMS Quadrangle, Colorado/Utah, including concentrations of forty-three additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, R.G.

    1979-05-01

    During the summers of 1976, 1977, and 1978, 598 water and 1657 sediment samples were collected from 1775 locations within the 19,600-km/sup 2/ area of the Cortez Quadrangle, Colorado and Utah. Water samples were collected from streams, springs, and wells; sediment samples were collected from stream channels (wet and dry) and from springs. Each water sample was analyzed for 13 elements, and each sediment sample was analyzed for 43 elements. Uranium concentrations in water samples range from below the detection limit of 0.02 to 241.47 ppB and have a median of 0.87 ppB and a mean of 3.80 ppB. Backgroundmore » uranium concentrations are 2 to 5 ppB in several nonmountainous regions but are much lower in mountainous areas, particularly in the northeastern portion of the quadrangle. Water samples containing high uranium concentrations (>20 ppB) generally are associated with high conductivities, high concentrations of other metallic elements, and geologic units, such as the Mancos shale, that are unfavorable for uranium mineralization. However, four ground-water samples exhibit high uranium concentrations without concomitant high conductivities or high concentrations of other metallic elements. Two of these samples were collected from sites in the Slick Rock U--V district, and two were collected in the Morrison formation in the southern portion of the quadrangle where large uranium deposits are not known. Water samples collected from the northwestern corner of the quadrangle uniformly exhibit background uranium values but generally contain high nickel concentrations. In this area, U--Cu (White Canyon-type) deposits are hosted primarily by the Shinarump member of the Chinle formation. Uranium concentrations in sediment samples range from 0.51 to 76.41 ppM and have a median of 2.76 ppM and a mean of 3.08 ppM. Background uranium and metallic element concentrations decrease to the southwest from the highest values in the northeastern portion of the quadrangle.« less

  2. Uranium mineralization in the Wilson Creek and Cranberry Gneisses and the Grandfather Mountain Formation, North Carolina and Tennessee. National Uranium Resource Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagener, H.D.; McHone, J.G.

    1982-10-01

    Detailed petrologic investigations were conducted at 74 anomalies that have surface radioactivities of 5 to 300 times background in the Grandfather Mountain region of North Carolina and Tennessee. One or more specimens of radioactive rock and one specimen of nonanomalous (barren) rock were taken for chemical analysis from each of the 74 sites. The specimens were analyzed fluorometrically for uranium (U/sub 3/O/sub 8/) and for 29 other elements by emission spectroscopy. Of the radioactive specimens, 23 contained less than 100 ppM U/sub 3/O/sub 8/ and were either depleted in uranium because of leaching or were rich in thorium; 25 containedmore » more than 500 ppM U/sub 3/O/sub 8/, with a maximum of 33,000 ppM. Specimens collected as barren contained up to 65 ppM U/sub 3/O/sub 8/. The more uraniferous rocks of the region tend to contain the larger concentrations of trace amounts of base metals.« less

  3. Radioactive source materials in Los Estados Unidos de Venezuela

    USGS Publications Warehouse

    Wyant, Donald G.; Sharp, William N.; Rodriguez, Carlos Ponte

    1953-01-01

    This report summarizes the data available on radioactive source materials in Los Estados Unidos de Venezuela accumulated by geologists of the Direccions Tecnica de Geolgia and antecedent agencies prior to June 1951, and the writers from June to November 1951. The investigation comprised preliminary study, field examination, office studies, and the preparation of this report, in which the areas and localities examined are described in detail, the uranium potentialities of Venezuela are summarized, and recommendations are made. Preliminary study was made to select areas and rock types that were known or reported to be radioactive or that geologic experience suggests would be favorable host for uranium deposits, In the office, a study of gamma-ray well logs was started as one means of amassing general radiometric data and of rapidly scanning many of ye rocks in northern Venezuela; gamma-ray logs from about 140 representative wells were examined and their peaks of gamma intensity evaluated; in addition samples were analyzed radiometrically, and petrographically. Radiometic reconnaissance was made in the field during about 3 months of 1951, or about 12 areas, including over 100 localities in the State of Miranda, Carabobo, Yaracuy, Falcon, Lara, Trujillo, Zulia, Merida, Tachira, Bolivar, and Territory Delta Amacuro. During the course of the investigation, both in the filed and office, information was given about geology of uranium deposits, and in techniques used in prospecting and analysis. All studies and this report are designed to supplement and to strengthen the Direccion Tecnica de Geologias's program of investigation of radioactive source in Venezuela now in progress. The uranium potentialities of Los Estados de Venezuela are excellent for large, low-grade deposits of uraniferous phospahtic shales containing from 0.002 to 0.027 percent uranium; fair, for small or moderate-sized, low-grade placer deposits of thorium, rare-earth, and uranium minerals; poor, for high-grade hydrothermal pitchblende deposits; and highly possible for small, medium- to high-grade despots of carnotite-or copper-uranium bearing sandstone. Recommendations for the Venezuelan uranium program include 1) the systematic collection of a mass general radiometric data by examining sample collections, expanding the gamma-ray program, encouraging the use of Geiger counter by field geologists, and by enlisting the aid of the general public; 2) , the examination of specific areas or localities, chosen on the basis of geologic favorability from the results of the amassing of data, or obtained by hints and rumors; 3), the organization of a unit within the Direccion Tecnica de Geologica to direct, collection, and collate metric data. It is emphasized that to be most fruitful the program requires the application of sounds and imaginative geologic theory.

  4. Natural radionuclides in the rocks of the Valle del Cervo Pluton in Piedmont.

    PubMed

    Sesana, Lucia; Fumagalli, Marco; Carnevale, Mauro; Polla, Giancarla; Facchini, Ugo; Colombo, Annita; Tunesi, Annalisa; De Capitani, Luisa; Rusconi, Rosella

    2006-01-01

    Monitoring of the gamma radiation in Valle del Cervo Pluton was performed by determining U and Th contents in the main rock types cropping out over the entire area and pertaining to the granitic complex, syenitic complex and monzonitic complex. In particular, syenitic rocks were largely used as building and ornamental materials (e.g. Sienite della Balma). All the samples are fresh and do not present joints or fractures filled with U minerals. In the crushed samples the activity of uranium varies from 346 to 764 Bq/kg. Concentration of thorium varies from 202 to 478 Bq/kg. For all the analysed rocks uranium activity is higher than thorium one. The lowest value of radioactive concentration is referred to rocks of the granitic complex. The most active rocks are syenites. The data confirm the high activities of Valle del Cervo rock types, strongly connected with high K content of the source magma (geochemical signature); on the contrary, the activity seems to be not related to the location of the samples.

  5. Newly recognized hosts for uranium in the Hanford Site vadose zone

    USGS Publications Warehouse

    Stubbs, J.E.; Veblen, L.A.; Elbert, D.C.; Zachara, J.M.; Davis, J.A.; Veblen, D.R.

    2009-01-01

    Uranium contaminated sediments from the U.S. Department of Energy's Hanford Site have been investigated using electron microscopy. Six classes of solid hosts for uranium were identified. Preliminary sediment characterization was carried out using optical petrography, and electron microprobe analysis (EMPA) was used to locate materials that host uranium. All of the hosts are fine-grained and intergrown with other materials at spatial scales smaller than the analytical volume of the electron microprobe. A focused ion beam (FIB) was used to prepare electron-transparent specimens of each host for the transmission electron microscope (TEM). The hosts were identified as: (1) metatorbernite [Cu(UO2)2(PO4)2??8H2O]; (2) coatings on sediment clasts comprised mainly of phyllosilicates; (3) an amorphous zirconium (oxyhydr)oxide found in clast coatings; (4) amorphous and poorly crystalline materials that line voids within basalt lithic fragments; (5) amorphous palagonite surrounding fragments of basaltic glass; and (6) Fe- and Mn-oxides. These findings demonstrate the effectiveness of combining EMPA, FIB, and TEM to identify solid-phase contaminant hosts. Furthermore, they highlight the complexity of U geochemistry in the Hanford vadose zone, and illustrate the importance of microscopic transport in controlling the fate of contaminant metals in the environment. ?? 2008 Elsevier Ltd.

  6. Geological and geochronological evidence for the effect of Paleogene and Miocene uplift of the Northern Ordos Basin on the formation of the Dongsheng uranium district, China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Yi, Chao; Dong, Qian; Cai, Yu-Qi; Liu, Hong-Xu

    2018-02-01

    The Dongsheng uranium district, located in the northern part of the Ordos Basin, contains the largest known sandstone-hosted uranium deposit in China. This district contains (from west to east) the Daying, Nalinggou, and Dongsheng uranium deposits that host tens of thousands of metric tonnes of estimated recoverable uranium resources at an average grade of 0.05% U. These uranium orebodies are generally hosted by the lower member of the Zhiluo Formation and are dominantly roll or tabular in shape. The uranium deposits in this district formed during two stages of mineralization (as evidenced by U-Pb dating) that occurred at 65-60 and 25 Ma. Both stages generated coffinite, pitchblende, anatase, pyrite, and quartz, with or without sericite, chlorite, calcite, fluorite, and hematite. The post-Late Cretaceous uplift of the Northern Ordos Basin exposed the northern margins of the Zhiluo Formation within the Hetao depression at 65-60 Ma, introducing groundwater into the formation and generating the first stage of uranium mineralization. The Oligocene (∼25 Ma) uplift of this northern margin exposed either the entirety of the southern flank of the Hetao depression or only the clastic sedimentary part of this region, causing a second gravitational influx of groundwater into the Zhiluo Formation and forming the second stage of uranium mineralization.

  7. Potential uranium supply from phosphoric acid: A U.S. analysis comparing solvent extraction and Ion exchange recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett

    Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less

  8. Potential uranium supply from phosphoric acid: A U.S. analysis comparing solvent extraction and Ion exchange recovery

    DOE PAGES

    Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett; ...

    2016-06-16

    Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less

  9. Webinar on the Removal of Uranium from Drinking Water by Small System Treatment Technology

    EPA Science Inventory

    Abstract: Radionuclides, such as uranium (U), occur naturally as trace elements in rocks and soils and thus can be found in dissolved forms in ground waters. Uranium has four oxidation states (+3, +4, +5, and +6) and is a very reactive element forming a variety of stable complexe...

  10. Landsat analysis for uranium exploration in Northeast Turkey

    USGS Publications Warehouse

    Lee, Keenan

    1983-01-01

    No uranium deposits are known in the Trabzon, Turkey region, and consequently, exploration criteria have not been defined. Nonetheless, by analogy with uranium deposits studied elsewhere, exploration guides are suggested to include dense concentrations of linear features, lineaments -- especially with northwest trend, acidic plutonic rocks, and alteration indicated by limonite. A suite of digitally processed images of a single Landsat scene served as the image base for mapping 3,376 linear features. Analysis of the linear feature data yielded two statistically significant trends, which in turn defined two sets of strong lineaments. Color composite images were used to map acidic plutonic rocks and areas of surficial limonitic materials. The Landsat interpretation yielded a map of these exploration guides that may be used to evaluate relative uranium potential. One area in particular shows a high coincidence of favorable indicators.

  11. Preliminary report on the Comet area, Jefferson County, Montana

    USGS Publications Warehouse

    Becraft, George Earle

    1953-01-01

    Several radioactivity anomalies and a few specimens of sooty pitchblende and other uranium minerals have been found on the mine dumps of formerly productive base- and precious-metal mines along the Comet-Gray Eagle shear zone in the Comet area in southwestern Montana. The shear zone is from 50 to 200 feet wide and has been traced for at least 5? miles. It trends N. 80 ? W. across the northern part of the area and cuts the quartz monzonitic rocks of the Boulder batholith and younger silicic intrusive rocks, as well as prebatholithic volcanic rocks, and is in turn cut by dacite and andesite dikes. The youngest period of mineralization is represented by chalcedonic vein zones comprising one or more discontinuous stringers and veins of cryptocrystalline silica in silicified quartz monzonite and in alaskite that has not been appreciably silicified. In some places these zones contain no distinct chalcedonic veins but are represented only by silicified quartz monzonite. These zones locally contain uranium in association with very small amounts of pyrite, galena, ruby silver, arqentite, native silver, molybdenite, chalcopyrite, arsenopyrite, and barite. At the Free Enterprise mine, uranium has been produced from a narrow chalcedonic vein that contains disseminated secondary uranium minerals and local small pods of pitchblende and also from disseminated secondary uranium ,minerals in the adjacent quartz monzonite. Undiscovered deposits of uranium ore may occur spatially associated with the base- and precious-metal deposits along the Comet-Gray Eagle shear zone and with chalcedonic vein zones similar to the Free Enterprise.

  12. Radioactivity and uranium content of the Sharon Springs member of the Pierre shale and associated rocks in western Kansas and eastern Colorado

    USGS Publications Warehouse

    Landis, Edwin R.

    1955-01-01

    As a part of the Geological Survey's program of investigating uranium-bearing carbonaceous rocks on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission, a reconnaissance of the Sharon Springs member of the Pierre shale in western Kansas and eastern Colorado was conducted during 1954. The Sharon Springs member of the Pierre shale and its lateral equivalents ranges from 155 to about 500 feet in thickness and generally contains about 0.001 percent uranium, but some beds contain larger amounts. A 6-foot thick shale bed in Cheyenne County, Colo., contains about 0.006 percent uranium, a 4 1/2-foot thick sequence of beds in Crowley County, Colo., is estimated to contain between 0.004 and 0.005 percent uranium, and a 3 1/2-foot thick sequence of beds in Kiowa County, Colo., contains about 0.004 percent uranium. At several outcrop localities, sequences of beds as much as 9 1/2 feet thick contain about 0.003 percent uranium. Data from wells indicate that the 4 1/2-foot thick sequence of beds in Crowley County, Colo., may have a lateral extent of at least 5 1/2 miles. A gamma-ray log of a well in Yuma County, Colo., indicates the presence of a sequence of beds 66 feet thick which contains 0.005 to 0.010 percent equivalent uranium. No definite pattern of areal distribution of radioactivity and uranium content in the Sharon Springs is indicated by available data. Lateral variation in uranium content of individual beds was not noted in outcrops, which seldom extend more than 150 feet, but subsurface data from gamma-ray logs of wells indicate that both the maximum radioactivity and the thickness of radioactive beds are variable within distances of a few miles. Vertical variation in radioactivity and uranium content of the more radioactive beds is usually abrupt, but in the rocks as a whole the range of uranium content is so small that large variations in content are absent. In most of the gamma-ray logs examined there is only part of the sequence of rocks comprising the Pierre shale and Niobrara formation that exhibits radioactivity in excess of the average radioactivity of the two formations. Comparison of features of gamma-ray logs of wells in north-eastern Colorado suggests that the most radioactive part referred to above is a laterally correlatable sequence of beds. The stratigraphic position of the radioactive unit relative to the Pierre shale-Niobrara formation contact in oil industry scout reports, as identified from electric logs and wells, is variable within short distances. This may indicate that some of the Pierre-Niobrara contacts picked from electric logs may not correspond to the boundary that would be selected by examination of the rocks themselves, or may indicate that there is a facies relationship between teh lowermost part of the Pierre shale and the uppermost part of the Niobrara formation.

  13. Reported industrial minerals occurrences and permissive areas for other occurrences in the Islamic Republic of Mauritania (phase V deliverable 88): Chapter R1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Langer, William H.; Anderson, Eric D.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  14. Permissive tracts for iron oxide copper-gold deposits in Mauritania (phase V, deliverable 78 ): Chapter M1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Fernette, Gregory; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  15. Geologic map of Mauritania (phase V, deliverables 51a, 51b, and 51c): Chapter A1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Bradley, Dwight C.; Motts, Holly; Horton, John D.; Giles, Stuart A.; Taylor, Cliff D.

    2015-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  16. Permissive tracts for algoma-, superior-, and oolitic-type iron deposits in Mauritania (phase V, deliverable 82): Chapter O1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  17. Mineral potential tracts for orogenic, Carlin-like, and epithermal gold deposits in the Islamic Republic of Mauritania, (phase V, deliverable 68): Chapter H1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Goldfarb, Richard J.; Marsh, Erin; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  18. Permissive tracts for volcanogenic massive sulfide deposits in Mauritania (phase V, deliverable 76): Chapter L1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  19. Structure map of Mauritania (phase V, deliverables 52a and 52b): Chapter A2 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Bradley, Dwight C.; Horton, John D.; Motts, Holly A.; Taylor, Cliff D.

    2015-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  20. Geographic Information Systems (GIS) for la République Islamique de Mauritanie (PRISM-II) phase V (phase V, deliverable 92): Chapter T in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Horton, John D.; Taylor, Cliff D.

    2015-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  1. Permissive tracts for nickel, copper, platinum group elements (PGE), and chromium deposits of Mauritania (phase V, deliverable 66): Chapter G1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  2. Radon

    MedlinePlus

    ... Home or Building? Radon forms naturally. Uranium in soil or rock breaks down to form radium, which ... lung cancer. Because radon comes from rock and soil, it can be found anywhere. Exposure to limited ...

  3. Map showing radon potential of rocks and soils in Fairfax County, Virginia

    USGS Publications Warehouse

    Otton, James K.; Schumann, R. Randall; Owen, Douglass E.; Thurman, Nelson; Duval, Joseph S.

    1988-01-01

    Since 1984, indoor radon has gained national attention as a significant health hazard in the United States. Radon is a colorless, odorless, radioactive gas derived from uranium by radioactive decay. The U.S. Environmental Protection Agency (EPA) now projects that 5,000 to 20,000 lung-cancer deaths per year may be attributed to the long-term exposure to indoor radon and its radioactive decay products. Indoor radon has been previously recognized as a health hazard associated with uranium-bearing mill tailings or building materials, but it was not until December 1984 that some natural soils and rocks were found to be sources of indoor radon at levels comparable to those in uranium mines. It is now suspected that elevated indoor radon levels are far more widespread than initially though. The EPA considers 4 picoCuries of radon per liter of air (pCi/L) as the level (in a year-round measurement) at which actions ought to be taken to lower the concentration of indoor radon. All soils and rocks contain measurable amounts of uranium, which generate measurable amounts of radon. Certain soils and rocks, however, have a greater potential to cause indoor radon problems than others because (1) they have a higher uranium content and thus can generate higher levels of radon in soil gas (gas that occupies the pores of the soil), and (2) the permeability of the sol or rack is sufficiently high that radon-bearing soil gas can flow freely and move indoors through the foundation of the structure. This study was designed to demonstrate the correlation between the geologic environment and indoor radon levels and to demonstrate a method of assessment that could be used by other informed workers in areas of their interest. A parallel study by Gundersen and others (1988) of the radon potential of rocks and soils in Montgomery County, Md., used somewhat different methods of assessment because the data available for and assessment of Montgomery County differed.

  4. Potential Treatment of Inflammatory and Proliferative Diseases by Ultra-Low Doses of Ionizing Radiations

    PubMed Central

    Sanders, Charles L.

    2012-01-01

    Ultra-low doses and dose- rates of ionizing radiation are effective in preventing disease which suggests that they also may be effective in treating disease. Limited experimental and anecdotal evidence indicates that low radiation doses from radon in mines and spas, thorium-bearing monazite sands and enhanced radioactive uranium ore obtained from a natural geological reactor may be useful in treating many inflammatory conditions and proliferative disorders, including cancer. Optimal therapeutic applications were identified via a literature survey as dose-rates ranging from 7 to 11μGy/hr or 28 to 44 times world average background rates. Rocks from an abandoned uranium mine in Utah were considered for therapeutic application and were examined by γ-ray and laser-induced breakdown fluorescence spectroscopy. The rocks showed the presence of transuranics and fission products with a γ-ray energy profile similar to aged spent uranium nuclear fuel (93% dose due to β particles and 7% due to γ rays). Mud packs of pulverized uranium ore rock dust in sealed plastic bags delivering bag surface β,γ dose-rates of 10–450 μGy/h were used with apparent success to treat several inflammatory and proliferative conditions in humans. PMID:23304108

  5. Uranium deposits in the Eureka Gulch area, Central City district, Gilpin County, Colorado

    USGS Publications Warehouse

    Sims, P.K.; Osterwald, F.W.; Tooker, E.W.

    1954-01-01

    The Eureka Gulch area of the Central City district, Gilpin County, Colo., was mined for ores of gold, silver, copper, lead, and zinc; but there has been little mining activity in the area since World War I. Between 1951 and 1953 nine radioactive mine dumps were discovered in the area by the U.S. Geological Survey and by prospectors. the importance of the discoveries has not been determined as all but one of the mines are inaccessible, but the distribution, quantity, and grade of the radioactive materials found on the mine dumps indicate that the area is worth of additional exploration as a possible source of uranium ore. The uranium ans other metals are in and near steeply dipping mesothermal veins of Laramide age intrusive rocks. Pitchblende is present in at least four veins, and metatorbernite, associated at places with kosolite, is found along two veins for a linear distance of about 700 feet. The pitchblends and metatorbernite appear to be mutually exclusive and seem to occur in different veins. Colloform grains of pitchblende were deposited in the vein essentially contemporaneously with pyrite. The pitchblende is earlier in the sequence of deposition than galena and sphalerite. The metatorbernite replaces altered biotite-quartz-plagioclase gneiss and altered amphibolite, and to a lesser extent forms coatings on fractures in these rocks adjacent to the veins; the kasolite fills vugs in highly altered material and in altered wall rocks. Much of the pitchblende found on the dumps has been partly leached subsequent to mining and is out of equilibrium. Selected samples of metatorbernite-bearing rock from one mine dump contain as much as 6.11 percent uranium. The pitchblende is a primary vein mineral deposited from uranium-bearing hydrothermal solutions. The metatorbernite probably formed by oxidation, solution, and transportation of uranium from primary pitchblende, but it may be a primary mineral deposited directly from fluids of different composition from these that deposited pitchblende.

  6. The discovery and character of Pleistocene calcrete uranium deposits in the Southern High Plains of west Texas, United States

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Hall, Susan M.

    2017-12-18

    This report describes the discovery and geology of two near-surface uranium deposits within calcareous lacustrine strata of Pleistocene age in west Texas, United States. Calcrete uranium deposits have not been previously reported in the United States. The west Texas uranium deposits share characteristics with some calcrete uranium deposits in Western Australia—uranium-vanadium minerals hosted by nonpedogenic calcretes deposited in saline lacustrine environments.In the mid-1970s, Kerr-McGee Corporation conducted a regional uranium exploration program in the Southern High Plains province of the United States, which led to the discovery of two shallow uranium deposits (that were not publicly reported). With extensive drilling, Kerr-McGee delineated one deposit of about 2.1 million metric tons of ore with an average grade of 0.037 percent U3O8 and another deposit of about 0.93 million metric tons of ore averaging 0.047 percent U3O8.The west-Texas calcrete uranium-vanadium deposits occur in calcareous, fine-grained sediments interpreted to be deposited in saline lakes formed during dry interglacial periods of the Pleistocene. The lakes were associated with drainages upstream of a large Pleistocene lake. Age determinations of tephra in strata adjacent to one deposit indicate the host strata is middle Pleistocene in age.Examination of the uranium-vanadium mineralization by scanning-electron microscopy indicated at least two generations of uranium-vanadium deposition in the lacustrine strata identified as carnotite and a strontium-uranium-vanadium mineral. Preliminary uranium-series results indicate a two-component system in the host calcrete, with early lacustrine carbonate that was deposited (or recrystallized) about 190 kilo-annum, followed much later by carnotite-rich crusts and strontium-uranium-vanadium mineralization in the Holocene (about 5 kilo-annum). Differences in initial 234U/238U activity ratios indicate two separate, distinct fluid sources.

  7. 76 FR 34103 - In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility); Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    .... 10-899-02-ML-BD01] In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility... gas centrifuge uranium enrichment facility--denoted as the Eagle Rock Enrichment Facility (EREF)--in... Information for Contention Preparation; In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment...

  8. Preliminary report on the Comet area, Jefferson County, Montana

    USGS Publications Warehouse

    Becraft, George Earle

    1952-01-01

    Several radioactivity anomalies and a few specimens of sooty pitchblende and other uranium minerals have been found on the mine dumps of formerly productive base-and precious-metal mines along the Comet-Gray Eagle shear zone in the Comet area in southwestern Montana. The shear zone is from 50 to 200 feet wide and has been traced for at least 5 1/2 miles. It trends N. 80° W. across the northern part of the area and cuts the quartz monzonitic rocks of the Boulder batholith and younger silicic intrusive rocks, as well as the pre-batholitic volcanic rocks, and is in turn cut by dacite and andesite dikes. The youngest period of mineralization is represented by chalcedonic vein zones comprising one or more discontinuous stringers and veins of cryptocrystalline silica in silicified quartz monzonite and in alaskite that has not been appreciably silicified. In some places these zones contain no distinct chalcedonic veins, but are represented only by silicified quartz monzonite. These zones locally contain uranium in association with very small amounts of the following minerals: pyrite, galena, ruby silver, argentite, native silver, molybdenite, chalcopyrite, arsenopyrite, and barite. At the Free Enterprise mine, uranium has been produced from a narrow chalcedonic vein that contains disseminated secondary uranium minerals and local small pods of pitchblende and from disseminated secondary uranium minerals in the adjacent quartz monzonite. Undiscovered commercial deposits of uranium ore may occur spatially associated with the base-and precious-metal deposits along the Comet-Gray Eagle shear zone, and chalcedonic vein zones similar to the Free Enterprise.

  9. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    NASA Astrophysics Data System (ADS)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U-Pb dating of zircon from both host rock and ore samples confirms a previously documented event around 1880 - 1900 Ma in the Norrbotten region. However, U-Pb in monazite from an ore sample suggests a further event at ca. 1650 Ma, a period of known activity in Fennoscandia. Further investigation and more U-Pb data are needed to confirm those dates and how the iron mineralization is related to those two events. The combination of U-Th-Pb ages, tracer isotopes and trace element abundances at mineral scale (e.g., Lu-Hf in zircon, and Sm-Nd in monazite, apatite, titanite), along with the O isotopic composition of zircon, will be used to decipher whether the Kiruna iron ore deposits are of metasomatic or igneous origin. Overall, the study also intends to develop a predictive model for exploration of similar iron oxide apatite deposits worldwide.

  10. Trace elements reconnaissance investigations in New Mexico and adjoining states in 1951

    USGS Publications Warehouse

    Bachman, George O.; Read, Charles B.

    1952-01-01

    In the summer and fall of 1951, a reconnaissance search was made in New Mexico and adjacent states for uranium in coal and carbonaceous shale, chiefly of Mesozoic age, and black marine shale of Paleozoic age. Tertiary volcanic rocks, considered to be a possible source for uranium in the coal and associated rocks, were examined where the volcanic rocks were near coal-bearing strata. Uranium in possibly commercial amounts was found at La Ventana Mesa, Sandoval County, New Mexico. Slightly uranifeous coal and carbonaceous shale were found near San Ysidro, Sandoval County, and on Beautiful Mountain, San Juan County, all in New Mexico, and at Keams Canyon, Navajo County, and near Tuba City, Coconino County, in Arizona. Except for La Ventana deposit, none appeared to be of economic importance at the time this report was written, but additional reconnaissance investigations have been underway this field season, in the area where the deposits occur. Marine black shale of Sevonian age was examined in Otero and Socorro Counties, New Mexico and Gila County, Arizona. Mississippian black shale in Socorro County and Pennsylvanian black shale in Taos County, New Mexico were also tested. Equivalent uranium content of samples of these shales did not exceed 0.004 percent. Rhyolitic tuff from the Mount Taylor region is slightly radioactive as is the Bandelier tuff in the Nacimiento region and in the Jemez Plateau. Volcanic rocks in plugs and dikes in the northern Chuska Mountains and to the north in New Mexico as well as in northeastern Arizona and southeastern Utah are slightly radioactive. Coal and carbonaceous rocks in the vicinity of these and similar intrusions are being examined.

  11. Amphibole megacrysts as a probe into the deep plumbing system of Merapi volcano, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Peters, Stefan T. M.; Troll, Valentin R.; Weis, Franz A.; Dallai, Luigi; Chadwick, Jane P.; Schulz, Bernhard

    2017-04-01

    Amphibole has been discussed to potentially represent an important phase during early chemical evolution of arc magmas, but is not commonly observed in eruptive arc rocks. Here, we present an in-depth study of metastable calcic amphibole megacrysts in basaltic andesites of Merapi volcano, Indonesia. Radiogenic Sr and Nd isotope compositions of the amphibole megacrysts overlap with the host rock range, indicating that they represent antecrysts to the host magmas rather than xenocrysts. Amphibole-based barometry suggests that the megacrysts crystallised at pressures of >500 MPa, i.e., in the mid- to lower crust beneath Merapi. Rare-earth element concentrations, in turn, require the absence of magmatic garnet in the Merapi feeding system and, therefore, place an uppermost limit for the pressure of amphibole crystallisation at ca. 800 MPa. The host magmas of the megacrysts seem to have fractionated significant amounts of amphibole and/or clinopyroxene, because of their low Dy/Yb ratios relative to the estimated compositions of the parent magmas to the megacrysts. The megacrysts' parent magmas at depth may thus have evolved by amphibole fractionation, in line with apparently coupled variations of trace element ratios in the megacrysts, such as e.g., decreasing Zr/Hf with Dy/Yb. Moreover, the Th/U ratios of the amphibole megacrysts decrease with increasing Dy/Yb and are lower than Th/U ratios in the basaltic andesite host rocks. Uranium in the megacrysts' parent magmas, therefore, may have occurred predominantly in the tetravalent state, suggesting that magmatic fO2 in the Merapi plumbing system increased from below the FMQ buffer in the mid-to-lower crust to 0.6-2.2 log units above it in the near surface environment. In addition, some of the amphibole megacrysts experienced dehydrogenation (H2 loss) and/or dehydration (H2O loss), as recorded by their variable H2O contents and D/ H and Fe3+/Fe2+ ratios, and the release of these volatile species into the shallow plumbing system may facilitate Merapi's often erratic eruptive behaviour.

  12. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt.

    PubMed

    Amin, Maisa M; Elaassy, Ibrahim E; El-Feky, Mohamed G; Sallam, Abdel Sattar M; Talaat, Mona S; Kawady, Nilly A

    2014-08-01

    Bioleaching, like Biotechnology uses microorganisms to extract metals from their ore materials, whereas microbial activity has an appreciable effect on the dissolution of toxic metals and radionuclides. Bioleaching of uranium was carried out with isolated fungi from uraniferous sedimentary rocks from Southwestern Sinai, Egypt. Eight fungal species were isolated from different grades of uraniferous samples. The bio-dissolution experiments showed that Aspergillus niger and Aspergillus terreus exhibited the highest leaching efficiencies of uranium from the studied samples. Through monitoring the bio-dissolution process, the uranium grade and mineralogic constituents of the ore material proved to play an important role in the bioleaching process. The tested samples asserted that the optimum conditions of uranium leaching are: 7 days incubation time, 3% pulp density, 30 °C incubation temperature and pH 3. Both fungi produced the organic acids, namely; oxalic, acetic, citric, formic, malonic, galic and ascorbic in the culture filtrate, indicating an important role in the bioleaching processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Early Jurassic mafic dykes from the Aigao uranium ore deposit in South China: Geochronology, petrogenesis and relationship with uranium mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Zhao, Kui-Dong; Chen, Wei; Jiang, Shao-Yong

    2018-05-01

    Mafic dykes are abundant and widely distributed in many granite-hosted uranium ore deposits in South China. However, their geochronology, petrogenesis and relationship with uranium mineralization were poorly constrained. In this study, apatite U-Pb dating, whole-rock major and trace element and Sr-Nd-Pb isotope analysis were conducted for the dolerite dykes from the Aigao uranium ore deposit. Apatite U-Pb isotopic data indicate that the mafic dykes were emplaced at Early Jurassic (189 ± 4 Ma), which provides new evidence for the rarely identified Early Jurassic magmatism in South China. Pyroxene from the dykes is mainly augite, and plagioclase belongs to albite. The dolerite samples have relatively low SiO2 contents (45.33-46.79 wt%), relatively high total alkali contents (K2O + Na2O = 4.11-4.58 wt%) and Al2O3 contents (13.39-13.80 wt%), and medium MgO contents (4.29-5.16 wt%). They are enriched in Nb, Ta, Ti, rare earth elements and depleted in Rb, K, Sr, Th, showing the typical OIB-like geochemical affinity. All the dolerite samples show homogeneous Sr-Nd-Pb isotopic compositions, with (87Sr/86Sr)i varying from 0.706049 to 0.707137, εNd(t) from +4.6 to +5.2, 206Pb/204Pb from 19.032 to 19.126 and 207Pb/204Pb from 15.641 to 15.653. The mafic dykes in the Aigao deposit should be derived from the partial melting of the asthenospheric mantle and formed in a within-plate extensional environment. The emplacement age of the mafic dykes is older than the uranium mineralization age. Therefore, CO2 in ore-forming fluids couldn't originate from the basaltic magma as suggested by previous studies. The dolerite dykes might only provide a favorable reducing environment to promote the precipitation of uraninite from oxidize hydrothermal fluids.

  14. Geochemical Analyses of Rock, Sediment, and Water from the Region In and Around the Tuba City Landfill, Tuba City, Arizona

    USGS Publications Warehouse

    Johnson, Raymond H.; Wirt, Laurie

    2009-01-01

    The Tuba City Landfill (TCL) started as an unregulated waste disposal site in the 1940s and was administratively closed in 1997. Since the TCL closure, radionuclides have been detected in the shallow ground water. In 2006, the Bureau of Indian Affairs (BIA) contracted with the U.S. Geological Survey (USGS) to better understand the source of radionuclides in the ground water at the TCL compared to the surrounding region. This report summarizes those data and presents interpretations that focus on the geochemistry in the rocks and water from the Tuba City region. The TCL is sited on Navajo Sandstone above the contact with the Kayenta Formation. These formations are not rich in uranium but generally are below average crustal abundance values for uranium. Uranium ores in the area were mined nearby in the Chinle Formation and processed at the Rare Metals mill (RMM). Regional samples of rock, sediment, leachates, and water were collected in and around the TCL site and analyzed for major and minor elements, 18O, 2H, 3H, 13C, 14C,34S, 87Sr, and 234U/238U, as appropriate. Results of whole rock and sediment samples, along with leachates, suggest the Chinle Formation is a major source of uranium and other trace elements in the area. Regional water samples indicate that some of the wells within the TCL site have geochemical signatures that are different from the regional springs and surface water. The geochemistry from these TCL wells is most similar to leachates from the Chinle Formation rocks and sediments. Isotope samples do not uniquely identify TCL-derived waters, but they do provide a useful indicator for shallow compared to deep ground-water flow paths and general rock/water interaction times. Information in this report provides a comparison between the geochemistry within the TCL and in the region as a whole.

  15. Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation.

    PubMed

    Dutova, Ekaterina M; Nikitenkov, Aleksei N; Pokrovskiy, Vitaly D; Banks, David; Frengstad, Bjørn S; Parnachev, Valerii P

    2017-11-01

    Generic hydrochemical modelling of a grantoid-groundwater system, using the Russian software "HydroGeo", has been carried out with an emphasis on simulating the accumulation of uranium in the aqueous phase. The baseline model run simulates shallow granitoid aquifers (U content 5 ppm) under conditions broadly representative of southern Norway and southwestern Siberia: i.e. temperature 10 °C, equilibrated with a soil gas partial CO 2 pressure (P CO2 , open system) of 10 -2.5 atm. and a mildly oxidising redox environment (Eh = +50 mV). Modelling indicates that aqueous uranium accumulates in parallel with total dissolved solids (or groundwater mineralisation M - regarded as an indicator of degree of hydrochemical evolution), accumulating most rapidly when M = 550-1000 mg L -1 . Accumulation slows at the onset of saturation and precipitation of secondary uranium minerals at M = c. 1000 mg L -1 (which, under baseline modelling conditions, also corresponds approximately to calcite saturation and transition to Na-HCO 3 hydrofacies). The secondary minerals are typically "black" uranium oxides of mixed oxidation state (e.g. U 3 O 7 and U 4 O 9 ). For rock U content of 5-50 ppm, it is possible to generate a wide variety of aqueous uranium concentrations, up to a maximum of just over 1 mg L -1 , but with typical concentrations of up to 10 μg L -1 for modest degrees of hydrochemical maturity (as indicated by M). These observations correspond extremely well with real groundwater analyses from the Altai-Sayan region of Russia and Norwegian crystalline bedrock aquifers. The timing (with respect to M) and degree of aqueous uranium accumulation are also sensitive to Eh (greater mobilisation at higher Eh), uranium content of rocks (aqueous concentration increases as rock content increases) and P CO2 (low P CO2 favours higher pH, rapid accumulation of aqueous U and earlier saturation with respect to uranium minerals). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Radon gas: contractor liability for an indoor health hazard.

    PubMed

    Shuko, C M

    1986-01-01

    Many families throughout the United States have recently detected dangerously high concentrations of radon gas inside their homes. Radon, a carcinogenic gas produced from uranium, has been discovered in structures overlying uranium-bearing rock. This discovery may result in litigation to determine contractor liability for building upon radon-releasing rock sites. This Note examines the strengths and weaknesses of the various theories of contractor liability and considers potential statutory claims under the Clean Air Act. The Note suggests, as an alternative approach to recovery, a proposed regulatory scheme and implementation plan.

  17. Chemical data and statistical interpretations for rocks and ores from the Ranger uranium mine, Northern Territory, Australia

    USGS Publications Warehouse

    Nash, J. Thomas; Frishman, David

    1983-01-01

    Analytical results for 61 elements in 370 samples from the Ranger Mine area are reported. Most of the rocks come from drill core in the Ranger No. 1 and Ranger No. 3 deposits, but 20 samples are from unmineralized drill core more than 1 km from ore. Statistical tests show that the elements Mg, Fe, F, Be, Co, Li, Ni, Pb, Sc, Th, Ti, V, CI, As, Br, Au, Ce, Dy, La Sc, Eu, Tb, Yb, and Tb have positive association with uranium, and Si, Ca, Na, K, Sr, Ba, Ce, and Cs have negative association. For most lithologic subsets Mg, Fe, Li, Cr, Ni, Pb, V, Y, Sm, Sc, Eu, and Yb are significantly enriched in ore-bearing rocks, whereas Ca, Na, K, Sr, Ba, Mn, Ce, and Cs are significantly depleted. These results are consistent with petrographic observations on altered rocks. Lithogeochemistry can aid exploration, but for these rocks requires methods that are expensive and not amenable to routine use.

  18. Igneous activity and related ore deposits in the western and southern Tushar Mountains, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Steven, Thomas A.

    1984-01-01

    PART A: Igneous activity in the Marysvale volcanic field of western Utah can be separated into many episodes of extrusion, intrusion, and hydrothermal activity. The rocks of the western Tushar Mountains, near the western part of the volcanic field, include intermediate-composition, calc-alkalic volcanic rocks erupted from scattered volcanoes in Oligocene through earliest Miocene time and related monzonitic intrusions emplaced 24-23 m.y. ago. Beginning 22-21 m.y. ago and extending through much of the later Cenozoic, a bimodal basalt-rhyolite assemblage was erupted widely throughout the volcanic field. Only volcanic and intrusive rocks belonging to the rhyolitic end member of this bimodal assemblage are present in the western Tushar Mountains; most of these rocks either fill the Mount Belknap caldera (19 m.y. old) or are part of the rhyolite of Gillies Hill (9---8 m.y. old). Episodic hydrothermal activity altered and mineralized rocks at many places in the western Tushar Mountains during Miocene time. The earliest activity took place in and adjacent to monzonitic calcalkalic intrusions emplaced in the vicinity of Indian Creek and Cork Ridge. These rocks were widely propylitized, and gold-bearing quartz-pyrite-carbonate veins formed in local fractures. Hydrothermal activity associated with the Mount Belknap caldera mobilized and redeposited uranium contained in the caldera-fill rocks and formed primary concentrations of lithophile elements (including molybdenum and uranium) in the vicinity of intrusive bodies. Hydrothermal activity associated with the rhyolite of Gillies Hill altered and mineralized rocks at several places along the fault zone that marks the western margin of the Tushar Mountains; the zoned alunite and gold deposits at Sheep Rock, the gold deposit at the Sunday Mine, and an alunite deposit near Indian Creek were thus produced. Resetting of isotopic ages suggests that another center of hydrothermally altered rocks associated with a buried pluton about 16 m.y. old may exist near Indian Creek just west of the Mount Belknap caldera. Geophysical evidence confirms the probability of a buried pluton near Indian Creek, and also indicates that another buried pluton probably exists beneath the 9-m.y.-old mineralized area at Sheep Rock. The mineral potential of the different hydrothermal systems, and the types of minerals deposited probably vary considerably from one period of mineralization to another and from one depth environment to another within a given system. PART B: The Big John caldera, on the western flank of the Tushar Mountains in the Marysvale volcanic field in west-central Utah, formed 23-22 m.y. ago in response to ash-flow eruptions of the Delano Peak Tuff Member of the Bullion Canyon Volcanics. These eruptions were near the end of the period of Oligocene-early Miocene calc-alkalic igneous activity that built a broad volcanic plateau in this part of Utah. About 22 m.y. ago, the composition of rocks erupted changed to a bimodal assemblage of mafic and silicic volcanics that was erupted episodically through the remainder of Cenozoic time. The alkali rhyolites are uranium rich in part, and are associated with all the known uranium deposits in the Marysvale volcanic field. The Big John caldera was a broad drained basin whose floor was covered by a layer of stream gravels when ash flows from the western source area of the Mount Belknap Volcanics filled the caldera with the Joe Lott Tuff Member about 19 m.y. ago. Devitrified and zeolitized rocks in the caldera fill have lost one-quarter to one-half of the uranium contained in the original magma. This mobilized uranium probably moved into the hydrologic regime, and some may have been redeposited in stream gravels underlying the Joe Lott within the caldera, or in gravels filling the original drainage channel that extended south from the caldera.

  19. 76 FR 387 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility) December 17, 2010... construction and operation of a gas centrifuge uranium enrichment facility--denoted as the Eagle Rock... site at http://www.nrc.gov/materials/fuel-cycle-fac/arevanc.html . These and other documents relating...

  20. A neutron activation analysis procedure for the determination of uranium, thorium and potassium in geologic samples

    USGS Publications Warehouse

    Aruscavage, P. J.; Millard, H.T.

    1972-01-01

    A neutron activation analysis procedure was developed for the determination of uranium, thorium and potassium in basic and ultrabasic rocks. The three elements are determined in the same 0.5-g sample following a 30-min irradiation in a thermal neutron flux of 2??1012 n??cm-2??sec-1. Following radiochemical separation, the nuclides239U (T=23.5 m),233Th (T=22.2 m) and42K (T=12.36 h) are measured by ??-counting. A computer program is used to resolve the decay curves which are complex owing to contamination and the growth of daughter activities. The method was used to determine uranium, throium and potassium in the U. S. Geological Survey standard rocks DTS-1, PCC-1 and BCR-1. For 0.5-g samples the limits of detection for uranium, throium and potassium are 0.7, 1.0 and 10 ppb, respectively. ?? 1972 Akade??miai Kiado??.

  1. Assessment of natural radioactivity in aquifer medium bearing uranium ores in Koprubasi, Turkey

    NASA Astrophysics Data System (ADS)

    Simsek, Celalettin

    2008-10-01

    Koprubasi, located within Manisa Province near the Izmir, is the biggest uranium mine where uranium ores originate from Neogene aged altered sandstone and conglomerate layers. The main objective of this study is to determine the radiation hazard associated with radioactivity levels of uranium ores, and the rocks and sediments around Koprubasi. In this regard, measured activity levels of 226Ra, 232Th and 40K were compared with world averages. The average activity levels of 226 Ra, 232Th and 40K were measured to be 5369.75, 124.78 and 10.0 Bq/kg in uranium ores, 24.32, 52.94 and 623.38 Bq/kg in gneiss, 46.24, 45.13 and 762.26 Bq/kg in sandstone and conglomerate, 73.11, 43.15 and 810.65 Bq/kg in sediments, respectively. All samples have high 226Ra and 40K levels according to world average level. As these sediments are used as construction materials and in agricultural activities within the study area, the radiation hazard are calculated by using dose rate (D), annual effective dose rate (He), radium equivalent activity (Raeq) and radiation hazard index (Iyr). All the samples have Raeq levels that are lower than the world average limit of 370 Bq/kg. On the other hand, D, He and Iyr values are higher than world average values. These results indicate that the uranium ores in the Koprubasi is the most important contributor to the natural radiation level. The radioactivity levels of sediments and rocks make them unsuitable for use as agricultural soil and as construction materials. Moreover, it is determined that shallow groundwater in sediments and deep groundwater in conglomerate rocks and also surface water sources in the Koprubasi have high 226Ra content. According to environmental radioactive baseline, some environmental protection study must be taken in Koprubasi uranium site and the environment.

  2. RECONNAISSANCE FOR URANIUM IN ASPHALT-BEARING ROCKS IN THE WESTERN UNITED STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hail, W.J. Jr.

    1957-01-01

    An appraisal of asphait-bearing rocks as potential sources of uranium was made during 1953 and 1954 in 45 areas in Calif., Utah, Wyo., Mont., N. Mex., Tex., Okla., and Mo. A total of 202 samples from these areas was analyzed for uranium. The oldest rocks sampled are Ordovician in age, and the youngest are Recent. Although none of the deposits are of value at this time as a source of U, some of the deposits may constitute a low-grade U resource, but recovery of the U will depend upon the primary use of the asphalt. Significant amounts of U lnmore » the ash of oil extracted from these rocks were found in samples from 7 of the 45 areas examined. These areas are Chalome Creek, McKittrick, Edna, and Los Alamos Calif.; Vernal, Utah; Sulphur, Okla.; and Ellis, Mo. The average U content in the ash of the extracted oil of samples from these 7 areas ranges from 0.028 to 0.376%. All except the Chalone Creek area contain large estimated reserves of asphalt-bearing rock, ranging from 15 million to almost 2 billion tons. The average U content of samples from 13 additiomal areas ranges from 0.020 to 0.06B% in the ash of the extracted oil. Many of these areas contain very large reserves of asphalt-bearing rocks. It is believed that most of the asphalt deposits are oil residues, and that the U was introduced during or after the late stages of oil movement and loss of the lighter oil fractions. (auth)« less

  3. SR-XFA of uranium-containing materials. A case of Bazhenov formation rocks exploration

    NASA Astrophysics Data System (ADS)

    Phedorin, M. A.; Bobrov, V. A.; Tchebykin, Ye. P.; Melgunov, M. S.

    2000-06-01

    When an X-ray fluorescent analysis (XFA) is carried out, errors are possible because fluorescent K-lines of "light" elements and L-lines of some "dark" elements can overlap in energy domain. With certain contents of these elements and insufficient resolution of the spectrometer, this leads to considerable errors of determination. An example is the overlapping of a large number of uranium (U) L-lines and Rb, Nb, Mo K-lines. In this paper a procedure is suggested to correct such overlapping. It was tested on uranium-containing rock samples. These samples represent the oil-producing Bazhenov rock formation, which is characterized by organic matter accumulated in abundance and accompanied by "organophile" elements, including U. The procedure is based on scanning the energy of initial exciting X-radiation. This may be regarded advisable only in the XFA versions that use synchrotron radiation — SR-XFA. As a result of this investigation, geochemical characteristics of the Bazhenov formation rocks are demonstrated and the efficiency of energy scanning procedure in determining both Rb, Nb, Mo and U contents is revealed (using comparison with other methods). The energy scanning procedure also works in the presence of L-lines of some other dark elements (Pb, Th, etc.) in the energy domain of K-lines of As-Mo.

  4. Northeast Church Rock Mine

    EPA Pesticide Factsheets

    Northeast Church Rock Mine, a former uranium mine 17 miles northeast of Gallup, NM in the Pinedale Chapter of the Navajo Nation. EPA is working with NNEPA to oversee cleanup work by United Nuclear Corporation, a company owned by General Electric (GE).

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmina, L.A.

    A method has been developed for determining uranium, thorium, and ionium (Th/sup 230/) in sea silt from a single sample. The completeness of isolation and radiochemical purity of thorium isotopes have been tested by means of tracers. The method has been proved on samples of sea silt as well as of rocks, ores, and minerals. It is applicable at thorium content from 5 x 10/sup -5/ to x x 10/sup - 4/% when uranium content is x x 10/sup -4/ % and at uranium content up to 70% when ionium contert is x x 10/sup -4/% (uranium equivalent). (tr-auth)

  6. Virgin Valley opal district, Humboldt County, Nevada

    USGS Publications Warehouse

    Staatz, Mortimer Hay; Bauer, Herman L.

    1951-01-01

    The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.

  7. Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah

    USGS Publications Warehouse

    Finch, Warren Irvin

    1954-01-01

    The geology of the Shinarump No. 1 uranium mine, located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah, was studied to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permian, Triassic, and Jurassic age crop out in the area mapped, and uranium deposits are found in three zones in the lower 25 feet of the Chinle formation of Late Triassic age. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uraninite, impregnate the rock. High-grade ore seams of uraninite and chalcocite occur along bedding planes. Uraninite formed later than, or simultaneous with, most sulfides, and the chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the more poorly sorted parts of siltstones. In the Seven Mile Canyon area guides to ore inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, carbonaceous matter, and copper sulfides. Results of spectrographic analysis indicate that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper, as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal.

  8. Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah

    USGS Publications Warehouse

    Finch, Warren Irvin

    1953-01-01

    The Shinarump No. 1 uranium mine is located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah. A study was made of the geology of the Shinarump No. 1 mine in order to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permain, Triassic, and Jurassic age crop out in the area mapped. Uranium deposits are found in three zones in the lower 25 feet of the Upper Triassic Chinle formation. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uranite, impregnate the rock. High-grade seams of uranite and chalcocite occur along bedding planes. Formation of unraninite is later than or simultaneous with most sulfides. Chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the poorer sorted parts of siltstones. Guides to ore in the Seven Mile Canyon area inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, copper sulfides, and carbonaceous matter. Results of spectrographic analysis indicated that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal, dated as later or early.

  9. Detailed mineral and chemical relations in two uranium-vanadium ores

    USGS Publications Warehouse

    Garrels, Robert M.; Larsen, E. S.; Pommer, A.M.; Coleman, R.G.

    1956-01-01

    Channel samples from two mines on the Colorado Plateau have been studied in detail both mineralogically and chemically. A channel sample from the Mineral Joe No. 1 mine, Montrose County, Colo., extends from unmineralized rock on one side, through a zone of variable mineralization, into only weakly mineralized rock. The unmineralized rock is a fairly clean quartz sand cemented with gypsum and contains only minor amounts of clay minerals. One boundary between unmineralized and mineralized rock is quite sharo and is nearly at right angles to the bedding. Vanadium clay minerals, chiefly mixed layered mica-montmorillonite and chlorite-monmorillonite, are abundant throughout the mineralized zone. Except in the dark "eye" of the channel sample, the vanadium clay minerals are accompanied by hewettite, carnotite, tyuyamunite, and probably unidentified vanadates. In the dark "eye," paramontroseite, pyrite, and marcasite are abundant, and bordered on each side by a zone containing abundant corvusite. No recognizable uranium minerals were seen in the paramontroseite zone although uranium is abundant there. Coaly material is recognizable throughout all of the channel but is most abundant in and near the dark "eye." Detailed chemical studies show a general increase in Fe, Al, U, and V, and a decrease in SO4 toward the "eye" of the channel. Reducing capacity studies indicate that V(IV) and Fe(II) are present in the clay mineral throughout the channel, but only in and near the "eye" are other V(IV) minerals present (paramontroseite and corvusite). The uranium is sexivalent, although its state of combination is conjectural where it is associated with paramontroseite. Where the ore boundary is sharp, the boundary of introduced trace elements is equally sharp. Textural and chemical relations leave no doubt that the "eye: is a partially oxidized remnant of a former lower-valence ore, and the remainder of the channel is a much more fully oxidized remnant. A channel sample from the Virgin No. 3 mine, Montrose County, Colo., extends from weakly mineralized sandstone on both sides through a strongly mineralized central zone. The weakly mineralized zone is a poorly sorted sandstone with common detrital clay partings; chlorite and mixed layer mica-montmorrillonite are abundant interstitial to the quartz grains. No distinct vanadium or uranium minerals are recognizable, although the clay minerals are vanadium bearing. Euherdral pyrite grains and selenian galena are present but rare. The strongly mineralized rock is separated from the weakly mineralized rock by a narrow transition zone which only apporiximates the bedding planes. It contains abundant vanadium-bearing clay minerals (predominantly chlorite) interstitial to the quartz grains, and apparently replacing them. Paramontroseite is common and is intergrown with the clay minerals. Pyrite and marcasite are present, chiefly in or near the abundant blebs and fragments of carbonaceous material. Selenian galena is rarely present, and generally in or near carbonaceous material. Coffinite is the only uranium mineral idenitified; it is extremely fine grained and was identified only in X-ray diffraction patterns of heavy separates. Distribution of trace elements is not clear; some are consistently high in the strongly mineralized rocks, and some are consistently low. The trace element composition of the unmineralized rock is not known. Chemical studies show a very abrupt rise in the total U, V, and Fe from the weakly mineralized to strongly mineralized rock. Reducing-capacity studies indicate that most of the vanadium is present as V(IV), but some is present as V(V); that iron is present as both Fe(II) and Fe(III), the latter believed to have been present in the primary clays of the unmineralized rock; and that come of the uranium is present as U(VI) in addition to the U(IV) in the coffinite. All evidence points to weak oxidation of an ore once having a somewhat lower valence state. The channel samples from both the Mineral Joe No. 1 mine and the Virgin No. 3 mine are believe to have been essentially identical in mineralogy prior to oxidation by weathering: vanadium was present as V(III) in montroseite and V(IV) in the vanadium clays; uranium was present largely as U(IV) in coffinite and/or uraninite. The Mineral Joe No. 1 mine channel sample is now more fully oxidized. Vanadium clays are unquestionably formed abundantly during the primary mineralization, and they persist with a minimum of alteration during much of the weathering. They suggest that the vanadium is carried as V(IV) in the ore-forming fluids; it seems likely too that the uranium is carried as a U(VI) ion.

  10. Radiometric surveying for the assessment of radiation dose and radon specific exhalation in underground environment

    NASA Astrophysics Data System (ADS)

    Bochiolo, M.; Verdoya, M.; Chiozzi, P.; Pasquale, V.

    2012-08-01

    We performed a radiometric survey for evaluating the natural radioactivity and the related potential hazard level both outdoor and indoor a mine tunnel. The mine is located in a zone of uranium enrichment in the Western Alps (Italy). At first, a γ-ray spectrometry survey of the area surrounding the mine was carried out to define the extent of the ore deposit. Then, spectrometric measurements were performed in the tunnel and rock samples were collected for laboratory analyses. The results point to significant heterogeneity in uranium concentration and consequently in the absorbed dose rate spatial distribution. Spectrometric results in situ and in the laboratory, together with radon air concentration measurements, were used to infer the radon specific exhalation and flow from the mine rocks. The specific exhalation is positively related to the activity concentration of uranium.

  11. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre,more » and drill site geologic maps and cross-sections from most of the holes.« less

  12. Uranium-bearing breccia pipes of northwestern Arizona - an overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chenoweth, W.L.

    During the 1950s and 1960s, the uranium deposits in breccia pipes of the Grand Canyon region were regarded as geologic curiosities. Today this area is the site of numerous exploration projects for ore-bearing pipes. The classic example of the older mines is the Orphan Lode, a patented claim within Grand Canyon National Park. Between 1956 and 1969, this deposit produced 4.26 million lb U/sub 3/O/sub 8/. Exploration since the mid-1970s has developed numerous new deposits in the Grand Canyon region. The Hack 1, 2, and 3, Pigeon, Kanab North, Canyon, and Pinenut deposits are, or will be, mined. The pipesmore » are circular and originated by dissolution of the Mississippian Redwall Limestone and collapse of the overlying strata. Uraninite ore occurs in both the pipe fill and in association with the peripheral shear zone. The principal host rocks are the Coconino Sandstone, Hermit Shale, and Esplanade Sandstone. Although small (3 to 5 million lb U/sub 3/O/sub 8/), the high grade (60 to 70% U/sub 3/O/sub 8/) of the deposits makes the pipes attractive exploration targets.« less

  13. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in precipitation of uranium minerals. At the deepest exposed levels, wall-rocks were altered to sericite; and uraninite, coffinite, jordisite, fluorite, molybdenite, quartz, and pyrite were deposited in the veins. The fluids were progressively oxidized and cooled at higher levels in the system by boiling and degassing; iron-bearing minerals in wall rocks were oxidized to hematite, and quartz, fluorite, minor siderite, and uraninite were deposited in the veins. Near the ground surface, the fluids were acidified by condensation of volatiles and oxidation of hydrogen sulfide in near-surface, steam-heated, ground waters; wall rocks were altered to kaolinite, and quartz fluorite, and uraninite were deposited in veins. Secondary uranium minerals, hematite, and gypsum formed during supergene alteration later in the Cenozoic when the upper part of the mineralized system was exposed by erosion.

  14. Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany.

    PubMed

    Meinrath, A; Schneider, P; Meinrath, G

    2003-01-01

    The Erzgebirge ('Ore Mountains') area in the eastern part of Germany was a major source of uranium for Soviet nuclear programs between 1945 and 1989. During this time, the former German Democratic Republic became the third largest uranium producer in the world. The high abundance of uranium in the geological formations of the Erzgebirge are mirrored in the discovery of uranium by M. Klaproth close to Freiberg City in 1789 and the description of the so-called 'Schneeberg' disease, lung cancer caused in miners by the accumulation of the uranium decay product, radon, in the subsurfaces of shafts. Since 1991, remediation and mitigation of uranium at production facilities, rock piles and mill tailings has taken place. In parallel, efforts were initiated to assess the likely adverse effects of uranium mining to humans. The costs of these activities amount to about 6.5 10(9) Euro. A comparison with concentrations of depleted uranium at certain sites is given.

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the Durango NTMS quadrangle, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, H.E.; Weaver, T.A.

    1979-01-01

    During the spring and summer of 1976, 1518 water and 1604 waterborne sediment samples were collected from 1804 locations in the Durango NTMS quadrangle, Colorado. The samples obtained from this 19 940-km/sup 2/ area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 ppB to 25.7 ppB, with a mean value of 0.84 ppB. The concentrations in sediments ranged from 1.0 ppM to 71.6 ppM, with a mean value of 4.2 ppM. Study of total water and total sediment populations indicated that both aremore » actually mixtures of several populations. Consequently, samples were chosen for discussion on the basis of their having conspicuously high uranium concentrations relative to surrounding background values. Thirty-four water samples (approximately 2.2% of the total water population) had uranium concentrations above 5.00 ppB, the highest of which were well water samples from the San Luis Valley. Thirty-seven sediment samples (approximately 2.3% of the total sediment population) had uranium concentrations above 12.0 ppM. The majority of these were taken from sites in Precambrian rocks, but several came from Paleozoic and Mesozoic strate and Tertiary volcanics. The uranium concentrations in sediment samples from areas of Precambrian rock were especially high and these areas may warrant further, more detailed investigations.« less

  16. Uranium isotope composition of a laterite profile during extreme weathering of basalt in Guangdong, South China

    NASA Astrophysics Data System (ADS)

    Huang, J.; Zhou, Z.; Gong, Y.; Lundstrom, C.; Huang, F.

    2015-12-01

    Rock weathering and soil formation in the critical zone are important for material cycle from the solid Earth to superficial system. Laterite is a major type of soil in South China forming at hot-humid climate, which has strong effect on the global uranium cycle. Uranium is closely related to the environmental redox condition because U is stable at U(Ⅳ) in anoxic condition and U(Ⅵ) as soluble uranyl ion (UO22+) under oxic circumstance. In order to understand the behavior of U isotopes during crust weathering, here we report uranium isotopic compositions of soil and base rock samples from a laterite profile originated from extreme weathering of basalt in Guangdong, South China. The uranium isotopic data were measured on a Nu Plasma MC-ICP-MS at the University of Illinois at Urbana-Champaign using the double spike method. The δ238U of BCR-1 is -0.29±0.03‰ (relative to the international standard CRM-112A), corresponding to a 238U/235U ratio of 137.911±0.004. Our result of BCR-1 agrees with previous analyses (e.g., -0.28‰ in Weyer et al. 2008) [1]. U contents of the laterite profile decrease from 1.9 ppm to 0.9 ppm with depth, and peak at 160 - 170 cm (2.3 ppm), much higher than the U content of base rocks (~0.5 ppm). In contrary, U/Th of laterites is lower than that of base rock (0.27) except the peak at the depth of 160-170 cm (0.38), indicating significant U loss during weathering. Notably, U isotope compositions of soils show a small variation from -0.38 to -0.28‰, consistent with the base rock within analytical error (0.05‰ to 0.08‰, 2sd). Such small variation can be explained by a "rind effect" (Wang et al., 2015) [2], by which U(Ⅳ) can be completely oxidized to U(VI) layer by layer during basalt weathering by dissolved oxygen. Therefore, our study indicates that U loss during basalt weathering at the hot-humid climate does not change U isotope composition of superficial water system. [1] Weyer S. et al. (2008) Natural fractionation of 238U/235U. GCA 72,345-359 [2] Wang X. et al. (2015) Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen. GCA 150, 160-170

  17. Reconnaissance for radioactive rocks in the Paulo Afonso Region, Bahia, Brazil

    USGS Publications Warehouse

    Haynes, Donald D.; Mau, Henry

    1958-01-01

    Ground and air traverses were made to the northwest, north and northeast of Paulo Afonso, Bahia, Brazil, covering Precambrian crystalline rocks and sedimentary rocks of the Jatoba series of Jurassic or Cretaceous age. No important radioactivity anomalies were found; samples from the two strongest anomalies had an equivalent uranium-oxide content of 0.002 percent and 0.006 percent.

  18. Crystalline basement map of Mauritania derived from filtered aeromagnetic data (deliverable 54_1), Aeromagnetic and geological structure map of Mauritania (phase V, deliverable 54_2), Maximum depth to basement map of Mauritania derived from Euler analysis of Aeromagnetic data (phase V, deliverable 54_3), and color composite image of radioelement data (added value): Chapter B1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Finn, Carol A.; Horton, John D.

    2015-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  19. Uranium content of ground and surface waters in western Kansas, eastern Colorado, and the Oklahoma Panhande

    USGS Publications Warehouse

    Landis, E.R.

    1956-01-01

    and in some parts of the report area, such as the Cimarron River area of westernmost Oklahoma and northeastern New Mexico, and the Rule Creek area in Bent and Las Animas Counties, Colo. , most, or all, of the water samples collected contain relatively large amounts of uranium. Further exploration to determine the source of the uranium in the water from these rock units and areas may be worthwhile.

  20. Determination of uranium in clinical and environmental samples by FIAS-ICPMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpas, Z.; Lorber, A.; Halicz, L.

    Uranium may enter the human body through ingestion or inhalation. Ingestion of uranium compounds through the diet, mainly drinking water, is a common occurrence, as these compounds are present in the biosphere. Inhalation of uranium-containing particles is mainly an occupational safety problem, but may also take place in areas where uranium compounds are abundant. The uranium concentration in urine samples may serve as an indication of the total uranium body content. A method based on flow injection and inductively coupled plasma mass spectrometry (FIAS-ICPMS) was found to be most suitable for determination of uranium in clinical samples (urine and serum),more » environmental samples (seawater, wells and carbonate rocks) and in liquids consumed by humans (drinking water and commercial beverages). Some examples of the application of the FIAS-ICPMS method are reviewed and presented here.« less

  1. Geology and ore deposits of the McDermitt Caldera, Nevada-Oregon

    USGS Publications Warehouse

    Rytuba, James J.

    1976-01-01

    The McDermitt caldera is a Miocene collapse structure along the Nevada-Oregon border. The oval-shaped caldera is bounded by arcuate normal faults on the north and south and by rhyolite ring domes on the west. Precollapse ash-flow tuffs exposed within the south caldera rim consist of three cooling units and are peralkaline in composition. Refractive indexes of nonhydrated glasses from basal vitrophyres of the. units range from 1.493 to 1.503 and are typical of comendites. Post-collapse intracaldera rocks consist of tuffaceous lake sediments, rhyolite flows and domes, and ash-flow tuffs. Within the caldera are the mercury mines of Bretz, Cordero, McDermitt, Opalite, and Ruja and the Moonlight uranium mine. The mercury mines are adjacent to ring fracture faults, and the uranium mine and other uranium occurrences are located within rhyolite ring domes. Fluid inclusions in quartz indicate a deposition temperature of 340?C for the uranium deposit and 200?C for the mercury deposits. The mercury deposits formed at shallow depth by replacement of lakebed sediments and volcanic rocks.

  2. Fate and transport of heavy metals and radioelements in groundwater aquifers of Al-Qunfudhah and Wadi Haliy quadrangles, southwest of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Bajabaa, S. A.; Abd El-Naby, H.; Dawood, Y.

    2009-12-01

    The fate and transport of heavy metals and radioelements in groundwater aquifers in five wadis located in the Al Qunfudhah and Wadi Haliy quadrangles were investigated. These wadis are an important source of water to the Red Sea coastal plain. Copper, zinc and other base-metals mineralization occur at eastern parts of these quadrangles that dominates the water catchments area of these wadis. Water, rock and soil samples were collected from all wadis and they were analyzed for major, trace elements, heavy metals and stable isotopes. The chemical and isotopic results showed active water/rock interaction. The preliminary investigation of the data analyses showed some samples with high heavy metals and uranium contents. Generally, the uranium and heavy metal contents are higher in samples collected from the upstream area of each wadi where the crystalline rocks are exposed and direct contact with the runoff. The uranium contents were as high as 120 ppb in some water samples. These elevated values are mainly due to two factors water rock interaction and concentration through evaporation. It was also observed to have elevated heavy metal contents near mining activates, which suggests that these mining activates are playing an important role in mobilizing the heavy elements and in turn affecting the water quality in these wadis.

  3. The Sequoyah corporation fuels release and the Church Rock spill: unpublicized nuclear releases in American Indian communities.

    PubMed

    Brugge, Doug; deLemos, Jamie L; Bui, Cat

    2007-09-01

    The Three Mile Island nuclear release exemplifies why there is public and policy interest in the high-technology, highly visible end of the nuclear cycle. The environmental and health consequences of the early steps in the cycle--mining, milling, and processing of uranium ore--may be less appreciated. We examined 2 large unintended acute releases of uranium--at Kerr McGee's Sequoyah Fuels Corporation in Oklahoma and United Nuclear Corporation's Church Rock uranium mill in New Mexico, which were incidents with comparable magnitude to the Three Mile Island release. We urge exploration of whether there is limited national interest and concern for the primarily rural, low-income, and American Indian communities affected by these releases. More attention should be given to the early stages of the nuclear cycle and their impacts on health and the environment.

  4. Uranium luminescence in La2 Zr2 O7 : effect of concentration and annealing temperature.

    PubMed

    Mohapatra, M; Rajeswari, B; Hon, N S; Kadam, R M

    2016-12-01

    The speciation of a particular element in any given matrix is a prerequisite to understanding its solubility and leaching properties. In this context, speciation of uranium in lanthanum zirconate pyrochlore (La 2 Zr 2 O 7  = LZO), prepared by a low-temperature combustion route, was carried out using a simple photoluminescence lifetime technique. The LZO matrix is considered to be a potential ceramic host for fixing nuclear and actinide waste products generated during the nuclear fuel cycle. Special emphasis has been given to understanding the dynamics of the uranium species in the host as a function of annealing temperature and concentration. It was found that, in the LZO host, uranium is stabilized as the commonly encountered uranyl species (UO 2 2+ ) up to a heat treatment of 500 °C at the surface. Above 500 °C, the uranyl ion is diffused into the matrix as the more symmetric octahedral uranate species (UO 6 6- ). The uranate ions thus formed replace the six-coordinated 'Zr' atoms at regular lattice positions. Further, it was observed that concentration quenching takes place beyond 5 mol% of uranium doping. The mechanism of the quenching was found to be a multipolar interaction. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Uranium deposits of the northern part of the Boulder Batholith, Montana

    USGS Publications Warehouse

    Becraft, George E.

    1955-01-01

    Uranium minerals and radioactivity anomalies occur in many silver-lead veins and chalcedony veins and vein zones in the Boulder batholith of southwestern Montanao Pitchblende has been identified in a few silver-lead veins. These veins occupy shear zones along which there is no evidence of large-scale lateral displacement. The wall rock adjacent to the veins is intensely silicified and sencitized quartz monzonite and granodiortte. The veins have yielded substantial quantities of lead, silver, zinc, and gold. The silver-lead veins consist principal1y of galena, spha1erite, tetrahedrite, cha1copyrite and pyrite in a gangue of light to dark gray quartz, altered rock, gouge, and subordinate chalcedony and carbonate minerals. No anomalous radioactivity nor uranium minerals have been found in similar veins in pre-batholithic rocks of the area. Chalcedony veins and vein zones, some of which are ttraniferous, are distinctly different from the silver-lead veins and, with a single except1on, are known only in the batholith. The chalcedony vein zones consist of one or more discontinuous stringers or veins of cha1cedony and microcrystalline quartz in silicified and sericitized quartz monzonite and granodiorite, and in less strongly altered alaskite. On1y small amounts of silver ore have been produced from these chalcedony veins and vein zones. All of the veins are ear1y Tertiary in age, but the silver-lead veins probably are older than the chalcedony veins. Uranium is closely associated with chalcedory and microcrystalline quartz in both types of veins. This association suggests that all of the uranium in the area is of the same age. If so, some of the silver-lead veins must have been reopened during the period of chalcedony vein formation.

  6. Uranium favorability of the San Rafael Swell area, east-central Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickle, D G; Jones, C A; Gallagher, G L

    1977-10-01

    The San Rafael Swell project area in east-central Utah is approximately 3,000 sq mi and includes the San Rafael Swell anticline and the northern part of the Waterpocket Fold monocline at Capitol Reef. Rocks in the area are predominantly sedimentary rocks of Pennsylvanian through Cretaceous age. Important deposits of uranium in the project area are restricted to two formations, the Chinle (Triassic) and Morrison (Jurassic) Formations. A third formation, the White Rim Sandstone (Permian), was also studied because of reported exploration activity. The White Rim Sandstone is considered generally unfavorable on the basis of lithologic characteristics, distance from a possiblemore » source of uranium, lack of apparent mineralization, and the scarcity of anomalies on gamma-ray logs or in rock, water, and stream-sediment samples. The lower Chinle from the Moss Back Member down to the base of the formation is favorable because it is a known producer. New areas for exploration are all subsurface. Both Salt Wash and Brushy Basin Members of the Morrison Formation are favorable. The Salt Wash Member is favorable because it is a known producer. The Brushy Basin Member is favorable as a low-grade resource.« less

  7. Wall-rock control of cortain pitchblende deposits in Golden Gate Canyon, Jefferson County, Colorado

    USGS Publications Warehouse

    Adams, John W.; Stugard, Frederick

    1954-01-01

    Carbonate veins cutting pre-Cambrian metamorphic rocks in Golden Gate Canyon contain pitchblende and base-metal sulfides. The veins occupy extensive faults of Laramide age but normally contain pitchblende only where the cut hornblende gneiss. At the Union Pacific prospect, which was studied in detail, pitchblende, hermatite, and some ankerite formed in advance of sulfides, except possibly for minor pyrite. Base-metal sulfides and the bulk of ankerite-calcite vein-filling were deposited after the pitchblende. Chemical analyses show a high ferrous iron content in the hornblende gneiss in contrast to low ferrous iron in the adjacent biotite gneiss. It is hypothesized that ferrous iron released by alteration of hornblende was partly oxidized to hematite by the ore-bearing solutions and, contemporaneously, uranium was reduced and deposited as pitchblende. In other veins, biotite or iron sulfides may have been similarly effective in precipitating pitchblende. Apparently both the ferrous ion and the sulfide ion can serve as reducing agents and control pitchblende deposition. It is suggested that conditions particularly favorable for uranium deposition are present where uranium-bearing solutions had access to rocks rich in ferrous iron or pre-existing sulfides.

  8. National Uranium Resource Evaluation: Marfa Quadrangle, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, C D; Duex, T W; Wilbert, W P

    1982-09-01

    The uranium favorability of the Marfa 1/sup 0/ by 2/sup 0/ Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiarymore » Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable.« less

  9. Progress report on geologic studies of the Ranger orebodies, Northern Territory, Australia

    USGS Publications Warehouse

    Nash, J.T.; Frishman, David

    1982-01-01

    The Ranger No. 1 and No. 3 orebodies contain about 124,000 tonnes U3O8 in highly chloritized metasediments of the lower Proterozoic Cahill Formation within about 500 m of the projected sub-Kombolgie Formation unconformity. In both orebodies, oxidized and reduced uranium minerals occur chiefly in quartzose schists that have highly variable amounts of muscovite, sericite, and chlorite. The effects of several periods of alteration are pervasive in the vicinity of orebodies where biotite and garnet are altered to chlorite, and feldspars to white mica or chlorite. Oxidized uranium minerals, associated with earthy iron oxides, occur from the surface to a depth of about 60 m. Below the oxidized zone, uranium occurs chiefly as uraninite and pitchblende disseminated through thick sections of quartz-chlorite-muscovite schist and has no apparent association with graphite or sulfides. In fact, graphite is rare and sulfides are generally low in abundance (<0.5 percent). Higher ore grades occur in disrupted zones a few centimeters thick and in some quartz-chlorite vein-like zones of uncertain origin. Uranium correlates strongly with chlorite, but not all of the many ages of chlorite have associated uranium. At least five textural varieties of chlorite are present and represent at least 3 ages. Preliminary microprobe analyses suggest that Mg-Fe-Al contents are relatively uniform. Apatite commonly occurs with chlorite. Uranium is not common in carbonate rocks and seems to occur only in disrupted zones that have chlorite alteration. Chloritization and silicification are more widespread and intense in the No. 1 orebody than in the No. 3. In both orebodies, hematite occurs tens to hundreds of meters below the weathered zone, in both altered and largely unaltered rocks, with and without uranium. The structure of the orebodies is outwardly simple, particularly in No. 3; dips are less than 40? on most lithologic contacts. The No. 1 orebody is in a basin-like structure about 400 m wide that probably formed in part by progressive removal of carbonate rocks that are as much as 200 m thick adjacent to the No. 1 orebody and below the No. 3 orebody. Quartz-chlorite breccias have formed in the zone of carbonate thinning; uranium is spotty and low grade in these breccias. Chloritized and uraniferous broken and sheared zones, a few centimeters to a few meters thick, have an unknown attitude but must have small displacement. Blocks of altered Kombolgie sandstone are downfaulted into the No. 3 orebody and locally contain reduced uranium minerals. One or more shear zones 5-30 m thick of crushed and smeared fine to coarse rock fragments occur below the orebodies, and other low-angle shears probably occur in the orebodies. The shear zone dips about 40 o and displacement on it is not known. The footwall rocks generally are less retrograded than those in the hanging wall (orebody) and consist of quartz-biotite-feldspar schists and gneisses flanking the Nanambu Complex. A few scattered fractures in the footwall sequence contain pitchblende of unknown age and origin. Major element chemical analyses confirm the lithologic observations of large changes in composition during multiple stages of alteration. Granitic dikes and pelitic schists have gained Fe and Mg and lost Si, Ca, Na, and K during chloritization. Marbles have gained Si, Al, Fe, and P, and lost Mg, Ca, and K during jasperoid-chlorite alteration. Total net chemical gains and losses in the Ranger No. 1 orebody were huge: equal to about 37 percent of the mass of the ore-bearing rock that will be mined. There were net gains in Si and P and net losses in Al, Fe, Mg, Ca, K, and Na. The geologic age(s) of uranium emplacement are obscure because there are few age criteria. Reduced uranium minerals are younger than 1.8-b.y.-old granite dikes, and some occur locally in 1.65-b.y.-old Kombolgie Formation. Diabase dikes (age not known) are thoroughly chloritized and contain sparse ore minerals. Oxidized ura

  10. Radium and uranium concentrations and associated hydrogeochemistry in ground water in southwestern Pueblo County, Colorado

    USGS Publications Warehouse

    Felmlee, J. Karen; Cadigan, Robert Allen

    1979-01-01

    Radium and uranium concentrations in water from 37 wells tapping the aquifer system of the Dakota Sandstone and Purgatoire Formation in southwestern Pueblo County, Colorado, have a wide range of values and define several areas of high radioactivity in the ground water. Radium ranges from 0.3 to 420 picocuries per liter and has a median value of 8.8, and uranium ranges from 0.02 to 180 micrograms per liter and has a median value of 2.4. Radon concentrations, measured in 32 of the 37 wells, range from less than 100 picocuries per liter to as much as 27,000 and have a median value of 580. Relationships among the radioactive elements and 28 other geochemical parameters were studied by using correlation coefficients and R-mode factor analysis. Five factor groups were determined to represent major influences on water chemistry: (1) short-term solution reactions, (2) oxidation reactions, (3) hydrolysis reactions, (4) uranium distribution, and (5) long-term solution reactions. Uranium concentrations are most strongly influenced by oxidation reactions but also are affected by solution reactions and distribution of uranium in the rocks of the aquifer system. Radon and radium concentrations are mostly controlled by uranium distribution; radium also shows a moderate negative relationship with oxidation. To explain the statistical and spatial relationships among the parameters, a model was developed involving the selective leaching of uranium-bearing phases and metal sulfides which occur in discontinuous zones in sandstone and shale. When reducing conditions prevail, uranium is immobile, but radium can be taken into solution. When faults and associated fractured rocks allow oxidizing conditions to dominate, uranium can be taken into solution; radium can also be taken into solution, or it may become immobilized by coprecipitation with iron and manganese oxides or with barite. Several areas within the study area are discussed in terms of the model.

  11. Preliminary report on uranium deposits in the Miller Hill area, Carbon County, Wyoming

    USGS Publications Warehouse

    Love, J.D.

    1953-01-01

    A sequence of radioactive rocks of Miocene (?) age, the Browns Park formation, in the Miller Hill area of southern Wyoming is more than 1,000 feet thick. The formation crops out in an area of approximately 600 square miles, and consists of a basal conglomerate, tuffs, tuffaceous limy sandstones, and thin persistent radioactive algal limestones. Uranium is concentrated in both algal limestones and in tuffaceous limy sandstones. The uranium is believed to have been deposited. at least in part with the sediments, rather than to have come in at a later date. The highest uranium values were found in a widespread algal limestone bed, which contains as much as 0. 15 percent uranium. Values of 0.01 percent uranium or more were obtained from 8 samples taken from approximately 220 feet of stratigraphic section in the Browns Park formation. This is the first reported occurrence of limestone source rock from Wyoming that has been found to contain a commercial grade of uranium. The economic possibilities of the area have not been determined adequately and no estimates of tonnage are warranted at the present time. An airborne radiometric survey was made by the Geophysics Branch of the Geological Survey, of the west half of the area, recommended by the writer for investigation. Ground check of all anomalies reported at that time showed that they were in localities where the background radiation was much higher than average. Additional localities with high background radiation were found on the ground in the area east of that which was flown.

  12. Multielement statistical evidence for uraniferous hydrothermal activity in sandstones overlying the Phoenix uranium deposit, Athabasca Basin, Canada

    NASA Astrophysics Data System (ADS)

    Chen, Shishi; Hattori, Keiko; Grunsky, Eric C.

    2018-04-01

    The Phoenix U deposit, with indicated resources of 70.2 M lb U3O8, occurs along the unconformity between the Proterozoic Athabasca Group sandstones and the crystalline basement rocks. Principal component analysis (PCA) is applied to the compositions of sandstones overlying the deposit. Among PCs, PC1 accounts for the largest variability of U and shows a positive association of U with rare earth elements (REEs) + Y + Cu + B + Na + Mg + Ni + Be. The evidence suggests that U was dispersed into sandstones together with these elements during the uraniferous hydrothermal activity. Uranium shows an inverse association with Zr, Hf, Th, Fe, and Ti. Since they are common in detrital heavy minerals, such heavy minerals are not the major host of U. The elements positively associated with U are high in concentrations above the deposit, forming a "chimney-like" or "hump-like" distribution in a vertical section. Their enrichment patterns are explained by the ascent of basement fluids through faults to sandstones and the circulation of basinal fluids around the deposit. The Pb isotope compositions of whole rocks are similar to expected values calculated from the concentrations of U, Th, and Pb except for sandstones close to the deposit. The data suggest that in situ decay of U and Th is responsible for the Pb isotope compositions of most sandstones and that highly radiogenic Pb dispersed from the deposit to the proximal sandstones long after the mineralization. This secondary dispersion is captured in PC8, which has low eigenvalue. The data suggests that the secondary dispersion has minor effect on the overall lithogeochemistry of sandstones.

  13. 75 FR 62895 - Notice of Availability of Safety Evaluation Report; AREVA Enrichment Services LLC, Eagle Rock...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... Evaluation Report; AREVA Enrichment Services LLC, Eagle Rock Enrichment Facility, Bonneville County, ID... report. FOR FURTHER INFORMATION CONTACT: Breeda Reilly, Senior Project Manager, Advanced Fuel Cycle, Enrichment, and Uranium Conversion, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material...

  14. 238U and 235U isotope fractionation upon oxidation of uranium-bearing rocks by fracture waters

    NASA Astrophysics Data System (ADS)

    Chernyshev, I. V.; Golubev, V. N.; Chugaev, A. V.; Mandzhieva, G. V.

    2016-10-01

    The variations in 238U/235U values accompanying mobilization of U by fracture waters from uranium-bearing rocks, in which U occurs as a fine impregnation of oxides and silicates, were studied by the high-precision (±0.07‰) MC-ICP-MS method. Transition of U into the aqueous phase in the oxidized state U(VI) is accompanied by its isotope fractionation with enrichment of dissolved U(VI) in the heavy isotope 238U up to 0.32‰ in relation to the composition of the solid phases. According to the sign, this effect is consistent with the tendency of the behavior of 238U and 235U upon interaction of river waters with rocks of the catchment areas [11] and with the effect observed during oxidation of uraninite by the oxygen-bearing NaHCO3 solution [12].

  15. Geology and mineral deposits of the Carlile quadrangle, Crook County, Wyoming

    USGS Publications Warehouse

    Bergendahl, M.H.; Davis, R.E.; Izett, G.A.

    1961-01-01

    The Carlile quadrangle-is along the northwestern flank of the Black Hills uplift in Crook County, Wyo. The area-is primarily one of canyons and divides that are a result of downcutting by the Belle Fourche River and its tributaries through an alternating succession of sandstone, siltstone, and mudstone or shale beds. The present topography is also influenced by the regional structure, as reflected by the beds that dip gently westward and by the local structural features such as anticlines, domes, synclines, basins, and terraces, which are superimposed upon the regional setting. Rocks exposed include shale and thin limestone and sandstone beds belonging to the Redwater shale member of the Sundance formation and to the Morrison formation, both of Late Jurassic age; sandstone, siltstone, and mudstone of the Lakota and Fall River formations of Early Cretaceous age; and shale and sandstone of the Skull Creek shale, Newcastle sandstone, and Mowry shale, also of Early Cretaceous age. In the southwestern part of the quadrangle rocks of the Upper Cretaceous series are exposed. These include the Belle Fourche shale, Greenhorn formation, and Carlile shale. Gravel terraces, landslide debris, and stream alluvium comprise the surficial deposits. The Lakota and Fall River formations, which make up the Iriyan Kara group, contain uranium deposits locally in the northern Black Hills. These formations were informally subdivided in order to show clearly the vertical and lateral distribution of the sandstone, siltstone, and mudstone facies within them.The Lakota was subdivided into a sandstone unit and an overlying mudstone unit; the Fall River was subdivided, in ascending order, into a siltstone unit, a mudstone unit, a sandstone unit, and an upper unit. The lithologic character of the Lakota changes abruptly locally, and the units are quite inconsistent with respect to composition, thickness, and extent. This is in contrast to a notable consistency in the lithologic character and thickness among all the Fall River units, with the exception of the upper unit. Petrographic studies on selected samples of units from both formations show differences in composition between Lakota and Fall River rocks.The Carlile quadrangle lies immediately east of the monocline that marks the outer limit of the Black Hills uplift, and the rocks in this area have a regional dip of less than 2° outward from the center of the uplift. Superimposed upon the regional uplift are many subordinate structural features anticlines, synclines, domes, basins, and terraces which locally modify the regional features. The most pronounced of these subordinate structural features are the doubly-plunging Pine Ridge, Oil Butte, and Dakota Divide anticlines, and the Eggie Creek syncline. Stress throughout the area was relieved almost entirely through folding; only a few small nearly vertical normal faults were found within the quadrangle.Uranium has been mined from the Carlile deposit, owned by the Homestake Mining Co. The ore minerals, carnotite and tyuyamnuite occur in a sandstone lens that is enclosed within relatively impermeable clayey beds in the mudstone unit of the Lakota formation. The ore also includes unidentified black vanadium minerals and possibly coffinite. Uranium minerals are more abundant in and adjacent to thicker carbonaceous and silty seams in the sandstone lens. A mixture of fine-grained calcium carbonate and calcium sulfate fills the interstices between detrital quartz grains in mineralized sandstone. Selenium and arsenic are more abundant in samples that are high in uranium. Drilling on Thorn Divide about 1 mile west of the Carlile mine has roughly outlined concentrations of a sooty black uranium mineral associated with pyrite In two stratigraphic intervals of the Lakota formation. One is in the same sandstone lens that contains the ore at the Carlile mine; the other is in conglomeratic sandstone near the base of the Lakota. These deposits are relatively deep, and no mining has been attempted. The mineralogy of the Carlile deposits and the lithologic features of the sandstone host rock suggest that uranium and vanadium were transported in the high-valent state by carbonate or sulfate solutions, were extracted from solution by organic material, and were reduced to low-valent states to form an original assemblage of oxides and silicates. These primary minerals were oxidized in place, and the present carnotite-tyuyamunite assemblage was formed. In general, radioactivity analyses correspond fairly closely with chemical analyses of uranium, thus it is believed that only minor solution and migration of uranium has occurred since the present suite of oxidized minerals was formed. The factors responsible for ore localization are not clear, but probably a combination of three lithologic and structural elements contributed to provide a favorable environment for precipitating uranium from aqueous solutions: abundant carbonaceous material or pyrite in a thin, permeable sandstone enclosed within relatively thick impermeable clays; local structural basins; and a regional structural setting involving a broad syncline between two anticlines. The structural features controlled the regional flow of ground water and the lithologic features controlled the local rate of flow and provided the proper chemical environment for uranium deposition. Bentonite has been mined from an opencut in the Mowry shale in the southwest part of the quadrangle. A bentonite bed in the Newcastle sandstone also seems to be of minable thickness and quality. Exploration for petroleum has been unsuccessful within the quadrangle; however, some wells that yielded oil were recently drilled on small anticlines to the west and southeast. It is possible that similar structural features in the Carlile area, that were previously overlooked, may be equally productive.

  16. Geology and geochemistry of three sedimentary-rock-hosted disseminated gold deposits in Guizhou Province, People's Republic of China

    USGS Publications Warehouse

    Ashley, R.P.; Cunningham, C.G.; Bostick, N.H.; Dean, W.E.; Chou, I.-Ming

    1991-01-01

    Five sedimentary-rock-hosted disseminated gold deposits have been discovered since 1980 in southwestern Guizhou Province (PRC). Submicron-sized gold is disseminated in silty carbonate and carbonaceous shale host rocks of Permian and Triassic age. Arsenic, antimony, mercury, and thallium accompany the gold. Associated hydrothermal alteration resulted in decarbonatization of limestone, silicification, and argillization, and depletion of base metals, barium, and many other elements. Organic material occurs in most host rocks and ores. It was apparently devolatilized during a regional heating event that preceded hydrothermal activity, and thus was not mobilized during mineralization, and did not affect gold deposition. The geologic setting of the Guizhou deposits includes many features that are similar to those of sedimentary-rock-hosted deposits of the Great Basin, western United States. The heavy-element suite that accompanies gold is the same, but base metals are even scarcer in the Guizhou deposits than they are in U.S. deposits. The Guizhou deposits discovered to date are smaller than most U.S. deposits and have no known spatially associated igneous rocks. ?? 1991.

  17. Calibrating rates of early Cambrian evolution

    NASA Technical Reports Server (NTRS)

    Bowring, Samuel A.; Grotzinger, John P.; Isachsen, Clark E.; Knoll, Andrew H.; Pelechaty, Shane M.; Kolosov, Peter

    1993-01-01

    An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began about 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.

  18. Uranium in the Islamic Republic of Mauritania (phase V, deliverable 81): Chapter N in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Fernette, Gregory

    2015-01-01

    Uranium occurrences are also reported in the Tasiast-Tijirit Terrane of the Archean Rgueïbat Shield, the Mauritanide Belt, and the Coastal Basin. Geologic environments permissive for eight types of uranium deposits are recognized in Mauritania. These deposit types include: calcrete, granite-hosted vein/shear, alkaline intrusive, unconformity-associated, quartz pebble conglomerate, phosphate, sandstone, and red bed-type uranium deposits.

  19. Formation conditions and REY enrichment of the 2060 Ma phosphorus mineralization at Schiel (South Africa): geochemical and geochronological constraints

    NASA Astrophysics Data System (ADS)

    Graupner, Torsten; Klemd, Reiner; Henjes-Kunst, Friedhelm; Goldmann, Simon; Behnsen, Helge; Gerdes, Axel; Dohrmann, Reiner; Barton, Jay M.; Opperman, Rehan

    2018-02-01

    Rocks of the rare-earth element (REY)-enriched apatite deposit in the eastern part of the Schiel Alkaline Complex (SAC; Southern Marginal Zone, Limpopo Belt) were studied for their whole-rock and mineral chemistry, REY mineral distribution and geochronology. Apart from phoscorite (sensu lato), pyroxenite and various syenitic rock types with quite variable apatite contents display P-REY enrichments. Field observations, mineralogical composition as well as major and trace element chemistry of soils make it possible to constrain the distribution of the hidden P-REY-rich rock types in the apatite deposit. Uranium-lead ages of zircon from phoscorite (sensu lato) and syenite are in the range of 2.06-2.05 Ga. Samarium-neodymium (ɛNd(t) -8.6 to -6.0) and in part Rb-Sr (87Sr/86Sr(t) 0.70819-0.70859) isotope data for whole-rock samples and mineral separates indicate an origin from an isotopically enriched and slightly variable source. Fluorapatite, early allanite and titanite are the main REY carriers at Schiel. Fluorapatite dominates the REY budget of pyroxenite and phoscorite, whereas early allanite hosts most of the REY in syenite. Three apatite types are distinguished based on their occurrence in the rocks, REYtotal contents and colouration in cathodoluminescence microscopy. Magmatic apatite in pyroxenite and in phoscorite (sensu lato) as well as early stage type I/II apatite in syenitic rocks have moderate to high REYtotal abundances (up to 3.2 wt%) with the mineral enriched in light REE. Early ferriallanite-(Ce) is strongly enriched in light REE and shows very high REYtotal values (13.7-26.4 wt%), while late allanite has lower REYtotal concentrations (6.9-14.9 wt%). Titanite is abundant in most syenitic rocks (REYtotal 1.7-6.4 wt%); chevkinite-(Ce) occurs locally and contributes to an REY enrichment in contact aureoles between syenite and different lithologies. Apatite-enriched rocks in the SAC in part contain significantly higher REYtotal concentrations in apatite grains compared to those in apatite-mineralized pyroxenite, phoscorite and carbonatite from Phalaborwa.

  20. Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.

    PubMed

    Brown, Steven H; Chambers, Douglas B

    2017-07-01

    All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.

  1. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area, Guizhou, and Yunnan Provinces, and Guangxi District, China

    USGS Publications Warehouse

    Peters, S.G.; Jiazhan, H.; Zhiping, L.; Chenggui, J.

    2007-01-01

    Sedimentary rock-hosted Au deposits in the Dian-Qian-Gui area in southwest China are hosted in Paleozoic and early Mesozoic sedimentary rocks along the southwest margin of the Yangtze (South China) Precambrian craton. Most deposits have characteristics similar to Carlin-type Au deposits and are spatially associated, on a regional scale, with deposits of coal, Sb, barite, As, Tl, and Hg. Sedimentary rock-hosted Au deposits are disseminated stratabound and(or) structurally controlled. The deposits have many similar characteristics, particularly mineralogy, geochemistry, host rock, and structural control. Most deposits are associated with structural domes, stratabound breccia bodies, unconformity surfaces or intense brittle-ductile deformation zones, such as the Youjiang fault system. Typical characteristics include impure carbonate rock or calcareous and carbonaceous host rock that contains disseminated pyrite, marcasite, and arsenopyrite-usually with ??m-sized Au, commonly in As-rich rims of pyrite and in disseminations. Late realgar, orpiment, stibnite, and Hg minerals are spatially associated with earlier forming sulfide minerals. Minor base-metal sulfides, such as galena, sphalerite, chalcopyrite, and Pb-Sb-As-sulphosalts also are present. The rocks locally are silicified and altered to sericite-clay (illite). Rocks and(or) stream-sediment geochemical signatures typically include elevated concentrations of As, Sb, Hg, Tl, and Ba. A general lack of igneous rocks in the Dian-Qian-Gui area implies non-pluton-related, ore forming processes. Some deposits contain evidence that sources of the metal may have originated in carbonaceous parts of the sedimentary pile or other sedimentary or volcanic horizons. This genetic process may be associated with formation and mobilization of petroleum and Hg in the region and may also be related to As-, Au-, and Tl-bearing coal horizons. Many deposits also contain textures and features indicative of strong structural control by tectonic domes or shear zones and also suggest syndeformational ore deposition, possibly related to the Youjiang fault system. Several sedimentary rock-hosted Au deposits in the Dian-Qian-Gui area also are of the red earth-type and Au grades have been concentrated and enhanced during episodes of deep weathering. ?? 2006 Elsevier B.V. All rights reserved.

  2. Radium isotope quartet in groundwater as a proxy for identification of aquifer rocks and mechanisms of water-rock interactions: examples from the Negev, Israel

    NASA Astrophysics Data System (ADS)

    Vengosh, A.; Pery, N.; Paytan, A.; Haquin, G.; Elhanani, S.; Pankratov, I.

    2006-05-01

    Many aquifer systems are composed of multiple rock types. Previous attempts to evaluate the specific aquifer rocks that control the groundwater chemistry and possible flow paths within these multiple lithological systems have used major ion chemistry and isotopic tracers (e.g., strontium isotopes). Here we propose an additional isotopic proxy that is based on the distribution of radium isotopes in groundwater. Radium has four radioactive isotopes that are part of the decay chains of uranium-238, thorium-232, and uranium-235. The abundance of radium isotope quartet (226Ra-half life 1600 y; 228Ra-5.6 y; 224Ra-3.6 d; 223Ra-11.4 d) in groundwater reflects the Th/U ratios in the rocks. Investigation of groundwater from the Negev, Israel, enabled us to discriminate between groundwaters flowing in the Lower Cretaceous Nubian Sandstone and the Upper Cretaceous Judea Group carbonate aquifers. Groundwater flowing in the sandstone aquifer has distinguishably high 228Ra/226Ra and 224Ra/223Ra ratios due to the high Th/U ratio in sandstone. In contrast, the predominance of uranium in carbonate rocks results in low 228Ra/226Ra and 224Ra/223Ra ratios in the associated groundwater. We show that the radium activity in groundwater in the two-aquifer systems is correlated with temperature, dissolved oxygen, and salinity. The increase of radium activity is also associated with changes in the isotopic ratios; 228Ra/226Ra ratios increase and decrease in the sandstone and carbonate aquifers, respectively. Given that the dissolution of radium isotopes depends on their decay constants, the use of the four radium isotopes with different decay constants enabled us to distinguish between dissolution (higher abundance of the long-lived isotopes) and recoil (predominance of the short-lived isotopes) processes. In spite of these isotopic fractionations, the radium isotopic discrimination between carbonate and sandstone aquifers is significant.

  3. Risk evaluation of uranium mining: A geochemical inverse modelling approach

    NASA Astrophysics Data System (ADS)

    Rillard, J.; Zuddas, P.; Scislewski, A.

    2011-12-01

    It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a geochemical inverse modelling approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the reactive mineral surface area. The formation of coatings on dissolving mineral surfaces significantly reduces the amount of surface available to react with fluids. Our results show that negatively charged ion complexes, responsible for U transport, decreases when alkalinity and rock buffer capacity is similarly lower. Carbonate ion pairs however, may increase U mobility when radionuclide concentration is high and rock buffer capacity is low. The present work helps to orient future monitoring of this site in Brazil as well as of other sites where uranium is linked to igneous rock formations, without the presence of sulphides. Monitoring SO4 migration (in acidic leaching uranium sites) seems to be an efficient and simple way to track different hazards, especially in tropical conditions, where the succession of dry and wet periods increases the weathering action of the residual H2SO4. Nevertheless, models of risk evaluation should take into account reactive surface areas and neogenic minerals since they determine the U ion complex formation, which in turn, controls uranium mobility in natural systems. Keywords: uranium mining, reactive mineral surface area, uranium complexes, inverse modelling approach, risk evaluation

  4. 10 CFR 960.4-2-3 - Rock characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... thermal, chemical, mechanical, and radiation stresses expected to be induced by repository construction, operation, and closure and by expected interactions among the waste, host rock, ground water, and engineered... repository construction, operation, or closure or by interactions among the waste, host rock, ground water...

  5. 10 CFR 960.4-2-3 - Rock characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... thermal, chemical, mechanical, and radiation stresses expected to be induced by repository construction, operation, and closure and by expected interactions among the waste, host rock, ground water, and engineered... repository construction, operation, or closure or by interactions among the waste, host rock, ground water...

  6. Descriptive models of major uranium deposits in China - Some results of the Workshop on Uranium Resource Assessment sponsored by the International Atomic Energy Agency, Vienna, Austria, in cooperation with China National Nuclear Corporation, Beijing, and the U.S. Geological Survey, Denver, Colorado, and Reston, Virginia

    USGS Publications Warehouse

    Finch, W.I.; Feng, S.; Zuyi, C.; McCammon, R.B.

    1993-01-01

    Four major types of uranium deposits occur in China: granite, volcanic, sandstone, and carbonaceous-siliceous-pelitic rock. These types are major sources of uranium in many parts of the world and account for about 95 percent of Chinese production. Descriptive models for each of these types record the diagnostic regional and local geologic features of the deposits that are important to genetic studies, exploration, and resource assessment. A fifth type of uranium deposit, metasomatite, is also modeled because of its high potential for production. These five types of uranium deposits occur irregularly in five tectonic provinces distributed from the northwest through central to southern China. ?? 1993 Oxford University Press.

  7. Iron disulfide minerals and the genesis of roll-type uranium deposits.

    USGS Publications Warehouse

    Reynolds, R.L.; Goldhaber, M.B.

    1983-01-01

    Studies of the distribution of and textural relationships among pyrite and marcasite in host rocks for a number of roll-type sedimentary U deposits have enabled identification of several generations of FeS2 minerals. A critical factor influencing mineral formation is the complex relationship of pH and the S species that are precursors of FeS2 minerals. The presence or absence of intrinsic organic matter for bacterial sulphate reduction also plays a key role. In deposits lacking such organic matter, the pre-ore is often euhedral pyrite and the ore-stage is marcasite. In contrast, in deposits containing organic matter the pre-ore is pyrite occurring as framboids or as replacements of plant material, and the ore-stage is also pyrite. These contrasting FeS2 assemblages and their respective modes of origin are consistent with previously proposed biogenic and nonbiogenic theories of the genesis of roll-type U deposits. -J.E.S.

  8. Characterization of the Oum Er Rbia (Morocco) high basin karstic water sources by using solid state nuclear track detectors and radon as a natural tracer.

    PubMed

    Khalil, N; Misdaq, M A; Berrazzouk, S; Mania, J

    2002-06-01

    Uranium and thorium contents as well as radon alpha-activities per unit volume were evaluated inside different water samples by using a method based on calculating the CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs) detection efficiencies for the emitted alpha-particles and measuring the resulting track density rates. The validity of the SSNTD technique utilized was checked by analysing uranyl nitrate (UO2(NO3)26H2O) standard solutions. A relationship between water radon concentration and water transmission of different water sources belonging to two regions of the Middle Atlas (Morocco) water reservoir was found. The influence of the water flow rate as well as the permeability and fracture system of the host rocks of the sources studied was investigated.

  9. Pb isotopic constraints on the formation of the Dikulushi Cu-Pb-Zn-Ag mineralisation, Kundelungu Plateau (Democratic Republic of Congo)

    NASA Astrophysics Data System (ADS)

    Haest, Maarten; Schneider, Jens; Cloquet, Christophe; Latruwe, Kris; Vanhaecke, Frank; Muchez, Philippe

    2010-04-01

    Base metal-Ag mineralisation at Dikulushi and in other deposits on the Kundelungu Plateau (Democratic Republic of Congo) developed during two episodes. Subeconomic Cu-Pb-Zn-Fe polysulphide ores were generated during the Lufilian Orogeny (c. 520 Ma ago) in a set of E-W- and NE-SW-oriented faults. Their lead has a relatively unradiogenic and internally inhomogeneous isotopic composition (206Pb/204Pb = 18.07-18.49), most likely generated by mixing of Pb from isotopically heterogeneous clastic sources. These sulphides were remobilised and enriched after the Lufilian Orogeny, along reactivated and newly formed NE-SW-oriented faults into a chalcocite-dominated Cu-Ag mineralisation of high economic interest. The chalcocite samples contain only trace amounts of lead and show mostly radiogenic Pb isotope signatures that fall along a linear trend in the 207Pb/204Pb vs. 206Pb/204Pb diagram (206Pb/204Pb = 18.66-23.65; 207Pb/204Pb = 15.72-16.02). These anomalous characteristics reflect a two-stage evolution involving admixture of both radiogenic lead and uranium during a young fluid event possibly c. 100 Ma ago. The Pb isotope systematics of local host rocks to mineralisation also indicate some comparable young disturbance of their U-Th-Pb systems, related to the same event. They could have provided Pb with sufficiently radiogenic compositions that was added to less radiogenic Pb remobilised from precursor Cu-Pb-Zn-Fe polysulphides, whereas the U most likely originated from external sources. Local metal sources are also suggested by the 208Pb/204Pb-206Pb/204Pb systematics of combined ore and rock lead, which indicate a pronounced and diversified lithological control of the immediate host rocks on the chalcocite-dominated Cu-Ag ores. The Pb isotope systematics of polysulphide mineralisation on the Kundelungu Plateau clearly record a diachronous evolution.

  10. Preliminary report on the White Canyon area, San Juan county, Utah

    USGS Publications Warehouse

    Benson, William E.; Trites, Albert F.; Beroni, Ernest P.; Feeger, John A.

    1952-01-01

    The White Canyon area, in the central part of San Juan County, Utah, consists of approximately two 15-minute quadrangles. Approximately 75 square miles have been mapped by the Geological Survey on a scale of 1 inch equals 1 mile, using a combined aerial photography-plane table method. Structure contours were drawn on top of the Organ Rock member of the Cutler formation. Parts of the Gonway and North Point claims, 1/4 mile east of the Happy Jack mine, were mapped in detail. The principal objectives of the investigations were: (1) to establish ore guides; (2) to select areas favorable for exploration; and (3) to map the general geology and to determine the regional relationships of the uranium deposits. The White Canyon area is comprised of sedimentary rocks of Carboniferous to Jurassic age, more than 2,000 feet thick, having a regional dip of 1° to 2° SW. The nearest igneous rocks are in the Henry Mountains about 7 miles west of the northern part of the area; The Shinarump conglomerate of the late Triassic age, the principal ore horizon in the White Canyon area, consists of lenticular beds of sandstone, conglomeratic sandstone, conglomerate, clay, and siltstone. The Shinarump conglomerate, absent in places, is as much as 75 feet thick. The sandstones locally contain molds of logs and fragments of altered volcanic ash. Some of the logs have been replaced by copper and uranium minerals and iron oxides. The clay and siltstone underlie and are interbedded with the sandstone, and are most common in channels that cut into the underlying Moenkopi formation. The Shinarump conglomerate contains reworked Moenkopi siltstone fragments, clay balls, carbonized wood, and pebbles of quarts, quartzite, and chert. Jointing is prominent in the Western part of the mapped area. The three most prominent joint trends are due east, N. 65°-75° W., and N. 65°-75° E. All joints have vertical dips. The red beds are bleached along some joints, especially those that trend N. 65°-75° W. All uranium ore produced has been from the lower part of the Shinarump conglomerate, where it commonly occurs with copper as disseminations and fracture coatings in sandstone. Uranium and copper minerals also occur in low-grade disseminated deposits in the lower Chinle and in the Moenkopi formation and in veins cutting these formations. Although some uranium deposits occur in Chinarump channels and scours, copper and uranium minerals along fractures suggest that channel control may be secondary. Logs and clay balls apparently have exerted some chemical influences for deposition. The uranium occurs as the oxide in some deposits, and as secondary hydrous sulfates, phosphates, oxides, and silicates in these and several other deposits. Charcoal, iron and manganese oxides, and veinlets of hydrocarbon are abnormally radioactive in most of the deposits. Base-metal sulfides are commonly found inside the oxidized zone. Secondary copper minerals include the hydrous sulfates and carbonate. Gangue minerals include quarts, clay minerals, and manganese oxides, dickite (?), calcite, gypsum, pyrite, and chalcedony (?). Principal wall-rock alteration appears to have been silicification, clay alteration, and bleaching. Most of the shipped ore has contained more than 0.3 percent uranium. The ore also contains copper, commonly in grades lower than 1.0 percent. Criteria believed to be most useful for prospecting for concealed uranium deposits are (1) visible uranium minerals; (2) sulfide minerals; (3) secondary copper minerals; (4) dickite (?); (5) hydrocarbons; and (6) bleaching and alteration of the Moenkopi formation.

  11. Re-evaluation of the petrogenesis of the Proterozoic Jabiluka unconformity-related uranium deposit, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Polito, Paul A.; Kurt Kyser, T.; Thomas, David; Marlatt, Jim; Drever, Garth

    2005-11-01

    The world class Jabiluka unconformity-related uranium deposit in the Alligator Rivers Uranium Field, Australia, contains >163,000 tons of contained U3O8. Mineralization is hosted by shallow-to-steeply dipping basement rocks comprising graphitic units of chlorite-biotite-muscovite schist. These rocks are overlain by flat-lying coarse-grained sandstones belonging to the Kombolgie Subgroup. The deposit was discovered in 1971, but has never been mined. The construction of an 1,150 m decline into the upper eastern sector of the Jabiluka II deposit combined with closely spaced underground drilling in 1998 and 1999 allowed mapping and sampling from underground for the first time. Structural mapping, drill core logging and petrographic studies on polished thin sections established a detailed paragenesis that provided the framework for subsequent electron microprobe and X-ray diffraction, fluid inclusion, and O-H, U-Pb and 40Ar/39Ar isotope analysis. Uranium mineralization is structurally controlled within semi-brittle shears that are sub-conformable to the basement stratigraphy, and breccias that are developed within the hinge zone of fault-related folds adjacent to the shears. Uraninite is intimately associated with chlorite, sericite, hematite ± quartz. Electron microprobe and X-ray diffraction analysis of syn-ore illite and chlorite indicates a mineralization temperature of 200°C. Pre- and syn-ore minerals extracted from the Kombolgie Subgroup overlying the deposit and syn-ore alteration minerals in the Cahill Formation have δ18Ofluid and δ D fluid values of 4.0±3.7 and -27±17‰, respectively. These values are indistinguishable from illite separates extracted from diagenetic aquifers in the Kombolgie Subgroup up to 70 km to the south and east of the deposit and believed to be the source of the uraniferous fluid. New fluid inclusion microthermometry data reveal that the mineralising brine was saline, but not saturated. U-Pb and 207Pb/206Pb ratios of uraninite by laser-ablation ICP-MS suggest that massive uraninite first precipitated at ca. 1,680 Ma, which is coincident with the timing of brine migration out from the Kombolgie Subgroup as indicated by 40Ar/39Ar ages of 1,683±11 Ma from sandstone-hosted illite. Unmineralized breccias cemeted by chlorite, quartz and sericite cross-cut the mineralized breccias and are in turn cut by straight-sided, high-angle veins of drusy quartz, sulphide and dolomite. U-Pb and 207Pb/206Pb ratios combined with fluid inclusion and stable isotope data indicate that these post-ore minerals formed when mixing between two fluids occurred sometime between ca. 1,450 and 550 Ma. Distinct 207Pb/206Pb age populations occur at ca. 1,302±37, 1,191±27 and 802±57 Ma, which respectively correlate with the intrusion of the Maningkorrirr/Mudginberri phonolitic dykes and the Derim Derim Dolerite between 1,370 and 1,316 Ma, the amalgamation of Australia and Laurentia during the Grenville Orogen at ca. 1,140 Ma, and the break-up of Rodinia between 1,000 and 750 Ma.

  12. Uranium in Surface Waters and Sediments Affected by Historical Mining in the Denver West 1:100,000 Quadrangle, Colorado

    USGS Publications Warehouse

    Zielinski, Robert A.; Otton, James K.; Schumann, R. Randall; Wirt, Laurie

    2008-01-01

    Geochemical sampling of 82 stream waters and 87 stream sediments within mountainous areas immediately west of Denver, Colorado, was conducted by the U.S. Geological Survey in October 1994. The primary purpose was to evaluate regionally the effects of geology and past mining on the concentration and distribution of uranium. The study area contains uranium- and thorium-rich bedrock, numerous noneconomic occurrences of uranium minerals, and several uranium deposits of variable size and production history. During the sampling period, local streams had low discharge and were more susceptible to uranium-bearing acid drainage originating from historical mines of base- and precious-metal sulfides. Results indicated that the spatial distribution of Precambrian granites and metamorphic rocks strongly influences the concentration of uranium in stream sediments. Within-stream transport increases the dispersion of uranium- and thorium rich mineral grains derived primarily from granitic source rocks. Dissolved uranium occurs predominantly as uranyl carbonate complexes, and concentrations ranged from less than 1 to 65 micrograms per liter. Most values were less than 5 micrograms per liter, which is less than the current drinking water standard of 30 micrograms per liter and much less than locally applied aquatic-life toxicity standards of several hundred micrograms per liter. In local streams that are affected by uranium-bearing acid mine drainage, dissolved uranium is moderated by dilution and sorptive uptake by stream sediments. Sorbents include mineral alteration products and chemical precipitates of iron- and aluminum-oxyhydroxides, which form where acid drainage enters streams and is neutralized. Suspended uranium is relatively abundant in some stream segments affected by nearby acid drainage, which likely represents mobilization of these chemical precipitates. The 234U/238U activity ratio of acid drainage (0.95-1.0) is distinct from that of local surface waters (more than 1.05), and this distinctive isotopic composition may be preserved in iron-oxyhydroxide precipitates of acid drainage origin. The study area includes a particularly large vein-type uranium deposit (Schwartzwalder mine) with past uranium production. Stream water and sediment collected downstream from the mine's surface operations have locally anomalous concentrations of uranium. Fine-grained sediments downstream from the mine contain rare minute particles (10-20 micrometers) of uraninite, which is unstable in a stream environment and thus probably of recent origin related to mining. Additional rare particles of very fine grained (less than 5 micrometer) barite likely entered the stream as discharge from settling ponds in which barite precipitation was formerly used to scavenge dissolved radium from mine effluent.

  13. 10 CFR 960.4-2-2 - Geochemistry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Considering the likely chemical interactions among radionuclides, the host rock, and the ground water, the... the rock matrix, or sorption of radionuclides; inhibit the formation of particulates, colloids... geochemical conditions and a volumetric flow rate of water in the host rock that would allow less than 0.001...

  14. Chemical aspects of uranium behavior in soils: A review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2011-08-01

    Uranium has varying degrees of oxidation (+4 and +6) and is responsive to changes in the redox potential of the environment. It is deposited at the reduction barrier with the participation of biota and at the sorption barrier under oxidative conditions. Iron (hydr)oxides are the strongest sorbents of uranium. Uranium, being an element of medium biological absorption, can accumulate (relative to thorium) in the humus horizons of some soils. The high content of uranium in uncontaminated soils is most frequently inherited from the parent rocks in the regions of positive U anomalies: in the soils developed on oil shales and in the marginal zone of bogs at the reduction barrier. The development of nuclear and coal-fired power engineering resulted in the environmental contamination with uranium. The immobilization of anthropogenic uranium at artificial geochemical barriers is based on two preconditions: the stimulation of on-site metal-reducing bacteria or the introduction of strong mineral reducers, e.g., Fe at low degrees of oxidation.

  15. Calibrating rates of early Cambrian evolution.

    PubMed

    Bowring, S A; Grotzinger, J P; Isachsen, C E; Knoll, A H; Pelechaty, S M; Kolosov, P

    1993-09-03

    An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began at approximately 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.

  16. Contributions to the geology of uranium and thorium by the United States Geological Survey and Atomic Energy Commission for the United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, Switzerland, 1955

    USGS Publications Warehouse

    Page, Lincoln R.; Stocking, Hobart E.; Smith, Harriet B.

    1956-01-01

    Within the boundaries of the United States abnormal amounts of uranium have been found in rocks of nearly all geologic ages and lithologic types. Distribution of ore is more restricted. On the Colorado Plateau, the Morrison formation of Jurassic age yields 61.4 percent of the ore produced in the United States, and the Chinle conglomerate and Shinarump formation of Triassic age contribute 26.0 and 5.8 percent, respectively. Clastic, carbonaceous, and carbonate sedimentary rocks of Tertiary, Mesozoic, and Paleozoic ages and veins of Tertiary age are the source of the remaining 6.8 percent.

  17. Track of fluid paleocirculation in dolomite host rock at regional scale by the Anisotropy of Magnetic Susceptibility (AMS): An example from Aptian carbonates of La Florida, Northern Spain

    NASA Astrophysics Data System (ADS)

    Essalhi, Mourad; Sizaret, Stanislas; Barbanson, Luc; Chen, Yan; Branquet, Yannick; Panis, Dominique; Camps, Pierre; Rochette, Pierre; Canals, Angels

    2009-01-01

    The present study aims to apply the AMS method (Anisotropy of Magnetic Susceptibility) at a regional scale to track the fluid circulation direction that has produced an iron metasomatism within pre-existing dolomite host rock. The Urgonian formations hosting the Zn-Pb mineralizations in La Florida (Cantabria, northern Spain) have been taken as target for this purpose. Sampling was carried out, in addition to ferroan dolomite host rock enclosing the Zn-Pb mineralizations, in dolomite host rock and limestone to make the comparison possible between magnetic signals from mineralized rocks, where fluid circulation occurred, and their surrounding formations. AMS study was coupled with petrofabric analysis carried out by texture goniometry, Scanning Electron Microscopy (SEM) observations and also Shape Preferred Orientation (SPO) statistics. SEM observations of ferroan dolomite host rock illustrate both bright and dark grey ribbons corresponding respectively to Fe enriched and pure dolomites. SPO statistics applied on four images from ferroan dolomite host rock give a well-defined orientation of ribbons related to the intermediate axis of magnetic susceptibility K2. For AMS data, two magnetic fabrics are observed. The first one is observed in ferroan dolomite host rock and characterized by a prolate ellipsoid of magnetic susceptibility with a vertical magnetic lineation. The magnetic susceptibility carrier is Fe-rich dolomite. These features are probably acquired during metasomatic fluid circulations. In Fe-rich dolomite host rock, ‹ c› axes are vertical. As a rule, (0001) planes (i.e. planes perpendicular to ‹ c› axes) are isotropic with respect to crystallographic properties. So, the magnetic anisotropy measured in this plane should reflect crystallographic modification due to fluid circulation. This is confirmed by the texture observed using the SEM. Consequently, AMS results show a dominant NE-SW elongation interpreted as the global circulation direction and a NW-SE secondary elongation that we have considered as sinuosities of the fluid trajectory. The second type of magnetic fabric is essentially observed in the limestone and characterized by an oblate form of the ellipsoid of magnetic susceptibility, a horizontal magnetic foliation and mixed magnetic susceptibility carriers. It is interpreted as a sedimentary fabric.

  18. Intense alpha-particle emitting crystallites in uranium mill wastes

    USGS Publications Warehouse

    Landa, E.R.; Stieff, L.R.; Germani, M.S.; Tanner, A.B.; Evans, J.R.

    1994-01-01

    Nuclear emulsion microscopy has demonstrated the presence of small, intense ??-particle emitting crystallites in laboratory-produced tailings derived from the sulfuric acid milling of uranium ores. The ??-particle activity is associated with the isotope pair 210Pb 210Po, and the host mineral appears to be PbSO4 occurring as inclusions in gypsum laths. These particles represent potential inhalation hazards at uranium mill tailings disposal areas. ?? 1994.

  19. Selective separation of iron from uranium in quantitative determination of traces of uranium by alpha spectrometry in soil/sediment sample.

    PubMed

    Singhal, R K; Narayanan, Usha; Karpe, Rupali; Kumar, Ajay; Ranade, A; Ramachandran, V

    2009-04-01

    During this work, controlled redox potential methodology was adopted for the complete separation of traces of uranium from the host matrix of mixed hydroxide of Iron. Precipitates of Fe(+2) and Fe(+3) along with other transuranic elements were obtained from acid leached solution of soil by raising the pH to 9 with 14N ammonia solution. The concentration of the uranium observed in the soil samples was 200-600 ppb, whereas in sediment samples, the concentration range was 61-400 ppb.

  20. Hydrogeology of an ancient arid closed basin: implications for tabular sandstone-hosted uranium deposits

    USGS Publications Warehouse

    Sanford, R.F.

    1990-01-01

    Hydrogeologic modeling shows that tabular-type uranium deposits in the Grants uranium region of the San Juan basin, New Mexico, formed in zones of ascending and discharging regional ground-water flow. The association of either lacustrine mudstone or actively subsiding structures and uranium deposits can best be explained by the occurrence of lakes at topographic depressions where ground water having different sources and compositions is likely to converge, mix, and discharge. Ascending and discharging flow also explains the association of uranium deposits with underlying evaporites and suggests a brine interface. The simulations contradict previous suggestions that ground water moved downward in the mudflat. -Author

  1. U-Pb ages of uraniferous opals and implications for the history of beryllium, fluorine, and uranium mineralization at Spor Mountain, Utah

    USGS Publications Warehouse

    Ludwig, K. R.; Lindsey, D.A.; Zielinski, R.A.; Simmons, K.R.

    1980-01-01

    The U-Pb isotope systematics of uraniferous opals from Spor Mountain, Utah, were investigated to determine the suitability of such material for geochronologic purposes, and to estimate the timing of uranium and associated beryllium and fluorine mineralization. The results indicate that uraniferous opals can approximate a closed system for uranium and uranium daughters, so that dating samples as young as ???1 m.y. should be possible. In addition, the expected lack of initial 230Th and 231Pa in opals permits valuable information on the initial 234U/238U to be obtained on suitable samples of ???10 m.y. age. The oldest 207Pb/235U apparent age observed, 20.8 ?? 1 m.y., was that of the opal-fluorite core of a nodule from a beryllium deposit in the Spor Mountain Formation. This age is indistinguishable from that of fission-track and K-Ar ages from the host rhyolite, and links the mineralization to the first episode of alkali rhyolite magmatism and related hydrothermal activity at Spor Mountain. Successively younger ages of 13 m.y. and 8-9 m.y. on concentric outer zones of the same nodule indicate that opal formed either episodically or continuously for over 10 m.y. Several samples of both fracture-filling and massive-nodule opal associated with beryllium deposits gave 207Pb/235U apparent ages of 13-16 m.y., which may reflect a restricted period of mineralization or perhaps an averaging of 21- and <13-m.y. periods of opal growth. Several samples of fracture-filling opal in volcanic rocks as young as 6 m.y. gave 207Pb/235U ages of 3.4-4.8 m.y. These ages may reflect hot-spring activity after the last major eruption of alkali rhyolite. ?? 1980.

  2. Remote sensing and uranium exploration at Lisbon Valley, Utah

    NASA Technical Reports Server (NTRS)

    Conel, J. E.; Niesen, P. L.

    1981-01-01

    As part of the joint NASA-Geosat uranium test case program, aircraft-acquired multispectral scanner data are used to investigate the distribution of bleaching in Windgate sandstone exposed in Lisbon Valley anticline, Utah. It is noted that all of the large ore bodies contained in lower Chinle Triassic age or Cutler Permian age strata in this area lie beneath or closely adjacent to such bleached outcrops. The geographic coincidences reported here are seen as inviting renewed interest in speculation of a causal relation between occurrences of Mississippian-Pennsylvanian oil and gas in this area and of Triassic uranium accumulation and rock bleaching.

  3. SANTA LUCIA WILDERNESS, AND GARCIA MOUNTAIN, BLACK MOUNTAIN, LA PANZA, MACHESNA MOUNTAIN, LOS MACHOS HILLS, BIG ROCKS, AND STANLEY MOUNTAIN ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A.; Kuizon, Lucia

    1984-01-01

    The Santa Lucia Wilderness Area and Garcia Mountain, Black Mountain, La Panza, Machesna Mountain, Los Machos Hills, Big Rocks, and Stanley Mountain Roadless Areas together occupy an area of about 218 sq mi in the Los Padres National Forest, California. On the basis of a mineral-resource evaluation a small area in the Black Mountain Roadless Area has a probable mineral-resource potential for uranium, and a small area in the Stanley Mountain Roadless Area has probable potential for low-grade mercury resources. Although petroleum resources occur in rocks similar to those found in the study area, no potential for petroleum resources was identified in the wilderness or any of the roadless areas. No resource potential for other mineral resources was identified in any of the areas. Detailed geologic mapping and geochemical sampling probably would increase knowledge about distribution and modes of occurrence of uranium and cinnabar in those areas, respectively.

  4. Age of uranium mineralization at the Jabiluka and Ranger deposits, Northern Territory, Australia: New U- Pb isotope evidence.

    USGS Publications Warehouse

    Ludwig, K. R.; Grauch, R.I.; Nutt, C.J.; Nash, J.T.; Frishman, D.; Simmons, K.R.

    1987-01-01

    The Ranger and Jabiluka uranium deposits are the largest in the Alligator Rivers uranium field, which contains at least 20% of the world's low-cost uranium reserves. Ore occurs in early Proterozoic metasediments, below an unconformity with sandstones of the 1.65 b.y.-old Kombolgie Formation. This study has used U-Pb isotope data from a large number of whole-rock drill core samples with a variety of mineral assemblages and textures. Both Ranger and Jabiluka reflect a common, profound isotopic disturbance at about 400 to 600 m.y. This disturbance, which was especially pronounced at Jabiluka, may correspond to the development of basins and associated basalt flows to the W and SW.-from Authors

  5. Occurrence of Uranium and 222Radon in Glacial and Bedrock Aquifers in the Northern United States, 1993-2003

    USGS Publications Warehouse

    Ayotte, Joseph D.; Flanagan, Sarah M.; Morrow, William S.

    2007-01-01

    Water-quality data collected from 1,426 wells during 1993-2003 as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program were evaluated to characterize the water quality in glacial and bedrock aquifers of the northern United States. One of the goals of the NAWQA program is to synthesize data from individual studies across the United States to gain regional- and national-scale information about the behavior of contaminants. This study focused on the regional occurrence and distribution of uranium and 222radon in ground water in the glacial aquifer system of the United States as well as in the Cambrian-Ordovician and the New York and New England crystalline aquifer systems that underlie the glacial aquifer system. The occurrence of uranium and 222radon in ground water has long been a concern throughout the United States. In the glacial aquifers, as well as the Cambrian-Ordovician and the New York and New England crystalline aquifer systems of the United States, concentrations of uranium and 222radon were highly variable. High concentrations of uranium and 222radon affect ground water used for drinking water and for agriculture. A combination of information or data on (1) national-scale ground-water regions, (2) regional-scale glacial depositional models, (3) regional-scale geology, and (4) national-scale terrestrial gamma-ray emissions were used to confirm and(or) refine the regions used in the analysis of the water-chemistry data. Significant differences in the occurrence of uranium and 222radon, based primarily on geologic information were observed and used in this report. In general, uranium was highest in the Columbia Plateau glacial, West-Central glacial, and the New York and New England crystalline aquifer groups (75th percentile concentrations of 22.3, 7.7, and 2.9 micrograms per liter (ug/L), respectively). In the Columbia Plateau glacial and the West-Central glacial aquifer groups, more than 10 percent of wells sampled had concentrations of uranium that exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level of 30 ug/L; in the New York and New England crystalline aquifer group, 4 percent exceeded 30 ug/L. Ground-water samples with high concentrations of uranium were commonly linked to geologic sources rich in uranium. In eight of nine aquifer groups defined for this study, concentrations of uranium correlated significantly with concentrations of sulfate in ground water (Spearman's rho = 0.20 to 0.56; p < 0.05). In the Columbia Plateau, glacial aquifers were derived in part from basaltic lava flows, some felsic volcanic rocks, and some paleo-lake bed materials that may be rich in uranium. In the Columbia Plateau and West-Central glacial aquifer groups, uranium correlated with total dissolved solids, bicarbonate, boron, lithium, selenium, and strontium. In the West-Central glacial aquifer group, rocks such as Cretaceous marine shales, which are abundant in uranium, probably contribute to the high concentrations in ground water; in the southern part of this group, which extends into Nebraska, the glacial or glacial-related sediment may be interbedded with uranium-rich materials that originated to the north and west and in the Rocky Mountains. In New England, crystalline bedrock that is granitic, such as two-mica granites, as well as other high-grade metamorphic rocks, has abundant uranium that is soluble in the predominantly oxic to sub-oxic geochemical conditions. This appears to contribute to high uranium concentrations in ground water. The highest 222radon concentrations were present in samples from wells completed in the New York and New England crystalline aquifer group; the median value (2,122 picocurries per liter (pCi/L)) was about 10 times the median values of all other aquifer groups. More than 25 percent of the samples from the New York and New England crystalline aquifer group wells had 222radon concentrations that exceeded the USEPA Alternative

  6. Critical elements in sediment-hosted deposits (clastic-dominated Zn-Pb-Ag, Mississippi Valley-type Zn-Pb, sedimentary rock-hosted Stratiform Cu, and carbonate-hosted Polymetallic Deposits): A review: Chapter 12

    USGS Publications Warehouse

    Marsh, Erin; Hitzman, Murray W.; Leach, David L.

    2016-01-01

    Some sediment-hosted base metal deposits, specifically the clastic-dominated (CD) Zn-Pb deposits, carbonate-hosted Mississippi Valley-type (MVT) deposits, sedimentary-rock hosted stratiform copper deposits, and carbonate-hosted polymetallic (“Kipushi type”) deposits, are or have been important sources of critical elements including Co, Ga, Ge, and Re. The generally poor data concerning trace element concentrations in these types of sediment-hosted ores suggest that there may be economically important concentrations of critical elements yet to be recognized.

  7. Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska

    USGS Publications Warehouse

    Wedow, Helmuth; Tolbert, Gene Edward

    1952-01-01

    Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.

  8. Development of experimental approach to examine U occurrence continuity over the extended area reconnoitory boreholes: Lostoin Block, West Khasi Hills district, Meghalaya (India).

    PubMed

    Kukreti, B M; Kumar, Pramod; Sharma, G K

    2015-10-01

    Exploratory drilling was undertaken in the Lostoin block, West Khasi Hills district of Meghalaya based on the geological extension to the major uranium deposit in the basin. Gamma ray logging of drilled boreholes shows considerable subsurface mineralization in the block. However, environmental and exploration related challenges such as climatic, logistic, limited core drilling and poor core recovery etc. in the block severely restricted the study of uranium exploration related index parameters for the block with a high degree confidence. The present study examines these exploration related challenges and develops an integrated approach using representative sampling of reconnoitory boreholes in the block. Experimental findings validate a similar geochemically coherent nature of radio elements (K, Ra and Th) in the Lostoin block uranium hosting environment with respect to the known block of Mahadek basin and uranium enrichment is confirmed by the lower U to Th correlation index (0.268) of hosting environment. A mineralized zone investigation in the block shows parent (refers to the actual parent uranium concentration at a location and not a secondary concentration such as the daughter elements which produce the signal from a total gamma ray measurement) favoring uranium mineralization. The confidence parameters generated under the present study have implications for the assessment of the inferred category of uranium ore in the block and setting up a road map for the systematic exploration of large uranium potential occurring over extended areas in the basin amid prevailing environmental and exploratory impediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. 76 FR 29240 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ...-283-7681. EIS No. 20110150, Final EIS, DOE, ID, ADOPTION--Areva Eagle Rock Enrichment Facility... Uranium Enrichment Facility, Construction, Operation, and Decommission, License Issuance, Piketon, OH...

  10. The Alaska Mineral Resource Assessment Program; background information to accompany geologic and mineral-resource maps of the Cordova and Middleton Island quadrangles, southern Alaska

    USGS Publications Warehouse

    Winkler, Gary R.; Plafker, George; Goldfarb, R.J.; Case, J.E.

    1992-01-01

    report summarizes recent results of integrated geological, geochemical, and geophysical field and laboratory studies conducted by the U.S. Geological Survey in the Cordova and Middleton Island 1?x3 ? quadrangles of coastal southern Alaska. Published open-file reports and maps accompanied by descriptive and interpretative texts, tables, diagrams, and pertinent references provide background information for a mineral-resource assessment of the two quadrangles. Mines in the Cordova and Middleton Island quadrangles produced copper and byproduct gold and silver in the first three decades of the 20th century. The quadrangles may contain potentially significant undiscovered resources of precious and base metals (gold, silver, copper, zinc, and lead) in veins and massive sulfide deposits hosted by Cretaceous and Paleogene sedimentary and volcanic rocks. Resources of manganese also may be present in the Paleogene rocks; uranium resources may be present in Eocene granitic rocks; and placer gold may be present in beach sands near the mouth of the Copper River, in alluvial sands within the canyons of the Copper River, and in smaller alluvial deposits underlain by rocks of the Valdez Group. Significant coal resources are present in the Bering River area, but difficult access and structural complexities have discouraged development. Investigation of numerous oil and gas seeps near Katalla in the eastern part of the area led to the discovery of a small, shallow field from which oil was produced between 1902 and 1933. The field has been inactive since, and subsequent exploration and drilling onshore near Katalla in the 1960's and offshore near Middleton Island on the outer continental shelf in the 1970's and 1980's was not successful.

  11. New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)

    NASA Astrophysics Data System (ADS)

    de Oliveira Chaves, Alexandre

    2013-09-01

    New evidence supported by petrography (including mineral chemistry), lithogeochemistry, U-Pb geochronology by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), and physicochemical study of fluid and melt inclusions by LA-ICP-MS and microthermometry, point to an orogenic setting of Lagoa Real (Bahia-Brazil) involving uraniferous mineralization. Unlike the previous models in which uraniferous albitites represent Na-metasomatised 1.75 Ga anorogenic granitic rocks, it is understood here that they correspond to metamorphosed sodium-rich and quartz-free 1.9 Ga late-orogenic syenitic rocks (Na-metasyenites). These syenitic rocks are rich not only in albite, but also in U-rich titanite (source of uranium). The interpretation of geochemical data points to a petrogenetic connection between alkali-diorite (local amphibolite protolith) and sodic syenite by fractional crystallization through a transalkaline series. This magmatic differentiation occurred either before or during shear processes, which in turn led to albitite and amphibolite formation. The metamorphic reactions, which include intense recrystallization of magmatic minerals, led uraninite to precipitate at 1.87 Ga under Oxidation/Reduction control. A second population of uraninites was also generated by the reactivation of shear zones during the 0.6 Ga Brasiliano Orogeny. The geotectonic implications include the importance of the Orosirian event in the Paramirim Block during paleoproterozoic Săo Francisco Craton edification and the influence of the Brasiliano event in the Paramirim Block during the West-Gondwana assembly processes. The regional microcline-gneiss, whose protolith is a 2.0 Ga syn-collisional potassic granite, represents the albitite host rock. The microcilne-gneiss has no petrogenetic association to the syenite (albitite protolith) in magmatic evolutionary terms.

  12. Identification of Uranium Minerals in Natural U-Bearing Rocks Using Infrared Reflectance Spectroscopy.

    PubMed

    Beiswenger, Toya N; Gallagher, Neal B; Myers, Tanya L; Szecsody, James E; Tonkyn, Russell G; Su, Yin-Fong; Sweet, Lucas E; Lewallen, Tricia A; Johnson, Timothy J

    2018-02-01

    The identification of minerals, including uranium-bearing species, is often a labor-intensive process using X-ray diffraction (XRD), fluorescence, or other solid-phase or wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field applications, handheld infrared (IR) reflectance spectrometers can now also be used in industrial or field environments, with rapid, nondestructive identification possible via analysis of the solid's reflectance spectrum providing information not found in other techniques. In this paper, we report the use of laboratory methods that measure the IR hemispherical reflectance of solids using an integrating sphere and have applied it to the identification of mineral mixtures (i.e., rocks), with widely varying percentages of uranium mineral content. We then apply classical least squares (CLS) and multivariate curve resolution (MCR) methods to better discriminate the minerals (along with two pure uranium chemicals U 3 O 8 and UO 2 ) against many common natural and anthropogenic background materials (e.g., silica sand, asphalt, calcite, K-feldspar) with good success. Ground truth as to mineral content was attained primarily by XRD. Identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g., boltwoodite, tyuyamunite, etc.) or non-uranium minerals. The characteristic IR bands generate unique (or class-specific) bands, typically arising from similar chemical moieties or functional groups in the minerals: uranyls, phosphates, silicates, etc. In some cases, the chemical groups that provide spectral discrimination in the longwave IR reflectance by generating upward-going (reststrahlen) bands can provide discrimination in the midwave and shortwave IR via downward-going absorption features, i.e., weaker overtone or combination bands arising from the same chemical moieties.

  13. Aerial gamma ray and magnetic survey: Powder River II Project, Gillette Quadrangle, Wyoming. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly definemore » the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features.« less

  14. Phanerozoic Rifting Phases And Mineral Deposits

    NASA Astrophysics Data System (ADS)

    Hassaan, Mahmoud

    2016-04-01

    In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely connected with NW,WNW and N-S faults genetically related to volcano-hydrothermal activity associated the Red Sea rifting. At Sherm EL-Sheikh hydrothermal manganese deposit occurs in Oligocene clastics within fault zone. Four iron-manganese-barite mineralization in Esh-Elmellaha plateau are controlled by faults trending NW,NE and nearly E-W intersecting Miocene carbonate rocks. Barite exists disseminated in the ores and as a vein in NW fault. In Shalatee - Halaib district 24 manganese deposits and barite veins with sulphide patches occur within Miocene carbonates distributed along two NW fault planes,trending 240°and 310° and occur in granite and basalt . Uranium -lead-zinc sulfide mineralization occur in Late Proterozoic granite, Late Cretaceous sandstones, and chiefly in Miocene clastic-carbonate-evaporate rocks. The occurrences of uranium- lead-zinc and iron-manganese-barite mineralization have the characteristic features of hypogene cavity filling and replacement deposits correlated with Miocene- Recent Aden volcanic rocks rifting. In western Saudi Arabia barite-lead-zinc mineralization occurs at Lat. 25° 45' and 25° 50'N hosted by Tertiary sediments in limestone nearby basaltic flows and NE-SW fault system. The mineralized hot brines in the Red Sea deeps considered by the author a part of this province. The author considers the constant rifting phases of Pangea and then progressive fragmentation of Western Gondwana during the Late Carboniferous-Lias, Late Jurassic-Early Aptian, Late Aptian - Albian and Late Eocene-Early Miocene and Oligocene-Miocene, responsible for formation of the mineral deposits constituting the M provinces. During these events, rifting, magmatism and hydrothermal activities took place in different peri-continental margins.

  15. Lead isotopes and trace metals in dust at Yucca Mountain

    USGS Publications Warehouse

    Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.

    2008-01-01

    Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.

  16. Sm-Nd and Rb-Sr isotopic systematics of the Pea Ridge Fe-P deposit and related rocks, southeast Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marikos, M.A.; Barton, M.D.

    1993-03-01

    Pea ridge is a discordant Middle Proterozoic Fe-P deposit hosted in rhyolite tuffs and flows of the 1.4--1.5 Ga St. Francois terrane. Host rocks and the deposit are cut by basalt and aplite/pegmatite dikes. The deposit overlies a blind pluton which is partially surrounded by a trachytic ring complex. In the deposit, which is mined for Fe, early Qtz+Amph+Mag+Ap rock is cut by Mag+Ap+Qtz rock. Subsequently, portions of the deposit and host rocks were brecciated, oxidized and silicified to produce a complex suite of rocks enriched in Hem+Qtz+Ksp+Mu. Late breccia pipes/dikes cut the complex and were mineralized with Bar+Ksp+Flu+Chl+Cc+REE-phosphates. Sm/Ndmore » and Rb/Sr isotopic systematics have been studied to: (1) constrain source(s) of igneous rocks and deposit components, (2) refine ages of magmatism, mineralization, and later hydrothermal activity, (3) begin regional comparison of isotopic systematics in SE Missouri Fe deposits, and (4) complement ongoing Missouri DGLS/USGS studies. Fourteen combined Sm-Nd and Rb-Sr analyses were done on materials including two host rhyolites, two nearby trachytes, two gneiss samples representing plausible basement, two intramineral dikes, and six samples of mineralization.« less

  17. Results of exploration at the Old Leyden coal mine, Jefferson County, Colorado

    USGS Publications Warehouse

    Gude, A.J.; McKeown, F.A.

    1953-01-01

    Six diamond core holes totaling 2, 201 feet were drilled by the. U, S. Bureau of Mines under contract to the U. S. Atomic Energy Commission at the Old Leyden coal mine, Jefferson County, Colo. The holes were spotted on the basis of geologic mapping by the U. S. Geological survey and were drilled to explore the lateral and downward extent of a uranium-bearing coal and the associated carnotite deposits in the adjacent sandstone° The data obtained from the diamond-core holes helped to explain the geology and structural control of the deposit. The uranium is most abundant in a coal bed that in places has been brecciated by shearing. and then altered to a hard, dense, and silicified rock. The uraniferous coal is in the nearly vertical beds of the Laramie formation of Upper Cretaceous age. Small lenticular bodies of uraniferous material, 50 feet long, 25 to 30 feet wide, and 2 to 4 feet thick, occur at intervals in the coal and silicified coal over a strike length of about 800 feet. These bodies contain 0.10 to 0.50 percent uranium. Data obtained from the drilling indicate a discontinuous radioactive zone between these higher-grade bodies; assays of samples from the cores range from 0.001 to 0.10 percent uranium. All drill holes were probed by Survey and A. E. C. logging equipment and showed anomalies where the core assayed more than 0.005 percent uranium. Material of ore grade--0.10 percent uranium--was found in one core; the rock in the other five holes was of lower grade. The presence of the radioactive zone in all holes suggests, however, that uranium is distributed irregularly in a southerly plunging deposit which is exposed in the adit, on the outcrop, and in other diamond-drill holes that were put down by the lessee.

  18. Paleontological analysis of a lacustrine carbonaceous uranium deposit at the Anderson mine, Date Creek basin, west-central Arizona (U.S.A.)

    USGS Publications Warehouse

    Otton, J.K.; Bradbury, J.P.; Forester, R.M.; Hanley, J.H.

    1990-01-01

    The Tertiary sedimentary sequence of the Date Creek basin area of Arizona is composed principally of intertonguing alluvial-fan and lacustrine deposits. The lacustrine rocks contain large intermediate- to, locally, high-grade uranium deposits that form one of the largest uranium resources in the United States (an estimated 670,000 tons of U3O8 at an average grade of 0.023% is indicated by drilling to date). At the Anderson mine, about 50,000 tons of U3O8 occurs in lacustrine carbonaceous siltstones and mudstones (using a cutoff grade of 0.01%). The Anderson mine constitutes a new class of ore deposit, a lacustrine carbonaceous uranium deposit. Floral and faunal remains at the Anderson mine played a critical role in creating and documenting conditions necessary for uranium mineralization. Organic-rich, uraniferous rocks at the Anderson mine contain plant remains and ostracodes having remarkably detailed preservation of internal features because of infilling by opaline silica. This preservation suggests that the alkaline lake waters in the mine area contained high concentrations of dissolved silica and that silicification occurred rapidly, before compaction or cementation of the enclosing sediment. Uranium coprecipitated with the silica. Thinly laminated, dark-colored, siliceous beds contain centric diatoms preserved with carbonaceous material suggesting that lake waters at the mine were locally deep and anoxic. These alkaline, silica-charged waters and a stagnant, anoxic environment in parts of the lake were necessary conditions for the precipitation of large amounts of uranium in the lake-bottom sediments. Sediments at the Anderson mine contain plant remains and pollen that were derived from diverse vegetative zones suggesting about 1500 m of relief in the area at the time of deposition. The pollen suggests that the valley floor was semiarid and subtropical, whereas nearby mountains supported temperate deciduous forests. ?? 1990.

  19. Uranium minerals in Oligocene gypsum near Chadron, Dawes County, Nebraska

    USGS Publications Warehouse

    Dunham, R.J.

    1955-01-01

    Carnotite, sabugalite [HAI(UO2)4(PO4)4 • 16H2O] and autunite occur in the basal 25 feet of a 270-foot sequence of nonmarine bedded gypsum and gypsiferous clay in the Brule formation of Oligocene age about 12 miles northeast of Chadron in northeastern Dawes County, Nebraska. Uranium minerals are visible at only two localities and are associated with carbonaceous matter. Elsewhere the basal 25 feet of the gypsum sequence is interbedded with carbonate rocks and is weakly but persistently uraniferous. Uranium probably was emplaced from above by uranyl solutions rich in sulfate.

  20. Geology of uranium in the Chadron area, Nebraska and South Dakota

    USGS Publications Warehouse

    Dunham, Robert Jacob

    1961-01-01

    The Chadron area covers 375 square miles about 25 miles southeast of the Black Hills. Recurrent mild tectonic activity and erosion on the Chadron arch, a compound anticlinal uplift of regional extent, exposed 1900 feet of Upper Cretaceous rocks, mostly marine shale containing pyrite and organic matter, and 600 feet of Oligocene and Miocene rocks, mostly terrestrial fine-grained sediment containing volcanic ash. Each Cretaceous formation truncated by the sub-Oligocene unconformity is stained yellow and red, leached, kaolinized, and otherwise altered to depths as great as 55 feet. The composition and profile of the altered material indicate lateritic soil; indirect evidence indicates Eocene(?) age. In a belt through the central part of the area, the Brule formation of Oligocene age is a sequence of bedded gypsum, clay, dolomite, and limestone more than 300 feet thick. Uranium in Cretaceous shale in 58 samples averages 0.002 percent, ten times the average for the earths crust. Association with pyrite and organic matter indicates low valency. The uranium probably is syngenetic or nearly so. Uranium in Eocene(?) soil in 43 samples averages 0.054 percent, ranging up to 1.12 percent. The upper part of the soil is depleted in uranium; enriched masses in the basal part of the soil consist of remnants of bedrock shale and are restricted to the highest reaches of the ancient oxidation-reduction interface. The uranium is probably in the from of a low-valent mineral, perhaps uraninite. Modern weathering of Cretaceous shale is capable of releasing as much as 0.780 ppm uranium to water. Eocene(?) weathering probably caused enrichment of the ancient soil through 1) leaching of Cretaceous shale, 2) downward migration of uranyl complex ions, and 3) reduction of hydrogen sulfide at the water table. Uranium minerals occur in the basal 25 feet of the gypsum facies of the Brule formation at the two localities where the gypsum is carbonaceous; 16 samples average 0.066 percent uranium and range up to 0.43 percent. Elsewhere uranium in dolomite and limestone in the basal 25 feet of the gypsum facies in 10 samples averages 0.007 percent, ranging up to 0.12 percent. Localization of the uranium at the base of the gypsum facies suggests downward moving waters; indirect evidence that the water from which the gypsum was deposited was highly alkaline suggests that the uranium was leached from volcanic ash in Oligocene time.

  1. Geology, Geochemistry and Geophysics of Sedimentary Rock-Hosted Au Deposits in P.R. China

    USGS Publications Warehouse

    Peters, Stephen G.

    2002-01-01

    This is the second report concerning results of a joint project between the U.S. Geological Survey and the Tianjin Geological Academy to study sedimentary rock-hosted Au deposits in P.R. China. Since the 1980s, Chinese geologists have devoted a large-scale exploration and research effort to the deposits. As a result, there are more than 20 million oz of proven Au reserves in sedimentary rock-hosted Au deposits in P.R. China. Additional estimated and inferred resources are present in over 160 deposits and occurrences, which are undergoing exploration. This makes China second to Nevada in contained ounces of Au in Carlin-type deposits. It is likely that many of the Carlin-type Au ore districts in China, when fully developed, could have resource potential comparable to the multi-1,000-tonne Au resource in northern Nevada. The six chapters of this report describe sedimentary rock-hosted Au deposits that were visited during the project. Chapters 1 and 2 provide an overview of sedimentary rock-hosted Au deposits and Carlin-type Au deposits and also provide a working classification for the sedimentary rock-hosted Au deposits. Chapters 3, 4, and 5 provide descriptions that were compiled from the literature in China in three main areas: the Dian-Qian-Gui, the Qinling fold belt, and Middle-Lower Yangtze River areas. Chapter 6 contains a weights-of-evidence (WofE), GIS-based mineral assessment of sedimentary rock-hosted Au deposits in the Qinling fold belt and Dian-Qian-Gui areas. Appendices contain scanned aeromagnetic (Appendix I) and gravity (Appendix II) geophysical maps of south and central China. Data tables of the deposits (Appendix III) also are available in the first report as an interactive database at http://geopubs.wr.usgs.gov/open-file/of98-466/. Geochemical analysis of ore samples from the deposits visited are contained in Appendix IV.

  2. Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu area, southwestern China

    NASA Astrophysics Data System (ADS)

    Xu, Chunxia; Yin, Runsheng; Peng, Jiantang; Hurley, James P.; Lepak, Ryan F.; Gao, Jianfeng; Feng, Xinbin; Hu, Ruizhong; Bi, Xianwu

    2018-03-01

    The Lanuoma and Cuona sediment-hosted Pb-Zn deposits hosted by Upper Triassic limestone and sandstone, respectively, are located in the Changdu area, SW China. Mercury concentrations and Hg isotopic compositions from sulfide minerals and potential source rocks (e.g., the host sedimentary rocks and the metamorphic basement) were investigated to constrain metal sources and mineralization processes. In both deposits, sulfide minerals have higher mercury (Hg) concentrations (0.35 to 1185 ppm) than the metamorphic basement rocks (0.05 to 0.15 ppm) and sedimentary rocks (0.02 to 0.08 ppm). Large variations of mass-dependent fractionation (3.3‰ in δ202Hg) and mass-independent fractionation (0.3‰ in Δ199Hg) of Hg isotopes were observed. Sulfide minerals have Hg isotope signatures that are similar to the hydrothermal altered rocks around the deposit, and similar to the metamorphic basement, but different from barren sedimentary rocks. The variation of Δ199Hg suggests that Hg in sulfides was mainly derived from the underlying metamorphic basement. Mercury isotopes could be a geochemical tracer in understanding metal sources in hydrothermal ore deposits.

  3. Proceedings of the scientific visit on crystalline rock repository development.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariner, Paul E.; Hardin, Ernest L.; Miksova, Jitka

    2013-02-01

    A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations.more » Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.« less

  4. MINERALOGY, PETROGRAPHY, AND RADIOACTIVITY OF REPRESENTATIVE SAMPLES OF CHATTANOOGA SHALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, T.F.; Strahl, E.O.

    1957-01-01

    Qualitative and quantitative mineralogical studies of the Chattanooga Shale are in progress. Problems of separation and analysis of mineral and organic components are difficult because the rock is fine-grained. However, the applicaiion of light and electron microscopy, x-ray diffraction, nuclear-track study, and other methods has provided data of interest. Megascopically, the shalc is a massive chocolate-brown sediment which displays faint indications of lamination. Some pyrite lenses, nodules, and crystals and a few mica flakes are large enough to be seen with a hand lens. In thin section the rock is seen to consist of grains of quartz and feldspar inmore » a matrix of yellow to red--brown organic material, which incorporates shreds of mica and probably clay particles and is dotted by small clusters of pyrite. Larger organic fragments with associated pyrite are common and take various forms. Individual mineral particles range from pyrite cubes less than 0.15 micron on a side to quartz and feldspar grains as large as 0.10 mm. X-ray studies show the clay minerals to be illite, kaolinite, and chlorite in decreasing order of abundance. Tourmaline, zircon, and apatite are the characteristic heavy minerals of the sediment. Quantitative studies, accomplished by a combination of chemical and mineralogical methods, have shown the composition of a batch sample of this rock to be approxiinately: 22% quartz, 9% feldspar, 31% illite and kaolinite, 22% organic matter, 11% pyrite and marcasite, 2% chlorite, 2% iron oxides, and l% tourmaline, zircon, and apatite. Alphatrack studies of cniulsion-covered thin sections indicate that no uranium mineral is present. Approximately 70% of the uranium atoms is randomly distributed throughout the finegrained matrix of the rock, whereas another 25% is concentrated in organic-pyrite-clay complexes such as pyrite nodules and discrete organic bodies. In unweathered samples there is no relationship between uranium distribution and textural fcatures such as bedding. The data indicate that the uranium was precipitated from sea water under reducing conditions and has not been redistributed following compaction of the sediment. (auth)« less

  5. Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments Near Church Rock, NM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    deLemos, J.L.; Bostick, B.C.; Quicksall, A.N.

    2009-05-14

    We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to bemore » highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10-50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts.« less

  6. Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments near Church Rock, NM

    PubMed Central

    DELEMOS, JAMIE L.; BOSTICK, BENJAMIN C.; QUICKSALL, ANDREW N.; LANDIS, JOSHUA D.; GEORGE, CHRISTINE C.; SLAGOWSKI, NAOMI L.; ROCK, TOMMY; BRUGGE, DOUG; LEWIS, JOHNNYE; DURANT, JOHN L.

    2008-01-01

    We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10–50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts. PMID:18589950

  7. 15 CFR 782.3 - Compliance review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... recordkeeping requirements set forth herein. Information requested may relate to nuclear fuel cycle research and... activities, or uranium hard-rock mining activities as described in part 783 of the APR. Any person or...

  8. 15 CFR 782.3 - Compliance review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... recordkeeping requirements set forth herein. Information requested may relate to nuclear fuel cycle research and... activities, or uranium hard-rock mining activities as described in part 783 of the APR. Any person or...

  9. 15 CFR 782.3 - Compliance review.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... recordkeeping requirements set forth herein. Information requested may relate to nuclear fuel cycle research and... activities, or uranium hard-rock mining activities as described in part 783 of the APR. Any person or...

  10. 15 CFR 782.3 - Compliance review.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... recordkeeping requirements set forth herein. Information requested may relate to nuclear fuel cycle research and... activities, or uranium hard-rock mining activities as described in part 783 of the APR. Any person or...

  11. 15 CFR 782.3 - Compliance review.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... recordkeeping requirements set forth herein. Information requested may relate to nuclear fuel cycle research and... activities, or uranium hard-rock mining activities as described in part 783 of the APR. Any person or...

  12. 2.9-1.9 Ga paleoalterations of Archean granitic basement of the Franceville basin (Gabon)

    NASA Astrophysics Data System (ADS)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; El Albani, Abderrazak; Meunier, Alain; Boulvais, Philippe; Gauthier-Lafaye, François; Paquette, Jean-Louis; Martin, Hervé; Cuney, Michel

    2014-09-01

    The Archean granitoids in the Kiéné area, Gabon, are overlained by the Paleoproterozoic sediments of the Franceville basin (2.1 Ga). The basin is known for its high-grade uranium deposits among which some have been forming natural nuclear fission reactors. Most of the studies were dedicated to the FA-FB Paleoproterozoic sediments hosting these uranium deposits. Little is known on the Archean basement itself and specifically on the hydrous alteration events it experienced before and after the sediment deposition. The present work is focused on their petrographical, mineralogical and geochemical characterization. Dating the successive alteration events has been attempted on altered monazite crystals. Rocks in different alteration states have been sampled from eight drill cores crosscutting the Archean - Paleoproterozoic unconformity. The Archean granitoids observed in the deepest levels exhibit typical petrographical features of a propylitic alteration while they are intensely illitized up to the unconformity. The propylitic alteration is mainly pervasive but the original texture of the granitoïds is conserved in spite of the formation of new minerals: Mg-chlorite, allanite and epidote forming a typical paragenesis. The illitic alteration is much more invasive near the unconformity. The illitization process leads to the replacement of feldspars and the corrosion of quartz crysals by an illitic matrix while the ferromagnesian minerals are pseudomorphosed by a Fe-chlorite + phengite + hematite assemblage. The final fluid-rock interaction step is marked by fissural deposits of calcite and anhydrite. The δ13C isotopic data show that the fissural carbonates precipitated from diagenetic fluids enriched carbon products deriving from the maturation of organic matter. The U-Pb isotopic analyzes performed on monazite crystals have dated three distinct events: 3.0-2.9 Ga (magmatic), 2.6 Ga (propylitic alteration) and 1.9 Ga (diagenetic illitization). The calculation of geochemical mass balances suggests that the water-rock ratio during the propylitic alteration event was weak. On the contrary, it was much higher during the overprinted illitization which is characterized by an intense leaching of Na, Ca, Mg, Sr, REE and an enrichment in K, Rb,Cs. Neither the petrographic features nor the geochemical data militate for an Archean weathering event (paleosol). In the present case, diagenetic fluids have percolated from the unconformity into the basement where they overprinted the illitization processes upon the previously propylitized rocks. These fluids were probably oxidant as they are also responsible of the U mobilization which led to the formation of the ore deposits close to the FA-FB interface.

  13. Reconnaissance for uraniferous rocks in northwestern Colorado, southwestern Wyoming, and northeastern Utah

    USGS Publications Warehouse

    Beroni, E.P.; McKeown, F.A.

    1952-01-01

    Previous discoveries and studies of radioactive lignites of Tertiary age in North Dakota, South Dakota, Montana, and Wyoming led the Geological Survey in 1950 to do reconnaissance in the Green River and Uinta Basin of Wyoming and Utah, where similar lignites were believed to be present. Because of the common association of uranium with copper deposits and the presence of such deposits in the Uinta Basin, several areas containing copper-uranium minerals were also examined. No deposits commercially exploitable under present conditions were found. Samples of coal from the Bear River formation at Sage, Wyo., assayed 0.004 to 0.013 percent uranium in the ash; in the old Uteland copper mine in Uinta County, Utah, 0.007 to 0.017 percent uranium; in a freshwater limestone, Duchesne County, Utah, as much as 0.019 percent uranium; and in the Mesaverde formation at the Snow and Bonniebell claims near Jensen, Uintah County, Utah, 0.003 to 0.090 percent uranium. Maps were made and samples were taken at the Skull Creek carnotite deposits in Moffat County, Colo. (0.006 to 0.16 percent uranium); at the Fair-U claims in Routt County, Colo. (0.002 to 0.040 percent uranium); and at the Lucky Strike claims near Kremmling in Grand County, Colo. (0.006 to 0.018 percent uranium).

  14. RADIOACTIVITY DOSAGE OF ORNAMENTAL GRANITIC ROCKS BASED ON CHEMICAL, MINERALOGICAL AND LITHOLOGICAL DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas, H.T.; Nalini, H.A. Jr.; Mendes, J.C.

    2004-10-03

    One hundred samples of granitic rock were collected from granite traders in Belo Horizonte. Autoradiography, optical microscopy, diffractometry, and chemical analysis (X-ray spectrometry, X-ray fluorescence, neutron activation, gravimetry and electron probe microanalysis) were used to determine the mineral assemblages and lithotypes. Autoradiographic results for several samples showed the presence of monazite, allanite and zircon. Chemical analysis revealed concentrations of uranium of {le} 30ppm, and thorium {le} 130ppm. Higher concentrations generally correlated with high concentrations of light rare earths in silica-rich rocks of granitic composition. Calculations were made of radioactive doses for floor tiles in a standard room for samples withmore » total concentration of uranium and thorium greater than 60ppm. On the basis of calculations of {sup 232}Th, {sup 40}K and {sup 226}Ra from Th, K and U analysis, the doses calculated were between 0.11 and 0.34 mSv/year, which are much lower than the acceptable international exposure standard of 1.0 mSv/year.« less

  15. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown andmore » waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).« less

  16. Contrasting diagenetic histories of concretions vs. host rocks, Lion Mountain Member, Riley formation (upper Cambrian), Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, E.F.

    1988-02-01

    White, elliptical, calcite-cemented concretion nuclei up to 1 m long contrast markedly in color, composition, and diagenetic history from more glauconite-rich concretion rinds and from dark-green glaucarenite host rocks. Concretion nuclei are loosely packed deposits of trilobite carapaces and minor quartz and glauconite that have intergranular volumes of 58%. The nuclei are shell-lag deposits that were cemented by calcite at the sea floor or after burial of a few meters. Concretion rinds, composed of subequal amounts of quartz and compactionally deformed glauconite, have an intergranular volume of only 32% and minor quartz overgrowths that preceded pore-occluding calcite cement. The rindsmore » underwent burial for several million years to tens of millions of years to depths of several hundred meters before they were cemented. The host rock is predominately glauconite with very minor quartz and calcite cement. Strontium isotopic ratios of host-rock calcite cement are variable (0.7084 to 0.7093), but the lowest value suggests precipitation during the Middle Ordovician. In the absence of significant amounts of carbonate cement, the host rock underwent complete dissolution of trilobite carapaces and maximum compaction with total loss of porosity through squashing of glauconite grains. Maximum burial during this stage was completed by the end of Ordovician time.« less

  17. Modeling transient heat transfer in nuclear waste repositories.

    PubMed

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  18. Analyses and descriptions of geochemical samples from the Rich Mountain Roadless Area, Fannin and Gilmer counties, Georgia

    USGS Publications Warehouse

    Sears, C.M.; Foose, M.P.; Day, G.W.; Ericksen, M.S.

    1983-01-01

    Semi-quantitative spectrographic analyses for 31 elements on rock, soil, fine-grained stream sediment, bulk stream sediment, and panned stream sediment samples collected in the Rich Mountain Roadless Area, Fannin and Gilmer Counties, Georgia, are reported here. Atomic absorption analyses for gold and fluorometric analyses for uranium are also reported. Brief descriptions of all rock samples analyzed are included.

  19. A Methodology for Characterizing Potential Uranium Transport in Deep Geological Disposal Sites

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Reimus, P. W.

    2013-12-01

    In order to make safe and reasonable decisions about radioactive waste disposal in deep geologic sites, it is important to understand the fate and potential transport of long half-life transuranic radionuclides over a wide range of time and distance scales. The objective of this study was to evaluate and demonstrate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments involving uranium, as well as other actinides, have already been conducted. Working on this system provides a unique opportunity to compare lab experimental results with field-scale observations. Drilled rock cores and weathered fracture fill material (FFM) from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption/desorption and column breakthrough experiments. Uranium solutions were made by adding uranium to a synthetic Grimsel groundwater that matched the natural water chemistry found in the GTS groundwater. Batch and breakthrough experiments were conducted using solutions between pH 6.9 and 9.0. All column experiments were conducted using syringe pumps at low flow rate (<0.3 ml h-1) in small columns containing 5 g of material with pore volumes of 2-3 ml. These small columns allow rapid and economical evaluation of sorption/desorption behavior under flowing conditions (and in duplicate or triplicate). Solutions were switched to uranium-free synthetic Grimsel groundwater after equilibration in batch experiments or after near-steady uranium breakthrough occurred in column experiments. The measurement of uranium concentrations as a function of time under these conditions allowed interrogation of desorption rates which we believe control uranium fate and transport over long time and distance scales. Uranium transport was conservative and matched tritium breakthrough for pH 9.0; however, retardation increased when pH was reduced to 7.9 and 6.9. We are currently evaluating uranium adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, mineralogy, bentonite colloids and other actinides (e.g., Am). Figure 1. Uranium breakthrough results for (a) 6.5 μM U, (b) U-free solution, (c) flow rate increased from 0.3 to 0.6 mL h-1, (d) pH increased from 6.8 to 7.2, and (e) pH increased from 7.2 to 8.8.

  20. Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment

    USGS Publications Warehouse

    Nash, J. Thomas

    2010-01-01

    Felsic volcanic rocks have long been considered a primary source of uranium for many kinds of uranium deposits, but volcanogenic uranium deposits themselves have generally not been important resources. Until the past few years, resource summaries for the United States or the world generally include volcanogenic in the broad category of 'other deposits' because they comprised less than 0.5 percent of past production or estimated resources. Exploration in the United States from the 1940s through 1982 discovered hundreds of prospects in volcanic rocks, of which fewer than 20 had some recorded production. Intensive exploration in the late 1970s found some large deposits, but low grades (less than about 0.10 percent U3O8) discouraged economic development. A few deposits in the world, drilled in the 1980s and 1990s, are now known to contain large resources (>20,000 tonnes U3O8). However, research on ore-forming processes and exploration for volcanogenic deposits has lagged behind other kinds of uranium deposits and has not utilized advances in understanding of geology, geochemistry, and paleohydrology of ore deposits in general and epithermal deposits in particular. This review outlines new ways to explore and assess for volcanogenic deposits, using new concepts of convection, fluid mixing, and high heat flow to mobilize uranium from volcanic source rocks and form deposits that are postulated to be large. Much can also be learned from studies of epithermal metal deposits, such as the important roles of extensional tectonics, bimodal volcanism, and fracture-flow systems related to resurgent calderas. Regional resource assessment is helped by genetic concepts, but hampered by limited information on frontier areas and undiscovered districts. Diagnostic data used to define ore deposit genesis, such as stable isotopic data, are rarely available for frontier areas. A volcanic environment classification, with three classes (proximal, distal, and pre-volcanic structures), permits use of geologic features on 1:500,000 to 1:100,000 scale maps. Geochemical databases for volcanic rocks are postulated to be more effective than databases for stream sediments or surface radioactivity, both of which tend to be inconsistent because of variable leaching of uranium from soils. Based on empirical associations, spatial associations with areas of wet paleoclimate, adjacent oil and gas fields, or evaporite beds are deemed positive. Most difficult to estimate is the location of depositional traps and reduction zones, in part because they are mere points at regional scale. Grade and tonnage data are reviewed and discussed for 32 deposits in the world. Experience of mining engineers and geologists in Asia suggests that tonnages could be higher than presently known in the Western Hemisphere. Geological analysis, and new data from Asia, suggest a typical or median deposit tonnage of about 5,000 tonnes U3O8, and an optimistic forecast of discoveries in the range of 5,000 to 20,000 tonnes U3O8. The likely grade of undiscovered deposits could be about 0.15 percent U3O8 , based on both western and eastern examples. Volcanic terrane is under-explored, relative to other kinds of uranium deposits, and is considered a favorable frontier area for new discoveries.

  1. Naturally occurring contaminants in the Piedmont and Blue Ridge crystalline-rock aquifers and Piedmont Early Mesozoic basin siliciclastic-rock aquifers, eastern United States, 1994–2008

    USGS Publications Warehouse

    Chapman, Melinda J.; Cravotta, Charles A.; Szabo, Zoltan; Lindsay, Bruce D.

    2013-01-01

    Groundwater quality and aquifer lithologies in the Piedmont and Blue Ridge Physiographic Provinces in the eastern United States vary widely as a result of complex geologic history. Bedrock composition (mineralogy) and geochemical conditions in the aquifer directly affect the occurrence (presence in rock and groundwater) and distribution (concentration and mobility) of potential naturally occurring contaminants, such as arsenic and radionuclides, in drinking water. To evaluate potential relations between aquifer lithology and the spatial distribution of naturally occurring contaminants, the crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces and the siliciclastic-rock aquifers of the Early Mesozoic basin of the Piedmont Physiographic Province were divided into 14 lithologic groups, each having from 1 to 16 lithochemical subgroups, based on primary rock type, mineralogy, and weathering potential. Groundwater-quality data collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program from 1994 through 2008 from 346 wells and springs in various hydrogeologic and land-use settings from Georgia through New Jersey were compiled and analyzed for this study. Analyses for most constituents were for filtered samples, and, thus, the compiled data consist largely of dissolved concentrations. Concentrations were compared to criteria for protection of human health, such as U.S. Environmental Protection Agency (USEPA) drinking water maximum contaminant levels and secondary maximum contaminant levels or health-based screening levels developed by the USGS NAWQA Program in cooperation with the USEPA, the New Jersey Department of Environmental Protection, and Oregon Health & Science University. Correlations among constituent concentrations, pH, and oxidation-reduction (redox) conditions were used to infer geochemical controls on constituent mobility within the aquifers. Of the 23 trace-element constituents evaluated, arsenic, manganese, and zinc were detected in one or more water samples at concentrations greater than established human health-based criteria. Arsenic concentrations typically were less than 1 microgram per liter (µg/L) in most groundwater samples; however, concentrations of arsenic greater than 1 µg/L frequently were detected in groundwater from clastic lacustrine sedimentary rocks of the Early Mesozoic basin aquifers and from metamorphosed clastic sedimentary rocks of the Piedmont and Blue Ridge crystalline rock aquifers. Groundwater from these rock units had elevated pH compared to other rock units evaluated in this study. Of the nine samples for which arsenic concentration was greater than 10 µg/L, six were classified as oxic and three as anoxic, and seven had pH of 7.2 or greater. Manganese concentrations typically were less than 10 µg/L in most samples; however, 8.3 percent of samples from the Piedmont and Blue Ridge crystalline-rock aquifers and 3.0 percent of samples from the Early Mesozoic basin siliciclastic rock aquifers had manganese concentrations greater than the 300-µg/L health-based screening level. The positive correlation of manganese with iron and ammonia and the negative correlation of manganese with dissolved oxygen and nitrate are consistent with the reductive dissolution of manganese oxides in the aquifer. Zinc concentrations typically were less than 10 µg/L in the groundwater samples considered in the study, but 0.4 percent and 5.5 percent of the samples had concentrations greater than the health-based screening level of 2,000 µg/L and one-tenth of the health-based screening level, respectively. The mean rank concentration of zinc in groundwater from the quartz-rich sedimentary rock lithologic group was greater than that for other lithologic groups even after eliminating samples collected from wells constructed with galvanized casing. Approximately 90 percent of 275 groundwater samples had radon-222 concentrations that were greater than the proposed alternative maximum contaminant level of 300 picocuries per liter. In contrast, only 2.0 percent of 98 samples had combined radium (radium-226 plus radium-228) concentrations greater than the maximum contaminant level of 5.0 picocuries per liter, and 0.6 percent of 310 samples had uranium concentrations greater than the maximum contaminant level of 30 µg/L. Radon concentrations were highest in the Piedmont and Blue Ridge crystalline-rock aquifers, especially in granite, and elevated median concentrations were noted in the Piedmont Early Mesozoic basin aquifers, but without the extreme maximum concentrations found in the crystalline rocks (granites). Although the siliciclastic lithologies had a greater frequency of elevated uranium concentrations, radon and radium were commonly detected in water from both siliciclastic and crystalline lithologies. Uranium concentrations in groundwater from clastic sedimentary and clastic lacustrine/evaporite sedimentary lithologic groups within the Early Mesozoic basin aquifers, which had median concentrations of 3.6 and 3.1 µg/L, respectively, generally were higher than concentrations for other siliciclastic lithologic groups, which had median concentrations less than 1 µg/L. Although 89 percent of the 260 samples from crystalline-rock aquifers had uranium concentrations less than 1 µg/L, 0.8 percent had uranium concentrations greater than the 30-µg/L maximum contaminant level, and 6.5 percent had concentrations greater than 3 µg/L.

  2. Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (Central Portugal): genetic implications of crystal-chemical and isotopic features

    NASA Astrophysics Data System (ADS)

    da Costa, I. Ribeiro; Mourão, C.; Récio, C.; Guimarães, F.; Antunes, I. M.; Ramos, J. Farinha; Barriga, F. J. A. S.; Palmer, M. R.; Milton, J. A.

    2014-04-01

    Tourmalinization associated with peraluminous granitic intrusions in metapelitic host-rocks has been widely recorded in the Iberian Peninsula, given the importance of tourmaline as a tracer of granite magma evolution and potential indicator of Sn-W mineralizations. In the Penamacor-Monsanto granite pluton (Central Eastern Portugal, Central Iberian Zone), tourmaline occurs: (1) as accessory phase in two-mica granitic rocks, muscovite-granites and aplites, (2) in quartz (±mica)-tourmaline rocks (tourmalinites) in several exocontact locations, and (3) as a rare detrital phase in contact zone hornfels and metapelitic host-rocks. Electron microprobe and stable isotope (δ18O, δD, δ11B) data provide clear distinctions between tourmaline populations from these different settings: (a) schorl-oxyschorl tourmalines from granitic rocks have variable foititic component (X□ = 17-57 %) and Mg/(Mg + Fe) ratios (0.19-0.50 in two-mica granitic rocks, and 0.05-0.19 in the more differentiated muscovite-granite and aplites); granitic tourmalines have constant δ18O values (12.1 ± 0.1 ‰), with wider-ranging δD (-78.2 ± 4.7 ‰) and δ11B (-10.7 to -9.0 ‰) values; (b) vein/breccia oxyschorl [Mg/(Mg + Fe) = 0.31-0.44] results from late, B- and Fe-enriched magma-derived fluids and is characterized by δ18O = 12.4 ‰, δD = -29.5 ‰, and δ11B = -9.3 ‰, while replacement tourmalines have more dravitic compositions [Mg/(Mg + Fe) = 0.26-0.64], close to that of detrital tourmaline in the surrounding metapelitic rocks, and yield relatively constant δ18O values (13.1-13.3 ‰), though wider-ranging δD (-58.5 to -36.5 ‰) and δ11B (-10.2 to -8.8 ‰) values; and (c) detrital tourmaline in contact rocks and regional host metasediments is mainly dravite [Mg/(Mg + Fe) = 0.35-0.78] and oxydravite [Mg/(Mg + Fe) = 0.51-0.58], respectively. Boron contents of the granitic rocks are low (<650 ppm) compared to the minimum B contents normally required for tourmaline saturation in granitic melts, implying loss of B and other volatiles to the surrounding host-rocks during the late-magmatic stages. This process was responsible for tourmalinization at the exocontact of the Penamacor-Monsanto pluton, either as direct tourmaline precipitation in cavities and fractures crossing the pluton margin (vein/breccia tourmalinites), or as replacement of mafic minerals (chlorite or biotite) in the host-rocks (replacement tourmalinites) along the exocontact of the granite. Thermometry based on 18O equilibrium fractionation between tourmaline and fluid indicates that a late, B-enriched magmatic aqueous fluid (av. δ18O ~12.1 ‰, at ~600 °C) precipitated the vein/breccia tourmaline (δ18O ~12.4 ‰) at ~500-550 °C, and later interacted with the cooler surrounding host-rocks to produce tourmaline at lower temperatures (400-450 °C), and an average δ18O ~13.2 ‰, closer to the values for the host-rock. Although B-metasomatism associated with some granitic plutons in the Iberian Peninsula seems to be relatively confined in space, extending integrated studies such as this to a larger number of granitic plutons may afford us a better understanding of Variscan magmatism and related mineralizations.

  3. Selective uptake of uranium and thorium by some vegetables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, A.M.; Ghazali, Z.; Rahman, S.A.

    1996-12-31

    Uranium and thorium are trace elements in the actinide series found naturally in the atmosphere and can enter the human body through ingestion of food or by drinking. To establish baseline information for current and future environmental assessment due to pollution, especially in foodstuff, by heavy and trace metals, biological samples such as locally grown vegetables were analyzed for uranium and thorium contents. The terrain in most parts of the Malaysian peninsula consists of monazite-bearing rocks or soil that can be found extensively in areas related to tin-mining operations. Abandoned mining areas provide suitable sites for vegetable cultivation where mostmore » vegetables in the lowlands are grown.« less

  4. Solid-phase data from cores at the proposed Dewey Burdock uranium in-situ recovery mine, near Edgemont, South Dakota

    USGS Publications Warehouse

    Johnson, Raymond H.; Diehl, Sharon F.; Benzel, William M.

    2013-01-01

    This report releases solid-phase data from cores at the proposed Dewey Burdock uranium in-situ recovery site near Edgemont, South Dakota. These cores were collected by Powertech Uranium Corporation, and material not used for their analyses were given to the U.S. Geological Survey for additional sampling and analyses. These additional analyses included total carbon and sulfur, whole rock acid digestion for major and trace elements, 234U/238U activity ratios, X-ray diffraction, thin sections, scanning electron microscopy analyses, and cathodoluminescence. This report provides the methods and data results from these analyses along with a short summary of observations.

  5. Maps showing geology, structure, and geophysics of the central Black Hills, South Dakota

    USGS Publications Warehouse

    Redden, Jack A.; DeWitt, Ed

    2008-01-01

    This 1:100,000-scale digital geologic map details the complex Early Proterozoic granitic rocks, Early Proterozoic supracrustal metamorphic rocks, and Archean crystalline basement of the Black Hills. The granitic rocks host pegmatite deposits renowned for their feldspar, mica, spodumene, and beryl. The supracrustal rocks host the Homestake gold mine, which produced more than 40 million ounces of gold over a 125-year lifetime. The map documents the Laramide deformation of Paleozoic and Mesozoic cover rocks; and shows the distribution of Laramide plutonic rocks associated with precious-metals deposits. Four 1:300,000-scale maps summarize Laramide structures; Early Proterozoic structures; aeromagnetic anomalies; and gravity anomalies. Three 1:500,000-scale maps show geophysical interpretations of buried Early Proterozoic to Archean rocks in western South Dakota and eastern Wyoming.

  6. Applications of UThPb isotope systematics to the problems of radioactive waste disposal

    USGS Publications Warehouse

    Stuckless, J.S.

    1986-01-01

    Concentrations of U, Th and Pb, and the isotopic composition of Pb for whole-rock samples of granitoids show: (1) that open-system behavior is nearly universal in the surface and near-surface environment; and (2) that elemental mobility is possible to depths of several hundred meters. Several identified or at least postulated factors that control U and/or Pb mobility include: (1) the mineralogical sites for U and its daughter products; (2) access of groundwater to these sites; (3) the volume of circulating water; and (4) the chemistry of the groundwater. Studies of granitic samples from peralkaline complexes in the Arabian Shield have shown that most samples lost less than 20% of their U during recent exposure to the near-surface environment. Most of the U in these samples appears to be firmly bound in zircons. In contrast, most surface and shallow drill-core samples of the granite of Lankin Dome (Granite Mountains, Wyoming) have lost ??? 70% of their U. Most of the U in these samples is weakly bound in biotite and epidote-family minerals. The granite recovered during the Illinois Deep Drill Hole Project (Stephenson County, Illinois) is mineralogically similar to the granite of Lankin Dome, but this granite lost radiogenic Pb rather than U, probably as a result of exposure to groundwater that had a markedly different chemistry from that in the Granite Mountains. Studies of the Sherman Granite (Wyoming) and the Go??temar Granite (southeastern Sweden) have shown that U and/or Pb mobility is greatest in and near fractured rock. The greater mobility is interpreted to be the result of both a larger water/rock ratio in the fractured rock and exposure to water over an increased surface area (and consequently a greater number of uranium sites). Several types of geochemical and mineralogic data can be used to identify rock-water interaction in granites; however, if rock samples have favorable radiogenic to common Pb ratios, both the amount and approximate timing of U or Pb mobility can be obtained through the use of isotopic studies. Such information can be extremely important in the search for favorable hosts for containment of radioactive waste. Rocks such as the Go??temar Granite have undergone considerable rock-water interaction, most of which occurred ??? 400 Myr. ago and little in recent times. Thus a search for zones that have experienced only a little interaction with water may provide a misleading prediction as to the ability of such zones to shield radioactive wastes from the modern biosphere. From an isotopic point of view, an ideal candidate for evaluation as a host rock for radioactive wastes would have the following characteristics: (1) a high ratio (> 2) of radiogenic to common Pb in order to optimize precision of the results; (2) a simple two-stage geologic history so that results could be interpreted without multiple working hypotheses; and (3) an originally high percentage (> 50%) of labile U so that the results would be highly sensitive to even small amount of rock-water interaction. These characteristics should produce rocks with marked radioactive disequilibrium in surface samples. The disequilibrium should grade to radioactive equilibrium with increasing depth until zones in which water has not circulated are found. Extensive regions of such zones must exist because UThPb systematics of most analyzed granitoids demonstrate closed-system behavior for almost all of their history except for their recent history in the near-surface environment. ?? 1986.

  7. Radon as a natural tracer for gas transport within uranium waste rock piles.

    PubMed

    Silva, N C; Chagas, E G L; Abreu, C B; Dias, D C S; Lopez, D; Guerreiro, E T Z; Alberti, H L C; Braz, M L; Branco, O; Fleming, P

    2014-07-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Indústrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m(-3) with mean concentration of 320.7±263.3 kBq m(-3). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Geophysical Investigations of a Proterozoic Carbonatite Terrane, southeast Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Denton, K. M.; Ponce, D. A.; Miller, D. M.; Peacock, J.; Miller, J. S.

    2015-12-01

    One of the world's largest rare-earth element-rich carbonatite deposits is located in the eastern Mojave Desert at Mountain Pass, California. The eastern Mojave Desert carbonatite terrane consists of a ~1.7 Ga gneiss and schist rocks that are host to a ~1.417 Ga (Premo, 2013) ultrapotassic intrusive suite (shonkinite, syenite, and granite) and a ~1.375 Ga (DeWitt, 1983) carbonatite deposit . Regional geophysical data indicate that this carbonatite terrane occurs within a north-northwest trending ~1-km wide bench in a gravity high and along the eastern edge of a prominent magnetic high in the eastern Clark Mountain Range. To improve our understanding of the geophysical and structural framework of the eastern Mojave carbonatite terrane, we collected over 2,300 gravity stations and over 640 physical rock property samples. Carbonatite rocks typically have distinct gravity, magnetic, and radioactive signatures because they are relatively dense, often contain magnetite, and are commonly enriched in thorium and/or uranium. Contrary to this trend, our results show that the carbonatite deposit is essentially nonmagnetic with an average susceptibility of 0.18 x 10-3 SI (n=31), and the ultrapotassic intrusive suite is very weakly magnetic with an average susceptibility of 2.0 x 10-3 SI (n=36). However, these rocks are found along a steep gradient of a prominent aeromagnetic anomaly. The lack of magnetic signature from the rocks of the eastern Mojave carbonatite terrane suggests alteration of magnetic minerals. This is corroborated by its location within a broader alteration zone and observed magnetic low. If so, such an alteration event occurred after emplacement of the carbonatite deposit, which likely remobilized rare earth elements in the surrounding rocks. Further, an alteration event is consistent with geology, high rare-earth element concentration, and unusual geochemistry of the carbonatite deposit. Temporal constraints (DeWitt, 1987; Premo, 2013) also suggest alteration of the carbonatite, as the apparent age of the carbonatite deposit is ~40 Ma younger than the associated, and likely contemporaneous ultrapotassic intrusive suite.

  9. Multisource geological data mining and its utilization of uranium resources exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-lin

    2009-10-01

    Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.

  10. A new model for tabular-type uranium deposits

    USGS Publications Warehouse

    Sanford, R.F.

    1992-01-01

    Tabular-type uranium deposits occur as tabular, originally subhorizontal bodies entirely within reduced fluvial sandstones of Late Silurian age or younger. This paper proposes that belts of tabular-type uranium deposits formed in areas of mixed local and regional groundwater discharge shortly after deposition of the host sediments. The general characteristics of tabular-type uranium deposits indicate that their essential feature was the formation at a density-stratified ground-water interface in areas of local and regional ground-water discharge. Reconstruction of the paleohydrogeology is the key to understanding the formation of these deposits. Geologic ground-water controls that favor discharge, such as the pinch-out of major aquifers, are also favorable for uranium ore. The combination of topographic and geologic features that both cause discharge is most favorable for ore deposition. -from Author

  11. Biostratigraphy and structure of paleozoic host rocks and their relationship to Carlin-type gold deposits in the Jerritt Canyon mining district, Nevada

    USGS Publications Warehouse

    Peters, S.G.; Armstrong, A.K.; Harris, A.G.; Oscarson, R.L.; Noble, P.J.

    2003-01-01

    The Jerritt Canyon mining district in the northern Independence Range, northern Nevada, contains multiple, nearly horizontal, thrust masses of platform carbonate rocks that are exposed in a series of north- to northeast-elongated, tectonic windows through rocks of the Roberts Mountains allochthon. The Roberts Mountains allochthon was emplaced during the Late Devonian to Early Mississippian Antler orogeny. These thrust masses contain structurally and stratigraphically controlled Carlin-type gold deposits. The gold deposits are hosted in tectonically truncated units of the Silurian to Devonian Hanson Creek and Roberts Mountains Formations that lie within structural slices of an Eastern assemblage of Cambrian to Devonian carbonate rocks. In addition, these multiply thrust-faulted and folded host rocks are structurally interleaved with Mississippian siliciclastic rocks and are overlain structurally by Cambrian to Devonian siliciclastic units of the Roberts Mountains allochthon. All sedimentary rocks were involved in thrusting, high-angle faulting, and folding, and some of these events indicate substantial late Paleozoic and/or Mesozoic regional shortening. Early Pennsylvanian and late Eocene dikes also intrude the sedimentary rocks. These rocks all were uplifted into a northeast-trending range by subsequent late Cenozoic Basin and Range faulting. Eocene sedimentary and volcanic rocks flank part of the range. Pathways of hydrothermal fluid flow and locations of Carlin-type gold orebodies in the Jerritt Canyon mining district were controlled by structural and host-rock geometries within specific lithologies of the stacked thrust masses of Eastern assemblage rocks. The gold deposits are most common proximal to intersections of northeast-striking faults, northwest-striking dikes, and thrust planes that lie adjacent to permeable stratigraphic horizons. The host stratigraphic units include carbonate sequences that contained primary intercrystalline permeability, which provided initial pathways for fluid flow and later served as precipitation sites for ore minerals. Alteration, during, and perhaps prior to mineralization, enhanced primary permeability by dissolution, by removal of calcite, and by formation of dolomite. Ore-stage sulfide minerals and alteration minerals commonly precipitated in pore spaces among dolomite grains. Microveinlets and microbrecciation in zones of intense alteration also provided networks of secondary permeability that further enhanced fluid flux and produced additional sites for ore deposition.

  12. Hydrological, geological, and biological site characterization of breccia pipe uranium deposits in Northern Arizona

    USGS Publications Warehouse

    Alpine, Andrea E.

    2010-01-01

    On July 21, 2009, U.S. Secretary of the Interior Ken Salazar proposed a two-year withdrawal of about 1 million acres of Federal land near the Grand Canyon from future mineral entry. These lands are contained in three parcels: two parcels on U.S. Bureau of Land Management land to the north of the Grand Canyon (North and East Segregation Areas) and one on the Kaibab National Forest south of the Grand Canyon (South Segregation Area). The purpose of the two-year withdrawal is to examine the potential effects of restricting these areas from new mine development for the next 20 years. This proposed withdrawal initiated a period of study during which the effects of the withdrawal must be evaluated. At the direction of the Secretary, the U.S. Geological Survey began a series of short-term studies designed to develop additional information about the possible effects of uranium mining on the natural resources of the region. Dissolved uranium and other major, minor, and trace elements occur naturally in groundwater as the result of precipitation infiltrating from the surface to water-bearing zones and, presumably, to underlying regional aquifers. Discharges from these aquifers occur as seeps and springs throughout the region and provide valuable habitat and water sources for plants and animals. Uranium mining within the watershed may increase the amount of radioactive materials and heavy metals in the surface water and groundwater flowing into Grand Canyon National Park and the Colorado River, and deep mining activities may increase mobilization of uranium through the rock strata into the aquifers. In addition, waste rock and ore from mined areas may be transported away from the mines by wind and runoff.

  13. Uranium, its impact on the national and global energy mix; and its history, distribution, production, nuclear fuel-cycle, future, and relation to the environment

    USGS Publications Warehouse

    Finch, Warren Irvin

    1997-01-01

    The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.

  14. The Sequoyah Corporation Fuels Release and the Church Rock Spill: Unpublicized Nuclear Releases in American Indian Communities

    PubMed Central

    Brugge, Doug; deLemos, Jamie L.; Bui, Cat

    2007-01-01

    The Three Mile Island nuclear release exemplifies why there is public and policy interest in the high-technology, highly visible end of the nuclear cycle. The environmental and health consequences of the early steps in the cycle—mining, milling, and processing of uranium ore—may be less appreciated. We examined 2 large unintended acute releases of uranium—at Kerr McGee’s Sequoyah Fuels Corporation in Oklahoma and United Nuclear Corporation’s Church Rock uranium mill in New Mexico, which were incidents with comparable magnitude to the Three Mile Island release. We urge exploration of whether there is limited national interest and concern for the primarily rural, low-income, and American Indian communities affected by these releases. More attention should be given to the early stages of the nuclear cycle and their impacts on health and the environment. PMID:17666688

  15. Immobilization of uranium in biofilm microorganisms exposed to groundwater seeps over granitic rock tunnel walls in Olkiluoto, Finland

    NASA Astrophysics Data System (ADS)

    Krawczyk-Bärsch, Evelyn; Lünsdorf, Heinrich; Pedersen, Karsten; Arnold, Thuro; Bok, Frank; Steudtner, Robin; Lehtinen, Anne; Brendler, Vinzenz

    2012-11-01

    In an underground rock characterization facility, the ONKALO tunnel in Finland, massive 5-10-mm thick biofilms were observed attached to tunnel walls where groundwater was seeping from bedrock fractures at a depth of 70 m. In laboratory experiments performed in a flow cell with detached biofilms to study the effect of uranium on the biofilm, uranium was added to the circulating groundwater (CGW) obtained from the fracture feeding the biofilm. The final uranium concentration in the CGW was adjusted to 4.25 × 10-5 M, in the range expected from a leaking spent nuclear fuel (SNF) canister in a future underground repository. The effects were investigated using microelectrodes to measure pH and Eh, time-resolved laser fluorescence spectroscopy (TRLFS), energy-filtered transmission electron microscopy (EF-TEM), and electron energy-loss spectroscopy (EELS) studies and thermodynamic calculations were utilized as well. The results indicated that the studied biofilms constituted their own microenvironments, which differed significantly from that of the CGW. A pH of 5.37 was recorded inside the biofilm, approximately 3.5 units lower than the pH observed in the CGW, due to sulfide oxidation to sulfuric acid in the biofilm. Similarly, the Eh of +73 mV inside the biofilm was approximately 420 mV lower than the Eh measured in the CGW. Adding uranium increased the pH in the biofilm to 7.27 and reduced the Eh to -164 mV. The changes of Eh and pH influenced the bioavailability of uranium, since microbial metabolic processes are sensitive to metals and their speciation. EF-TEM investigations indicated that uranium in the biofilm was immobilized intracellularly in microorganisms by the formation of metabolically mediated uranyl phosphate, similar to needle-shaped autunite (Ca[UO2]2[PO4]2·2-6H2O) or meta-autunite (Ca[UO2]2[PO4]2·10-12H2O). In contrast, TRLFS studies of the contaminated CGW identified aqueous uranium carbonate species, likely (Ca2UO2[CO3]3), formed due to the high concentration of carbonate in the CGW. The results agreed with thermodynamic calculations of the theoretically predominant field of uranium species, formed in the uranium-contaminated CGW at the measured geochemical parameters. This investigation clearly demonstrated that biological systems must be considered as a part of natural systems that can significantly influence radionuclide behavior. The results improve our understanding of the mechanisms of biofilm response to radionuclides in relation to safety assessments of SNF repositories.

  16. Microbiology of Low Temperature Seafloor Deposits Along a Geochemical Gradient in Lau Basin

    NASA Astrophysics Data System (ADS)

    sylvan, J. B.; Sia, T. Y.; Haddad, A.; Briscoe, L. J.; Girguis, P. R.; Edwards, K. J.

    2011-12-01

    The East Lau Spreading Center (ELSC) and Valu Fa Ridge comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle lenses manifest themselves by gradients in seafloor rock geochemistry. At the spreading center in the north, basaltic host rock extrudes while the influence of subduction in the south creates mainly basaltic andesite host rock. A contuous gradient between these two end members exists along the spreading center. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected along the ELSC and Valu Fa Ridge by X-ray diffraction, elemental analysis, thin section analysis and construction of bacterial 16S rRNA clone libraries. Here, we discuss the geological and biological differences between the collected rocks. We found that the bacterial community composition changed as the host rock mineralogy and chemistry changed from north to south. Also, the bacterial community composition on the silicates is distinct from those on the inactive chimneys, and the interior conduit of an inactive chimney hosts a very different community from the exterior. Basalt from the northern end of the ELSC had high proportions of Alphaproteobacteria and Bacteroidetes. These proportions decreased on the silicates collected further south. Epsilonproteobacteria were also present on the basalt, decreased further south and were absent on the basaltic andesite. Conversely, basaltic andesite rocks from the southern end had high proportions of Chloroflexi, which decreased further north and were absent on basalt. The exterior of inactive sulfide structures were dominated by lineages of sulfur oxidizing Gammaproteobacteria and Epsilonproteobacteria and were less diverse than those on the silicates. The interior of one chimney was dominated by sulfate-reducing Deltaproteobacteria and was the least diverse of all samples. These results support the Mantle to Microbe hypothesis in that different types of Bacteria are selected by the composition of the host rock as determined by the melt lens underlying the hydrothermal vent field.

  17. Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits

    NASA Astrophysics Data System (ADS)

    Uvarova, Yulia A.; Kyser, T. Kurt; Geagea, Majdi Lahd; Chipley, Don

    2014-12-01

    Variations in 238U/235U and 234U/238U ratios were measured in uranium minerals from a spectrum of uranium deposit types, as well as diagenetic phosphates in uranium-rich basins and peraluminous rhyolites and associated autunite mineralisation from Macusani Meseta, Peru. Mean δ238U values of uranium minerals relative to NBL CRM 112-A are 0.02‰ for metasomatic deposits, 0.16‰ for intrusive, 0.18‰ for calcrete, 0.18‰ for volcanic, 0.29‰ for quartz-pebble conglomerate, 0.29‰ for sandstone-hosted, 0.44‰ for unconformity-type, and 0.56‰ for vein, with a total range in δ238U values from -0.30‰ to 1.52‰. Uranium mineralisation associated with igneous systems, including low-temperature calcretes that are sourced from U-rich minerals in igneous systems, have low δ238U values of ca. 0.1‰, near those of their igneous sources, whereas uranium minerals in basin-hosted deposits have higher and more variable values. High-grade unconformity-related deposits have δ238U values around 0.2‰, whereas lower grade unconformity-type deposits in the Athabasca, Kombolgie and Otish basins have higher δ238U values. The δ234U values for most samples are around 0‰, in secular equilibrium, but some samples have δ234U values much lower or higher than 0‰ associated with addition or removal of 234U during the past 2.5 Ma. These δ238U and δ234U values suggest that there are at least two different mechanisms responsible for 238U/235U and 234U/238U variations. The 234U/238U disequilibria ratios indicate recent fluid interaction with the uranium minerals and preferential migration of 234U. Fractionation between 235U and 238U is a result of nuclear-field effects with enrichment of 238U in the reduced insoluble species (mostly UO2) and 235U in oxidised mobile species as uranyl ion, UO22+, and its complexes. Therefore, isotopic fractionation effects should be reflected in 238U/235U ratios in uranium ore minerals formed either by reduction of uranium to UO2 or chemical precipitation in the form of U6+ minerals. The δ238U values of uranium ore minerals from a variety of deposits are controlled by the isotopic signature of the uranium source, the efficiency of uranium reduction in the case of UO2 systems, and the degree to which uranium was previously removed from the fluid, with less influence from temperature of ore formation and later alteration of the ore. Uranium isotopes are potentially superb tracers of redox in natural systems.

  18. Exploration for uranium deposits in the Atkinson Mesa area, Montrose County, Colorado

    USGS Publications Warehouse

    Brew, Daniel Allen

    1954-01-01

    The U.S. Geological Survey explored the Atkinson Mesa area for uranium- and vanadium-bearing deposits from July 2, 1951, to June 18, 1953, with 397 diamond-drill holes that totaled 261,251 feet. Sedimentary rocks of Mesozoic age are exposed in the Atkinson Mesa area. They are: the Brushy Basin member of the Upper Jurassic Morrison formation, the Lower Cretaceous Burro Canyon formation, and the Upper and Lower Cretaceous Dakota sandstone. All of the large uranium-vanadium deposits discovered by Geological Survey drilling are in a series of sandstone lenses in the upper part of the Salt Wash member of the Jurassic Morrison formation. The deposits are mainly tabular and blanket-like, but some elongate pod-shaped masses, locally called "rolls" may be present. The mineralized material consists of sandstone impregnated with a uranium mineral which is probably coffinite, spme carnotite, and vanadium minerals, thought to be mainly corvusite and montroseite. In addition,, some mudstone and carbonaceous material is similarly impregnated. Near masses of mineralized material the sandstone is light gray or light brown, is generally over 40 feet thick, and usually contains some carbonaceous material and abundant disseminated pyrite or limonite stain. Similarly, the mudstone in contact with the ore-bearing sandstone near bodies of mineralized rock is commonly blue gray, as compared to its dominant red color away from ore deposits. Presence and degree of these features are useful guides in exploring for new deposits.

  19. Geochemical characterization of groundwater discharging from springs north of the Grand Canyon, Arizona, 2009–2016

    USGS Publications Warehouse

    Beisner, Kimberly R.; Tillman, Fred D.; Anderson, Jessica R.; Antweiler, Ronald C.; Bills, Donald J.

    2017-08-01

    A geochemical study was conducted on 37 springs discharging from the Toroweap Formation, Coconino Sandstone, Hermit Formation, Supai Group, and Redwall Limestone north of the Grand Canyon near areas of breccia-pipe uranium mining. Baseline concentrations were established for the elements As, B, Li, Se, SiO2, Sr, Tl, U, and V. Three springs exceeded U.S. Environmental Protection Agency drinking water standards: Fence Spring for arsenic, Pigeon Spring for selenium and uranium, and Willow (Hack) Spring for selenium. The majority of the spring sites had uranium values of less than 10 micrograms per liter (μg/L), but six springs discharging from all of the geologic units studied that are located stratigraphically above the Redwall Limestone had uranium values greater than 10 μg/L (Cottonwood [Tuckup], Grama, Pigeon, Rock, and Willow [Hack and Snake Gulch] Springs). The geochemical characteristics of these six springs with elevated uranium include Ca-Mg-SO4 water type, circumneutral pH, high specific conductance, correlation and multivariate associations between U, Mo, Sr, Se, Li, and Zn, low 87Sr/86Sr, low 234U/238U activity ratios (1.34–2.31), detectable tritium, and carbon isotopic interpretation indicating they may be a mixture of modern and pre-modern waters. Similar geochemical compositions of spring waters having elevated uranium concentrations are observed at sites located both near and away from sites of uranium-mining activities in the present study. Therefore, mining does not appear to explain the presence of elevated uranium concentrations in groundwater at the six springs noted above. The elevated uranium at the six previously mentioned springs may be influenced by iron mineralization associated with mineralized breccia pipe deposits. Six springs discharging from the Coconino Sandstone (Upper Jumpup, Little, Horse, and Slide Springs) and Redwall Limestone (Kanab and Side Canyon Springs) contained water with corrected radiocarbon ages as much as 9,300 years old. Of the springs discharging water with radiocarbon age, Kanab and Side Canyon Springs contain tritium of more than 1.3 picocuries per liter (pCi/L), indicating they may contain a component of modern water recharged after 1952. Springs containing high values of tritium (greater than 5.1 pCi/L), which may suggest a significant component of modern water, include Willow (Hack), Saddle Horse, Cottonwood (Tuckup), Hotel, Bitter, Unknown, Hole in the Wall, and Hanging Springs. Fence and Rider Springs, located on the eastern end of the study area near the Colorado River, have distinctly different geochemical compositions compared to the other springs of the study. Additionally, water from Fence Spring has the highest 87Sr/86Sr for samples analyzed from this study with a value greater than those known in sedimentary rocks from the region. Strontium isotope data likely indicate that water discharging at Fence Spring has interacted with Precambrian basement rocks. Rider Spring had the most depleted values of stable O and H isotopes indicating that recharge, if recent, occurred at higher elevations or was recharged during earlier, cooler-climate conditions.

  20. Application of U-Th-Pb phosphate geochronology to young orogenic gold deposits: New age constraints on the formation of the Grass Valley gold district, Sierra Foothills province, California

    USGS Publications Warehouse

    Taylor, Ryan D.; Goldfarb, Richard J.; Monecke, Thomas; Fletcher, Ian R.; Cosca, Michael A.; Kelly, Nigel M.

    2015-01-01

    The Grass Valley orogenic gold district in the Sierra Nevada foothills province, central California, the largest historic gold producer of the North American Cordillera, comprises both steeply dipping east-west (E-W) veins located along lithologic contacts in accreted ca. 300 and 200 Ma oceanic rocks and shallowly dipping north-south (N-S) veins hosted by the Grass Valley granodiorite; the latter have yielded about 70 percent of the 13 million ounces of historic lode gold production in the district. The oceanic host rocks were accreted to the western margin of North America between 200 and 170 Ma, metamorphosed to greenschist and amphibolite facies, and uplifted between 175 and 160 Ma. Large-scale magmatism in the Sierra Nevada occurred between 170-140 Ma and 120-80 Ma, with the Grass Valley granodiorite being emplaced during the older episode of magmatism. Uranium-lead isotopic dating of hydrothermal xenotime yielded the first absolute age of 162±5 Ma for the economically more significant N-S veins. The vein-hosted xenotime, as well as associated monazite, are unequivocally of hydrothermal origin as indicated by textural and chemical characteristics, including grain shape, lack of truncated growth banding, lack of a Eu anomaly, and low U and Th concentrations. Furthermore, the crack-seal texture of the veins, with abundant wallrock slivers, suggests their formation as a result of episodic fluid flow possibly related to reoccurring seismic events, rather than a period of fluid exsolution from an evolving magma. The N-S veins are temporally distinct from a younger 153-151 Ma gold event that was previously reported for the E-W veins. Overlapping U-Pb zircon (159.9±2.2 Ma) and 40Ar/39Ar biotite and hornblende (159.7±0.6 to 161.9±1.4 Ma) ages and geothermobarometric calculations indicate that the Grass Valley granodiorite was emplaced at ca. 160 Ma at elevated temperatures (~800°C) within approximately 3 km of the paleosurface and rapidly cooled to the ambient temperature of the surrounding country rocks (<300°C). The age of the granodiorite is indistinguishable from that of the N-S veins, as recorded by the U-Pb age of xenotime in those veins. Consequently, the N-S veins must have formed between 162 and 157 Ma, the maximum permissive age of magma emplacement and the youngest permissive xenotime U-Pb age, respectively, during an E- to ENE-directed compressional regime. The geochemistry of the Grass Valley granodiorite is consistent with it being the product of arc magmatism. It served as a receptive host for mineralization, but it is has no direct genetic relationship to gold mineralization. Initial uplift of the intrusive mass correlates with the initial voluminous fluid flow event and vein formation at depths of no greater than 3 km. The E-W gold-bearing veins hosted within greenschist-facies country rocks adjacent to the intrusion formed during a second hydrothermal event 5-10 million years later than the magmatism and were contemporaneous with a shift to a transtensional deformation denoted by sinistral strike-slip faulting.

  1. Organic matter diagenesis as the key to a unifying theory for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado Plateau

    USGS Publications Warehouse

    Hansley, P.L.; Spirakis, C.S.

    1992-01-01

    Interstitial, epigenetic amorphous organic matter is intimately associated with uranium in the Grants uranium region and is considered essential to genetic models for these deposits. In contrast, uranium minerals are intimately associated with authigenic vanadium chlorite and vanadium oxides in amorphous organic matter-poor ores of the Slick Rock and Henry Mountains mining districts and therefore, in some genetic models amorphous organic matter is not considered crucial to the formation of these deposits. Differences in organic matter content can be explained by recognizing that amorphous organic matter-poor deposits have been subjected to more advanced stages of diagenesis than amorphous organic matter-rich deposits. Evidence that amorphous organic matter was involved in the genesis of organic matter-poor, as well as organic matter-rich, deposits is described. -from Authors

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppich, Gary R.; Williams, Ross W.; Gaffney, Amy M.

    Here, age dating of nuclear material can provide insight into source and suspected use in nuclear forensic investigations. We report here a method for the determination of the date of most recent chemical purification for uranium materials using the 235U- 231Pa chronometer. Protactinium is separated from uranium and neptunium matrices using anion exchange resin, followed by sorption of Pa to an SiO 2 medium. The concentration of 231Pa is measured by isotope dilution mass spectrometry using 233Pa spikes prepared from an aliquot of 237Np and calibrated in-house using the rock standard Table Mountain Latite and the uranium isotopic standard U100.more » Combined uncertainties of age dates using this method are 1.5 to 3.5 %, an improvement over alpha spectrometry measurement methods. Model ages of five uranium standard reference materials are presented; all standards have concordant 235U- 231Pa and 234U- 230Th model ages.« less

  3. Geochemical behavior of Cs, Sr, Tc, Np, and U in saline groundwaters: Sorption experiments on shales and their clay mineral components: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, R.E.; Arnold, W.D.; Ho, P.C.

    1987-11-01

    The Sedimentary Rock Program at the Oak Ridge National Laboratory is investigating shale to determine its potential suitability as a host rock for the disposal of high-level radioactive wastes (HLW). In support of this program, preliminary studies were carried out on sorption of cesium, strontium, technetium, neptunium, and uranium onto Chattanooga (Upper Dowelltown), Pierre, Green River Formation, Nolichucky, and Pumpkin Valley Shales under oxic conditions (air present). Three simulated groundwaters were used. One of the groundwaters was a synthetic brine made up to simulate highly saline groundwaters in the Pumpkin Valley Shale. The second was a 100/1 dilution of thismore » groundwater and the third was 0.03 M NaHCO/sub 3/. Moderate to significant sorption was observed under most conditions for all of the tested radionuclides except technetium. Moderate technetium sorption occurred on Upper Dowelltown Shale, and although technetium sorption was low on the other shales, it was higher than expected for Tc(VII), present as the anion TcO/sub 4//sup -/. Little sorption of strontium onto the shales was observed from the concentrated saline groundwater. These data can be used in a generic fashion to help assess the sorption characteristics of shales in support of a national survey. 10 refs., 4 figs., 23 tabs.« less

  4. Sorption behavior of uranium(VI) on a biotite mineral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idemitsu, K.; Obata, K.; Furuya, H.

    1995-12-31

    Biotite has the most important role for the sorption of radionuclides in granitic rocks. Experiments on the sorption of uranium(VI) on biotite were conducted to understand the fundamental controls on uranium sorption on biotite mineral, including the effects of pH and uranium concentration in solution. Biotite powder (mesh 32--60) were washed with 1N HCl for a week and were rinsed twice with deionized water for a week. This HCl treatment was necessary to avoid the effects by other minerals. The agreement between surface adsorption coefficient, Ka, of both biotites with and without HCl treatment was within one order of magnitude.more » The peak Ka value was in the range of 0.1 to 0.01 cm{sup 3}/cm{sup 2} around pH 6. A comparison of aqueous uranium speciations and sorption results indicates that neutral uranyl hydroxide could be an important species sorbed on the biotite. Sequential desorption experiments with KCl and HCl solutions were also carried out after sorption experiments to investigate sorption forms of uranium. Approximately 20% of uranium in solution were sorbed on the biotite as an exchangeable ion. The fraction of exchangeable uranium had a little dependence on pH. The other uranium could not be extracted even by 6N HCl solution. It is possible that most of the uranium could be precipitated as U(IV) via Fe(II) reduction on the biotite surface.« less

  5. Uranium, yttrium, and rare earth elements accumulation during the Cretaceous anoxic events in carbonaceous rocks in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Savelyeva, Olga; Philosofova, Tatyana; Bergal-Kuvikas, Olga; Savelyeva, Svetlana

    2017-04-01

    We have studied the carbonate-siliceous section of paleooceanic Albian-Cenomanian deposits on the Kamchatsky Mys peninsula (Eastern Kamchatka, Russia) [1].The section is represented by a rhythmic alternation of planktonic limestones and jaspers, accumulated in the open ocean environment. The rhythmicity can be attributed to climate variations that reflect a fluctuation of astronomical parameters (Milankovitch cycles) [2, 3].The section contains two beds enriched in organic carbon, corresponding to the two oceanic anoxic events - MCE and OAE2 [3]. The maximum content of organic matter in those beds reaches 68%. Our geochemical studies revealed an enrichment of the carbonaceous rocks in some major and trace elements including PGE, in comparison with the surrounding limestone and jasper [4].The accumulation of the ore elements in carbonaceous beds is caused by euxinic conditions during sedimentation.The content of uranium, yttrium, and rare earth elements in carbonaceous rocks is up to 60, 142 and 312 ppm respectively. Phosphate grains (bone detritus) with microinclusions of yttrium and uranium minerals were revealed in the carbonaceous rocks using the scanning electron microscope. These data prove the hypothesis of the sorbtion of U and Y by phosphate detritus from seawater. Microprobe analysis also showed an increased content of Cu, Zn, V in some pyrite framboids, which indicates that these elements are fixed in rocks by Fe-sulphide phase or organic matter under euxinic conditions. Our research may bring us closer to understanding the mechanism of syngenetic accumulation of metals in the black shales. This work was supported by the RFBR (No. 16-05-00546). [1] Palechek, T.N., Savelyev, D.P., Savelyeva, O.L. (2010) Stratigraphy and Geological Correlation 18, (1) 63-82. [2] Savelyeva, O.L. (2010). Vestnik Kraunts. Nauki o zemle 1 (15), 45-55 (in Russian). [3] Savelyev, D.P., Savelyeva, O.L., Palechek, T.N., Pokrovsky, B.G. (2012) Geophysical Research Abstracts, 14, EGU2012-1940. [4] Savelyeva, O., Palesskiy, S., Savelyev, D. (2015) Goldschmidt Abstracts, 2015. 2779.

  6. Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin - a GIS-based analysis using weights of evidence

    USGS Publications Warehouse

    Mihalasky, Mark J.

    2001-01-01

    The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a segment of the Roberts Mountain thrust front, which bridges the southern ends of the trends. This pattern appears to delineate two well-defined, sub-parallel, northwest?southeast-trending crustal-scale structural zones. These features, here termed the ?Carlin? and ?Cortez? structural zones, are believed to control the regional-scale distribution of the sedimentary rock-hosted occurrences. Mineralizing processes were focused along these structural zones and significant ore deposits exist where they intersect other tectonic zones, favorable host rock-types, and (or) where appropriate physio-chemical conditions were present. The origin and age of the Carlin and Cortez structural zones are not well constrained, however, they are considered to be transcurrent features representing a long-lived, deep-crustal or mantle-rooted zone of weakness. Areas of elevated volcanic rock-hosted mineral potential are principally distributed along two broad and diffuse belts that trend (1) northwest-southeast across southwestern Nevada, parallel to the Sierra Nevada, and (2) northeast-southwest across northern Nevada, extending diagonally from the Sierra Nevada to southern Idaho. The first belt corresponds to the Walker Lane shear zone, a wide region of complex strike-slip faulting. The second, here termed the ?Humboldt shear(?) zone?, may represent a structural zone of transcurrent movement. Together, the Walker Lane and Humboldt shear(?) zones are believed to control the regional-scale distribution of volcanic rock-hosted occurrences. Volcanic rock-hosted mineralization was closely tied to the southward and westward migration of Tertiary magmatism across the region (which may have been mantle plume-driven). Both magmatic and mineralizing processes were localized and concentrated along these structural zones. The Humboldt shear(?) zone may have also affected the distribution of sedimentary rock-hosted mineralization along the Battle Mountain?Eureka (C

  7. Clay minerals trap hydrogen in the Earth's crust: Evidence from the Cigar Lake uranium deposit, Athabasca

    NASA Astrophysics Data System (ADS)

    Truche, Laurent; Joubert, Gilles; Dargent, Maxime; Martz, Pierre; Cathelineau, Michel; Rigaudier, Thomas; Quirt, David

    2018-07-01

    Hydrogen (H2)-rich fluids are observed in a wide variety of geologic settings including gas seeps in serpentinized ultramafic rocks, sub-seafloor hydrothermal vents, fracture networks in crystalline rocks from continental and oceanic crust, and volcanic gases. Natural hydrogen sources can sustain deep microbial ecosystems, induce abiotic hydrocarbons synthesis and trigger the formation of prebiotic organic compounds. However, due to its extreme mobility and small size, hydrogen is not easily trapped in the crust. If not rapidly consumed by redox reactions mediated by bacteria or suitable mineral catalysts it diffuses through the rocks and migrates toward the surface. Therefore, H2 is not supposed to accumulate in the crust. We challenge this view by demonstrating that significant amount of H2 may be adsorbed by clay minerals and remain trapped beneath the surface. Here, we report for the first time H2 content in clay-rich rocks, mainly composed of illite, chlorite, and kaolinite from the Cigar Lake uranium ore deposit (northern Saskatchewan, Canada). Thermal desorption measurements reveal that H2 is enriched up to 500 ppm (i.e. 0.25 mol kg-1 of rock) in these water-saturated rocks having a very low total organic content (<0.5 wt%). Such hydrogen uptake is comparable and even exceeds adsorbed methane capacities reported elsewhere for pure clay minerals or shales. Sudoite (Al-Mg di-trioctahedral chlorite) is probably the main mineral responsible for H2 adsorption in the present case. The presence of multiple binding sites in interlinked nanopores between crystal layers of illite-chlorite particles offers the ideal conditions for hydrogen sorption. We demonstrate that 4 to 17% of H2 produced by water radiolysis over the 1.4-Ga-lifetime of the Cigar Lake uranium ore deposit has been trapped in the surrounding clay alteration haloes. As a result, sorption processes on layered silicates must not be overlooked as they may exert an important control on the fate and mobility of H2 in the crust. Furthermore, the high capacity of clay minerals to sorb molecular hydrogen may also open up new opportunities for exploration of unexpected energy resources and for H2 storage based on geo-inspired materials.

  8. Comparison of the mineralogy of the Boss-Bixby, Missouri copper-iron deposit, and the Olympic Dam copper-uranium-gold deposit, South Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandom, R.T.; Hagni, R.D.; Allen, C.R.

    1985-01-01

    An ore microscopic examination of 80 polished sections prepared from selected drill core specimens from the Boss-Bixby, Missouri copper-iron deposit has shown that its mineral assemblage is similar to that of the Olympic Dam (Roxby Downs) copper-uranium-gold deposit in South Australia. A comparison with the mineralogy reported for Olympic Dam shows that both deposits contain: 1) the principal minerals, magnetite, hematite, chalcopyrite, and bornite, 2) the cobalt-bearing phases, carrollite and cobaltian pyrite, 3) the titanium oxides, rutile and anatase, 4) smaller amounts of martite, covellite, and electrum, 5) fluorite and carbonates, and 6) some alteration minerals. The deposits also aremore » similar with regard to the sequence of mineral deposition: 1) early oxides, 2) then sulfide minerals, and 3) a final oxide generation. The deposits, however, are dissimilar with regard to their host rock lithologies and structural settings. The Boss-Bixby ores occupy breccia zones within a hydrothermally altered basic intrusive and intruded silicic volcanics, whereas the Olympic Dam ores are contained in sedimentary breccias in a graben or trough. Also, some minerals have been found thus far to occur at only one of the deposits. The similarity of mineralogy in these deposits suggests that they were formed from ore fluids that had some similarities in character and that the St. Francois terrane of Missouri is an important region for further exploration for deposits with this mineral assemblage.« less

  9. Radon

    MedlinePlus

    You can't see radon. And you can't smell it or taste it. But it may be a problem in your home. Radon comes from the natural breakdown of uranium in soil, rock, and water. Radon is the second leading cause of lung cancer ...

  10. 15 CFR Supplement No. 1 to Part 783 - Deadlines for Submission of Reports and Amendments

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PROTOCOL REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS Pt. 783...) uranium hard-rock mines that have changed from operating or suspended status to closed-down status during...

  11. AERORADIOACTIVITY SURVEY AND AREAL GEOLOGY OF THE GEORGIA NUCLEAR LABORATORY AREA, NORTHERN GEORGIA (ARMS-I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKallor, J.A.

    1962-01-01

    An airborne gamma-radioactivity survey of about 7000 square miles around the Georgia Nuclear Laboratory (GNL) in Dawson County, Ga., was made by the U. S. Geological Survey in cooperation with the Division of Biology and Medicine, U. S. Atomic Energy Commission. The project was flown perpendicular to the regional strike at a nominal elevation of 500 ft above the ground with a flight-line spacing of 1 mile. Radioactivity contacts shown on a 1:250,000 map delineate areas of similar radioactivity, which, in general, trend northeast, parallel to the geologic strike. Many, but not all, formations correlate closely with radioactivity units. Changesmore » of radioactivity within some formations may indicate facies changes. In the GNL area the Cartersville fault, which dlosely coincides with a prominent radioactivity contact, separates the Valley and Ridge physiographic province from the Piedmont to the east. Within the Valley and Ridge province bedrock consists of sedimentary rocks of Paleozoic age; the radioactivity is from 300 to 900 counts per second (cps). Areas of limestone and dolomite are characterized by radioactivity lows, usually less than 500 cps. Most areas of shale have a radioactivity of 600 to 900 cps. Bedrock in the Piedmont consists mainly of igneous and metamorphic rocks of Precambrian and Palezoic ages, and the radioactivity ranges from about 250 to 2000 cps. The least radioactive rocks (250 to 500 cps) are hornblende gneiss, dioritic injection gneiss, and some of the granitic gneiss. The most radioactive rock is the augen gneiss in Bartow and Cherokee Counties (1000 to 2000 cps). Some of the granitic gneiss, biotite gneiss and schist, and the Talladega Slate have a radioactivity of slightly more than 1000 cps. Composite samples of surficial material were collected from sites directly under the flight path of the aircraft. After analysis for equivalent uranium based upon the number of counts recorded by geiger tubes, the samples were stored for future reference. The equivalent uranium was plotted against cps obtained from the aerial surveying. From 600 cps, which corresponds to slightiy more than 0.001 percent equivalent uranium, to 1600 cps, each 200-cps increase corresponds to an increase of almost 0.001 percent equivalent uranium. (auth)« less

  12. Fluid/rock Interaction History of a Faulted Rhyolite-Granite Contact Determined by Sr- Pb-Isotopes, Th/U-Disequilibria and Elemental Distributions (Eastern Rhine Graben Shoulder, SW-Germany)

    NASA Astrophysics Data System (ADS)

    Marbach, T.; Mangini, A.; Kober, B.; Schleicher, A.; Warr, L. N.

    2003-04-01

    Major and trace element analyses allow to obtain information concerning the chemical changes induced by alteration. Differences are partly petrographic because the profile crosses the granite-rhyolite contact, but they are also due to different alteration levels induced by fluid circulation along the fault system which has drained the alteration processes. The granite-rhyolite contact constitutes the primary structure. Only the most incompatible elements (Si, Al, Zr, Hf) retain their original signatures and reflect a mixing between typical granite and rhyolite lithologies across the altered zones (cataclasite). The more mobile elements show a different composition within the altered zones (cataclasite) notably a high leaching of cations. The geochemical tracers also suggest at least one strong hydrothermal event with reducing conditions in the altered zones. The isotopic analyses delivered qualitative and temporal information. The use of several isotopic systems, Rb/Sr-, U/Pb-isotopes and Th/U disequilibria, reveals a complex history of polyphase fluid/rock interaction following the Permian volcanic extrusion, showing notable disturbances during the late Jurassic hydrothermal activities, the Tertiary rifting of the Rhine Graben and more recent Quaternary alteration. The granite zone of the sampling profile has underwent an event which set up a new Rb-Sr isotopic composition and reset the Rb/Sr system which originatly corresponded to the Carboniferous intrusion ages. The Rb-Sr data of the granite samples produce a whole rock isochron of 152 ± 5,7 Ma (2σ error) in good agreement with the well-known late Jurassic hydrothermal event (135--160 Ma). The rocks evolution lines for Pb support a Tertiary hydrothermal event (54 Ma ± 16; 1σ error), potentially connected with the development of the Rhine Graben. The profile samples have undergone uranium and thorium redistribution processes which have occurred within the last ˜10^6 years. The samples of the altered zones record a more complex history of uranium exchange with the aqueous phase. This uranium exchange is proportional to the porosity. The best approximation is reached for an exchange coefficient (λ_E) for uranium ranging from 2,5 E-06 [a-1] in the middle of the altered zones to 2,5 E-05 [a-1] on the sides of the altered zones.

  13. Reconnaissance geology of the Ghazzalah Quadrangle, sheet 26/41 A, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Quick, James E.

    1983-01-01

    The Ghazzalah quadrangle is located in the northern Precambrian shield of Saudi Arabia between lat 26?30' and 27?00' N. and long 41?00' and 41?30' E. The area is underlain by two lithologically distinct, Precambrian volcanosedimentary units and a wide range of dioritoid and granitoid plutonic intrusive rocks. The only Phanerozoic rocks consist of one outcrop of Tertiary(?) basalt and widespread but thin deposits of Quaternary detritus. The Banana greenstone, the oldest rock in the quadrangle, consists of intermediate volcanic and subvolcanic rocks and minor interbedded marble, which have been metamorphosed to greenschist-facies assemblages. Volcanic rocks mainly range in composition from basalt to andesite, and subvolcanic rocks consist of diorite and diabase. The Banana greenstone is unconformably overlain by silicic volcanic rocks and minor arkosic sandstone and breccia of the Hadn formation. Preservation of delicate volcanic textures suggests that the rocks have been only incipiently metamorphosed. Unpublished rubidium/strontium isotopic data for the Hadn formation suggest an age of 620 to 610 Ma. Intrusive rocks are separable according to their ages relative to the Hadn formation. Those that are unconformably overlain by the Hadn formation consist of hornblende quartz diorite and gabbro, which may be consanguineous with the Banana greenstone, and younger tonalite, biotite-hornblende granodiorite, syenogranite, and monzogranite. Plutons of monzogranite, alkali-feldspar g,ranite, syenbgranite, peralkaline granite, and hypabyssal intrusions of granophyre were probably emplaced during a period coincident with and (or) following Hadn volcanism. Uranium-lead and rubidium/strontium isotopic data for two plutons in the adjacent Al Qasr quadrangle suggest that plutonic activity persisted in the region until about 580 to 570 Ma. Faulting appears to postdate all of the plutonic rocks. The dominant faults belong to a northeast-trending system of right-lateral shears; a subordinant system consists of mainly north- to northwest-trending faults. The peralkaline-granite plutons underlying Jibal Ba'gham and Jibal ar Rumman have the most economic potential. Wadi samples from these areas show an anomalous concentrations of tin, lead, niobium, and yttrium. Localized, intense radiometric anomalies in the Ba'gham intrusive complex are associated with high concentrations )f thorium, uranium, andrare-earth elements.

  14. Geothermal potential of Caledonian granites underlying Upper Palaeozoic sedimentary basins astride the Iapetus Suture Zone in Ireland

    NASA Astrophysics Data System (ADS)

    Fritschle, Tobias; Daly, J. Stephen; Whitehouse, Martin J.; McConnell, Brian; Buhre, Stephan

    2014-05-01

    Upper Palaeozoic sedimentary basins in Ireland overlie crystalline rocks within the Caledonian Iapetus Suture Zone. Beneath these basins, Lower Palaeozoic rocks, formed and deformed during the Caledonian orogenic cycle, were intruded by c. 420-390 Ma late-tectonic granites at various tectonic levels. These include the subsurface Kentstown and Glenamaddy granites discovered by mineral exploration drilling. While these granites comprise actual targets for Enhanced Geothermal System (EGS) exploration, several others likely exist based on geophysical considerations. In order to test the regional geothermal potential, the buried granites as well as analogue exposed rocks are being investigated geochemically. The geothermal potential of the intrusives depends on their heat production rate (HPR), which is calculated using rock density and concentrations of the heat producing elements (HPE) uranium, thorium and potassium. In spite of their close spacing and similar ages, the whole-rock geochemistry of the granites varies significantly, but with no obvious geographical control (Fritschle et al., 2013; 2014). The granite HPR values range from 1.4 μW/m3 for the Dhoon Granite (Isle of Man) to 4.9 μW/m3 for the Drogheda Granite (Ireland). This compares with the average HPR for a 'typical' granite of 2.7 μW/m3 (Goldstein et al., 2009). It is demonstrated that an elevated HPR of a granite can be related to enrichment in one of the HPE alone (e.g., uranium-enrichment in the Foxdale Granite (Isle of Man), or thorium-enrichment in the Drogheda Granite). Enrichment in HPE in a granite may occur due to different reasons including hydrothermal (re-) distribution of uranium, or the assimilation of thorium-rich wall-rocks. Hence, the distribution of the HPE in particular minerals, veins and source lithologies, along with the petrophysical characteristics of the sedimentary basins and the granites' petrogenesis, are currently being investigated as possible mechanisms controlling their heat production budget. Fritschle, T., Daly, J.S., Whitehouse, M.J., McConnell, B., Buhre, S., 2013. U-Pb Zircon Ages from Granites in the Iapetus Suture Zone in Ireland and the Isle of Man. Mineralogical Magazine, 77(5): 1115. Fritschle, T., Daly, J.S., Whitehouse, M.J., McConnell, B., Buhre, S., 2014. Zircon geochronology and Hf-O isotope geochemistry from granites in the Iapetus Suture Zone in Ireland and the Isle of Man. This issue. Goldstein, B.A., Hill, A.J., Long, A., Budd, A.R., Ayling, B., Malavazos, M., 2009. Hot rocks down under - evolution of a new energy industry. Geothermal Resources Council Transactions, 33: 185-198.

  15. Radioactive mineral spring precipitates, their analytical and statistical data and the uranium connection

    USGS Publications Warehouse

    Cadigan, R.A.; Felmlee, J.K.

    1982-01-01

    Major radioactive mineral springs are probably related to deep zones of active metamorphism in areas of orogenic tectonism. The most common precipitate is travertine, a chemically precipitated rock composed chiefly of calcium carbonate, but also containing other minerals. The mineral springs are surface manifestations of hydrothermal conduit systems which extend downward many kilometers to hot source rocks. Conduits are kept open by fluid pressure exerted by carbon dioxide-charged waters rising to the surface propelled by heat and gas (CO2 and steam) pressure. On reaching the surface, the dissolved carbon dioxide is released from solution, and calcium carbonate is precipitated. Springs also contain sulfur species (for example, H2S and HS-), and radon, helium and methane as entrained or dissolved gases. The HS- ion can react to form hydrogen sulfide gas, sulfate salts, and native sulfur. Chemical salts and native sulfur precipitate at the surface. The sulfur may partly oxidize to produce detectable sulfur dioxide gas. Radioactivity is due to the presence of radium-226, radon-222, radium-228, and radon-220, and other daughter products of uranium-238 and thorium-232. Uranium and thorium are not present in economically significant amounts in most radioactive spring precipitates. Most radium is coprecipitated at the surface with barite. Barite (barium sulfate) forms in the barium-containing spring water as a product of the oxidation of sulfur species to sulfate ions. The relatively insoluble barium sulfate precipitates and removes much of the radium from solution. Radium coprecipitates to a lesser extent with manganese-barium- and iron-oxy hydroxides. R-mode factor analysis of abundances of elements suggests that 65 percent of the variance of the different elements is affected by seven factors interpreted as follows: (1) Silica and silicate contamination and precipitation; (2) Carbonate travertine precipitation; (3) Radium coprecipitation; (4) Evaporite precipitation; (5) Hydrous limonite precipitation and coprecipitated elements including uranium; (6) Rare earth elements deposited with detrital contamination (?); (7) Metal carbonate adsorption and precipitation. Economically recoverable minerals occurring at some localities in spring precipitates are ores of iron, manganese, sulfur, tungsten and barium and ornamental travertine. Continental radioactive mineral springs occur in areas of crustal thickening caused by overthrusting of crustal plates, and intrusion and metamorphism. Sedimentary rocks on the lower plate are trapped between the plates and form a zone of metamorphism. Connate waters, carbonate rocks and organic-carbon-bearing rocks react to extreme pressure and temperature to produce carbon dioxide, and steam. Fractures are forced open by gas and fluid pressures. Deep-circulating meteoric waters then come in contact with the reactive products, and a hydrothermal cell forms. When hot mineral-charged waters reach the surface they form the familiar hot mineral springs. Hot springs also occur in relation to igneous intrusive action or volcanism both of which may be products of the crustal plate overthrusting. Uranium and thorium in the sedimentary rocks undergoing metamorphism are sometimes mobilized, but mobilization is generally restricted to an acid hydrothermal environment; much is redeposited in favorable environments in the metamorphosed sediments. Radium and radon, which are highly mobile in both acid and alkaline aqueous media move upward into the hydrothermal cell and to the surface.

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Albuquerque NTMS Quadrangle, New Mexico, including concentrations of forty-three additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maassen, L.W.; Bolivar, S.L.

    1979-06-01

    The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium. Totals of 408 water and 1538 sediment samples were collected from 1802 locations over a 20 100-km/sup 2/ area at an average density of one location per 11 km/sup 2/. Water samples were collected from springs, wells, and streams; sediments samples were collected predominantly from streams, but also from springs. All water samples were analyzed for uranium and 12 other elements. Sediment samples were analyzed for uranium and 42 additional elements. The uranium concentrations in water samples range from below the detection limit of 0.02 ppBmore » to 194.06 ppB. The mean uranium concentration for all water types containing < 40 ppB uranium is 1.98 ppB. Six samples contained uranium concentrations > 40.00 ppB. Well waters have the highest mean uranium concentration; spring waters have the lowest. Clusters of water samples that contain anomalous uranium concentrations are delineated in nine areas. Sediments collected from the quadrangle have uranium concentrations that range between 0.63 ppM and 28.52 ppM, with a mean for all sediments of 3.53 ppM. Eight areas containing clusters of sediments with anomalous uranium concentrations are delineated. One cluster contains sample locations within the Ambrosia Lake uranium district. Five clusters of sediment samples with anomalous uranium concentrations were collected from streams that drain the Jemez volcanic field. Another cluster defines an area just northeast of Albuquerque where streams drain Precambrian rocks, predominantly granites, of the Sandia Mountains. The last cluster, consisting of spring sediments from Mesa Portales, was collected near the contact of the Tertiary Ojo Alamo sandstone with underlying Cretaceous sediments. Sediments from these springs exhibit some of the highest uranium values reported and are associated with high uranium/thorium ratios.« less

  17. Radioactive equilibrium in ancient marine sediments

    USGS Publications Warehouse

    Breger, I.A.

    1955-01-01

    Radioactive equilibrium in eight marine sedimentary formations has been studied by means of direct determinations of uranium, radium and thorium. Alpha-particle counting has also been carried out in order to cross-calibrate thick-source counting techniques. The maximum deviation from radioactive equilibrium that has been noted is 11 per cent-indicating that there is probably equilibrium in all the formations analyzed. Thick-source alpha-particle counting by means of a proportional counter or an ionization chamber leads to high results when the samples contain less than about 10 p.p.m. of uranium. For samples having a higher content of uranium the results are in excellent agreement with each other and with those obtained by direct analytical techniques. The thorium contents that have been obtained correspond well to the average values reported in the literature. The uranium content of marine sediments may be appreciably higher than the average values that have been reported for sedimentary rocks. Data show that there is up to fourteen times the percentage of uranium as of thorium in the formations studied and that the percentage of thorium never exceeds that of uranium. While the proximity of a depositional environment to a land mass may influence the concentration of uranium in a marine sediment, this is not true with thorium. ?? 1955.

  18. Radiometric surveys in underground environment

    NASA Astrophysics Data System (ADS)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected a set of rock samples along the mine shaft to compare in situ results with high resolution gamma-ray analysis in the laboratory. The comparison points to a systematic overestimation (on the average, by a factor of two) of the uranium, thorium and potassium concentrations obtained with the portable apparatus. The bias between laboratory and field is slightly smaller for potassium and could be due only to deviation from standard geometric conditions. The largest differences occur in uranium concentrations, probably due also to the influence of the activity deriving from radon stagnation. The calculated radon flux depends on the radium specific activity, which, under the assumption of secular radioactive equilibrium, can be easily inferred from the uranium concentration, and the specific exhalation coefficient. Measurements of specific exhalation coefficient are difficult and only few studies have examined unaltered rocks in details. We estimated the values of this parameter by considering the degree of fracturing, width of fissures and evidence of percolating groundwater. In general, the coefficient increases from the entrance, where rocks are more massive, towards the shaft bottom, where closely spaced open fissures, often filled with percolating groundwater, might boost exhalation. As a whole, both potential radon flux and radiation dose values are relevant to radio protection rules.

  19. Preliminary Numerical Simulations of Nozzle Formation in the Host Rock of Supersonic Volcanic Jets

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.; Ogden, D. E.; Glatzmaier, G. A.

    2006-12-01

    Recognizing the difficulty in quantitatively predicting how a vent changes during an explosive eruption, Kieffer (Kieffer, S.W., Rev. Geophys. 27, 1989) developed the theory of fluid dynamic nozzles for volcanism, utilizing a highly developed predictive scheme used extensively in aerodynamics for design of jet and rocket nozzles. Kieffer's work shows that explosive eruptions involve flow from sub to supersonic conditions through the vent and that these conditions control the erosion of the vent to nozzle shapes and sizes that maximize mass flux. The question remains how to predict the failure and erosion of vent host rocks by a high-speed, multiphase, compressible fluid that represents an eruption column. Clearly, in order to have a quantitative model of vent dynamics one needs a robust computational method for a turbulent, compressible, multiphase fluid. Here we present preliminary simulations of fluid flowing from a high-pressure reservoir through an eroding conduit and into the atmosphere. The eruptive fluid is modeled as an ideal gas, the host rock as a simple incompressible fluid with sandstone properties. Although these simulations do not yet include the multiphase dynamics of the eruptive fluid or the solid mechanics of the host rock, the evolution of the host rock into a supersonic nozzle is clearly seen. Our simulations show shock fronts both above the conduit, where the gas has expanded into the atmosphere, and within the conduit itself, thereby influencing the dynamics of the jet decompression.

  20. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    PubMed

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are <2 x 10(-14), and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  1. Fracturing of doleritic intrusions and associated contact zones: Implications for fluid flow in volcanic basins

    NASA Astrophysics Data System (ADS)

    Senger, Kim; Buckley, Simon J.; Chevallier, Luc; Fagereng, Åke; Galland, Olivier; Kurz, Tobias H.; Ogata, Kei; Planke, Sverre; Tveranger, Jan

    2015-02-01

    Igneous intrusions act as both carriers and barriers to subsurface fluid flow and are therefore expected to significantly influence the distribution and migration of groundwater and hydrocarbons in volcanic basins. Given the low matrix permeability of igneous rocks, the effective permeability in- and around intrusions is intimately linked to the characteristics of their associated fracture networks. Natural fracturing is caused by numerous processes including magma cooling, thermal contraction, magma emplacement and mechanical disturbance of the host rock. Fracturing may be locally enhanced along intrusion-host rock interfaces, at dyke-sill junctions, or at the base of curving sills, thereby potentially enhancing permeability associated with these features. In order to improve our understanding of fractures associated with intrusive bodies emplaced in sedimentary host rocks, we have investigated a series of outcrops from the Karoo Basin of the Eastern Cape province of South Africa, where the siliciclastic Burgersdorp Formation has been intruded by various intrusions (thin dykes, mid-sized sheet intrusions and thick sills) belonging to the Karoo dolerite. We present a quantified analysis of fracturing in- and around these igneous intrusions based on five outcrops at three individual study sites, utilizing a combination of field data, high-resolution lidar virtual outcrop models and image processing. Our results show a significant difference between the three sites in terms of fracture orientation. The observed differences can be attributed to contrasting intrusion geometries, outcrop geometry (for lidar data) and tectonic setting. Two main fracture sets were identified in the dolerite at two of the sites, oriented parallel and perpendicular to the contact respectively. Fracture spacing was consistent between the three sites, and exhibits a higher degree of variation in the dolerites compared to the host rock. At one of the study sites, fracture frequency in the surrounding host rock increases slightly toward the intrusion at approximately 3 m from the contact. We conclude by presenting a conceptual fluid flow model, showing permeability enhancement and a high potential for fluid flow-channeling along the intrusion-host rock interfaces.

  2. PYRAMID ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Armstrong, Augustus K.; Scott, Douglas F.

    1984-01-01

    A geologic and mineral survey was conducted in the Pyramid Roadless Area, California. The area contains mineral showings, but no mineral-resource potential was identified during our studies. Three granodiorite samples on the west side of the roadless area contained weakly anomalous concentrations of uranium. Two samples of roof-pendant rocks, one metasedimentary rock and one metavolcanic rock, contain low concentrations of copper, and of copper and molybdenum, respectively. Although none was identified, the geologic terrane is permissive for mineral occurrences and large-scale, detailed geologic mapping of the areas of metasedimentary and metavolcanic roof pendants in the Pyramid Roadless Area could define a mineral-resource potential for tungsten and precious metals.

  3. Clay alteration and gold deposition in the genesis and blue star deposits, Eureka County, Nevada

    USGS Publications Warehouse

    Drews-Armitage, S. P.; Romberger, S.B.; Whitney, C.G.

    1996-01-01

    The Genesis and Blue Star sedimentary rock-hosted gold deposits occur within the 40-mile-long Carlin trend and are located in Eureka County, Nevada. The deposits are hosted within the Devonian calcareous Popovich Formation, the siliciclastic Rodeo Creek unit and the siliciclastic Vinini Formation. The host rocks have undergone contact metamorphism, decalcification, silicification, argillization, and supergene oxidation. Detailed characterization of the alteration patterns, mineralogy, modes of occurrence, and associated geochemistry of clay minerals resulted in the following classifications: least altered rocks, found distal to the orebody, consisting of both metamorphosed and unmetamorphosed host rock that has not been completely decalcified; and altered rocks, found proximal to the orebody that have been decalcified. Altered rocks are classified further into the following groups based on clay mineral content: silicic, 1 to 10 percent clay; silicicargillic, 10 to 35 percent clay; and argillic, 35 to 80 percent clay. Clay species identified are 1M illite, 2M1 illite, kaolinite, halloysite, and dioctahedral smectite. An early hydrothermal event resulted in the precipitation of euhedral kaolinite and at least one generation of silica. This event occurred contemporaneously with decalcification which increased rock permeability and porosity. A second clay alteration event resulted in the precipitation of hydrothermal 1M illite which replaced hydrothermal kaolinite and is associated with gold deposition. Silver and silica deposition is also associated with this phase of hydrothermal alteration. Hydrothermal alteration was followed by supergene alteration which resulted in the formation of supergene kaolinite, halloysite, and smectite as well as the oxidation of iron-bearing minerals. Supergene clays are concentrated along faults, dike margins, and within rocks containing carbonate. Gold mineralization is not associated with supergene clay minerals within the Genesis and Blue Star deposits. Rocks classified as silicic-argillic in the Popovich Formation represent the most significant gold host. Silicicargillic rocks commonly exhibit bedding-parallel alteration zones. This pattern of alteration indicates that stratigraphy as well as northwest-trending structures played a significant role in the migration of gold-bearing fluids. Based on K-Ar age determinations of hydrothermal 1M illite associated with gold, the main event of mineralization in the Genesis and Blue Star deposits occurred between 93 and 100 Ma, during mid-Cretaceous time.

  4. Magmatic sulphides in Quaternary Ecuadorian arc magmas

    NASA Astrophysics Data System (ADS)

    Georgatou, Ariadni; Chiaradia, Massimo; Rezeau, Hervé; Wälle, Markus

    2018-01-01

    New petrographic and geochemical data on magmatic sulphide inclusions (MSIs) are presented and discussed for 15 Quaternary volcanic centers of the Ecuadorian frontal, main and back volcanic arc. MSIs occur mostly in Fe-Ti oxides (magnetite and/or magnetite-ilmenite pair) and to a lesser extent in silicate minerals (amphibole, plagioclase, and pyroxene). MSIs are present in all volcanic centers ranging in composition from basalt to dacite (SiO2 = 50-67 wt.%), indicating that sulphide saturation occurs at various stages of magmatic evolution and independently from the volcano location along the volcanic arc. MSIs also occur in dioritic, gabbroic and hornblenditic magmatic enclaves of the volcanic rocks. MSIs display variable sizes (1-30 μm) and shapes (globular, ellipsoidal, angular, irregular) and occur mostly as polymineralic inclusions composed of Fe-rich and Cu-poor (pyrrhotite) and Cu-rich (mostly chalcopyrite) phases. Aerial sulphide relative abundances range from 0.3 to 7 ppm in volcanic host rocks and from 13 to 24 ppm in magmatic enclaves. Electron microprobe analyses of MSIs indicate maximum metal contents of Cu = 65.7 wt.%, Fe = 65.2 wt.%, Ni = 10.1 wt.% for those hosted in the volcanic rocks and of Cu = 57.7 wt.%, Fe = 60.9 wt.%, Ni = 5.1 wt.%, for those hosted in magmatic enclaves. Relationships of the sulphide chemistry to the host whole rock chemistry show that with magmatic differentiation (e.g., increasing SiO2) the Cu and Ni content of sulphides decrease whereas the Fe and S contents increase. The opposite behavior is observed with the increase of Cu in the whole rock, because the latter is anti-correlated with the SiO2 whole rock content. Laser ablation ICP-MS analyses of MSIs returned maximum values of PGEs and noble metals of Pd = 30 ppm, Rh = 8.1 ppm, Ag = 92.8 ppm and Au = 0.6 ppm and Pd = 43 ppm, Rh = 22.6 ppm, Ag = 89 ppm and Au = 1 ppm for those hosted in volcanic rocks and magmatic enclaves, respectively. These PGE contents display a different range of values with respect to those in previously investigated magmatic sulphides. MSIs that are Cu- and PGE/Cu-rich are found in less evolved rocks (i.e., lower SiO2 contents) that also display a lower amount of sulphide inclusions. Cu-rich sulphide phases (chalcopyrite ± bornite) are mostly hosted by magnetite, whereas PGE-rich ones consist of a Cu-poor phase (pyrrhotite) hosted by plagioclase. However, no systematic changes in the chemistry of the host silicate mineral are observed in coincidence with the occurrence of MSIs. We use the results of our study to draw some implications on Cu (and other chalcophile elements) behavior during arc magmatic processes potentially associated with the formation of porphyry-type deposits.

  5. An integrated magnetic and geological study of cataclasite- dominated pseudotachylytes in the Chiapas Massif, Mexico: a snapshot of stress orientation following slip

    NASA Astrophysics Data System (ADS)

    Garza, Roberto S. Molina; Geissman, John; Wawrzyniec, Tim; Weber, Bodo; Martínez, Margarita López; Aranda-Gómez, Jorge

    2009-06-01

    The Permian age Chiapas Massif in southeast Mexico is locally host to well-exposed pseudotachylyte vein networks. The veins are black to dark grey and aphanitic in appearance, and consist mostly of microbreccia of angular fragments of plagioclase, K-feldspar, biotite and quartz, in a cryptocrystalline (microscopically irresolvable) matrix. Evidence of melting is present in the form of glass seams, dikelets, glass clasts included in cataclasite and a distinct chemistry in the pseudotachylite veins; pristine glass represents a relatively small volume of the pseudotachylite veins. At an exposure along the Tablón River valley, where the host rock is a medium to coarse-grained equigranular quartz diorite, individual veins are consistently oriented about 280°, are up to 16 mm wide, tens of cm apart, display a consistent left-lateral offset and can be traced for several metres. Individual pseudotachylyte veins rarely cross each other, and they cannot be directly linked to a regional-scale fault. Pseudotachylytes are apparently formed by a combination of crushing, comminution and frictional melting, but they are cataclasite dominated. Textures indicate that cataclasis continued after frictional melting had ceased. A 40Ar/39Ar age determination from whole rock chips of one vein shows a climbing Ar release spectrum with a date of ~114 Ma as the most reliable age estimate for Ar retention. This result is interpreted in the context of pseudotachylyte formation, recrystallization and resetting of K-bearing minerals for the K-Ar system in the late Early Cretaceous. Ten veins were sampled for palaeomagnetic and magnetic fabric studies, with samples collected from both the veins and their host rock. Remanence data give moderate natural remanent magnetization (NRM) intensities for both the veins (e.g. NRM mean 6.6 × 10-3 A m-1 σ = 5.5) and host rock (mean 7.7 × 10-3 A m-1 σ = 10.8). Many samples of host rock yield an ill-defined east-west directed and shallow magnetization, which we interpret as a Late Permian magnetization based on previous studies of the Chiapas Massif. This magnetization resides in haematite. Veins, as well as immediately adjacent host rock, typically have well-defined, single polarity magnetizations of north-northwest declination and moderate positive inclination and these resemble the Cretaceous expected field direction. The overall mean of the veins is of Dec = 348.7° and Inc = 33.6° (k = 30.5 and α95 = 12.3° n = 6 site means). Rock magnetic parameters suggest that the remanence in the veins principally resides in low-Ti pseudo-single domain magnetite and maghemite grains, but haematite, coarse-grained magnetite, rutile, Fe-Cr-Ni oxides and ilmenite are also present in the veins. Bulk magnetic susceptibility values range between ~0.3 and 1.1 * 10-3 SI volume units, and host rock values do not differ significantly from vein values. The orientations of the principal susceptibility axes in the host rock and the veins are indistinguishable. In both, magnetic foliations are near vertical and are essentially parallel to the nearly east-west orientation of the veins. Nonetheless, host rock fabrics are predominantly prolate, whereas vein fabrics are oblate. The mean susceptibility tensors of host rocks and pseudotachylyte are characterized by P'/T values of 1.041/-0.327 and 1.033/+0.302, respectively. This result suggests that the fabric reflected by magnetic susceptibility anisotropy in the veins was formed under pure shear stress, during cooling of the veins. The lack of evidence of fabric rotation supports models that associate partial melt with viscous break during fault slip.

  6. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualheim, B.J.

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites,more » and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromfield, C.S.; Grauch, R.I.; Otton, J.K.

    The Richfield Quadrangle in west-central Utah was evaluated to identify areas favorable for the occurrence of uranium deposits known or likely to contain 100 tons of uranium with an average grade of not less than 100 ppM U/sub 3/O/sub 8/. Geologic reconnaissance was made of all known environments thought to be favorable for uranium deposits, and a representative selection of uranium occurrences reported in the literature was visited. Geochemical analyses from rock and limited water samples were used in the evaluation. Preliminary and incomplete aeroradiometric data and hydrogeochemical and stream-sediment analyses arrived too late in the program to be field-checkedmore » or to be adequately analyzed for this report. Two areas favorable for uranium deposits were delineated: (1) volcanogenic deposits (class 500 to 599) in association with Miocene Mount Belknap rhyolite, and acidic plutons in the Marysvale Volcanic Field in the Antelope Range and Tushar Mountains; and (2) volcanogenic (class 500 to 599) and/or magmatic hydrothermal deposits (class 330) associated with Miocene high-silica high-alkali rhyolite tuffs, flows, and hypabyssal intrusives in volcanic or subvolcanic environments in the southern Wah Wah Mountains.« less

  8. Mineral resources of the Adobe Town Wilderness Study Area, Sweetwater County, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Loenen, R.E.; Hill, R.H.; Bankey, V.

    1989-01-01

    The Adobe Town Wilderness Study Area is in Southwest Wyoming about 60 miles southeast of Rock Springs. This study area consists of flat-lying sedimentary rock of Eocene age located near the center of the Washakie Basin. There are no identified resources. This study area has a high resource potential for undiscovered oil and gas, in over pressured Cretaceous and Tertiary sandstone reservoirs. This study area has a low resource potential for undiscovered oil shale, zeolites, uranium, coal, and metallic minerals.

  9. Modeling Thermal Pressurization Around Shallow Dikes Using Temperature-Dependent Hydraulic Properties: Implications for Deformation Around Intrusions

    NASA Astrophysics Data System (ADS)

    Townsend, Meredith R.

    2018-01-01

    Pressurization and flow of groundwater around igneous intrusions depend in part on the hydraulic diffusivity of the host rocks and processes that enhance diffusivity, such as fracturing, or decrease diffusivity, such as mineral precipitation during chemical alteration. Characterizing and quantifying the coupled effects of alteration, pore pressurization, and deformation have significant implications for deformation around intrusions, geothermal energy, contact metamorphism, and heat transfer at mid-ocean ridges. Fractures around dikes at Ship Rock, New Mexico, indicate that pore pressures in the host rocks exceeded hydrostatic conditions by at least 15 MPa following dike emplacement. Hydraulic measurements and petrographic analysis indicate that mineral precipitation clogged the pores of the host rock, reducing porosity from 0.25 to <0.10 and reducing permeability by 5 orders of magnitude. Field data from Ship Rock are used to motivate and constrain numerical models for thermal pore fluid pressurization adjacent to a meter-scale dike, using temperature-dependent hydraulic properties in the host rock as a proxy for porosity loss by mineral precipitation during chemical alteration. Reduction in permeability by chemical alteration has a negligible effect on pressurization. However, reduction in porosity by mineral precipitation increases fluid pressure by constricting pore volume and is identified as a potentially significant source of pressure. A scaling relationship is derived to determine when porosity loss becomes important; if permeability is low enough, pressurization by porosity loss outweighs pressurization by thermal expansion of fluids.

  10. Alteration minerals in impact-generated hydrothermal systems - Exploring host rock variability

    NASA Astrophysics Data System (ADS)

    Schwenzer, Susanne P.; Kring, David A.

    2013-09-01

    Impact-generated hydrothermal systems have been previously linked to the alteration of Mars’ crust and the production of secondary mineral assemblages seen from orbit. The sensitivity of the resultant assemblages has not yet been evaluated as a function of precursor primary rock compositions. In this work, we use thermochemical modeling to explore the variety of minerals that could be produced by altering several known lithologies based on martian meteorite compositions. For a basaltic host rock lithology (Dhofar 378, Humphrey) the main alteration phases are feldspar, zeolite, pyroxene, chlorite, clay (nontronite, kaolinite), and hematite; for a lherzolithic host rock lithology (LEW 88516) the main alteration phases are amphibole, serpentine, chlorite, clay (nontronite, kaolinite), and hematite; and for an ultramafic host rock lithology (Chassigny) the main minerals are secondary olivine, serpentine, magnetite, quartz, and hematite. These assemblages and proportions of phases in each of those cases depend on W/R and temperature. Integrating geologic, hydrologic and alteration mineral evidence, we have developed a model to illustrate the distribution of alteration assemblages that occur in different levels of an impact structure. At the surface, hot, hydrous alteration affects the ejecta and melt sheet producing clay and chlorite. Deeper in the subsurface and depending on the permeability of the rock, a variety of minerals - smectite, chlorite, serpentine, amphiboles and hematite - are produced in a circulating hydrothermal system. These modeled mineral distributions should assist with interpretation of orbital observations and help guide surface exploration by rovers and sample return assets.

  11. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern Mongolia

    USGS Publications Warehouse

    Wainwright, A.J.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K.; Friedman, R.M.

    2011-01-01

    Uranium-Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu-Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (??Nd(t) range from +3.1 to +7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have <1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu-Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium-Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu-Au deposits are ~372Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu-Au mineralization are ~366Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu-Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu-Au deposits from younger magmatic suites in the district. ?? 2010 Elsevier B.V.

  12. Cobalt—Styles of deposits and the search for primary deposits

    USGS Publications Warehouse

    Hitzman, Murray W.; Bookstrom, Arthur A.; Slack, John F.; Zientek, Michael L.

    2017-11-30

    Cobalt (Co) is a potentially critical mineral. The vast majority of cobalt is a byproduct of copper and (or) nickel production. Cobalt is increasingly used in magnets and rechargeable batteries. More than 50 percent of primary cobalt production is from the Central African Copperbelt. The Central African Copperbelt is the only sedimentary rock-hosted stratiform copper district that contains significant cobalt. Its presence may indicate significant mafic-ultramafic rocks in the local basement. The balance of primary cobalt production is from magmatic nickel-copper and nickel laterite deposits. Cobalt is present in several carbonate-hosted lead-zinc and copper districts. It is also variably present in Besshi-type volcanogenic massive sulfide and siliciclastic sedimentary rock-hosted deposits in back arc and rift environments associated with mafic-ultramafic rocks. Metasedimentary cobalt-copper-gold deposits (such as Blackbird, Idaho), iron oxide-copper-gold deposits, and the five-element vein deposits (such as Cobalt, Ontario) contain different amounts of cobalt. None of these deposit types show direct links to mafic-ultramafic rocks; the deposits may result from crustal-scale hydrothermal systems capable of leaching and transporting cobalt from great depths. Hydrothermal deposits associated with ultramafic rocks, typified by the Bou Azzer district of Morocco, represent another type of primary cobalt deposit.In the United States, exploration for cobalt deposits may focus on magmatic nickel-copper deposits in the Archean and Proterozoic rocks of the Midwest and the east coast (Pennsylvania) and younger mafic rocks in southeastern and southern Alaska; also, possibly basement rocks in southeastern Missouri. Other potential exploration targets include—The Belt-Purcell basin of British Columbia (Canada), Idaho, Montana, and Washington for different styles of sedimentary rock-hosted cobalt deposits;Besshi-type VMS deposits, such as the Greens Creek (Alaska) deposit and the Ducktown (Tennessee) waste and tailings; andKnown five-element vein districts in Arizona and New Mexico, as well as in the Yukon-Tanana terrane of Alaska; and hydrothermal deposits associated with ultramafic rocks along the west coast, in Alaska, and in the Appalachian Mountains.

  13. Danburite in evaporites of the Paradox basin, Utah.

    USGS Publications Warehouse

    Raup, O.B.; Madsen, B.M.

    1986-01-01

    Danburite (CaB2Si2O8) has been found as nodules in Pennsylvanian age marine evaporites. The occurrence of danburite and its relation to the host rock in the Paradox basin evaporites indicates that it most likely formed by diagenetic reaction of boron-rich, high-salinity brines with constituents in the anhydrite host rock.-from Authors

  14. Uranium mining wastes, garden exhibition and health risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Gerhard; Schmidt, Peter; Hinz, Wilko

    2007-07-01

    Available in abstract form only. Full text of publication follows: For more than 40 years the Soviet-German stockholding company SDAG WISMUT mined and milled Uranium in the East of Germany and became up to 1990 the world's third largest Uranium producer. After reunification of Germany, the new found state own company Wismut GmbH was faced with the task of decommissioning and rehabilitation of the mining and milling sites. One of the largest mining areas in the world, that had to be cleaned up, was located close to the municipality of Ronneburg near the City of Gera in Thuringia. After closingmore » the operations of the Ronneburg underground mine and at the 160 m deep open pit mine with a free volume of 84 Mio.m{sup 3}, the open pit and 7 large piles of mine waste, together 112 Mio.m{sup 3} of material, had to be cleaned up. As a result of an optimisation procedure it was chosen to relocate the waste rock piles back into the open pit. After taking this decision and approval of the plan the disposal operation was started. Even though the transport task was done by large trucks, this took 16 years. The work will be finished in 2007, a cover consisting of 40 cm of uncontaminated material will be placed on top of the material, and the re-vegetation of the former open pit area will be established. When in 2002 the City of Gera applied to host the largest garden exhibition in Germany, Bundesgartenschau (BUGA), in 2007, Wismut GmbH supported this plan by offering parts of the territory of the former mining site as an exhibition ground. Finally, it was decided by the BUGA organizers to arrange its 2007 exhibition on grounds in Gera and in the valley adjacent to the former open pit mine, with parts of the remediated area within the fence of the exhibition. (authors)« less

  15. The geochemistry of water near a surficial organic-rich uranium deposit, northeastern Washington State, U.S.A.

    USGS Publications Warehouse

    Zielinski, R.A.; Otton, J.K.; Wanty, R.B.; Pierson, C.T.

    1987-01-01

    The chemistry of three stream, three spring and six near-surface waters in the vicinity of a Holocene organic-rich uranium deposit is described, with particular emphasis on the chemistry of U. Results characterize the solution behavior of uranium as U-bearing water interacts with relatively undecomposed, surficial organic matter. Of the measured major and trace chemical species, only U is consistently highly enriched (17-318 ppb) relative to reported values for regional waters, or to literature values for waters in largely granitic terrains. R-mode factor analysis of the chemical data suggests that most U is present in a soluble form, but that some U is also associated with fine suspended particulates of clay, organic matter, or hydrous oxides. Calculations that apply thermodynamic data to predict U speciation in solution indicate the relative importance of uranyl carbonate and uranyl phosphate complexes. Analysis of more finely filtered samples (0.05 ??m vs. 0.45 ??m), and direct radiographic observations using fission-track detectors suspended in the waters indicate the presence of some uraniferous particulate matter. Application of existing thermodynamic data for uranous- and uranyl-bearing minerals indicates that all waters are undersaturated with U minerals as long as ambient Eh ??? +0.1 v. If coexisting surface and near-surface waters are sufficiently oxidizing, initial fixation of U in the deposit should be by a mechanism of adsorption. Alternatively, more reducing conditions may prevail in deeper pore waters of the organic-rich host sediments, perhaps leading to direct precipitation or diagenetic formation of U4+ minerals. A 234U 238U alpha activity ratio of 1.08 ?? 0.02 in a spring issuing from a hillslope above the deposit suggests a relatively soluble source of U. In contrast, higher activity ratios of 234U 238U (??? 1.3) in waters in contact with the uraniferous valley-fill sediments suggest differences in the nature of interaction between groundwater and the local, U-rich source rocks. ?? 1987.

  16. Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Ponte Nova alkaline mafic-ultramafic massif, SE Brazil

    NASA Astrophysics Data System (ADS)

    Azzone, Rogério Guitarrari; Montecinos Munoz, Patricio; Enrich, Gaston Eduardo Rojas; Alves, Adriana; Ruberti, Excelso; Gomes, Celsode Barros

    2016-09-01

    Crustal assimilation plus crystal fractionation processes of different basanite magma batches control the evolution of the Ponte Nova cretaceous alkaline mafic-ultramafic massif in SE Brazil. This massif is composed of several intrusions, the main ones with a cumulate character. Disequilibrium features in the early-crystallized phases (e.g., corrosion and sieve textures in cores of clinopyroxene crystals, spongy-cellular-textured plagioclase crystals, gulf corrosion texture in olivine crystals) and classical hybridization textures (e.g., blade biotite and acicular apatite crystals) provide strong evidence of open-system behavior. All samples are olivine- and nepheline-normative rocks with basic-ultrabasic and potassic characters and variable incompatible element enrichments. The wide ranges of whole-rock 87Sr/86Sri and 143Nd/144Ndi ratios (0.70432-0.70641 and 0.512216-0.512555, respectively) are indicative of crustal contribution from the Precambrian basement host rocks. Plagioclase and apatite 87Sr/86Sr ratios (0.70422-0.70927) obtained for the most primitive samples of each intrusion indicate disequilibrium conditions from early- to principal-crystallization stages. Isotope mixing-model curves between the least contaminated alkaline basic magma and heterogeneous local crustal components indicate that each intrusion of the massif is differentiated from the others by varied degrees of crustal contribution. The primary mechanisms of crustal contribution to the Ponte Nova massif involve the assimilation of host rock xenoliths during the development of the chamber environment and the assimilation of partial melts from the surrounding host rocks. Thermodynamic models using the melts algorithm indicate that parental alkaline basic magmas can be strongly affected by contamination processes subsequently to their initial stages of crystallization when there is sufficient energy to assimilate partial melts of crustal host rocks. The assimilation processes are considered to be responsible for the increse in the K2O/Na2O, Ba/Sr and Rb/Sr ratios. This enrichment was associated with the relevant role of biotite breakdown in the assimilated host rock partial melts. The petrological model for the Ponte Nova massif is explained as repeated influxes of antecryst-laden basanite magmas that deposited most of their suspended crystals on the floor of the upper-crust magma chamber. Each intrusion is representative of relatively primitive olivine- and clinopyroxene-phyric basanites that had assimilated different degrees of partial melts of heterogeneous host rocks. This study reveals the relevant role of crustal assimilation processes in the magmatic evolution of nepheline-normative rocks, especially in upper-crust chamber environments.

  17. CRUMP 2003 Selected Water Sample Results

    EPA Pesticide Factsheets

    Point locations and water sampling results performed in 2003 by the Church Rock Uranium Monitoring Project (CRUMP) a consortium of organizations (Navajo Nation Environmental Protection Agency, US Environmental Protection Agency, New Mexico Scientific Laboratory Division, Navajo Tribal Utility Authority and NM Water Quality Control Commission). Samples include general description of the wells sampled, general chemistry, heavy metals and aestheic parameters, and selected radionuclides. Here only six sampling results are presented in this point shapefile, including: Gross Alpha (U-Nat Ref.) (pCi/L), Gross Beta (Sr/Y-90 Ref.) (pCi/L), Radium-226 (pCi/L), Radium-228 (pCi/L), Total Uranium (pCi/L), and Uranium mass (ug/L). The CRUMP samples were collected in the area of Churchrock, NM in the Eastern AUM Region of the Navajo Nation.

  18. Reconnaissance for radioactive materials in northeastern United States during 1952

    USGS Publications Warehouse

    McKeown, Francis A.; Klemic, Harry

    1953-01-01

    Reconnaissance for radioactive materials was made in parts of Maine, New York, New Jersey, and Pennsylvania. The primary objective was to examine the iron ore deposits and associated rocks in the Adirondack Mountains of New York and the Highlands of New Jersey. In addition, several deposits known or reported to contain radioactive minerals were examined to delimit their extent. Most of the deposits examined are not significant as possible sources of radioactive elements and the data pertaining to them are summarized in table form. Deposits that do warrant more description than can be given in table form are: Benson Mines, St. Lawrence County, N. Y.; Rutgers mine, Clinton County, N. Y.; Mineville Mines, Essex County, N. Y.l Canfield phosphate mine, Morris County, N. J.; Mullgan quarry, Hunterdon County, N. J.; and the Chestnut Hill-Marble Mountain area, Pennsylvania and New Jersey. The Old Bed in the Mineville district is the only deposit that may be economically significant. Apatite from Old Bed ore contains as much as 4.9 percent total rare earth. 0.04 percent thorium, and 0.018 percent uranium. Magnetite ore at the Rutgers mine contains radioactive zircon and apatite. Radioactivity measurements of outcrops and dump material show that the ore contains from 0.005 to 0.010 percent equivalent uranium. One sample of lean magnetite ore contains 0.006 percent equivalent uranium. Garnet-rich zones in the Benson Mines magnetite deposit contain as much as 0.017 equivalent uranium. Most of the rock and ore, however, contains about 0.005 percent equivalent uranium. Available data indicate that the garnet-rich zones are enriched in radioactive allanite. A shear zone in the Kittatinny limestone of Cambrian age at the Mulligan quarry contains uraniferous material. Radioactivity anomalies elsewhere in the quarry and in adjacent fields indicate that there may be other uraniferous shear zones. Assays of samples and measurements of outcrop radioactivity indicate that the uranium content of these zones is low; samples contain from 0.008 to 0.068 percent equivalent uranium. The anomalies, however, may indicate greater concentrations of uranium below surficial leached zones. The Chestnut Hill-Marble Mountain area contains radioactivity anomalies for about 2 miles along the strike of the contact of pre-Cambrian Pickering gneiss and Franklin limestone formations. In places this contact is injected with pegmatite, which probably was the source of the radioelements. The most favorable area for further study is at Marble Mountain, where a nearly continuous anomaly extends for about 1500 feet. Samples from part of this area contain as much as 0.044 percent equivalent uranium and 0.005 percent uranium. Radioactive hematite and florencite, in which thorium may have substituted for cerium, are the only radioactive minerals observed in the Marble Mountain area.

  19. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  20. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  1. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  2. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  3. Solid state speciation of uranium and its local structure in Sr2CeO4 using photoluminescence spectroscopy.

    PubMed

    Sahu, M; Gupta, Santosh K; Jain, D; Saxena, M K; Kadam, R M

    2018-04-15

    An effort was taken to carry our speciation study of uranium ion in technologically important cerate host Sr 2 CeO 4 using time resolved photoluminescence spectroscopy. Such studies are not relevant only to nuclear industry but can give rich insight into fundamentals of 5f electron chemistry in solid state systems. In this work both undoped and varied amount of uranium doped Sr 2 CeO 4 compound is synthesized using complex polymerization method and is characterized systematically using X-ray diffraction (XRD), Raman spectroscopy, impedance spectroscopy and scanning electron microscopy (SEM). Both XRD and Raman spectroscopy confirmed the formation of pure Sr 2 CeO 4 which has tendency to decompose peritectically to SrCeO 3 and SrO at higher temperature. Uranium doping is confirmed by XRD. Uranium exhibits a rich chemistry owing to its variable oxidation state from +3 to +6. Each of them exhibits distinct luminescence properties either due to f-f transitions or ligand to metal charge transfer (LMCT). We have taken Sr 2 CeO 4 as a model host lattice to understand the photophysical characteristics of uranium ion in it. Emission spectroscopy revealed the stabilization of uranium as U (VI) in the form of UO 6 6- (octahedral uranate) in Sr 2 CeO 4 . Emission kinetics study reflects that uranate ions are not homogeneously distributed in Sr 2 CeO 4 and it has two different environments due to its stabilization at both Sr 2+ as well as Ce 4+ site. The lifetime population analysis interestingly pinpointed that majority of uranate ion resided at Ce 4+ site. The critical energy-transfer distance between the uranate ion was determined based on which the concentration quenching mechanism was attributed to electric multipolar interaction. These studies are very important in designing Sr 2 CeO 4 based optoelectronic material as well exploring it for actinides studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Solid state speciation of uranium and its local structure in Sr2CeO4 using photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Sahu, M.; Gupta, Santosh K.; Jain, D.; Saxena, M. K.; Kadam, R. M.

    2018-04-01

    An effort was taken to carry our speciation study of uranium ion in technologically important cerate host Sr2CeO4 using time resolved photoluminescence spectroscopy. Such studies are not relevant only to nuclear industry but can give rich insight into fundamentals of 5f electron chemistry in solid state systems. In this work both undoped and varied amount of uranium doped Sr2CeO4 compound is synthesized using complex polymerization method and is characterized systematically using X-ray diffraction (XRD), Raman spectroscopy, photoluminescence spectroscopy and scanning electron microscopy (SEM). Both XRD and Raman spectroscopy confirmed the formation of pure Sr2CeO4 which has tendency to decompose peritectically to SrCeO3 and SrO at higher temperature. Uranium doping is confirmed by XRD. Uranium exhibits a rich chemistry owing to its variable oxidation state from +3 to +6. Each of them exhibits distinct luminescence properties either due to f-f transitions or ligand to metal charge transfer (LMCT). We have taken Sr2CeO4 as a model host lattice to understand the photophysical characteristics of uranium ion in it. Emission spectroscopy revealed the stabilization of uranium as U (VI) in the form of UO66- (octahedral uranate) in Sr2CeO4. Emission kinetics study reflects that uranate ions are not homogeneously distributed in Sr2CeO4 and it has two different environments due to its stabilization at both Sr2+ as well as Ce4+ site. The lifetime population analysis interestingly pinpointed that majority of uranate ion resided at Ce4+ site. The critical energy-transfer distance between the uranate ion was determined based on which the concentration quenching mechanism was attributed to electric multipolar interaction. These studies are very important in designing Sr2CeO4 based optoelectronic material as well exploring it for actinides studies.

  5. A case study of energy transfer mechanism from uranium to europium in ZnAl2O4 spinel host by photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Mithlesh; Mohapatra, M.

    2016-04-01

    Zinc aluminate (ZAO), a member of spinel class of inorganic compounds has been of much interest of late due to its wide range of use in catalysis, optical, electronic and ceramic industries. When doped with several lanthanides, this material has proved to be a potential host matrix for phosphors. As lanthanides suffer from poor (direct) excitation and emission cross sections, the use of a co-dopant ion can help to circumvent this and extract better emission from a lanthanide doped ZAO system. In this connection, energy transfer mechanism from uranium to europium in the ZAO host was investigated by photoluminescence spectroscopic technique. It was seen that uranium gets stabilized in the hexavalent state as UO66 - (octahedral uranate) where as the lanthanide ion, Eu is stabilized in its trivalent state in the ZAO host. In the co-doped system, an efficient energy transfer pathway from the uranate to europium ion was observed. Based upon emission and life time data a suitable mechanism was proposed for the energy transfer (quenching) process. It was proposed that after excitation by photons, the uranate ions transfer their energy to nearby 5D1 level of Eu3 + ions which non-radiatively de-excites to the corresponding lower levels of 5D0. Further this 5D0 level decays in a radiative mode to the 7F manifold giving the characteristic emission profile of trivalent Eu. It was proposed that both static and dynamic types of energy transfer mechanism were responsible for this process.

  6. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of amore » ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.« less

  7. Drill-back studies examine fractured, heated rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.A.; Flexser, S.; Myer, L.R.

    1990-01-01

    To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences inmore » compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs.« less

  8. SUMMARY REVIEW OF HEALTH EFFECTS ASSOCIATED WITH HYDROGEN FLUORIDE AND RELATED COMPOUNDS: HEALTH ISSUE ASSESSMENT

    EPA Science Inventory

    The major natural sources of airborne hydrogen fluoride (HF) are volcanic activity, ocean spray, and crustal weathering of fluoride-containing rocks. Anthropogenic sources include emissions from industrial operations such as aluminum and fluorocarbon production, and uranium proce...

  9. Mineral resource potential map of the Chama River Canyon Wilderness and contiguous roadless area, Rio Arriba County, New Mexico

    USGS Publications Warehouse

    Ridgley, Jennie L.; Light, Thomas D.

    1983-01-01

    The Chama River Canyon Wilderness and Roadless Area have a moderate to high potential for the presence of small deposits of copper with associated uranium and silver. These deposits, as yet undetected, would occur in the Permian Cutler Formation and in the lower part of the Triassic Chinle Formation, rock units that are, for the most part, present only in the subsurface. The presence of these deposits is inferred because such deposits occur in rocks of equivalent age in adjacent areas. Gypsum, of probable minable quality and quantity, occurs throughout the area. Oil and gas are possibly present in Pennsylvanian strata in the subsurface, although no drilling in the study area has tested this hypothesis. Other commodities, including noncopper-related uranium, kaolinite, chromium, vanadium, manganese, and bitumen, although present locally in anomalous concentrations, do not appear to constitute potential resources for these commodities.

  10. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    USGS Publications Warehouse

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and geothermal gradients, and tectonic warps. These concepts have practical and empirical application in most mining districts where they are of use in the exploration for ore, but are of such broad and general application that they may not represent known or inferred ore formation processes. Close spatial relation among some sedimentary rock- hosted Au deposits and their host structures suggests that the structures and the orebodies are genetically linked because they may have shared the same developmental history. Examples of probable syn-deformational genesis and structural control of sedimentary rock-hosted Au deposits are in the large Betze deposit in the Carlin trend, Nevada and in the Lannigou, Jinlongshan, and Maanqiao Au deposits, China.

  11. Mineralogical and geochemical studies on the Central Seruyan Pb-Zn deposits in Central Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Lee, I.; Choi, B.; KIM, Y.; Moon, I.

    2017-12-01

    The Central Seruyan Pb-Zn deposit is located in Seruyan, Central Kalimantan Province in Indonesia. This deposit has been developed since last year and is still being investigated. The Pb-Zn deposit consists of two formations, Pinoh and Kuayan formation. The former is a metamorphic unit hosting schist, phyllite and gneiss, and the latter is a pyroclastic and volcanic unit includes intermediate volcanic rocks such as dacite, tuff and breccia. Most host rocks of the deposit is composed of the silicified porphyritic dacite and silicified phyllite and covered by silicified tuff. The joints and fractures within the wall rock has E-W trends. The Seruyan Pb-Zn deposit is considered as hydrothermal breccia type.In this study, we observe ore minerals and host rocks to understand the genesis of the Pb-Zn deposit with geochemical data. Pyrite, chalcopyrite, sphalerite and galena are major ore minerals and covellite and bornite are also observed as minor sulfide minerals. These ore minerals, except pyrite, usually occur within quartz or calcite veins indicating the influence of hydrothermal fluid. In the host rocks, dacite, has the altered minerals like sericite, chlorite, epidote and some clay minerals of hydrothermal origin. All minerals occur as massive form. Only some pyrites have an euhedral form. Small amount of Au, Ag and Mo are detected in major ore minerals in the EPMA (electron probe X-ray microanalyzer) analyses.

  12. Hydrogeochemical and stream sediment reconnaissance basic data report for Williams NTMS quadrangle, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagoner, J.L.

    Wet and dry sediments were collected throughout the 18,500-km/sup 2/arid-to-semiarid region and water samples at available streams, springs, and wells. Samples were collected between August 1977 and January 1978. Results of neutron activation analyses of uranium and trace elements and other field and laboratory analyses are presented in tabular hardcopy and microfiche format. The report includes six full-size overlays for use with the Williams NTMS 1:250,000 quadrangle. Sediment samples are divided into five general groups according to the source rock from which the sediment was derived. Background uranium concentrations for the quadrangle are relatively low, ranging from 1.91 to 2.40more » ppM, with the highest associated with the Precambrian igneous and metamorphic complexes of the Basin and Range province. Uranium correlates best with the rare-earth elements and iron, scandium, titanium, and manganese. Known uranium occurrences are not readily identified by the stream sediment data.« less

  13. Mobilization of radionuclides from uranium mill tailings and related waste materials in anaerobic environments

    USGS Publications Warehouse

    Landa, E.R.

    2003-01-01

    Specific extraction studies in our laboratory have shown that iron and manganese oxide- and alkaline earth sulfate minerals are important hosts of radium in uranium mill tailings. Iron- and sulfate-reducing bacteria may enhance the release of radium (and its analog barium) from uranium mill tailings, oil field pipe scale [a major technologically enhanced naturally occurring radioactive material (TENORM) waste], and jarosite (a common mineral in sulfuric acid processed-tailings). These research findings are reviewed and discussed in the context of nuclear waste forms (such as barium sulfate matrices), radioactive waste management practices, and geochemical environments in the Earth's surficial and shallow subsurface regions.

  14. Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butz, T.R.; Dean, N.E.; Bard, C.S.

    1980-05-31

    Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at themore » surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines.« less

  15. Concentration of Uranium Radioisotopes in Albanian Drinking Waters Measured by Alpha Spectrometry

    NASA Astrophysics Data System (ADS)

    Bylyku, Elida; Cfarku, Florinda; Deda, Antoneta; Bode, Kozeta; Fishka, Kujtim

    2010-01-01

    Uranium is a radioactive material that is frequently found in rocks and soil. When uranium decays, it changes into different elements that are also radioactive, including radon, a gas that is known to cause a lung cancer. The main concern with uranium in drinking water is harm to the kidneys. Public water systems are required to keep uranium levels at or below 500 mBq per liter to protect against kidney damage. Such an interest is needed due to safety, regulatory compliance and disposal issue for uranium in the environment since uranium is included as an obligatory controlled radionuclide in the European Legislation (Directive 98/83 CE of Council of 03.11.1998). The aim of this work is to measure the levels of uranium in drinking and drilled well waters in Albania. At first each sample was measured for total Alpha and total Beta activity. The samples with the highest levels of total alpha activity were chosen for the determination of uranium radioisotopes by alpha spectrometry. A radiochemical procedure using extraction with TBP (Tri-Butyl-Phosphate) is used in the presence of U232 as a yield tracer. Thin sources for alpha spectrometry are prepared by electrodepositing on to stainless steel discs. The results of the U238 activity measured in the different samples, depending from their geological origin range between 0.55-13.87 mBq/l. All samples measured results under the European Directive limits for U238 (5-500 mBq/1), Dose Coefficients according to Directive 96/29 EURATOM.

  16. SAN PEDRO PARKS WILDERNESS, NEW MEXICO.

    USGS Publications Warehouse

    Santos, Elmer S.; Weisner, Robert C.

    1984-01-01

    The San Pedro Parks Wilderness occupies 62. 7 sq mi of the Santa Fe National Forest in north-central New Mexico. Several copper mines, many copper prospects, and a few uranium prospects occur in sedimentary units in the vicinity of the wilderness. These units, where they extend into the wilderness, constitute only a small volume of rock and, judging from analyses of samples and from field observations, are devoid of copper and uranium concentration. Prospects on several of about 65 mining claims within the wilderness revealed concentrations of manganese or barite but only in volumes too small to be considered a demonstrated resource.

  17. Interpretation of aircraft multispectral scanner images for mapping of alteration with uranium mineralization, Copper Mountain, Wyoming

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1983-01-01

    NS-001 multispectral scanner data (0.45-2.35 micron) combined as principal components were utilized to map distributions of surface oxidation/weathering in Precambrian granitic rocks at Copper Mountain, Wyoming. Intense oxidation is found over granitic outcrops in partly exhumed pediments along the southern margin of the Owl Creek uplift, and along paleodrainages higher in the range. Supergene(?) uranium mineralization in the granites is localized beneath remnant Tertiary sediments covering portions of the pediments. The patterns of mineralization and oxidation are in agreement, but the genetic connections between the two remain in doubt.

  18. Driving forces for metamorphic vein filling during bauxite dehydration: insights from Li and Al transfer illustrated by LIBS compositional profiles (Western Alps)

    NASA Astrophysics Data System (ADS)

    Verlaguet, Anne; Brunet, Fabrice; Goffé, Bruno; Menut, Denis; Findling, Nathaniel; Poinssot, Christophe

    2015-04-01

    In subduction zones, the significant amounts of aqueous fluid released in the course of the successive dehydration reactions occurring during prograde metamorphism are expected to strongly influence the rock rheology, as well as kinetics of metamorphic reactions and mass transfer efficiency. Mineralized veins, ubiquitous in metamorphic rocks, can be seen as preserved witnesses of fluid and mass redistribution that partly accommodate the rock deformation (lateral segregation). However, the driving forces and mechanisms of mass transfer towards fluid-filled open spaces remain somewhat unclear. The aim of this study is to investigate the vein-forming processes and the modalities of mass transfer during local fluid-rock interactions, and their links with fluid production and rock deformation, with new insights from Laser Induced Breakdown Spectroscopy (LIBS) profiles. This study focuses on karstic pockets (metre scale) of Triassic metabauxites embedded in thick carbonate units, that have been isolated from large-scale fluid flow during HP-LT Alpine metamorphism (W. Vanoise, French Alps). These rocks display several generations of metamorphic veins containing various Al-bearing minerals, which give particular insights into mass transfer processes. It is proposed that the internally-derived fluid (~13 vol% produced by successive dehydration reactions) has promoted the opening of fluid-filled open spaces (euhedral habits of vein minerals) and served as medium for diffusive mass transfer from rock to vein. Based on mineralogical and textural features, two vein types can be distinguished: (1) some veins are filled with newly formed products of either prograde (chloritoid) or retrograde (chlorite) metamorphic reactions; in this case, fluid-filled open spaces seem to offer energetically favourable nucleation/growth sites; (2) the second vein type is filled with cookeite (Li-Al-rich chlorite) or pyrophyllite, which were present in the host-rock prior to the vein formation. In this closed chemical system, mass transfer from rock to vein was achieved through the fluid, in a dissolution-transport-precipitation process. To investigate the modalities of mass transfer towards this second vein type, LIBS profiles were performed in the host-rock, taking Li concentration as a proxy for cookeite distribution. Cookeite is highly concentrated (45-65 vol%) in regularly spaced veins, and the LIBS profiles show that cookeite is evenly distributed in the host-rock comprised between two veins. The absence of diffusion profiles suggests that the characteristic diffusion distance for Li, Al and Si is greater than or equal to the distance separating two cookeite veins (2-4 cm). This is in agreement with characteristic diffusion lengths calculated from both grain boundary and pore fluid diffusion coefficients, for the estimated duration of the peak of metamorphism. Which driving forces are responsible for cookeite selective transfer towards veins? Chemical potential gradients between host-rock pores and veins may have developed in response to either (1) a stress difference: thermochemical calculations show that pressure-solution processes may affect preferentially cookeite and pyrophyllite; (2) a difference in interfacial energy, phyllosilicates showing very different morphologies in host-rocks (fibers) compared to veins (euhedral crystals); fluid-mineral interfacial energy may be maximal in the small host-rock pores, which can maintain higher cookeite solubility than large fluid-filled open spaces (i.e., veins).

  19. Returning from the deep: Archean atmospheric fingerprints in modern hotspot lavas (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Cabral, R. A.; Rose-Koga, E. F.; Koga, K. T.; Whitehouse, M. J.; Antonelli, M. A.; Farquhar, J.; Day, J. M.; Hauri, E. H.

    2013-12-01

    Ocean plates transport surface materials, including oceanic crust and sediment, into the mantle at subduction zones. However, the fate of the subducted package--oceanic crust and sediment--in the mantle is poorly understood. A long-standing hypothesis maintains that subducted materials reside in the mantle for an extended, but unknown, period of time and are then recycled back to the Earth's surface in regions of buoyantly upwelling mantle and melted beneath hotspots. Sulfur isotopes provide an important new tool to evaluate the presence of ancient recycled materials in hotspot lavas. Widespread terrestrial mass independently fractionated sulfur (MIF-S) isotope signatures were generated exclusively through atmospheric photochemical reactions until ~2.45 Ga. In fact, the only significant reservoirs of MIF-S containing rocks documented so far are sediments and hydrothermal rocks older than ~2.45 Ga. Armed with this insight, we examined sulfur isotopes in olivine phenocrysts and olivine-hosted sulfides in lavas from the island of Mangaia, Cook Islands. Lavas from this location host unusually radiogenic Pb-isotopic compositions--referred to as a HIMU (high U/Pb) component--and this has been attributed to ancient recycled oceanic crust in the mantle source. In Cabral et al. (2013), we report MIF-S in olivine phenocrysts and olivine-hosted sulfides. The discovery of MIF-S isotopic signatures in young hotspot lavas appears to provide a "timestamp" and "signature" for preservation of subducted Archean surface materials in the mantle sourcing Mangaia lavas. We report new sulfur isotope data on olivine-hosted sulfides from the Mangaia lavas that reinforce our discovery of MIF-S anomalies reported in Cabral et al. (2013). We also report new sulfur isotopic data on Mangaia whole rock powders, and we find no evidence of MIF-S signatures. It is not yet clear why the individual Mangaia sulfides and the olivine separates have more extreme MIF-S than the whole rocks. We consider it likely that the MIF-S anomaly measured in the olivine separates was diminished relative to the olivine-hosted sulfides by incorporation of modern sulfur into the olivine separates by low-temperature processes operating on the rocks during the 20 Ma since eruption: The absence of a MIF-S anomaly in the whole rock that has olivine-hosted sulfides with MIF-S anomalies may be a result of near-complete replacement of the magmatic sulfur (with a MIF-S anomaly) with modern sulfur (with no MIF-S anomaly) during surficial weathering over 20 Ma. The sulfur in the olivine-hosted sulfides with the largest MIF-S anomalies represents a very small proportion of the sulfur in a bulk basaltic rock and therefore do not impart a clear MIF-S anomaly on the bulk rock analysis. Very few data are available to evaluate this hypothesis. Therefore, pairing sulfur isotope measurements with whole rocks, mineral separates and olivine-hosted sulfides with careful petrographic and electron probe analyses of the samples will be critical for evaluating the origin of the sulfides--primary magmatic or secondary--and the origin and distribution of the sulfur-isotopic signatures in OIB.

  20. Earthquake rupture at focal depth, part II: mechanics of the 2004 M2.2 earthquake along the Pretorius Fault, TauTona Mine, South Africa

    USGS Publications Warehouse

    Heesakkers, V.; Murphy, S.; Lockner, D.A.; Reches, Z.

    2011-01-01

    We analyze here the rupture mechanics of the 2004, M2.2 earthquake based on our observations and measurements at focal depth (Part I). This event ruptured the Archean Pretorius fault that has been inactive for at least 2 Ga, and was reactivated due to mining operations down to a depth of 3.6 km depth. Thus, it was expected that the Pretorius fault zone will fail similarly to an intact rock body independently of its ancient healed structure. Our analysis reveals a few puzzling features of the M2.2 rupture-zone: (1) the earthquake ruptured four, non-parallel, cataclasite bearing segments of the ancient Pretorius fault-zone; (2) slip occurred almost exclusively along the cataclasite-host rock contacts of the slipping segments; (3) the local in-situ stress field is not favorable to slip along any of these four segments; and (4) the Archean cataclasite is pervasively sintered and cemented to become brittle and strong. To resolve these observations, we conducted rock mechanics experiments on the fault-rocks and host-rocks and found a strong mechanical contrast between the quartzitic cataclasite zones, with elastic-brittle rheology, and the host quartzites, with damage, elastic–plastic rheology. The finite-element modeling of a heterogeneous fault-zone with the measured mechanical contrast indicates that the slip is likely to reactivate the ancient cataclasite-bearing segments, as observed, due to the strong mechanical contrast between the cataclasite and the host quartzitic rock.

  1. Thermo-mechanical modelling of salt caverns due to fluctuating loading conditions.

    NASA Astrophysics Data System (ADS)

    Böttcher, N.

    2015-12-01

    This work summarizes the development and application of a numerical model for the thermo-mechanical behaviour of salt caverns during cyclic gas storage. Artificial salt caverns are used for short term energy storage, such as power-to-gas or compressed air energy storage. Those applications are characterized by highly fluctuating operation pressures due to the unsteady power levels of power plants based on renewable energy. Compression and expansion of the storage gases during loading and unloading stages lead to rapidly changing temperatures in the host rock of the caverns. This affects the material behaviour of the host rock within a zone that extends several meters into the rock mass adjacent to the cavern wall, and induces thermo-mechanical stresses and alters the creep response.The proposed model features the thermodynamic behaviour of the storage medium, conductive heat transport in the host rock, as well as temperature dependent material properties of rock salt using different thermo-viscoplastic material models. The utilized constitutive models are well known and state-of-the-art in various salt mechanics applications. The model has been implemented into the open-source software platform OpenGeoSys. Thermal and mechanical processes are solved using a finite element approach, coupled via a staggered coupling scheme. The simulation results allow the conclusion, that the cavern convergence rate (and thus the efficiency of the cavern) is highly influenced by the loading cycle frequency and the resulting gas temperatures. The model therefore allows to analyse the influence of operation modes on the cavern host rock or on neighbouring facilities.

  2. Uraniferous bitumen nodules in the Talvivaara Ni-Zn-Cu-Co deposit (Finland): influence of metamorphism on uranium mineralization in black shales

    NASA Astrophysics Data System (ADS)

    Lecomte, Andreï; Cathelineau, Michel; Deloule, Etienne; Brouand, Marc; Peiffert, Chantal; Loukola-Ruskeeniemi, Kirsti; Pohjolainen, Esa; Lahtinen, Hannu

    2014-04-01

    In the central part of the Fennoscandian Shield, the Talvivaara Ni-Zn-Cu-Co deposit, hosted by Palaeoproterozoic metamorphosed black schists, contains low uranium concentrations ranging from 10 to 30 ppm. The Talvivaara black schists were deposited 2.0-1.9 Ga ago and underwent subsequent metamorphism during the 1.9-1.79 Ga Svecofennian orogeny. Anhedral uraninite crystals rimmed by bitumen constitute the main host of uranium. U-Pb secondary ion mass spectrometry dating indicates that uraninite crystals were formed between 1,878 ± 17 and 1,871 ± 43 Ma, during peak metamorphism. Rare earth element patterns and high Th content (average 6.38 wt%) in disseminated uraninite crystals indicate that U was concentrated during high temperature metamorphism (>400 °C). The formation of bitumen rims around uraninite may be explained by two distinct scenarios: (a) a transport of U coincident with the migration of hydrocarbons or (b) post-metamorphic formation of bitumen rims, through radiolytic polymerization of gaseous hydrocarbons at the contact with uraninite.

  3. MADISON ROADLESS AREA, MONTANA.

    USGS Publications Warehouse

    Simons, Frank S.; Lambeth, Robert H.

    1984-01-01

    A mineral-resource survey of the Madison Roadless Area in the Madison Range of southwestern Montana was made. The Madison Roadless Area has demonstrated resources of about 93,000 tons of sillimanite rock at the Placer Creek deposit and of about 83,000 tons of asbestos rock at the Karst deposit. The roadless area also has areas of substantiated phosphate resource potential; much of the phosphate is in thin deeply buried beds. An area near the south edge of the roadless area has a probable resource potential for copper and silver. The concentration of uranium-rich stream-sediment samples in the southwest part of the roadless area suggests that a further attempt to identify the source rocks might be justified.

  4. Reconnaissance of radioactive rocks of Maine

    USGS Publications Warehouse

    Nelson, John M.; Narten, Perry F.

    1951-01-01

    The state of Maine was traversed with car-mounted Geiger-Mueller equipment in the late summer of 1948 and the radioactivity of approximately 4,600 miles of road was logged. All samples were analyzed, both in the field by comparing the radioactivity of each sample to the radioactivity of a stranded measured with a simple scaling modification of a portable counter, and in the Geological Survey’s Trace Elements Section Washington Laboratory. Differences between both types of analyses were negligible. The maximum equivalent uranium content of the most radioactive rocks thus analyzed was 0.008 percent. A 1,400-square-mile abnormally radioactive province in southwestern Maine was outlined. The outcrop data obtained from car traversing are evaluated statistically. Cumulative frequency distribution curves are drawn to show the distribution of outcrops at various levels of radioactivity, and straight-line extensions are made to show to maximum probable grade for various rock types and areas in Maine. A maximum grade of 0.055 percent equivalent uranium is thus predicted for the entire state. This prediction necessarily is a broad generalization because large areas of Main are inaccessible for car traversing. A concept of evaluation of an area for possible mineral deposits is proposed on the basis of lithology, and observed and indicated ranges in grade.

  5. Petrochemical and Mineralogical Constraints on the Source and Processes of Uranium Mineralisation in the Granitoids of Zing-Monkin Area, Adamawa Massif, NE Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haruna, I. V., E-mail: vela_hi@yahoo.co.uk; Orazulike, D. M.; Ofulume, A. B.

    Zing-Monkin area, located in the northern part of Adamawa Massif, is underlain by extensive exposures of moderately radioactive granodiorites, anatectic migmatites, equigranular granites, porphyritic granites and highly radioactive fine-grained granites with minor pegmatites. Selected major and trace element petrochemical investigations of the rocks show that a progression from granodiorite through migmatite to granites is characterised by depletion of MgO, CaO, Fe{sub 2}O{sub 3,} Sr, Ba, and Zr, and enrichment of SiO{sub 2} and Rb. This trend is associated with uranium enrichment and shows a chemical gradation from the more primitive granodiorite to the more evolved granites. Electron microprobe analysis showsmore » that the uranium is content in uranothorite and in accessories, such as monazite, titanite, apatite, epidote and zircon. Based on petrochemical and mineralogical data, the more differentiated granitoids (e.g., fine-grained granite) bordering the Benue Trough are the immediate source of the uranium prospect in Bima Sandstone within the Trough. Uranium was derived from the granitoids by weathering and erosion. Transportation and subsequent interaction with organic matter within the Bima Sandstone led to precipitation of insoluble secondary uranium minerals in the Benue Trough.« less

  6. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  7. 10 CFR 960.4-2-3 - Rock characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Rock characteristics. 960.4-2-3 Section 960.4-2-3 Energy... REPOSITORY Postclosure Guidelines § 960.4-2-3 Rock characteristics. (a) Qualifying condition. The present and expected characteristics of the host rock and surrounding units shall be capable of accommodating the...

  8. Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: Implications for evolution of the subcontinental lithospheric mantle

    USGS Publications Warehouse

    Mukasa, S.B.; Wilshire, H.G.

    1997-01-01

    Ultramafic and mafic xenoliths from the Cima volcanic field, southern California, provide evidence of episodic modification of the upper mantle and underplating of the crust beneath a portion of the southern Basin and Range province. The upper mantle xenoliths include spinel peridotite and anhydrous and hydrous pyroxenite, some cut by igneous-textured pyroxenite-gabbro veins and dikes and some by veins of amphibole ?? plagioclase. Igneous-textured pyroxenites and gabbros like the dike rocks also occur abundantly as isolated xenoliths inferred to represent underplated crust. Mineral and whole rock trace element compositions among and within the different groups of xenoliths are highly variable, reflecting multiple processes that include magma-mantle wall rock reactions, episodic intrusion and it filtration of basaltic melts of varied sources into the mantle wall rock, and fractionation. Nd, Sr, and Pb isotopic compositions mostly of clinopyroxene and plagioclase mineral separates show distinct differences between mantle xenoliths (??Nd = -5.7 to +3.4; 87Sr/86Sr = 0.7051 - 0.7073; 206Pb/204Pb = 19.045 - 19.195) and the igneous-textured xenoliths (??Nd = +7.7 to +11.7; 87Sr/86Sr = 0.7027 - 0.7036 with one carbonate-affected outlier at 0.7054; and 206Pb/204Pb = 18.751 - 19.068), so that they cannot be related. The igneous-textured pyroxenites and gabbros are similar in their isotopic compositions to the host basaltic rocks, which have ??Nd of+5.1 to +9.3; 87Sr/86Sr of 0.7028 - 0.7050, and 206Pb/204Pb of 18.685 - 21.050. The igneous-textured pyroxenites and gabbros are therefore inferred to be related to the host rocks as earlier cogenetic intrusions in the mantle and in the lower crust. Two samples of peridotite, one modally metasomatized by amphibole and the other by plagioclase, have isotopic compositions intermediate between the igneous-textured xenoliths and the mantle rock, suggesting mixing, but also derivation of the metasomatizing magmas from two separate and distinct sources. Sm-Nd two-mineral "isochrons" yield apparent ages for petrographically identical rocks believed to be coeval ranging from -0 to 113 ?? 26 Ma, indicating the unreliability of dating these rocks with this method. Amphibole and plagioclase megacrysts are isotopically like the host basalts and probably originate by mechanical breakup of veins comagmatic with the host basaltic rocks. Unlike other Basin and Range localities, Cima Cr-diopside group isotopic compositions do not overlap with those of the host basalts. Copyright 1997 by the American Geophysical Union.

  9. Geochemical and mineralogical studies of a South Texas roll-front uranium deposit

    USGS Publications Warehouse

    Goldhaber, Martin B.; Reynolds, Richard L.

    1977-01-01

    Core samples from a roll-front uranium deposit in south Texas have been analyzed for iron sulfide content and mineralogy, organic carbon content and the abundance of carbonate, iron, manganese and titanium. Sulfide occurs almost exclusively as the iron disulfides pyrite and marcasite, in concentrations as high as 2 percent of the coarse (>62 ?m) fraction. Marcasite is particularly abundant relative to pyrite in the vicinity of the roll front. Because marcasite precipitation requires acidic pH's and the most likely mechanism for generating a low pH is oxidation of preore sulfide, it is argued that marcasite formation is, at least in part, related to roll-front development. Organic carbon analyses from various representative parts of the deposit are uniformly low (<0.1 percent C). This is taken to imply that sulfate reducing bacteria were not involved in either initial sulfidation of the host rock or during later sulfidization that was related to the ore-forming episode. carbonate minerals, such as calcite, are quite abundant, but appear to have formed after the ore. The overall abundance of iron apparently is not systematically related to position with respect to the roll front, whereas manganese probably is concentrated near the redox interface. Titanium like iron does not show a systematic relationship to position about the roll. However, titanium is systematically more abundant in the fine fraction (462 ?m) relative to the coarse fraction with distance downdip. This reflects a progressively more intense alteration of precursor iron titanium oxide minerals to fine-grained TiO2.

  10. Origin of intraformational folds in the Jurassic Todilto Limestone, Ambrosia Lake uranium mining district, McKinley and Valencia counties, New Mexico

    USGS Publications Warehouse

    Green, M.W.

    1982-01-01

    The Todilto Limestone of Middle Jurassic age in the Ambrosia Lake uranium mining district of McKinley and Valencia Counties, New Mexico, is the host formation for numerous small- to medium-sized uranium deposits in joints, shear zones, and fractures within small- to large-scale intraformational folds. The folds probably were formed as a result of differential sediment loading when eolian sand dunes of the overlying Summerville Formation of Middle Jurassic age migrated over soft, chemically precipitated, lime muds of the Todilto shortly after their deposition in a regressive, mixed fresh and saline lacustrine or marine environment of deposition. Encroachment of Summerville eolian dunes over soft Todilto lime muds was apparently a local phenomenon and was restricted to postulated beltlike zones which trended radially across the Todilto coastline toward the receding body of water. Intraformational folding is believed to be confined to the pathways of individual eolian dunes or clusters of dunes within the dune belts. During the process of sediment loading by migrating sand dunes, layers of Todilto lime mud were differentially compacted, contorted, and dewatered, producing both small- and large-scale plastic deformation structures, including convolute laminations, mounds, rolls, folds, and small anticlines and synclines. With continued compaction and dewatering, the mud, in localized areas, reached a point of desaturation at which sediment plasticity was lost. Prolonged loading by overlying dune sands thus caused faulting, shearing, fracturing, and jointing of contorted limestone beds. These areas or zones of deformation within the limestone became the preferred sites of epigenetic uranium mineralization because of the induced transmissivity created by sediment rupture. Along most of the prograding Todilto coastline, adjacent to the eolian dune belts, both interdune and coastal sabkha environments dominated during Todilto-Summerville time. Sediments in coastal areas consisted mainly of clay, silt, sandy silt, and very fine-grained sand, which was apparently derived from the winnowing of the finer grained fraction of sediment from adjacent dune fields during periods of eolian activity. Most of the sabkha sediments were probably carried in airborne suspension to the low-lying, ground-water-saturated coastal areas, where they were deposited as relatively uniform blanket-like layers. Deposition of sabkha deposits was apparently slow and uniform over most of the Todilto coastal areas and crested only small-scale deformation features in underlying Todilto rocks. Large-scale deformation features and uranium deposits are both notably absent in the Todilto where it is overlain by finer textured sabkha deposits in the Summerville.

  11. Insights on the injection mechanisms inferred from AMS fabrics of sand injectites in a turbiditic system, the exemple of Bevon area of the SE Basin (France).

    NASA Astrophysics Data System (ADS)

    Robion, Philippe; Mehl, Caroline

    2016-04-01

    We propose to investigate the set up mechanisms of sands injection in the case of dykes injected in host marls of Aptian-Albian age in the Vocontian basin (SE France). Several models have been proposed for a downward injection of the dyke in the Bevons area and we guess that AMS fabric investigations can be used to infer the flow direction. 144 drill cores distributed on 14 sites were sampled, among which 8 sites in the injectites and 6 sites in the host rocks. The studied dykes are generally of a few decimeters thick and are setting up in both in vertical or oblique position with respect to the subhorizontal bedding of the host rocks. There were sampled from one side to the other in order to track the flow direction by identification of imbricated fabric. Magnetic mineralogy, i.e. unblocking temperature inferred from IRM 3 axes demagnetization, indicates that the ferromagnetics s.l. mineralogy is dominated by an assemblage of magnetite (unblocking temperature Tub=580°C) and pyrrhotite (Tub=325°C). Magnetic susceptibility is low, typical for siliciclastic rocks, ranging from 4x10-5 up to 1.7x10-4 SI. Degree of magnetic anisotropy is likely representative of AMS measurements in sedimentary rocks with weak values, below than 5 %. In marly host rocks magnetic mineralogy is dominated by pyrrhotite associated with magnetite and both the magnetic susceptibility and degree of anisotropy are slightly lower than for injectites. Regarding magnetic fabric axes distribution, despite some dispersion, the results show that minimum axes of AMS (K3) are parallel to the dyke plane, and maximum axes (K1) are roughly in horizontal position. In marly host rocks, the magnetic fabric is related to tectonic shortening. We interpret that the host rocks have recorded the regional tectonic imprint while the magnetic fabric of the injectites are related to early sedimentary processes. The mechanism of set up proposed to explain the magnetic fabric in the Bevon injectites is a step-by-step process of filling the pre-existing fractures with highly fluidized sand and a compaction direction parallel to dyke plane. A late diagenetic cementation affecting the injectites network prevents any further deformation during tectonic inversion.

  12. U-Pb dating of uranium deposits in collapse breccia pipes of the Grand Canyon region

    USGS Publications Warehouse

    Ludwig, K. R.; Simmons, K.R.

    1992-01-01

    Two major periods of uranium mineralization are indicated by U-Pb isotope dating of uranium ores from collapse breccia pipes in the Grand Canyon region, northern Arizona. The Hack 2 and 3, Kanab North, and EZ 1 and 2 orebodies apparently formed in the interval of 200 ?? 20 Ma, similar to ages inferred for strata-bound, Late Triassic-hosted uranium deposits in southern Utah and northern Arizona. Samples from the Grand Canyon and Pine Nut pipes, however, indicate a distinctly older age of about 260 Ma. The clustering in ages for a variety of uranium deposits at about the age of the lower part of the Chinle Formation (Late Triassic) suggests that uranium in these deposits may have been derived by leaching from volcanic ash in the Chinle and mobilized by ground-water movement. Pb isotope ratios of galenas in mineralized pipes are more radiogenic than those of sulfides from either uranium-poor pipes or occurrences away from pipes. Fluids which passed through the pipes had interacted with the Proterozoic basement, possibly through the vertical fractures which influenced the location and evolution of the pipes themselves. -from Authors

  13. No Martian soil component in shergottite meteorites

    NASA Astrophysics Data System (ADS)

    Barrat, J. A.; Jambon, A.; Ferrière, L.; Bollinger, C.; Langlade, J. A.; Liorzou, C.; Boudouma, O.; Fialin, M.

    2014-01-01

    We report on the major and trace element geochemistry of the impact melts contained in some shergottite meteorites. It has been previously proposed that some of these impact melts formed from a mixture of the host rock and a Martian soil component (e.g., Rao et al., 1999) or from partially weathered portions of the host rock (Chennaoui Aoudjehane et al., 2012). Our results contradict both of these theories. Trace element abundances of a glass pod from the EETA 79001A meteorite are identical to those of the host lithology, and indicate that no additional component is required in this case. The impact melts in Tissint share the same trace element features as the host rock, and no secondary phases produced by Martian secondary processes are involved. The light rare earth enrichments displayed by two small samples of Tissint (Chennaoui Aoudjehane et al., 2012) are possibly the result of some contamination of small stones on desert soil before the recovery of the meteorites.

  14. The Origin of Fibrous Calcite Veins: Aragonite?

    NASA Astrophysics Data System (ADS)

    Elburg, M. A.; Bons, P. D.

    2005-12-01

    Truly fibrous calcite veins occur mainly in carbonaceous shales and are characterised by high length:width ratios of their fibres (>10). Previous studies on their Sr isotopic geochemistry (Elburg et al., 2002: Geol. Soc. London Spec. Publ. 200, 103-118; Hilgers and Sindern, 2005: Geofluids, in press) have shown that some of the material could be derived from the local wall rock. These studies also showed that the veins were always enriched in Sr compared to the calcite in the host rocks. Aragonite can contain significantly more Sr than calcite, while it also tends to have a fibrous crystal habit. It is therefore possible that the fibrous habit of these veins, which now consist of calcite, are a reflection of their initial aragonitic mineralogy, rather than of any special tectonic regime during their formation. This idea was investigated by analysing the major and trace element geochemistry of selected fibrous and non-fibrous calcite veins from Arkaroola (northern Flinders Ranges, Australia). The fibrous vein analysed for major elements contains less than 1% MgCO3, whereas calcite in the host rock, with which it is in Sr isotopic equilibrium, contains 18% MgCO3. Calcite can contain significant Mg, whereas the aragonitic structure cannot accomodate this ion, so this result is consistent with the idea of an original aragonitic mineralogy of the veins. The fibrous veins show an enrichment in the middle rare earth elements (REE) compared to the calcite in the host rock and blocky veins. In a Post-Archean Average Shale normalised diagram, Eu is more strongly enriched compared to its neighbouring elements in the fibrous veins, but not in the host calcite, blocky veins, or in the silicate fraction of the host rock, suggesting more reducing conditions during fibrous vein formation. This data cannot be used as direct evidence for the fibrous veins' aragonitic mineralogy. It does, however, show that significant differences exist between calcite in host rocks, blocky and fibrous calcite veins, and this data should be incorporated in any model explaining the origin of fibrous veins.

  15. Consequences of the Thermal Transient on the Evolution of the Damaged Zone Around a Repository for Heat-Emitting High-Level Radioactive Waste in a Clay Formation: a Performance Assessment Perspective

    NASA Astrophysics Data System (ADS)

    Yu, Li; Weetjens, Eef; Sillen, Xavier; Vietor, Tim; Li, Xiangling; Delage, Pierre; Labiouse, Vincent; Charlier, Robert

    2014-01-01

    A proper evaluation of the perturbations of the host rock induced by the excavation and the emplacement of exothermic wastes is essential for the assessment of the long-term safety of high-level radioactive waste disposals in clay formations. The impact of the thermal transient on the evolution of the damaged zone (DZ) has been explored in the European Commission project TIMODAZ (thermal impact on the damaged zone around a radioactive waste disposal in clay host rocks, 2006-2010). This paper integrates the scientific results of the TIMODAZ project from a performance assessment (PA) point of view, showing how these results support and justify key PA assumptions and the values of PA model parameters. This paper also contextualises the significance of the thermal impact on the DZ from a safety case perspective, highlighting how the project outcomes result into an improved understanding of the thermo-hydro-mechanical behaviour of the clay host rocks. The results obtained in the TIMODAZ project strengthen the assessment basis of the safety evaluation of the current repository designs. There was no evidence throughout the TIMODAZ experimental observations of a temperature-induced additional opening of fractures nor of a significant permeability increase of the DZ. Instead, thermally induced plasticity, swelling and creep seem to be beneficial to the sealing of fractures and to the recovery of a very low permeability in the DZ, close to that of an undisturbed clay host rock. Results from the TIMODAZ project indicate that the favourable properties of the clay host rock, which guarantee the effectiveness of the safety functions of the repository system, are expected to be maintained after the heating-cooling cycle. Hence, the basic assumptions usually made in PA calculations so far are expected to remain valid, and the performance of the system should not be affected in a negative way by the thermal evolution of the DZ around a radioactive waste repository in clay host rock.

  16. Aerial radiometric and magnetic reconnaissance survey of the Eagle--Dillingham area, Alaska, Mt. Hayes Quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-06-01

    The results of a high-sensitivity aerial gamma-ray spectrometer and magnetometer survey of the Mt. Hayes Quadrangle, Alaska, are presented. Instrumentation and methods are described in Volume 1 of this final report. Statistical and geological analysis of the radiometric data revealed two uranium anomalies worthy of field checking as possible prospects. One is located near Mesozoic granite, which is believed to have the best potential for future economic uranium deposits. Another uranium anomaly is associated with Paleozoic-Precambrian rocks and may be caused by augen gneiss or possibly granitic intrusives. Two weakly uraniferous provinces merit study: one in the northwest, which maymore » be related to the Tertiary-Cretaceous coal-bearing unit, and a second in the northeast, which may be related to Mesozoic granites.« less

  17. Reconnaissance for uranium in the southeastern states, 1953

    USGS Publications Warehouse

    Johnson, Henry S.

    1953-01-01

    During the last quarter of 1952 and most of 1953 the U.S. Geological Survey carried on a program of reconnaissance for radioactive material in the southeastern states on behalf to the Atomic Energy Commission. In the course of the study 111 localities were examined and 43 samples were taken for radioactivity measurements at the Survey's Trace Elements laboratory in Denver, Colo. No economic deposits of uranium were found as a result of this work, but weak radioactivity was noted at the Tungsten Mining Coperation property near Townsville, N. C.; the Comolli granite quarry near Elberton, Ga.; in the Beech and Cranberry granite near Roan Mountain, Tenn.; and in several shales in the Valley and Ridge and Appalachian Plateau provinces. Devonian through Pennsylvanian rocks in these two provinces probably constitute the most favorable ground for new discoveries of uranium in the Southeast.

  18. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay colloid concentration is expected to be very low (<1ppb, for 10-100nm) which restricts their relevance for radionuclide transport. Copyright © 2016. Published by Elsevier B.V.

  19. Spectral pathways for exploration of secondary uranium: An investigation in the desertic tracts of Rajasthan and Gujarat, India

    NASA Astrophysics Data System (ADS)

    Bharti, Rishikesh; Kalimuthu, R.; Ramakrishnan, D.

    2015-10-01

    This study aims at identifying potential zones of secondary uranium enrichment using hyperspectral remote sensing, γ-ray spectrometry, fluorimetry and geochemical techniques in the western Rajasthan and northern Gujarat, India. The investigated area has suitable source rocks, conducive past-, and present-climate that can facilitate such enrichment. This enrichment process involves extensive weathering of uranium bearing source rocks, leaching of uranyl compounds in groundwater, and their precipitation in chemical deltas along with duricrusts like calcretes and gypcretes. Spatial distribution of groundwater calcretes (that are rich in Mg-calcite) and gypcretes (that are rich in gypsum) along palaeochannels and chemical deltas were mapped using hyperspectral remote sensing data based on spectral absorptions in 1.70 μm, 2.16 μm, 2.21 μm, 2.33 μm, 2.44 μm wavelength regions. Subsequently based on field radiometric survey, zones of U anomalies were identified and samples of duricrusts and groundwater were collected for geochemical analyses. Anomalous concentration of U (2345.7 Bq/kg) and Th (142.3 Bq/kg) are observed in both duricrusts and groundwater (U-1791 μg/l, Th-34 μg/l) within the palaeo-delta and river confluence. The estimated carnotite Solubility Index also indicates the secondary enrichment of U and the likelihood of occurrence of an unconventional deposit.

  20. Geochemical Characteristics of Aquifer system in Taichung Area, Central Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Jui-Fen; Chen, Cheng-Hong; Liu, Tsung-Kwei

    2016-04-01

    For understanding the relationship between water bodies and host rocks and getting more information for groundwater in Taichung area, Central Taiwan, we systematically analyzed the stable isotopes (hydrogen and oxygen), helium isotopes and radon concentrations of dissolved gases from 54 groundwater, 39 river and 4 rain samples collected from Taichung Basin in wet and dry seasons of the year 2015. In the δ18O vs. δD plot, all samples present a linear trend similar to local meteoric water, indicating a meteoric origin. However, river samples are relative lighter than rain samples, it appears that the rivers are mainly recharged from precipitation of high-elevation areas with a lighter isotopic composition. Because the seasonal isotopic variation of river samples is significant, we calculated relative contribution of precipitation by seasons using the mass balance equation. Results show that the precipitation in the rainy season is the major source of groundwater. The helium isotopic ratio in dissolved gases of most groundwater samples are close to 1 RA (RA = 3He/4He ratio of air), except the sample from Wu-Feng well that exhibits 0.3 RA. This sample also has an older C-14 age (˜27000 yrs.) than others (<200 yrs.), implying that the dissolved helium is likely affected by radiogenic 4He of surrounding rocks. The average concentration of radon for groundwater in the northern section of Taichung Basin is 20.3 Bq/L, which is higher than that of the southern section (14.5 Bq/L). Variations of radon concentrations in the two sections may be related to the different drainage systems (Paleo-Dajia River vs. Wu River), in which sediments from Paleo-Dajia River may contain higher uranium concentrations. On the other hand, water in rivers usually contains undetectable radon (<0.37 Bq/L) because it rapidly escapes to the atmosphere. However, river samples from the central part of basin have radon concentrations ranging between 1 and 3 Bq/L, reflecting that the sampling sites are in the vicinity of points of groundwater inflow. This study illustrates the utility of hydrogen and oxygen isotopes to trace the groundwater source and determine the seasonal contribution ratios of precipitation to groundwater recharge, and demonstrates the advantage of using dissolved gas to investigate the groundwater-host rocks interaction. Key words: Central Taiwan, groundwater, dissolved gas, helium isotope, hydrogen and oxygen isotopes, water radon

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, T.L.; George, W.E.; Hensley, W.K.

    As part of the Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the National Uranium Resource Evaluation (NURE) sponsored by the US Department of Energy (DOE), the Los Alamos Scientific Laboratory (LASL) conducted a detailed hydrogeochemical survey of well waters in a 4250-km/sup 2/ area near Pie Town in west-central New Mexico. A total of 300 well samples was collected and analyzed for uranium and 23 other elements. The results of these analyses and carbonate and bicarbonate ion concentrations are presented in the Appendixes of this report. Uranium concentrations range from below the detection limit of 0.02 parts per billion (ppB)more » to 293.18 ppB and average 8.71 ppB. Samples containing high levels of uranium were collected from the Largo Creek valley west of Quemado, from a small area about 6 km east of Quemado, from a small area surrounding Pie Town, and from scattered locations in the area surrounding Adams Diggings north of Pie Town. Most of the samples containing high uranium concentrations were collected from wells associated with the volcanic sedimentary facies of the Datil formation. This formation is a likely source of mobile uranium that may be precipitating in the underlying Baca formation, a known uranium host unit. Bicarbonate ion concentration, while proportional to uranium concentration in some cases, is not a strong controlling factor in the uranium concentrations in samples from this area.« less

  2. Physical setting and natural sources of exposure to carcinogenic trace elements and radionuclides in Lahontan Valley, Nevada

    USGS Publications Warehouse

    Seiler, Ralph L.

    2012-01-01

    In Lahontan Valley, Nevada, arsenic, cobalt, tungsten, uranium, radon, and polonium-210 are carcinogens that occur naturally in sediments and groundwater. Arsenic and cobalt are principally derived from erosion of volcanic rocks in the local mountains and tungsten and uranium are derived from erosion of granitic rocks in headwater reaches of the Carson River. Radon and 210Po originate from radioactive decay of uranium in the sediments. Arsenic, aluminum, cobalt, iron, and manganese concentrations in household dust suggest it is derived from the local soils. Excess zinc and chromium in the dust are probably derived from the vacuum cleaner used to collect the dust, or household sources such as the furnace. Some samples have more than 5 times more cobalt in the dust than in the local soil, but whether the source of the excess cobalt is anthropogenic or natural cannot be determined with the available data. Cobalt concentrations are low in groundwater, but arsenic, uranium, radon, and 210Po concentrations often exceed human-health standards, and sometime greatly exceed them. Exposure to radon and its decay products in drinking water can vary significantly depending on when during the day that the water is consumed. Although the data suggests there have been no long term changes in groundwater chemistry that corresponds to the Lahontan Valley leukemia cluster, the occurrence of the very unusual leukemia cluster in an area with numerous 210Po and arsenic contaminated wells is striking, particularly in conjunction with the exceptionally high levels of urinary tungsten in Lahontan Valley residents. Additional research is needed on potential exposure pathways involving food or inhalation, and on synergistic effects of mixtures of these natural contaminants on susceptibility to development of leukemia.

  3. Physical setting and natural sources of exposure to carcinogenic trace elements and radionuclides in Lahontan Valley, Nevada.

    PubMed

    Seiler, Ralph

    2012-04-05

    In Lahontan Valley, Nevada, arsenic, cobalt, tungsten, uranium, radon, and polonium-210 are carcinogens that occur naturally in sediments and groundwater. Arsenic and cobalt are principally derived from erosion of volcanic rocks in the local mountains and tungsten and uranium are derived from erosion of granitic rocks in headwater reaches of the Carson River. Radon and 210Po originate from radioactive decay of uranium in the sediments. Arsenic, aluminum, cobalt, iron, and manganese concentrations in household dust suggest it is derived from the local soils. Excess zinc and chromium in the dust are probably derived from the vacuum cleaner used to collect the dust, or household sources such as the furnace. Some samples have more than 5 times more cobalt in the dust than in the local soil, but whether the source of the excess cobalt is anthropogenic or natural cannot be determined with the available data. Cobalt concentrations are low in groundwater, but arsenic, uranium, radon, and 210Po concentrations often exceed human-health standards, and sometime greatly exceed them. Exposure to radon and its decay products in drinking water can vary significantly depending on when during the day that the water is consumed. Although the data suggests there have been no long term changes in groundwater chemistry that corresponds to the Lahontan Valley leukemia cluster, the occurrence of the very unusual leukemia cluster in an area with numerous 210Po and arsenic contaminated wells is striking, particularly in conjunction with the exceptionally high levels of urinary tungsten in Lahontan Valley residents. Additional research is needed on potential exposure pathways involving food or inhalation, and on synergistic effects of mixtures of these natural contaminants on susceptibility to development of leukemia. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Geologic setting, genesis and transformation of sulfide deposits in the northern part of Khetri copper belt, Rajasthan, India — an outline

    NASA Astrophysics Data System (ADS)

    Sarkar, S. C.; Dasgupta, Somnath

    1980-07-01

    The present study is confined to the northern part of the Khetri copper belt that extends for about 100 km in northern Rajasthan. Mineralization is more or less strata-bound and is confined to the garnetiferous chlorite schist and banded amphibolite quartzite, occurring towards the middle of the Proterozoic Delhi Supergroup. Preserved sedimentary features and re-estimation of the composition of the pre-metamorphic rocks suggest that the latter were deposited in shallow marine environment characterized by tidal activity. Cordierite-orthoamphibole-cummingtonite rock occurring in the neighbourhood of the ores is discussed, and is suggested to be isochemically metamorphosed sediment. The rocks together with the ores were deformed in two phases and metamorphosed in two progressive and one retrogressive events of metamorphism. Study of the host rocks suggests that the maximum temperature and pressure attained during metamorphism are respectively 550 600°C and < 5.5 kb. Principal ore minerals in Madan Kudan are chalcopyrite, pyrrhotite, pyrite and locally magnetite. In Kolihan these are chalcophyrite, pyrrhotite and cubanite. Subordinate phases are sphalerite, ilmenite, arsenopyrite, mackinawite, molybdenite, cobaltite and pentlandite. The last two are very rare. Gangue minerals comprise quartz, chlorite, garnet, amphiboles, biotite, scapolite, plagioclase and graphite. The ores are metamorphosed at temperatures > 491°C. Sulfide assemblages are explained in terms of fS 2 during metamorphism. Co-folding of the ore zone with the host rocks, confinement of the ores to the carbonaceous pelites or semi-pelitic rocks, strata-bound and locally even stratiform nature of the orebodies, lack of finite ‘wall rock alteration’, metamorphism of the ores in the thermal range similar to that for the host rocks, absence of spatial and temporal relationship with the granitic rocks of the region led the authors to conclude that the entire mineralization was originally sedimentary-diagenetic. Any loss of primitive features and development of incongruency are due to subsequent deformation and metamorphism to which the ores and their hosts were together subjected.

  5. Postmagmatic magnetite-apatite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia

    NASA Astrophysics Data System (ADS)

    Apukhtina, Olga B.; Kamenetsky, Vadim S.; Ehrig, Kathy; Kamenetsky, Maya B.; McPhie, Jocelyn; Maas, Roland; Meffre, Sebastien; Goemann, Karsten; Rodemann, Thomas; Cook, Nigel J.; Ciobanu, Cristiana L.

    2016-01-01

    An assemblage of magnetite and apatite is common worldwide in different ore deposit types, including disparate members of the iron-oxide copper-gold (IOCG) clan. The Kiruna-type iron oxide-apatite deposits, a subtype of the IOCG family, are recognized as economic targets as well. A wide range of competing genetic models exists for magnetite-apatite deposits, including magmatic, magmatic-hydrothermal, hydrothermal(-metasomatic), and sedimentary(-exhalative). The sources and mechanisms of transport and deposition of Fe and P remain highly debatable. This study reports petrographic and geochemical features of the magnetite-apatite-rich vein assemblages in the dolerite dykes of the Gairdner Dyke Swarm (~0.82 Ga) that intruded the Roxby Downs Granite (~0.59 Ga), the host of the supergiant Olympic Dam IOCG deposit. These symmetrical, only few mm narrow veins are prevalent in such dykes and comprise besides usually colloform magnetite and prismatic apatite also further minerals (e.g., calcite, quartz). The genetic relationships between the veins and host dolerite are implied based on alteration in the immediate vicinity (~4 mm) of the veins. In particular, Ti-magnetite-ilmenite is partially to completely transformed to titanite and magmatic apatite disappears. We conclude that the mafic dykes were a local source of Fe and P re-concentrated in the magnetite-apatite veins. Uranium-Pb ages for vein apatite and titanite associated with the vein in this case study suggest that alteration of the dolerite and healing of the fractures occurred shortly after dyke emplacement. We propose that in this particular case the origin of the magnetite-apatite assemblage is clearly related to hydrothermal alteration of the host mafic magmatic rocks.

  6. Summary of reconnaissance for radioactive deposits in Alaska, 1945-1954, and an appraisal of Alaskan uranium possibilities

    USGS Publications Warehouse

    Wedow, Helmuth

    1956-01-01

    In the period 1945-1954 over 100 investigations for radioactive source materials were made in Alaska. The nature of these investigations ranged from field examinations of individual prospects or the laboratory analysis of significantly radioactive samples submitted by prospectors to reconnaissance studies of large districts. In this period no deposits of uranium or thorium that would warrant commercial exploitation were discovered. The investigations, however, disclosed that radioactive materials occur in widely scattered areas of Alaska and in widely diverse environments. Many igneous rocks throughout Alaska are weakly radioactive because of uranium- and thorium-bearing accessory minerals, such as allanite, apatite, monazite, sphene, xenotime, and zircon; more rarely the radioactivity of these rocks is due to thorianite or thorite and their uranoan varieties. The felsic rocks, for example, granites and syenites, are generally more radioactive than the mafic igneous rocks. Pegmatites, locally, have also proved to be radioactive, but they have little commercial significance. No primary uranium oxide minerals have been found yet in Alaskan vein deposits, except, perhaps, for a mineral tentatively identified as pitchblende in the Hyder district of southeastern Alaska. However, certain occurrences of secondary uranium minerals, chiefly those of the uranite group, on the Seward Peninsula, in the Russian Mountains, and in the vicinity of Kodiak suggest that pitchblende-type ores may occur at depth beneath zones of alteration. Thorite-bearing veins have been discovered on Prince of Wales Island in southeastern Alaska. Although no deposits or carnotite-type minerals have been found in Alaska, several samples containing such minerals have been submitted by Alaskan prospectors. Efforts to locate the deposits from which these minerals were obtained have been unsuccessful, but review of available geologic data suggests that several Alaskan areas are potentially favorable for carnotite-type deposits. The chief of these areas is the Alaska Peninsula-Cook Inlet area which encompasses most of the reported occurrences of the prospectors' carnotite-type samples. Alaska is also potentially favorable for the occurrence of large bodies of the very low-grade uraniferous sedimentary rocks, such as phosphorites and black shales. This type of deposit, however, has not received much study because of the emphasis on the search for bonanza-type high-grade ores. Uraniferous phosphorites similar to those of Idaho, Montana, and Wyoming occur in northern Alaska on the north flank of the Brooks Range; black shales comparable to the uraniferous shales of the Chattanooga formation of southeastern United States have been noted along the Yukon River near the international boundary. Placer deposits in Alaska have some small potential for the production of the radioactive elements as byproducts of gold- and tin-placer mining. the placer area believed to have the relatively greatest potential in Alaska lies in the Kahiltna River valley where concentrates are known to contain such commercial minerals as ilmenite, cassiterite, platinum, and gold in addition to uranothorianite and monazite. The possibilities of the natural fluids--water and petroleum--have not yet been tested in Alaska to any great extent. Studies of fluids are in progress to determine whether they may be used to discover and define areas potentially favorable for the occurrence of uraniferous lodes.

  7. New data on carbonatites of the Il'mensky-Vishnevogorsky alkaline complex, the southern Urals, Russia

    NASA Astrophysics Data System (ADS)

    Nedosekova, I. L.

    2007-04-01

    Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575-300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300-200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044-0.7045 and ɛNd ranging from 0.65 to -3.3 testify to their derivation from a deep mantle source of EM1 type.

  8. Materials. Section 1 of Symposium on the peaceful uses of atomic energy in Australia, 1958, held in Sydney, in June 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The environments of the known uranium occurences in South Australia arc described, and the relation of uranium mineralization with sodic granitic rocks is emphasized. The problems in designing equipment for radiometric prospecting are reviewed. The fabrication and properties of BeO, UO/sub 2/, ThO/sub 2/, and mixed oxides are discussed. The use of pulsing in a uranium extraction pilot plant ion exchange column is described. The wetting of metals by liquid metals is reviewed with emphasis on liquid sodium. The geological nature, extent, and future prospects of minerals with atomic energy applications, occurring in New South Wales are outlined. The developmentmore » of a process for uranium recovery from Mary Kathleen ores is described. Techniques and processes involved in locating, mining, and concentrating davidite-type ores at Radium Hill, South Australia are described. The uranium deposits of the Northern Territory, Australia, are classified and described. The flotation behavior of the simple oxide minerals, uraninite and the colloform variety is discussed. The Port Pirie Treatment Plant for uranium recovery from refractory Radium Hill concentrates is described. The plant utilizes the sulfuric acid-ion exchange process. The uranium deposits of Queensland are described. the details of the production of uranium ore concentrates at Rum jungle near Darwin, Australia, are given. A brief account of the use of neutron diffraction analysis in crystallography is given, and the neutron spectrometers installed on the High Flux Australian Research Reactor are described. (T.R.H.)« less

  9. Precambrian uranium-bearing quartz-pebble conglomerates: exploration model and United States resource potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houston, R.S.; Karlstrom, K.E.

    1979-11-01

    Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrianmore » age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology.« less

  10. Differential thermal response within inshore vs. offshore congeneric scleractinian coral species in Palau.

    NASA Astrophysics Data System (ADS)

    Hoadley, K. D.; Lewis, A.; Wham, D.; Pettay, D. T.; Kemp, D.; Warner, M.; Lajeunesse, T.

    2016-02-01

    The rock island reef habitats of Palau are an ideal location to study climate change effects to reefs, as corals there are exposed to average temperature and pCO2 conditions well above levels experienced at offshore reef locations. We examined the response of 6 coral species, Acropora muricata, Goniastrea sp, Porities rus, Cyphastrea sp, Porites cylindrical and Pachyseris sp, from both rock island and offshore habitats to high temperature (32 Celsius) for 15 days. With the exception of P. rus and P. cylindrica which harbored Symbiodinium C15 at both locations, other rock island corals harbored the thermally tolerant species Symbiodinium trenchii, whereas offshore colonies harbored clade C symbionts. A total of 15 separate host and symbiont physiological variables were utilized to assess thermal acclimation/stress response within each host/symbiont combination. Differences in photophysiology, algal cell volume and biochemical composition were observed for Symbiodinium trenchii within different host species, reflecting the importance of the host organism in mitigating the symbiont response. Similarly, the host thermal response was also dependent on symbiont type, with greater reductions in symbiont density occurring within the offshore colonies. Overall, prior exposure to warmer temperatures, elevated nutrient and pCO2 conditions, along with association with more robust symbionts allowed rock island corals to exhibit greater thermal tolerance toward high temperature. Importantly, the results herein for Symbiodinium trenchii physiological plasticity and thermal mitigation provides useful insight into the potential of scleractinian corals to acclimatize under future climate change scenarios.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Frank Vinton; Kelley, Richard E.

    The DOE Spent Fuel and Waste Technology (SWFT) R&D Campaign is supporting research on crystalline rock, shale (argillite) and salt as potential host rocks for disposal of HLW and SNF in a mined geologic repository. The distribution of these three potential repository host rocks is limited to specific regions of the US and to different geologic and hydrologic environments (Perry et al., 2014), many of which may be technically suitable as a site for mined geologic disposal. This report documents a regional geologic evaluation of the Pierre Shale, as an example of evaluating a potentially suitable shale for siting amore » geologic HLW repository. This report follows a similar report competed in 2016 on a regional evaluation of crystalline rock that focused on the Superior Province of the north-central US (Perry et al., 2016).« less

  12. Tracking hydrothermal alteration and mineralization in rock-forming and accessory minerals from the Lyon Mountain Granite and related iron oxide apatite (IOA) ores from the Adirondack Mountains, New York State

    NASA Astrophysics Data System (ADS)

    Buchanan, A.; Hanchar, J. M.; Steele-MacInnis, M. J.; Crowley, J. L.; Valley, P. M.; Fisher, C. M.; Fedo, C.; Piccoli, P. M.; Fournelle, J.

    2012-12-01

    The Lyon Mountain granite (LMG) is located in the northeastern Adirondack Mountains in New York State and hosts several low-titanium iron oxide apatite (IOA) ore deposits. The ores are predominately hosted by perthite bearing granite, which has been extensively altered to albite and microcline granite by Na and K metasomatism. This alteration results in several distinct groups of rocks that are dominated by either K or Na addition and a group composed of mixed Na and K addition. The different groups of altered perthite also lie on a trend suggestive of addition of Fe to each, consistent with a secondary mineralization origin. Previous work showed that the host rocks of the IOA ores have zircon with ~1150 Ma cores and 1060-1050 Ma rims and whole grains. This study aims to further constrain the timing of LMG emplacement, subsequent hydrothermal alteration, and Fe mineralization through geochemical analysis of the major, minor, and accessory phases and geochronology of accessory phases. SIMS analyses of zircon from several of the IOA ores reveal at least two periods of growth after LMG magmatism, at 1039 +/- 4.4 Ma and 1016 +/- 7 Ma to 1000 +/- 9 Ma. In situ EMPA and LA-ICPMS trace element analyses of the zircon rims and cores reveal that in two samples the zircon rims are enriched in rare earth elements (REE) compared to their cores, potentially pointing to a hydrothermal origin. Apatite has unusually high REE and Y concentrations (some total REE2O3 > 20 wt. % oxide and up to 8 wt. % oxide Y2O3), as does titanite, which allowed for the in situ analysis of Sm-Nd in apatite and titanite by LA-MC-ICP-MS. Initial Nd isotopic composition of both ore and host rock apatite and host rock titanite are consistent with published Adirondack initial Nd whole rock data, suggesting a local source for REE in these ores. EMPA and LA-ICPMS trace-element analyses of the major rock-forming minerals indicate that the feldspar have undergone Na-metasomatism and are depleted in REEs, perhaps signifying the "local source" and the mechanism of the REE enrichment in the LMG apatite in the IOA ores and host rocks. In contrast, the minor- and trace-element compositions of the other major rock-forming minerals (e.g., clinopyroxene and fayalite) as well as the zircon, and fluorite in the LMG have average igneous granitic trace- and minor-element compositions. To better understand the timing and origin of these post ~1050 Ma events, U-Pb ID-TIMS dating of apatite and titanite, and in situ LA-MC-ICPMS Sm-Nd analysis were done on the ore and host rock samples. Apatite dates range from 1050 to 850 Ma and titanite dates range from ~1015 to 970 Ma. There is significant age variation within samples and within grains. Titanite does not have sufficient spread for accurate Sm-Nd isochron dating and two ore-apatite samples have homogenous initial Nd isotopic and Sm-Nd elemental ratios, precluding calculation of Sm-Nd dates. A third ore sample shows a large spread in Sm-Nd and yields a Sm-Nd isochron date of ~850 Ma, in close agreement with U-Pb apatite dates. The Sm-Nd isochron and U-Pb apatite dates may reflect cooling recorded in these minerals or a younger hydrothermal mineralization event.

  13. GIS-based identification of areas that have resource potential for critical minerals in six selected groups of deposit types in Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Jones, James V.; Hayes, Timothy S.

    2016-11-16

    Alaska has considerable potential for undiscovered mineral resources. This report evaluates potential for undiscovered critical minerals in Alaska. Critical minerals are those for which the United States imports more than half of its total supply and which are largely derived from nations that cannot be considered reliable trading partners. In this report, estimated resource potential and certainty for the state of Alaska are analyzed and mapped for the following six selected mineral deposit groups that may contain one or more critical minerals: (1) rare earth elements-thorium-yttrium-niobium(-uranium-zirconium) [REE-Th-Y-Nb(-U-Zr)] deposits associated with peralkaline to carbonatitic igneous intrusive rocks; (2) placer and paleoplacer gold (Au) deposits that in some places might also produce platinum group elements (PGE), chromium (Cr), tin (Sn), tungsten (W), silver (Ag), or titanium (Ti); (3) platinum group elements(-cobalt-chromium-nickel-titanium-vanadium) [PGE(-Co-Cr-Ni-Ti-V)] deposits associated with mafic to ultramafic intrusive rocks; (4) carbonate-hosted copper(-cobalt-silver-germanium-gallium) [Cu(-Co-Ag-Ge-Ga)] deposits; (5) sandstone-hosted uranium(-vanadium-copper) [U(-V-Cu)] deposits; and (6) tin-tungsten-molybdenum(-tantalum-indium-fluorspar) [Sn-W-Mo(-Ta-In-fluorspar)] deposits associated with specialized granites.This study used a data-driven, geographic information system (GIS)-implemented method to identify areas that have mineral resource potential in Alaska. This method systematically and simultaneously analyzes geoscience data from multiple geospatially referenced datasets and uses individual subwatersheds (12-digit hydrologic units) as the spatial unit of classification. The final map output uses a red, yellow, green, and gray color scheme to portray estimated relative potential (High, Medium, Low, Unknown) for each of the six groups of mineral deposit types, and it indicates the relative certainty (High, Medium, Low) of that estimate for each 12-digit hydrologic unit through color shading. Accompanying tables describe the data layers employed to score favorability for the presence of each mineral deposit group, the values assigned for specific analysis parameters, and the relative weighting of each data layer that contributes to estimated measures of potential and certainty. Core datasets used include the Alaska Geochemical Database, Version 2.0 (AGDB2); the Alaska Division of Geological & Geophysical Surveys (ADGGS) web-based geochemical database; the digital “Geologic Map of Alaska;” the Alaska Resource Data File (ARDF); and aerial gamma-ray surveys flown as part of the National Uranium Resource Evaluation (NURE) Program by the U.S. Department of Energy.Maps accompanying this report illustrate the scores for estimated mineral resource potential for the six deposit groups for the state of Alaska. Areas that have known potential, as well as new areas that were not previously known to have potential, for the targeted minerals and deposit groups are identified and described. Numerous areas in Alaska, some of them large, have high potential for one or more of the selected groups of deposit types within Alaska.ContributorsMatthew Granitto, Timothy S. Hayes, James V. Jones, III, Susan M. Karl, Keith A. Labay, Jeffrey L. Mauk, Jeanine M. Schmidt, Nora B. Shew, Erin Todd, Bronwen Wang, Melanie B. Werdon, and Douglas B. Yager

  14. Uranium in mining water of kaolin open pit in Zarów (Lower Silesia); methodology of determination and genetic remarks.

    PubMed

    Chau, N D; Wyszomirski, P; Chruściel, E; Ochoński, A

    1999-11-01

    In this paper, a method of determination of uranium 238 and 234 in mining waters of Andrzej kaolin open pit in Zarów (Lower Silesia) is presented. The method is based on independent measurements of alpha and beta radiation intensities by means of a liquid scintillation spectrometer alpha/beta. The initial volume of water sample was 3 dm3, then it was diminished by chemical preparation to 6 cm3, and then 12 cm3 of scintillator was added. The lower limit of detection (for the measurement time of 8 h) for both 234U and 238U amounted to 0.02 Bq/dm3. For determination of the uranium content in ferruginous sediments precipitating from mining waters of the above-mentioned open pit, gamma ray spectrometry was used. The obtained results may be viewed as a contribution to studies on anomalous uranium concentration within this kaolin deposit. The elevated uranium content, in comparison with its average concentration in the Earth crust, is characteristic for parent rocks of Andrzej kaolin deposit, which are granitoids of Strzegom-Sobótka massif. In connection with it, the high uranium content can be observed not only in kaolin and weakly kaolinised granitoids from the deposit in question, but also in mining waters genetically related with them.

  15. Metallogenic evolution of uranium deposits in the Middle East and North Africa deposits

    NASA Astrophysics Data System (ADS)

    Howari, Fares; Goodell, Philip; Salman, Abdulaty

    2016-02-01

    This paper is briefly involved in classification and distributions of the Middle East and North Africa (MENA) uranium deposits. The study of these mineral systems can significantly contribute to our further understanding of the metallogeny of known and poorly explored deposits. This provides contribution to, and further enhancement of, current classifications and metallogenic models of uranium systems, allowing researchers to emphasize on unknown or poorly studied mineral systems found in MENA. The present study identified eight metallogenic types of uranium associated with: 1) the Archean rocks and intra-cratonic basins, 2) the Pan-African granites and rhyolites which are characterized by igneous activity, 3) Phanerozoic (Paleozoic) clastics, these deposits are the sedimentological response to Pan African magmatism, 4) Mesozoic (basal) clastics type e.g. Nubia sandstones which are characterized by uranium minerals, 5) regional sedimentary phosphate deposits which are categorized as geosynclinal, or continental margin deposits, on the shelf of the Tethys Ocean, 6) Cenozoic Intracratonic Felsic Magmatism of the Tibesti and Hoggar, and the sandstone U deposits of adjoining Niger. These are similar to the Pan-African magmatism metallogenic, 7) Calcretes, and 8) Resistate minerals which are often enriched in rare earth elements, sometimes including uranium. They are thus sometimes considered as U resources but poorly explored in the MENA region. These metallogenic types are described and discussed in the current paper.

  16. Physical exploration for uranium during 1951 in the Silver Reef district, Washington County, Utah

    USGS Publications Warehouse

    Stugard, Frederick

    1953-01-01

    During 1951 a joint exploration program of the most promising uraniferous areas in the Silver Reef district was made by the U.S. Geological Survey and the u.S. Atomic Energy Commission.  A U.S. Bureau of Mines drill crew, on contract to the Atomic Energy Commission, did 2,450 feet of diamond drilling under the geological supervision of the U.S. Geological Survey.  The purpose of the drilling was to delineate broadly the favorable ground for commercial development of the uranium depostis.  Ten drill holes were located around Pumpkin Point, which is the northeastern end of Buckeye Reef, to probe for extensions of small ore shootsmined on the Point in fine-grained sandstones of the Chinle formation.  Three additional holes were located around teh Tecumseh Hill to prbe for extensions of the small showings of uranium-bearing rocks of Buckeye Reef.

  17. Structural controls and evolution of gold-, silver-, and REE-bearing copper-cobalt ore deposits, Blackbird district, east-central Idaho: Epigenetic origins

    USGS Publications Warehouse

    Lund, K.; Tysdal, Russell G.; Evans, Karl V.; Kunk, Michael J.; Pillers, Renee M.

    2011-01-01

    Textural data at all scales indicate that the host sites for veins and the tectonic evolution of both host rocks and mineral deposits were kinematically linked to Late Cretaceous regional thrust faulting. Heat, fluids, and conduits for generation and circulation of fluids were part of the regional crustal thickening. The faulting also juxtaposed metaevaporite layers in the Mesoproterozoic Yellowjacket Formation over Blackbird district host rocks. We conclude that this facilitated chemical exchange between juxtaposed units resulting in leaching of critical elements (Cl, K, B, Na) from metaevaporites to produce brines, scavenging of metals (Co, Cu, etc) from rocks in the region, and, finally, concentrating metals in the lower-plate ramp structures. Although the ultimate source of the metals remains undetermined, the present Cu-Co ± Au (± Ag ± Ni ± REE) Blackbird ore deposits formed during Late Cretaceous compressional deformation.

  18. Self-Organizing Fluid Convection Patterns in an en Echelon Fault Array

    NASA Astrophysics Data System (ADS)

    Patterson, James W.; Driesner, Thomas; Matthai, Stephan K.

    2018-05-01

    We present three-dimensional numerical simulations of natural convection in buried, vertical en echelon faults in impermeable host rock. Despite the fractures being hydraulically disconnected, convection within each fracture alters the temperature field in the surrounding host rock, altering convection in neighboring fractures. This leads to self-organization of coherent patterns of upward/downward flow and heating/cooling of the host rock spanning the entire fault array. This "synchronization" effect occurs when fracture spacing is less than the width of convection cells within the fractures, which is controlled by fracture transmissivity (permeability times thickness) and heterogeneity. Narrow fracture spacing and synchronization enhance convective fluid flow within fractures and cause convection to initiate earlier, even lowering the critical transmissivity necessary for convection initiation. Heat flow through the en echelon region, however, is enhanced only in low-transmissivity fractures, while heat flow in high-permeability fractures is reduced due to thermal interference between fractures.

  19. Changes in geophysical properties caused by fluid injection into porous rocks: analytical models: Geophysical changes in porous rocks

    DOE PAGES

    Pride, Steven R.; Berryman, James G.; Commer, Michael; ...

    2016-08-30

    Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean-field analytical model that shows how each modeled rock property depends on the nature of the crack population. We describe the crack populations by a crack density, a probability distribution for the crack aperturesmore » and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. But, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.« less

  20. Changes in geophysical properties caused by fluid injection into porous rocks: analytical models: Geophysical changes in porous rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pride, Steven R.; Berryman, James G.; Commer, Michael

    Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean-field analytical model that shows how each modeled rock property depends on the nature of the crack population. We describe the crack populations by a crack density, a probability distribution for the crack aperturesmore » and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. But, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.« less

  1. Ground gamma-ray spectrometric studies of El-Sahu area, southwestern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Abdrabboh, Ahmad M.

    2017-12-01

    Based on the previous airborne gamma-ray spectrometric study carried out in southwestern Sinai area, El Sahu area was selected for detail ground gamma-ray spectrometric survey. This area is considered as a good target for radioactive mineral exploration. The study area is exposed in a Paleozoic basin covered by different rocks (ranging from Precambrian to Quaternary). The ground gamma-ray spectrometric survey has been conducted along the study area through random survey. The resultant gamma-ray spectrometric maps show different levels of radioactivity over the studied area, which reflect contrasting radioelement contents for the exposed various rock types. The studied area possesses total count ranging from 2.6 to 326 Ur, 0.1 to 2.8% K, 1.7 to 316 ppm eU and 0.9 to 47.5 ppm eTh. The highest uranium concentrations are located in the northern and southern parts of El Sahu area. They are mainly associated with Um Bogma Formation occurrences. Uranium ratio maps (eU/K and eU/eTh) as well as ternary maps show sharp increase of eU content over both potassium and thorium contents associated with the ENE and NNW trends in Um Bogma Formation, indicating an increase in the U-potentiality than the surrounding rocks. This indicates that the mineralization in the study area may be structurally-controlled.

  2. Preliminary summary review of thorium-bearing mineral occurrences in Alaska

    USGS Publications Warehouse

    Bates, Robert G.; Wedow, Helmuth

    1952-01-01

    Thorium-bearing minerals are known at 47 localities in Alaska. At these localities the thorium occurs as a major constituent or in minor amounts as an impurity in one or more of the following 12 minerals: allanite, columbite, ellsworthite, eschynite, gummite, monazite, orangite, parisite, thorianite, thorite, xenotime, and zircon. In addition other minerals, such as biotite and sphene, are radioactive and may contain thorium. Several unidentified columbate minerals with uranium or thorium and uranium as major constituents have been recognized at some localities. The distribution, by type of deposit, of the 57 thorium occurrences is as follows: lode - 3, lode and placer - 1, granitic rock - 3, granitic rock and related placer - 14, and placer - 26. Of the four lode occurrences only the radioactive veins at Salmon Bay in southeastern Alaska and the contact metamorphic deposit in the Nixon Fork area of central Alaska warrant further consideration, although insufficient data are available to determine whether these two deposits have commercial possibilities. The remaining occurrences of thorium-bearing minerals in Alaska are limited to placer deposits and disseminations of accessory minerals in granitic rocks. In most of these occurrences the thorium-bearing minerals occur in only trace amounts and consequently warrent little further consideration. More data are needed to determine the possibilities of byproduct recovery of thorium-bearing minerals from several of the gold and tin placers.

  3. 15 CFR 922.102 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... genetic matter, or genetic matter from another species, has been transferred in order that the host organism acquires the genetic traits of the transferred genes. Live rock means any Coral, basalt rock, or...

  4. 15 CFR 922.102 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... genetic matter, or genetic matter from another species, has been transferred in order that the host organism acquires the genetic traits of the transferred genes. Live rock means any Coral, basalt rock, or...

  5. 15 CFR 784.1 - Complementary access: General information on the purpose of complementary access, affected...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... may be conducted, on a selective basis, to verify the absence of undeclared nuclear material and nuclear related activities at reportable uranium hard-rock mines and ore beneficiation plants (see § 783.1... OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE ADDITIONAL PROTOCOL REGULATIONS COMPLEMENTARY ACCESS...

  6. 15 CFR 783.4 - Deadlines for submission of reports and amendments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...

  7. 15 CFR 783.4 - Deadlines for submission of reports and amendments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...

  8. 15 CFR 783.4 - Deadlines for submission of reports and amendments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...

  9. 15 CFR 783.4 - Deadlines for submission of reports and amendments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...

  10. 15 CFR 783.4 - Deadlines for submission of reports and amendments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...

  11. Uranium redox transition pathways in acetate-amended sediments

    USGS Publications Warehouse

    Bargar, John R.; Williams, Kenneth H.; Campbell, Kate M.; Long, Philip E.; Stubbs, Joanne E.; Suvorova, Elenal I.; Lezama-Pacheco, Juan S.; Alessi, Daniel S.; Stylo, Malgorzata; Webb, Samuel M.; Davis, James A.; Giammar, Daniel E.; Blue, Lisa Y.; Bernier-Latmani, Rizlan

    2013-01-01

    Redox transitions of uranium [from U(VI) to U(IV)] in low-temperature sediments govern the mobility of uranium in the environment and the accumulation of uranium in ore bodies, and inform our understanding of Earth’s geochemical history. The molecular-scale mechanistic pathways of these transitions determine the U(IV) products formed, thus influencing uranium isotope fractionation, reoxidation, and transport in sediments. Studies that improve our understanding of these pathways have the potential to substantially advance process understanding across a number of earth sciences disciplines. Detailed mechanistic information regarding uranium redox transitions in field sediments is largely nonexistent, owing to the difficulty of directly observing molecular-scale processes in the subsurface and the compositional/physical complexity of subsurface systems. Here, we present results from an in situ study of uranium redox transitions occurring in aquifer sediments under sulfate-reducing conditions. Based on molecular-scale spectroscopic, pore-scale geochemical, and macroscale aqueous evidence, we propose a biotic–abiotic transition pathway in which biomass-hosted mackinawite (FeS) is an electron source to reduce U(VI) to U(IV), which subsequently reacts with biomass to produce monomeric U(IV) species. A species resembling nanoscale uraninite is also present, implying the operation of at least two redox transition pathways. The presence of multiple pathways in low-temperature sediments unifies apparently contrasting prior observations and helps to explain sustained uranium reduction under disparate biogeochemical conditions. These findings have direct implications for our understanding of uranium bioremediation, ore formation, and global geochemical processes.

  12. Neutron activation and other analytical data for plutonic rocks from North America and Africa. National Uranium Resource Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, V.; Fay, W.M.; Cook, J.R.

    1982-09-01

    The objective of this report is to retrieve the elements of an analytical study of granites and associated other plutonic rocks which was begun as a part of the U.S. Department of Energy's National Uranium Resource Evaluation (NURE) program. A discussion of the Savannah River Laboratory (SRL) neutron activation analysis system is given so that a user will understand the linmitations of the data. Enough information is given so that an experienced geochemist can clean up the data set to the extent required by any project. The data are generally good as they are presented. It is intended that themore » data be read from a magnetic tape written to accompany this report. Microfiche tables of the data follow the text. These tables were prepared from data on the tape, and programs which will read the tape are presented in the section THE DATA TAPE. It is our intent to write a later paper which will include a thoroughly scrubbed data set and a technical discussion of results of the study. 1 figure.« less

  13. Lithological and hydrochemical controls on distribution and speciation of uranium in groundwaters of hard-rock granitic aquifers of Madurai District, Tamil Nadu (India).

    PubMed

    Thivya, C; Chidambaram, S; Keesari, Tirumalesh; Prasanna, M V; Thilagavathi, R; Adithya, V S; Singaraja, C

    2016-04-01

    Uranium is a radioactive element normally present in hexavalent form as U(VI) in solution and elevated levels in drinking water cause health hazards. Representative groundwater samples were collected from different litho-units in this region and were analyzed for total U and major and minor ions. Results indicate that the highest U concentration (113 µg l(-1)) was found in granitic terrains of this region and about 10 % of the samples exceed the permissible limit for drinking water. Among different species of U in aqueous media, carbonate complexes [UO2(CO3)(2)(2-)] are found to be dominant. Groundwater with higher U has higher pCO2 values, indicating weathering by bicarbonate ions resulting in preferential mobilization of U in groundwater. The major minerals uraninite and coffinite were found to be supersaturated and are likely to control the distribution of U in the study area. Nature of U in groundwater, the effects of lithology on hydrochemistry and factors controlling its distribution in hard rock aquifers of Madurai district are highlighted in this paper.

  14. Uranium mobility during interaction of rhyolitic obsidian, perlite and felsite with alkaline carbonate solution: T = 120° C, P = 210 kg/cm2

    USGS Publications Warehouse

    Zielinski, Robert A.

    1979-01-01

    Well-characterized samples of rhyolitic obsidian, perlite and felsite from a single lava flow are leached of U by alkaline oxidizing solutions under open-system conditions. Pressure, temperature, flow rate and solution composition are held constant in order to evaluate the relative importance of differences in surface area and crystallinity. Under the experimental conditions U removal from crushed glassy samples proceeds by a mechanism of glass dissolution in which U and silica are dissolved in approximately equal weight fractions. The rate of U removal from crushed glassy samples increases with decreasing average grain size (surface area). Initial rapid loss of a small component (≈ 2.5%) of the total U from crushed felsite. followed by much slower U loss, reflects variable rates of attack of numerous uranium sites. The fractions of U removed during the experiment ranged from 3.2% (felsite) to 27% (perlite). An empirical method for evaluating the relative rate of U loss from contemporaneous volcanic rocks is presented which incorporates leaching results and rock permeability data.

  15. Uranium series, volcanic rocks

    USGS Publications Warehouse

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  16. The Itataia phosphate-uranium deposit (Ceará, Brazil) new petrographic, geochemistry and isotope studies

    NASA Astrophysics Data System (ADS)

    Veríssimo, César Ulisses Vieira; Santos, Roberto Ventura; Parente, Clóvis Vaz; Oliveira, Claudinei Gouveia de; Cavalcanti, José Adilson Dias; Nogueira Neto, José de Araújo

    2016-10-01

    The Itataia phosphate-uranium deposit is located in Santa Quitéria, in central Ceará State, northeastern Brazil. Mineralization has occurred in different stages and involves quartz leaching (episyenitization), brecciation and microcrystalline phase formation of concretionary apatite. The last constitutes the main mineral of Itatiaia uranium ore, namely collophane. Collophanite ore occurs in massive bodies, lenses, breccia zones, veins or episyenite in marble layers, calc-silicate rocks and gneisses of the Itataia Group. There are two accepted theories on the origin of the earliest mineralization phase of Itataia ore: syngenetic (primary) - where the ore is derived from a continental source and then deposited in marine and coastal environments; and epigenetic (secondary) - whereby the fluids are of magmatic, metamorphic and meteoric origin. The characterization of pre- or post-deformational mineralization is controversial, since the features of the ore are interpreted as deformation. This investigation conducted isotopic studies and chemical analyses of minerals in marbles and calc-silicate rocks of the Alcantil and Barrigas Formations (Itataia Group), as well as petrographic and structural studies. Analysis of the thin sections shows at least three phosphate mineral phases associated with uranium mineralizaton: (1) A prismatic fluorapatite phase associated with chess-board albite, arfvedsonite and ferro-eckermannite; (2) a second fluorapatite phase with fibrous radial or colloform habits that replaces calcium carbonate in marble, especially along fractures, with minerals such as quartz, chlorite and zeolite also identified in calc-silicate rocks; and (3) an younger phosphate phase of botryoidal apatite (fluorapatite and hydroxyapatite) related with clay minerals and probably others calcium and aluminum phosphates. Detailed isotopic analysis carried out perpendicularly to the mineralized levels and veins in the marble revealed significant variation in isotopic ratios. Mineralized zones exhibit a decrease in δ13C and δ18O isotope values and a higher 87Sr/86Sr ratio toward the center of the vein. In conjunction with petrographic studies, these changes contesting the hypothesis of a sedimentary origin for uranium and suggest a radiogenic Sr input by alkaline to peralkaline fluids from fertile granites of the end of Brasiliano/Pan-African orogeny, located outside the deposit. The origin of the phosphorous is associated with phosphorite deposits in the same depositional environment of the neoproterozoic supracrustal quartz-pelite-carbonate sediments of the Itataia Group. Considering the studies conducted here and available geological data, three main mineralizing events can be identified in Itataia: (1) an initial high temperature event connected with a sodium metasomatism-related uranium episode, taking place in Borborema Province and its African counterpart; (2) a second lower temperature stage, consisting of a multiphase cataclastic/hydrothermal event limited to fault and paleokarst zones; and (3) a third and final event, developed in frankly oxidizing conditions. The last two involving mixing of hydrothermal and meteoric fluids.

  17. 40Ar/39Ar mica ages from marble mylonites: a cautionary tale

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Huet, Benjamin; Schneider, David; Grasemann, Bernhard

    2014-05-01

    40Ar/39Ar geochronology on white mica is a popular method to date deformation under moderate (brittle-ductile) temperatures. In particular, deformation events preserved in greenschist facies shear zones have been successfully dated with this method. A consequence of strain localization in many tectonic settings that bear calcitic marbles is the formation of marble mylonites and ultramylonites. Little is known, however, about the behaviour of the K/Ar systems and the influence of deformation on the ages in such rocks. We studied an extremely localized shear zone (2 cm thick) in marble from Syros (Cyclades, Greece) and performed microstructural, chemical and isotopic analysis on samples from the host rock and the shear zone. The host rock is composed of coarse-grained (300 µm) calcite with only minor undulatory extinction and slightly curved grain boundaries. This initial large grain size is likely to have formed during the Eocene high-pressure - low-temperature event that is well documented in the Cyclades. In contrast, the marble within the shear zone shows evidence of strong intracrystalline deformation and recrystallization resulting in grain size reduction and the formation of an ultramylonite. Both microstructures and kinematics are consistent with the low grade evolution described on Syros. White mica (100's microns in size) are preferentially orientated parallel to the foliation. In both samples there is no clear evidence for crystal plastic deformation of the mica grains. Bigger grains behave brittle resulting in grain size reduction. A deformation mechanism map for calcite at 300 °C indicates that the host rock deformed at strain rates of around 10-12.5 s-1 whereas within the shear zone strain rates of up to 10-9.5 s-1 are attained. We performed laser-heating 40Ar/39Ar analysis on white mica located in the host rock and the shear zone. The low-strain host rock yielded a ca. 40 Ma age, and the shear zone recorded a ca. 37 Ma age; both ages are statistically indistinguishable when errors are considered. These dates correspond to the regional Eocene high-pressure - low-temperature event and not the later low grade deformation event that is responsible for the formation of the studied shear zone. Although the marble within the shear zone was deformed at extremely fast strain rates, we observe no resetting in the isotopic system. Moreover, mineral chemistry demonstrates that (1) white mica is homogeneous and (2) there is no compositional difference between the host rock and the shear zone. This is in agreement with thermodynamical modelling, which indicates that the observed assemblage (calcite + dolomite + quartz + white mica) is stable without any composition change along the pressure-temperature path followed by the metamorphic rocks of Syros. Our case study emphasizes it is not the amount of strain the rock suffered but the degree of mica recrystallization that is important for resetting of the K/Ar system at low temperatures.

  18. Uranium resource assessment by the Geological Survey; methodology and plan to update the national resource base

    USGS Publications Warehouse

    Finch, Warren Irvin; McCammon, Richard B.

    1987-01-01

    Based on the Memorandum of Understanding {MOU) of September 20, 1984, between the U.S. Geological Survey of the U.S. Department of Interior and the Energy Information Administration {EIA) of the U.S. Department of Energy {DOE), the U.S. Geological Survey began to make estimates of the undiscovered uranium endowment of selected areas of the United States in 1985. A modified NURE {National Uranium Resource Evaluation) method will be used in place of the standard NURE method of the DOE that was used for the national assessment reported in October 1980. The modified method, here named the 'deposit-size-frequency' {DSF) method, is presented for the first time, and calculations by the two methods are compared using an illustrative example based on preliminary estimates for the first area to be evaluated under the MOU. The results demonstrate that the estimate of the endowment using the DSF method is significantly larger and more uncertain than the estimate obtained by the NURE method. We believe that the DSF method produces a more realistic estimate because the principal factor estimated in the endowment equation is disaggregated into more parts and is more closely tied to specific geologic knowledge than by the NURE method. The DSF method consists of modifying the standard NURE estimation equation, U=AxFxTxG, by replacing the factors FxT by a single factor that represents the tonnage for the total number of deposits in all size classes. Use of the DSF method requires that the size frequency of deposits in a known or control area has been established and that the relation of the size-frequency distribution of deposits to probable controlling geologic factors has been determined. Using these relations, the principal scientist {PS) first estimates the number and range of size classes and then, for each size class, estimates the lower limit, most likely value, and upper limit of the numbers of deposits in the favorable area. Once these probable estimates have been refined by elicitation of the PS, they are entered into the DSF equation, and the probability distribution of estimates of undiscovered uranium endowment is calculated using a slight modification of the program by Ford and McLaren (1980). The EIA study of the viability of the domestic uranium industry requires an annual appraisal of the U.S. uranium resource situation. During DOE's NURE Program, which was terminated in 1983, a thorough assessment of the Nation's resources was completed. A comprehensive reevaluation of uranium resource base for the entire United States is not possible for each annual appraisal. A few areas are in need of future study, however, because of new developments in either scientific knowledge, industry exploration, or both. Four geologic environments have been selected for study by the U.S. Geological Survey in the next several years: (1) surficial uranium deposits throughout the conterminous United States, (2) uranium in collapse-breccia pipes in the Grand Canyon region of Arizona, (3) uranium in Tertiary sedimentary rocks of the Northern Great Plains, and (4) uranium in metamorphic rocks of the Piedmont province in the eastern States. In addition to participation in the National uranium resource assessment, the U.S. Geological Survey will take part in activities of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development and those of the International Atomic Energy Agency.

  19. Metallogeny of the midcontinent rift system of North America

    USGS Publications Warehouse

    Nicholson, S.W.; Cannon, W.F.; Schulz, K.J.

    1992-01-01

    The 1.1 Ga Midcontinent rift system of North America is one of the world's major continental rifts and hosts a variety of mineral deposits. The rocks and mineral deposits of this 2000 km long rift are exposed only in the Lake Superior region. In the Lake Superior region, the rift cuts across Precambrian basement terranes ranging in age from ??? 1850 Ma to more than 3500 Ma. Where exposed, the rift consists of widespread tholeiitic basalt flows with local interlayered rhyolite and clastic sedimentary rocks. Beneath the center of Lake Superior the volcanic and sedimentary rocks are more than 30 km deep as shown by recent seismic reflection profiles. This region hosts two major classes of mineral deposits, magmatic and hydrothermal. All important mineral production in this region has come from hydrothermal deposits. Rift-related hydrothermal deposits include four main types: (1) native copper deposits in basalts and interflow sediments; (2) sediment-hosted copper sulfide and native copper; (3) copper sulfide veins and lodes hosted by rift-related volcanic and sedimentary rocks; and (4) polymetallic (five-element) veins in the surrounding Archean country rocks. The scarcity of sulfur within the rift rocks resulted in the formation of very large deposits of native metals. Where hydrothermal sulfides occur (i.e., shale-hosted copper sulfides), the source of sulfur was local sedimentary rocks. Magmatic deposits have locally supported exploration and minor production, but most are subeconomic presently. These deposits occur in intrusions exposed near the margins of the rift and include CuNiPGE and TiFe (V) in the Duluth Complex, U-REE-Nb in small carbonatites, and breccia pipes resulting from local hydrothermal activity around small felsic intrusions. Mineralization associated with some magmatic bodies resulted from the concentration of incompatible elements during fractional crystallization. Most of the sulfide deposits in intrusions, however, contain sulfur derived from country rocks; the interaction between magma and country rocks was important in generation of the magmatic CuNi sulfide deposits. A mantle plume origin has been proposed for the formation of the Midcontinent rift. More than 1 million km3 of mafic magma was erupted in the rift and a comparable volume of mafic intrusions are inferred beneath the rift, providing a ready and structurally confined supply of mafic source rocks that were available for leaching of metals by basinal brines. These brines were heated by a steep geothermal gradient that resulted from the melting and underplating of magma derived from the plume. Hydrothermal deposits were emplaced for at least 30-40 m.y. after rift magmatism and extension ceased. This time lag may reflect either the time required to heat deeply buried rocks and fluids within the rift, or may be due to the timing of post-rift compression that may have provided the driving mechanism for expulsion of hydrothermal fluids from deep portions of the rift. ?? 1992.

  20. Magmatic evolution of lunar highland rocks estimated from trace elements in plagioclase: A new bulk silicate Moon model with sub-chondritic Ti/Ba, Sr/Ba, and Sr/Al ratios

    NASA Astrophysics Data System (ADS)

    Togashi, Shigeko; Kita, Noriko T.; Tomiya, Akihiko; Morishita, Yuichi

    2017-08-01

    The compositions of host magmas of ferroan anorthosites (FAN-host magmas) were estimated from secondary ion mass spectrometry analyses of plagioclase in lunar highland rocks. The evolution of the magmas was investigated by considering phase relations based on the MELTS algorithm and by re-examining partition coefficients for trace elements between plagioclase and melts. Data little affected by post-magmatic processes were selected by using plagioclase with relatively primitive Sc and Co contents. The FAN-host magma contained 90-174 ppm Sr, 40-119 ppm Ba and 0.5-1.3% TiO2, and had sub-chondritic Sr/Ba and Ti/Ba ratios. It is difficult to account for the formation of FAN-host magma on the basis of magma evolution processes of previously proposed bulk silicate Moon models with chondritic ratios for refractory elements at global scale. Therefore, the source of the FAN-host magma must have had primordial sub-chondritic Sr/Ba and Ti/Ba ratios. The FAN-host magmas were consistent in refractory elements with the estimated host mafic magma for feldspathic crust based on lunar meteorites, and some very-low-Ti mare rocks from lunar meteorites. Here, we propose an alternative bulk silicate Moon model (the cBSM model), which is enriched in crustal components of proto-bodies relative to the present whole Earth-Moon system.

  1. Excavation Induced Hydraulic Response of Opalinus Clay - Investigations of the FE-Experiment at the Mont Terri URL in Switzerland

    NASA Astrophysics Data System (ADS)

    Vogt, T.; Müller, H. R.; Garitte, B.; Sakaki, T.; Vietor, T.

    2013-12-01

    The Full-Scale Emplacement (FE) Experiment at the Mont Terri underground research laboratory in Switzerland is a full-scale heater test in a clay-rich formation (Opalinus Clay). Based on the Swiss disposal concept it simulates the construction, emplacement, backfilling, and post-closure thermo-hydro-mechanical (THM) evolution of a spent fuel / vitrified high-level waste (SF / HLW) repository tunnel in a realistic manner. The main aim of this experiment is to investigate SF / HLW repository-induced THM coupled effects mainly in the host rock but also in the engineered barrier system (EBS), which consists of bentonite pellets and blocks. A further aim is to gather experience with full-scale tunnel construction and associated hydro-mechanical (HM) processes in the host rock. The entire experiment implementation (in a 50 m long gallery with approx. 3 m diameter) as well as the post-closure THM evolution will be monitored using a network of several hundred sensors (state-of-the-art sensors and measurement systems as well as fiber-optic sensors). The sensors are distributed in the host rock's near- and far-field, the tunnel lining, the EBS, and on the heaters. The heater emplacement and backfilling has not started yet, therefore only the host rock instrumentation is installed at the moment and is currently generating data. We will present the instrumentation concept and rationale as well as the first monitoring results of the excavation and ventilation phase. In particular, we investigated the excavation induced hydraulic response of the host rock. Therefore, the spatiotemporal evolution of porewater-pressure time series was analyzed to get a better understanding of HM coupled processes during and after the excavation phase as well as the impact of anisotropic geomechanic and hydraulic properties of the clay-rich formation on its hydraulic behavior. Excavation related investigations were completed by means of inclinometer data to characterize the non-elastic and time-dependent deformations. In addition, we evaluated the effect of drainage and suction processes during the ventilation phase on the pressure distribution in the host rock. Based on our results the conceptual models of HM processes and hydraulic behavior of clay rich formations during excavation and ventilation phases could be improved.

  2. Occurrence of Mesocestoides canislagopodis (Rudolphi, 1810) (Krabbe, 1865) in mammals and birds in Iceland and its molecular discrimination within the Mesocestoides species complex.

    PubMed

    Skirnisson, Karl; Jouet, Damien; Ferté, Hubert; Nielsen, Ólafur K

    2016-07-01

    The life cycle of Mesocestoides tapeworms (Cestoda: Cyclophyllidea: Mesocestoididae) requires three hosts. The first intermediate host is unknown but believed to be an arthropod. The second intermediate host is a vertebrate. The primary definitive host is a carnivore mammal, or a bird of prey, that eats the tetrathyridium-infected second intermediate host. One representative of the genus, Mesocestoides canislagopodis, has been reported from Iceland. It is common in the arctic fox (Vulpes lagopus) and has also been detected in domestic dogs (Canis familiaris) and cats (Felis domestica). Recently, scolices of a non-maturing Mesocestoides sp. have also been detected in gyrfalcon (Falco rusticolus) intestines, and tetrathyridia in the body cavity of rock ptarmigan (Lagopus muta). We examined the taxonomic relationship of Mesocestoides from arctic fox, gyrfalcon, and rock ptarmigan using molecular methods, both at the generic level (D1 domain LSU ribosomal DNA) and at the specific level (cytochrome c oxidase subunit I (COI) and 12S mitochondrial DNA). All stages belonged to Mesocestoides canislagopodis. Phylogenetic analysis of the combined 12S-COI at the specific level confirmed that M. canislagopodis forms a distinct clade, well separated from three other recognized representatives of the genus, M. litteratus, M. lineatus, and M. corti/vogae. This is the first molecular description of this species. The rock ptarmigan is a new second intermediate host record, and the gyrfalcon a new primary definitive host record. However, the adult stage seemed not to be able to mature in the gyrfalcon, and successful development is probably restricted to mammalian hosts.

  3. Geologic Site Characterization of the North Korean Nuclear Test Site at Punggye-Ri: A Reconnaissance Mapping Redux

    DTIC Science & Technology

    2013-11-30

    at the “South Portal”) is evidently located in host rock that is similar to that used in association with the latter two tests (but perhaps having... using image processing algorithms). As the authors point out: “Drainage patterns can provide substantial information on the nature of rock ... metamorphic rocks , with lesser amounts of sedimentary rocks . The metamorphic rocks are mostly schists, fewer types of gneiss, and some

  4. Trap level spectroscopic investigations of U: ZnAl2O4: Role of defect centres in the TSL process

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kumar, Mithlesh; Kadam, R. M.

    2018-03-01

    In order to evaluate the trap level spectroscopic properties of Uranium in ZnAl2O4 spinel host, undoped and Uranium doped ZnAl2O4 samples were synthesized. From photoluminescence (PL) data it was confirmed that uranium gets stabilized in the system as UO66- (octahedral uranate). Electron spin resonance (ESR) studies for the gamma irradiated sample suggested the formation of O2-, F+ and V centres. From the TSL (thermally stimulated luminescence) data, the trap parameters such as frequency factor and activation energy etc. were evaluated. From ESR-TSL correlation it was confirmed that the destruction of O2- ion coincides with TSL glow peak appeared at 332 K.

  5. Geodynamic simulation of ore-bearing geological structural units by the example of the Strel'tsovka uranium ore field

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Leksin, A. B.; Pogorelov, V. V.; Rebetsky, Yu. L.; San'kov, V. A.; Ashurkov, S. V.; Rasskazov, I. Yu.

    2017-05-01

    Information on designing a 3D integrated model of the deflected mode (DM) of rock massif near the Strel'tsovka uranium ore field (SUOF) in the southeastern Transbaikal region is presented in the paper. This information is based on the contemporary stresses estimated by geostructural and tectonophysical techniques and by studying the seismotectonic deformation of the Earth's surface using the data on earthquake source mechanisms and GPS geodesy focused on the recognition of active faults. A combination of the results of geostructural, geophysical, geotectonic, and petrophysical research, as well as original maps of faulting and the arrangement of seismic dislocations and seismotectonic regimes (stress tensors), allowed us to design models of the structure, properties, and rheological links of the medium and to determine the boundary conditions for numerical tectonophysical simulation using the method of terminal elements. The computed 2D and 3D models of the state of the rock massif have been integrated into 3D GIS created on the basis of the ArcGIS 10 platform with an ArcGIS 3D-Analyst module. The simulation results have been corroborated by in situ observations on a regional scale (the Klichka seismodislocation, active from the middle Pliocene to date) and on a local scale (heterogeneously strained rock massif at the Antei uranium deposit). The development of a regional geodynamic model of geological structural units makes it possible to carry out procedures to ensure the safety of mining operations under complex geomechanical conditions that can expose the operating mines and mines under construction, by the Argun Mining and Chemical Production Association (PAO PPGKhO) on a common methodical and geoinformational platform, to the hazards of explosions, as well as to use the simulation results aimed at finding new orebodies to assess the flanks and deep levels of the ore field.

  6. Practical issues in discriminating between environmental and occupational sources in a uranium urinalysis bioassay program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, M.P.; Carbaugh, E.H.; Fairrow, N.L.

    1994-11-01

    Workers at two Department of Energy facilities, the Pantex Plant in Texas and the Hanford Site in Washington, are potentially exposed to class Y depleted or natural uranium. Since trace amounts of uranium are naturally present in urine excretion, site bioassay programs must be able to discern occupational exposure from naturally occurring uranium exposure. In 1985 Hanford established a 0.2-{mu}g/d environmental screening level for elemental uranium in urine; the protocol was based on log-normal probability analysis of unexposed workers. A second study of background uranium levels commenced in 1990, and experiences in the field indicated that there seemed to bemore » an excessive number of urine samples with uranium above the screening level and that the environmental screening level should be reviewed. Due to unforeseen problems, that second study was terminated before the complete data could be obtained. Natural uranium in rock (by weight, 99.27% {sup 288}U, 0.72% {sup 235}U, and 0.006% {sup 234}U) has approximately equal activity concentrations of {sup 238}U and {sup 234}U. Earlier studies, summarized by the U.S. Environmental Protection Agency in 51 FR 32068, have indicated that {sup 234}U (via {sup 234}Th) has a greater environmental mobility than {sup 238}U and may well have a higher concentration in ground water. By assuming that the {sup 238}U-to {sup 234}U ratio in the urine of nonoccupationally exposed persons should reflect the ratio of environmental levels, significant occupational exposure to depleted uranium would shift that ratio in favor of {sup 238}U, allowing use of the ratio as a co-indicator of occupational exposure in addition to the isotope-specific screening levels. This approach has been adopted by Pantex. The Pacific Northwest Laboratory is studying the feasibility of applying this method to the natural and recycled uranium mixtures encountered at Hanford. The Hanford data included in this report represent work-in-progress.« less

  7. Abundances of uranium, thorium, and potassium for some Australian crystalline rocks

    USGS Publications Warehouse

    Bunker, Carl Maurice; Bush, C.A.; Munroe, Robert J.; Sass, J.H.

    1975-01-01

    This report contains a tabulation of the basic radioelement and radiogenic heat data obtained during an Australian National University (ANU) - United States Geological Survey (USGS) heat-flow project, directed jointly by J. C. Jaeger (ANU) and J. H. Sass (USGS). Most samples were collected during the periods June through September, 1971 and 1972. The measurements were made subsequently by two of us (C. M. Bunker and C. A. Bush) using the gamma-ray spec trometric techniques described by Bunker and Bush (1966, 1967). Interpreting the spectra for quantitative analyses of the radioelements was accomplished with an iterative leastsquares computer program modified from one by Schonfeld (1966). Uranium content determined by gamma-ray spectrometry is based on a measurement of the daughter products of 226Ra. Equilibrium in the uranium-decay series was assumed for these analyses . Throughout the report, when U content is stated, radium-equivalent uranium is implied. The coefficient of variation for the accuracy of the radioelement data, when compared to ana lyses by isotope dilution and flame photometry is about 3 percent for radium-equivalent uranium and thorium and about 1 percent for potassium. These percentages are in addition to minimum standard deviations of about 0.05 ppm for U and Th, and about 0.03 percent for K.

  8. Reconnaissance for uranium and thorium in Alaska, 1954

    USGS Publications Warehouse

    Matzko, John J.; Bates, Robert G.

    1957-01-01

    During 1954 reconnaissance investigations to locate minable deposits of uranium and thorium in Alaska were unsuccessful. Areas examined, from which prospectors had submitted radioactive samples, include Cap Yakataga, Kodiak Island, and Shirley Lake. Unconcentrated gravels from the beach at Cape Yakataga average about 0.001 percent equivalent uranium. Uranothorianite has been identified by X-ray diffraction data and is the principal source of radioactivity in the Cape Yakataga beach sands studied; but the zircon, monazite, and uranothorite are also radioactive. The black, opaque uranothorianite generally occurs as minute euhedral cubs, the majority of which will pass through a 100-mesh screen. The bedrock source of the radioactive samples from Kodiak Island was not found; the maximum radioactivity of samples from the Shirley Lake area was equivalent to about 0.02 percent uranium. Radiometric traverses of the 460-foot level of the Garnet shaft of the Nixon Fork mine in the Nixon Fork mining district indicated a maximum of 0.15 mr/hr. In the Hot Springs district, drill hole concentrates of gravels examined contained a maximum of 0.03 percent equivalent uranium. A radioactivity anomaly noted during the Survey's airborne reconnaissance of portions of the Territory during 1954 is located in the Fairhaven district. A ground check disclosed that the radioactivity was due to accessory minerals in the granitic rock.

  9. Age and origin of base and precious metal veins of the Coeur d'Alene mining district, Idaho

    USGS Publications Warehouse

    Fleck, R.J.; Criss, R.E.; Eaton, G.F.; Cleland, R.W.; Wavra, C.S.; Bond, W.D.

    2002-01-01

    Ore-bearing quartz-carbonate veins of the Coeur d'Alene mining district yield 87Sr/86Sr ratios of 0.74 to >1.60 for low Rb/Sr, carbonate gangue minerals, similar to current ranges measured in Middle Proterozoic, high Rb/Sr rocks of the Belt Supergroup. Stable isotope and fluid inclusion studies establish a genetic relationship between vein formation and metamorphic-hydrothermal systems of the region. These extraordinary 87Sr/86Sr ratios require accumulation of radiogenic 87Sr in a high Rb/Sr system over an extended period prior to incorporation of Sr into the hydrothermal veins. Evaluation of the age and composition of potential sources of highly radiogenic Sr indicates that the ore-bearing veins of the Coeur d'Alene district formed during the Cretaceous from components scavenged from rocks of the Belt Supergroup, the primary host rocks of the district. Proterozoic Pb isotope ratios observed in galena from many Coeur d'Alene veins were established when Pb separated from uranium during deposition or diagenesis of the Belt Supergroup at 1400 to 1500 Ma, possibly as disseminated syngenetic deposits. K-Ar and Rb-Sr apparent ages and ??18O values of Belt Supergroup rocks decrease from the Coeur d'Alene district toward the Idaho and Kaniksu batholiths, approximately normal to the trends of metamorphic isograds, fold axes, foliation, and the major reverse faults of the district. Isoclinal folding, thrust faulting, high-temperature metamorphism, granitic plutonism, and regional-scale metamorphic-hydrothermal activity is documented in the region between 140 and 45 Ma, representing the only such combination of events in the Coeur d'Alene region subsequent to about 1300 Ma. The Sr and oxygen results and geologic evidence favor formation of the ore-bearing carbonate veins by fluids related to a complex metamorphic-hydrothermal system during the Cretaceous. Pb with Proterozoic isotopic compositions was probably mobilized and incorporated like other metals into the hydrothermal veins during this event. The ore-bearing veins were sheared and displaced during early Tertiary northwest-trending dextral strike-slip faulting along the Osburn fault and related structures of the Lewis and Clark line.

  10. Middle Proterozoic age for the Montpelier Anorthosite, Goochland terrane, eastern Piedmont, Virginia

    USGS Publications Warehouse

    Aleinikoff, J.N.; Horton, J. Wright; Walter, M.

    1996-01-01

    Uranium-lead dating of zircons from the Montpelier Anorthosite confirms previous interpretations, based on equivocal evidence, that the Goochland terrane in the eastern Piedmont of Virginia contains Grenvillian basement rocks of Middle Proterozoic age. A very few prismatic, elongate, euhedral zircons, which contain 12-29 ppm uranium, are interpreted to be igneous in origin. The vast majority of zircons are more equant, subangular to anhedral, contain 38-52 ppm uranium, and are interpreted to be metamorphic in origin. One fraction of elongate zircon, and four fragments of a very large zircon (occurring in a nelsonite segregation) yield an upper intercept age of 1045 ?? 10 Ma, interpreted as the time of anorthosite crystallization. Irregularly shaped metamorphic zircons are dated at 1011 ?? 2 Ma (weighted average of the 207Pb/206Pb ages). The U-Pb isotopic systematics of metamorphic titanite were reset during the Alleghanian orogeny at 297 ?? 5 Ma. These data provide a minimum age for gneisses of the Goochland terrane that are intruded by the anorthosite. Middle Proterozoic basement rocks of the Goochland terrane may be correlative with those in the Shenandoah massif of the Blue Ridge tectonic province, as suggested by similarities between the Montpelier Anorthosite and the Roseland anorthosite. Although the areal extent of Middle Proterozoic basement and basement-cover relations in the eastern Piedmont remain unresolved, results of this investigation indicate that the Goochland terrane is an internal massif of Laurentian crust rather than an exotic accreted terrane.

  11. Review of the general geology and solid-phase geochemical studies in the vicinity of the Central Oklahoma aquifer

    USGS Publications Warehouse

    Mosier, Elwin L.; Bullock, John H.

    1988-01-01

    The Central Oklahoma aquifer is the principal source of ground water for municipal, industrial, and rural use in central Oklahoma. Ground water in the aquifer is contained in consolidated sedimentary rocks consisting of the Admire, Council Grove, and Chase Groups, Wellington Formation, and Garber Sandstone and in the unconsolidated Quaternary alluvium and terrace deposits that occur along the major stream systems in the study area. The Garber Sandstone and the Wellington Formation comprise the main flow system and, as such, the aquifer is often referred to as the 'Garber-Wellington aquifer.' The consolidated sedimentary rocks consist of interbedded lenticular sandstone, shale, and siltstone beds deposited in similar deltaic environments in early Permian time. Arsenic, chromium, and selenium are found in the ground water of the Central Oklahoma aquifer in concentrations that, in places, exceed the primary drinking-water standards of the Environmental Protection Agency. Gross-alpha concentrations also exceed the primary standards in some wells, and uranium concentrations are uncommonly high in places. As a prerequisite to a surface and subsurface solid-phase geochemical study, this report summarizes the general geology of the Central Oklahoma study area. Summaries of results from certain previously reported solid-phase geochemical studies that relate to the vicinity of the Central Oklahoma aquifer are also given; including a summary of the analytical results and distribution plots for arsenic, selenium, chromium, thorium, uranium, copper, and barium from the U.S. Department of Energy's National Uranium Resource Evaluation (NURE) Program.

  12. New approach of a transient ICP-MS measurement method for samples with high salinity.

    PubMed

    Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-03-01

    In the near future it is necessary to establish a disposal for high level nuclear waste (HLW) in deep and stable geological formations. In Germany typical host rocks are salt or claystone. Suitable clay formations exist in the south and in the north of Germany. The geochemical conditions of these clay formations show a strong difference. In the northern ionic strengths of the pore water up to 5M are observed. The determination of parameters like K d values during sorption experiments of metal ions like uranium or europium as homologues for trivalent actinides onto clay stones are very important for long term safety analysis. The measurement of the low concentrated, not sorbed analytes commonly takes place by inductively coupled plasma mass spectrometry (ICP-MS). A direct measurement of high saline samples like seawater with more than 1% total dissolved salt content is not possible. Alternatives like sample clean up, preconcentration or strong dilution have more disadvantages than advantages for example more preparation steps or additional and expensive components. With a small modification of the ICP-MS sample introduction system and a home-made reprogramming of the autosampler a transient analysing method was developed which is suitable for measuring metal ions like europium and uranium in high saline sample matrices up to 5M (NaCl). Comparisons at low ionic strength between the default and the transient measurement show the latter performs similarly well to the default measurement. Additionally no time consuming sample clean-up or expensive online dilution or matrix removal systems are necessary and the analysation shows a high sensitivity due to the data processing based on the peak area. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger.

    PubMed

    Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael

    2016-03-01

    This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam--Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks.

    PubMed

    Li, L; Wing, B A; Bui, T H; McDermott, J M; Slater, G F; Wei, S; Lacrampe-Couloume, G; Lollar, B Sherwood

    2016-10-27

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water-rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO · and H 2 O 2 ) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H 2 ) and a complementary acceptor (sulfate) for the deep biosphere.

  15. Wind Carved Rock

    NASA Image and Video Library

    2016-10-19

    The distinctively fluted surface and elongated hills in this image in Medusae Fossae are caused by wind erosion of a soft fine-grained rock. Called yardangs, these features are aligned with the prevailing wind direction. This wind direction would have dominated for a very long time to carve these large-scale features into the exposed rock we see today. Yardangs not only reveal the strength and direction of historic winds, but also reveal something of the host rock itself. Close inspection by HiRISE shows an absence of boulders or rubble, especially along steep yardang cliffs and buttresses. The absence of rubble and the scale of the yardangs tells us that the host rock consists only of weakly cemented fine granules in tens of meters or more thick deposits. Such deposits could have come from extended settling of volcanic ash, atmospheric dust, or accumulations of wind deposited fine sands. After a time these deposits became cemented and cohesive, illustrated by the high standing relief and exposed cliffs. http://photojournal.jpl.nasa.gov/catalog/PIA21111

  16. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks

    PubMed Central

    Li, L.; Wing, B. A.; Bui, T. H.; McDermott, J. M.; Slater, G. F.; Wei, S.; Lacrampe-Couloume, G.; Lollar, B. Sherwood

    2016-01-01

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water–rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO· and H2O2) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H2) and a complementary acceptor (sulfate) for the deep biosphere. PMID:27807346

  17. Geophysical interpretation of U, Th, and rare earth element mineralization of the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeast Alaska

    USGS Publications Warehouse

    McCafferty, Anne E.; Stoeser, Douglas B.; Van Gosen, Bradley S.

    2014-01-01

    A prospectivity map for rare earth element (REE) mineralization at the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeastern Alaska, was calculated from high-resolution airborne gamma-ray data. The map displays areas with similar radioelement concentrations as those over the Dotson REE-vein-dike system, which is characterized by moderately high %K, eU, and eTh (%K, percent potassium; eU, equivalent parts per million uranium; and eTh, equivalent parts per million thorium). Gamma-ray concentrations of rocks that share a similar range as those over the Dotson zone are inferred to locate high concentrations of REE-bearing minerals. An approximately 1300-m-long prospective tract corresponds to shallowly exposed locations of the Dotson zone. Prospective areas of REE mineralization also occur in continuous swaths along the outer edge of the pluton, over known but undeveloped REE occurrences, and within discrete regions in the older Paleozoic country rocks. Detailed mineralogical examinations of samples from the Dotson zone provide a means to understand the possible causes of the airborne Th and U anomalies and their relation to REE minerals. Thorium is sited primarily in thorite. Uranium also occurs in thorite and in a complex suite of ±Ti±Nb±Y oxide minerals, which include fergusonite, polycrase, and aeschynite. These oxides, along with Y-silicates, are the chief heavy REE (HREE)-bearing minerals. Hence, the eU anomalies, in particular, may indicate other occurrences of similar HREE-enrichment. Uranium and Th chemistry along the Dotson zone showed elevated U and total REEs east of the Camp Creek fault, which suggested the potential for increased HREEs based on their association with U-oxide minerals. A uranium prospectivity map, based on signatures present over the Ross-Adams mine area, was characterized by extremely high radioelement values. Known uranium deposits were identified in the U-prospectivity map, but the largest tract occurs over a radioelement-rich granite phase within the pluton that is likely not related to mineralization. Neither mineralization type displays a well-defined airborne magnetic signature.

  18. Air and groundwater flow at the interface between fractured host rock and a bentonite buffer

    NASA Astrophysics Data System (ADS)

    Dessirier, B.; Jarsjo, J.; Frampton, A.

    2014-12-01

    Designs of deep geological repositories for spent nuclear fuel include several levels of confinement. The Swedish and Finnish concept KBS-3 targets for example sparsely fractured crystalline bedrock as host formation and would have the waste canisters embedded in an engineered buffer of compacted MX-80 bentonite. The host rock is a highly heterogeneous dual porosity material containing fractures and a rock matrix. Bentonite is a complex expansive porous material. Its water content and mechanical properties are interdependent. Beyond the specific physics of unsaturated flow and transport in each medium, the interface between them is critical. Detailed knowledge of the transitory two-phase flow regime, induced by the insertion of the unsaturated buffer in a saturated rock environment, is necessary to assess the performance of planned KBS-3 deposition holes. A set of numerical simulations based on the equations of two-phase flow for water and air in porous media were conducted to investigate the dynamics of air and groundwater flow near the rock/bentonite interface in the period following installation of the unsaturated bentonite buffer. We assume state of the two-phase flow parameter values for bentonite from laboratory water uptake tests and typical fracture and rock properties from the Äspö Hard rock laboratory (Sweden) gathered under several field characterization campaigns. The results point to desaturation of the rock domain as far as 10 cm away from the interface into matrix-dominated regions for up to 160 days. Similar observations were made during the Bentonite Rock Interaction Experiment (BRIE) at the Äspö HRL, with a desaturation sustained for even longer times. More than the mere time to mechanical and hydraulic equilibrium, the occurrence of sustained unsaturated conditions opens the possibility for biogeochemical processes that could be critical in the safety assessment of the planned repository.

  19. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings

    NASA Astrophysics Data System (ADS)

    Weiersbye, I. M.; Straker, C. J.; Przybylowicz, W. J.

    1999-10-01

    A combination of PIXE, proton back-scattering (BS) spectrometry and confocal laser scanning microscopy (CLSM) was used to determine in situ elemental concentrations in arbuscular mycorrhizal (AM) grass roots and AM fungal spores from gold and uranium mine tailings in South Africa. AM regions of roots were characterised by locally elevated P and vesicles were defined by distinctive transition metal and radionuclide distributions. Vesicles (AM structures responsible for nutrient storage), accumulated Mn, Cu, Ni and U, whereas Fe and Zn were present at lower levels than in host tissue. AM spores from mine tailings accumulated Ca, Cr, Fe, Ni, Cu, Br, Y, Th and U, but were deficient in P and K. The sequestration of excess metals and radionuclides in vesicles may limit metal availability, and thus toxicity, to the host.

  20. Airborne gamma-ray spectrometer and magnetometer survey, Seattle quadrangle (Washington). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    One uranium anomaly meets the minimum statistical requirements as defined. This anomaly is over the potassium (%K) contact area between undifferentiated Tertiary rocks and Pleistocene glacial deposits. Equivalent uranium (ppM eU), equivalent thorium (ppM eT), eU/eT, eU/eK, eT,K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation in this report.

  1. Theoretical prediction of the structural properties of uranium chalcogenides under high pressure

    NASA Astrophysics Data System (ADS)

    Kapoor, Shilpa; Yaduvanshi, Namrata; Singh, Sadhna

    2018-05-01

    Uranium chalcogenides crystallize in rock salt structure at normal condition and transform to Cesium Chloride structure at high pressure. We have investigated the transition pressure and volume drop of USe and UTe using three body potential model (TBIP). Present model includes long range Columbic, three body interaction forces and short range overlap forces operative up to next nearest neighbors. We have reported the phase transition pressure, relative volume collapses, the thermo physical properties such as molecular force constant (f), infrared absorption frequency (v0), Debye temperature (θD) and Gruneisen parameter (γ) of present chalcogenides and found that our results in general good agreement with experimental and other theoretical data.

  2. Magmatic Enclaves in Granitic Rocks: Paragons or Parasites?

    NASA Astrophysics Data System (ADS)

    Clemens, John; Stevens, Gary; Elburg, Marlina

    2017-04-01

    Granitic rocks form the fundamental building blocks of Earth's continents and provide us with a wide range of resources, so their formation is worth trying to understand. Fine-grained, igneous-textured microgranular enclaves of tonalitic to monzogranitic composition (ME) are common in granitic rocks and their origins have been hotly debated, with some workers suggesting that ME are not igneous. These ME have been studied intensively enough that we are now certain that they are of igneous origin - globules of mingled and quenched magma. Although a mantle connection is evident in many cases, their ultimate origin (including where in the lithosphere they originate) is still debated. This contribution explores the systematics of chemical variation in ME and their host granites, with the aim of uncovering any systematics in their behaviour and modelling the processes that have led to the variations that we measure, comparing host-rock series to their respective ME series. As always, the hope is that the study of ME may lead to improved understanding and modelling of the processes that are responsible for the formation of the host granitic magmas. Using variations between the molecular quantities Ti and M (Fe+Mn+Mg), we demonstrate that the petrogenetic processes that operated within a diverse group of S- and I-type granitic host magmas and their ME suites are dissimilar. Variations within the granitic series result from a variety of what might be called 'orderly' processes, resulting in linear or curvilinear trends in chemical variation diagrams. In contrast, processes that affected the ME series commonly resulted in scattered, chaotic variations. Even in cases in which an ME series displays more orderly variation, it can be shown that the hypothesis of simple mixing between a parent enclave magma and its host granitic magma, to produce the overall variations, cannot be supported. ME magmas had vastly smaller volumes compared with their host granitic magmas. Thus, they have commonly undergone hybridisation through mixing with deep crustal melts and both chemical and mechanical interactions with wall rocks and their host granitic magmas. As a result of this complex and chaotic set of processes, it remains extremely difficult to unravel the precise mechanisms that produced a given suite of ME magmas. Due to the similarities between the studied granites and their ME with occurrences worldwide, we suggest that our findings are likely to be generally applicable.

  3. Petrochemical and Tectonogenesis of Granitoids in the Wuyo-Gubrunde Horst, Northeastern Nigeria: Implication for Uranium Enrichment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolarinwa, Anthony Temidayo, E-mail: atbola@yahoo.com; Bute, Saleh Ibrahim

    The Wuyo-Gubrunde Horst in the northeastern Nigeria consists of migmatite gneiss, unaltered, altered, and sheared porphyritic granites, pegmatites, aplites, basalts, and sandstone. Uranium has been reported in rhyolite, sheared rocks, and sandstone within the area. The petrogenesis of the granitoids and associated rocks in the area was evaluated in the light of new geochemical data, which showed that the U content of altered porphyritic granite is highest and hydrothermal-related. The granitoids are metaluminous, sub-alkaline, and S-type granite, and have evolved by partial melting of crustal material emplaced at moderate depth of 20–30 km in a syn-to late-collisional within-plate tectonic setting.more » The negative Eu/Eu* anomaly and high (La/Yb){sub N} ratio of the granitoids indicate magma fractionation. The low SiO{sub 2} (<53%) and high Fe{sub 2}O{sub 3} (10%) of the altered porphyritic granite compared to other similar rock units suggest pervasive alteration. The associated basalts are tholeiitic, emplaced within continental plate tectonic setting, and enriched in Ni, V, Nb, Sr, and light rare earth elements, and they have SiO{sub 2}, Fe{sub 2}O{sub 3}, V, Th, and Co contents that are similar to those of the altered porphyritic granites. The U occurrence in the Wuyo-Gubrunde Horst is believed to be sourced from the adjoining Bima sandstone in the Benue Trough, which locally contains carbonaceous zones with anomalously high concentrations of U. The Fe{sup 2+}/Fe{sup 3+} redox fronts formed by alteration of the iron-rich basalts provided the requisite geochemical barrier for U-bearing hydrothermal fluid, causing enrichment of U leached and mobilized from the sandstone through fractures in the rocks.« less

  4. Contaminant dispersion at the rehabilitated Mary Kathleen uranium mine, Australia

    NASA Astrophysics Data System (ADS)

    Lottermoser, B. G.; Ashley, P. M.; Costelloe, M. T.

    2005-09-01

    This study reports on the transfer of contaminants from waste rock dumps and mineralised ground into soils, sediments, waters and plants at the rehabilitated Mary Kathleen uranium mine in semi-arid northwest Queensland. Numerous waste rock dumps were partly covered with benign soil and the open pit mine was allowed to flood. The mineralised and waste calc-silicate rock in the open pit and dumps has major (>1 wt%) Ca, Fe and Mg, minor (>1,000 ppm) Ce, La, Mn, P and S, subminor (>100 ppm) Ba, Cu, Th and U, and trace (<100 ppm) As, Ni, Pb, Y and Zn values. Consequently, chemical and physical weathering processes have acted on waste rock and on rock faces within the open pit, mobilising many elements and leading to their dispersion into soils, stream sediments, pit water and several plant species. Chemical dispersion is initiated by sulfide mineral breakdown, generation of sulfuric acid and formation of several soluble, transient sulfate minerals as evaporative efflorescent precipitates. Radiation doses associated with the open pit average 5.65 mSv year-1; waste dumps commonly have lower values, especially where soil-covered. Surface pit water is slightly acid, with high sulfate values accompanied by levels of U, Cu and Ni close to or above Australian water guideline values for livestock. Dispersion of U and related elements into soils and stream sediments occurs by physical (erosional) processes and from chemical precipitation. Plants growing in the mine void, on waste dumps and contaminated soil display evidence of biological uptake of U, LREE, Cu and Th and to a lesser degree of As, Ni, Pb, Y and Zn, with values being up to 1-2 orders of magnitude above background sites for the same species. Although rehabilitation procedures have been partly successful in reducing dispersion of U and related elements into the surrounding environment, it is apparent that 20 years after rehabilitation, there is significant physical and chemical mobility, including transfer into plants.

  5. Use of petrophysical data for siting of deep geological repository of radioactive waste

    NASA Astrophysics Data System (ADS)

    Petrenko, Liliana; Shestopalov, Vyacheslav

    2017-11-01

    The paper is devoted to analyzing the petrophysical properties and petrographical characteristics of Volyn region with the view to choosing the least permeable and so the most suitable geological formation for the radioactive waste disposal. On a basis of the petrophysical estimations of the granitoids properties the argumentation of permeability has been developed for the petrotypes of Volyn region. Also method of classification of the petrotypes with their relative rate of suitability for radioactive waste disposal was developed. As a result of studying the perspectives were shown of the zhytomyr and korosten types of the granitoids as host rock for the radioactive waste disposal. According to the results of investigations performed by Swedish researchers a comparative analysis of rocks based on the age of formation, composition, structural features and some petrophysical properties of granitoids as host rocks for repository of radioactive waste was performed. Detail comparison the data of the granitoids of the Forsmark site in Sweden and the data of the granitoids of the Volyn megablock can be one of the next steps in researching the host rocks for the development of the RW disposal system in Ukraine.

  6. HANDBOOK: SUB-SLAB DEPRESSURIZATION FOR LOW PERMEABILITY FILL MATERIAL DESIGN AND INSTALLATION OF A HOME RADON REDUCTION SYSTEM

    EPA Science Inventory

    Radon, a radioactive gas, comes from the natural decay of uranium. It moves to the earth's surface through tiny openings and cracks in soil and rocks. In outdoor air, radon is diluted to such low concentrations that it is usually nothing to worry about. However, radon can accumul...

  7. Quadrupolar Kondo effect in uranium heavy-electron materials?

    NASA Technical Reports Server (NTRS)

    Cox, D. L.

    1987-01-01

    The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U) ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resistivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data in the heavy-electron superconductor UBe13 may be understood. Structural phase transitions at unprecedented low temperatures may occur in U-based heavy-electron materials.

  8. Uranium mill tailings: nuclear waste and natural laboratory for geochemical and radioecological investigations

    USGS Publications Warehouse

    Landa, Edward R.

    2004-01-01

    Uranium mill tailings (UMT) are a high volume, low specific activity radioactive waste typically disposed in surface impoundments. This review focuses on research on UMT and related earth materials during the past decade relevant to the assessment of: (1) mineral hosts of radionuclides; (2) the use of soil analogs in predicting long-term fate of radionuclides; (3) microbial and diagenetic processes that may alter radionuclide mobility in the surficial environment; (4) waste-management technologies to limit radionuclide migration; and (5) the impact of UMT on biota.

  9. Characterizing Excavation Damaged Zone and Stability of Pressurized Lined Rock Caverns for Underground Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Mok; Rutqvist, Jonny; Jeong, Ju-Hwan; Choi, Byung-Hee; Ryu, Dong-Woo; Song, Won-Kyong

    2013-09-01

    In this paper, we investigate the influence of the excavation damaged zone (EDZ) on the geomechanical performance of compressed air energy storage (CAES) in lined rock caverns. We conducted a detailed characterization of the EDZ in rock caverns that have been excavated for a Korean pilot test program on CAES in (concrete) lined rock caverns at shallow depth. The EDZ was characterized by measurements of P- and S-wave velocities and permeability across the EDZ and into undisturbed host rock. Moreover, we constructed an in situ concrete lining model and conducted permeability measurements in boreholes penetrating the concrete, through the EDZ and into the undisturbed host rock. Using the site-specific conditions and the results of the EDZ characterization, we carried out a model simulation to investigate the influence of the EDZ on the CAES performance, in particular related to geomechanical responses and stability. We used a modeling approach including coupled thermodynamic multiphase flow and geomechanics, which was proven to be useful in previous generic CAES studies. Our modeling results showed that the potential for inducing tensile fractures and air leakage through the concrete lining could be substantially reduced if the EDZ around the cavern could be minimized. Moreover, the results showed that the most favorable design for reducing the potential for tensile failure in the lining would be a relatively compliant concrete lining with a tight inner seal, and a relatively stiff (uncompliant) host rock with a minimized EDZ. Because EDZ compliance depends on its compressibility (or modulus) and thickness, care should be taken during drill and blast operations to minimize the damage to the cavern walls.

  10. Porosity and Permeability Evolution in Cemented Rock Cores under Reactive Flowing Conditions: Comparative Analysis between Limestone and Sandstone Host Rocks

    NASA Astrophysics Data System (ADS)

    Cao, P.; Karpyn, Z.; Li, L.

    2013-12-01

    CO2-brine has the potential to alter wellbore cement in depleted oil and gas reservoirs under geological CO2 sequestration conditions. A better understanding of CO2-brine-cement-rock interaction is needed to evaluate the seal integrity of candidate sequestration formation in the long run. This work investigates possible alteration of wellbore cement when bonded by different host formation rock upon exposure to CO2-saturated brine. Composite cement-sandstone and cement-limestone core samples were created to perform reactive coreflood experiments. After an eight-day dynamic flow-through period, both cores had a similar extent of porosity increase, while the cement-limestone core experienced a ten-fold higher increase in permeability. With the aid of X-ray Micro-CT imaging and Scanning Electron Microscopy, it is observed that cement underwent greater degradation at the cement-sandstone interface. Degradation of cement-limestone core mainly took place on the host rock matrix. Worm holes were developed and a solution channel was formed in the limestone, creating a dominant flow path that altered both flow and reaction behavior. Limestone buffered the injected acidic brine preventing further deterioration of cement near the core outlet. Changes in fluid chemistry of limestone and sandstone coreflood effluents are compared. Results from this work are aimed at assisting the development and validation of robust reactive transport models through direct measurement of cemented rock core porosity and permeability evolution as well as the effluent aqueous chemistry change. This will subsequently improve predictive capabilities of reactive transport models associated with CO2 sequestration in geologic environments. Permeability Evolution of Cement-Rock Core Sample during Dynamic Flow of CO2-Brine

  11. Uranium isotopes fingerprint biotic reduction.

    PubMed

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-05-05

    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  12. Genesis of sediment-hosted stratiform copper cobalt deposits, central African Copperbelt

    NASA Astrophysics Data System (ADS)

    Cailteux, J. L. H.; Kampunzu, A. B.; Lerouge, C.; Kaputo, A. K.; Milesi, J. P.

    2005-07-01

    The Neoproterozoic central African Copperbelt is one of the greatest sediment-hosted stratiform Cu-Co provinces in the world, totalling 140 Mt copper and 6 Mt cobalt and including several world-class deposits (⩾10 Mt copper). The origin of Cu-Co mineralisation in this province remains speculative, with the debate centred around syngenetic-diagenetic and hydrothermal-diagenetic hypotheses. The regional distribution of metals indicates that most of the cobalt-rich copper deposits are hosted in dolomites and dolomitic shales forming allochthonous units exposed in Congo and known as Congolese facies of the Katangan sedimentary succession (average Co:Cu = 1:13). The highest Co:Cu ratio (up to 3:1) occurs in ore deposits located along the southern structural block of the Lufilian Arc. The predominantly siliciclastic Zambian facies, exposed in Zambia and in SE Congo, forms para-autochthonous sedimentary units hosting ore deposits characterized by lower a Co:Cu ratio (average 1:57). Transitional lithofacies in Zambia (e.g. Baluba, Mindola) and in Congo (e.g. Lubembe) indicate a gradual transition in the Katangan basin during the deposition of laterally correlative clastic and carbonate sedimentary rocks exposed in Zambia and in Congo, and are marked by Co:Cu ratios in the range 1:15. The main Cu-Co orebodies occur at the base of the Mines/Musoshi Subgroup, which is characterized by evaporitic intertidal-supratidal sedimentary rocks. All additional lenticular orebodies known in the upper part of the Mines/Musoshi Subgroup are hosted in similar sedimentary rocks, suggesting highly favourable conditions for the ore genesis in particular sedimentary environments. Pre-lithification sedimentary structures affecting disseminated sulphides indicate that metals were deposited before compaction and consolidation of the host sediment. The ore parageneses indicate several generations of sulphides marking syngenetic, early diagenetic and late diagenetic processes. Sulphur isotopic data on sulphides suggest the derivation of sulphur essentially from the bacterial reduction of seawater sulphates. The mineralizing brines were generated from sea water in sabkhas or hypersaline lagoons during the deposition of the host rocks. Changes of Eh-pH and salinity probably were critical for concentrating copper-cobalt and nickel mineralisation. Compressional tectonic and related metamorphic processes and supergene enrichment have played variable roles in the remobilisation and upgrading of the primary mineralisation. There is no evidence to support models assuming that metals originated from: (1) Katangan igneous rocks and related hydrothermal processes or; (2) leaching of red beds underlying the orebodies. The metal sources are pre-Katangan continental rocks, especially the Palaeoproterozoic low-grade porphyry copper deposits known in the Bangweulu block and subsidiary Cu-Co-Ni deposits/occurrences in the Archaean rocks of the Zimbabwe craton. These two sources contain low grade ore deposits portraying the peculiar metal association (Cu, Co, Ni, U, Cr, Au, Ag, PGE) recorded in the Katangan sediment-hosted ore deposits. Metals were transported into the basin dissolved in water. The stratiform deposits of Congo and Zambia display features indicating that syngenetic and early diagenetic processes controlled the formation of the Neoproterozoic Copperbelt of central Africa.

  13. Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico

    USGS Publications Warehouse

    Delaney, Paul T.; Pollard, David D.

    1981-01-01

    We have studied a small group of minette dikes and plugs that crop out within a flat-lying sequence of siltstone and shale near Ship Rock, a prominent volcanic throat of tuff breccia in northwestern New Mexico. Seven dikes form a radial pattern about Ship Rock we describe in detail the northeastern dike, which has an outcrop length of about 2,900 m, an average thickness of 2.3 m, and a maximum thickness of 7.2 m. The dike is composed of 35 discrete segments arranged in echelon; orientation. of dike segments ranges systematically from N. 52? E. to N. 66? E. A prominent joint set strikes parallel to the segments and is localized within several tens of meters of the dike. Regional joint patterns display no obvious relation to dike orientation. Small offsets of segment contacts, as well as wedge-shaped bodies of crumpled host rock within segments mark the sites of coalescence of smaller segments during dike growth. Bulges in the dike contact, which represent a nondilational component of growth, indicate that wall rocks were brecciated and eroded during the flow of magma. Breccias make up about 9 percent of the 7,176-m 2 area of the dike, are concentrated in its southwest half, and are commonly associated with its thickest parts. We also describe three subcircular plugs; each plug is smaller than 30 m in diameter, is laterally associated with a dike, and contains abundant breccias. Field evidence indicates that these plugs grew from the dikes by brecciation and erosion of wallrocks and that the bulges in the contact of the northeastern dike represent an initial stage of this process. From continuum-mechanical models of host-rock deformation, we conclude that dike propagation was the dominant mechanism for creating conduits for magma ascent where the host rock was brittle and elastic. At a given driving pressure, dikes dilate to accept greater volumes of magma than plugs, and for a given dilation, less work is done on the host rocks. In addition, the pressure required for dike growth decreases with dike length. From numerical solutions for dilation of cracks oriented like segments of the northeastern dike, we find that we can best model the form of the dike by treating it as composed of 10 cracks rather than 35. We attribute this result to coalescence of adjacent segments below the present outcrop and to inelastic deformation at segment ends. Using a driving pressure of 2 MPa (20 bars), we estimate a shear modulus of about 10^3 MPa for the host rocks, in agreement with laboratory tests on soft shale. A propagation criterion based on stress intensity at the segment ends indicates a fracture toughness of the host rocks of about 100 MPa-m^? , a hundredfold greater than values reported from laboratory tests. Segmentation of fractures is common in many materials and has been observed during fissure eruptions at Kilauea Volcano in Hawaii. At the northeastern dike, we attribute segmentation to local rotation of the direction of least principal compressive stress. From continuum-mechanical models of magma and heat flow in idealized conduits, we conclude that magma flows far more rapidly and with less relative heat loss in plugs than in dikes. Although dikes are the preferred form for emplacement, plugs are the preferred form for the flow of magma. We present a numerical solution for volumetric flow rate and wall heat flux for the northeastern dike and find that although the flow rate is extremely sensitive to conduit geometry, the rate of heat loss to wall rocks is not. During emplacement of the northeastern dike, local flow rate increased where wall rocks were eroded and reached a maximum of about 45 times the mean initial rate, whereas the maximum rate of heat loss to wallrocks increased to only 1.6 times the mean initial rate. An inferred progression from continuous magma flow along a dike to flow from a plug agrees well with observations of volcanic eruptions that begin from fissures and later are localized at discrete vents. We

  14. Natural radioactivity in stream sediments of Oltet River, Romania

    NASA Astrophysics Data System (ADS)

    Ion, Adriana

    2017-04-01

    The concentration of naturally occurring radionuclides (U-238, Th-232 and K-40) in stream sediments of the Oltet River was measured in order to establish the primary sources of radionuclides, the transport pathways and the geochemical factors favouring their mobilisation and concentration in the existing geological context. The Oltet River has a length of 185 Km and crosses the southern central part of the country, being the right tributary of the Olt River. The range in elevation of the watercourse varies between 1963 m in the springs area (Parîng Mountains) and 200 m at the confluence with the Olt River, whereas the relief of the Oltet Basin has a varied character, manifested by the presence of diverse forms of relief, starting with major mountainous heights and ending with low-lying plains regions. In cross section from North to South, the Olteț River cuts metamorphic rocks (schist, gneisses, quartzite, marble, mica-schist's), magmatic rocks (granite and granitoid massifs - intruded by veins of microgranite, aplite, pegmatite and lamprophyre) and limestone, followed by deposits composed of clays, marls, sands and gravels, that are characterized by the presence of lignite seams. 44 stream sediment samples were collected in summer of 2016 from sampling points distributed along the river with an equidistance of about 4 - 5 km. The activity concentrations of the U-238, Th-232 and K-40 were measured by gamma ray spectrometry using HPGe detector (ORTEC) with 26% relative efficiency in multilayer shielding. The reference materials used were IAEA - RGK-1 and IAEA - 314. Analysis was performed on the <2 mm fraction of sediment sample, each sample was counted for 24,000 s. U-238 specific activity in the stream sediments varies between 6.18 and 68.76 Bq/Kg and Th-232 specific activity from 8.12 to 89.28 Bq/Kg, whereas the K-40 specific activity in sediments ranges from 99.01 to 312.16 Bq/Kg. In the upper sector of the Oltet River, concentrations of U-238, Th-232 and K-40 show a good correlation between them and reflect the lithological features, the mechanical degradation of the rocks overcomes their chemical decomposition. In the middle part of the river as result of almost abrupt passage between mountain and hilly terrains increases and concentration of radionuclides; effect of large quantities of clastic material deposited by torrents. The mechanical migration of resistant uranium, thorium and potassium bearing mineral determines the movement of rock particles under moving water effect, and redistribution in alluvial sediments with preservation of the native features. In this zone under the action of biochemical processes and other chemical weathering agents, uranium is released from rocks and penetrates in the superficial circulation area or groundwater. Through this geochemical process the amounts of thorium and potassium released are modest, leaching of uranium being the dominant feature (uranyl ion). The downstream lignite seams are the secondary geochemical barriers in accumulation of uranium; the radiometric data obtained for stream sediments emphasize this enrichment.

  15. Earliest hominin occupation of Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    van den Bergh, Gerrit D.; Li, Bo; Brumm, Adam; Grün, Rainer; Yurnaldi, Dida; Moore, Mark W.; Kurniawan, Iwan; Setiawan, Ruly; Aziz, Fachroel; Roberts, Richard G.; Suyono; Storey, Michael; Setiabudi, Erick; Morwood, Michael J.

    2016-01-01

    Sulawesi is the largest and oldest island within Wallacea, a vast zone of oceanic islands separating continental Asia from the Pleistocene landmass of Australia and Papua (Sahul). By one million years ago an unknown hominin lineage had colonized Flores immediately to the south, and by about 50 thousand years ago, modern humans (Homo sapiens) had crossed to Sahul. On the basis of position, oceanic currents and biogeographical context, Sulawesi probably played a pivotal part in these dispersals. Uranium-series dating of speleothem deposits associated with rock art in the limestone karst region of Maros in southwest Sulawesi has revealed that humans were living on the island at least 40 thousand years ago (ref. 5). Here we report new excavations at Talepu in the Walanae Basin northeast of Maros, where in situ stone artefacts associated with fossil remains of megafauna (Bubalus sp., Stegodon and Celebochoerus) have been recovered from stratified deposits that accumulated from before 200 thousand years ago until about 100 thousand years ago. Our findings suggest that Sulawesi, like Flores, was host to a long-established population of archaic hominins, the ancestral origins and taxonomic status of which remain elusive.

  16. EPITHERMAL GOLD-SILVER MINERALIZATION RELATED TO VOLCANIC SUBSIDENCE IN THE CUSTER GRABEN, CUSTER COUNTY, IDAHO.

    USGS Publications Warehouse

    Johnson, Kathleen M.; McIntyre, David H.

    1984-01-01

    The Custer graben is a 13 by 32 km northeast-trending volcano-tectonic graben in the Challis volcanic field of central Idaho. Andesites, rhyolites, and associated pyroclastic rocks host vein and disseminated gold-silver deposits that are localized along discrete northeast- and northwest-trending fracture zones. Ore minerals in vein deposits are electrum, native gold and silver, chalcopyrite, and various sulfosalts in a gangue of pyrite and fine-grained quartz. At the Sunbeam Mine, near the center of the graben, vein and disseminated gold-silver mineralization occurred in hydrothermally altered rhyolite and pyroclastic rocks. The host rock has been pervasively silicified, and the feldspars altered to clay minerals. Analyses of surface and drill-core samples show that altered rocks are variably enriched in gold, silver, molybdenum, arsenic, zirconium, and selenium. Intense silicification is shown by SiO//2 values at high as 93%.

  17. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites

    USGS Publications Warehouse

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V). The origin of these typically discordant ore deposits remains as enigmatic as the magmatic evolution of their host rocks. The deposits clearly have a magmatic origin, hosted by an age-constrained unique suite of rocks that likely are the consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. Principal ore minerals are ilmenite and hemo-ilmenite (ilmenite with extensive hematite exsolution lamellae); occurrences of titanomagnetite, magnetite, and apatite that are related to this deposit type are currently of less economic importance. Ore-mineral paragenesis is somewhat obscured by complicated solid solution and oxidation behavior within the Fe-Ti-oxide system. Anorthosite suites hosting these deposits require an extensive history of voluminous plagioclase crystallization to develop plagioclase-melt diapirs with entrained Fe-Ti-rich melt rising from the base of the lithosphere to mid- and upper-crustal levels. Timing and style of oxide mineralization are related to magmatic and dynamic evolution of these diapiric systems and to development and movement of oxide cumulates and related melts. Active mines have developed large open pits with extensive waste-rock piles, but because of the nature of the ore and waste rock, the major environmental impacts documented at the mine sites are reported to be waste disposal issues and somewhat degraded water quality.

  18. Global Uranium And Thorium Resources: Are They Adequate To Satisfy Demand Over The Next Half Century?

    NASA Astrophysics Data System (ADS)

    Lambert, I. B.

    2012-04-01

    This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and strong opposition to growth of nuclear power in a number of quarters - it is vital that the market provides incentives for exploration and development of environmentally sustainable mining operations. Thorium: World Reasonably Assured plus Inferred Resources of thorium are estimated at over 2.2 million tonnes, in hard rock and heavy mineral sand deposits. At least double this amount is considered to occur in as yet undiscovered thorium deposits. Currently, demand for thorium is insignificant, but even a major shift to thorium-fueled reactors would not make significant inroads into the huge resource base over the next half century.

  19. Vein deposits hosted by plutonic rocks in the Croesus Stock and Hailey gold belt mineralized areas, Blaine County, Idaho

    USGS Publications Warehouse

    Worl, Ronald G.; Lewis, Reed S.

    2001-01-01

    Mineral deposits in the Croesus and Hailey gold belt mineralized areas in Blaine County, south-central Idaho, are preciousand base-metal quartz veins that are part of a family of vein deposits spatially and temporally associated with the Idaho batholith. Historic production from these veins has been mainly gold and silver. Host rocks are older border phase plutons of the Idaho batholith that are characterized by more potassium and less sodium as compared to rocks from the main body of the batholith to the west. Host structures are reverse faults that have moderate to shallow dips to the northeast and high-angle normal faults that also strike northwest. The veins are characterized by several generations of quartz and generally sparse sulfide minerals; gold is associated with late-stage comb quartz. The precious-metal ore bodies are in a series of shoots, each of which is as much as 8 ft in width, 400 ft in breadth, and 1,000 ft in pitch length.

  20. Spatial variability of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, southwestern Utah

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2012-12-01

    In order to yield new insight into the process of faulting in fine-grained, poorly indurated volcanic ash, the distribution of strain around faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, is investigated. Several distinct styles of inelastic strain are identified. Deformation bands are observed in tuff that is porous and granular in nature, or is inferred to have been so at the time of deformation. Where silicic alteration is pervasive, fractures are the dominant form of localized strain. Non-localized strain within the host rock is manifest as pore space compaction, including crushing of pumice clasts. Distinct differences in fault zone architecture are observed at different magnitudes of normal fault displacement, in the mode II orientation. A fault with cm-scale displacements is manifest as a single well-defined surface. Off-fault damage occurs as pore space compaction near the fault tips and formation of deformation band damage zones that are roughly symmetric about the fault. At a fault with larger meter-scale displacements, a fault core is present. A recognizable fault-related deformation band damage zone is not observed here, even though large areas of the host rock remain porous and granular and deformation bands had formed prior to faulting. The host rock is instead fractured in areas of pervasive alteration and shows possible textural evidence of fault pulverization. The zones of localized and distributed strain have notably different spatial extents around the causative fault. The region of distributed deformation, as indicated by changes in gas permeability of the macroscopically intact rock, extends up to four times farther from the fault than the highest densities of localized deformation (i.e., fractures and deformation bands). This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in poorly indurated tuff. Not surprisingly, the type of structural discontinuity that forms in the fault environment is found to be a function of the porosity and granularity of the host rock. Non-localized deformation in the form of pore space compaction of the host rock is found to be prominent around the fault tips at First Spring Hollow. Interestingly, the spatial distribution of host rock compaction and the occurrences of dilational deformation bands around this fault do not correlate with the classic pattern of compression and dilation generally anticipated for slipped normal faults when viewed in mode II. Therefore, while broad generalities regarding the types of discontinuities that form around faults in tuff can be drawn based on current principles, additional work is needed to better understand the genesis of the observed spatial distributions of strain.

  1. The geology of asbestos in the United States and its practical applications

    USGS Publications Warehouse

    Van Gosen, B. S.

    2007-01-01

    Recently, naturally occurring asbestos (NOA) has drawn the attention of numerous health and regulatory agencies and citizen groups. NOA can be released airborne by (1) the disturbance of asbestos-bearing bedrocks through human activities or natural weathering, and (2) the mining and milling of some mineral deposits in which asbestos occurs as an accessory mineral(s). Because asbestos forms in specific rock types and geologic conditions, this information can be used to focus on areas with the potential to contain asbestos, rather than devoting effort to areas with minimal NOA potential. All asbestos minerals contain magnesium, silica, and water as essential constituents, and some also contain major iron and/or calcium. Predictably, the geologic environments that host asbestos are enriched in these components. Most asbestos deposits form by metasomatic replacement of magnesium-rich rocks. Asbestos-forming environments typically display shear or evidence for a significant influx of silica-rich hydrothermal fluids. Asbestos-forming processes can be driven by regional metamorphism, contact metamorphism, or magmatic hydrothermal systems. Thus, asbestos deposits of all sizes and styles are typically hosted by magnesium-rich rocks (often also iron-rich) that were altered by a metamorphic or magmatic process. Rock types known to host asbestos include serpentinites, altered ultramafic and some mafic rocks, dolomitic marbles and metamorphosed dolostones, metamorphosed iron formations, and alkalic intrusions and carbonatites. Other rock types appear unlikely to contain asbestos. These geologic insights can be used by the mining industry, regulators, land managers, and others to focus attention on the critical locales most likely to contain asbestos.

  2. Application of self-organizing maps to the study of U-Zr-Ti-Nb distribution in sandstone-hosted uranium ores

    NASA Astrophysics Data System (ADS)

    Klus, Jakub; Pořízka, Pavel; Prochazka, David; Mikysek, Petr; Novotný, Jan; Novotný, Karel; Slobodník, Marek; Kaiser, Jozef

    2017-05-01

    This paper presents a novel approach for processing the spectral information obtained from high-resolution elemental mapping performed by means of Laser-Induced Breakdown Spectroscopy. The proposed methodology is aimed at the description of possible elemental associations within a heterogeneous sample. High-resolution elemental mapping provides a large number of measurements. Moreover, typical laser-induced plasma spectrum consists of several thousands of spectral variables. Analysis of heterogeneous samples, where valuable information is hidden in a limited fraction of sample mass, requires special treatment. The sample under study is a sandstone-hosted uranium ore that shows irregular distribution of ore elements such as zirconium, titanium, uranium and niobium. Presented processing methodology shows the way to reduce the dimensionality of data and retain the spectral information by utilizing self-organizing maps (SOM). The spectral information from SOM is processed further to detect either simultaneous or isolated presence of elements. Conclusions suggested by SOM are in good agreement with geological studies of mineralization phases performed at the deposit. Even deeper investigation of the SOM results enables discrimination of interesting measurements and reveals new possibilities in the visualization of chemical mapping information. Suggested approach improves the description of elemental associations in mineral phases, which is crucial for the mining industry.

  3. A preliminary evaluation of the nonfuel mineral potential of Somalia

    USGS Publications Warehouse

    Greenwood, W.R.

    1982-01-01

    Additional exploration in Somalia is warranted for a wide variety of metallic and nonmetallic deposits. In Precambrian rocks, deposit types favorable for exploration include: a banded iron formation; platinum-bearing mafic-ultramafic complexes; tin-bearing quartz veins; phosphorite; stratabound base-metal deposits; uranium associated with Precambrian(?) syenite; apatite, molybdenum, and alumina in alkalic rocks; Jurassic and Cretaceous black shales; possible bedded-barite and massive base- and precious-metal sulfide deposits; vein barite in Tertiary rocks in fault zones; sepiolite and bentonite for drilling muds and other industrial uses; celestite; possible Tertiary zeolite; and uranium deposits. Several of these deposit types could be Jointly developed and integrated into domestic industries; for example, phosphate and gypsum, or bentonite for pelletized iron from the banded iron deposits. Other deposits such as barite and sepiolite are of value because of their proximity to major drilling operations in the Arabian Gulf. Still other deposits, such as alumina and banded iron, might be marketable because of proximity to aluminum and iron-refining industries now being constructed in Saudi Arabia. Some deposits, such as celestite, can be developed with little capital investment; others, such as the iron deposits, would require large capital commitments. Exploration and evaluation for many of these deposits can be accomplished by Somali geologists with a few advisors. Most of the deposits require feasibility studies conducted by teams of economic geologists, extractive metallurgists, and economists. Some marginal deposits could be exploited if cooperative development schemes could be negotiated with governments in nearby countries.

  4. DEVILS DEN ROADLESS AREA, VERMONT.

    USGS Publications Warehouse

    Slack, John F.; Sabin, Andrew E.

    1984-01-01

    A mineral-resource survey was made of the Devils Den Roadless Area, Vermont, Geochemical sampling found traces of gold, copper, barium, lead, molybdenum, silver, tin, and thorium in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to identify any resource potential. The only apparent resources are nonmetallic commodities including abundant rock suitable for crushihg, and very small deposits of sand and gravel and marble; these also occur outside the roadless area. The area was also evaluated for bedrock uranium and thorium deposits, but not anomalously high radioactive bedrock was found. A potential may exist for oil or natural gas at great depth, but this cannot be evaluated by the present study.

  5. Field determination of microgram quantities of niobium in rocks

    USGS Publications Warehouse

    Ward, F.N.; Marranzino, A.P.

    1955-01-01

    A rapid, simple, and moderately accurate method was needed for the determination of traces of niobium in rocks. The method developed is based on the reaction of niobium(V) with thiocyanate ion in a 4M hydrochloric acid and 0.5M tartaric acid medium, after which the complex is extracted with ethyl ether. The proposed procedure is applicable to rocks containing from 50 to 2000 p.p.m. of niobium, and, with modifications, can be used on rocks containing larger amounts. Five determinations on two rocks containing 100 p.p.m. or less of niobium agree within 5 p.p.m. of the mean, and the confidence limits at the 95% level are, respectively, ??6 and ??4 p.p.m. The addition of acetone to the ether extract of the niobium thiocyanate inhibits the polymerization of the thiocyanate ion and stabilizes the solution for at least 20 hours. The proposed procedure permits the determination of 20 ?? of niobium in the presence of 1000 ?? of iron, titanium, or uranium; 500 ?? of vanadium; or 100 ?? of tungsten or molybdenum or both.

  6. Study of gamma spectrometry laboratory measurement in various sediment and vulcanic rocks

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Kurniadi, Rizal; Rizka Asmara Hadi, Muhammad; Rizal Komara, Insan

    2017-01-01

    Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. This method is powerful to characterize some minerals, especially to differentiate rocks which contains among Potassium, Uranium, dan Thorium. Rock contains radioactive material which produce gamma rays in various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be used as indicator for mineral content of rock. Some sediment and vulcanic rock have been collected from East Java Basin. Samples are ranging from Andesite vulcanics, Tuff, Shale, various vulcanic clay and Alluvial clay. We present some unique characteristics of gamma spectrometry in various sedimentar and vulcanic rocks of East Java Basins. Details contents of gamma ray spectra give enrichments to characterize sample of sediment and vulcanic in East Java. Weathered vulcanic clay has lower counting rate of gamma ray than alluvial deltaic clay counting rate. Therefore, gamma spectrometrometry can be used as tool for characterizing the enviroment of clay whether vulcanic or alluvial-deltaic. This phenomena indicates that gamma ray spectrometry can be as tool for characterizing the clay whether it tends to Smectite or Illite

  7. Genetic Aspects of Gold Mineralization at Some Occurrences in the Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Abd El Monsef, M.; Slobodník, M.; Salem, I. A.

    2012-04-01

    The Eastern Desert of Egypt is well known as a gold-mining area since ancient times, there're more than 95 gold deposits and occurrences spread the whole area covered by the basement rocks of Precambrian age. The basement rocks of the Eastern Desert of Egypt constitute the Nubian Shield that has formed a continuous part of the Arabian-Nubian Shield before the opening of Red Sea (Oligocene-Early Miocene). Commonly, the system of gold-bearing quartz veins in the Eastern Desert is clearly structural controlled related to brittle-ductile shear zones that mostly developed during late deformational stages of the evolution history for basement rocks in the Eastern Desert. This running study principally aims to contribute the mineral resource potential of the gold deposits in Egypt, so particularly Fatira, Gidami and Atalla occurrences have been involved into a comprehensive study based on field, structural, mineralogical, geochemical and genetic investigations. It is intended to better understanding for the characteristics, distribution controls, conditions and age of mineralization in relation to the age of the hosting rocks intrusion to find if there're genetic links between the gold mineralization and the evolution of the host intrusive complex. Several authors suggested that the gold mineralization was related to the intrusion of the (postorogenic) Younger granites. Other authors interpret these deposits as products of hydrothermal activity induced either by metamorphism or cooling effects of early Paleozoic magmatism or as combined metamorphic/magmatic episodes. The prime focus will be directed to the ore itself and the associated hydrothermal alteration zones based on detailed maps and well-distributed samples network and geochemical anomalies distribution. The laboratory studies included microscopic examination (reflecting and transmitting microscopy) to allow for determination of the hosting rocks types and mineralogical changes related to the gold mineralization in each area and revealing the ore mineralogy and the ore textures, geochemical analyses (including rare earth elements) are to be used in order to determine the tectonic setting and magmatic evolution of the host intrusions, scanning electron microscope, microprobe analysis, stable isotopes and fluid inclusions will serve as a new part of this study in detection of the origin and the physico-chemical conditions (P-T condition) for the gold precipitation, Age dating of the host intrusion and mineralization will be based on K-Ar for dating potassium-bearing minerals in fresh host rocks and hydrothermal mineral phases.

  8. A study of radioactivity in modern stream gravels and its possible application as a prospecting method

    USGS Publications Warehouse

    Chew, Randall T.

    1955-01-01

    Traverses along some streams of the Colorado Plateau in areas known to contain minable uranium deposits show that anomalous radiation in the stream gravels can be detected with a suitable counter downstream from the deposits. The amount of radiation is influenced by the size of the uranium deposit, the size of the drainage area of the stream, the grain size of the sediments, and the lithology of the rocks over which the stream flows. The spacing of the stations where readings are taken is controlled by the size of the stream, and special readings are also taken directly downstream from important tributaries. An anomaly is empirically defined as a 10 percent rise over background. Radioactive material from large uranium deposits has been detected as much as 1 mile downstream. Radioactive material from smaller deposits is detachable over shorter distances. The method is slow but appears to be a useful prospecting tool under restricted conditions.

  9. Medium-Sized Mammals around a Radioactive Liquid Waste Lagoon at Los Alamos National Laboratory: Uptake of Contaminants and Evaluation of Radio-Frequency Identification Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie A. Hansen; Phil R. Fresquez; Rhonda J. Robinson

    1999-11-01

    Use of a radioactive liquid waste lagoon by medium-sized mammals and levels of tritium, other selected radionuclides, and metals in biological tissues of the animals were documented at Technical Area 53 (TA-53) of Los Alamos National Laboratory during 1997 and 1998. Rock squirrel (Spermophilus variegates), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), and bobcat (Lynx rufus) were captured at TA-53 and at a control site on the Santa Fe National Forest. Captured animals were anesthetized and marked with radio-frequency identification (RFD) tags and/or ear tags. We collected urine and hair samples for tritium and metals (aluminum, antimony, arsenic, barium, beryllium,more » cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and thallium) analyses, respectively. In addition, muscle and bone samples from two rock squirrels collected from each of TA-53, perimeter, and regional background sites were tested for tritium, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, and total uranium. Animals at TA-53 were monitored entering and leaving the lagoon area using a RFID monitor to read identification numbers from the RFID tags of marked animals and a separate camera system to photograph all animals passing through the monitor. Cottontail rabbit (Sylvilagus spp.), rock squirrel, and raccoon were the species most frequently photographed going through the RFID monitor. Less than half of all marked animals in the lagoon area were detected using the lagoon. Male and female rock squirrels from the lagoon area had significantly higher tritium concentrations compared to rock squirrels from the control area. Metals tested were not significantly higher in rock squirrels from TA-53, although there was a trend toward increased levels of lead in some individuals at TA-53. Muscle and bone samples from squirrels in the lagoon area appeared to have higher levels of tritium, total uranium, and {sup 137}Cs than samples collected from perimeter and background locations. However, the committed effective dose equivalent estimated from the potential human consumption of the muscle and bone tissue from these rock squirrels did not suggest any human health risk. Indirect routes of tritium uptake, possibly through consumption of vegetation, are important for animals in the lagoon area.« less

  10. Uranium Isotope Ratios in Modern and Precambrian Soils

    NASA Astrophysics Data System (ADS)

    DeCorte, B.; Planavsky, N.; Wang, X.; Auerbach, D. J.; Knudsen, A. C.

    2015-12-01

    Uranium isotopes (δ238U values) are an emerging paleoredox proxy that can help to better understand the redox evolution of Earth's surface environment. Recently, uranium isotopes have been used to reconstruct ocean and atmospheric redox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011; Kendall et al., 2013; Dahl et al., 2014). However, to date, there have not been studies on paleosols, despite that paleosols are, arguably better suited to directly tracking the redox conditions of the atmosphere. Sedimentary δ238U variability requires the formation of the soluble, oxidized form of U, U(VI). The formation of U(VI) is generally thought to require oxygen levels orders of magnitude higher than prebiotic levels. Without significant U mobility, it would have been impossible to develop isotopically distinct pools of uranium in ancient Earth environments. Conversely, an active U redox cycle leads to significant variability in δ238U values. Here we present a temporally and geographically expansive uranium isotope record from paleosols and modern soils to better constrain atmospheric oxygen levels during the Precambrian. Preliminary U isotope measurements of paleosols are unfractionated (relative to igneous rocks), possibly because of limited fractionation during oxidation (e.g., {Wang, 2015 #478}) or insufficient atmospheric oxygen levels to oxidize U(IV)-bearing minerals in the bedrock. Further U isotope measurements of paleosols with comparison to modern soils will resolve this issue.

  11. Characterization of seismic properties across scales: from the laboratory- to the field scale

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    When exploring geothermal systems, the main interest is on factors controlling the efficiency of the heat exchanger. This includes the energy state of the pore fluids and the presence of permeable structures building part of the fluid transport system. Seismic methods are amongst the most common exploration techniques to image the deep subsurface in order to evaluate such a geothermal heat exchanger. They make use of the fact that a seismic wave caries information on the properties of the rocks in the subsurface through which it passes. This enables the derivation of the stiffness and the density of the host rock from the seismic velocities. Moreover, it is well-known that the seismic waveforms are modulated while propagating trough the subsurface by visco-elastic effects due to wave induced fluid flow, hence, delivering information about the fluids in the rock's pore space. To constrain the interpretation of seismic data, that is, to link seismic properties with the fluid state and host rock permeability, it is common practice to measure the rock properties of small rock specimens in the laboratory under in-situ conditions. However, in magmatic geothermal systems or in systems situated in the crystalline basement, the host rock is often highly impermeable and fluid transport predominately takes place in fracture networks, consisting of fractures larger than the rock samples investigated in the laboratory. Therefore, laboratory experiments only provide the properties of relatively intact rock and an up-scaling procedure is required to characterize the seismic properties of large rock volumes containing fractures and fracture networks and to study the effects of fluids in such fractured rock. We present a technique to parameterize fractured rock volumes as typically encountered in Icelandic magmatic geothermal systems, by combining laboratory experiments with effective medium calculations. The resulting models can be used to calculate the frequency-dependent bulk modulus K(ω) and shear modulus G(ω), from which the P- and S-wave velocities V P(ω) and V S(ω) and the quality factors QP(ω) and QS(ω) of fluid saturated fractured rock volumes can be estimated. These volumes are much larger and contain more complex structures than the rock samples investigated in the laboratory. Thus, the derived quantities describe the elastic and anelastic (energy loss due to wave induced fluid flow) short-term deformation induced by seismic waves at scales that are relevant for field-scale seismic exploration projects.

  12. Uranium adsorption on weathered schist - Intercomparison of modeling approaches

    USGS Publications Warehouse

    Payne, T.E.; Davis, J.A.; Ochs, M.; Olin, M.; Tweed, C.J.

    2004-01-01

    Experimental data for uranium adsorption on a complex weathered rock were simulated by twelve modelling teams from eight countries using surface complexation (SC) models. This intercomparison was part of an international project to evaluate the present capabilities and limitations of SC models in representing sorption by geologic materials. The models were assessed in terms of their predictive ability, data requirements, number of optimised parameters, ability to simulate diverse chemical conditions and transferability to other substrates. A particular aim was to compare the generalised composite (GC) and component additivity (CA) approaches for modelling sorption by complex substrates. Both types of SC models showed a promising capability to simulate sorption data obtained across a range of chemical conditions. However, the models incorporated a wide variety of assumptions, particularly in terms of input parameters such as site densities and surface site types. Furthermore, the methods used to extrapolate the model simulations to different weathered rock samples collected at the same field site tended to be unsatisfactory. The outcome of this modelling exercise provides an overview of the present status of adsorption modelling in the context of radionuclide migration as practised in a number of countries worldwide.

  13. 10 CFR 960.4-2-2 - Geochemistry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Considering the likely chemical interactions among radionuclides, the host rock, and the ground water, the... the rock matrix, or sorption of radionuclides; inhibit the formation of particulates, colloids... transport of radionuclides by particulates, colloids, or complexes. (3) Mineral assemblages that, when...

  14. 10 CFR 960.4-2-2 - Geochemistry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Considering the likely chemical interactions among radionuclides, the host rock, and the ground water, the... the rock matrix, or sorption of radionuclides; inhibit the formation of particulates, colloids... transport of radionuclides by particulates, colloids, or complexes. (3) Mineral assemblages that, when...

  15. Magnetic properties of frictional volcanic materials

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent magnetisation (ARM), as expected for a thermal origin, the remanence of volcanic pseudotachylyte has been found to be comparable to an isothermal remanent magnetisation (IRM). Thus, the pseudotachylyte has experienced a strong magnetic field that overwrote the previous thermoremanent magnetisation of the magma, such as the strong local electric current that occurs in faults (e.g. Ferré et al., 2005). Additionally, the pseudotachylyte seems more often to comprise of uniaxial non-interacting single-domain particles compared to pseudo-single in the host, and to have a single Curie temperature whereas the host more commonly exhibits multiple phases. Differences in rock-magnetic parameters between the pseudotachylyte and host are significant, but not as high as those observed in granites by Nakamura et al. (2002) or Ferré et al. (2005), probably because granitic host rocks do not already carry a strong and stable remanence as do these extrusive volcanic rocks. The application of rock-magnetic tests in volcanology will undoubtedly continue to be a "go-to" tool for identification of pseudotachylytes, which are increasingly being recognised to play an important role in dome-building eruptions. Refs: Ferré, E.C., Zechmeister, M.S., Geissman, J.W., MathanaSekaran, N. and Kocak, K., 2005. The origin of high magnetic remanence in fault pseudotachylites: Theoretical considerations and implication for coseismic electrical currents. Tectonophysics, 402(1-4): 125-139. Nakamura, N., Hirose, T. and Borradaile, G.J., 2002. Laboratory verification of submicron magnetite production in pseudotachylytes: relevance for paleointensity studies. . Earth and Planetary Science Letters, 201(1): 13-18.

  16. Incremental growth of an upper crustal, A-type pluton, Argentina: Evidence of a re-used magma pathway

    NASA Astrophysics Data System (ADS)

    Alasino, Pablo H.; Larrovere, Mariano A.; Rocher, Sebastián; Dahlquist, Juan A.; Basei, Miguel A. S.; Memeti, Valbone; Paterson, Scott; Galindo, Carmen; Macchioli Grande, Marcos; da Costa Campos Neto, Mario

    2017-07-01

    Carboniferous igneous activity in the Sierra de Velasco (NW Argentina) led to the emplacement of several magmas bodies at shallow levels (< 2 kbar). One of these, the San Blas intrusive complex formed over millions of years (≤ 2-3 m.y.) through three periods of magma additions that are characterized by variations in magma sources and emplacement style. The main units, mostly felsic granitoids, have U-Pb zircon crystallization ages within the error range. From older to younger (based on cross-cutting relationships) intrusive units are: (1) the Asha unit (340 ± 7 Ma): a tabular to funnel-shaped intrusion emplaced during a regional strain field dominated by WSW-ENE shortening with contacts discordant to regional host-rock structures; (2) the San Blas unit (344 ± 2 Ma): an approximate cylindrical-shaped intrusion formed by multiple batches of magmas, with a roughly concentric fabric pattern and displacement of the host rock by ductile flow of about 35% of shortening; and (3) the Hualco unit (346 ± 6 Ma): a small body with a possible mushroom geometry and contacts concordant to regional host-rock structures. The magma pulses making up these units define two groups of A-type granitoids. The first group includes the peraluminous granitic rocks of the Asha unit generated mostly by crustal sources (εNdt = - 5.8 and εHft in zircon = - 2.9 to - 4.5). The second group comprises the metaluminous to peraluminous granitic rocks of the youngest units (San Blas and Hualco), which were formed by a heterogeneous mixture between mantle and crustal sources (εNdt = + 0.6 to - 4.8 and εHft in zircon = + 3 to - 6). Our results provide a comprehensive view of the evolution of an intrusive complex formed from multiple non-consanguineous magma intrusions that utilized the same magmatic plumbing system during downward transfer of host materials. As the plutonic system matures, the ascent of magmas is governed by the visco-elastic flow of host rock that for younger batches include older hot magma mush. The latter results in ductile downward flow of older, during rise of younger magma. Such complexes may reflect the plutonic portion of volcanic centers where chemically distinct magmas are erupted.

  17. Central Antarctic provenance of Permian sandstones in Dronning Maud Land and the Karoo Basin: Integration of U Pb and TDM ages and host-rock affinity from detrital zircons

    NASA Astrophysics Data System (ADS)

    Veevers, J. J.; Saeed, A.

    2007-12-01

    In conjugate SE Africa and Antarctica, Early Permian sandstones of the Swartrant Formation of the Ellisras Basin, Vryheid Formation of the Karoo Basin, and Amelang Plateau Formation of Dronning Maud Land (DML) were deposited after Gondwanan glaciation on a westward paleoslope. We analysed detrital zircons for U-Pb ages by a laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) and attached age significance only to clusters of three or more overlapping analyses. We analysed Hf-isotope compositions by a multi-collector spectrometer (LAM-MC-ICPMS) and trace elements by electron microprobe (EMP) and ICPMS. These analyses indicate the rock type and source (whether crustal or juvenile mantle) of the host magma, and a "crustal" model age ( TDMC). The integrated analysis gives a more distinctive, and more easily interpreted, picture of crustal evolution in the provenance area than age data alone. Zircons from the Ellisras Basin are aged 2700-2540 Ma with minor populations about 2815 Ma and 2040 Ma, which correspond with the ages of the upslope parts of the proximal Kaapvaal Craton and Limpopo Belt. Mafic rock is the dominant host rock, and it reflects the Archean granite-greenstone terrane of the Kaapvaal Craton. The three Karoo Basin samples and the two DML samples have zircons with these common properties: (1) 1160-880 Ma, host magma mafic granitoid (< 65% SiO 2) derived from juvenile depleted mantle sources ( ɛHf positive) at 1.65 Ga and 1.35 Ga, with TDMC of 2.0-0.9 Ga; (2) 760 to 480 Ma, host magma granitoid and low-heavy rare earth element rock (?alkaline rock-carbonatite), derived from mixed crustal and juvenile depleted mantle sources ( ɛHf positive and negative) at 1.50 Ga and 1.35 Ga, with TDMC of 2.0-0.9 Ga. Together with similar detrital zircons in Triassic sandstone of SE Australia, these properties reflect those in upslope central Antarctica, indicating a provenance of ˜ 1000 Ma (Grenville) cratons embedded in 700-500 Ma (Pan-Gondwanaland) fold belts. Detrital zircons in Cambrian sediments of the Ellsworth-Whitmore Mountains block and Cambrian metasediments of the Welch Mountains with comparable properties suggest that the central Antarctic provenance operated also in the ˜ 500 Ma Cambrian.

  18. Uranium-series dating of the Mousterian occupation at Abric Romani, Spain

    USGS Publications Warehouse

    Bischoff, J.L.; Julia, R.; Mora, R.

    1988-01-01

    The precise evolutionary position of the Neanderthal people continues to be a major uncertainty in human evolution. Their origin and their relationship to anatomically modern people are unclear and are clouded by poor chronology. Lithic artefacts of' the Mousterian type, found throughout Europe and the Mediterranean Basin, are believed to be the tool kit of the Neanderthals, but dates within Mousterian-bearing deposits are extremely rare. We report here on 20 high-quality uranium-series dates from Mousterian beds at Abric Romani, a rock shelter near Barcelona, Spain. The dates range from 39 to 60 kyr before present (BP) in an orderly stratigraphic succession and provide precise chronological control on an important Mousterian archaeological site. ?? 1988 Nature Publishing Group.

  19. Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California: Mineral, chemical, and isotopic evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, C.M.

    Major element and trace element compositions of whole rocks, mineral compositions, and Rb-Sr isotopic compositions of enclave and host granitoid pairs from the Early Cretaceous, calc-alkaline Turtle pluton of southeastern California suggest that the local environmental profoundly affects some enclave types. In the Turtle pluton, where the source of fine-grained, mafic enclaves can be deduced to be magmatic by the presence of partially disaggregated basaltic dikes, mineral chemistry suggests partial or complete local equilibrium among mineral species in the enclave and its host granitoid. Because of local Rb-Sr isotopic equilibration between fine-grained enclaves and host granitoid, one cannot use Srmore » isotopes to distinguish an enclave source independent of its host rocks from an enclave source related to the enclosing pluton. However, preliminary Nd isotopic data suggest an independent, mantle source for enclaves.« less

  20. Nectonema zealandica n. sp. (Nematomorpha: Nectonematoidea) parasitising the purple rock crab Hemigrapsus edwardsi (Brachyura: Decapoda) in New Zealand, with notes on the prevalence of infection and host defence reactions.

    PubMed

    Poinar, G; Brockerhoff, A M

    2001-10-01

    A new species of marine hairworm, Nectonema zealandica (Nematomorpha: Nectonematoidea), is described from the purple rock crab Hemigrapsus edwardsi Hilgendorf from the South Island, New Zealand. This is the first record of Nectonema in the South Pacific Ocean and the southernmost locality for the genus. The description is based on juveniles and pre-adults taken from crabs. The new species is characterised by its stomal structure, presence of four cephalic papillae, mesenchyme arranged in eight lobes in pre-adults, insertion of muscle layer increasing body diameter at the septum and translucent anterior chamber. Data on the prevalence of infection over a three-year period, rates of parasitism in relation to host sex and size, and host defence reactions are presented. A list of all reported hosts of nectonematids is included.

  1. Evaluation of magma mixing in the subvolcanic rocks of Ghansura Felsic Dome of Chotanagpur Granite Gneiss Complex, eastern India

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor; Ahmad, Talat

    2018-06-01

    The subvolcanic rocks exposed in the Ghansura Felsic Dome (GFD) of the Bathani volcano-sedimentary sequence at the northern fringe of the Rajgir fold belt in the Proterozoic Chotanagpur Granite Gneiss Complex preserves evidence of magma mixing and mingling in mafic (dolerite), felsic (microgranite) and intermediate (hybrid) rocks. Structures like crenulated margins of mafic enclaves, felsic microgranular enclaves and ocelli with reaction surfaces in mafic rocks, hybrid zones at mafic-felsic contacts, back-veining and mafic flows in the granitic host imply magma mingling phenomena. Textural features like quartz and titanite ocelli, acicular apatite, rapakivi and anti-rapakivi feldspar intergrowths, oscillatory zoned plagioclase, plagioclase with resorbed core and intact rim, resorbed crystals, mafic clots and mineral transporting veins are interpreted as evidence of magma mixing. Three distinct hybridized rocks have formed due to varied interactions of the intruding mafic magma with the felsic host, which include porphyritic diorite, mingled rocks and intermediate rocks containing felsic ocelli. Geochemical signatures confirm that the hybrid rocks present in the study area are mixing products formed due to the interaction of mafic and felsic magmas. Physical parameters like temperature, viscosity, glass transition temperature and fragility calculated for different rock types have been used to model the relative contributions of mafic and felsic end-member magmas in forming the porphyritic diorite. From textural and geochemical investigations it appears that the GFD was a partly solidified magma chamber when mafic magma intruded it leading to the formation of a variety of hybrid rock types.

  2. Uranium concentrations in groundwater, northeastern Washington

    USGS Publications Warehouse

    Kahle, Sue C.; Welch, Wendy B.; Tecca, Alison E.; Eliason, Devin M.

    2018-04-18

    A study of uranium in groundwater in northeastern Washington was conducted to make a preliminary assessment of naturally occurring uranium in groundwater relying on existing information and limited reconnaissance sampling. Naturally occurring uranium is associated with granitic and metasedimentary rocks, as well as younger sedimentary deposits, that occur in this region. The occurrence and distribution of uranium in groundwater is poorly understood. U.S. Environmental Protection Agency (EPA) regulates uranium in Group A community water systems at a maximum contaminant level (MCL) of 30 μg/L in order to reduce uranium exposure, protect from toxic kidney effects of uranium, and reduce the risk of cancer. However, most existing private wells in the study area, generally for single family use, have not been sampled for uranium. This document presents available uranium concentration data from throughout a multi-county region, identifies data gaps, and suggests further study aimed at understanding the occurrence of uranium in groundwater.The study encompasses about 13,000 square miles (mi2) in the northeastern part of Washington with a 2010 population of about 563,000. Other than the City of Spokane, most of the study area is rural with small towns interspersed throughout the region. The study area also includes three Indian Reservations with small towns and scattered population. The area has a history of uranium exploration and mining, with two inactive uranium mines on the Spokane Indian Reservation and one smaller inactive mine on the outskirts of Spokane. Historical (1977–2016) uranium in groundwater concentration data were used to describe and illustrate the general occurrence and distribution of uranium in groundwater, as well as to identify data deficiencies. Uranium concentrations were detected at greater than 1 microgram per liter (μg/L) in 60 percent of the 2,382 historical samples (from wells and springs). Uranium concentrations ranged from less than 1 to 88,600 μg/L, and the median concentration of uranium in groundwater for all sites was 1.4 μg/L.New (2017) uranium in groundwater concentration data were obtained by sampling 13 private domestic wells for uranium in areas without recent (2000s) water-quality data. Uranium was detected in all 13 wells sampled for this study; concentrations ranged from 1.03 to 1,180 μg/L with a median of 22 μg/L. Uranium concentrations of groundwater samples from 6 of the 13 wells exceeded the MCL for uranium. Uranium concentrations in water samples from two wells were 1,130 and 1,180 μg/L, respectively; nearly 40 times the MCL.Additional data collection and analysis are needed in rural areas where self-supplied groundwater withdrawals are the primary source of water for human consumption. Of the roughly 43,000 existing water wells in the study area, only 1,755 wells, as summarized in this document, have available uranium concentration data, and some of those data are decades old. Furthermore, analysis of area groundwater quality would benefit from a more extensive chemical-analysis suite including general chemistry in order to better understand local geochemical conditions that largely govern the mobility of uranium. Although the focus of the present study is uranium, it also is important to recognize that there are other radionuclides of concern that may be present in area groundwater.

  3. Uranium deposits in Grant County, New Mexico

    USGS Publications Warehouse

    Granger, Harry C.; Bauer, Herman L.; Lovering, Tom G.; Gillerman, Elliot

    1952-01-01

    The known uranium deposits of Grant county, N. Mex., are principally in the White Signal and Black Hawk districts. Both districts are within a northwesterly-trending belt of pre-Cambrian rocks, composed chiefly of granite with included gneisses, schists, and quartzites. Younger dikes and stocks intrude the pre-Cambrian complex. The White Signal district is on the southeast flanks of the Burro Mountains; the Black Hawk district is about 18 miles northwest of the town of White Signal. In the White Signal district the seconday uranium phosphates--autunite and torbernite--occur as fracture coatings and disseminations in oxidized parts of quartz-pyrite veins, and in the adjacent mafic dikes and granites; uraniferous limonite is common locally. Most of the known uraniferous deposits are less that 50 feet in their greatest dimension. The most promising deposits in the district are on the Merry Widow and Blue Jay claims. The richest sample taken from the Merry Widow mine contained more than 2 percent uranium and a sample from the Blue Jay property contained as much as 0.11 percent; samples from the other properties were of lower grade. In the Black Hawk district pitchblende is associated with nickel, silver, and cobalt minerals in fissure veins. The most promising properties in the Black Hawk district are the Black Hawk, Alhambra, and Rose mines. No uranium analyses from this district were available in 1951. There are no known minable reserves of uranium ore in either district, although there is some vein material at the Merry Widow mine of ore grade, if a market were available in the region.

  4. HIGH LEVELS OF URANIUM IN GROUNDWATER OF ULAANBAATAR, MONGOLIA

    PubMed Central

    Nriagu, Jerome; Nam, Dong-Ha; Ayanwola, Titilayo A.; Dinh, Hau; Erdenechimeg, Erdenebayar; Ochir, Chimedsuren; Bolormaa, Tsend-Ayush

    2011-01-01

    Water samples collected from 129 wells in seven of the nine sub-divisions of Ulaanbaatar were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using Clean Lab methods. The levels of many trace elements were found to be very low with the average concentrations (ranges in brackets) being 0.9 (<0.1-7.9) μg/L for As; 7.7 (0.12-177) μg/L for Mn; 0.2 (<0.05-1.9) μg/L for Co; 16 (<0.1-686) μg/L for Zn; 0.7 (<0.1-1.8) μg/L for Se; <0.1 (<0.02-0.69) μg/L for Cd; and 1.3 (<0.02-32) μg/L for Pb. The levels of uranium were surprisingly elevated (mean, 4.6 μg/L; range <0.01-57 μg/L, with the values for many samples exceeding the World Health Organization's guideline of 15 μg/L for uranium in drinking water. Local rocks and soils appear to be the natural source of the uranium. The levels of uranium in Ulaanbaatar's groundwater are in the range that has been associated with nephrotoxicity, high blood pressure, bone dysfunction and likely reproductive impairment in human populations. We consider the risk associated with drinking the groundwater with elevated levels of uranium in Ulaanbaatar to be a matter for some public health concern and conclude that the paucity of data on chronic effects of low level exposure is a risk factor for continuing the injury to many people in this city. PMID:22142646

  5. Uranium isotopes fingerprint biotic reduction

    DOE PAGES

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; ...

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  6. Uranium in surface soils: an easy-and-quick assay combining X-ray diffraction and fluorescence qualitative data

    NASA Astrophysics Data System (ADS)

    Figueiredo, M. O.; Silva, T. P.; Batista, M. J.; Leote, J.; Ferreira, M. L.; Limpo, V.

    2009-04-01

    Portugal has been a uranium-producer since the beginning of the last century. The uranium-rich area of Alto Alentejo, East-central Portugal, was identified more than fifty years ago [1]. Almost all the uranium-bearing mineralization occurs in schistose rocks of the contact metamorphic aureole produced by intrusion of the Hercynian monzonitic granite of Alto Alentejo into the pre-Ordovitian schist-greywacke complex forming deposits of vein and dissemination type. The Nisa uranium-reservoir, situated at the sharp border of a large and arch shaped granite pluton, was identified in 1957 [2] but its exploitation was considered economically impracticable until recently. However, its existence and the accumulated detritus of these prospect efforts are a concern for local populations [3]. A study of the near-surface soils close to the Nisa reservoir was therefore undertaken to assess the uranium retention by adsorption on clay components under the form of uranyl ions, [UO2]2+ [4-6] and its eventual release into the aquifer groundwater. As an attempt to very quickly appraise the presence of uranium in as-collected near-surface sediment samples a combination of laboratory X-ray techniques was designed: X-ray diffraction (XRD) to identify the mineral phases and roughly estimate its relative proportion plus X-ray fluorescence spectrometry in wavelength dispersive mode (XRF-WDS) to ascertain the presence of uranium and tentatively evaluate its content by comparison with selected chemical components of the soil. A description of the experimental methodology adopted for the implemented easy-and-quick uranium assay is presented. Obtained results compare quite well to the data of certified time-consuming analytical tests of uranium in those soil samples. [1] L. Pilar (1966) Conditions of formation of Nisa uranium deposit (in Portuguese). Comunic. Serv. Geol. Portugal, tomo L, 50-85. [2] C. Gonçalves & J.V. Teixeira Lopes (1971) Uranium deposit of Nisa: geological aspects of its discovery and valorisation (in Portuguese). Internal Rept., JEN, 20 pp. [3] http://www.naturtejo.com [4] J.A. Davis et al. (2006) Processes affecting transport of uranium in a suboxic aquifer. Phys. Chem. of the Earth 31, 548-555. [5] Y. Arai et al. (2007) Spectroscopic evidence for uranium bearing precipitates in Vadose zone sediments at the Hanford 300-Area site. Environ. Sci. Technol. 41, 4633-4639. [6] A. Kremleva, S. Krüger & N. Rösch (2008) Density functional model studies of uranyl adsorption on (001) surfaces of kaolinite. Langmuir 24, 9515-9524.

  7. Uranium in Holocene valley-fill sediments, and uranium, radon, and helium in waters, Lake Tahoe-Carson Range area, Nevada and California, U.S.A.

    USGS Publications Warehouse

    Otton, J.K.; Zielinski, R.A.; Been, J.M.

    1989-01-01

    Uraniferous Holocene sediments occur in the Carson Range of Nevada and California, U.S.A., between Lake Tahoe and Carson Valley. The hosts for the uranium include peat and interbedded organic-rich sand, silt, and mud that underly valley floors, fens, and marshes along stream valleys between the crest of the range and the edge of Lake Tahoe. The known uranium accumulations extend along the Carson Range from the area just southeast of South Lake Tahoe northward to the area just east of Carson City; however, they almost certainly continue beyond the study area to the north, west, and south. Due to the young age of the accumulations, uranium in them is in gross disequilibrium with its highly radioactive daughter products. These accumulations have thus escaped discovery with radiation detection equipment in the past. The uranium content of these sediments approaches 0.6 percent; however, the average is in the range of 300-500 ppm. Waters associated with these sediments locally contain as much as 177 ppb uranium. Modest levels of helium and radon also occur in these waters. Uraniferous waters are clearly entering the private and public water supply systems in some parts of the study area; however, it is not known how much uranium is reaching users of these water supplies. Many of the waters sampled in the study area exceed the published health effects guidance level of the Environmental Protection Agency. Regulatory standards for uranium in waters have not been published, however. Much uranium is stored in the sediments along these stream valleys. Estimates for a marsh and a fen along one drainage are 24,000 and 15,000 kg, respectively. The potential effects of man-induced environmental changes on the uranium are uncertain. Laboratory studies of uraniferous sediment rich in organic matter may allow us to evaluate the potential of liberating uranium from such sediments and creating transient increases in the level of uranium moving in water in the natural environment. ?? 1989 Springer-Verlag New York Inc.

  8. Origins of igneous microgranular enclaves in granites: the example of Central Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Clemens, J. D.; Elburg, M. A.; Harris, C.

    2017-10-01

    To investigate their genesis and relations with their host rocks, we study igneous microgranular enclaves (IMEs) in the c. 370 Ma, post-orogenic, high-level, felsic plutons and volcanic rocks of Central Victoria, Australia. The IMEs are thermally quenched magma globules but are not autoliths, and they do not form mixing series with their host magmas. These IMEs generally represent hybrids between mantle-derived magmas and very high- T crust-derived melts, modified by fractionation, ingestion of host-derived crystals and, to a lesser extent, by chemical interactions with their hosts. Isotopic and elemental evidence suggests that their likely mafic progenitors formed by partial melting of subcontinental mantle, but that the IME suites from different felsic host bodies did not share a common initial composition. We infer that melts of heterogeneous mantle underwent high- T hybridisation with melts from a variety of crustal rocks, which led to a high degree of primary variability in the IME magmas. Our model for the formation of the Central Victorian IMEs is likely to be applicable to other occurrences, especially in suites of postorogenic granitic magmas emplaced in the shallow crust. However, there are many different origins for the mingled magma globules that we call IMEs, and different phenomena seem to occur in differing tectonic settings. The complexity of IME formation means that it is difficult to unravel the petrogenesis of these products of chaotic magma processes. Nevertheless, the survival of fine-grained, non-equilibrium mineralogy and texture in the IMEs suggests that their tenure in the host magmas must have been geologically brief.

  9. Characterization of cores from an in-situ recovery mined uranium deposit in Wyoming: Implications for post-mining restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WoldeGabriel, G.; Boukhalfa, H.; Ware, S. D.

    In-situ recovery (ISR) of uranium (U) from sandstone-type roll-front deposits is a technology that involves the injection of solutions that consist of ground water fortified with oxygen and carbonate to promote the oxidative dissolution of U, which is pumped to recovery facilities located at the surface that capture the dissolved U and recycle the treated water. The ISR process alters the geochemical conditions in the subsurface creating conditions that are more favorable to the migration of uranium and other metals associated with the uranium deposit. There is a lack of clear understanding of the impact of ISR mining on themore » aquifer and host rocks of the post-mined site and the fate of residual U and other metals within the mined ore zone. We performed detailed petrographic, mineralogical, and geochemical analyses of several samples taken from about 7 m of core of the formerly the ISR-mined Smith Ranch–Highland uranium deposit in Wyoming. We show that previously mined cores contain significant residual uranium (U) present as coatings on pyrite and carbonaceous fragments. Coffinite was identified in three samples. Core samples with higher organic (> 1 wt.%) and clay (> 6–17 wt.%) contents yielded higher 234U/ 238U activity ratios (1.0–1.48) than those with lower organic and clay fractions. The ISR mining was inefficient in mobilizing U from the carbonaceous materials, which retained considerable U concentrations (374–11,534 ppm). This is in contrast with the deeper part of the ore zone, which was highly depleted in U and had very low 234U/ 238U activity ratios. This probably is due to greater contact with the lixiviant (leaching solution) during ISR mining. EXAFS analyses performed on grains with the highest U and Fe concentrations reveal that Fe is present in a reduced form as pyrite and U occurs mostly as U(IV) complexed by organic matter or as U(IV) phases of carbonate complexes. Moreover, U–O distances of ~ 2.05 Å were noted, indicating the potential formation of other poorly defined U(IV/VI) species. We also noted a small contribution from Udouble bond; length as m-dashO at 1.79 Å, which indicates that U is partially oxidized. There is no apparent U–S or U–Fe interaction in any of the U spectra analyzed. However, SEM analysis of thin sections prepared from the same core material reveals surficial U associated with pyrite which is probably a minor fraction of the total U present as thin coatings on the surface of pyrite. Our data show the presence of different structurally variable uranium forms associated with the mined cores. U associated with carbonaceous materials is probably from the original U mobilization that accumulated in the organic matter-rich areas under reducing conditions during shallow burial diagenesis. U associated with pyrite represents a small fraction of the total U and was likely deposited as a result of chemical reduction by pyrite. Our data suggest that areas rich in carbonaceous materials had limited exposure to the lixiviant solution, continue to be reducing, and still hold significant U resources. Because of their limited access to fluid flow, these areas might not contribute significantly to post-mining U release or attenuation. Areas with pyrite that are accessible to fluids seem to be more reactive and could act as reductants and facilitate U reduction and accumulation, limiting its migration.« less

  10. Characterization of cores from an in-situ recovery mined uranium deposit in Wyoming: Implications for post-mining restoration

    DOE PAGES

    WoldeGabriel, G.; Boukhalfa, H.; Ware, S. D.; ...

    2014-10-08

    In-situ recovery (ISR) of uranium (U) from sandstone-type roll-front deposits is a technology that involves the injection of solutions that consist of ground water fortified with oxygen and carbonate to promote the oxidative dissolution of U, which is pumped to recovery facilities located at the surface that capture the dissolved U and recycle the treated water. The ISR process alters the geochemical conditions in the subsurface creating conditions that are more favorable to the migration of uranium and other metals associated with the uranium deposit. There is a lack of clear understanding of the impact of ISR mining on themore » aquifer and host rocks of the post-mined site and the fate of residual U and other metals within the mined ore zone. We performed detailed petrographic, mineralogical, and geochemical analyses of several samples taken from about 7 m of core of the formerly the ISR-mined Smith Ranch–Highland uranium deposit in Wyoming. We show that previously mined cores contain significant residual uranium (U) present as coatings on pyrite and carbonaceous fragments. Coffinite was identified in three samples. Core samples with higher organic (> 1 wt.%) and clay (> 6–17 wt.%) contents yielded higher 234U/ 238U activity ratios (1.0–1.48) than those with lower organic and clay fractions. The ISR mining was inefficient in mobilizing U from the carbonaceous materials, which retained considerable U concentrations (374–11,534 ppm). This is in contrast with the deeper part of the ore zone, which was highly depleted in U and had very low 234U/ 238U activity ratios. This probably is due to greater contact with the lixiviant (leaching solution) during ISR mining. EXAFS analyses performed on grains with the highest U and Fe concentrations reveal that Fe is present in a reduced form as pyrite and U occurs mostly as U(IV) complexed by organic matter or as U(IV) phases of carbonate complexes. Moreover, U–O distances of ~ 2.05 Å were noted, indicating the potential formation of other poorly defined U(IV/VI) species. We also noted a small contribution from Udouble bond; length as m-dashO at 1.79 Å, which indicates that U is partially oxidized. There is no apparent U–S or U–Fe interaction in any of the U spectra analyzed. However, SEM analysis of thin sections prepared from the same core material reveals surficial U associated with pyrite which is probably a minor fraction of the total U present as thin coatings on the surface of pyrite. Our data show the presence of different structurally variable uranium forms associated with the mined cores. U associated with carbonaceous materials is probably from the original U mobilization that accumulated in the organic matter-rich areas under reducing conditions during shallow burial diagenesis. U associated with pyrite represents a small fraction of the total U and was likely deposited as a result of chemical reduction by pyrite. Our data suggest that areas rich in carbonaceous materials had limited exposure to the lixiviant solution, continue to be reducing, and still hold significant U resources. Because of their limited access to fluid flow, these areas might not contribute significantly to post-mining U release or attenuation. Areas with pyrite that are accessible to fluids seem to be more reactive and could act as reductants and facilitate U reduction and accumulation, limiting its migration.« less

  11. Metamorphism and gold mineralization in the Blue Ridge, Southernmost Appalachians

    USGS Publications Warehouse

    Stowell, H.H.; Lesher, C.M.; Green, N.L.; Sha, P.; Guthrie, G.M.; Sinha, A.K.

    1996-01-01

    Lode gold mineralization in the Blue Ridge of the southernmost Appalachians is hosted by metavolcanic rocks (e.g., Anna Howe mine, AL; Royal Vindicator mine, GA), metaplutonic rocks (e.g., Hog Mountain mine, AL), and metasedimentary rocks (e.g., Lowe, Tallapoosa, and Jones Vein mines, AL). Most gold occurs in synkinematic quartz ?? plagioclase ?? pyrite ?? pyrrhotite ?? chlorite veins localized along polydeformational faults that juxtapose rocks with significantly different peak metamorphic mineral assemblages. Mineralogy, chemistry, and O and H isotope studies suggest that the three types of host rocks have undergone differing amounts and types of alteration during mineralization. Limited wall-rock alteration in metavolcanic- and metasediment-hosted deposits, and relatively extensive wall-rock alteration in granitoid-hosted deposits, suggests that most deposits formed from fluids that were close to equilibrium with metavolcanic and metasedimentary rocks. Stable isotope compositions of the fluids calculated from vein minerals and vein selvages are consistent with a predominantly metasedimentary fluid source, but vary from deposit to deposit (-22 to -47??? ??D, 4-5??? ??18O, and 5-7??? ??34S at Anna Howe and Royal Vindicator; -48 to -50??? ??D, 9-13??? ??18O, and ca. 19??? ??34S at Lowe and Jones Vein; and -22 to -23??? ??D, 8-11??? ??18O, 9-10??? ??34S, and -6 ??13C at Hog Mountain). Silicate mineral thermobarometry of vein, vein selvage, and wall-rock mineral assemblages indicate that mineralization and regional metamorphism occured at greenschist to amphibolite facies (480?? ?? 75??C at Anna Howe, 535?? ?? 50??C at 6.4 ?? 1 kbars at Lowe, 530?? ?? 50??C at 6.9 ?? 1 kbars at Tallapoosa, and 460?? ?? 50??C at 5.5 ?? 1 kbars at Hog Mountain). Oxygen isotope fractionation between vein minerals and selvage minerals consistently records equilibration temperatures that are similar to or slightly lower than those estimated from silicate thermometry. Auriferous veins contain numerous fluid inclusions that were emplaced in several stages and can be subdivided into five compositional types based on salt and CO2 concentrations. Fluid inclusion isochores for early formed inclusions from these veins intercept the pressure and temperature conditions estimated from silicate mineral thermobarometry and stable isotope thermometry, and are compatible with entrapment at those conditions. These fluids exhibit significant variation in salinity (XNaClequiv = 0.0-0.2) and CO2 (XCO2 = 0.0-0.2), suggesting variation in fluid-wall-rock interaction that accompanied gold deposition during declining temperatures. Less abundant and later fluids within the veins are dominantly CO2. The association of gold mineralization with structurally controlled concordant and discordant quartz sulfide veins, and the temperatures and pressures of wall-rock alteration and regional metamorphism indicate that the present distribution of gold is a result of metamorphism during progressive D2-D3 deformation. Isotopic data for alteration envelopes date this event as Alleghanian: 279 ?? 14 Ma (K-Ar whole rock) and 343 ?? 18 Ma (K-Ar biotite) at Lowe; and 315 ?? 18 Ma (Rb-Sr whole-rock isochron; 87Sr/86Sr, = 0.7061 ?? 0.0008) and 294 ?? 16 Ma (K-Ar whole-rock) at Hog Mountain. Available data are compatible with development of the lodes during early Alleghanian overthrusting of allochthons over sedimentary rocks of the autochthonous North American margin. The implication is that the fluids were derived from metasedimentary and/or metavolcanic formations in the lower parts of the crystalline thrust stack (or possibly from underlying autochthonous sedimentary formations), ascended along permeable fault zones, and were emplaced as veins into dilatent areas in and adjacent to the fault zones.

  12. Remote Sensing and GIS Methods to Detect Uranium Contamination in Watersheds on the Navajo Nation: A NASA/AIHEC Summer Research Experience

    NASA Astrophysics Data System (ADS)

    Chaco, E.; Robinson, D. K.; Carlson, M.; Rock, B. N.

    2010-12-01

    Using ground-based mapping of private drinking water wells contaminated with uranium, we developed Landsat Thematic Mapper (TM) band combinations which indicate possible contamination of extensive areas along the Polacca Wash, the Cottonwood Wash and the Balakai Wash below Black Mesa on the Navajo Nation. The project built on water quality samples taken on unregulated wells by a Field Research Water Quality Team from Dine’ College. The Nevada State Health Laboratory analyzed twenty-six samples, and of those, 12 wells showed uranium in exceedance of 13 μR/hr, the equivalent of 114 mrem per year, greater than the Nuclear Regulatory Commission’s exposure limit of 100 mrem per year. This project hypothesized that point locations of contaminated wells could be compared with US Geologic Survey National Uranium Resource Evaluation (NURE) measures of high uranium levels in soil to identify other possible areas of contamination. We used Cluster Analysis remote sensing methods from MultiSpec© with data acquired by Landsat 5-TM satellite to produce a false color composite band combination, (7 4 2/R G B). Overlaid with a geological map, the Landsat classification correlated sections of sediment with pixilated colored minerals in the NURE data. This map shows possible high levels of uranium in the soil in the watersheds below mine and mill locations. Ground truth studies are needed to confirm the presence of uranium at these suspected sites. The larger goal of this study is to help solve the uranium contamination problem for the Navajo Nation. Chaco was one of 21 TCU (Tribal Colleges and Universities) students who participated in the 2010 NASA/AIHEC (National Aeronautics and Space Administration/American Indian Higher Education Council) Summer Research Experience program. Robinson was his TCU faculty mentor, and Carlson and Rock were Summer Research Experience instructors.

  13. Occurrence model for volcanogenic beryllium deposits: Chapter F in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R.; Jaskula, Brian W.; Piatak, Nadine M.

    2012-01-01

    Current global and domestic mineral resources of beryllium (Be) for industrial uses are dominated by ores produced from deposits of the volcanogenic Be type. Beryllium deposits of this type can form where hydrothermal fluids interact with fluorine and lithophile-element (uranium, thorium, rubidium, lithium, beryllium, cesium, tantalum, rare earth elements, and tin) enriched volcanic rocks that contain a highly reactive lithic component, such as carbonate clasts. Volcanic and hypabyssal high-silica biotite-bearing topaz rhyolite constitutes the most well-recognized igneous suite associated with such Be deposits. The exemplar setting is an extensional tectonic environment, such as that characterized by the Basin and Range Province, where younger topaz-bearing igneous rock sequences overlie older dolomite, quartzite, shale, and limestone sequences. Mined deposits and related mineralized rocks at Spor Mountain, Utah, make up a unique economic deposit of volcanogenic Be having extensive production and proven and probable reserves. Proven reserves in Utah, as reported by the U.S. Geological Survey National Mineral Information Center, total about 15,900 tons of Be that are present in the mineral bertrandite (Be4Si2O7(OH)2). At the type locality for volcanogenic Be, Spor Mountain, the tuffaceous breccias and stratified tuffs that host the Be ore formed as a result of explosive volcanism that brought carbonate and other lithic fragments to the surface through vent structures that cut the underlying dolomitic Paleozoic sedimentary rock sequences. The tuffaceous sediments and lithic clasts are thought to make up phreatomagmatic base surge deposits. Hydrothermal fluids leached Be from volcanic glass in the tuff and redeposited the Be as bertrandite upon reaction of the hydrothermal fluid with carbonate clasts in lithic-rich sections of tuff. The localization of the deposits in tuff above fluorite-mineralized faults in carbonate rocks, together with isotopic evidence for the involvement of magmatic water in an otherwise meteoric water-dominated hydrothermal system, indicate that magmatic volatiles contributed to mineralization. At the type locality, hydrothermal alteration of dolomite clasts formed layered nodules of calcite, opal, fluorite, and bertrandite, the latter occurring finely intergrown with fluorite. Alteration assemblages and elemental enrichments in the tuff and surrounding volcanic rocks include regional diagenetic clays and potassium feldspar and distinctive hydrothermal halos of anomalous fluorine, lithium, molybdenum, niobium, tin, and tantalum, and intense potassium feldspathization with sericite and lithium-smectite in the immediate vicinity of Be ore. Formation of volcanogenic Be deposits is due to the coincidence of multiple factors that include an appropriate Be-bearing source rock, a subjacent pluton that supplied volatiles and heat to drive convection of meteoric groundwater, a depositional site characterized by the intersection of normal faults with permeable tuff below a less permeable cap rock, a fluorine-rich ore fluid that facilitated Be transport (for example, BeF42- complex), and the existence of a chemical trap that caused fluorite and bertrandite to precipitate at the former site of carbonate lithic clasts in the tuff.

  14. Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse

    NASA Astrophysics Data System (ADS)

    Kabele, Petr; Žák, Jiří; Somr, Michael

    2017-06-01

    Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.

  15. Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.

    2013-04-23

    Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and geochemical data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The geochemical data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.

  16. Karst in Wadi Bani Khalid, Oman

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Ramadan

    2017-04-01

    There are several important in Oman. The main aquifer is surficial aquifer and fractured rocks. In fact, the geology of Oman is complex whichmake the hydraulic continuity of bedrock is limited and formaing localized aquifers. caves in Oman are varying types and length, size and geographic formations. Many caves and valleys founded in Oman. Wadi Bani Khalid hosts complex network of fractured rock. Karst in Wadi Bani Kalid made upof Limestone(Calcium, which is dissolve in water.A rain water pass through the rock it is erode the rock and form caves. The cave located in Miqil. The karst was formed in Calcium Carbonate rocks.

  17. Damage-plasticity model of the host rock in a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koudelka, Tomáš; Kruis, Jaroslav, E-mail: kruis@fsv.cvut.cz

    The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented inmore » the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.« less

  18. Major magmatic events in Mt Meredith, Prince Charles Mountains: First evidence for early Palaeozoic syntectonic granites

    USGS Publications Warehouse

    Gongurov, N.A.; Laiba, A.A.; Beliatsky, B.V.

    2007-01-01

    Precambrian rocks at Mt Meredith underwent granulite-facies metamorphism M1. Zircon isotope dating for two orthogneisses revealed the following age signatures: 1294±3 and 957±4Ma; 1105±5 and 887±2Ma. The oldest ages could reflect the time of orthogneiss protolith crystallization and the latest age determinations date Grenvillian metamorphism. The metamorphic rocks were intruded by two-mica and garnet-biotite granites. The granites and host rocks underwent amphibolite-facies metamorphism M2. Zircon isotope analysis of the two-mica granites showed age estimation within 550-510Ma and zircon dating of the garnet-biotite granites revealed the ages of 1107±5, 953±8, and 551±4Ma. As Pan-African age signatures were obtained from only the granite samples, it is possible to suggest that the granites were formed at the time of 510-550Ma and the zircons with greater age values were captured by granites from the host rocks.

  19. The Role of Tectonic Stress in Triggering Large Silicic Caldera Eruptions

    NASA Astrophysics Data System (ADS)

    Cabaniss, Haley E.; Gregg, Patricia M.; Grosfils, Eric B.

    2018-05-01

    We utilize 3-D temperature-dependent viscoelastic finite element models to investigate the mechanical response of the host rock supporting large caldera-size magma reservoirs (volumes >102 km3) to local tectonic stresses. The mechanical stability of the host rock is used to determine the maximum predicted repose intervals and magma flux rates that systems may experience before successive eruption is triggered. Numerical results indicate that regional extension decreases the stability of the roof rock overlying a magma reservoir, thereby promoting early-onset caldera collapse. Alternatively, moderate amounts of compression (≤10 mm/year) on relatively short timescales (<104 years) increases roof rock stability. In addition to quantifying the affect of tectonic stresses on reservoir stability, our models indicate that the process of rejuvenation and mechanical failure is likely to take place over short time periods of hundreds to thousands of years. These findings support the short preeruption melt accumulation timescales indicated by U series disequilibrium studies.

  20. Multiple metasomatic events recorded in Kilbourne Hole peridotite xenoliths: the relative contribution of host basalt interaction vs. silicate metasomatic glass

    NASA Astrophysics Data System (ADS)

    Hammond, S. J.; Yoshikawa, M.; Harvey, J.; Burton, K. W.

    2010-12-01

    Stark differences between bulk-rock lithophile trace element budgets and the sum of the contributions from their constituent minerals are common, if not ubiquitous in peridotite xenoliths [1]. In the absence of modal metasomatism this discrepancy is often attributed to the “catch-all”, yet often vague process of cryptic metasomatism. This study presents comprehensive Sr-Nd isotope ratios for variably metasomatized bulk-rock peridotites, host basalts, constituent peridotite mineral phases and interstitial glass from 13 spinel lherzolite and harzburgite xenoliths from the Kilbourne Hole volcanic maar, New Mexico, USA. Similar measurements were also made on hand-picked interstitial glass from one of the most highly metasomatized samples (KH03-16) in an attempt to unravel the effects of multiple metasomatic events. In all Kilbourne Hole peridotites analysed, hand-picked, optically clean clinopyroxenes preserve a more primitive Sr isotope signature than the corresponding bulk-rock; a pattern preserved in all but one sample for Nd isotope measurements. Reaction textures, avoided during hand-picking, around clinopyroxene grains are evident in the most metasomatized samples and accompanied by films of high-SiO2 interstitial glass. The margins of primary minerals appear partially resorbed and trails of glassy melt inclusions similar in appearance to those previously reported from the same locality [2], terminate in these films. Hand-picked glass from KH03-16 reveals the most enriched 87Sr/86Sr of any component recovered from these xenoliths (87Sr/86Sr = 0.708043 ± 0.00009; [Sr] = 81 ppm). Similarly, the 143Nd/144Nd of the glass is amongst the most enriched of the peridotite components (143Nd/144Nd = 0.512893 ± 0.000012; [Nd] = 10 ppm). However, the host basalt (87Sr/86Sr = 0.703953 ± 0.00012; 143Nd/144Nd = 0.512873 ± 0.000013), similar in composition to nearby contemporaneous Potrillo Volcanic Field basalts [3], contains nearly an order of magnitude more Sr and more than three times more Nd ([Sr] = 655 ppm; [Nd] = 34 ppm) than the interstitial glass. While the enriched nature of the host basalt, combined with high [Sr] and [Nd], makes it the most likely candidate for the enrichment of the peridotite bulk rocks, mixing between clinopyroxenes and the host basalt cannot account for the full range of bulk-rock Sr-Nd isotope ratios and nearly half of the xenoliths require an additional component that could involve varying amounts of interstitial glass. Moreover, three bulk-rock samples require a further, as yet unidentified component in order to explain the bulk-rock Sr-Nd isotope composition fully, implying that at least three episodes of metasomatism/refertilization must have occurred prior to the arrival of the xenoliths at the surface in their host lava. References: [1] Bedini & Bodinier (1999) Geochim. Cosmochim. Acta 63, 3883-3900. [2] Schiano & Clocchiatti (1994) Nature 368, 622-624. [3] Thompson et al., (2005) J. Petrol. 46, 1603-1643.

  1. Combined apatite fission track and U-Pb dating by LA-ICPMS

    NASA Astrophysics Data System (ADS)

    Chew, D. M.; Donelick, R. A.

    2012-04-01

    Apatite is a common accessory mineral in igneous, metamorphic and clastic sedimentary rocks. It is a nearly ubiquitous accessory phase in igneous rocks, is common in metamorphic rocks of pelitic, carbonate, basaltic, and ultramafic composition and is virtually ubiquitous in clastic sedimentary rocks. In contrast to the polycyclic behavior of the stable heavy mineral zircon, apatite is unstable in acidic groundwaters and has limited mechanical stability in sedimentary transport systems. Apatite has many potential applications in provenance studies, particularly as it likely represents first-cycle detritus. Fission track and U-Pb dating are very powerful techniques in apatite provenance studies. They yield complementary information, with the apatite fission-track system yielding low-temperature exhumation ages and the U-Pb system yielding high-temperature cooling ages which constrain the timing of apatite crystallization. This study focuses on integrating apatite fission track and U-Pb dating by the LA-ICPMS method. Our approach is intentionally broad in scope, and is applicable to any quadrupole or rapid-scanning magnetic-sector LA-ICPMS system. Calculating uranium concentrations in fission-track dating by LA-ICPMS increases the speed of analysis and sample throughput compared to the conventional external detector method and avoids the need for neutron irradiation (Hasebe et al., 2004). LA-ICPMS-based uranium measurements in apatite are measured relative to an internal concentration standard (typically 43Ca). Ca in apatite is not always stochiometric as minor cations (Mn2+, Sr2+, Ba2+ and Fe2+) and REE can substitute with Ca2+. These substitutions must be quantified by multi-elemental LA-ICPMS analyses. Such data are also useful for discriminating between different apatite populations in sedimentary or volcaniclastic rocks based on their trace-element chemistry. Low U, Th and radiogenic Pb concentrations, elevated common Pb / radiogenic Pb ratios and U-Pb elemental fractionation are challenges in apatite U-Pb dating by LA-ICPMS. Isochron-based approaches to common Pb correction require a significant spread in common Pb / radiogenic Pb ratios. This is not usually possible on individual detrital apatite grains and hence the 204Pb-, 207Pb- and 208Pb-correction methods are preferred. Uranium concentration measurements by ICPMS employ large peak jumps (the internal standard is a Ca isotope) which require a quadrupole or a rapid-scanning magnetic-sector LA-ICPMS system. These single-collector instruments require a prohibitively long dwell time on the low intensity 204Pb peak to measure it accurately and hence the 207Pb- and 208Pb-correction methods are preferred. Uranium-concentration measurements in fission-track dating require well-constrained ablation depths during analysis and hence spot analyses are preferred to rastering. Laser-induced U-Pb fractionation is corrected for by sample-standard bracketing using a variety of apatite standards (Durango, Emerald Lake, Fish Canyon Tuff, Kovdor, Otter Lake and McClure Mountain syenite). Of these, Emerald Lake (Chew et al., 2011) and McClure Mountain syenite apatite are recommended as primary standards with Durango apatite making a suitable secondary standard. Offline data-reduction uses custom-written software for ICPMS data processing (the UPbICP package of Ray Donelick) or the freeware IOLITE data-reduction package of Paton et al. (2010).

  2. Characterization of Geologic Structures and Host Rock Properties Relevant to the Hydrogeology of the Standard Mine in Elk Basin, Gunnison County, Colorado

    USGS Publications Warehouse

    Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn

    2010-01-01

    The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.

  3. Thermohydrologic modeling of the large-block test in partially saturated fractured tuff at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Lee, K.; Buscheck, T. A.; Glascoe, L. G.; Gansemer, J.; Sun, Y.

    2002-12-01

    In support of the characterization of Yucca Mountain as a potential site for as a geologic repository for high-level nuclear waste, the US Department of Energy conducted the Large Block Test (LBT) at nearby Fran Ridge. The LBT was conducted in an excavated 3x 3x 4.5m block of partially saturated, fractured nonlithophysal Topopah Spring tuff, which is one of the host-rock units for the potential repository at Yucca Mountain. The LBT was one of a series of field-scale thermohydrologic tests conducted in the repository host-rock units. The LBT was heated by line heaters installed in five boreholes lying in a horizontal plane 2.75 m below the upper surface of the block. The field-scale thermal tests were designed to help investigators better understand the coupled thermohydrologic-mechanical-chemical processes that would occur in the host rock in response to the radioactive heat of decay from emplaced waste packages. The tests also provide data for the calibration and validation of numerical models used to analyze the thermohydrologic response of the near-field host rock and Engineered Barrier System (EBS). Using the NUFT code and the dual-permeability approach to representing fracture-matrix interaction, we simulated the thermohydrologic response of the block to a heating and cooling cycle. The primary goals of the analysis were to study the heat-flow mechanisms and water redistribution patterns in the boiling and sub-boiling zones, and to compare model results with measured temperature and liquid saturation data, and thereby evaluate two rock property data sets available for modeling thermohydrologic behavior in the rock. Model results were also used for model calibration and validation. We obtained a good to excellent match between model and observed temperatures, and found that the distinct dryout and condensation zones modeled above and below the heater level agreed fairly well with the liquid-saturation measurements. We identified the best-fit data set by using a statistical analysis to compare model and field temperatures, and found that heat flow in the block was dominated by conduction.

  4. Simulation of Mechanical Processes in Gas Storage Caverns for Short-Term Energy Storage

    NASA Astrophysics Data System (ADS)

    Böttcher, Norbert; Nagel, Thomas; Kolditz, Olaf

    2015-04-01

    In recent years, Germany's energy management has started to be transferred from fossil fuels to renewable and sustainable energy carriers. Renewable energy sources such as solar and wind power are subjected by fluctuations, thus the development and extension of energy storage capacities is a priority in German R&D programs. This work is a part of the ANGUS+ Project, funded by the federal ministry of education and research, which investigates the influence of subsurface energy storage on the underground. The utilization of subsurface salt caverns as a long-term storage reservoir for fossil fuels is a common method, since the construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to solution mining. Another advantage of evaporate as host material is the self-healing behaviour of salt rock, thus the cavity can be assumed to be impermeable. In the framework of short-term energy storage (hours to days), caverns can be used as gas storage reservoirs for natural or artificial fuel gases, such as hydrogen, methane, or compressed air, where the operation pressures inside the caverns will fluctuate more frequently. This work investigates the influence of changing operation pressures at high frequencies on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. The salt behaviour is described by well-known constitutive material models which are capable of predicting creep, self-healing, and dilatancy processes. Our simulations include the thermodynamic behaviour of gas storage process, temperature development and distribution on the cavern boundary, the deformation of the cavern geometry, and the prediction of the dilatancy zone. Based on the numerical results, optimal operation modes can be found for individual caverns, so the risk of host rock damage can be minimized. Furthermore, the model can be used to design efficient monitoring programs to detect possible variations of the host rock due construction and operation of the storage facility. The developed model will be used by public authorities for land use planning issues.

  5. Complicated secondary textures in zircon record evolution of the host granitic rocks: Studies from Western Tauern Window and Ötztal-Stubai Crystalline Complex (Eastern Alps, Western Austria)

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Harlov, Daniel; Klötzli, Urs

    2017-07-01

    Samples of metamorphosed and deformed granitic rocks were collected from two Alpine complexes with well-constrained metamorphic history: Western Tauern Window and Ötztal-Stubai Crystalline Complex. Zircon grains from these samples were investigated in situ by a combination of scanning electron microscope techniques, cathodoluminescence (CL) imaging and Raman spectroscopy. The aims were: to describe and interpret complicated secondary textures and microstructures in zircon; based on cross-cutting relationships between secondary microstructures, reconstruct the sequence of processes, affecting zircon crystals; link the evolution of zircon with the history of the host rocks. The results indicate that zircon in the sampled granitic rocks forms growth twins and multi-grain aggregates, which are unusual for this mineral. Moreover, various secondary textures have been found in the sampled zircon, often cross-cutting each other in a single crystal. These include: distorted oscillatory CL zoning with inner zones forming inward-penetrating, CL-bright embayments, which are the evidence of dry recrystallization via annealing/lattice recovery; CL mosaicism with no preservation of growth zoning, but abundant nano- and micro-scale pores and mineral inclusions, which are the evidence of recrystallization by coupled dissolution-reprecipitation and/or leaching; embayed zircon boundaries filled with apatite, monazite, epidote and mylonitic matrix, indicating mineral-fluid reactions resulting in zircon dissolution and fragmentation; overgrowth CL-dark rims, which contain nano-pores and point to transport and precipitation of dissolved zircon matter. We conclude that zircon in our meta-granites is sensitive to metamorphism/deformation events, and was reactive with metamorphic fluids. Additionally, we have found evidence of crystal-plastic deformation in the form of low angle boundaries and bent grain tips, which is a result of shearing and ductile deformation of the host rock. We suggest that the observed complicated secondary textures in zircon can be linked to the evolutionary stages of the host rocks such as magmatic crystallization, prograde metamorphism, peak of amphibolite-facies metamorphism, post-peak cooling and exhumation, formation of ductile shear zones and final cooling to 250 °C.

  6. Geochemical and isotopic study of impact melts and spherules from the Lonar impact crater, India, indicate melting of the Precambrian basement beneath the 'target' Deccan basalts

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Goderis, S.; Banerjee, A.; Gupta, R. D.; Claeys, P.; Vanhaecke, F. F.

    2016-12-01

    The 1.88 km diameter Lonar impact Crater, with age estimates ranging from 52 -570 ka, is located in the Buldana district of Maharashtra, India. It is an almost circular depression hosted entirely in the 65Ma old basalt flows of the Deccan Traps and is the best-known terrestrial analogue for impact craters in the Inner Solar System. Isotopic studies indicate that the basalts around Lonar correlate with the Poladpur suite, one of the mid-section volcano-stratigraphic units of the Deccan traps. Recently collected samples of the host basalt and impact melts, were analyzed for major and trace element concentrations using ICPMS, as well as for Nd and Sr isotope ratios using TIMS. Relatively more radiogenic Sr and less radiogenic Nd isotopic composition of the melt rocks compared to earlier measurements of similar rocks from Lonar are consistent with melting of the Precambrian basement beneath the Deccan basalt. Spherules ranging in size from 100 mm to 1 mm, were hand-picked under a binocular microscope from unconsolidated soil samples, collected from the south-eastern rim of the crater. Thirty-five spherule samples, screened for surface alteration using SEM were analyzed for major and trace element concentrations including PGEs using LA-ICPMS. The spherules were further classified into two groups using the Chemical Index of Alteration(CIA). Iridium and Cr concentrations of the spherules are consistent with mixing of a chondritic impactor (with 2-8% contribution) with the target rock(s). On a Nb (fluid immobile) -normalized binary plot of Th versus Cr, the composition of the spherules can be explained by mixing between the host basalt and a chondritic impactor with a definite, but minor contribution of the basement beneath Lonar, the composition of which is approximated using the average composition of the upper continental crust (UCC). Variability in the light-REE fractionation of the spherules (La/Sm(N)) can also be explained by a similar three component mixing. Overall, our geochemical data for both the melt rocks and spherules suggest mixing between the chondritic impactor, the Deccan host basalt and the basement rocks at Lonar.

  7. Preliminary examination of lunar samples from apollo 14.

    PubMed

    1971-08-20

    The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date.

  8. Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng

    2015-08-20

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. Chapter headings are as follows: Fuel matrix degradation model and its integration with performance assessments, Investigation of thermal effects on the chemical behavior of clays, Investigation of uranium diffusion and retardation in bentonite, Long-term diffusion of U(VI) in bentonite: dependence on density, Sorption and desorption of plutonium by bentonite, Dissolution of plutonium intrinsic colloids in the presence of clay and asmore » a function of temperature, Laboratory investigation of colloid-facilitated transport of cesium by bentonite colloids in a crystalline rock system, Development and demonstration of discrete fracture network model, Fracture continuum model and its comparison with discrete fracture network model.« less

  9. Radionuclides at Descartes in the central highlands

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.

    1973-01-01

    Throium, uranium, potassium, aluminium-26, and sodium-22 were measured by nondestructive gamma ray spectrometry in six soil and two rock samples gathered by Apollo 16 in the lunar central highlands. The soil samples probably include both major geologic formations in the vicinity, the Cayley and Descartes Formations, although it is possible that the Descartes Formation is not represented. The rock samples have low concentrations of primordial radionuclides. The Al concentrations were lower than could be expected from the high abundance of alumina in the Apollo 16 soils reported earlier, but this could be due to lower concentrations of target elements in these soils, sampling depth variations, or regolithic mixing (exposure age variations).

  10. Nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, Southern Nevada

    NASA Technical Reports Server (NTRS)

    Taranik, James V.; Hsu, Liang C.; Spatz, David

    1988-01-01

    Comparative lab spectra and Thematic Mapper imagery investigations at 3 Tertiary calderas in southern Nevada indicate that desert varnish is absorbant relative to underlying host rocks below about 0.7 to 1.3 microns, depending on mafic affinity of the sample, but less absorbant than mafic host rocks at higher wavelengths. Desert varnish occurs chiefly as thin impregnating films. Distribution of significant varnish accumulations is sparse and localized, occurring chiefly in surface recesses. These relationships result in the longer wavelength bands and high 5/2 values over felsic units with extensive desert varnish coatings. These lithologic, petrochemical, and desert varnish controlled spectral responses lead to characteristic TM band relationships which tend to correlate with conventionally mappable geologic formations. The concept of a Rock-Varnish Index (RVI) is introduced to help distinguish rocks with a potentially detectable varnish. Felsic rocks have a high RVI, and those with extensive desert varnish behave differently, spectrally, from those without extensive varnish. The spectrally distinctive volcanic formations at Stonewall Mountain provide excellent statistical class segregation on supervised classification images. A binary decision rule flow-diagram is presented to aid TM imagery analysis over volcanic terrane in semi-arid environments.

  11. Uranium in the Mayoworth area, Johnson County, Wyoming - a preliminary report

    USGS Publications Warehouse

    Love, J.D.

    1954-01-01

    The uranium mineral, metatyuyamunite, occurs in the basal limestone of the Sundance formation of late Jurassic age along the east flank of the Bighorn Mountains, about 2 miles southwest of the abandoned Mayoworth post office. This occurrence is of particular interest because it is the first uranium mineralization reported from a marine limestone in Wyoming. The discovery uranium claims were filed in July 1953, by J.S. Masek, Dan Oglesby, and Jack Emery of Casper, Wyo. Subsequent reconnaissance investigations have been made by private individuals and geologists of the U.S. Geological Survey and Atomic Energy Commission. The metatyuyamunite is concentrated in a hard gray oolitic limestone that forms the basal bed of the Sundance formation. A selected sample of limestone from a fresh face in the northernmost deposit known at the time of the field examination contained 0.70 percent equivalent uranium and 0.71 percent uranium. Eight samples of the limestone taken at the sample place by the Atomic Energy Commission contained from 0.007 to 0.22 percent uranium. A chip sample from the weathered outcrop at the top of this limestone half a mile to the southeast contained 0.17 percent equivalent uranium and 0.030 percent uranium. A dinosaur bone from the middle part of the Morrison formation contained 0.044 percent equivalent uranium and 0.004 percent uranium. metatyuyamunite forms a conspicuous yellow coating along fracture planes cutting the oolitic limestone and has also replaced many of the oolites within the solid limestone and has also replaced many of the oolites within the solid limestone even where fractures are not present. Many radioactive spots in the basal limestone of the Sundance formation were examined in a reconnaissance fashion along the outcrop for a distance of half a mile south of the initial discovery. Samples were taken for analysis only at the northern and southern margins of this interval. Outcrops farther north and south were not studied. There are not sufficient data to make even rough estimates of tonnage and grade of the occurrences. The extent of the limestone, the approximate boundaries of the area of above-normal radioactivity, and the possibilities of other radioactive zones have not been thoroughly investigated. Although dinosaur bones in the Morrison formation were radioactive wherever they were tested, no significant amount of radioactivity was observed in rocks adjacent to the bones.

  12. An experimental study of the carbonation of serpentinite and partially serpentinised peridotites

    NASA Astrophysics Data System (ADS)

    Lacinska, Alicja M.; Styles, Michael T.; Bateman, Keith; Hall, Matthew; Brown, Paul D.

    2017-06-01

    In situ sequestration of CO2 in mantle peridotites has been proposed as a method to alleviate the amount of anthropogenic CO2 in the atmosphere. This study presents the results of eight-month long laboratory fluid-rock experiments on representative mantle rocks from the Oman-United Arab Emirates ophiolite to investigate this process. Small core samples (3 cm long) were reacted in wet supercritical CO2 and CO2-saturated brine at 100 bar and 70°C. The extent of carbonate formation, and hence the degree of carbon sequestration, varied greatly depending on rock type, with serpentinite (lizardite-dominated) exhibiting the highest capacity, manifested by the precipitation of magnesite MgCO3 and ferroan magnesite (Mg,Fe)CO3. The carbonate precipitation occurred predominantly on the surface of the core and subordinately within cross-cutting fractures. The extent of the CO2 reactions appeared to be principally controlled by the chemical and mineralogical composition of the rock, as well as the rock texture, with all these factors influencing the extent and rate of mineral dissolution and release of Mg and Fe for subsequent reaction with the CO2. It was calculated that ≈ 0.7 g of CO2 was captured by reacting ≈ 23 g of serpentinite, determined by the mass of magnesite formed. This equates to ≈ 30 kg CO2 per tonne of host rock, equivalent to ≈ 3% carbonation in half a year. However, recycling of carbonate present in veins within the original rock sample could mean that the overall amount is around 2%. The increased reactivity of serpentinite was associated with preferential dissolution of more reactive types of serpentine minerals and brucite, that were mainly present in the cross-cutting veins. The bulk of the serpentinite rock was little affected. This study, using relatively short term experiments, suggests that serpentinite might be a good host rock for CO2 sequestration, although long term experiments might prove that dunite and harzburgite could be an effective in an engineered system of CCSM. Wet scCO2 proved to be chemically aggressive than CO2-saturated brine and its ingress along fractures and grain boundaries resulted in greater host rock dissolution and subsequent carbonate precipitation.

  13. Effects of shallow basaltic intrusion into pyroclastic deposits, Grants Ridge, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Keating, Gordon N.; Valentine, Greg A.

    1999-10-01

    A localized aureole up to 10 m wide developed around a 150-m-wide, 2.6 Ma basaltic plug at Grants Ridge, New Mexico. The plug intruded into nonwelded, pumice-rich compositionally homogenous tuff and volcaniclastic sediments of similar age (3.3 Ma). Color variation (pinkish to orange), strong local contact welding, brecciation, partial melting, and stoping characterize the host rock within the contact zone. Despite the high-temperature basaltic intrusion, there is no indication of extensive fluid-driven convective heat transfer and pervasive hydrothermal circulation and alteration of the country rock. The proportion of volcanic glass, loss on ignition (LOI), fluorine, iron, and some trace and rare earth element contents in the host rocks are somewhat depleted at the contact of the intrusion. Conversely, the degree of devitrification and the potassium content are higher along the contact. Vapor-phase expulsion of elemental species as complexes of fluoride, chloride, hydroxide, sulfide, and carbon dioxide may have been responsible for the minor depletion of the elements during the devitrification of silicic glass at near-solidus temperature related to the basaltic intrusion. The results of finite-difference numerical modeling of the intrusion as a dry, conduction-dominated system agree well with geochemical and mineralogical data. Contact welding of the host rocks apparently occurred at temperatures >700°C under a density-driven lateral load of approximately 1 MPa, corresponding to the observed depth below the former ground surface of ˜100 m. Other physical changes in the first 10 m of host rock, represented by partial devitrification and color changes, apparently occurred at temperatures of 500-600°C, which probably persisted for up to 55 years after the emplacement of the basaltic plug. Devitrification is generally enhanced by the presence of aqueous fluids; however, the abundance of volcanic glass within a short distance (˜10 m) from the plug is consistent with our inference that the plug intruded into a dry (unsaturated) environment.

  14. Petroleum source rock evaluation of the Alum and Dictyonema Shales (Upper Cambrian-Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland)

    NASA Astrophysics Data System (ADS)

    Kosakowski, Paweł; Kotarba, Maciej J.; Piestrzyński, Adam; Shogenova, Alla; Więcław, Dariusz

    2017-03-01

    We present geochemical characteristics of the Lower Palaeozoic shales deposited in the Baltic Basin and Podlasie Depression. In the study area, this strata are represented by the Upper Cambrian-Lower Ordovician Alum Shale recognized in southern Scandinavia and Polish offshore and a equivalent the Lower Tremadocian Dictyonema Shale from the northern Estonia and the Podlasie Depression in Poland. Geochemical analyses reveal that the Alum Shale and Dictyonema Shale present high contents of organic carbon. These deposits have the best source quality among the Lower Palaeozoic strata, and they are the best source rocks in the Baltic region. The bituminous shales complex has TOC contents up to ca. 22 wt%. The analysed rocks contain low-sulphur, oil-prone Type-II kerogen deposited in anoxic or sub-oxic conditions. The maturity of the Alum and Dictyonema Shales changes gradually, from the east and north-east to the west and south-west, i.e. in the direction of the Tornquist-Teisseyre Zone. Samples, located in the seashore of Estonia and in the Podlasie region, are immature and in the initial phase of "oil window". The mature shales were found in the central offshore part of the Polish Baltic Basin, and the late mature and overmature are located in the western part of the Baltic Basin. The Alum and Dictyonema Shales are characterized by a high grade of radioactive elements, especially uranium. The enrichment has a syngenetic or early diagenetic origin. The measured content of uranium reached up to 750 ppm and thorium up to 37 ppm.

  15. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    NASA Astrophysics Data System (ADS)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  16. Rare earth element content of cryptocrystalline magnesites of Konya, Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zedef, Veysel, E-mail: vzedef@selcuk.edu.tr; Russell, Michael

    We examined the rare earth element content of several cryptocrystalline magnesites as well as hydromagnesite, host rock serpentinites, lake water and hot spring water from Turkey. Southwestern Turkey hosts cryptocrystalline magnesites, sedimentary magnesites with presently forming, biologically mediated hydromagnesites and travertines. Our results show the REE content of the minerals, rocks and waters are well below detection limits. One hydromagnesite sample from Lake Salda has slightly high La (2.38ppb), Ce (3.91 ppb) and Nd (1.68 ppb) when compared to other samples, but these are also still below detection limits of the method we followed.

  17. Characterization of uranium redox state in organic-rich Eocene sediments.

    PubMed

    Cumberland, Susan A; Etschmann, Barbara; Brugger, Joël; Douglas, Grant; Evans, Katy; Fisher, Louise; Kappen, Peter; Moreau, John W

    2018-03-01

    The presence of organic matter (OM) has a profound impact on uranium (U) redox cycling, either limiting or promoting the mobility of U via binding, reduction, or complexation. To understand the interactions between OM and U, we characterised U oxidation state and speciation in nine OM-rich sediment cores (18 samples), plus a lignite sample from the Mulga Rock polymetallic deposit in Western Australia. Uranium was unevenly dispersed within the analysed samples with 84% of the total U occurring in samples containing >21 wt % OM. Analyses of U speciation, including x-ray absorption spectroscopy and bicarbonate extractions, revealed that U existed predominately (∼71%) as U(VI), despite the low pH (4.5) and nominally reducing conditions within the sediments. Furthermore, low extractability by water, but high extractability by a bi-carbonate solution, indicated a strong association of U with particulate OM. The unexpectedly high proportion of U(VI) relative to U(IV) within the OM-rich sediments implies that OM itself does not readily reduce U, and the reduction of U is not a requirement for immobilizing uranium in OM-rich deposits. The fact that OM can play a significant role in limiting the mobility and reduction of U(VI) in sediments is important for both U-mining and remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Uranophane at Silver Cliff mine, Lusk, Wyoming

    USGS Publications Warehouse

    Wilmarth, Verl R.; Johnson, D.H.

    1954-01-01

    The uranium deposit at the Silver Cliff mine near Lusk, Wyo., consists primarily of uranophane which occurs as fracture fillings and small replacement pockets in faulted and fractured calcareous sandstone of Cambrian (?) age. The country rock in the vicinity of the mine is schist of pre-Cambrian age intruded by pegmatite dikes and is unconformably overlain by almost horizontal sandstone of Cambrian(?) age. The mine is on the southern end of the Lusk Dome, a local structure probably related to the Hartville uplift. In the immediate vicinity of the mine, the dome is cut by the Silver Cliff fault, a north-trending high-angle reverse fault about 1,200 feet in length with a stratigraphic throw of 70 feet. Uranophane, metatorbernite, pitchblende, calcite, native silver, native copper, chalcocite, azurite, malachite, chrysocolla, and cuprite have been deposited in fractured sandstone. The fault was probably mineralized throughout its length, but because of erosion, the mineralized zone is discontinuous. The principal ore body is about 800 feet long. The width and depth of the mineralized zone are not accurately known but are at least 20 feet and 60 feet respectively. The uranium content of material sampled in the mine ranges from 0.001 to 0.23 percent uranium, whereas dump samples range from 0.076 to 3.39 percent uranium.

  19. Irradiation of organic matter by uranium decay in the Alum Shale, Sweden

    NASA Astrophysics Data System (ADS)

    Lewan, M. D.; Buchardt, B.

    1989-06-01

    The Alum Shale of Sweden contains black shales with anomalously high uranium concentrations in excess of 100 ppm. Syngenetic or early diagenetic origin of this uranium indicates that organic matter within these shales has been irradiated by decaying uranium for approximately 500 Ma. Radiation-induced polymerization of alkanes through a free-radical cross-linking mechanism appears to be responsible for major alterations within the irradiated organic matter. Specific radiation-induced alterations include generation of condensate-like oils at reduced yields from hydrous pyrolysis experiments, decrease in atomic H/C ratios of kerogens, decrease in bitumen/organic-carbon ratios, and a relative increase in low-molecular weight triaromatic steroid hydrocarbons. Conversely, stable carbon isotopes of kerogens, reflectance of vitrinite-like macerais, oil-generation kinetics, and isomerization of 20R to 20S αα C 29-steranes were not affected by radiation. The radiation dosage needed to cause the alterations observed in the Alum Shale has been estimated to be in excess of 10 5 Mrads with respect to organic carbon. This value is used to estimate the potential for radiation damage to thermally immature organic matter in black shales through the geological rock record. High potential for radiation damage is not likely in Cenozoic and Mesozoic black shales but becomes more likely in lower Paleozoic and Precambrian black shales.

  20. Geochemical investigations by the U.S. Geological Survey on uranium mining, milling, and environmental restoration

    USGS Publications Warehouse

    Landa, Edward R.; Cravotta, Charles A.; Naftz, David L.; Verplanck, Philip L.; Nordstrom, D. Kirk; Zielinski, Robert A.

    2000-01-01

    Recent research by the U.S. Geological Survey has characterized contaminant sources and identified important geochemical processes that influence transport of radionuclides from uranium mining and milling wastes. 1) Selective extraction studies indicated that alkaline earth sulfates and hydrous ferric oxides are important hosts of 226Ra in uranium mill tailings. The action of sulfate-reducing and ironreducing bacteria on these phases was shown to enhance release of radium, and this adverse result may temper decisions to dispose of uranium mill tailings in anaerobic environments. 2) Field studies have shown that although surface-applied sewage sludge/wood chip amendments aid in revegetating pyritic spoil, the nitrogen in sludge leachate can enhance pyrite oxidation, acidification of groundwater, and the consequent mobilization of metals and radionuclides. 3) In a U.S. Environmental Protection Agencyfunded study, three permeable reactive barriers consisting of phosphate-rich material, zero-valent iron, or amorphous ferric oxyhydroxide have been installed at an abandoned uranium upgrader facility near Fry Canyon, UT. Preliminary results indicate that each of the permeable reactive barriers is removing the majority of the uranium from the groundwater. 4) Studies on the geochemistry of rare earth elements as analogues for actinides such as uranium and thorium in acid mine drainage environments indicate high mobility under acid-weathering conditions but measurable attenuation associated with iron and aluminum colloid formation. Mass balances from field and laboratory studies are being used to quantify the amount of attenuation. 5) A field study in Colorado demonstrated the use of 234U/238U isotopic ratio measurements to evaluate contamination of shallow groundwater with uranium mill effluent.

Top